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Introduction 1
Design Emulation using programmable hardware has become an increasingly important
step of the development of large Integrated Circuits (IC). The size of these large IC
designs though, usually exceeds the size of the programmable devices due to the high
complexity of the IC. Therefore, in order to create a prototype of emulator and the design
under test, we need to find a way to partition the whole design on several programmable
devices.

1.1 Development of Many Core Architectures

One of the main tasks that integrated circuit designers have to deal with, is that of
system validation and extraction of performance models of the designs. This task is a
critical step from the designing stage to the manufacturing stage.

In order to validate the correctness and the behavior of a design various approaches
exist depending, not only from the size of the design but also, from the stage of develop-
ment phase. For example, in early stages of development or for small designs, simulators
are commonly used. These programs can replicate the behavior of a given design and
the designer can verify if the system is working as expected.

On later stages of development, or for systems that are of considerable size and
complexity, such as today’s multi–core architectures, simulators become slower and less
efficient. An alternative approach to do system validation in such designs is to use
hardware emulation. Alongside the design under test, special hardware (the emulator)
is attached and the whole design is then mapped on reprogrammable devices. The
emulator provides a rich debug environment for the system and higher speeds.

The emulator and the design under test need to be deployed in reconfigurable devices,
so as to provide the necessary flexibility that is required. We can already see at this point,
that the problem that arises is the capacity of these reconfigurable devices.

1.2 Motivation for Emulation

Emulation is a powerfull tool especially for the later stages of the development phase.
It can provide the necessary environment for the software development before the chip
construction. It also provides verification capabilities that allow us to build a testing
environment before we reach the stage of chip prototyping. Emulators have the nec-
essary flexibility needed for validation purposes, which chip prototypes lack, by using
reprogrammable devices as underlying hardware.

They manage to do this with considerably higher speed performance in comparison
to simulators, that allows us to run long tests for debugging thus making them a good

1



2 CHAPTER 1. INTRODUCTION

verification platform. For this thesis, we will be dealing with a custom emulator design
the details of which will be described later on.

1.3 Motivation for Netlist Partitioning

The essence of netlist partitioning problems is to divide a system design into two or
more clusters in such way that the intercluster connections are minimized and cluster
size fit the size criteria that is defined by the capacity of the underlying hardware.
The motivation for partitioning is the drastic increase of the size and complexity of
current designs that no longer fit on one device and the limited amount of I/Os that
programmable devices have.

Even though FPGA manufacturers have done big steps in the direction of gate array
technology in the recent years, the gap of FPGA capacity is substantial for modern non-
trivial designs to be mapped on a single FPGA. Instead, multiple FPGA boards are used
for a single design prototype. While this increases scalability, and in this sense it can
decrease the cost as the underlying hardware can be of smaller capacity, it also introduces
the problem of design partitioning. The decision of where to map various components
of the design at hand is a non–trivial problem. The quality of partitioning is a critical
factor on the cost, performance and complexity of the prototype. Poor partitioning will
result in very poor performance.

The goal of this thesis is to partition the design under test onto the multiple FPGAs
of the emulator.

1.4 Thesis Outline

This thesis document is organized as follows. In Chapter 2 we provide the essential
information on the specific technology and the infrastructure that we will be working
on. At that point a description of emulator technology and competitive validation tech-
niques will be given. We then describe the mathematical background of graphs and
hypergraphs that will be used to formulate the partitioning algorithms. Afterwards, we
formulate the problem of netlist partitioning, present the existing algorithms and evalu-
ate the suitability of these solutions. In the end of this chapter we justify our algorithm
selection by presenting, from an abstract level, the advantages and disadvantages that
these solutions have and how these are of importance to our needs.

In Chapter 3 we will describe the constraints that need to be fullfilled for obtaining a
good quality partitioning solution. We then detail the algorithm and formulate the con-
straints that we have explained on the core algorithm. We will elaborate on the details
and propose solutions on the implications that intercluster connections create. We ex-
plain the problems of multi-FPGA partitioning, such as heterogeneous (different FPGAs)
and asymmetric (none all to all connections) FPGA topology, intercluster combinatorial
paths, component/I/O prelocking etc. We then present the solutions that the selected
algorithm provides on these problems. There we are going to explain the expected be-
havior of the algorithm in various situations and extend it so that it will incorporate
solutions for the problems that arise and are not directed by the core algorithm.
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In Chapter 4 we will present the implementation details of the partitioning tool that
we have developed. We are also going to explain the decisions we made during the
development phase. Further on, we shall explain the changes that need to be done on
the existing tool–flow in order to deploy our partitioning tool.

In Chapter 5 we will present the experiments that we have performed on our emulator
design. We will examine the parameters we have implemented and how these influence
the partitioning solution. Based on the experiments and the results we will identify what
parameters are of high importance and therefore should be fine–tuned more.

Finally in Chapter 6 we will summarize what we have seen in this thesis project.
We will give the state of the algorithm extension as well as the implementation of the
tool that we have developed. In the end of the thesis we propose where future research
should be directed for custom design partitioning as we have observed throughout the
project.
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Background 2
2.1 Verification Techniques

In this section we provide the background on the existing verification/validation tech-
niques and performance modeling methodologies. There is a number of different ap-
proaches for performing these techniques, depending on the level of abstraction and the
development stage that we want to target. The most significant of those techniques
are instruction set simulation and cycle accurate simulation, general purpose or custom
emulation and silicon prototyping.

2.1.1 Instruction Set Simulation

In the early stages of processor design, computer architects are faced with exploring a
very large design space. Simulators are effective and widely used tools for evaluating
different design points. Simulation in general, is mainly performed by pure software,
although there are cases where software/hardware co-design (hardware accelerated sim-
ulators) are used.

An instruction set simulator (ISS) is a program that mimics the behavior of a design
by reading instructions and using variables to keep track of the states of the registers of
the targeted design.

The fact that an ISS is running at a more abstract level – functional level (instruction
set level) rather then the gate level – provides enough detail to run executable programs
intended for the design under test. Unlike lower level simulation, the overhead for ISSs
is concentrated on instruction decoding, functional operation and instruction scheduling
and consequently is not dependent to a specific implementation of the architecture of
the targeted design.

This on the other hand, has the disadvantage that in general, this approach does not
provide timing accurate information for the architecture. There have been some efforts to
make accurate timing information available for ISSs [29, 16] but this is usually difficult to
implement and the speed of cycle–accurate ISS is very slow because of complex pipeline
mechanisms, that are found in modern designs. therefore employing a cycle–accurate ISS
for design space exploration becomes extremely difficult [25]. Nevertheless this approach
provides low cost verification and performance modeling, fast turn around and low setup
times.

2.1.2 Cycle Accurate Simulation

Accurate modeling of processors is also a critical task in the development of both hard-
ware and software. As a result cycle-accurate timing is a requirement for system vali-

5



6 CHAPTER 2. BACKGROUND

dation. Cycle–Accurate simulators (CAS) is a variant of a simulator which involves full
modeling of the micro–architecture.

In modern designs this means explicit modeling of all stages of the execution pipelines
(main and sub-pipelines). Usually it also requires modeling any instruction grouping or
reordering, branch prediction logic as well as the resolution of any dependencies that
might occur between instructions. This provides potentially the most accurate model
but at the same time has a negative effect on simulation speed.

It becomes obvious that simulation time for CAS is a function of the input bench-
mark size and the level of micro–architectural detail simulated. Decreasing either of
these parameters leads to faster simulation time. There have been efforts on the use of
statistically reduced datasets and time sampling of the execution trace to reduce sim-
ulator input size, and the use of analytical modeling as a faster alternative to detailed
simulation. However, these techniques often suffer from high errors in corner cases be-
cause they require critical information that was not retained in the simulation [30]. As
with the ISS though, this is an approach that also has fast turn around and low setup
times with relatively low cost.

2.1.3 Emulation

Hardware emulation is a technique with which we imitate the behavior of a system
design or parts of it with another piece of hardware. The main objective of emulation
technology is to provide a fast, efficient and feature rich debugging environment for the
system. It can be thought of as a competitive technique to simulation, although there
are fundamental differences on the approach that each technique takes and the level of
abstraction and the stage of the development phase that they target.

Emulation is done by facilitating special reprogrammable hardware for the emulation.
Emulating a system is done by building the actual system, or parts of it, in order to use it
as a replacement of the system. The emulator is the result of mapping the whole system,
or certain components of it, on reconfigurable devices (e.g. FPGAs). The procedure is
similar to prototyping. The use of the same tools and tool flows is utilized with small
variations, but whereas prototyping provides very little debugging capabilities emulators
provide a debug rich environment which include traces and probes of any net in the
design under test. Traces are signals that are collected during runtime into a local
memory of the emulator and are flushed into another medium when this memory has
been filled. Probing an arbitrary net at any given moment and getting the state back with
advanced readback functions extending this way the debugging capabilities compared to
prototyping where a probed net has to be explicitly defined during synthesis.

We can deduce that the main difference between simulation and emulation, is that
while simulation mimics the outward appearance of a system, emulation mimics the
cause processes used by the real system. This is more evident by the fact that hardware
emulation requires that the description of the parts under test are synthesizable whereas
this is not the case with simulation. The simulator needs only a behavioral model of the
system. The main advantage of emulation is speed.
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2.1.4 Silicon Prototyping

Silicon prototyping is mainly used on the later stages of development where the design
is fully developed. Prototypes are used for post–silicon validation. While the speed of a
prototype is considerably higher than emulation it only provides limited debugging capa-
bilities. As a result they are usually used for system analysis and software development
on the finalized system. [31]

2.1.5 Advantages and Disadvantages of Emulators

1. An emulator’s biggest advantage is the fact that it performs many times faster than
a simulator. In terms of order of magnitude, the speed of an emulator compared to
that of a simulator can be up to 10.000–100.000 times faster [44] although a more
realistic speedup may be in the range of 1.000 times. This practically allows the
designers to run kernels and applications of significant size with extensive input
data in large designs and still get results and debug information in reasonable time.
This difference in performance is of high value for validation purposes. Current
simulators take several hours to days to simulate small kernels on a full design
making system and full chip validation practically infeasible. Simulation is much
more efficient when used for testing components or functional unit blocks rather
than performing simulation of full systems. This is due to the fact that it takes
much more time to set up a design for emulation than for simulation.

2. The emulator requires that the functional blocks can be synthesized as they are
going to be mapped on real hardware by the synthesis tool flow. While this can
be a disadvantage, as a synthesizable design is not available in the early stages, it
effectively means that the emulator is closer than CAS and ISS to the gate level.
This makes emulation more restrictive as it requires synthesizable components.
Simulation is more versatile as it will work also with behavioral models.

3. In simulation, speed is largely affected by the size of the design. The larger the
design the more data have to be calculated by the software, which are inherently
performed by serial calculations. In an emulator the size of the design also affects
the speed but whereas in simulators the decrease of performance proportional to the
size, in an emulator the performance decreases when the size of the design reaches or
exceeds the threshold of the size of the target FPGA and needs to be distributed
to multiple FPGAs. Otherwise the emulator does not suffer from performance
degradation as the underlying hardware works concurrently. In the cases where
the design has to be mapped on more than one FPGAs, good partitioning limits
the problem and this is the subject that this thesis addresses.

4. An emulator can also provide cycle accurate information by doing clock scaling of
the actual design. This way it is possible to find race conditions and other timing
related issues that may arise in complex designs such as multicore and manycore
designs, where two or more cores try to access the memory at the same time. Cycle
accuracy is also possible in CAS, but is more difficult for ISS.
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5. An emulator is also quite helpful if we want to get performance models out of a
design. The fact that we are able to run applications with a large amount of input
data in reasonable time, makes it possible to benchmark a design and do perfor-
mance profiling. Because emulators provide large debugging capabilities we are
also able to locate performance bottlenecks of the hardware and the software that
is running. The speed that the emulator runs allows us to do profiling on a variety
of different applications and input data. On contrary, simulating a large design
with a lot of stimuli takes prohibitively long times to do any sort of measurement
for profiling purposes. On the other hand, whereas prototype chips run at even
higher speeds than the emulator they provide little information on the performance
of parts of the design and therefore can only benchmark the overall performance
of the system.

6. It becomes clear that emulators are good platforms for the late stages of hardware
development and early stages of software development such as driver development
or validation test programs.

7. Another advantage of emulators is the ability to get traces from an design. This
can be done by specifying which registers will be monitored, which is usually done
during synthesis by annotating various registers that the designer wants to monitor.
The state of the registers will be recorded to the emulator’s memory.

8. The disadvantage is that they suffer from performance degradation when we have
a large number of probes inserted in the design. The trace memory of the emulator
will fill up faster and the need to flush tracing data from the on–board memory to
external media will occur more often, but the emulation itself will run at constant
speed which is bound only by the clock speed of the emulator. Increasing the trace
memory of the emulator can reduce this effect. Simulators also tend to slow down
when simulation is performed with lots of probes.

9. A disadvantage of the emulator compared to simulation is that, whereas we can
backtrace infinitely on a simulator, this is not feasible for the emulator as it would
require to keep track of all net signals at all given moments. Instead, emulators
can rerun from the start, the whole test case until the desired point in reasonable
time thus diminishing this limitation.

10. Another disadvantage of an emulator is that it can only stop on cycle boundaries
in contrast to a simulator which can have more accuracy, and finer grain stepping.

11. Emulators require more effort to setup and perform a test run than simulators as
they require some changes to the RTL description. Also in order to make a change
in the HDL description and perform another test run requires that we go through
the whole toolflow which sometimes can take many hours which make turn–around
times considerably higher than simulators.

12. Also the cost of an emulator is several times higher than the cost of simulators.
Nevertheless validation technology has become so important that the advantages
of emulators outweigh the disadvantages on the cases that performance is critical.
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An overview, in terms of speed, setup/turn-around times and cost, of the aforemen-
tioned validation methods can be seen in Figure 2.1. While the cost, the required setup
time and the turn around times are bigger in emulation the performance difference still
provides an advantage compared to simulation. On the other end, test chip production
is done in very late stages of development, costs several times more and is not flexible,
so turn around times are considerably higher.

Figure 2.1: Comparison of different validation techniques

We have seen how emulation fits into the various verification techniques. In the next
sections we will present in details some of the features of FPGAs which are the basis of
most emulators.

2.2 Field Programmable Gate Arrays

Having explained the motivation for using emulators, we will now provide some details
on the underlying FPGA technology that is used on our emulator. We will not provide
detailed information on FPGA’s as this is out of the scope of this thesis, but we will
explain which features of the FPGAs are of interest to us for the task design partitioning.
therefore at this point we describe some of the primitive components that current FPGAs
have.

2.2.1 Architecture

The main building block of FPGAs is the Configurable Logic Block (CLB). Every CLB
consists of a LUT of 4 or 6 inputs, some selection circuit like multiplexers (MUX), and
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Figure 2.2: Configurable Logic Block [32]

flip-flops (FF). The LUT is reconfigurable so that it can handle any type of combinatorial
logic (AND, OR, XOR etc), shift registers, RAM or any 4–input logic function. A
common CLB is depicted in Figure 2.2. In our partitioning approach, CLBs which are
the most common block on an FPGA, will be used as the main resource for partitioning
decisions.

Nowadays FPGAs have dedicated resources for commonly used constructs. This is
done to reduce unnecessary use of CLBs to describe these elements, which would po-
tentially waste more CLB resources than necessary. A frequent component in system
design are flip-flops. FPGAs provide primitives for these elements. Flip-flops are se-
quential logic elements. We will see later on that FF are of high importance in order to
find good timing solutions for partitioning.

Block RAMs are another type of dedicated resource of modern FPGAs. They are
on–chip memories of the FPGA which can be used for RAMs in the test design and are
frequently used in designs. FPGAs also incorporate DSP elements to implement more
efficiently DSP functions.

2.2.2 Interconnections

For the propagation of the signals between the functional blocks (CLBs, BRAMs etc...)
flexible routing is used. In order to transfer the signals from one block to another,
internal interconnections have to provide fast on chip signal propagation.

To facilitate external I/O, modern FPGAs provide multigigabit interconnection so-
lutions. The FPGAs that we will be targeting (Xilinx Virtex 4 and 5) have high-speed,
serial, chip-to-chip connectivity. Nevertheless signals traveling across FPGAs have longer
propagation delays than signal propagating internally. The whole partitioning approach
aims to minimize signals traversing FPGA boundaries.
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2.2.3 Multiple FPGA board

Figure 2.3: Board topology

The board that we will be targeting is composed by multiple FPGAs of different size
and family with asymmetric topology. In essence, we different capacities of resources
(total and dedicated) that do not have all-to-all connections. An overview of the board
topology that we will be targeting can be seen in Figure 2.3.

2.2.4 Time Division Multiplexing

Figure 2.4: Time Division Multiplexing

Although modern FPGAs provide a substantial amount of external I/Os, the amount
of signals that need to traverse across FPGAs will often exceed the number of I/Os for
a complete partitioned design. As the existing I/Os of an FPGA can not cover all the
signals, we incorporate Time Division Multiplexing (TDMX) [42], which multiplexes
signals on the source FPGA and sends it through the RocketIO interface to the receiver
FPGA where the receiver demultiplexes the signals. The obvious disadvantage is that
given the constant transfer rate between FPGAs, the more signals have to traverse across
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FPGAs the higher the clock cycles that will be needed to transfer them, which in turn
requires lower overall clock frequency for the emulator in order to cope with the external
I/O bandwidth. At this point, we introduce the TDMX factor which is the value that
denotes the number of signals that have to be multiplexed. In Figure 2.4 we can see an
example of time division multiplexing with a TDMX factor of 3.

2.3 Netlist vs HDL partitioning

Until now we have not discussed on the partitioning approach that we will follow. Al-
though we will extensively explain the details of current partitioning approaches at the
end of this chapter, it is useful to explain here the reasons that we have implicitly picked
netlist over HDL partitioning.

Working on a netlist level is more advantageous than working on HDL level. The
main advantages of working on an HDL level is that we are able to do RTL simulation
without manual effort, whereas working on the netlist allows us to perform only perform
a netlist simulation. Also, partitioning a circuit at the netlist level has much more objects
than at the HDL level. This makes netlist partitioning more time consuming than HDL.
This problem has been limited with linear netlist partitioning algorithms that limit the
runtime. Apart from that though the advantages of working on a netlist level outnumber
those of working on HDL.

Some of the advantages of netlist over HDL partitioning are the following:

1. We do not need any HDL modifications to perform partitioning. Partitioning can
be performed directly on the netlist while in HDL we would require high manual
effort.

2. Gated clocks are resolved easier as we can find the instances on the netlist.

3. We have a very accurate area estimation. Every object of the netlist is an entity
that has been created by the synthesis tools and is going to be mapped in the
hardware. This is not the case for an HDL object which can be larger functional
unit (e.g. a shift register instead of the flip–flops that compose it). HDL area
estimation becomes hard and difficult to automate.

4. Interconnection estimation for HDL becomes difficult as we must distinguish buses
in the HDL description. In the netlist representation a net is a physical intercon-
nection that exists between two objects. Buses are explicit instantiated and do not
have to be treated separately.

5. We can uniquify components as we have explicitly instantiated all the cells that are
used. On the HDL level multiple components can be instantiated almost implicitly.
Multiple architectures of the same component also make difficult to calculate the
real area of the components.

For all the above reasons we have decided to follow netlist partitioning.



2.4. GRAPHS 13

2.4 Graphs

The first decision that we had to make was on the representation of netlists. We chose
the graph representation that we later extended to incorporate the more complex data
structure of hypergraphs. We will discuss these two structures and point out their
suitability on the problem of netlist partitioning.

In this section we will also provide the mathematical background, terminology and
notation that will be used later, on the approach that we followed to solve the partitioning
problem.

2.4.1 Graph Definition

Figure 2.5: A labeled directed, non-strict graph with 10 nodes V = N0, . . . , N9 and 15
edges E = {{N0, N3}, {N0, N6}, {N1, N9}, {N1, N9}, {N1, N9}, . . .}

A graph is a set of nodes (or vertexes, or points) and a set of edges (or lines, or arcs)
that connect pairs (cardinality of 2) of these nodes. More formally we can write that a
graph is a pair G = (V,E) of sets, where V is the node set and E the edge set, satisfying
E ⊆ [V ]2. This translates that the elements of E are 2–element subsets of V [13]. An
edge e ∈ E is defined by the pair of nodes that is connects {n1, n2} and is represented as
e = {x, y}. A way to picture a graph is shown in Figure 2.5. A subgraph (or partition,
or cluster) G′ is a graph whose nodes and edges form subsets of the graph nodes and
edges of a given graph G.

At this point it is useful to provide some conventions that will be used on this
document:

• A graph with node set V is said to be a graph on V .

• The node set of a graph G is denoted by V {G} and the edge set by E{G}. We
shall not, though distinguish strictly between graph and its “node and edge set”,
thus meaning that we will refer to a node as n0 ∈ G rather than n0 ∈ V (G) in
order to preserve intuitiveness and comprehensibility. This will apply also with
edges (e0 ∈ G instead of e0 ∈ E{G})and so on, unless explicitly stated otherwise.
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• We also denote node and edge sets with uppercase letters (e.g. N and E respec-
tively), whereas single nodes and edges with lowercase letters (e.g n and e).

2.4.2 Properties

Following are some of the attributes of graphs that we will use1.

• The order of a graph G is the number of nodes the graph contains and is denoted
by |G|.

• We associate to every node a value w(n) ∈ N that specifies the weight of every
node.

• A graph structure can be extended by assigning a weight to each edge of the graph.
Weighted edges are used to represent structures in which pairwise connections have
numerical values.

• The weight of a subgraph is the sum of the weights of all the nodes that belong to
the subgraph

∑
n∈C

w(n)

The number of edges of G is denoted by ||G||. An edge e and a node n of that edge
n ∈ e are called incident . Two nodes n1, n2 are adjacent if there is an edge e in graph
G that connects the two nodes. Two edges e, f where e 6= f are called adjacent if they
share at least one common node2.

We can distinguish the following categories of graphs depending on the properties.

2.4.2.1 Undirected and Directed Graphs

Figure 2.6: Undirected Graph

An undirected graph (commonly referred as graph) is a graph that does not provide
information for the orientation of the edges. An undirected graph is depicted on Figure
2.6. The notation for the edges in the case of the undirected graph is not dependent on
the ordering of nodes, so e = {x, y} is equivalent to e = {y, x}.

1We will not present all the graph attributes, as they are not of interest for us nor is the intent to
provide all the background on the field of graph theory.

2We will see later, in the case of non-strict graphs, where we can have more than one common nodes.
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Figure 2.7: Directed Graph

A directed graph (also referred as digraph) is an orientation of an undirected graph.
This type of graphs provides information on the direction of the edges by specifying a
tail (or source) node and a head (or destination) node. The directed edge is represented
also by e = {x, y}, but here the ordering of the nodes is important as it designates the
source and destination (tail and head) of the edge. The head of the edge is node x and
tail is node y. As we will be using directed graphs for the rest of the document, we adopt
the notation of e = {x → y} or simply {x, y}, which implies the direction of the edge.
We will also refer to nodes of directed graph as source and destination.

2.4.2.2 Strict and Not Strict Graphs

A strict graph G is a graph that does not allow self arcs and multi-edges in contrast with
non–strict graphs. Multi-edges are defined if e1, e2 ∈ G with e1 = {x, y} and e2 = {x, y},
where e1 6= e2. A directed multi-edge graph is shown in Figure 2.8.

Figure 2.8: Multi–edge Graph

An edge e is a self-arc if e ∈ G with e = {x, x}. A directed self-arc graph is shown in
Figure 2.9.

Figure 2.9: Self–arc Graph
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2.4.3 Hypergraphs

An important generalization of graphs are hypergraphs. A hypergraph is a pair (V,E) of
disjoint sets V and E. V is the set of elements called nodes, and E is a set of non–empty
sets of any cardinality of the nodes V . In essence graphs are a special form of hypergraph
with cardinality of 2.

Figure 2.10: Hyperedge e1

Hyperedges are denoted as e = {P} with P being the set of nodes that the hyperedge
connects.

Connections of hyperedges and nodes are better represented with incidence matrices.
The incidence matrix of a n–node, m–edge hypergraph can be derived by 2.2.

A = (aij) (2.1)

aij =
{

1, ni ∈ ej

0, otherwise
(2.2)

At this point it is useful to provide slightly more complex example of hypergraphs in
order to demonstrate incidence matrices. Let G be the hypergraph of Figure 2.11(a) ,
E the set of edges and V the set of nodes. A hyperedge is a generalization of an “edge”
that connects an arbitrary number of nodes as shown also in Figure 2.11(a). In Figure
2.11(a) edges e1, e2, e3 are of cardinality of 3,2,4 respectively as they connect 3,2,4 nodes
respectively.

The incidence matrix of a node n ∈ G denotes the connection of the node with all
existing edges

(
e1 e2 e3 . . .

)
. Accordingly is the incidence matrix for a hyperedge

in graph G, which displays the connections with all the nodes
(

n1 n2 n3 . . .
)
. In

general we can represent for the whole graph G, with n = |V | and m = |E|, the incidence
matrix of size n×m. An example is given in Figure 2.11.

2.4.3.1 Directed Hypergraphs

A directed hyperedge is an ordered pair, e = (X → Y ), of disjoint subsets of vertexes; x
is the tail of e while y is its head. In the following, the tail and the head sets of hyperedge
e will be denoted by T(e) and H(e), respectively[17].

A directed hypergraph is a hypergraph with directed hyperedges. In the following,
directed hypergraphs will simply be called hypergraphs. An example of directed hyper-
graph is illustrated in Figure 2.12.

The directed hypergraph’s incidence matrix is defined by 2.3.
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(a) Example Hypergraph

m1 m2 m3

n1 1 0 0
n2 1 0 0
n3 1 1 0
n4 0 1 1
n5 0 0 1
n6 0 0 1
n7 0 0 1
(b) Incidence matrix

Figure 2.11: Hypergraph

(a) Example Directed Hypergraph

e1 e2 e3 e4 e5

1 -1 0 0 0 0
2 -1 0 0 0 0
3 0 -1 0 0 0
4 1 -1 0 0 0
5 1 0 0 0 0
6 1 0 -1 0 0
7 0 1 0 0 0
8 0 1 0 0 -1
9 0 0 1 0 -1
10 0 0 1 -1 0
11 0 0 0 -1 0
12 0 0 0 1 0

(b) Incidence matrix

Figure 2.12: Directed Hypergraph

aij =


−1, ni ∈ T (ej)
1, ni ∈ H(ej)
0, otherwise

(2.3)

The representation of netlists with simple graphs poses a problem, as a single net of
a netlist can connect more than two nodes. Hypergraphs provide a data structure that
can handle the information provided by the netlist.
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2.5 Graph Partitioning

Before we introduce the existing algorithms later on this section, we present the formu-
lation for the bi-partitioning problem which is the basis of the partitioning algorithms.

2.5.1 Problem Definition

We define P k as the set of sets of clusters of each partition P k = {C1, C2, . . . Ck}.
We also define F (P k) to be the cost function that the algorithms will try to minimize.
For the simplest case where we have a bi-partitioning problem k = 2 with the cost
function to be the number of hyperedges incident to nodes in both C1 and C2 (commonly
referred as cut). A min-cut bi-partitioning algorithm seeks to divide V into two clusters
P 2 = {C1, C2} where C1 ∈ V ,C2 ∈ V with C1 ⊂ V , C2 ⊂ V and C1

⋃
C2 = V while

minimizing the cut.

• Min–Cut Bi-partitioning
Minimize F (P 2) = |E(C1)

⋃
E(C2)| such that C1, C2 6= ∅. Clusters may be unbal-

anced, so w(C1) can be different than w(C2).

• Min-Cut Bisection
Minimize F (P 2) = |E(C1)

⋃
E(C2)| such that C1, C2 6= ∅. Clusters must be of

such weight that w(C1)− w(C2) 6 e where e is the weight of a node. If all nodes
are of equal weight then e takes that value. If we have different weights of nodes
then e has to be defined. Usually we select e to be the maximum weight of the
“heaviest” node so as to allow more freedom.

• Size Constraint Min-Cut Bi-partitioning
Let upper size U1 and lower size L1 be the maximum and minimum weight for
cluster C1 and U1, L2 the maximum and minimum for C2. Minimize F (P 2) =
|E(C1)

⋃
E(C2)| such that C1, C2 6= ∅. In this case cluster weights have to conform

to Lk 6 w(Ck) 6 Uk where k ∈ [1, 2].

• Minimum Ratio Cut Bi-partitioning
Minimize F (P 2) = |E(C1)

S
E(C2)|

w(C1)×w(C2) . The numerator favours low cutsize whereas the
denominator favors balanced clustering.

Lets see how all the above translate, if we apply these formulations to a simple parti-
tioning example. For the graph of Figure 2.13 if we apply:

1. the min-cut bi-partitioning we have C1 = {v1}, C2 = {v2, v3, v4, v5, v6} and a cutsize
of 18 but the resulting clusters are very unbalanced.

2. the min-cut bisection we have C1 = {v1, v2, v3}, C2 = {v4, v5, v6} and a cutsize of
300.

3. the size constraint min–cut bi-partitioning, for unitary weights of all nodes and
U1 = 4, U2 = 4, L1 = 2, L2 = 2 we get the clusters weights:

2 6 w(C1) 6 4
2 6 w(C2) 6 4
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Figure 2.13: Example weighted graph

With these parameters we have a cut ratio of cutsize of 19 and clusters C1 = v1, v2

and C2 = v3, v4, v5, v6.

4. the minimum ratio cut bi-partitioning with a ratio of |E(C1)
S

E(C2)|
w(C1)×w(C2) = 19

8 , with
w(C1) = 2, w(C2) = 4. For these parameters of cutsizes and weights we get the
same result as with the previous settings of size constraint min–cut bi-partitioning
C1 = v1, v2 and C2 = v3, v4, v5, v6.

2.5.2 Introduction to Partitioning Algorithms

At this point, having introduced the basic notation and problem description, we give an
overview on the most significant graph partitioning algorithms and their advantages and
disadvantages. The algorithms we will examine can be categorized as random/exhaus-
tive search, move based heuristics and meta–heuristics. At the end of this chapter, we
compare the algorithms and discuss why the Fiduccia–Mattheyses heuristic is the most
promising algorithm for our problem.

Graph partitioning problems are intractable, as the search space and in consequence
the runtime increases much faster than polynomial rates, with the increase of the graph
size. The problem of finding the optimal solution for partitioning problems has been
shown to be NP-complete [33].

2.5.3 Exhaustive/Random Search

Because of the size of the search space, exhaustive search can be used only for very
small graph partitioning problems and provide results in reasonable time. The simplest
algorithm for this type of problems is to perform random search for possible solutions
and compare the candidate solutions of this population. Unfortunately, this solution can
only provide a good solution if the “good” solutions are of considerable size compared to
the total solution space. When the search space is of significant size there is no practical
benefit of using random search. It would require a prohibitively large population of
solutions in order to get good quality results, leading us essentially to an exhaustive
search of the search space.
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2.5.4 Move Based Heuristics

Due to the complexity of graph partitioning, heuristic algorithms are employed. Heuris-
tics are algorithms that “attempt” to provide solutions of arbitrary good or optimal
quality, with provably good runtime for intractable problems such as graph partitioning.
The quality of the solution is not guaranteed though. In practice, heuristics can be
thought of as “rules of thumb” that apply well on certain problems.

Move–based algorithms try to construct iteratively better solutions from a given
initial state by moving nodes across the boundaries of the partitions. They rely on the
neighborhood of the current state on every iteration and the previous history of the
optimization. As neighborhood we define the currently reachable solutions from a given
point in the search space. The key factor of moved-based approaches is the amount of
the perturbation that a move causes. Every move that the algorithm makes alters the
neighborhood of the current state and after such a move a new neighborhood is reachable
that previously was not.

The amount of perturbation allowed at a given state defines the size of the neighbor-
hood of the that state. It is important that the allowed perturbation is fairly limited so
that the transition from one state to another is more fluent. This allows the algorithm
to make good decisions on a smaller scale, taking in consideration the locality of the
candidate solutions and making the decision–making process more fine grained. This on
the other hand has the disadvantage that a relatively small amount of perturbation can
result in a very small neighborhood which lead to entrapment to local optimal solutions
in the search space.

2.5.4.1 Kernighan–Lin Algorithm

The Kernighan-Lin algorithm (K–L) [24] is one of the earliest move based approaches
proposed for graph partitioning that performs “relatively” good. K–L is a bisection
(2.5.1) algorithm which requires an initial state (initial partitioning) in order to operate
(Figure 2.14). The algorithm tries to optimize the cut size by making pair swaps of nodes
between the two partitions. The neighborhood as state is defined from the allowed pair
swap combinations. As a move–based approach, K–L applies the same methodology
iteratively (pass) on the previous state in order to achieve a better solution.

Figure 2.14: K–L Initial state (random - driven/previous pass)
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The K–L algorithm performs the following steps:

1. At the beginning of a pass the algorithm calculates the total cut for the given
initial partitioning (Figure 2.15).

2. It then calculates the gain on the cut for all permissible pair-swaps combinations
(Figure 2.16).

Figure 2.15: Calculate the current cut size. Cut size here is 3

Figure 2.16: Calculate gain for swaps of node pairs {1,7}

Figure 2.17: Lock the moved modules

3. It selects the swap–pair candidate with the highest gain and performs the swap
of nodes.This can also be a negative gain move if at a given moment all moves
are of negative gain. The total cut of the partitioning is updated and stored. A
comparison with the previous state is performed and the state with the best cut is
kept.
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4. The pair of nodes that have been swapped are then locked in order to avoid moving
them again at a later stage (Figure 2.17).

5. The algorithm continues from step 2, until all nodes are locked at which point a
pass of K–L has ended.

6. The algorithm restores the state where the optimal cut stored in step 3 and unlocks
all nodes.

The algorithm can be applied multiple times (passes) where the best cut found on
one pass is fed again to the algorithm, until it reaches the point where there is no further
improvement from the previous pass. This usually happens after a few passes of the
algorithm.

The algorithm behaves like a greedy algorithm, as it always selects the highest gain
move. Nevertheless the algorithm has some limited hill–climbing capabilities, as it will
select a negative gain move if all other moves have higher negative gains. This might
give a better solution in a later stage of the pass. In practice, the algorithm is known
to perform good in the late stages, a few moves before the optimal point of the pass,
where all the available moves are 0 or negative gain moves. Another advantage of the
algorithm, is that it has a easy, straight forward formulation and simple data structures.

A disadvantage is the algorithm highly depends on the initial partitioning provided.
A bad initial partition for the K–L algorithm will result to a local optimum which
might be arbitrarily bad solution. Several ways to get around this limitation have been
explored. The most promising of which incorporate some sort of clustering (compaction
or contraction) or similar tactics to avoid getting trapped in a local optimum [7, 8, 38].
An alternative approach to the clustering variations, that also provide good solutions,
is multiple starting point K–L algorithms [10]. This is an efficient and straight forward
solution to avoid local optimums, but for the case of the K–L algorithm it has a negative
effect on runtime.

This is mainly because the major disadvantage of K–L is that it requires O(n3) time
per pass, where n is the number of nodes. This is caused by step 2, where the search for
the optimal move is performed and requires O(n2) comparisons of swaps, though there
are some improvement on the runtime of the algorithm that perform in O(n2 log(n)) or
better [14]. Nevertheless, the speed limitation seems to have a big effect on the algorithm
itself as well as the extensions that exist, especially in combination with approaches like
multi–start, that was previously mentioned.

2.5.4.2 Fiduccia–Mattheyses Algorithm

The Fiduccia–Mattheyses (F–M ) [15] algorithm is an improvement of the K–L algorithm.
It is an move–based, iterative, min-cut, bisection heuristic whose worst case computation
time, per pass, grows linearly with the size of the hypergraph O(pn), where n is the
number of nodes and p the highest connectivity of the node. Hence it can be applied to
larger graphs than the K–L algorithm which has a complexity of O(n3).

To achieve this speedup in runtime F–M algorithm uses efficient data structures
to avoid re-computation of the gain for all nodes like K–L. F–M tries to optimize the
cut size by making moves of single nodes from one partition to another. This causes
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the intermediate solutions to violate the bisection criteria because we have single nodes
moving from one partition to another in contrast to the pair swaps in the K–L algorithm.
A naive implementation of F–M allows deviation from the bisection criteria equal to the
size of the largest node. There are extensions to the algorithm though, to make it a
bi-partitioning algorithm and allow relaxed size constraints. While we will see the full
details of the algorithm along with the extensions in Chapter 3.2 where we analyze our
approach, it is advantageous to provide here a brief overview.

The key feature of the algorithm is the elimination of the gain recalculation of all
nodes by providing a mechanism that keeps track, what nodes have been affected after
every move. This is achieved by initially computing the gain for all nodes (as in K–L)
and storing the data to a bucket sorted array as illustrated in Figure 2.18 [43, 35].

Figure 2.18: Bucket sorted array

The bucket sorted array is an array of containers that store nodes of equal gain. The
array is sorted according to this gain. This array along with an efficient incidence matrix
for all the nodes insure that, every time the algorithm decides to move a node from one
partition to another, it will update (according to the incidence matrix) only the gains of
the necessary (affected by the move) nodes in the bucket sorted array.

The algorithm first decides the source and destination partition according to the
deviation criteria (tolerance of size). It will then select the highest gain from one partition
according to the bucket sorted array (top of the bucket) and will then perform the move.
The node is then extracted from the bucket sorted array and placed to the locked node
list, so that it will not participate to any further moves during the same pass of the
algorithm. The algorithm checks the adjacent hyperedges of the moved node in the
hypergraph and updates only the nodes that are connected to that hyperedge.

With this mechanism the algorithm, for a given graph G with net set E ∈ G, has a
runtime of O(|E|) (number of nets of G). For the case of hypergraphs we will see that
the runtime is O(p), where p is the number of pins of the hypergraph.

The algorithm has similar behavior with the K–L algorithm. It has greedy–like
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behavior with limited hill–climbing capabilities, as it will also select negative moves if
all other moves have higher negative gains. Because it is an iterative algorithm, we can
early exit at any point if the solution is of sufficient quality.

As with K–L the initial partitioning has to be provided and it is of critical impor-
tance to the quality of the results. Many extensions of the algorithm have been devised
to avoid getting trapped in local optimal states. Clustering along with hierarchical (mul-
tilevel) partitioning, multi–start approaches and look–ahead schemes [27] have been used
extensively and are considered as standard improvements of the core algorithm.

F–M dominates the literature and the industry as it provides good quality results
with very good runtime. It is an intuitive and simple algorithm to describe and implement
and incorporates more features on top of the underlying algorithm compared to K–L and
the meta–heuristics that we will see below (such as multiway partitioning [39], different
or multiple cost functions [41], multilevel approach, lookahead schemes, etc).

2.5.5 Meta–Heuristic Solutions

Meta–heuristics are general heuristic methods that apply to various optimization prob-
lems as long as the problems can be formulated to fit the algorithms. The two heuris-
tic algorithms we just examined both demonstrate the behavior of greedy algorithms.
Greedy algorithms are meta–heuristics that get trapped relatively easy in locally optimal
solutions, as they can only make downhill movements. Other meta–heuristic solutions,
like simulated annealing (S–A), genetic algorithm (G–A) and taboo search (T–S ) demon-
strate different behavior. As we saw with K–L and F–M algorithms, the main problem
is that they highly depend on the initial conditions. Although many workarounds have
been proposed, the problem is inherently part of the algorithm’s design.

2.5.5.1 Simulated Annealing

Simulated annealing (S–A) [26] , is a probabilistic optimization method inspired by
the controlled annealing in metallurgy. S–A requires an initial solution and a given
neighborhood, which, for graph partitioning, translates as an initial state of the partition
and a given set of neighboring states. Whereas in greedy algorithms only maximum gain
downward moves are selected, S–A can select a worse solution in order to arrive at a later
stage at a potentially better neighborhood. The probability that a bad solution will be
selected is defined by e

−∆
T (Boltzmann acceptance rule[40]) where ∆ is the difference of

the cut cost of the new state minus the current cost and T is the current temperature,
which is decreasing while the algorithm progresses. As we can see, the S–A has a higher
probability to select random bad moves in early stages of the algorithm. As the algorithm
progresses, the temperature T , which is a monotonically decreasing function of the stage
of algorithm, decreases (system cools down).

A study by Johnson et al[22] compared S–A mainly to K–L and the similar K–
L derived improvement algorithms of coalesced K–L (C-K–L). The authors tested the
approaches with several random graphs. They observed, that S–A is a competitive
approach that performs good on some types of graphs in comparison to K–L. However it
gets substantially outclassed on other type of graphs in terms and quality and runtime
even when compared to the simple K–L algorithm, which has very long runtime. They
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conclude that multi–start K–L might be a better overall approach, as the time that
S–A will take to give good results would be sufficient for multi–start K–L or C-K–L
to provide similar or better quality results. Although the fitness criteria of S–A on
graph partitioning problems has not been fully identified they do make some interesting
observations for S–A:

1. To get the best results relatively long annealing runs must be allowed.

2. Additional time in only high temperature (early stages) or low temperature (later
stages) states does not seem to be as effective as adding time uniformly throughout
the schedule.

3. Very high temperature states, where almost all moves are permitted by the Boltz-
mann acceptance rule, do not have a determined effect on the quality of the result
so prolonged stay in such states could be avoided in favor of runtime.

4. Expanding the search space by loosening or even allowing some violation of the
basic constraints of the problem definition, so long as penalty for the violation is
included in the cost function might result to a smother solution space. therefore,
escaping from local optima would be easier and for small penalties it might be still
result to solutions legal or close to those.

It seems that VLSI netlists, which hold some natural hierarchical structure, do not
take advantage of the S–A algorithm. S–A seems a more promising solution in the case
where we have random graphs with no information of the hierarchy, and therefore the
integrated mechanism of hill climbing in S–A is more influential on the final solution.
Still, the literature seems to favor more multi–start iterative solutions.

2.5.5.2 Taboo Search

Taboo search (T–S )[18] is also a general combinatorial optimization technique. As the
initially proposed algorithm by Glover [19] suggests, taboo search is a similar to S–A. In
practice, for a simple implementation of T–S, the main difference from S–A is the fact
that T–S keeps also a fixed size “taboo” list of it’s recent moves (pairs of nodes that
have been swapped recently). The taboo list prevents T–S to cycle around solutions in
the search space that have already been visited in the recently thus providing a locking
mechanism similar to K–L and F–M.

Although the size of the list is limited and therefore the possibility to revisit previ-
ously explored solutions is not eradicated, it does make the algorithm more efficient in
searching the solution space than S–A.

More advanced implementations of the algorithm use attributes of states instead of
single states, in the taboo list, thus excluding a more wide range of solutions previously
explored. This though, can result to exclusion of potentially good solutions that have
the same attributes with states that have been explored.

T–S has been applied in graph and hypergraph partitioning. A promising solution for
T–S has been implemented by Arebi and Vannelli where they used a genetic algorithm
to provide starting points for the T–S [5, 4, 6].
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2.5.5.3 Genetic Algorithm

Genetic algorithms (G–A) [21] are a part of evolutionary algorithms family, used in sev-
eral search problems. G–A algorithms require an initial population of solutions. As they
are inspired from evolution theory, they operate with analogous behavior to evolution.
G–A provide a crossover function which selects two solutions from the initial population,
a mutation function that selects the traits to be passed to the offspring and a selec-
tion function that selects which solutions from the initial population will be replaced
by the offspring generated from the mutation function. G–A have in general a variety
of crossover, mutation and selection functions but implementations of these functions
are more application specific. There are also implementations where two or more of the
previously described steps of evolution are merged into one function.

Applying G–A to graph and hypergraph partitioning has been studied by Bui and
Moon which provide the most prominent results[9]. They note that G–A algorithms are
slower than other algorithms for doing the same tasks as they need a large number of
generations to converge to a good set of solutions, if they ever find any. They also denote
that G–A are ill-equipped to search local optima in a region of the solution space.

In [9] Bui and Moon present hybrid G–As with local optimization techniques, mainly
a variation of F–M. They suggest that G–A should be used to provide good initial
populations where, later, local optimization techniques can be used.

2.5.6 Discussion on Graph Partitioning Algorithms

In this section we have seen an overview of the most common and widely used algorithms
for graph and hypergraph partitioning. We have seen that K–L algorithm provides an
efficient basic methodology for partitioning but requires very long runtime to complete.
Also, as a greedy-like algorithm it demonstrates some tendency to get trapped in local
optima. While there are ways to improve on the runtime, K–L will still lack the runtime
provided by its more advanced variant, the F–M algorithm. Another issue with K–L
is that it is a true bisection algorithm that has also been adapted to incorporate bi-
partitioning (uneven partitions) but still lacks the flexibility of F–M that has, either
inherently or by small adjustments in the core algorithm, the ability to provide results
tailored for most of the cases.

Simulated annealing provides a mechanism that is supposed to override the problem
of entrapment in local optimal solutions that the greedy alternatives have but achieves
that in a high cost of runtime. Nevertheless, this would still be acceptable if the algorithm
would provide consistently better results, but existing literature suggests that S–A does
not perform well on generic cases of graphs.

Taboo search gives a solution to the long convergence times of S–A without affecting
the quality of the results in general, although this highly depends on the implementation
of the taboo list. A disadvantage is that quality is dependent on the initial solution
and the run times are still high compared to F–M. While there are solutions for limiting
the dependability of the algorithm to the starting partitioning like imposing smaller
perturbation for the neighborhood and thus tightening the locality, this also limits the
overall hill-climbing capabilities of T–S.

Genetic algorithms seem to deal with the problem of finding a good initial cut that
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can be used by other methods quite effectively in terms of quality for random graphs.
They provide generally good solutions for cases that there are no prior information on
the nature of the graph (hierarchy, clusters) but they suffer from high run-times and
local search limitations. Hybrid G–A seem to get past that problem by incorporating
local heuristics to do the fine tuning of the starting solution provided by the G–A. This,
depending on the usage of G–A in the hybrid solution, sacrifices some of the quality for
better runtimes. Hybrid G–A have the disadvantage that they are quite inflexible and
complex algorithms to deal with combination of limitations in the search space as the
limitations have to be addressed by the genetic algorithm as well as the local heuristic.

The F–M algorithm seems the most promising candidate for hypergraph partitioning.
Although it is a bisection algorithm, it is very easily extended to bi-partitioning which
we are interested in. It has the best runtimes compared to its rivals, while it provides
good results even if they might not be the globally optimal solutions. Runtimes for
the algorithm are of critical importance for our case as we are dealing with very large
graphs with 100, 000−−1, 000, 000 nodes. Also the fact that the problem of local optima
entrapment has been extensively addressed by literature provided a variety of solutions.
A widely used tactic is by providing information on the nature of the hypergraph and
several industry tools are known to implement this. All this along with the intuitiveness,
flexibility and low implementation complexity of the algorithm make F–M the right
choice for our problem.



28 CHAPTER 2. BACKGROUND



Partitioning for Custom
Emulation 3
In the beginning of this chapter we give an overview of custom emulation and the con-
straints that it has. We then provide the details of the F–M algorithm. We will then
propose for each of the constraints, candidate solutions as extensions to the F–M ana-
lyzing in detail the problem and the solution that we propose.

3.1 Custom Emulation

Custom emulators are a type of emulators designed for specific needs and their architec-
ture are often tailored according to their application[28]. Although our custom emulator
is targeting a specific application area, many of the challenges that custom emulators
introduce are common across areas. We present in brief the challenges for our platform.

Multi FPGA: The amount of FPGAs used in the emulator is one aspect of the architecture of an
emulator. Multiple FPGAs improve scalability of the emulator but on the other
hand one must take in consideration to partition the design under test among
many FPGAs. The FPGAs can also be of different types, thus one should also be
able to distinguish the dedicated resources of an arbitrary FPGAs. This means
that partitioning decisions should be customized for the specific FPGA resources.
The area is one parameter but usually more fine grain parameters like BRAMs,
DSP slices etc should also be considered if we want a more fine grain partitioning
solution.

Asymmetric topology: The topology of the emulator is also a hard constraint. FPGAs used in the emulator
are not necessarily connected in a fully connected or symmetric topologies (star,
mesh, hypercube, etc). Partitioning solutions should honor the topology imposed
by the architecture if we want to avoid using FPGAs for routing between cells that
are not directly connected.

Locked components: Some components of the emulator design have to be assigned in a specific FPGA
as they might serve for external I/O or other functionality that might only be
performed on a specific resource that is not contained on all FPGAs.

Time–Clean solution: Timing of the proposed partitioning solution has to allow us to fullfill the timing
constraints of the application. An important parameter for timing clean solutions
is the creation of combinatorial paths. Combinatorial paths occur from the creation
of fast paths of combinatorial logic that cross FPGA boundaries more than once.
We will see in detail later on this Chapter how this can affect the performance of
the emulator’s speed.

29
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3.2 Fiduccia–Mattheyses Core Algorithm in Detail

Figure 3.1: Graph example

The K-L algorithm suffers from constant recalculation of all cells every time a cell has
been moved (Chapter 2.5.4.1). The F-M algorithm is based on K-L but gets passed this
problem by incorporating special data structures. We describe here these data structures
by providing an example netlist. As we have seen in Chapter 2, netlists are represented
efficiently by hypergraphs.

3.2.1 Data Structures

Consider the example of Figure 3.1. From the input data that describe the netlist we
construct the data structure of Figure 3.2. In this data structure we store the connections
of every CELL to NET and vice versa. This data structure allows us to quickly find the
adjacent CELLS of one selected CELL, by looking to which NETS the CELL is connected
and then checking to which other CELLS these NETS are incident to. The union of the
found CELLS are adjacent to the selected CELL.

For example, let us find the adjacent cells of cell n3. Looking at the NETS data
structure of Figure 3.2, we see that n3 is connected to nets e1, e3, e4. We then look
at the CELLS data structure for each of these nets (hyperedges). Excluding the cell
n3, that we have selected from the list of cells, e1 is connected to {n1, n2} , e3 is
connected to {n5, n6} and e4 is connected to {n4, n5, n6}. The union of all these sets
{n1, n2}

⋃
{n5, n6}

⋃
{n4, n5, n6} = {n1, n2, n4, n5, n6} provides the cells adjacent to

cells n3. Similarly the cells adjacent to cell n2 are {n1, n4, n5}.
As with K-L, F-M also needs to find the gain of moving a node from one partition to

another. F-M stores this information so that it will not recalculate this value every time
a move has been made. The data structure to hold the gain of moving one node from
one partition to another is the bucket sorted array shown in Figure 3.3. We require one
bucket sorted array for every partition.
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Figure 3.2: Data structure 1 (DS–1)

Figure 3.3: Data structure 2 (DS–2)
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It becomes obvious at this point, that the value of gain of moving one cell from the
source partition to the destination partition, is bounded by the number of pins of the cell.
Maximum gain case occurs when all the adjacent nodes are on the destination partition,
so by moving the cell there we gain p on the cut cost, where p is the number of pins of
the cell. In contrast minimum gain case occurs when all the adjacent nodes are on the
source partition, so by moving the cell to the destination partition we lose p on the cut
cost. Thus, the gain value of all the cells is bounded by the maximum value of pins of
the cells pmax = max{p(i)}, pmin = −max{p(i)}.

The bucket sorted array stores the gains of the free cells of the netlist by grouping
several cells with the equal gain in the same bucket. All the cells in the same bucket
are linked in a doubly linked list that is connected to the index bucket of array. We also
maintain a MAX–GAIN pointer to the bucket of the highest gain.

To prevent the cell-moving process from “thrashing” nodes, or going to an infinite
loop, each of the cells of the graph is locked in its new partition immediately after the
move. Also the cells that we wish to exclude from the moving process (e.g. preassigned
cells) are also locked and are not inserted in the bucket sorted array. For this we provide
a LOCKED CELL LIST. Having in mind these data structures we proceed to see the
steps of the algorithm.

3.2.2 Algorithm Explanation

We create DS–1 from the description of the netlist. The algorithm then performs the
following.

1. Given is the initial partition (Random–Directed/Previous Pass) shown in Figure
3.4 and the desired ratio rdesired. The ratio at any given moment is r = |A|

|A|+|B|
where |A|, |B| are the sizes of the partitions. r is the selection criterion.

2. Calculate the gain g(n) of all cells. In Figures 3.5 and 3.6 we calculate the gains
for moving nodes n1 and n3 respectively.

3. Insert the nodes according to their gain into DS–2 (one DS–2 per partition) and
keep track of the highest gain bucket by updating the MAX-GAIN pointer. We
have constructed the two DS–2 for the simple example of Figure 3.4, in Figures 3.7
and 3.8.

4. Select from which partition we should move the cell according to the ratio r. If
r < rdesired then the source partition is partition A and destination partition is
partition B and vice versa for the case where r > rdesired.

5. Retrieve from the selected DS–2 of the source partition the head of the linked list
which is the top bucket with the highest gain and is referenced by the pointer
MAX–GAIN (Figure 3.9). Move the selected node to the other partition and move
it from the GAIN BUCKET to the LOCKED CELL LIST (lock bucket). Update
the size of the new partition by adding and subtracting the weight of the moved
cell to the destination and source partition respectively.
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Figure 3.4: Initial Partitioning

Figure 3.5: Gain of moving node n1 to PARTITION 2 is -1
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Figure 3.6: Gain of moving node n3 to PARTITION 2 is +1

Figure 3.7: DS-2 of partition 1

6. Update the gains of all cells that are adjacent to the moved cell. Adjacent cells can
be found by looking up in the DS–1. Adjacent cells might be in both partitions.
The update of DS–2 is performed by popping the adjacent cell from the linked list
of the gain bucket that is found. Then a recalculation of the gain is performed and
the node is reinserted to the new gain bucket. We also make sure to update the
MAX-GAIN pointer if the moved node or the recalculated nodes have affected the
max gain value.
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Figure 3.8: DS-2 of partition 2

Figure 3.9: Selection of head node from top bucket of DS-2 of partition 1

7. Check if this move improves on the solution and store the state of the best cut of
the pass.

8. Continue at step 4, until all cells are locked or the ratio prevents further moves.
Otherwise free all cells. This ends the pass of the algorithm.

9. If there was no improvement from the previous pass then exit, otherwise restore
best cut solution kept in step 8. Set initial partitioning = best solution and perform
another pass.
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3.2.3 Analysis of F–M Algorithm

At this point we make some observations on some implicit decisions, parameters and
behavior of algorithm. The first observation for the algorithm is that it has a linear
runtime. This stems from the fact that the algorithm only recomputes the gains of the
neighborhood of the moved gain. The gain recalculation of the neighboring cells can be
done by simple gain increment/decrement which can be done in constant time. Thus if
the moved node is connected to nets of maximum connectivity of p the complexity would
be O(np) in the worst case, providing a linear increase of runtime.

We have already seen that the size of a partition is defined as the sum of the
weights(sizes) of the constituent cells. In step 1 we defined the desired ratio rdesired

for bi-partitioning as the cell distribution between the two partitions. This for a known
total size of the netlist defines which cells go in the two partitions. The ratio is a hard
constraint for F–M. The algorithm tries to minimize interconnections between partitions
but can not violate this constraint. This is seen in step 4 where the algorithm’s selec-
tion of the source and destination partitions is performed according to rdesired and the
current ratio. This though implies that the ratio has a tolerance equal to the size of
the largest cell of the netlist. In practice this means that we have a constant toggling of
source and destination partitions. We extend the idea of ratio tolerance to incorporate
user defined values. For a specified tolerance t we have rdesired + t to be the range where
the algorithm can select as source and destination any of the partitions. This allows the
algorithm to select the globally best move by selecting the highest MAX-GAIN bucket
of the two partitions. Of course if we also reach the boundaries of the tolerance we may
also have the same behavior as before but nevertheless the application of relaxed size
constraints provides more flexibility. There has been some work on relaxed size con-
straints on the F–M algorithm [12] as well as for hierarchical approaches [12] and for
multiway partitioning [37].

The algorithm displays some limited hill-climbing capabilities. Although the algo-
rithm suggests that it will only do positive gain moves there are cases where the algorithm
makes zero gain or even negative moves to obtain a better solution. This happens when
the algorithm has exhausted the positive gain buckets from the two partitions so it is
obliged to select either from a zero gain or negative bucket. A arbitrary “zero gain
move” may have an impact to other zero gain moves thus increasing the gain of other
cells currently in zero gain buckets. Although there is not a mechanism to foresee this
behavior we will see, in the experiments that we have conducted, that it happens rel-
atively often especially in the early stages of the algorithm. Negative gain moves that
improve the total cut cost happen in similar situations. If all moves are of negative gains
then selecting, one might result to increasing more than one negative gain cells up to
the “zero gain” bucket. It is possible that we then fall in the previously described state.
There are more cases that this behavior can occur, as for example when we have reached
the ratio+ tolerance boundaries and therefore the algorithm has to make a move from a
partition with only negative moves instead of the positive ones from the other partition.

Another observation stems from the fact that the algorithm works iteratively and
has greedy–like behavior. At the end of each pass the algorithm has found an optimal
solution. The algorithm though does not specify how to store the best state of the
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partitioning. One naive approach would be to store the partition of all cells when an
improvement on the cut cost has occurred. This though means that the algorithm would
have to constantly take snapshots of the state of the partitions especially in the early
stage of the pass where the algorithm goes downhill. This for a considerable size of netlist
would increase dramatically the runtime as well as the memory consumption of the extra
snapshot. An alternative solution is to specify a threshold of allowed consecutive negative
moves and when this is crossed re-roll back to the best solution. Since the algorithm
is greedy, the expected behavior is that it will do the best moves in the beginning and
will leave bad moves for later when it has reached the optimal solution of the pass. The
size of the threshold of negative moves allows us to correctly identify where the optimal
solution. We need though to make sure that the threshold is big enough so that it will
not mistake a locally optimal solution as the globally optimal as we have seen that the
algorithm can escape from local optimal solutions. On the other hand the size of the
threshold has to be relatively small as we need to reserve a queue[36] of moves that we can
roll back to. The size is usually defined empirically as a percentage of the total number
of moves, which in turn is linear to the size of the netlist. An alternative solution would
be to store the best cut size during the pass and rerun it until that point. Although this
would guarantee the optimal solution of the pass, it would also mean that the algorithm
would have to finish a whole pass before it can perform the rerun. It is also obvious that
because it is greedy algorithm, the ratio of moves Move Counterglobal optimal

Move Counterfull pass
is relatively

small and thus the algorithm would waste time on running until the end of the pass.
This effect is more obvious as the whole F–M algorithm gets the best cut from the final
pass when the algorithm has been settled in an optimal(global or local) solution which
happens after some passes. Nevertheless the fact that F–M has a linear runtime allows
us to perform this solution without creating too many problems and bottlenecks on the
runtime even if we run a full pass.

An obscure point on the implementation of the algorithm is the selection–insertion
policy for the moving of cells in the DS–2. The original F–M[15] algorithm suggests that
the head of the MAX-GAIN bucket should be chosen for selecting the highest gain cell.
Also the insertion of recalculated nodes should be done in the head of the linked list
of the bucket sorted array. The reasoning of this LIFO (last in first out) policy is not
explained but one can speculate that it enforces “locality” in the choice of cells to move,
but this is rather a speculation in the literature. One can easily expand this policy to
FIFO without much loss on runtime. This would practically mean that the algorithm
would either insert the recalculated cells in the end of the linked list or that it would
select the last cells in the end of the linked list. This would increase the runtime a bit
as we would have to traverse the linked list every time we needed to select a node from
a bucket DS–2 and it would increase it a bit more if we insert the recalculated nodes
in the end as this would have to be done possibly more than one times. A random
policy would also increase the runtime as we would have to calculate the number of the
selected cell in the linked list and it would also require to keep track of the length of
the list so that we do not reiterate on the same bucket. The effect on the quality that
this selection has, is not obvious and has not been tested thoroughly. In fact while some
favor random selection [27, 39] others prefer LIFO [15]. Although slight modification
on the organization of the buckets can dramatically effect the algorithm, we expect that
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the impact on the quality and runtime, of the selection between these three policies, to
be relatively small as it only affects the level of randomness of cell selection in the same
bucket.

3.3 Custom Emulation Architecture - Algorithm Exten-
sions

The constraints that we have in our architecture require some modifications on the
algorithm in order to be fulfilled.

3.3.1 Multi FPGA board – Asymmetric Topology

Our target board consists of more than two FPGAs so we need to extend the F-M
algorithm from 2-way partitioning to k-way partitioning.

An efficient way to extend F–M to k-way has been proposed by Sanchis[39]. Sanchis
makes use of binding numbers and gain vectors specified by Krishnamurthy[27] which
improve the F–M algorithm by providing a lookahead mechanism for the F–M.

The F–M algorithm is known to make seemingly good moves that might turn out bad
after few steps ahead, thus locking itself to a suboptimal area of the search space. This is
mainly because it lacks a “tie-braking” mechanism that would allow the algorithm to have
some insight on the next potential moves. It has been observed[20] that for the Primary1
MCNC benchmark (a 833 cell netlist) the top gain bucket has 15-30 cells and the algorithm
makes some bad moves when it comes to choose the moving cell. Krishnamurthy tries
to minimize this effect by replacing the gain values with gain vectors.

In short the first value (1st depth) of the gain vector of a cell n shows the number
of cells of a net e ∈ En, that have been locked on the partitions (binding number). This
way we can see how many cells have to be moved from one partition in order to transfer
the whole net on one side. Provided that we have a k depth vector this mechanism
allows the algorithm to see k moves ahead and thus is able to move whole subnets on
one partition or make better moves on later stages. This also increases the complexity of
the algorithm from O(np) to O(npk). Sanchis proposes this data structure instead of the
normal gain values of F–M for k-way partitioning. She points out that the F–M tends to
minimize connections between two blocks but maximizes connections inside these blocks
and therefore cannot be efficiently applied iteratively.

We do not make use of this extension but instead we propose a similar strategy while
keeping the original gain values of the F–M algorithm. In 2–way partitioning we saw
that we have one gain value for moving a cell from one partition to another. In k–way,
instead of having one gain value you have a vector of gains for every cell, of size equal
to the amount of FPGAs-1(connection to all other partitions). This vector covers all
arbitrary moves of the cell to the partitions(in our case 4). If a cell does not have a
direct connection to a partition then the move is prohibited by setting the gain value
to −∞. Because the k-way partitioning together with the immediate locking of a cell
after a move tightens the constraints and does not allow flexibility on the redistribution
of the cells it would be advantageous to allow k moves for a cell before becoming locked.
This would allow the cell to get locked after it has settled to a more fitting partition.
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This could result to some thrashing of cells between adjacent partitions and also would
increase the runtimes by a factor of k as the locking would now come later.

A problem that arises from k-way partitioning is distant connections of cells (cells
that connect through nets that cross more than one FPGA). When we move a cell from
one FPGA to another we might find that we create paths through an FPGA that has
only routing for the path through the FPGA. This is something that we want to avoid
as signals that traverse from one FPGA to another via a third FPGA, are multiplexed
and demultiplexed twice before they arrive at the destination FPGA thus increasing the
delay and lowering the performance of the emulator.

(a) Creating routing paths (b) Creating routing paths

Figure 3.10: Creating routing paths

Consider the example of Figure 3.10. The algorithm will select cell n4 to be moved to
partition 3, creating a path through partition 2 with only routing of the net e2 (Figure
3.10(b). There are some ways to avoid these situations. Initially we can limit the moves
to the ones that do not create this situations and also check if the distant cells can
be moved to an adjacent partition with total positive gain. Another way would be to
provide some tolerance for these situations and let the algorithm allow this situations
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temporarily while penalizing the move and giving a higher gain to the move that brings
the distant cell closer.

We believe that this approach is more extensible than the connectivity vector as it
can deal with the asymmetric topology of our board.

3.3.2 Heterogeneous FPGA

Custom emulator boards may consist of different types of FPGAs, having different
amount of IOs and different resources. This means that the capacities of the FPGAs
are different and may also have different amount of resources. Thus we need to have an
unbalanced partitioning depending on the area of each FPGA. In the algorithm proposed
by Fiduccia and Mattheyses, they propose only the use of the area as a criterion to make
a move. This can though be changed to other factors (specific resources of one FPGA)
or even to more than one criterion. For multiple criteria we need also to provide a hier-
archy list which will specify the priority when calculating the cost function (from harder
to softer constraints). An example would be a list of the amount of all the resources
of the FPGA (block rams,LUTs, etc. . . ) and have multiple ratios for every one of the
resources. The selection of the moved cell should then be done depending on the priority
that these resources have.

3.3.3 Initial Conditions

The quality of the solution provided from F–M is highly dependent on the initial par-
titioning provided in step 1. One way to deal with this problem is to provide multiple
starting points for the algorithm. This can be done, as suggested before, by hybrid solu-
tions where another algorithm (possibly genetic algorithm) provides candidate starting
points for the F–M. An popular alternative is by clustering groups of cells. By providing
some design information to the F–M algorithm the algorithm can cluster components of
the design, which are inherently more tightly connected, thus trying to optimize only
the interconnections outside these clusters. This way it avoids splitting the clusters in
the beginning and getting trapped in local optimal solutions.

A more advanced way to perform clustering is by applying multilevel F–M algo-
rithm [2, 23]. In brief a multilevel approach would cluster recursively the netlist until a
desirable size of hypergraph(netlist) is reached with a coarser grain level. It would then
be able to effectively solve this smaller problem by applying a “flat” partitioner (F–M
or other) as we reduce the modules (sets of cells) that can be moved.

The smallest hypergraph achieved by the recursive clustering procedure would be
partitioned with a very fast initial solution generator (e.g. random) and then iteratively
improved by F–M. The resulting partitioning solution is then interpreted as a solution
for the next level (less clustered). This is done until we have reached a totally flattened
netlist.

This approach has the disadvantage that clustering a design is a non-trivial problem.
It therefore introduces another problem on effectively partitioning a arbitrary design. A
leading implementation of a multilevel hypergraph partitioning tool hMetis[1] has been
developed with integrated clustering algorithms and has improved runtime and solution
quality. As suggested by [11] though, it has increased complexity due to the complex
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heuristics and the non–trivial tunings that it incorporates. We believe that the most
significant limitation is that hMetis does not try to produce timing correct solutions nor
does it target the other constraints that we have such as prelocking, asymmetric topology
and heterogeneous FPGAs.

In our approach we will deal with the initial partitioning problem by providing one
level of clustering given by the user. We will not attempt to solve this problem for a
flatten netlist with no hierarchical information. We assume that the designer knows the
structure of the designs and can specify some information on the hierarchy.

3.3.4 Prelocking a Custom Board

Another constraint that our topology introduces is that parts of our design have to be
explicitly mapped on a specific FPGA. This is mainly logic for the connection for the
inter–board communication or parts that require routing through one FPGA. We deal
with this problem by assigning cells or whole cluster of cells, to a partition and directly
placing in the LOCKED CELL LIST. This way we prevent the algorithm by moving
these components.

3.3.5 Combinatorial Paths – Timing

Until now we have only examined the effect of the number of crossing nets between
two FPGAs. The connection of Time Division Multiplexing (TDMX) factor and the
number of nets that cross intercluster boundaries is obvious. The more nets that cross
FPGA boundaries, the more signals have to travel in a certain amount of time from one
FPGA to another. In order to achieve this we have to lower our clock speed to allow a
higher TDMX factor. While this is a critical factor for determining the quality of the
partitioning it is not our only consideration.

3.3.5.1 Problem of Combinatorial Paths

One important parameter that has to be taken into account during partitioning is the
creation of combinatorial paths. Combinatorial paths occur from the creation of fast
paths of combinatorial logic that cross partition boundaries more than once. These
paths decrease the overall performance of the design by decreasing TDMX and limiting
the amount of signals that can cross FPGAs.

We explain this with an example of creation of combinatorial paths. In Figure 3.11
we see a part of a design that consists of two positive edge FF (sequential elements)
and a cloud of gates (combinatorial elements) between the two FF. Initially everything
is mapped in one FPGA (a). The total delay of the “cloud of gates” is 25ns as noted in
the case where everything is mapped on one FPGA (a).

Lets assume that the partitioning algorithm splits the design into two partitions
cutting once between the two FFs(b). The timing constraint that we have to reach
from one FPGA to the other is 190ns and is defined by the frequency of application
clock1. During this time frame we must cross the FPGA boundary and also consider

1We will not get into many details in the custom emulator’s implementation. Instead we will only
consider the constraints that are set from the design.
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the 25ns that is needed from the combinatorial logic. We consider that multiplexing–
demultiplexing (MUX-DMUX) has a time period of 10ns to transfer one signal.

Lets calculate the TDMX factor for the partitioning solution of case b where the
cloud is cut in two parts of delay of 15ns and 10ns for partitions 1 and 2 respectively.
In this example we require 15ns to pass the first cloud of gates and 10ns for the second,
subtracting these two static delays from the total available 190ns we are left with 165ns
to transfer the signals between the two FPGAs. Given that we only have to cross FPGAs
once we can have a TDMX factor of 16, spending the remaining time of the application
clock.

Now lets assume that at some point the partitioning algorithm puts the combinatorial
logic in such a way that a path has to travel from FPGA 1, through FPGA 2 and return
back to FPGA 1 as shown in (c). In order to calculate the TDMX factor we follow the
same principle. Initially we subtract the static time needed by the combinatorial logic.
This time though we have to cross the FPGA boundaries twice. The remaining time of
160ns has to divided in two equal segments for the MUX-DMUX. We therefore can only
have a TDMX factor of 8.

Figure 3.11: Creating combinatorial paths

We can observe that combinatorial paths reduce the amount of signals that can be
transferred in 1/2 and as a result reduces the quality of the partitioning.

3.3.5.2 Approaches to Avoid Combinatorial Paths

A simple approach to resolve combinatorial paths would be to assign weights on the
nets depending on whether they are part of a combinatorial path or not. The algorithm
would also have to dynamically recalculate the weight of all nets, when a cell is moved.
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This would result in a much higher complexity as not only all nets would have to be
recalculated but also a certain amount of path analysis (which is also an intractable
problem) would have to be performed in order to identify the combinatorial paths.

In order to avoid the creation of such situations we propose clustering of the “clouds
of gates” and introduction of locks (hard constraints) for the algorithm to take into
account while making cell moves.

Figure 3.12: Clustering combinatorial logic

The idea is to cluster the clouds of gates around FFs(Figure 3.12). This way we will
be able to create clusters of gates, where we can assign flags if they have been cut or not
and prevent the creation of combinatorial paths.

After the cell selection from the gain buckets, made by the core F–M algorithm, we
check if the selected cell is in a cluster that has already been cut. If a cell belongs to
a cluster that has not yet been cut and it does not create a combinatorial path, the
algorithm allows the move. Prohibiting the algorithm to move a cell from a cluster that
has already been cut will greatly limit the algorithm’s possible moves. In order to relax
this constraint for the algorithm, we extend the cases where the algorithm is allowed to
make certain moves.

If a node is on the border of the cut as is node n2 in Figure 3.13, then the algorithm
should allow moving the cell across the cut as it will not create a path.

Figure 3.13: Moving border cells across cut

In more complex situations where the border cell has drivers from multiple partitions
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the algorithm should perform some limited path analysis before making a move. In the
example of Figure 3.14 we see that moving the cell n2 across the cut will introduce a
combinatorial path. In order to resolve this situation we can prohibit the move. We
expect though that the algorithm will run into similar situation quite often and this will
influence greatly the flexibility of F–M. Alternatively we can perform some path analysis
every time we reach situations like these. By looking up a limited number of stages for
the graph we can traceback the path n2 → n6 → n5 → n3 → n2. If the traceback is
deep enough then the algorithm will be able to find the combinatorial path. To resolve
it, we can move cell n2 and give a higher gain for all the cells in the combinatorial path.
We can also calculate the potential gain of pulling all the cells in the path along with
cell n2 on one side.

Figure 3.14: Moving border cell creates combinatorial path

This implies that on every non–trivial cell move some path analysis has to be per-
formed. This increases complexity and we expect that this will increase the runtime
significantly.

A disadvantage of this method is that in order for it to be applicable, we need to have
multiple, discrete “clouds of gates”. Unfortunately clustering clouds of gates surrounded
by FFs is very dependent on the design. Common nets, such as reset nets,clock trees
etc. . . , traversing from one cloud to another have to be removed as they make clusters
difficult to identify. Also, on a pipelined design, lookahead and feedback signals from
one stage of the pipeline to the other, merge the discrete stages making clustering all
the more difficult.

We have applied this type of clustering in our design and we have come up with one
big cluster of more than 80% of the total design size and several very small clusters. This
did not allow us to proceed further with the aforementioned methodology as the main
cluster will always be cut.

We believe that this approach, in the cases where it can be applied, can reduce
the combinatorial paths significantly especially if we allow some limited path analysis
on every move and since the F–M algorithm has linear runtimes we can apply this
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methodology without a huge increase of runtime.
The challenge that this methodology introduces in this case is clustering clouds of

gates between FF boundaries. Designs with simple pipeline stages are better candidates
for direct application of the methodology although the approach can also be applied on
more advanced designs. Boundaries can also be formed if we have a very small number
of signals travelling from one cloud to another. This though would require that, for
the case of complex pipeline designs, the clustering algorithm can be able to distinguish
clusters by the amount of crossing signals.
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Implementation 4
In this chapter we present the details of the netlist partitioning tool that we have devel-
oped. We explain how we have used the underlying graph structures and how we have
extended them in order to represent hypergraphs. We also describe the F–M specific
data structures that we have used on the implementation.

4.1 Programming Language and Library Selection

We have chosen C programming language for the implementation of the tool. This
decision was made mainly because we did not find any good candidate hypergraph library,
but instead we found that there are stable graph libraries that have already implemented
the basic functionality required.

Since hypergraphs are an extension of graphs we saw fitting to use an existing graph
library and extend it to include hypergraphs instead of building the tool from scratch.
This helped us concentrate on the main objective which was the implementation of the
partitioning tool. Another factor for our decision of selecting the agraph library (and in
consequence C programming language) was performance. Knowing that our workloads
would be of substantial size, the library selection had to incorporate fast and efficient
data structures and memory management.

Agraph is aimed at graph representation; it is not an library of higher-
level algorithms such as shortest path or network flow. We envision these as
higherlevel libraries written on top of Agraph. Efforts were made in Agraphs
design to strive for time and space efficiency [34].

4.2 Graph Library

We have taken as a starting point the Agraph library. The library provides data struc-
tures for graphs, subgraphs, nodes and edges. It also provides internally and externally
defined attributes for these graph objects. Graph objects may have associated string
name–value pairs. The library can internally import “.dot” files. The “.dot” file format
contains a graph description in the .dot language[34]. When a graph file is read, the
Agraph’s parser takes care of the details of the name–value pairs. For more information
on the dot language see Appendix A.

4.3 Hypergraph extension

Due to the fact that plain graphs lack the “node to multiple nodes” connections of a
hyperedge we had to devise an equivalent representation for hyperedges using simple
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graphs. To achieve this, we represent hyperedges with dummy nodes. For every hyper-
edge on the netlist we insert a dummy node. This node connects to all the adjacent
nodes of the hyperedge. In order to make it clear that this is a hyperedge, we name the
node as edge name@hypernode and define it as a dummy node in the cell attribute of
the node. Simple “1 to 1” edges remain as before. The substitution of nets with the
“hyperedge equivalent” is depicted in Figure 4.1.

Figure 4.1: Net and Hyperedge equivalent with edges.

Figure 4.2: Net representation with edges.

The representation of Figure 4.2 where a hyperedge is represented by two different
edges of the same name, in this case EDGE 0, is not proper for calculating the cut of a
netlist. Consider the case where nodes NODE 1, NODE 2 are on one partition and node
NODE 0 is on the other. The cut cost can not be calculated directly by looking up how
many edges are crossing partitions, as multiple edges of the same hyperedge might get
counted more than once. This complicates the calculation of the cut cost as well as the
gain.

Instead with our scheme with the extra dummy node, the calculation of the cut is
easier. For simple edges we can determine whether the edge is on the cut by looking
up the head and tail nodes. In the case where we have a hyperedge, the cut can be
calculated by looking up if the connections of the dummy node are all on the same
partition. If not, then the hyperedge belongs to the cut.
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4.4 Tool Flow Deployment

We also need to change our design flow in order to incorporate partitioning. The changes
on the toolflow can be seen in Figure 4.3. We synthesize the RTL code, producing a
flatten EDIF (Electronic Design Interchange Format) file. EDIF is a standardized format
for describing a netlist produced by most of the synthesis tools. The EDIF file format is
actually very close to being an extended hypergraph description format.

This EDIF netlist is given to the EDIF2dot format converter which exports a “.dot”
file. The exported “.dot” file doesn’t have dummy nodes so it can not efficiently describe
the netlist. In this intermediate “.dot” file, a hyperedge is represented with two different
edges of the same name, as shown previously in Figure 4.2.

We have developed a preprocessing tool that takes as input this file and modifies
the graph to include dummy nodes in the place of the hyperedges. The output of the
preprocessing tool is a new “.dot” file which can be used for the main partitioning tool.

The partitioning tool then imports the “.dot” file as well as some user defined con-
straints. The essential inputs for the tool to operate are:

1. The ratio of the desired area distribution among the two partitions |A|
|A+B| and |B|

|A+B|
where |A|, |B| are the sizes of the partitions.

2. The percentage of tolerance of the area ratio, defining a range of valid partition
area ratios.

3. The replacement–insertion policy for the gain buckets of the algorithm.

The partitioning tool uses the modified algorithm we have described in Chapter 3.
It uses the “test run - partitioning run” approach that we have described. It is invoked
with the parameters and the user constraints in order to search for the optimal solution
of the pass. The tool calculates the optimal cut for that pass of the F–M algorithm.
It also gives us information on the whole pass. We then have to invoke the tool with
the optimal or a desired (suboptimal) cut point. We do this until the algorithm settles
and the tool does not provide a better solution. This usually happens after a few passes
(ranging from 1–10) depending on the prepartitioning and the freedom of the cells. In
the end, we get as output “.dot” file along with two lists of cells to be mapped on each
partition.

Any prepartitioning and locking of cells is done before running a pass of the tool.
We have implemented this with the use of Perl scripts. The user has to specify which
are the components that need to be locked and the partition that he wants to preassign
them. The scripts modify the “.dot” file by attaching attributes about the state of the
cells (initial partition, free/locked).

We can then split the original EDIF netlist with the information from the partitioned
cell lists, into two separate EDIF files. These map these into the respective FPGA by
invoking the Place and Route tools, creating the bitstreams which we upload on each
FPGA.
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4.5 Tools

Having described how the tools are deployed in the toolflow we now describe in brief
how the tools operate internally.

4.5.1 EDIF2dot and Hypergraph Converter

The EDIF parser (EDIF2dot) extracts the cell graph from the flatten netlist of the EDIF
Netlist. It creates hyperedges by assigning the same names ,that come from the synthesis
tools, to multiple edges of a node. The preprocessing tool has to be run once before the
partitioning can operate. It loads the “.dot” file by calling the library function call so we
can then search for multiple edges of same name attached on a node. Having identified
a hyperedge we create at that point a special node (dummy). As a first step we connect
the source (driver) of the edge to the dummy node. We then connect the destination
cells of the edges with that name (driven cells) to the dummy node and delete the initial
direct edges from the driver to the driven cells. The algorithm also checks and reports
multiple drivers on the same nets which is a state that we want to avoid.

4.5.2 Prepartitioning scripts

The prepartitioning scripts we have implemented operate by pattern matching on the
“.dot” file. For this reason they have been written in the Perl programming language.
The user has to provide two files prepartition1 and prepartition2 , where he must
specify the name patterns of the cells to be mapped in each partitioned. The script then
searches in the input “.dot” file for the patterns specified in the two prepartition files.
When it matches a pattern on a cell it assigns the node to the respective partition. A
similar script performs the locking mechanism.

4.5.3 Partitioning Tool

After we have run the preprocessor, we can invoke the partitioner. The partitioner
requires as parameters the ratios for the two partitions the tolerance and the insertion
policy.

For the implementation of the partitioner we initially implemented the F–M data
structures and the extended attributes of the nodes. We attached to every node the
following attributes :

• gain: The gain value

• weight: The area weight of the cell

• type: The type of cell in the netlist (Flip flop, MUX, LUT, dummy, . . . )

• partition: In which partition the cell has been preassigned

• lock: If the cell is locked on a partition (has to be used in conjunction with partition
attribute)
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• head and tail: The previous and next element on the doubly linked list behind the
bucket sorted array

The main functionality of the tool is performed by the calls shown in Listing 4.1.

Listing 4.1: partitioning framework
1

2 /∗ Assign nodes to p a r t i t i o n s ∗/
3 c r e a t e i n i t i a l p a r t i t i o n i n g ( ) ;
4

5 /∗ Calcu la te i n i t i a l ga in s − I n i t i a l i z e the data s t r u c t u r e s ∗/
6 c a l c u l a t e i n i t g a i n s ( ) ;
7

8 /∗ Invoke p a r t i t i o n i n g a lgor i thm
9 move algorithm ( ) ;

create initial partitioning

Having imported the graph and initialized the internal data structures, the program
checks which nodes have been preassigned a partition and which are locked. The nodes
that are locked or just preassigned on a partition get placed directly. We assign these
nodes by keeping track of the fill of the partition. Although the weight of preassigned
nodes on one partition can violate the desired ratio this will have an affect on the behavior
of the algorithm as it will force it to make moves from one partition only until it reaches
the limit of ratio + tolerance.

As we have seen, the F–M algorithm requires an initial partitioning to operate so
the free cells have to get an initial partition as well. This is done after having placed
the locked/preassigned nodes according to the specified desired ratio. The free cells are
assigned to partition 1 until this has reached the desired ratio (specified as parameter
on invocation). Dummy nodes have a weight of 0 and therefore do not influence the
ratio. As soon as we have reached this point we start filling partition 2. In essence,
we depend on the synthesis tools for the initial partitioning as we assign partitions to
the nodes in the order that the synthesis tool has generated them. We expect that the
synthesis tools will keep some hierarchy information of the design by writing cells of
the same component as neighbors in the created EDIF netlist files. The program can
be extended to incorporate also advanced clustering algorithms in order to place the
tightly integrated components together and therefore help the algorithm optimize on the
cut. We did not though implement this functionality as this would require the use of
clustering algorithms which is not a trivial problem.

calculate init gains

Having assigned all the cells in the partitions, we can then calculate the number of cutted
nets of this initial distribution of cells. The initial cut cost is calculated by counting the
number of simple edges with non–dummy nodes as head and tail plus the number of
dummy nodes that connect to nodes that are on more than one partitions (the analogy
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with a hyperedge that crosses partition boundaries). The partition of dummy node is
not important.

We then calculate for the initial state the gain on the cut for moving each node from
one partition to the other. Hyperedges increase complexity when we have to calculate
the gain because for a potential move of a node that connects to a hyperedge we have to
check whether all the connections of the dummy node are on the same partition. In our
implementation we improve the runtime by early exiting when we find that the dummy
node connects to one node on each partition (and therefore the net is on the cut). This
improves the runtime as we do not need to identify where the rest of the cells incident
to that net have been placed.

Afterwards, we insert the nodes in the bucket sorted array (Data Structure of Figure
3.3) of the respective partition by pushing every node on the head of the doubly linked
list. Dummy nodes are not inserted in the data structure and therefore do not influence
the algorithm nor do they increase the runtime. They are only there to help us calculate
the initial gain. While filling the Data Structure of Figure 3.3. We also keep track of
the MAX-GAIN-POINTER which points to the bucket of the highest gain, for both
partitions.

move algorithm

Having filled the data structures we call the move algorithm function. The first step that
the function performs is to select source and destination partitions. The node selection
priority is:

1. ratio/tolerance

2. gain

3. weight

We select according to the ratio and the tolerance parameters which are treated as hard
constraints. If the tolerance allows moves from either partition, we select the move with
the highest gain. We also take in account the weight of the node. We select the lightest
of the two nodes as that move will not drive the ratio to extremes as fast as moving the
heaviest node.

Having selected the partition and in consequence the bucket, the algorithm has to
decide on which node from that bucket to select. We can select the head, the tail or a
random node of that bucket depending on the policy. The head node can be selected
faster than and tail, as we have to traverse the whole linked list before we find the
last node. Random selection is implemented by doing an arbitrary number of traversals
through the linked list in order to select a random node. Because we do not keep track of
the bucket size (amount of nodes in the bucket), we require at least number of traversals
equal to the total amount of nodes in order to be able to select from any node in the
linked list. This means that we might exhaust the size of the linked list and therefore
have to rerun the whole linked list from the beginning. We solve this by increasing a
counter every time we traverse from one cell to the next. When we reach the end of the
list we set the maximum number of traversals as high as the counter and rerun. We have
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implemented the linked list behind the bucket as doubly linked list so that we are able
to pop any cell from the list in linear time.

Knowing the selection policy we make the move of the node we update the total cut.
We have implemented the locked cell list as an attribute of the node. We set this variable
accordingly depending to whether the node is locked from the user(prelocked), locked
because of it has moved or free.

We then have to update the gains of the nodes that are connected to the moved node.
We did not implement the Data Structure 3.2 by an adjacency matrix as the original
F–M algorithm proposes, mostly due to the fact that this is a very large sparse matrix
which for very big designs would consume a lot of memory. Instead we search the heads
and tails of the edges (or hyperedges) of the edges connecting to the moved node every
time we want to find an adjacent node.

We update the gain of the adjacent nodes by calculating it the same way did during
the initial gain calculation and storing it to the gain attribute of the node. As soon as
we have calculated the new gain of the adjacent node we locate the node in the linked
list by providing a direct pointer (not through traversing the linked list). We pop it from
the list and place it in the bucket with the new gain index. We always insert the node
in the head of the new bucket independently of the selection policy.

We move cells until one of the two partitions becomes empty. Then the algorithm
stop and the tool exits. The tool provides a report of the cells that are assigned on the
two partitions, the resulting graph file and the optimal cut cost. We use the full test
pass approach in order to find the optimal point of the pass of the algorithm. This has
the benefit that it gives us the optimal solution of the pass, whereas an early exit after
a limited amount of negative moves might not allow the pass to climb out of the local
minimum. This is mainly because the runtimes for the size of our netlist are relatively
small. In the case that the netlist becomes larger that the full pass runtime becomes
tool long we can early exit the tool interactively and perform another pass by passing a
user specified parameter as a stopping point.
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Figure 4.3: Partitioning Toolflow
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We have conducted a series of experiments for the tool we have developed. In this
chapter we present the results of these experiments. We examine the overall behavior
of the partitioner as well as the behavior during every pass of the algorithm. We try
different settings and observe the variations on the quality of the resulting partitioning
solution. By examining both the runtime behavior of the tool as well as the quality of
the solution we explain the behavior we are seeing on the tests we have conducted and
provide some insight on the optimizations that could further increase the quality or the
speed of the tool. Our tool compared favorably with existing commercial tool for two
way partitioning and outperformed it when the user provided to the tool information
about the design.

5.1 Custom Emulator

The design that we are going to experiment on is the custom emulator along with the
design under test. The total size of the design after synthesis is 205325 cells. Although
the tool can have different weights for every cell, for our experiments we consider these
cells of equal weight thus the weight of the graph is |design| = 205235. The number
of hyperedges of the design and thus the number of dummy nodes inserted by the pre-
processor are 72399, whereas the total amount of nets are 210144. This means that
approximately 34.45% of the design nets are hyperedges and therefore an approach to
make a partitioner with simple graph representation would result to a high error in cal-
culations. A similar amount of error is introduced in the cut calculations during an F–M
pass of the algorithm, making a simple graph implementation of the F–M algorithm a
bad candidate for performing the partitioning.

5.2 Solution Quality

5.2.1 Overall Behavior

We made a number of experiments in order to understand the behavior of F–M from
which we will present the major observations. Through the experiments that we have
conducted we were able to see the following :

• We can easily see the greedy behavior of F–M algorithm in Figure 5.1 for an initial
50%-50% distribution of cells with 10% tolerance and LIFO policy. The optimal is
reached in the first 25% of the total number of moves of one pass.

• In pass 2 (Figure 5.2) we can see that the algorithm reaches the optimal point a
lot faster then the first pass (Figure 5.2). This is expected as the algorithm will
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Figure 5.1: LIFO policy, 50-50% distribution, 10% tolerance, Full pass 1

“tighten” partitioning the solution on every pass. We might see some variations of
this behavior but the occurrences of these exceptions are not expected to be many.

• For the same random initial partitioning the algorithm has a big improvement on
the first pass. In Figure 5.4 we see a big improvement on the first pass from a cut
of more than 25000 nets down to 10000 and smaller improvements for the following
passes until the algorithm “freezes”. For the behavior of the first pass we deduce
that the starting point of the algorithm has a lot of slack. This means that the
starting point can have a high amount of positive moves, but also high gain moves,
for cells that have a high connectivity (fan–in, fan–out), thus greatly improving
the solution in the early stages.

• For the passes 2 and higher (Figure 5.3) the algorithm reaches the optimal even
earlier. Then it makes a series of bad moves until in the end of the pass reaches
solution similar to the starting point. This is because the algorithm has tightened
the neighborhood of good moves and only the first few lead to a better solution.
Having reached an optimal the algorithm then performs only negative gain moves
for the rest of the pass.

• The fact that the algorithm will return in a solution similar to the starting point
comes is due to that, we have essentially swapped all the cells from partition 1 to
partition 2. At this point it is beneficial to point out that the algorithm might not
find the optimal in the beginning of the pass but instead near the end. This can
happen when the algorithm has swapped almost all the cells and has reached the
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Figure 5.2: LIFO policy, 50-50% distribution, 10% tolerance, Full pass 2

Figure 5.3: LIFO policy, 50-50% distribution, 10% tolerance, Full passes 2-9
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Figure 5.4: Cut after every pass of the algorithm (LIFO policy, 50-50% initial distribu-
tion, 10% tolerance)

same neighborhood of the starting point. Although this happens less frequently it
can still be seen on Figure 5.5. There, the optimal of the pass is reached at the
end after about 200.000 moves.

• The progress on the cut improvement after every pass can be seen in Figure 5.4.
We can also observe that the algorithm makes a series of passes (4, 5, 6) of small
improvement (< 100nets) when it reaches a state that can improve by more than
2000nets.

• As can be seen from Table 5.1 the algorithm does not necessarily move towards
the borders of the ratio (passes 1-5). We see that it moves towards the border
and stays there after a few passes (passes 5-10) when it decides to move larger
components. The algorithm can perform likewise only if the slack for a pass is
loose enough or the initial partitioning has a cut inside a large, tightly integrated
component so the algorithm will try to move the cut out of this component.

• In Figure 5.3 we observe something interesting for pass 6. The algorithm was able
to make a series of bad moves in the range of 3000–6000 and climb out of the local
optimal solution and finding a better solution in the range of 21000 moves. This
is more obvious in Figure 5.6.

5.2.2 Policy

In this section we provide an evaluation of the three different replacement–insertion
policies (LIFO, FIFO, RANDOM ) that the user has to select from.

In Figures 5.7, 5.8 and 5.9 we compare the policies during passes 1,2,3 respectively.
Although we see that the organization of the sorted buckets has some effect in the whole
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Initial Final
Pass Cut(nets) Cut (nets) Fill 1 (nodes) Fill 2 (nodes) Ratio 1 Ratio 2
1 28642 9898 103033 102292 0.5 0.5
2 9898 8601 102176 103149 0.5 0.5
3 8601 8385 101779 103546 0.5 0.5
4 8385 8284 102049 103276 0.5 0.5
5 8284 8280 103276 102049 0.5 0.5
6 8280 5880 123110 82215 0.6 0.4
7 5880 4806 123008 82317 0.6 0.4
8 4806 4779 123098 82227 0.6 0.4
9 4779 4742 123193 82132 0.6 0.4
10 4742 4741 123192 82133 0.6 0.4

Table 5.1: Partitioning results for: Ratio: 50%-50%, Tolerance: 10%, Policy: LIFO

Figure 5.5: LIFO policy, 50-50% distribution, 10% tolerance, Full passes 3

pass of the algorithm, the effect on reaching the optimal point which happens early is
rather small. This can be seen in Figures 5.7(b).

Although the literature suggests that LIFO is favorable [3], because of the locality
that it imposes, as naturally clustered cells tend to move sequentially, this is not the case
in our experiments. This comparison makes clear that, while the bucket sorted array is
a core element of the algorithm, the effect that different policies and organizations have
in the solution quality are slight in comparison to the main idea of the algorithm, which
is the greedy behavior.

We can speculate that the difference between these policies is more on the level of
randomness that these policies impose. While LIFO and FIFO policies have some pattern
on the insertion of cells (thus limiting the randomness of the selection from the same
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Figure 5.6: Climbing out of a local optimal. LIFO policy, 50-50% distribution, 10%
tolerance, partial pass 6

bucket) RANDOM imposes a more free selection.

5.2.3 Tolerance

In this section we explore the effect that the tolerance and ratio parameters have on the
partitioning solution.

The algorithm selects to move cells from one cluster to the other preserving the area
and tolerance constraints. A small value will not allow the algorithm to move consecu-
tively enough cells from one partition to the other thus moving a whole component of
a design. We have conducted experiments with same initial cut and target ratios but
different tolerances. The results for every of these experiments can be seen in Tables 5.2,
5.3 and 5.4.

For every case of tolerance we have:

• 0% Tolerace: The algorithm settles in a local optimal position relatively fast (7
passes).

• 10% Tolerace: The algorithm requires more passes (10) to reach an optimal point
much lower than the 0% solution.

• 20% Tolerace: The algorithm reaches an optimal after 8 passes and reaches a better
solution than the cut provided with 10% tolerance.

We can see that the difference on the final cut between 0% and 10% tolerance is
8408−4742

8408 = 42%. The improvement between 20% and 10% is 4436−4741
4436 = 6, 4% while

the difference of the area distribution between the 10% and 20% tolerance is only 1%.
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(a) Full 1st pass

(b) Optimal point

Figure 5.7: Comparison of FIFO, LIFO, random insertion policy. 50-50% distribution,
10% tolerance, optimal point, first pass



62 CHAPTER 5. EXPERIMENTAL RESULTS

(a) Full 2nd pass

(b) Optimal point

Figure 5.8: Comparison of FIFO, LIFO, random insertion policy 2nd pass. 50-50%
distribution, 10% tolerance.
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(a) Full third pass

(b) Optimal point

Figure 5.9: Comparison of FIFO, LIFO, random insertion policy 3rd pass. 50-50%
distribution, 10% tolerance.
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Initial Final
Pass Cut (start) Cut (end) Ratio 1 Ratio 2
1 28642 10876 0.5 0.5
2 10876 9047 0.5 0.5
3 9047 8745 0.5 0.5
4 8745 8555 0.5 0.5
5 8555 8455 0.5 0.5
6 8455 8408 0.5 0.5
7 8408 8338 0.5 0.5

Table 5.2: Algorithm Progress (Ratio: 50%-50%, Tolerance: 0%, Policy: LIFO)

Initial Final
Pass Cut (start) Cut (end) Ratio 1 Ratio 2
1 28642 9898 0.5 0.5
2 9898 8601 0.5 0.5
3 8601 8385 0.5 0.5
4 8385 8284 0.5 0.5
5 8284 8280 0.5 0.5
6 8280 5880 0.6 0.4
7 5880 4806 0.6 0.4
8 4806 4779 0.6 0.4
9 4779 4742 0.6 0.4
10 4742 4741 0.6 0.4

Table 5.3: Algorithm Progress (Ratio: 50%-50%, Tolerance: 10%, Policy: LIFO)

Initial Final
Pass Cut (start) Cut (end) Ratio 1 Ratio 2
1 28642 9898 0.5 0.5
2 9898 8601 0.5 0.5
3 8601 8535 0.5 0.5
4 8535 8279 0.5 0.5
5 8279 6663 0.51 0.49
6 6663 5032 0.6 0.4
7 5032 4436 0.61 0.39
8 4436 4424 0.61 0.39

Table 5.4: Algorithm Progress (Ratio: 50%-50%, Tolerance: 20%, Policy: LIFO)

An interesting point is that pass 5 of the 20% tolerance provides a solution of 6663 cuts
with distribution of 51-49% which is significantly lower than the result that 0% reaches.

We can therefore deduce that it is advisable that we set a relatively large tolerance
value even if we want to partition a design with strict area constraints in order to allow
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the algorithm to move more freely around the search space. The end result can still be
within the limits that we want as the tolerance value does not suggest that the algorithm
will move to the boundaries of the allowed area. We can safely assume that this happens
because the 0% tolerance does not allow moving of large components to one partition
and then balancing the ratio.

Initial Final
Pass Cut (start) Cut (end) Ratio 1 Ratio 2
1 14768 5044 0.41 0.59
2 5044 4019 0.41 0.59
3 4019 3721 0.41 0.59
4 3721 3713 0.41 0.59
5 3713 3709 0.41 0.59

Table 5.5: Algorithm Progress (Ratio: 40%-60%, Tolerance: 10%, Policy: LIFO)

Initial Final
Pass Cut (start) Cut (end) Ratio 1 Ratio 2
1 34669 11317 0.61 0.39
2 11317 10157 0.64 0.36
3 10157 9359 0.63 0.37
4 9359 8692 0.64 0.36
5 8692 8587 0.64 0.36
6 8587 8455 0.65 0.35
7 8455 8403 0.64 0.36
8 8403 8375 0.64 0.36

Table 5.6: Algorithm Progress (Ratio: 60%-40%, Tolerance: 10%, Policy: LIFO)

We have also done some experiments with a 40 − 60% and 60 − 40% distribution
with 10% tolerance the results of which can be seen on Tables 5.5, 5.6. We note that
the starting points are different for these two policies as we have explained during the
implementation the initial cell assignment is done by the parser and the order it has
has placed the cells in the netlist. If no prior cell preassignment has been done then it
fills the partitions until they reach the target ratios. Therefore the initial partitioning is
40-60% and 60-40% respectively for the two experiments. Nevertheless the result that
we take for 41-59% distribution is 3717. This result is even better then the one achieved
by the 50-50% target distribution and 20% tolerance by 4436 − 3717/4436 = 16%.We
provide the progress of all the experiments in the Figure 5.10

We can conclude that tolerance is an important parameter of our partitioning al-
gorithm and experiments have showed us that large values of tolerance improve on the
partitioning quality.
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(a) 50%-50%, 0% tolerance (b) 50%-50%, 10% tolerance

(c) 50%-50%, 20% tolerance (d) 40%-60%, 10% tolerance

(e) 60%-40%, 10% tolerance

Figure 5.10: Progress of passes with different tolerances. (LIFO policy)

5.2.4 Clustering

In this part we will see the improvement that clustering can give on the algorithm.
As there is no advanced clustering algorithm implemented in the tool we have applied
different initial partitions based on the information that we had for the design under
test.

In Table 5.7 and Figure 5.11 we can see the 17 main components and their respective
sizes for the design under test.

In the following experiments we have initially preallocated these components and have
run the tool with that initial partitioning. In these experiments we can see the difference
that an automated tool that implements an heuristic algorithm has in comparison to



5.2. SOLUTION QUALITY 67

(a) Component sizes.

(b) Size in cells

Figure 5.11: Relative size of components.

manual partitioning of components. All the experiments have been conducted with
target parameters of:

• 50%–50% distribution

• 10% tolerance
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Component Weight
A 27365
B 21520
C 420
D 11026
E 6172
F 39510
G 5593
H 2536
I 863
J 2677
K 1648
L 2492

M 65959
N 2222
O 11831
P 545
Q 1946

Table 5.7: Component weights

• LIFO policy

In Table 5.8 we see the following:

• initial cut and end cut after all passes

• percentage of partition 1 and amount of cells that this corresponds

• the components that partition 1 has. The rest of the components have been placed
on partition 2.

The most important observation for clustering is the initial cut. While for the “ran-
dom” initial partition that the EDIF netlist and the tool provide, the component clus-
tering has 5–6 times less cutted nets.

It is interesting to see from this table that in all cases except the first the algorithm
has improved the cut by more than 50%. It is interesting to note that for cases 1–6 the
algorithm was forced to move nodes from partition 1 to partition 2 as it was out of the
target area + tolerance boundaries. We must remember that the algorithm does not
consider moves from a partition if this condition is broken. It will only move cells from
one partition to another until it has fullfilled this hard constraint and then it can select
from both partitions.

This can be used to bias the partition distribution as we can provide a very un-
balanced initial partitioning solution and set the tolerance and target ratio so that the
algorithm will “pull” the cells with the least cost to the empty partition and therefore
create good partition from there on.
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Cut Partition 1(%) Weight Components
Clustering 1 Start 729 13 27365 A

Finish 729 15 31037
Clustering 2 Start 2651 24 50239 A,B

Finish 1671 26 53280
Clustering 3 Start 3183 25 50659 A,B,C

Finish 1642 26 53443
Clustering 4 Start 4003 30 61685 A,B,C,D

Finish 1642 32 64732
Clustering 5 Start 4197 33 67857 A,B,C,D,E

Finish 2361 35 70941
Clustering 6 Start 4497 33 68623 A,B,C,D,E,G

Finish 2588 35 71892
Clustering 7 Start 5058 53 110646 A,B,C,D,E,F,G,H

Finish 2478 53 109102
Clustering 8 Start 5058 54 111509 A,B,C,D,E,F,G,H,I

Finish 2478 54 110490

Table 5.8: Clustering solutions

5.3 Runtime

As the algorithm calculates the gain of all the cells adjacent to the moved cell a very
large net connecting many cells would mean that for every move of a node on that net we
would have to calculate all the other cell’s gain. For global signal as the clock tree and
the global reset signal the impact of the runtimes is much bigger. We have implemented
early exiting for the recalculation of the gain of the adjacent cells, so that if cells have
been found in both partitions the check stops and the cut increases by 1. Still, in order to
improve the runtime of our F–M implementation we have removed the clock net as well
as the global reset signal. The runtimes of the netlist including clock/reset in comparison
to that of the removed clock/reset net have been consistently ×10 bigger.

In Figure 5.12 we can see the difference in runtime for one full pass of the algorithm.
It is therefore advisable to remove big nets from a netlist.
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Figure 5.12: Runtime comparison (LIFO policy)



Conclusion 6
The main objective for this thesis was to investigate, implement and test solutions on
the partitioning problem of prototyping designs on a custom hardware emulator. This
chapter provides a summary of this inquiry, implementation and . We provide an eval-
uation of the approach that we have selected as well as recommendations on further
improvement and future work.

6.1 Summary

In Chapter 2 we presented an overview of the trends of verification technology for system
design in order to provide some general information of the platform that we will be using.
We briefly saw :

• Instruction Set Simulation

• Cycle Accurate Simulation

• Emulation

• Silicon Prototyping

Given that our working platform was an emulator, we saw the advantages and disad-
vantages that this platform has compared to its “rivals” for design validation. At that
point we observed that an important parameter of the performance of an emulator is
the capacity of the reconfigurable devices that the emulator and the design under test
is mapped. As modern designs have a high complexity to be mapped on one FPGA,
partitioning techniques are required.

Having explained the reasons that partitioning is required, we examined the under-
lying FPGA platform that the emulator is deployed. We presented the architectural,
interconnection and topology specifications of the underlying FPGAs that are of interest
to us.

As the partitioning quality of the design highly affects the performance of the em-
ulator speed, selection of the partitioning algorithm is crucial. We stated the reasons
that netlist partitioning is favored compared to HDL partitioning and we gave the nec-
essary graph background for netlist partitioning algorithms. The available algorithms
for netlist partitioning were then presented. After having performed an evaluation of
the algorithms according to the data provided by the available literature, the Fiduccia–
Mattheyses algorithm was selected as the core algorithm for partitioning our design.

In Chapter 3 we have explained what are our specific issues that arise from partition-
ing our design in multiple FPGAs. We then gave a detailed description of the F–M core
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algorithm and an extensive analysis of the behavior of F–M. We described our emulator
specific constraints:

• Multiple FPGA board – Asymmetric topology

• Heterogeneous FPGAs

• Initial conditions for partitioning

• Prelocking cells in FPGAs

• Combinatorial paths – timing constraints

and formulated or proposed solutions that we wrapped around the core F–M algo-
rithm.

In Chapter 4 we presented our implementation approach of the F–M algorithm. We
have explained the choices that we have made during the implementation of the software
tools that we have developed. We then described the tool functionality and the necessary
toolflow modifications that we have made in order to incorporate the partitioning toolset.
In the end of the chapter we also gave an explanation of the internals of the partitioning
tool.

In Chapter 5 we presented the results that we got from our experiments on our
custom emulator. We explain partitioning tool behavior and we observe the strengths
and weaknesses of the F–M algorithm. We evaluated the quality of the results of the
partitioning tool with different parameters. We tested the tool with different starting
partitioning, selection policies and initial clustering and we presented the results of these
tests. We also provided a runtime evaluation of the tool and ways to improve on the
speed performance as well as the partitioning quality.

6.2 Open issues

Although the tools that we have developed are quite accurate on the cut cost calculation
there seem to be some bugs in the prepartitioner and the graph converter which insert
some small amount of error. In specific :

• The EDIF parser creates some edges with identical names in different places of the
netlist which the graph converter sees as multiple drivers of the same hyperedge.

• It also seems to strip a small amount of cells from the information that they have
(library family, weight, etc. . . ) and therefore these cells can not be preassigned to
a partition. They will though be assigned by the tool but this is still unwanted
behavior as the user might want to lock the specific cells.

• Also the prepartitioning is done by pattern matching of the names of the com-
ponents and some cell names may share common patterns so pattern matching is
relatively unreliable.
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6.3 Future work

Netlist partitioning has been addressed by F–M with relatively good results. It is evident
though that in order to obtain an optimal partitioning the algorithm needs to have infor-
mation of the design components. This can be done by either providing a relatively good
coarse grained initial partitioning or by implementing multilevel Fiduccia–Mattheyses
extensions as tools like hMetis[1].

Other approaches on partitioning for custom FPGA boards would be the implemen-
tation of multi–resource aware solutions as we have proposed in Chapter 3.3.2.

The problem of providing timing clean partitioning solutions still needs to be resolved
by more coherent solutions. We have proposed a possible solution for this but the
clustering of “clouds of gates” between sequential elements is not always feasible as is
not in our case. The quality of results for our proposal on designs where we can apply
this methodology, are still to be tested.
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Dot language A
An example of the .dot language is shown in A.1. The “.dot” file is consisted by a header
that specifies the type of graph. In Listing A.1 the graph is a non–strict digraph specified
in line 1. In lines 2–6 we specify the external attributes and the default values that these
get for all the nodes, we can do the same for edges, graphs and subgraphs. For a graph
object that has different values than the defaults, the node has to be declared explicitly
and has to have the different attributes attached to it.

In the example of Listing A.1, nodes NODE 0, NODE 1, NODE 8 have weights of 2, 4, 6
respectively so they have to be declared explicitly, otherwise weight of 1 is assumed. To
preserve the information provided from the EDIF netlist we also annotate the type of
the cell as well as the library where that type is defined.

From the declaration of nodes we see that NODE 5 has been preassigned in partition
1 but is free to be moved by the partitioner whereas NODE 4 has been locked in partition
1 and will be excluded from the partitioning procedure.

For the edges of the graph we have only the two special attributes label and edge.
The key attribute signifies the name of the edge used internally when we perform a query
for an edge name.

Listing A.1: Dot example

1 digraph top {
2 node [ c e l l=DEFAULT,
3 l i b=DEFAULT,
4 l o ck=NONE,
5 p a r t i t i o n=NONE,
6 weight=1
7 ] ;
8

9 NODE 0 [ weight =2, c e l l=LUT ] ;
10 NODE 1 [ weight =4, c e l l=FF ] ;
11 NODE 2 [ c e l l=LUT ] ;
12 NODE 3 [ c e l l=LUT ] ;
13 NODE 4 [ p a r t i t i o n =1, l ock=LOCKED, c e l l=FF ] ;
14 NODE 5 [ p a r t i t i o n =1, c e l l=MUX] ;
15 NODE 6 [ c e l l=FF ] ;
16 NODE 7 [ c e l l=LUT ] ;
17 NODE 8 [ weight =6, c e l l=FF ] ;
18

19

20 NODE 0 −> NODE 2 [ l a b e l=EDGE 0, key=EDGE 0 ] ;
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21 NODE 0 −> NODE 4 [ l a b e l=EDGE 0, key=EDGE 0 ] ;
22 NODE 0 −> NODE 5 [ l a b e l=EDGE 1, key=EDGE 1 ] ;
23 NODE 0 −> NODE 7 [ l a b e l=EDGE 2, key=EDGE 2 ] ;
24

25 NODE 1 −> NODE 8 [ l a b e l=EDGE 3, key=EDGE 3 ] ;
26

27 NODE 2 −> NODE 5 [ l a b e l=EDGE 4, key=EDGE 4 ] ;
28

29 NODE 3 −> NODE 4 [ l a b e l=EDGE 5, key=EDGE 5 ] ;
30 NODE 3 −> NODE 5 [ l a b e l=EDGE 5, key=EDGE 5 ] ;
31 NODE 3 −> NODE 6 [ l a b e l=EDGE 6, key=EDGE 6 ] ;
32 NODE 3 −> NODE 7 [ l a b e l=EDGE 7, key=EDGE 7 ] ;
33 NODE 3 −> NODE 8 [ l a b e l=EDGE 8, key=EDGE 8 ] ;
34

35 NODE 4 −> NODE 5 [ l a b e l=EDGE 4, key=EDGE 4 ] ;
36 NODE 4 −> NODE 7 [ l a b e l=EDGE 9, key=EDGE 9 ] ;
37

38 NODE 5 −> NODE 7 [ l a b e l=EDGE 10 , key=EDGE 10 ] ;
39

40 NODE 6 −> NODE 8 [ l a b e l=EDGE 11 , key=EDGE 11 ] ;
41 }

A visual representation of the graph described in Listing A.1 can be seen in Figure
A.1. To produce the graph figures described by the “dot” language we have used the dot
and dotty tools provided with graphviz package from where we also acquired the library.

Figure A.1: Graph
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