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ABSTRACT: Assessing life-cycle seismic safety of aging reinforced concrete bridges is 
a challenging engineering task. Deterioration phenomena reduce structural capacity, exacerbat
ing poor design choices that are typical of old bridges, while also being characterized by major 
uncertainties. Management of engineering systems in highly uncertain environments can be effi
ciently addressed through Markov decision processes, which rely on dynamic Bayesian networks 
to model the deteriorating system’s life-cycle. However, there is still a gap in developing virtual 
environments that can seamlessly fit in such advanced algorithmic decision-making frameworks, 
especially under life-cycle seismic behavior considerations. In this study, we develop a dynamic 
Bayesian network capable of incorporating disparate uncertainties related to chloride-induced 
corrosion and seismic action, aiming at providing fragility curves over the bridge service life. 
The framework is applied to a prototype bridge encapsulating key risk-prone features. Using 
a multi-component approach, the developed network provides valuable insights into the fragility 
evaluation of both the system and individual components. Markovian transitions among com
ponent deterioration states are computed by combining corrosion initiation and propagation 
models with non-stationary Gamma processes. Subsequently, state-dependent fragilities are 
obtained through probabilistic seismic assessment based on non-linear dynamic analyses and 
multinomial logistic regression. Results show that the approach sheds light on the risk interplay 
mechanisms between components and the system, and on how different corrosion scenarios 
affect the system fragility. Discussion is finally provided on how these risk considerations can be 
interpreted for decision-making, allowing for better repair and retrofit strategies.

1 INTRODUCTION

Bridges, vital constituents of transport systems, must resist continuous and sudden stresses 
over time. Their long-term safety and resilience assessment is a challenging task, especially in 
the case of existing reinforced concrete (RC) bridges, owing to varied uncertainties in mater
ials, deterioration, and design. The copresence of steel rebar corrosion and seismic actions, in 
particular, can pose significant risks, triggering catastrophic collapses and major network dis
ruptions with high socio-economic impacts. Therefore, in recent years, focus on life extension 
and management of aging structures has intensified.
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Steel corrosion in reinforced concrete occurs in two, largely discrete, phases: (i) initiation, 
where aggressive agents breach the concrete cover, and (ii) propagation, where steel rebar 
cross-section decreases due to material mass loss (Bertolini et al. 2004; Tuutti, 1982). Identify
ing chlorides as one of the most severe aggressive agents for RC structures, studies by Stewart 
& Rosowsky (1998) and Vu & Stewart (2000) proposed analytical models to be adopted in 
probabilistic assessment, taking into account both key environmental and structural factors, 
such as chlorides exposure, concrete cover depth and concrete water cement ratio. Eq. (1) 
describes initiation based on Fick’s law, whereas Eq. (2) models propagation based on Fara
day’s law.

where x is the concrete cover depth; Cs is the equilibrium chloride concentration at the concrete 
surface; erf is the Gaussian error function; χ is a factor to account for model uncertainties; t the 
time in years; w/c is the water cement ratio; and Tcorr is the time for corrosion initiation in the 
structure’s life-cycle. Corrosion initiation is postulated when the chloride content at the rebar 
depth C(x,t) reaches a critical value Ccr, while λ(t) is the uniform corrosion penetration.

Apart from chronic deterioration, extreme events like earthquakes critically impact bridge 
structural reliability. Knowledge from past earthquakes indicates several types of structural 
damage, such as deck unseating from bearing failures, column damages, and pounding between 
deck components (Priestley et al. 1996; Ramirez et al. 2000). Accordingly, several studies have 
proposed seismic risk assessment frameworks for aging RC bridges (Biondini & Frangopol 
2016; Ghosh & Padgett 2010; Nielson & DesRoches 2006; Shekhar & Ghosh 2021). These 
probabilistic approaches predict time-based risks by merging: (i) probabilistic deterioration 
assessment, using Eqs. (1)-(2); and (ii) seismic fragility evaluation using nonlinear finite element 
analysis (NLFEA). This is accomplished initially by predicting the deterioration condition of 
the structure for designated time-points within the life-cycle. Subsequently, the mechanical 
properties of the materials are adjusted to conduct fragility analysis under the deteriorated 
state, aimed at quantifying the seismic risk and its rise at these specific time-points.

However, infrastructure decision-making can be more precise if joint time- and state-based 
models are considered. This allows for better selection of repair and retrofit actions, but also 
for updates of uncertainties and fragility functions based on data from monitoring and inspec
tions. Recent advances in algorithmic decision-making reinforces the need for such models, 
through assimilation of probabilistic models, Bayesian updating, and stochastic optimal con
trol algorithms (Andriotis & Papakonstantinou 2019; 2021; Andriotis et al. 2021). This 
approach uses partially observable Markov decision processes for inspection and maintenance 
planning, leveraging upon state-based formulations and dynamic Bayesian networks (DBN). 
Towards this, in Molaioni et al. (2023), we recently introduced a DBN approach for evaluat
ing the seismic safety of aging bridges throughout their lifespan. This model combines non- 
stationary transition matrices for corrosion conditions of structural components and 
consistent, state-dependent seismic fragility functions for both individual components and the 
entire system. This provides a detailed view of how corrosion and seismic actions affect bridge 
safety over time. Component and system fragilities, PSDS,t, over the life cycle, are com
puted as:

where s represents a damage threshold identifying the seismic damage state (SDS); IM is the 
intensity measure of the seismic action; CDS represents the corrosion damage state; and t is 
time, considering the structural life-cycle discretized in yearly time-slices.
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In this paper, the effectiveness of the proposed approach is further evaluated by applying it to 
a case study with focus on demonstrating: (i) the method’s potential to consider multiple deterior
ation scenarios within the life-cycle; (ii) the ability to capture how corrosion impacts the seismic 
safety of the case-study bridge and its components overtime; (iii) its utility in pinpointing vulner
able components and guiding retrofit strategies; (iv) its adaptability potential in incorporating 
real-time data and its compatibility with Markov decision processes-based decision-making.

2 METHODOLOGY

The DBN introduced by Molaioni et al. (2023) and adopted in this study to quantify aging RC 
bridges’ seismic safety over their life cycle is shown in Figure 1. Variables of the model (blue circles 
in Figure 1) include: (i) the IM vector of the seismic action, assumed as the peak ground acceler
ation (PGA); (ii) the CDS vector of structural components, representing the corrosion intensity in 
a discrete space; (iii) the SDS vector of structural components, encapsulating structural damage of 
components based on thresholds of Engineering Demand Parameters (EDPs). Transitions among 
variables (red arrows in Figure 1) represent conditional probabilities among states. These include: 
(i) the Markovian transition for CDSs over time; and (ii) the state-dependent fragility functions 
for seismic damage, with the possibility of considering the carry-over effect of damage without 
repairs (omitted here for simplicity). This way, the adopted approach allows us to break down the 
problem into smaller, easier to compute segments, by independently analyzing each probabilistic 
dependency. The aging RC bridge is modeled as a multi-component series system, focusing on the 
key components, such as columns (COL), High Type Fixed Bearings (HTFB), High Type Expan
sion Bearings (HTEB), and Low Type Fixed Bearings (LTFB) (Mander et al. 1996; Shekhar & 
Ghosh 2021). SDSs for these components are classified from “Slight” to “Complete”, based on 
FEMA (2003) definitions and quantified by thresholds from Nielson & DesRoches (2006), as 
shown in Table 1. CDSs range from “Sound” to “Critical”, describing the corrosion intensity and 
its impact on structural components, as shown in Table 2. Considered corrosion intensity param
eters are the average mass loss for steel rebars/bolts, Mloss [%], steel plate thickness reduction, PTR 
[mm], and bearing coefficient of friction, kcorr [-]. 

3 APPLICATION TO A CASE STUDY BRIDGE

The methodology is showcased for a 4-span bridge, typical of many pre-70s seismic-prone and 
deterioration-susceptible RC bridges in existing transportation networks. The bridge is character
ized by poorly detailed RC columns and steel bearings, making it a relevant case study for seismic 
risk. For detailed information about the case study, its visual representation, and the modeling 
assumptions for conducting NLFEA, the interested reader is referred to Molaioni et al. (2023).

Figure 1.  DBN for life-cycle seismic fragility of deteriorating bridges. Left: Model including nodes and 
transitions. Right: Interactions of components and system states within a single time step.
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3.1  Non-stationary transition matrix for corrosion

Non-stationary transitions among CDSs are derived using a probabilistic analysis of the cor
rosion intensity, with respect to rebars/bolts mass loss, Mloss [%], over the structure’s lifetime, 
applying Eqs. (1)-(2). These transitions, for initiation and propagation phases, respectively, 
calculate the conditional probability of moving from CDS=i at a given time-slice, t, to 
CDS=j at the next one, t+1. Monte Carlo simulation is conducted to propagate uncertainties 
in environmental conditions, material properties and geometry, thus, eventually to evaluate 
yearly transitions, as in Molaioni et al. (2023):

Figure 2 illustrates the resulting non-stationary transition matrices for chloride corrosion under 
“splash” environmental conditions for the case study components. These matrices, showcasing 
Markovian probabilities of transitioning from one CDS to another over time, are upper- 
triangular due to the irreversible nature of damage, as long as no repair interventions are applied. 
In determining these, crucial is the time of corrosion initiation Tcorr, calculated using Eq. (1). 
Among samples, 97.1% experienced corrosion initiation within 100 years, with a mean Tcorr of 
13.7 years and a standard deviation of 20.7 years. Assuming Tcorr as a lognormally distributed 
random variable in the propagation model (Eq. (2)) significantly impacts transition probabilities, 
particularly from state 0 to 0 and from state 0 to 1. Sharp inflection points for these transitions are 
noted, as Tcorr statistics suggest corrosion onset is more likely in the early years of the life-cycle.

3.2  State-dependent fragility curves

State-dependent and time-invariant fragility functions for both structural components and 
system have been fitted, corresponding to capacity limit state EDP thresholds, as shown in 
Table 1. Demand parameters have been obtained from dynamic NLFEA, developing three- 
dimensional finite element models in OpenSees (McKenna, 2011), incorporating non-linear 

Table 1. Definition of probabilistic seismic damage states.

Component EDP

Slight Moderate Extensive Complete

M D M D M D M D

COL Curvature ductility [-] 1.29 0.59 2.1 0.51 3.52 0.64 5.24 0.65
BEA - Expansion Displacement [mm] 37.4 0.6 104.2 0.55 136.1 0.59 187 0.65
BEA - Fixed Displacement [mm] 6 0.25 20 0.25 40 0.47 187 0.65

* M = median of the lognormal distribution, D = Dispersion of the lognormal distribution.

Table 2. Definition of corrosion deterioration states.

CDS
0: Sound 1: Initial 2: Progressive 3: Critical

Component Parameter LB-UB LB-UB LB-UB LB-UB

COL Mloss [%] 0-0 0-15 15-30 30-45
BEA Mloss [%] 0-0 0-15 15-30 30-45
BEA PTR [mm] 0-0 0-3.5 3.5-5.1 5.1-6.5
BEA kcorr [-] 0-0 0-0.35 0.35-0.64 0.64-0.92

* Mloss = rebar/bolt mass loss [%], PTR = plate thickness reduction [mm], kcorr = additive coefficient of friction 
for expansion bearings [-].
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behavior of key components (COL, HTFB, HTEB, LTFB). A synthetic ground motion suite 
of 400 records has been applied on 50 statistically varied bridge models, thus propagating 
uncertainties related to the seismic action, the materials and geometrical properties of the 
bridge, as well as the corrosion deterioration of components. This way 20’000 EDPs were 
obtained and then compared with 50 capacity data points sampled from the distributions 
reported in Table 1, thus eventually creating a set of 1 million SDS labels for each component. 
A multinomial logistic regression model is trained on this dataset to predict the probability of 
exceeding a specific SDS as a function of the IM, via the softmax function as in Andriotis & 
Papakonstantinou, (2018).

For the sake of brevity, in this paper, results related to the “Complete” SDS and corrosion 
scenarios 00 (As-built), 03 (“Sound” COL, “Critical” corrosion in BEA), 30 (“Critical” corro
sion in COL, “Sound” BEA), 33 (“Critical” corrosion in both COL and BEA) are presented. 
State-dependent fragility curves, shown in Figure 3, reveal that among bridge components, 
HTEB and COL exhibit the highest fragility across several SDSs and corrosion scenarios, 
namely, the combination of CDSs for COL and BEA components. Furthermore, 
a deterioration-driven increase in column fragility is observed due to their own deterioration, 
while this fragility slightly drops with the onset of corrosion in BEA. Conversely, HTEBs are 
not significantly influenced by the corrosion of COL alone and do only mildly so due to their 
own corrosion. This diverse impact of corrosion on the fragility of components leads to an 
inversion in their hierarchy of strengths. This is evident when comparing the state-dependent 
curves of scenarios ‘00’ and ‘03’, where the HTEB (dash-dot line) emerges as the most fragile 
component, with those of scenarios ‘30’ and ‘33’, where COL (thin continuous line) exhibits 
greater fragility. This highlights the importance of accounting for the multitude of deterior
ation scenarios that could arise throughout the lifespan of the structure. This understanding is 

Figure 2.  Non-stationary transition matrix for CDSs of components under “splash” conditions.
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essential to grasp the potential evolution of the structural behavior, which, in turn, is funda
mental in implementing effective enhancements in the bridge’s seismic safety through precise 
retrofit interventions based on the deterioration of components.

Focusing on the impact of corrosion at the system level, Figure 4 illustrates the system fra
gilities for these four scenarios. The fragility curves reveal that maximum fragility is consist
ently observed when corrosion is widespread across the structure (Scenario 33). Additionally, 
component deteriorations translate into an increase in fragility, which varies according to the 
deterioration scenario: the system is affected more by corrosion in bearings for PGA < 0.6, 
and more by the corrosion of columns for PGA > 0.6, as shown in Figure 4 (green and orange 
curve, respectively). These findings underscore the distinct role each component plays in influ
encing the system’s fragility, reinforcing the utility of the adopted method in retrofit planning.

3.3  Life-cycle fragility

The longitudinal fragility of the bridge is determined by marginalizing out the corrosion 
deterioration state variables, CDSs, for all different components of the system (Figure 4 only 
displays scenarios 00, 30, 03, 33):

Figure 3.  State-dependent fragility curves for both components and system. Corrosion scenarios ‘00’, 
‘03’, ‘30’, ‘33’.

Figure 4.  System’s state-dependent fragility curves. Corrosion scenarios ‘00’, ‘03’, ‘30’, ‘33’.
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where Pt (CDSCOL, CDSBEA) represents the probability of having a given corrosion scenario (i.e., 
a combination of CDS for column and bearing components). This can be evaluated by considering 
the Markovian transitions among CDS and the independence of CDSCOL and CDSBEA as:

To illustrate the evolution of longitudinal fragilities, computations are performed at three 
time-points throughout the structural lifespan: at the as-built condition (0 years), and subse
quently at the 25-, and 100-year time-points. The curves reported in Figure 5, delineating the 
probability of exceeding specific seismic damage states at specific years and IMs, highlight the 
significant impact of “splash” environmental conditions on the structural integrity over time. 
A salient observation is the escalation of fragility curves, notable already at year 25 since con
struction, a trend that reveals the inadequate component detailing and susceptibility to corro
sion. Also, the influence of corrosion manifests differently across the four damage thresholds. 
In the case of the “Slight” SDS, the increase in fragility over time is relatively modest, in con
trast to other damage states, where this increase is more significant. This is linked to the inher
ent seismic vulnerability of the bridge by design, predisposing the structure to readily exceed 
the ‘Slight’ threshold. On the other hand, the progression of corrosion evokes higher non- 
linear demands, thereby significantly escalating the probability of exceeding more severe 
damage states, such as ‘Moderate’ and ‘Extensive’. Furthermore, for all SDSs, an upward tra
jectory in the bridge fragility over time is evident, reflecting a growing risk of encountering 
more advanced damage with time. These findings demonstrate the capacity of proposed DBN 
to propagate corrosion deterioration effects at the component level to the global seismic 
system risk level over the structural lifespan.

4 DISCUSSION

The results highlight several advantages of the proposed method. First, its potential to accom
modate different deterioration scenarios over the life-cycle of the structure, allows us to define 
state-dependent fragility functions for possible combinations of component CDSs. This is par
ticularly effective when applying the methodology to real-world bridge structures, which may 
present non-uniform deterioration distributions across components. For instance, deterioration 

Figure 5.  System System fragilities over the life-cycle under “Splash” conditions. (a) 25 years; (b) 100 years.
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may concentrate more on some components than on others, either due to highly differential 
deterioration phenomena or partial repairs and retrofits applied at different times.

Moreover, the proposed methodology identifies the components’ susceptibility to corrosion 
phenomena, but also how their effects act mutually on the fragilities of the components of the 
system. As shown by the results in Figure 3, non-uniform deterioration scenarios affect the 
safety of the structure in several ways. Also, the importance of modeling the bridge as a multi- 
component system is shown to be key for several insights. Individual component vulnerability 
can be evaluated through the DBN allowing us to identify the ones most at risk, such as the 
HTEBs and COLs for this case study. The change in hierarchy of strengths among compo
nents can thereby be tracked. This level of detail in the representation of the structural behav
ior can guide targeted maintenance and reinforcement interventions for the structure.

Finally, the developed DBN can be seamlessly integrated with decision-making frameworks 
that also involve field observations and actions. The structure of the DBN does not only allow 
the full description of seismic safety over time through detailed probabilistic transitions among 
states (i.e., CDS and SDS), but also the observation-based updating of these, which can be in 
turn propagated to update the fragility functions, together with changes due to repair interven
tions. This way, the problem can be readily defined as a partially observable Markov decision 
process and solved through deep reinforcement learning or other appropriate techniques to 
obtain a near-optimal management policy for the bridge. This has been recently considered in 
Metwally et al. (2024) which makes use of the realistic bridge system environment proposed 
here and extends it including repair actions and related costs. The study tests the applicability of 
multi-agent architectures in identifying dynamic component-level maintenance policies for opti
mizing system-level cost and reliability objectives and constraints.

5 CONCLUSION

In this paper, a dynamic Bayesian network (DBN) is developed to model the life-cycle seismic fragil
ity of aging RC bridges, with a specific focus on encapsulating the uncertainties associated with cor
rosion deterioration and seismic actions as stressors to these structures. The methodology 
conceptualizes the bridge as a multi-component system, considering components that are crucial in 
determining the global seismic risk, i.e., RC columns and various types of steel bearings. The devel
opment of the DBN is facilitated by representing both deterioration and seismic damage in discrete 
spaces, defining corrosion deterioration states (CDSs) and seismic damage states (SDSs). This way, 
a structured approach to learning the evolving condition of the bridge components over time is laid 
out, allowing for efficient description of the complex interplay between deterioration and seismic 
action for the structural integrity of the bridge. Owing to the DBN properties, this complex learning 
task is distilled into a neat decomposition consisting of two primary sub-tasks: (i) calculating non- 
stationary Markovian transitions that portray the progression of CDSs; and (ii) formulating time- 
invariant and state-dependent fragility curves that capture the probability of exceeding SDSs given 
the IM and the combination of CDSs of structural components. The approach is applied to 
a 4-span bridge, which features characteristics typical for pre-70sRC bridges. These include inad
equate RC column detailing and steel bearings. The analysis for the case study quantifies the detri
mental effect of the environmental “splash” condition, which specifically instigates corrosion with an 
average onset time of 13.7 years, a critical factor in the structural performance overtime.

The computed time-invariant and state-dependent fragility curves for the case study underscore 
the high sensitivity of seismic responses to corrosion, providing valuable insights into how corro
sion influences the seismic vulnerability of the bridge at various potential scenarios reachable 
through its life cycle. Furthermore, the approach of mechanically idealizing the bridge as a multi- 
component system, when combined with the DBN framework, allows us to identify the most at- 
risk components within the system across a spectrum of corrosion scenarios, which can lend itself 
to targeted inspection and retrofit intervention planning. Towards this, the capability of the 
approach to decipher changes in the hierarchy of strength and disentangle complex interactions 
among components, depending on environmental conditions, ground motion intensities and dif
ferential deterioration, provides engineers and decision-makers with insights into the structural 
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behavior over time. Finally, the presented DBN can be practical in enhancing fragility functions 
with field observations, thereby allowing for refined seismic risk inference. Due to its structure, it 
can be also compatible with advanced decision-support systems employing Markov decision pro
cesses that enable dynamic structural integrity management. Along these lines, current research 
trajectories are focused on expanding the capabilities of the DBN model with deep reinforcement 
learning approaches aimed at optimizing maintenance policies while ensuring structural safety 
and considering various performance metrics.
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