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Abstract
Adverse pressure gradients, separation and other forms of non-equilibrium flows are often encountered
in flows of interest. In these type of flows, the Boussinesq hypothesis does not hold and often leads
to erroneous predictions by eddy viscosity models. In an attempt to capture these non-equilibrium
effects, lag parameter models introduce a lag parameter, which is derived from an elliptic blending
Reynolds stress model. A novel deterministic machine learning algorithm, referred to as Sparse Re-
gression of Turbulent Stress Anisotropy (SpaRTA), has been used with the objective of developing a
data-driven turbulence model based on the elliptic blending k− ω lag parameter model and evaluating
its performance in terms of generalizability, interpretability and its ability to infer the quantities of
interest. Corrective terms are introduced and computed directly from high-fidelity data to account
for the model-form error by using the k-corrective-frozen-RANS approach. SpaRTA is then used to
infer algebraic stress models for these corrective terms using a Galilean invariant integrity basis. It
was shown that the k-corrective-frozen-RANS framework has the ability of representing the mean flow
features by propagating the corrective terms through a CFD model in OpenFOAM and comparing its
result to high-fidelity data. Cross-validation is used to test the performance of the models on unseen
data using three flow cases that involve separation, namely periodic hills (Re = 10595), converging-
diverging channel (Re = 12600) and curved backward-facing step (Re = 13700). In order to assess
the impact of the additional transport equation of the lag parameter, the same data-driven approach
was applied to the conventional two-equation k − ω model. Utilizing an additional transport equa-
tion for the lag parameter in this data-driven approach did not result in any significant improvements
in terms of predictive capability or generalizability, as both data-driven approaches showed a similar
performance, although the data-driven k − ω models were more numerically stable. It was found that
corrective terms formulated using a reduced integrity basis yields data-driven models that have a similar
predictive capability compared to models that used the full integrity basis to construct the corrective
terms. A significant portion of the resulting data-driven models showed an improvement in predictive
capability over the standard (non-data-driven) k−ω model. Furthermore, most of the models were able
to generalize their predictions to two-dimensional flow cases that had different complexity and showed
a significant improvement over the baseline k − ω model.
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1
Introduction

1.1. Background
In classical physics, turbulence remains an unsolved problem to this day. Many efforts have been
made by outstanding scientists in the field of turbulence research, but understanding the nature and
the precise prediction of turbulence still remains a challenge [11]. Analytical solutions to the Navier-
Stokes equations, which govern the behaviour of turbulent flows, do not exist [12]. Exact solutions only
exist for very simplified conditions. Therefore, numerical simulations of turbulent flows are used to
obtain a complete description of the flow. Despite the enormous growth in computing power over the
years, the Direct Numerical Simulation (DNS) of turbulent flows is limited to low-to-moderate Reynolds
number flows, since the computational costs increases rapidly with the Reynolds number. Nevertheless,
DNS is a useful tool for research [12] that leads to satisfactory results [13]. In industrial applications,
simplified engineering approximations such as Reynolds-Averaged Navier-Stokes (RANS) and Large
Eddy Simulation (LES) are popular and widespread [14]. Although LES is a powerful method, its
application is still limited by the required grid resolution [15] or timestep for wall-modelled LES. In
the next few decades computing power will even further increase, which could pave the way for LES.
However, it is believed that this increase will be used more for advanced RANS models rather than LES
and that RANS will still have an important role in the foreseeable future [15].

The most common RANS models are based on the Boussinesq hypothesis, where it is assumed that
the stresses are proportional to the rate-of-strain. In general, flow is said to be in equilibrium when
the time scale of the turbulence is much smaller than the time scale of the mean flow [16]. In such
circumstances, the turbulence is able to react quickly to changes in the mean flow, and therefore, the
assumption of Boussinesq is reasonable. However, in non-equilibrium flows, there is a delay in the
response of the turbulence with respect to changes in the mean flow. Standard eddy viscosity models
are unable to account for this lag, and consequently, the predictions of these models are often erroneous.
These flows entail a so-called ’stress-strain misalignment’. Instead of assuming a linear relation between
the stresses and strains, Reynolds Stress Models (RSM) solve modelled transport equations for the
Reynolds stresses, thereby improving the ability to capture such misalignment [17]. However, these
improvements come with a cost, as additional transport equations have to be solved. As a result, these
models are more computationally expensive, can suffer from numerical instability and converge slowly
[18]. Consequently, RSMs have not seen a widespread application in the industry.

In an attempt to capture the effects of the so-called stress-strain misalignment, lag parameter models
introduce a lag parameter, which is used to scale the eddy viscosity. Revell et al. [17] proposed a
transport equation for a lag parameter Cas, in which the expression for the total derivative of aij is
obtained from a Reynolds stress transport equation. As a result, the ability of a Reynolds stress model
to address non-equilibrium is incorporated at the expense of a relatively small increase in computational
cost [17]. Lardeau & Billard [19] proposed a model, referred to as the lag EB k − ε model, based on
the elliptic blending Reynolds-stress model of Manceau & Hanjalic [20] to overcome the dependency on
a high Reynolds number formulation, such that the model is applicable in close proximity to the wall.
Using a similar approach to [19], Biswas et al. [21] developed a lag EB k−ω model using the underlying
two equation k − ω model.

1
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With the availability of high-fidelity data sets, developments in machine learning techniques and ever
increasing computational power, a data-driven approach to turbulence modeling has been introduced. In
an attempt to improve existing RANS models, high-fidelity data from DNS and data from experiments
has been used to calibrate closures [14]. As this field is emerging, there are many possibilities to further
develop the data-driven approach and hence it is truly relevant in the field of turbulence modeling.
Duraisamy et al. [22–24] use high-fidelity data to infer a spatially varying multiplier of the production
term in the Spalart-Allmaras model. A different approach by Emory et al. [25, 26] introduces a
perturbation to the eigenvalues of the anisotropy tensor to represent a local injection of uncertainty.
Building upon this approach, Edeling et al. [16, 27] introduce two additional transport equation such
that the perturbations are made representative of local flow features. Ling et al. [28] find that it would
be desirable, for the accuracy of the model and physical realizability, that machine learning algorithms
respect invariance properties in case the corresponding physical system obeys one. Domain knowledge
is used to embed these properties into the machine learning model. Wang et al. [29] directly predict
the Reynolds stress discrepancy from high-fidelity data. Weatheritt & Sandberg [30, 31] use symbolic
regression and Gene Expression Programming to model the anisotropy of the Reynolds stress tensor.
Schmelzer et al. [5] introduce a deterministic machine learning method referred to as SpaRTA, which
stands for Sparse Regression of Turbulent Stress Anisotropy. The model-form error is captured by using
the k-corrective-frozen-RANS approach, in which two corrective terms are computed from high-fidelity
data, namely a corrective term to the stress-strain relationship b∆

ij and a correction R to the turbulent
transport equations. SpaRTA is used to construct separate models for these corrections and involves
building a library of candidate functions, selection of models using sparse regression and inference to
obtain a model with the correct units. Cross-validation is used to assess the performance of these models
for unseen flow cases, which allows for a selection of models with the best predictive capability.

In this work, the SpaRTA approach by Schmelzer et al. [5] and the k-corrective-frozen-RANS
approach is extended to the elliptic blending k − ω lag parameter model by Biswas et al. [21]. The
novelty of the work is twofold. It researches whether the additional transport equation for the lag
parameter allows the data-driven model to incorporate more physics, and thereby, improve the predictive
capability and the ability to generalize. Secondly, it investigates whether a full integrity basis leads to
improvements compared to a reduced integrity basis, in terms of predictive capability, generalizability
and ability to infer the quantities of interest.

1.2. Research Objective and Questions
The main objective of this research is defined as:

“To develop a data-driven turbulence model based on the k-corrective-frozen-RANS ap-
proach and machine learning, utilizing the elliptic blending lag parameter k − ω model
from [21] and to evaluate the model in terms of generalizability, interpretability and its
ability to infer the quantities of interest.”

Sub-Objectives (SOs) that follow from the main research objective are defined as

SO1 Develop and verify the data-driven elliptic blending lag parameter k − ω model in OpenFOAM.

SO2 Select suitable flow cases to test the model.

SO3 Collect high-fidelity data.

SO4 Setup k-corrective-frozen-RANS in OpenFOAM.

SO5 Determine feature importance of data set.

SO6 Assemble training and test data to assess generalizability, interpretability and ability to infer
quantities of interest.

The two main Research Questions (RQs) and their subquestions are listed below. Collectively, the
subquestions answer the main research questions.

RQ1 What is the ability of the data-driven elliptic blending lag parameter model in terms
of generalizing its predictions to other flow cases?
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RQ1.1 Is the model able to generalize its predictions to two-dimensional flow cases that
have different complexity?
Flow cases that differ in complexity have different flow phenomena and characteristics. There-
fore, the aim is to find out how well the model generalizes to these flow cases.

RQ1.2 Which set of features has the best performance in terms of generalizability?
The third subquestion concerns the set of features that is used to find patterns by the machine
learning algorithm. It is important to find out what features have a significant impact on
the predictions and on the generalizability of the algorithm.

RQ2 What are the strengths and weaknesses of applying the k-corrective-frozen-RANS
approach to the lag parameter model?

RQ2.1 What is the behaviour of the model in terms of convergence and stability?
The assessment of convergence and stability is of high importance especially for industrial
applications, but also for applications in the field of research.

RQ2.2 Can the model physically be interpreted in a tractable manner?
The novelty of the model is encapsulated in the additive term, which is applied in the
additional transport equation of the lag parameter, thereby providing the model the ability to
incorporate more physics than the previous models that do not have an additional transport
equation.

RQ2.3 How does the model compare to other high-fidelity simulations with regard to
computational cost?
In order to assess the applicability of the model, it is important to know where this model
ranks among other simulations such as RANS, LES and DNS in terms of computational cost.

1.3. Thesis Outline
This report is structured in three parts as follows. The first part consists of Chapters 2 and 3, in which
the necessary background information is provided to develop the motivation more comprehensively.
First, Chapter 2 gives an overview of the field of turbulence modeling, introduces lag parameter models
and provides their historical perspective together with the state-of-the-art models. Chapter 3 provides
a brief introduction to machine learning and background information to understand commonly used
machine learning algorithms in RANS turbulence modeling. Building upon this knowledge, various
state-of-the-art data-driven approaches to RANS turbulence modeling are discussed. The second part
consists of two chapters that provide a description of the methodology and test cases that are used to
conduct this research and required to provide an answer to the research questions. Chapter 4 discusses
the model-form error of RANS models, which is followed by an introduction of the k-corrective-frozen-
RANS approach. In addition, an overview of the two frameworks is provided and an introduction
to Sparse Regression of Turbulent Stress Anisotropy is provided. Test cases used for the purpose
of verification, comparison and assessment of the different frameworks are shown and discussed in
Chapter 5. The final part consists of Chapters 6 and 7 and provides answers to the research questions.
Chapter 6 verifies the OpenFOAM implementation of the elliptic blending lag parameter model. Then,
the identification of the model-form error is validated. Results of the SpaRTA method are shown and
discussed and the performance of the two different frameworks is assessed. Finally, conclusions and
recommendations for future work are given in Chapter 7.





2
Turbulence Modeling

The purpose of this chapter is to provide the reader with an overview of the theory that is related to
the field of turbulence modelling. It aims to give insight into the different numerical approaches, along
with their strengths, drawbacks and assumptions, thereby focusing on RANS turbulence modeling, in
order to understand the motivation behind this study. Furthermore, it aims to introduce the concept
and reasoning behind the use of lag parameter models to the reader.

It starts by introducing the governing equations that are relevant for this study in Section 2.1. Then,
Section 2.2 gives a description of the different numerical approaches in computational fluid dynamics
to solve the Navier-Stokes equations. In addition, it describes some of the most widely used RANS
turbulence closure models and their strengths and limitations. Section 2.3 describes the relevance of
the anisotropy tensor, its representation, the requirement of Galilean invariance and the non-linear
constitutive stress-strain relation, which is used later to construct the functional forms of the corrective
terms. Finally, Section 2.4 provides a historic perspective on lag parameter models, as well as recent
advances and justifies the choice of the turbulence model considered in this research.

2.1. Governing Equations
The motion of constant-property Newtonian fluids is governed by the Navier-Stokes equations. The
Navier-Stokes equations are based on the continuum hypothesis in order to obtain continuous fields.
The Navier-Stokes equations are derived from conservation of momentum, which is based on Newton’s
second law and relates the acceleration of fluid particles to the surface and body forces. The Navier-
Stokes equations for incompressible flow are given by

∂uuu

∂t
+ (uuu · ∇)uuu = −1

ρ
∇p+ ν∇2uuu (2.1)

∇ · uuu = 0 (2.2)

where uuu are the velocity components, ρ is the density, p is the pressure and ν is the kinematic viscosity.
Analytical solutions to the Navier-Stokes equations do not exist [12]. Exact solutions only exist for very
simplified conditions. Therefore, numerical simulations of turbulent flows are used to obtain a complete
description of the flow.

2.2. Numerical Modeling of Turbulent Flows
Turbulent flows are three-dimensional, unsteady, random and have a wide range of length and time
scales. These properties make it difficult to develop an approach or model that is tractable [10]. The
nonlinear convective term and the pressure gradient term give rise to difficulties. Nevertheless, the
Navier-Stokes equations can be solved numerically in various ways, of which three widespread and
common approaches will be discussed in this section. Furthermore, the most widely used RANS-based
turbulence models are discussed.
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2.2.1. Direct Numerical Simulation and Large-Eddy Simulation
In DNS, (2.1) and (2.2) are solved directly, resolving all scales of motion, meaning that no (modelling)
assumptions are needed. If applicable, DNS is the most accurate among the various approaches. How-
ever, DNS can become very expensive in terms of computational cost, as a vast range of scales has to be
resolved. The total computational cost of a DNS scales as Nt ∼ Re3. Despite the enormous growth in
computing power over the years, DNS of turbulent flows is limited to low-to-moderate Reynolds number
flows, since the computational costs increases rapidly with the Reynolds number. Nevertheless, DNS is
a useful tool for research [12] that leads to satisfactory results [13].

The vast range of scales that are encountered in a turbulent flow can be separated by a filter into
large and small turbulence scales. LES is based on this principle, where the large scales are resolved and
the influence of the smaller subgrid-scales on the larger scales is modelled. These subgrid-scales have a
universal character and are modelled by subgrid-scale models. In terms of computational expense, LES
is in between DNS and RANS.

Although LES is a powerful method, its application is still limited by the required grid resolution
[15] or timestep for wall-modeled LES. In the next few decades the computing power will even further
increase, which could pave the way for LES. However, it is believed that RANS will still have an
important role in the foreseeable future [15].

2.2.2. Reynolds-Averaged Navier-Stokes
A statistical approach to the numerical solution of the Navier-Stokes equations is employed by the
RANS procedure. In RANS, the velocity is decomposed into its ensemble mean and a fluctuation as

uuu = uuu+ u′u′u′ . (2.3)

This decomposition was first proposed by Osborne Reynolds, and thus, is referred to as the Reynolds
decomposition. The RANS equations are obtained by substituting the decomposition into the incom-
pressible Navier-Stokes equations and applying the averaging operator. In tensor notation, the RANS
equations are given by

∂ui

∂xi
= 0 (2.4)

D̄ui

D̄t
= ν

∂2ui

∂xj∂xj
−
∂u′

iu
′
j

∂xj
− 1
ρ

∂p

∂xj
(2.5)

where the mean substantial derivative is defined as

D̄

D̄t
= ∂

∂t
+ uj · ∇ . (2.6)

Although the RANS equations look similar to the Navier-Stokes equation, there is one important
difference, namely the term that includes the Reynolds stresses u′

iu
′
j . It is this term that plays a

crucial role in the RANS approach.
The RANS equations ((2.4) and (2.5)) constitute four equations, namely the three components of

the mean momentum equations and one equation for the mean continuity equation. However, the
three components of the mean velocity uuu = {u, v, w}T and the mean pressure p already form four
unknowns. In addition, there are also the unknown Reynolds stresses. Transport equations for the
Reynolds stresses do exist, but introduce additional unknowns. Thus, there are more unknowns than
equations. Consequently, the set of equations cannot be solved and is termed unclosed. This problem
is often referred to as the closure problem. In order to solve the RANS equations, it is necessary to
model the Reynolds stresses.

2.2.3. RANS Turbulence Closure Models
Typically, eddy viscosity models make the intrinsic assumption that aij is only a function of local mean
flow quantities. Furthermore, some widespread models are based on the Boussinesq hypothesis, where
it is assumed that the stresses are proportional to the mean rate-of-strain as follows

aij ' −2νtS̄ij (2.7)
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where νt(xxx) represents the eddy or turbulent viscosity and the anisotropy stress tensor aij is given by

aij ≡ u′
iu

′
j − 2

3
kδij (2.8)

The mean rate-of-strain tensor is defined as

S̄ij ≡ 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
. (2.9)

The turbulent kinetic energy k is defined as half the trace of the Reynolds stress tensor, i.e.:

k ≡ 1
2
u′

iu
′
i . (2.10)

The anisotropy tensor can be non-dimensionalized as

bij ≡ aij

2k
. (2.11)

There are a variety of possible expressions for the eddy viscosity νt. These eddy viscosity models are
often categorized by the amount of transport equations that are solved. The most simple models do not
solve additional transport equations and are referred to as algebraic models or zero-equation models.
Most of these models calculate the eddy viscosity based on some prescription for the turbulent mixing-
length. Consequently, algebraic models are often unable to account for history effects of the turbulence.
For that reason, their application is often limited to simple flow geometries, where algebraic models can
be quite useful. In terms of implementation, zero-equation models are of little difficulty. An example
of an algebraic model is Prandtl’s mixing-length model, which calculates the eddy viscosity as

νt = l2m

∣∣∣∣ ∂ui

∂xj

∣∣∣∣ (2.12)

where lm is the mixing-length.
An improvement in terms of accuracy is obtained by including a modelled transport equation for

the turbulent kinetic energy k. Models that are based on this principle are referred to as one-equation
models. Despite the improved performance, the turbulent mixing-length still has to be prescribed,
which is a major drawback. Prandtl’s one-equation model calculates the eddy viscosity as

νt = lm
√
k . (2.13)

The exact transport equation for the turbulent kinetic energy is given by

∂k

∂t
+ uj

∂k

∂xj
= τij

∂ui

∂xj
− ν

∂u′
i

∂xk

∂u′
i

∂xk
+ ∂

∂xj

[
ν
∂k

∂xj
− 1

2
u′

iu
′
iu

′
j − 1

ρ
p′u′

j

]
(2.14)

where the Reynolds stress tensor for incompressible flow is defined as

τij ≡ −u′
iu

′
j . (2.15)

The first term on the right-hand side of (2.14) is the production term, which is responsible for the
production of turbulent kinetic energy, or more precisely, the rate at which this energy is transferred
from the mean flow to the fluctuating velocity field. Dissipation is described by the second term on the
right-hand side, which acts as a sink in (2.14). The three terms in between the brackets are molecular
diffusion, turbulent transport and pressure diffusion, respectively. The exact transport equation for the
turbulent kinetic energy is unclosed, as the production, dissipation, turbulent transport and pressure
diffusion are unknown. Therefore, these terms require modelling. The modelled terms below are part
of Prandtl’s one-equation model. The production term is modelled as

τm
ij

∂ui

∂xj
'
(

2νtS̄ij − 2
3
kδij

)
∂ui

∂xj
(2.16)
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where the Boussinesq hypothesis has been used. The dissipation is modelled as

− ν
∂u′

i

∂xk

∂u′
i

∂xk
' −CD

k3/2

lm
(2.17)

where CD is a model constant. In turbulent flows, the representation of the turbulent transport of a
scalar quantity ϕ′ is approximated as gradient-diffusion, i.e., u′

jϕ
′ ∼ µt∂Φ/∂xj , which is analogous to

processes of molecular transport [32]. However, such a straightforward analog does not exist for the
pressure diffusion term. Therefore, generally, the pressure diffusion term is grouped with the turbulent
transport term or is neglected. For simple flows, DNS results by Mansour et al. [33] have indicated
that the pressure diffusion term is quite small. Thus, the turbulent transport and pressure diffusion
terms are approximated by

− 1
2
u′

iu
′
iu

′
j − 1

ρ
p′u′

j ' − νt

σk

∂k

∂xj
(2.18)

where σk is a closure coefficient and in general has a value of σk = 1.0 [10]. The modelled transport
equation for the turbulent kinetic energy then becomes

∂k

∂t
+ uj

∂k

∂xj
= τm

ij

∂ui

∂xj
− CD

k3/2

lm
+ ∂

∂xj

[(
ν + νt

σk

)
∂k

∂xj

]
(2.19)

where τm
ij is given by (2.16). The one-equation model is highly efficient in terms of computational effort,

as only one transport equation has to be solved. It is more complex than the zero-equation model, but
still straightforward. However, these models do not account for transport effects on the turbulence
length scales [32].

A class that take the transport effects into account is the class of two-equation models. These models
solve modelled transport equation for two turbulence quantities, such that the model is complete.
Complete in this sense refers to the fact that a length-scale or time-scale can be formed with the
two aforementioned turbulence quantities. Consequently, the requirement of prescribing a turbulence
length-scale is no longer needed. In general, the Boussinesq hypothesis lies at the basis of these models.
The most widespread two-equation model is the k−ε model, which solves a modelled transport equation
for both the turbulent kinetic energy k and the dissipation ε, as shown below

∂k

∂t
+ uj

∂k

∂xj
= τm

ij

∂ui

∂xj
− ε+ ∂

∂xj

[(
ν + νt

σk

)
∂k

∂xj

]
(2.20)

∂ε

∂t
+ uj

∂ε

∂xj
= Cε1

ε

k
τm

ij

∂ui

∂xj
− Cε2

ε2

k
+ ∂

∂xj

[(
ν + νt

σε

)
∂ε

∂xj

]
(2.21)

where the model constants are

Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, σε = 1.3 . (2.22)

The eddy viscosity is determined as

νt = Cµ
k2

ε
(2.23)

where Cµ = 0.09. At the wall, the boundary condition are given as k = 0 and ε = 0. In terms of
accuracy, the performance of the standard k − ε model is acceptable for simple flows. The models’
performance is reasonable for flows that have a small mean pressure gradient and mean streamline
curvature, such as two-dimensional thin shear flows [10]. However, for more complex flows, such as
most of the non-equilibrium flows, the model performs poorly and can be quite inaccurate. Over a
period of time, many adjustments have been proposed to improve the performance of the k − ε model.
These adjustments are often ad-hoc and applicable to a specific flow case.

Another well-known and widespread two-equation model is the k−ω model, in which two modelled
transport equations are solved for the turbulent kinetic energy k and the specific rate of dissipation ω,
respectively, as shown below

∂k

∂t
+ uj

∂k

∂xj
= τm

ij

∂ui

∂xj
− β∗kω + ∂

∂xj

[
(ν + σ∗νt)

∂k

∂xj

]
(2.24)
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∂ω

∂t
+ uj

∂ω

∂xj
= α

ω

k
τm

ij

∂ui

∂xj
− βω2 + ∂

∂xj

[
(ν + σνt)

∂ω

∂xj

]
(2.25)

where the model constants are given by

α = 5/9, β = 3/40, β∗ = 9/100, σ = 1/2, σ∗ = 1/2 . (2.26)

The eddy viscosity is determined as
νt = k

ω
. (2.27)

The boundary conditions at solid walls for the turbulence kinetic energy is set to k = 0. Menter [34]
suggests the following boundary condition for ω at the wall

ω = 10 6ν
β (∆y1)2 (2.28)

in which ∆y1 denotes the distance to the first grid point away from the wall. The k−ω model performs
well in boundary layer flows and flows with adverse pressure gradients. In many flows, its performance
is superior to the k − ε model [13].

To overcome the limitations of eddy viscosity models, Reynolds stress models solve modelled trans-
port equations for the unknown Reynolds stresses u′

iu
′
j . These models are often referred to as second-

order closure models and do account for effects of streamline curvature, changes in strain rate and
secondary motions [32], but at the cost of increased complexity and computational effort. The exact
transport equation of the Reynolds stress for incompressible flow is given by

∂u′
iu

′
j

∂t
+ uk

∂u′
iu

′
j

∂xk
= −

(
u′

iu
′
k

∂uj

∂xk
+ u′

ju
′
k

∂ui

∂xk

)
− 2ν ∂u

′
i

∂xk

∂u′
j

∂xk
+ p′

ρ

(
∂u′

i

∂xj
+
∂u′

j

∂xi

)
+ ∂

∂xk

(
ν
∂u′

iu
′
j

∂xk
− u′

iu
′
ju

′
k − p′

ρ

(
u′

iδjk + u′
jδik

)) (2.29)

where the first term on the right-hand side is responsible for the production of Reynolds stresses by
the mean velocity gradients. The second term resembles dissipation of the Reynolds stresses. The
correlation between the fluctuating pressure and the fluctuating strain rate is described by the third
term. This term, often referred to as the pressure-rate-of-strain tensor, does not produce or dissipate
turbulent kinetic energy, but it serves to redistribute energy between the different components of the
Reynolds stress u′

iu
′
j . The pressure-rate-of-strain tensor has received a lot of interest of turbulence

modellers, as it is of the same order as the production term, and therefore, plays an important role
in most flows. The spatial redistribution between components of the Reynolds stresses is described by
the last term, which is a combination of multiple diffusion terms. Equation (2.29) is often written in a
compact form as

∂u′
iu

′
j

∂t
+ uk

∂u′
iu

′
j

∂xk
= Pij − εij + φij + Dij (2.30)

where the left-hand side, Pij and ν
∂u′

iu
′
j

∂xk
in Dij are in closed form and the remaining terms require

modelling.

2.3. Anisotropy Tensor
This section starts by providing the relevance and importance of the anisotropy tensor in Section 2.3.1.
Its representation is discussed in Section 2.3.2. Stemming from the fact the Navier-Stokes equations
are Galilean invariant, any model for the anisotropy tensor also has the requirement of being frame
invariant, which is discussed in Section 2.3.3. Finally, Section 2.3.4 presents the integrity basis used to
model the anisotropy tensor in the most general way.

2.3.1. Relevance
The components of the Reynolds stress tensor can be distinguished between shear stresses and normal
stresses, where the former indicates the off-diagonal components and the latter denotes the diagonal
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components. However, this distinction depends on the coordinate system. Therefore, an intrinsic
distinction that does not depend on the coordinate system would be between isotropic and anisotropic
stresses. Such a decomposition for the Reynolds stress tensor is given in (2.31).

τij = aij + 2
3
kδij = 2kbij + 2

3
kδij . (2.31)

Substituting this expression for the Reynolds stress into the mean momentum equation ((2.5)) leads to

D̄ui

D̄t
= ν

∂2ui

∂xj∂xj
− ∂aij

∂xj
− 1
ρ

∂
(
p+ 2

3ρk
)

∂xj
(2.32)

from which can be seen that only the anisotropic term is effective in the transport of momentum, and
therefore, important. Furthermore, the isotropic part can be absorbed in a modified pressure term [10].
In terms of accuracy, correctly predicting the amount and type of anisotropy is critical [1].

2.3.2. Representation
Visualization of data can be a useful tool to have a better understanding of the problem. In turbulent
flows, the anisotropic behaviour is a quantity that is visualized to compare various turbulence models or
to inform the development of a turbulence model. The non-dimensionalized anisotropy tensor is given
by (2.11) and is as follows

bij = aij

2k
=
u′

iu
′
j

2k
− 1

3
δij .

The non-dimensionalized anisotropy tensor is a second-order tensor, for which the powers are given by

b2
ij = bikbkj , b3

ij = bikbklblj . (2.33)

The anisotropy tensor consists of six components that characterize the anisotropy of the Reynolds-
stress tensor. However, it can be simpler characterized by using the variables ξ and η. By using the
Cayley-Hamilton theorem, the characteristic polynomial of a tensor bbb and the corresponding invariants
are given by

bbb3 − Ibbbb
2 + IIbbbb− IIIbIII = 0 (2.34)

where the invariants are as follows

Ib = bii , (2.35)

IIb = − 1
2
bijbji , (2.36)

IIIb = det (bij) . (2.37)

The anisotropy tensor has two independent invariants, as the trace is zero. The invariants IIb and IIIb

are functions of the eigenvalues λi, which can be found by diagonalizing the anisotropy tensor. The
invariants are related to the eigenvalues in the following way

IIb = λ2
1 + λ1λ2 + λ2

2 , (2.38)

IIIb = −λ1λ2 (λ1 + λ2) . (2.39)

Because of convenience, Pope [10] suggests to use the variables ξ and η as the two invariants. This way,
the lower left quadrant of the Lumley triangle is stretched, which results in a more detailed view of the
region near x3c [1], making the view on the non-linear behaviour in the return to isotropy more clear
[35]. These invariants were introduced in order to evaluate the trajectories of the return to isotropy of
homogeneous turbulence [35]. The variables η and ξ are defined as follows

6η2 = −2IIb = b2
ii = bijbji , (2.40)

6ξ3 = 3IIIb = b3
ii = bijbjkbki . (2.41)

Anisotropy invariant maps are one of the techniques used to visualize the anisotropy tensor. Invariant
maps represent two-dimensional plots and can be linear or non-linear. Figure 2.1 shows two non-linear
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invariant maps, where Fig. 2.1a was originally proposed by Lumley & Newman [36]. The magnitudes
of the anisotropy are indicated by the eigenvalues, while the eigenvectors indicate the directions. The
second invariant map (Fig. 2.1b) is a transformation from the Lumley triangle and is used for the
evaluation of the return-to-isotropy trajectories in homogeneous turbulence [35].

(a) Lumley triangle (b) Turbulence triangle

Figure 2.1: Non-linear anisotropy invariant maps [1].

Both invariant maps show various states of turbulence. In every turbulent flow, the invariants can
be determined from the anisotropy tensor and plotted in the invariant maps. Points inside the triangle
correspond to realizable Reynolds stresses, while points outside the triangle correspond to non-realizable
Reynolds stresses, in which the eigenvalues are negative or complex [10]. Realizability was introduced
by Schumann [37] as he proposed three conditions for the Reynolds stress tensor τττ to ensure realizability.
These conditions are given by

ταα ≥ 0 ∀α ∈ {1, 2, 3} , (2.42)

τ2
αβ ≤ ταατββ ∀α 6= β, (2.43)

det (τττ) ≥ 0, (2.44)

and are trivial consequences of the fact that τττ is positive semi-definite. One speaks of a positive semi-
definite matrix AAA if xxxTAAAxxx ≥ 0, ∀xxx ∈ RN . As the Reynolds stress tensor is the arithmetic average of
uuu′⊗uuu′, the outer product of uuu′ with itself (which is positive semi-definite), the arithmetic average of such
tensors is also positive semi-definite, and thus, τττ is positive semi-definite. The first condition requires
that the components of the turbulence kinetic energy are non-negative. The second condition is the
consequence of the Schwarz’ inequality, which states that every off-diagonal component of the Reynolds
stress tensor is bounded by the magnitude of autocorrelations [37]. The last condition requires the
Reynolds stress tensor to be real [36]. In general, the differential equations corresponding to a turbulence
model will not satisfy these conditions in all circumstances [38]. In cases where these conditions are
not satisfied, the negative eigenvalues could lead to a negative eddy viscosity, which in turn will lead to
numerical instability.

The invariant maps show three points that are labeled x1c, x2c and x3c, which refer to one-, two-
and three-component turbulence, respectively. Componentality indicates the relative strengths of the
velocity fluctuations. Table 2.1 is obtained from Pope [10] and provides the characteristics of the
different turbulence states in terms of invariants and eigenvalues of the anisotropy tensor bbb.

Table 2.1: Characteristics of turbulence states [10]

State of turbulence Invariants Eigenvalues Label in Fig. 2.1
Isotropic ξ = η = 0 λ1 = λ2 = λ3 = 0 x3c

Two-component ξ = − 1
6 , η = 1

6 λ1 = λ2 = 0 x2c

One-component ξ = 1
3 , η = 1

3 λ1 = 2
3 , λ2 = λ3 = − 1

3 x1c
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The linear invariant maps are shown in Fig. 2.2. The first subfigure shows an invariant map that
uses the eigenvalues λ1 and λ2 as coordinate system. Figure 2.2b shows the barycentric map, in which
the coordinates of the corners x1c, x2c and x3c are given by (1, 0), (0, 0) and

(
1/2,

√
3/2
)
, respectively.

The coordinate system is defined as

xB = C1cx1c + C2cx2c + C3cx3c , (2.45)

yB = C1cy1c + C2cy2c + C3cy3c , (2.46)

where the coefficients C1c, C2c and C3c are determined by the eigenvalues as

C1c = λ1 − λ2 , (2.47)

C2c = 2 (λ2 − λ3) , (2.48)

C3c = 3λ3 + 1 . (2.49)

(a) Eigenvalue triangle (b) Barycentric map

Figure 2.2: Linear anisotropy invariant maps [1].

While the invariant maps are able to provide useful information regarding the componentality of the
turbulence, it comes at the cost of the loss of spatial information. In an attempt to retrieve some of the
spatial information in a qualitative way, the wall-distance y+ can be colored, as is shown in Fig. 2.3a.
Another drawback becomes apparant when one maps a whole domain onto an invariant map, which
then becomes difficult to interpret, as can be seen from Fig. 2.3b. This difficulty is due to the fact that
different locations in the domain that have a nearly similar anisotropy tensor are mapped onto the same
location in the invariant map.
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(a) (b)

Figure 2.3: Barycentric maps from [1]. Figure (a) presents the DNS data of a turbulent channel flow for a range of points
normal to the wall. The results from a converging-diverging nozzle flow are shown in figure (b) for the entire domain.

Emory and Iaccarino [1] introduced a new visualization technique to show the componentality while
maintaining the spatial information. Using the red-green-blue (RGB) color system and the componen-
tality coefficients C1c, C2c and C3c, a color map is constructed. The colors are determined as followsRG

B

 = C1c

1
0
0

+ C2c

0
1
0

+ C3c

0
0
1

 . (2.50)

As a result of this color map, one-component turbulence is red, two-component turbulence is green and
three-component or isotropic turbulence is blue. Any other state in the invariant map is a combination
of the aforementioned colors. An example of what this looks like is given in Fig. 2.4.

Figure 2.4: Componentality indicated by RGB color system for a Large Eddy Simulation of the periodic hill flow case.
Re = 12595. Obtained from [2].

2.3.3. Invariance of Tensor-Based Functionals
The Navier-Stokes are known to be Galilean invariant, which means that they remain the same in
different inertial frames. Stemming from this fact, any model for the anisotropy tensor has the physical
requirement of also being frame invariant, and thus, should not depend on the choice of inertial frame.
A scalar function f is said to be frame invariant if

f (SSS,vvv, c) = f
(
QQQSSSQQQT ,QQQvvv, c

)
, ∀QQQ,SSS,vvv, c (2.51)
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where SSS ∈ R3×3 denotes a tensor argument, vvv ∈ R3 denotes a vector argument, c ∈ R denotes a scalar
argument and QQQ : R3 7→ R3 denotes an orthogonal transformation matrix. In a similar fashion, a
tensor-based functional hhh is frame invariant if

QQQhhh (SSS,vvv, c)QQQT = hhh
(
QQQSSSQQQT ,QQQvvv, c

)
, ∀QQQ,SSS,vvv, c . (2.52)

2.3.4. Non-Linear Constitutive Stress-Strain Relation
In RANS turbulence modelling, the set of equations is unclosed and the Reynolds stresses require
modelling. Pope [10] proposed to relate the anisotropy tensor bij with the normalized mean rate-of-
strain tensor Sij and normalized mean rotation tensor Ωij , which are given by

Sij = τ
1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, (2.53)

Ωij = τ
1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
(2.54)

in which τ = 1
ω denotes the time scale. The Cayley-Hamilton theorem is then used to derive an

integrity basis, which consists of ten nonlinear base tensors TTT (n). It is termed an integrity basis, since
any symmetric deviatoric second-order tensor formed from SSS and ΩΩΩ can be represented by a linear
combination of the ten base tensors. This integrity basis is then used to express the anisotropy tensor
in the most general hhh as

bbb (SSS,ΩΩΩ) = hhh (SSS,ΩΩΩ) =
10∑

n=1
TTT (n)αn (I1, . . . , I5) . (2.55)

The nonlinear base tensors read

TTT (1) = SSS, TTT (6) = ΩΩΩ2SSS +SSSΩΩΩ2 − 2
3
III · trace

(
SSSΩΩΩ2) ,

TTT (2) = SSSΩΩΩ − ΩΩΩSSS, TTT (7) = ΩΩΩSSSΩΩΩ2 − ΩΩΩ2SSSΩΩΩ,

TTT (3) = SSS2 − 1
3
III · trace

(
SSS2) , TTT (8) = SSSΩΩΩSSS2 −SSS2ΩΩΩSSS,

TTT (4) = ΩΩΩ2 − 1
3
III · trace

(
ΩΩΩ2) , TTT (9) = ΩΩΩ2SSS2 +SSS2ΩΩΩ2 − 2

3
III · trace

(
SSS2ΩΩΩ2) ,

TTT (5) = ΩΩΩSSS2 −SSS2ΩΩΩ, TTT (10) = ΩΩΩSSS2ΩΩΩ2 − ΩΩΩ2SSS2ΩΩΩ,

(2.56)

and the corresponding invariants are given by

I1 = trace
(
SSS2) , I2 = trace

(
ΩΩΩ2) , I3 = trace

(
SSS3) , I4 = trace

(
ΩΩΩ2SSS

)
, I5 = trace

(
ΩΩΩ2SSS2) . (2.57)

2.4. Elliptic Blending Lag Parameter Model
The concept and reasoning behind the use of of elliptic blending and lag parameters is introduced in
Section 2.4.1. Lag parameter models are placed in a historical perspective in Section 2.4.2. Then,
two different lag parameter models are introduced that utilize the widely used k-ε and k-ω models as
underlying two-equation model in Sections 2.4.3 and 2.4.4, respectively.

2.4.1. Brief Introduction
Adverse pressure gradients, separation and other forms of non-equilibrium flow are often encountered
in flows of interest. In general, flow is said to be in equilibrium when the time scale of the turbulence
is much smaller than the time scale of the mean flow [16]. In such circumstances, the turbulence
is able to react quickly to changes in the mean flow, and therefore, the assumption of Boussinesq is
reasonable. However, in non-equilibrium flows, there is a delay in the response of the turbulence with
respect to changes in the mean flow. Standard eddy viscosity models are unable to account for this lag,
and consequently, the predictions of these models are often erroneous. These flows entail a so-called
’stress-strain misalignment’. The elliptic blending lag parameter models try to capture the effects of the
stress-strain misalignment by introducing a lag parameter φ. The approach that is used for this research
is based on an underlying two-equation model, such as the k− ε or k−ω model, in combination with a



2.4. Elliptic Blending Lag Parameter Model 15

transport equation for the lag parameter. This transport equation is derived from an elliptic blending
Reynolds stress model, thereby incorporating the ability of a RSM to address non-equilibrium [17]. In
addition, an elliptic blending equation is solved for α, which is required to make the model applicable
near the wall, since early lag models were derived from high Reynolds number Reynolds stress models
[39].

2.4.2. Historical Perspective
RANS models have seen many developments over the years. The development of two-equation models
has especially received some effort, as these models are often used in practical applications [21]. In
an attempt to improve the accuracy of near-wall turbulence predictions, the region near the wall was
modelled by introducing wall functions [40]. Another patch for near-wall turbulence is the application
of damping functions, which are used to introduce damping effects. Durbin [41] proposed a method in
which the ad hoc damping functions were no longer required. He introduced the so-called ’wall-normal’
velocity scale v2 to scale the eddy viscosity. With the introduction of the v2 −f model, Durbin initiated
the concept of elliptic relaxation, as he introduced an elliptic equation for the relaxation function f .
Building upon this concept, Hanjali et al. [42] proposed the ζ − f model in which a transport equation
for the velocity scale ζ = u2/k is solved, thereby increasing numerical robustness over Durbin’s model.
Lien & Kalitzin [43] altered the elliptic relaxation equation to enhance the numerical stability of the
model. However, some non-vanishing terms are neglected [44]. To overcome this problem, Laurence
et al. [44] propose a different model, referred to as the φ− f model, in which homogeneous boundary
conditions are maintained. Incorporating the principles of the v2 − f model, Billard & Laurence [45]
proposed a refined k−ε−v2/k model, referred to as the BL-v2/k. This model uses the non-dimensional
coefficient α, which is a solution of an elliptic equation, to blend quasi-homogeneous and near-wall terms,
such that a smooth transition is ensured. The model is compared to the v2 − f and k-ω SST models
for flow over periodic hills and an asymmetric plane diffuser, which both exhibit separated flow and a
recirculation region. Both the BL-v2/k and v2 − f models accurately predicted the recirculation zone
in the periodic hill case, whereas the k-ω SST model excessively predicted the size of the recirculation
zone. All models underpredict the shear stress profiles in both flow cases consistently. In the recovery
regions in both flow cases, the v2 − f shows a slight improvement in the prediction of the velocity
profiles over the BL-v2/k model.

In an attempt to address non-equilibrium, Revell et al. [17] proposed a transport equation for a lag
parameter Cas. In this transport equation, the total derivative of aij is obtained from the transport
equation for the Reynolds stresses, thereby incorporating the ability of a Reynolds stress model to
address non-equilibrium at the expensive of a relatively small increase in computational cost [17]. As
some terms in this model are based on a high Reynolds number formulation, the model is not applicable
in close proximity to the wall [19]. Lardeau & Billard [19] proposed a model, referred to as the lag EB
k−ε model, based on the elliptic blending Reynolds-stress model of Manceau & Hanjalic [20] to overcome
this problem. This model consists of three transport equations and its formulation looks similar to the
k−ε−v2/k model in [45], but involves extra production terms in the lag parameter transport equation.
In order to validate their model, Lardeau and Billard compared their results with DNS data, and with
the results from the k-ω SST model, for flow through a channel with varying Reynolds numbers in
the range of Reτ = 180 − 2000. The predicted profiles of velocity, turbulence kinetic energy and eddy
viscosity showed an improvement compared to the predictions by the k-ω SST model. Especially the
predicted turbulence kinetic energy in the near-wall region and in the log-layer were in close agreement
with the DNS data, which can be an important property when high-fidelity data is used as boundary
condition and propagated through the RANS model [19]. In addition, the lag model predicted the decay
of the eddy viscosity more accurately in the region where the strain-rate is small, i.e. in the defect layer,
although linear eddy viscosity models tend to overpredict the eddy viscosity in this region. In order
to assess the performance of the model on pressure-induced separation, the periodic hill, the curved
backward-facing step and the NASA 2D hump were also selected as validation cases. For the periodic
hill case at a Reynolds number of Re = 10595, the lag EB k− ε model predicts the onset of separation
accurately, and the reattachment location is predicted close to that of the LES data. The turbulence
kinetic energy profiles, especially near the edge of the recirculation zone, show a significant improvement
over the k-ω SST model, although RANS models often predict the turbulence kinetic energy erroneously
for this specific flow case. The predicted recirculation zone was in close agreement with LES data for
the curved backward-facing step at Re = 13700. Furthermore, the velocity profiles were accurately
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predicted by the lag model. The 2D hump by NASA had a much higher Reynolds number than the
other two flow cases, namely Re = 936000. The onset of separation was accurately predicted, but the
reattachment point was predicted too far downstream. More complex test cases included a rotating
channel expansion, a NACA0012 wing-tip vortex and a high-lift experiment by NASA.

Using a similar approach to [19], Biswas et al. [21] developed a lag EB k−ω model using the under-
lying two equation k−ω model. A simple channel flow with Reynolds numbers of Reτ = 550, 1000, 2000
and 5200 was considered as a first validation case. The predicted velocity profiles show close agreement
with DNS data. In the logarithmic region, the predictions by the lag model show an improvement over
those of the k − ω and k − ω SST models, which is the result of the eddy viscosity being better scaled
near the wall due to the lag parameter [21]. Flow over a backward-facing step at ReH = 37500 was
used to assess the performance of the model for separated flows. All models predicted the recirculation
zone accurately. In addition, a discrepancy in the velocity profiles was observed for all models, as the
predicted recovery was more slowly than that from the experiments. The flow over periodic hills and
over a curved backward-facing step have been used to assess the performance of the model for flows
that involve separation from a curved surface. The lag parameter model predicts a recirculation zone
that is approximately 10% larger in comparison with the LES data. The velocity profiles are in rea-
sonable agreement with the LES data. The shear velocity profiles show large discrepancies with the
LES data, except for the profile downstream of the reattachment location. In the curved backward-
facing step case, the prediction of the reattachment location was improved compared to other models.
Large discrepancies were observed in the shear velocity profiles, but this did not significantly affect
the mean velocity profiles. As a final validation case, flow over the wall mounted hump by NASA at
Re = 936000 was considered. The lag model overpredicted the recirculation zone by 8% in compar-
ison with the experimental results, which is an improvement compared to the prediction of the k-ω
SST model that overpredicted it by 14%. In the work of [40], additional flow cases with varying com-
plexity were considered as validation cases, such as a series of two-dimensional bumps, a swept bump,
three-dimensional diffusers and a NACA0020 wing body junction flow. In the series of two-dimensional
bumps, the predicted mean velocity profiles were in closer agreement with the LES data the other
models. The performance of the model for flows with transverse pressure gradients was assessed in the
swept bump flow case. All models predicted spanwise velocity profiles reasonably well. It should be
noted that the magnitude of the spanwise velocities is considerably lower than that of the streamwise
velocities. The three-dimensional diffusers were used to assess the performance of the lag model for
three-dimensional separated flow, which are often a challenge for LEVMs [40]. Two diffusers with an
aspect ratio of AR = 1.5 and AR = 4 were used as test case. For the lower aspect ratio flow case,
high-fidelty data showed that the flow separates on the upper flared wall, while for the higher aspect
ratio case the flow separates on the side flared wall. The lag parameter model accurately predicted
the pressure distributions, showing a significant improvement over the other models. Furthermore, the
location of separation, its pattern and the magnitude of backflow were predicted accurately by the lag
model, thereby showing an improvement over the other models. The most complex validation case
was the wing body junction flow, in which no extraordinary improvements were observed for the lag
parameter model.

2.4.3. Underlying k-ε Model
The lag model by Lardeau and Billard [19] uses a low Reynolds number version of the k − ε model as
underlying two-equation model. The transport equations for the turbulence kinetic energy k and the
rate of dissipation of turbulence kinetic energy ε are given by

Dk

Dt
= P − ε+ ∂

∂xj

[(
ν

2
+ νt

σk

)
∂k

∂xj

]
(2.58)

Dε

Dt
= 1
τ

(Cε1P − Cε2ε) + E + ∂

∂xj

[(
ν

2
+ νt

σε

)
∂ε

∂xj

]
(2.59)

where E represents the viscous effects by the wall and is defined as

E = Ckννt(1 − α)3
(
∂|2Sijnj |nk

∂xk

)2

. (2.60)
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This E term represents a damping function and is only active near solid walls, as the elliptic blending
variable α goes to zero as the wall is approached. Away from the wall, α reaches unity and the E
term reduces to zero. Fixes to popular turbulence models often come at the cost of impaired model
robustness or unintended activity in certain flow regions [19]. In order to overcome these limitations,
many recent developments in the RANS community have seen the introduction of additional transport
equations [19], such that more information about turbulent behaviour can be introduced into the flow
field [17, 45, 46]. In addition to the transport equations of the k − ε model, Lardeau and Billard [19]
derived a transport equation for the lag parameter φ. Its derivation starts with the definition for the
eddy viscosity, which is given as

νt = Cµφ
k2

ε
(2.61)

in which Cµ is a constant and φ represents the lag effect on the eddy viscosity. This definition for the
lag parameter shows similarity in many ways to the definition used in Billard and Laurence [45], in
which φ ≡ v2/k is introduced to model the damping of turbulence near the wall [19]. In its exact form,
the production term P is given by

P = −u′
iu

′
j

∂ui

∂xj
(2.62)

which for incompressible flow can also be written as

P = −kaijSij . (2.63)

Please note that only in this section aij indicates the normalized anisotropy tensor, while usually the
normalized isotropy tensor is indicated by bij . This is done to follow the notation used in the work of
[17, 19]. Linear eddy viscosity models are based on the Boussinesq hypothesis, for which the production
term becomes

P = 2νtSijSij = νtS
2 (2.64)

where S denotes the strain-rate magnitude (S =
√

2SijSij). In order to get an expression for φ, it is
assumed that (2.61) and (2.63) are equal definitions of the eddy viscosity [19]:

− kaijSij

S2 = Cµφ
k2

ε
. (2.65)

Equation (2.65) provides an expression for the lag parameter as function of the resolved quantities,
which is given by

φ = −aijSij

S︸ ︷︷ ︸
ξ

1
Cµ

ε

kS︸︷︷︸
η−1

= ξ

Cµη
. (2.66)

The term denoted with ξ is equivalent to the definition of the parameter Cas, which is used in the lag
model of Revell et al. [17]. It indicates the degree of alignment between the strain and stresses. The
ratio of the mean-velocity strain to the turbulent time scales is indicated by the term η. The transport
equation of φ follows from the total derivative of φ, which is given by

Dφ

Dt
= 1
Cµη

Dξ

Dt
− ξ

Cµη2
Dη

Dt
. (2.67)

Revell et al. [17] used a Reynolds Stress Model to exactly derive the transport equation of ξ, which is
given as

Dξ

Dt
= −Sij

kS

[
Pij − εij + ϕ∗

ij − aij (P − ε)
]

− 1
S

DSij

Dt

(
aij + 2Sijξ

S

)
(2.68)

The Elliptic-Blending Reynolds Stress model by Manceau [47] is used to obtain expressions for the first
four terms on the right-hand side of (2.68). Please refer to the work of [47] for the fully elaborated
terms. In order to derive the final expression for the transport equation of φ, the transport equation of
η needs to be defined, which is obtained from

− φ

η

Dη

Dt
= −φP

k
(1 − Cε1) + (1 − Cε2) φ

τ
. (2.69)
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Finally, the transport equation for the lag parameter φ is obtained and is given by
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(2.70)

The eddy viscosity is calculated as

νt = Cµφkmin
(
τlim,

CT

Cµ

√
3φS

)
(2.71)

where the turbulent time scales are

τlim =
√
τ2 + C2

t

ν

ε
, τ = k

ε
. (2.72)

The elliptic equation that is solved for α is given by

α− L2 ∂

∂xj

(
∂α

∂xj

)
= 1 (2.73)

where the turbulent length scale L is defined as

L = CL

√
k3

ε2 + C2
η

√
ν3

ε
. (2.74)

The constants are as follows

C∗
w = Cε2 − 1 + Cw − 1

Cµ
, C̃1 = C1 + Cε2 − 2, CP 1 = 2 − Cε1, CP 2 = C∗

3√
2
,

CP 3 = fµ

Cµ

(
2
3

− C3

2

)
, C∗

4 = 2
Cµ

(1 − C4) , C∗
5 = 2

Cµ
(1 − C5)

(2.75)

where

C1 = 1.7, C∗
1 = 0.9, C3 = 0.8, C∗

3 = 0.65, C4 = 0.625, C5 = 0.2, Cw = 5 . (2.76)

2.4.4. Underlying k-ω Model
Biswas et al. [21] recently developed a lag model where the k−ω model was the underlying two-equation
model. The k − ω lag model is given by

Dk

Dt
= P − β∗kω + ∂

∂xj

[(
ν + νt

σk

)
∂k

∂xj

]
(2.77)

Dω

Dt
= γnew

P

k
ω − βω2 + ∂

∂xj

[(
ν + νt

σω

)
∂ω

∂xj

]
(2.78)

where
γnew =

(
1 − α3) γ1 + α3γ2 , (2.79)

which is used to make sure that the production of turbulence kinetic energy beyond the wake is not
spurious [21]. During the development of the model, Biswas et al. followed an approach that was
similar to the development of the LAG EB k − ε by Lardeau and Billard [19]. The expression for the
lag parameter φ∗ and its transport equation, respectively, are given by

φ∗ = −aijSij

S

ω

S
(2.80)
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Dφ∗

Dt
= −
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where the expression for the normalized anisotropy tensor, here denoted as aij , is only used to close the
penultimate term and is defined as

aij ' −2νt

k

[
Sij + β2

2 (SikWkj −WikSkj)
|(Skl +Wkl) (Skl +Wkl)|

]
. (2.82)

The eddy viscosity is determined as

νt = kmin
(
φ∗

ω
,
αs

|S|

)
. (2.83)

The elliptic equation is similar to that of the k− ε model, which is shown in (2.73), but with a different
turbulent length scale that is defined as

L2 = C2
L

 k3

(β∗kω)2 + C2
η

√
ν3

β∗kω

 . (2.84)

The model constants are given by

β∗ = 0.09, σk = 2, γ1 = 0.5, γ2 = 0.6, β = 0.075, σω = 2, C∗
w = 0.05, C̃1 = 1.6,

C∗
1 = 0.9, Cp1 = 0.4, Cp2 = 0.46, φh = 0.41, C∗

4 = 3.41, C∗
5 = 7.27, σφ = 1,

CL = 0.164, Cη = 75, C1 = 1.7, C5 = 0.2 .
(2.85)

Biswas et al. [21] bounded the anisotropy tensor shown in (2.82), which is only used to close the
penultimate term in (2.81), to make it realizable. It was given the following bounds:

aij = max
(

min
(
aij , 11

3

)
, −2

3

)
for i = j,

aij = max (min (aij , 1.0) , −1.0) for i 6= j.





3
Data-Driven RANS Turbulence Modeling

The purpose of this chapter is to provide the reader with the necessary background information to
understand the current developments in data-driven turbulence modeling and to place the method used
in this study into perspective. It also aims to provide the reader insight into the most commonly used
machine learning algorithms, and provide a motivation for the machine learning method used in this
study.

This chapter starts by giving a very brief introduction to machine learning algorithms in Section 3.1.
A historical perspective and state-of-the-art developments in data-driven RANS turbulence modeling
approaches are given in Section 3.2. In addition, the choice for the machine learning method considered
in this study is justified. A more in-depth background is given in Sections 3.3 to 3.5 for the most
common machine learning algorithms in data-driven RANS turbulence modeling.

3.1. Brief Introduction
Machine learning involves the study of algorithms that are used to discover patterns in data, such that
a prediction or decision can be made based upon those patterns. Within the field of machine learning,
several distinctions can be made between algorithms, which are typically categorized as follows

• Supervised learning

• Unsupervised learning

• Reinforcement learning

In supervised learning, algorithms are given a data set that contains inputs and the corresponding
desired outputs. The algorithm is trained to map these inputs to the desired outputs. After the
training phase, the algorithm is fed with new unseen data. The algorithms map these new inputs to
outputs based on the patterns found in the training phase. In unsupervised learning, no outputs are
provided to the inputs. Therefore, the algorithm has to find a structure in the data by itself, and thus,
the learning is unsupervised. In the last category, reinforcement learning, a software agent has a specific
task, but it doesn’t know yet how to perform this task in the best way possible. The agent interacts
with its environment and learns by trial and error.

In this study, the focus will be on supervised learning algorithms. As there are many different
algorithms, some of the most commonly used algorithms in data-driven turbulence modeling will be
discussed below.

3.2. Historical Perspective and State-of-the-Art
In 1895, Reynolds published a paper in which he presented the findings of his research on turbulence.
In this paper, Reynolds decomposed the velocity into a mean and fluctuating component. Nowadays,
this decomposition is referred to as the Reynolds decomposition, showing the importance of his work
on the field of turbulence modeling. In 1877, years before Reynolds published his paper, Boussinesq
introduced the concept of an eddy viscosity [32]. Prandtl introduced the mixing length model in 1925,

21
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nowadays referred to as an algebraic model, which provided a way to compute the eddy viscosity. In
the years after, the field of RANS modeling has seen many developments, such as one-equation models,
two-equation models and second-order closures to mention a few. However, in the past decades, the
development of RANS models has been stagnant, as can be seen from the fact that models such as
the k − ε [48], k − ω [49] and Spalart-Allmaras [50] model are still currently used, but were developed
decades ago [51]. Although the development of new models with increased complexity is an ongoing
process [52–54] and has shown to result in accurate predictions in some cases, it can be argued that over
the past 15 years there has been no truly significant improvement in the accuracy of the predictions
[24]. Despite all the effort, RANS models that are universally applicable with predictive capabilities are
still lacking [29]. High-fidelity approaches such as DNS or LES have seen developments over the years
that open up new prospects. However, DNS has been seen as a research tool and LES has proven to be
a powerful method, but is still limited to low-to-moderate Reynolds number flow and relatively simple
geometries [15].

Nowadays, the field of RANS modelling still remains an active field with the introduction of data-
driven turbulence modelling. Recent advances include the use of machine learning algorithms and high-
fidelity data. With the focus on RANS models that utilize the Boussinesq hypothesis, Duraisamy et al.
[22–24] use data from high-fidelity simulations and experiments to infer a spatially varying multiplier
βββ(xxx) of the production term in the Spalart-Allmaras model. Bayesian inversion is used to infer the
spatial distribution of these discrepancies. In [22], Duraisamy and Parish use Gaussian processes to
extract the functional relationship βββ(ηηη) between the corrective field and the non-dimensional input
features to enhance the models’ capability to generalize. Their proposed modeling paradigm, which is
termed field inversion and machine learning (FIML), is applied to a turbulent channel flow. The spatially
varying multiplier was applied to the production term in the transport equation of the turbulence kinetic
energy of the k-ω model by Wilcox [55]. This work was mainly of illustrative nature and requires a
wider class of problems to improve the predictions in practical situations [22]. In the work of [24], the
spatial distributions βββ(xxx) from a large number of inverse problems are transformed into model forms
βββ(ηηη) using an artificial neural network. In their work, three wind turbine airfoils with varying thickness
that involve flow separation were used as demonstration. The predictions of lift and drag coefficients
were significantly improved in comparison to the baseline model. They succeeded in generalizing the
models’ predictions to airfoil shapes and flow conditions that the model had not seen before. However,
future work is required to make the models applicable to a wide range of problems. Singh [56] observed
that in some problems it was not possible to accurately develop the functional relationship βββ(ηηη). In
order to ensure that the inferred field is learnable, Duraisamy et al. [57] introduced two methods that
embed a neural network within the inversion procedure. Both methods were tested on a two-dimensional
wind turbine airfoil and proved to generate learnable model discrepancy functions. The capability to
generalize of the two methods is to be explored in future work.

A different approach by Emory et al. [25, 26] focuses on the the Boussinesq assumption and its
associated model-form uncertainty. In their work, a perturbation to the eigenvalues of the anisotropy
tensor is introduced in order to represent a local injection of uncertainty. For each cell, the Reynolds
stress predicted by the k-ω SST model is mapped onto the barycentric map, after which it is pulled
towards one of the corners of the barycentric map [25], thereby perturbing the eigenvalues. As a result,
the anisotropy tensor, and consequently the Reynolds stress tensor, are modified. The altered Reynolds
stress tensor is then fed to the RANS solver. In [25], this framework is demonstrated for steady transonic
flow a two-dimensional bump, which is a flow case that involves streamline curvature and separation.
In the work of [26], the applied framework is twofold. First, flow regions in which the predictions are
plausibly erroneous are identified and the development of these so-called marker functions is part of
ongoing work. Then, uncertainty is injected by perturbing the eigenvalues. The proposed framework
is demonstrated for turbulent channel flow, square duct flow and transonic flow over a two-dimensional
bump. Emory et al. were able to generate secondary recirculation in the square duct flow, which can
not predicted by any original eddy-viscosity closure. Edeling et al. [16, 27] use an approach that is
build upon the work of Emory et al. [26]. By introducing two additional transport equations, the
perturbations are made representative of local flow features. These transport equations involve linear
combinations of the eigenvalues of the anisotropy tensor (C1c and C2c) and are inspired by the lag
model of Olsen and Coakley [58]. The difference between these coefficients determine the amount of
perturbation ∆λα from the baseline state. Furthermore, the sign of this difference determine in which
direction of the barycentric map the perturbations are made. In the study of [16], the model was applied
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to flow over a turbulent flat plate and it was found that the bounds on the quantities of interest were
determined by the same a priori known coefficient values. Following up on this work, Edeling et al.
[27] introduced two strategies to quantify uncertainty in predictions. One of these methods involves an
approach in which no reference data is used, also referred to as the data-free approach. The second
approach is referred to as the data-driven approach, which uses Bayesian inference to infer the posterior
distribution of the two lag coefficients. Both approaches have been applied to a subsonic jet and a
backward-facing step flow case. Edeling et al. showed that the lag equations have the ability to bring
the turbulence back to a realizable state, even if the baseline model violates the realizability constraints
[27].

The application of data-driven techniques to physical systems has raised questions with regard
to the incorporation of domain knowledge such as invariances or symmetries, and more specifically,
to what extent it can and should be done. For example, the Navier-Stokes equations obey Galilean
invariance, which means that any scalar flow variable is invariant to rotations, reflections or translations
of the reference frame. Ling et al. [28] find that it would be desirable, for the accuracy of the model
and physical realizability, that machine learning algorithms respect invariance properties in case the
corresponding physical system obeys one. Therefore, they explore two approaches that address the
question of how a machine learning model can be taught an invariance or symmetry property. The first
approach, in which a machine learning algorithm is trained on a functional basis of invariant inputs,
uses domain knowledge to embed the invariance property into the machine learning model. In the
second approach, the machine learning model was trained on several transformed versions of the data,
such that it was able to learn the invariance property itself. Two machine learning algorithms, namely
the Random Forest and the Neural Network, were tested on a wall-mounted cube in crossflow, for
which RANS and DNS data was available. This flow case involves regions in which the Reynolds stress
anisotropy is significant [59], three-dimensionality, flow curvature, stagnation and separation [28]. For
the first approach, the performance by both algorithms was very similar. However, the neural network
proved to have a better performance for the second approach, as they were better able to learn the
invariance property, which does not come as a surprise due to their capability of deep learning [28]. A
notable result was the fact that the models that were trained on the basis of invariant inputs yielded
higher accuracy. In the study of [3], deep neural networks with embedded variance are used to predict
the Reynolds stress anisotropies and to demonstrate the capability of the model to generalize to flows
with a vastly different Reynolds number. The predicted Reynolds stress anisotropy tensor is propagated
through the velocity field for a turbulent duct flow and for flow over a wavy wall. The tensor basis
neural network (TBNN) was able to predict secondary flow, but slightly overpredicted the strength of
the corner vortices. In the wavy wall flow case, the TBNN was able to predict separation, but incorrectly
predicted the size of the separated region. Compared to the linear eddy viscosity model (k-ε) and the
quadratic eddy viscosity model (based on [60]), the TBNN showed an improved prediction of the mean
velocity. A broader set of flows is required for the train and test phase of the model in order to reach
its full potential.

RANS models are limited in their predictive accuracy, for which the main source of error lays in the
large discrepancies in the modeled Reynolds stresses. Wang et al. [29] propose an approach in which
these discrepancies ∆τα are reconstructed using DNS databases, i.e., ∆τττ = τττDNS − τττRANS . Instead of
reconstructing these discrepancies in the space of physical coordinates xxx, as in the work of Wu et al. [61],
Wang et al. reconstructs them in a space of mean flow features qqq that are Galilean invariant, thereby
overcoming the limitation of the spatial dependency. This allows for extrapolation to a much broader
range of flows that share the same characteristics such as flow curvature and separation. Random forests
are used to construct the regression function fα : qqq 7→ ∆τα. This approach has been tested by using two
classes of flows, namely fully developed turbulent flow in a square duct at various Reynolds numbers
and flows that involve massive separation. The first prediction test case is the flow through a square
duct (Re = 3500), in which secondary flow occurs. DNS data for the same square duct geometry, but
at lower Reynolds numbers, have been used as training data. For the class of flows that involve massive
separation, the periodic hill flow case (Re = 10595) was selected as test case, which features separation,
mean flow curvature and a nonparallel shear layer. Two different ways of training were explored. First,
the algorithm was trained on DNS data from the same geometry, but at lower Reynolds numbers.
The second training scenario involved DNS and LES data from two different geometries and Reynolds
numbers, namely the wavy channel (Re = 360) and the curved backward-facing step (Re = 13200). In
comparison to the baseline predictions by the RANS model, significant improvements were observed
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for both test cases. However, these improvements were less renounced when different geometries were
used for the training and test cases, thereby showing the difficulty of generalization. In the work of
[62], Wu et al. demonstrate a systematic approach for the selection of features as input to the machine
learning algorithm, thereby improving the ad-hoc approach to selecting features in [29]. Furthermore,
they address the problem of having ill-conditioned RANS equations, which can be a consequence of
substituting predicted Reynolds stresses explicitly into the RANS equations, especially in flows with
high Reynolds numbers [63, 64]. Wu et al. split the anisotropy tensor into a linear and nonlinear part
as bbb = νL

t SSS + bbb⊥ and build regression functions to predict νL
t and bbb⊥ using random forest regression

and DNS data. This splitting allows the enhancement of the conditioning of the RANS equations, as
the linear term can be treated implicitly [62]. Flow in a square duct at Re = 2200 is used to train
the algorithm, after which it is tested on the same geometry, but with increased Reynolds numbers
of Re = 3500 and Re = 125000. As a final scenario, the periodic hill flow case at Re = 5600 was
used as a training case and predictions were made for the flow over periodic hills at the same Reynolds
number, but with a modified geometry, as the training case had a steeper hill profile. The proposed
framework demonstrated its capability to satisfactory predict the mean velocity field, and furthermore,
it successfully predicted a mean flow pattern that the machine learning algorithm had encountered in
the training phase.

Weatheritt & Sandberg [30, 31] use symbolic regression and Gene Expression Programming (GEP)
to model the anisotropy of the Reynolds stress tensor. As the algorithm is non-deterministic, there
solution is non-unique, and therefore, a sample is taken from multiple runs of the machine learning
algorithm. GEP is used to construct a functional aij = aij(V 1

ij , V
2

ij , . . . , I
1, I2, . . . ), which uses a

linearly independent basis of four basis functions and two scalar invariants, derived through the Cayley-
Hamilton theorem [30]. DNS results behind a backward-facing step at the reattachment point are used
for the training phase. The Reynolds number, which is based on the step height h, is Reh = 3000. The
algorithm is tested on two cases, namely the backward-facing step flow case with an increased Reynolds
number, i.e., Reh = 5100. In addition, the algorithm is assessed on its performance to generalize to a
different flow field, as flow over periodic hills is used as a test case, in which the Reynolds number is
Reh = 10595. The resulting models proved to be very effective when the test case was similar to the
training case. However, as the model was specifically trained on one flow field, the predictions in the
favorable pressure gradient region were poor. In the study of [31], statistics from a hybrid RANS/LES
database [65] are used to make regression models, which means that a full flow field of DNS data is
not required. The models are trained on several duct flows with varying aspects ratios and a Reynolds
number of Reb = 10000. Realizability has not been incorporated into their framework, but all converged
models were realizable. The capability to generalize to a different flow field is assessed by including
an asymmetric diffuser as test case. An improved performance of the new models over the baseline
models was observed for flow through the asymmetric diffuser. Furthermore, their approach showed
excellent numerical stability. Recently, Weatheritt & Sandberg [66] used this approach to approximate
the Reynolds stress tensor in a junction body flow.

Schmelzer et al. [67] used a deterministic framework to learn the form of models for the additive
term b∆

ij , which accounts for the model-form error. High-fidelity data from a DNS and LES of flow
over periodic hills at different Reynolds number has been used to learn the model and for validation
purposes. Bayesian inversion is used to identify the coefficient fields aaa of the base tensor series given
the data bbb∆. Rough coefficient fields are discarded as a lack of smoothness might lead to overfitting.
A library of candidate functions is build and deterministic symbolic regression is used to identify the
most relevant ones. In order to do so, an optimisation problem for the vector of coefficients Θ(n)

is solved, which includes a regularisation term to promote sparsity. The model forms can then be
retrieved from M := b∆

ij =
∑N

n=1 BΘΘΘ(n)T
(n)
ij . In this study, two models M(1) and M(2) were developed

and trained on the periodic hill flow case. The first model was trained on flow over periodic hills
with a Reynolds number of ReH = 10595, while the second model was trained at ReH = 2800. In
general, both models had an improved performance compared to the baseline k-ω model for predictions
of the streamwise velocity at ReH = 2800 and ReH = 10595. In addition, both models predicted the
reattachment point more accurately than the baseline LEVM for the case at ReH = 10595. In the
work of [5], a deterministic machine learning method referred to as SpaRTA is introduced, which is
an abbreviation for Sparse Regression of Turbulent Stress Anisotropy. As an extension to the method
in [31], k-corrective-frozen-RANS is introduced to account for the model-form error using high-fidelity
data. This approach utilizes a correction b∆

ij to the stress-strain relationship, as well as a correction R to
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the turbulent transport equations. Schmelzer et al. validated that the model-form error was successfully
captured for the periodic hill, the curved backward-facing step and the converging-diverging channel
flow cases. The k-corrective-frozen-RANS is a cost-effective approach, as no inversion procedures are
required. However, full-field data is necessary for the computation of the corrective terms. SpaRTA
is used to construct separate models for these corrections and involves building a library of candidate
functions, selection of models using sparse regression and inference to obtain a model with the correct
units. The training cases included flow over periodic hills, over a curved backward-facing step and
through a converging-diverging channel. Per training case, several models were constructed using the
SpaRTA approach. Cross-validation was used to assess the performance of these models for unseen flow
cases, which allowed for a selection of models with the best predictive capability. Overall, an improved
performance in predictive capability was observed when corrections to both the stress-strain relationship
and the transport equations were applied. In addition, an assessment of the effect of applying only a
correction to the transport equations was performed, in which it was shown that sufficient results could
be achieved for the velocity field. The approach of Schmelzer et al [68] has several advantages. First
of all, it allows for a robust and quick way of enhancing RANS turbulence models. The corresponding
computational cost is low [68] and the implementation of additional (algebraic) terms is straightforward
[69]. Secondly, this method is an open-box machine learning approach, as the resulting corrective terms
are constructed using the integrity basis and are interpretable. The SpaRTA approach, which is a
symbolic regression method, will be used in this work and is elaborated upon in Section 4.5.

3.3. Tree-Based Methods
Partitioning the feature space into a number of regions Rm and fitting a model in each of these regions
is the main idea of tree-based methods. A common algorithm for tree-based regression is the CART
algorithm, which is an abbreviation for Classification And Regression Tree. Figures 3.1a and 3.1b show
a visualization of the segmentation of the feature space (X1, X2) and the corresponding decision tree,
respectively.

(a) Segmentation of two-dimensional feature space by
recursive binary splitting [70].

(b) Corresponding decision tree [70].

Figure 3.1: CART principle.

As can be seen, a tree consists of several nodes that are connected by branches. The nodes at the end
of the branches are referred to as terminal nodes or leaves and correspond to the regions R1, R2 . . . , R5
in Fig. 3.1b. Each junction in the tree has an assigned condition. The regression model that describes
a tree is given by

f(x) =
M∑

m=1
cmI (x ∈ Rm) (3.1)

in which I is a function that indicates whether the observed inputs x fall into region Rm. As example,
cm could be chosen to be the average of all the response yi in the region Rm, which is equal to minimizing
the sum of squares

∑
(yi − f(xi))2. However, the computational costs corresponding to the search for

the best segmentation that leads to a minimum sum of squares can become excessive. Therefore, a
greedy algorithm is used [70]. At each interior node, the feature space is split for feature Xj at the
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point s, which in formula form is written as

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s} . (3.2)

Then, the following optimisation problem is solved for the splitting variable j and the split point s

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2

∑
xi∈R2(j,s)

(yi − c2)2

 . (3.3)

Trees are high-variance estimators, which is a major problem [70]. Consequently, a small change in the
input could lead to a completely different tree. A possibility to reduce the variance of an estimator is
to use bootstrap aggregation or bagging. In bagging, samples are taken from the data set and the same
regression model is fit to each one of these. Each bootstrap tree corresponds to a different sample, and
typically, contains different splitting features, a different number of leaves and different cut-points. Then,
in regression, the results by the individual models are averaged to create the prediction. In classification
problems, the majority of the votes by the individuals models would be the final prediction.

Trees can also be used for the ensemble-technique boosting, in which a set of weak classifiers is used
to create a strong classifier. The most popular boosting algorithm is AdaBoost, which can be used on
different machine learning algorithms, but works well for decision trees. AdaBoost uses a procedure in
which multiple trees are trained sequentally on a data set with certain weights. Initially, each data point
in the set is given the same weight wi = 1

N , and thus, the first tree is trained on an unmodified data set.
The weights of the data set are then modified, i.e., weights of data points that were misclassified are
increased, while the weights of data points that were correctly classified are decreased. This modified
data set is then used to train the next tree, such that the successive tree is forced to focus on the data
points that were missed by its predecessors. This iterative process is repeated until a certain number of
trees is generated. The final prediction is then a weighted majority vote of all the individual predictions.

In random forests, which is an ensemble of trees, each tree is trained on a different subset of the data
set. During the construction of a tree, the splitting features are randomly selected (and are a subset)
from the complete set of features. This mechanism of random feature selection helps to decorrelate the
trees, which in turn reduces the prediction variance of the random forest.

3.4. Artificial Neural Networks
Artificial neural networks are used in both regression as classification problems. Such networks consist
of several neurons or nodes, which are organised in layers. Within a layer, the neurons are not intercon-
nected, but the neurons between adjacent layers are. A schematic view of the architecture of a neural
network is given in Fig. 3.2.

Figure 3.2: Schematic of the architecture of a neural network [3].

As can be seen, this network has an input layer, multiple hidden layers and an output layer, which
all consist of several neurons. Each neuron takes in the inputs xxx with corresponding weights www including
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a bias term b as well. Finally, the output is created by transforming the result through an activation
function σ. Several activation functions exist, such as linear functions, sigmoids and the rectified linear
unit (ReLU). Activation functions are used such that an artificial neural network has the ability to
represent complex non-linear behaviour. The output vector Al

i of a layer l is given by

Al
i = σ

(
W l−1

ij Al−1
j + bl−1

i︸ ︷︷ ︸
zl

i

)
(3.4)

in which W l−1
ij denotes the matrix of weights of the connections between layers l and l−1, Al−1

j denotes
the output of the previous layer and bl−1

i are the bias terms. The amount of hidden layers, which is
referred to as the depth of the neural network, the amount of neurons in a layer and the type activation
function are important hyperparameters that require tuning. In general, it is better to have too many
neurons in a hidden layer than too few, such that the nonlinearities in the data can be captured by the
algorithm. A possible consequence of using too many neurons is that one overfits the model. However,
using appropriate regularization, the extra weights can be shrunk towards zero [70]. During the training
phase of a neural network, in which its weights and biases are refined, the predicted output is computed
through a series of matrix-vector products and matrix manipulations in a forward pass and compared to
the true data. In order to evaluate the algorithm’s prediction, a cost function is used, which measures
the error between the predicted output and the true data. As mentioned before, to prevent overfitting,
regularization is needed, which can be achieved by stopping early or by introducing a penalty term to
the cost function. Then, this cost function J is typically minimized by gradient descent, referred to as
back-propagating. In this procedure, the gradients of the cost function with respect to the weights and
biases are calculated via the chain rule as

∂J

∂W l
ij

= ∂J

∂zl
i

∂zl
i

∂W l
ij

= ∂J

∂zl
i
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j (3.5)
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(3.6)

The weight and biases are then updated at the (t+ 1)st training iteration according to

W t+1
ij = W t

ij − γt
∂J

∂W t
ij

(3.7)

bt+1
i = bt

i − γt
∂J

∂bt
i

(3.8)

in which yt denotes the learning rate. Commonly, the approach of mini-batches gradient descent [71]
is used, in which the training data set is split in mini-batches. This approach provides a compromise
between computational expenses and the efficiency of the memory and its use is widespread in the
training of artificial neural networks [72]. A part of the training set is kept separate during the training
phase, such that it can be used as a validation set, in which the ability of the model to generalize is
assessed.

3.5. Symbolic Regression
Traditional methods such as linear or nonlinear regression methods assume a functional of a given form,
and subsequently, fit parameters to that functional. Instead of assuming a certain (set of) functional(s),
symbolic regression algorithms search the space of mathematical expressions to find a functional that
best matches a given data set. Furthermore, symbolic regression methods simultaneously perform a
search for the parameters. Two subsets of symbolic regression will be discussed here, which are Gene
Expression Programming (GEP) and Sparse Regression.

3.5.1. Gene Expression Programming
The main philosophy behind Gene Expression Programming is the evolution of its candidate solutions
by survival of the fittest [30]. It is a non-deterministic process, as the changes that are made at every
iteration are random. The formation of a candidate solution is performed in the following steps:
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1. Randomly select a top-level node, which can only be an operator node.

2. Pick the next lower-level nodes, which can be operator, constant or variable nodes.

3. Continue the above step until only nodes from the terminal set (constant or variables) are at the
extremities of the tree.

4. Repeat the above three steps, such that more trees are build until a pre-determined population
size of trees has been reached.

Each tree is evaluated for its performance on predicting the desired output value given the data set.
Furthermore, the trees are ranked according to this performance, after which a certain set is used in the
formation of new trees for the following iteration. An example of such an evaluation of the performance,
or fitness, is given by Weatheritt and Sandberg [30] and is defined as

Fit(fguess) = 1 − 1
n

n∑
k=1

||fguess(xk, yk) − fk||
||fk||

(3.9)

where a score of 1 defines the highest fitness. In general, the set of constants is not predefined, and
therefore, Random Numerical Constants (RNCs) are introduced. The RNCs have values that lie be-
tween the two predefined numbers rmin and rmax. The GEP algorithm starts by randomly creating
N candidate solutions such that a population P is reached. The next step is the selection process,
in which the search is directed away from poorer functionals by having a tournament selection. This
tournament selection, which acts as a filter on the population, puts a larger weight on the chance of
survival compared to more fit solutions [30]. Then, the genetic operator modifies the candidate solu-
tions, thereby exploring new solutions that combine certain aspects of existing solutions. As a final
step, poor candidate solutions are filtered out in the selection process.

3.5.2. Sparse Regression
Models that are based on the principle of sparse regression are formulated using the form of an opti-
mization problem [73], which is given as

arg min
θθθ

L (D;ΘΘΘ) + λΩ (ΘΘΘ) (3.10)

in which L denotes a loss function, λ is a regularization control parameter and Ω denotes a regularization
term. In addition, D indicates the training data set, which includes the featuresXXX and the target values
TTT , and ΘΘΘ denotes the parameter or coefficient set. For example, the loss function could be defined as a
least square error function, which would become

L (D;ΘΘΘ) = 1
2

‖TTT −XXXΘΘΘ‖2
. (3.11)

There are two reasons to introduce a regularisation term, namely an improvement in prediction accuracy
and interpretation. Using only the Ordinary Least Squares (OLS) estimates can lead to a prediction in
which the bias is low and the variance high [74] and often leads to a poor performance in prediction and
and interpretation [75]. The problem of high variance could be reduced by shrinking the coefficients
with the goal of improving the predictive capability. However, this comes at the cost of an increase
in bias. A possible approach to shrink coefficients is by using Ridge regression, in which a penalty is
imposed on the size of the coefficients. The regularisation term is given by Ω(Θj) = λ

∑p
j=1 Θ2

j . The
optimization problem that is solved in Ridge regression then reads

Θridge = arg min
Θ


N∑

i=1

Ti − Θ0 −
p∑

j=1
XijΘj

2

+ λ

p∑
j=1

Θ2
j

 (3.12)

in which λ ≥ 0. Its value determines the amount of shrinkage, e.g., a larger regularization parameter
leads to more shrinkage. However, the coefficients are not shrunk to zero and for that reason, models
can be hard to interpret. Subset selection can be used to improve the interpretability, but comes with
the risk of variability in the models [74].
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A different approach is Lasso regression, in which the regularisation term is given by
Ω(Θj) = λ

∑p
j=1 |Θj |. The corresponding optimization reads

Θlasso = arg min
Θ


N∑

i=1

Ti − Θ0 −
p∑

j=1
XijΘj

2

+ λ

p∑
j=1

|Θj |

 (3.13)

in which the added penalty is equal to the sum of the absolute value of the coefficients. In contrast
to Ridge regression, the coefficients can actually be shrunk to zero, and therefore, be eliminated from
the model and improve interpretability. As the regularisation parameter increases, more and more
coefficients are set to zero. Determining the value of this parameter is a trade-off between bias and
variance, e.g., increasing λ leads to an increase in bias and a reduction in variance and vice versa. A
limitation of the Lasso is that when groups of highly correlated variables exist, lasso tends to select
only one variable from each group [75]. However, in many applications, a grouping effect is considered
desirable. One speaks of a grouping effect when the coefficients corresponding to a group of highly
correlated variables are approximately equal.

Another approach, referred to as elastic net regression [75], combines the aforementioned l1- and
l2-norm regularisation terms. By applying this blending of the l1- and l2-norm, the elastic net has the
ability to identify sparse models and has a good predictive capability. In addition, the elastic net is able
to select groups of variables that are highly correlated [75]. The optimisation problem that is solved in
elastic net regression is given by

Θelastic net = arg min
Θ


N∑

i=1

Ti − Θ0 −
p∑

j=1
XijΘj

2

+ (1 − α)λ
p∑

j=1
|Θj | + αλ

p∑
j=1

Θ2
j

 (3.14)

in which α denotes the parameter that determines the mix of the l1- and l2-norm regularisation terms.





4
Methodology

This chapter provides a description of the methodology that is used in this research. Its aim is to
provide the reader with a description of the implementation, motivation and assessment of the k-
corrective-frozen-RANS approach in combination with the lag parameter model. In addition, it aims
to provide insight into the SpaRTA method, which is used to infer functionals for the corrective terms.

First, the model-form error of the RANS equations is introduced in Section 4.1. Capturing this
model-form error is the aim of the frozen-RANS approach, which is discussed in Section 4.2. In Sec-
tion 4.3, extending upon the idea of frozen-RANS, an additional corrective term is introduced in the
k-corrective-frozen-RANS approach, which is the method used in this study to capture the model-form
error. Then, Section 4.4 describes the two frameworks that are used to assess the effect of the addi-
tional transport equation for the lag parameter with regard to generalizability. The machine learning
approach, which is utilized to identify models for the two corrective terms that are used to capture
the model-form error, is presented in Section 4.5. Finally, the computational cost of this approach is
discussed in Section 4.6.

4.1. Model-Form Error of RANS Equations
In the RANS approach, many modeling assumptions are made, which in turn leads to a solution that
differs from the true solution. An introduction to the model-form error starts from the RANS equations
(2.4 and 2.5), which, for the ease of reading, are shown again and are defined as

∂ui

∂xi
= 0 ,

D̄ui

D̄t
= ν

∂2ui

∂xj∂xj
−
∂u′

iu
′
j

∂xj
− 1
ρ

∂p

∂xj
.

As this system of equations remains unclosed, the Reynolds stress tensor τij = u′
iu

′
j requires modeling,

which is also referred to as Reynolds stress closure modeling. Various closures exist, such as linear eddy
viscosity models, nonlinear eddy viscosity models and Reynolds stress models, which have been subject
of discussion in Section 2.2.3. All of these closures introduce sources of inaccuracies, such as model-form
and model-parameter errors, which are also referred to as structural and parametric errors, respectively.
Figure 4.1 provides a schematic overview of these inaccuracies for RANS turbulence modelling.

31
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Figure 4.1: Schematic overview of structural (model-form) and parametric (model-parameter) inaccuracies [4].

In this study, the goal is to capture the model-form error τ∆
ij = τ

DNS/LES
ij − τRANS

ij by utilizing a
general form of NLEVMs, based on the integrity basis discussed in Section 2.3.4. In order to do this, the
k-corrective-frozen-RANS approach will be used, which is the subject of discussion in the next section.

4.2. Frozen-RANS
In the frozen-RANS approach [31], high-fidelity data is used to enhance a RANS turbulence model. In
contrast to the field inversion and adjoint approach (Appendices A and B), the frozen-RANS approach
does not depend on an optimization procedure. For that reason, it is a very cost-efficient method. It
is, however, also limited to full-field data. In this approach, the residuals of the baseline turbulence
model given the high-fidelity data are computed, such that the model-form error can be extracted. The
baseline turbulence model utilizes a linear relation between the anisotropy tensor bij and the mean
rate-of-strain Sij , which is given by the Boussinesq assumption as

b0
ij ' −νt

k
Sij . (4.1)

Let high-fidelity data be denoted as {·}⋆, so that b⋆ij is the normalized anisotropy tensor, k⋆ is the
turbulence kinetic energy, and ui

⋆ is the mean velocity field, all from DNS or LES. The computation
of the residuals is equivalent to adding an additive term b∆

ij as

b⋆ij ' − ν̂t

k⋆S
⋆
ij + b∆

ij . (4.2)

In order to evaluate b∆
ij , an estimation of the eddy viscosity is necessary. In frozen-RANS, this is done

by solving the ω transport equation using high-fidelity data, i.e.

Dω̂

Dt
= γ

P⋆

k⋆ ω̂ − βω̂2 + ∂

∂xj

[(
ν + ν̂t

σω

)
∂ω̂

∂xj

]
, (4.3)

such that the obtained ω can be used for the computation of the eddy viscosity νt. The quantities
that are solved for are indicated using {̂·}. The term frozen-RANS [31] stems from the fact that the
remaining variables are frozen as one equation is solved. A schematic overview of this approach is shown
in Fig. 4.2.
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Figure 4.2: Schematic overview of frozen-RANS approach.

4.3. Theory of k-Corrective-Frozen-RANS
Extending on the idea of the frozen-RANS approach [31], the k-corrective-frozen-RANS [5] also attempts
to capture the model-form error. In the work of [5], in addition to the use of the additive term b∆

ij , a
corrective term R̂̂R̂R is introduced to the transport equations of the k − ω SST model, which leads to the
following set of augmented equations

Dk⋆

Dt
= P⋆ + R̂̂R̂R− β∗k⋆ω̂ + ∂

∂xj

[
(ν + σkν̂t)

∂k⋆

∂xj

]
, (4.4)

Dω̂

Dt
= γ

P⋆ + R̂̂R̂R

k⋆ ω̂ − βω̂2 + ∂

∂xj

[
(ν + σω ν̂t)

∂ω̂

∂xj

]
+ CDkω . (4.5)

The corrective term R̂̂R̂R is the equivalent of the residual of the k-equation, which is coupled with the
transport equation for ω. The reason for using this corrective term R̂̂R̂R is that the additive term b∆

ij also
changes the production term P = −u′

iu
′
j

∂ui

∂xj
in the transport equations of k and ω, and it is not evident

that solving the transport equation of k while using the high-fidelity data, will result in the same k as
that from high-fidelity data [68].

Now that all necessary variables are specified, (4.2) can be utilised for the computation of b∆
ij . When

the iterative process of k-corrective-frozen-RANS has converged, the additive terms b∆
ij and R̂̂R̂R are added

as static fields in OpenFOAM, after which a simulation is performed for the flow cases in Chapter 5
using the same initial conditions. A schematic overview of the approach used by Schmelzer et al. [5] is
given in Fig. 4.3.
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Figure 4.3: Schematic overview of the k-corrective-frozen-RANS approach used by Schmelzer et al. [5].

In this study, the k-corrective-frozen-RANS is used in combination with the lag parameter model by
Biswas et al. [21]. Since this model has an additional transport equation for the lag parameter φ∗, there
are many possible generalizations of the k-corrective-frozen-RANS approach, which raises questions:

• Should φ∗ be computed directly from high-fidelity data using its definition or should its transport
equation be used?
In order to research this possibility, first a comparison between the lag parameter φ∗⋆ from
high-fidelity data and the lag parameter φ∗ from RANS is made.
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(a) Distribution of the lag parameter φ∗⋆ computed from LES data for the periodic hill flow case.
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(b) Distribution of the lag parameter φ∗ obtained from RANS for the periodic hill flow case.

Figure 4.4: Comparison of lag parameter distribution.

As can be seen from Figs. 4.4a and 4.4b, the distributions are significantly different, so computing
the lag parameter directly from high-fidelity data would not be wise. The definition given by (2.80)
has k and ω as variables, which are solutions of a RANS approximation, and for that reason, do
not correspond to a high-fidelity solution. Furthermore, even if k and ω were to be computed
accurately from high-fidelity data, the assumptions taken to derive the transport equation of the
lag parameter are too large to allow a comparison [76]. Therefore, it has been decided to compute
φ∗ from its transport equation.

• If the transport equation is used, should a corrective term be included?

As aforementioned, the solutions from high-fidelity simulations and from RANS are fundamentally
different, and therefore, it has been decided that a single additive corrective term, which would
account for the deficit φ∗

deficit between the high-fidelity solution and the RANS solution, is not
required.

For the same reason as in the transport equations of k and ω, one could argue to use a corrective
term R̂̂R̂R as an addition to the production terms in the transport equation of φ∗. The effect of this
has been tested by comparing the results that are obtained when the standard transport equation
of φ∗ is used, i.e. (4.6) with the results that are obtained when an augmented version of the
transport equation of φ∗ is used, in which the corrective term R̂̂R̂R is introduced, i.e. (4.7).
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(4.6)
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(4.7)

The resulting mean velocity field for the periodic hill case is shown in Fig. 4.5, in which the
labels ’Without R̂̂R̂R’ and ’with R̂̂R̂R’ indicate the usage of (4.6) and (4.7), respectively. It can be seen
that the model-form error is better captured when the corrective term R̂̂R̂R is used in the transport
equation of the lag parameter φ∗. Without this corrective term, the streamwise velocity profiles
are overestimated for y/h ≥ 1.5 and underestimated for y/h ≤ 1.5. The resulting turbulence
kinetic energy profiles show an even more significant difference, as can be seen from Fig. 4.6.
By including the corrective term, an improvement of all predicted streamwise turbulence kinetic
energy profiles is observed. Therefore, the corrective term is included in the transport equation
of the lag parameter.

• In case of a corrective term, what type of correction is best to use and where should it be placed?

There are many possibilities when it comes to applying a corrective term. A separate term φ∗
deficit

that accounts for the difference between the high-fidelity solution and the RANS solution has not
been applied, as the solutions are fundamentally different. Instead, an approach similar to that
of Schmelzer et al. [68] has been used, in which a corrective term is added to the production
term. Furthermore, this corrective term is also modelled in a similar way to the production term.
Therefore, to conclude the k-corrective-frozen-RANS approach for the lag parameter model, the
corrective term R̂̂R̂R will be included as is shown in (4.7).
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Figure 4.5: Effect of a corrective term R̂̂R̂R in the transport equation of φ∗ on the resulting mean velocity field for the
periodic hill flow case.
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Figure 4.6: Effect of a corrective term R̂̂R̂R in the transport equation of φ∗ on the resulting turbulence kinetic energy for
the periodic hill flow case.

4.4. Overview of Frameworks
The k-corrective-frozen-RANS approach will be used in two different frameworks, in order to assess the
effect of the lag parameter. Therefore, the first framework uses a baseline model, which is discussed in
Section 4.4.1. The second framework uses the elliptic blending lag parameter model and is showed in
Section 4.4.2.

4.4.1. Framework 1 - Standard k-ω Model
The first framework uses an augmented version of the standard k-ω model, which is given by

Dk⋆

Dt
= P⋆ + R̂1R̂1R̂1 − β∗k⋆ω̂ + ∂

∂xj

[(
ν + ν̂t

σk

)
∂k⋆

∂xj

]
(4.8)

Dω̂

Dt
= γ

P⋆ + R̂1R̂1R̂1

k⋆ ω̂ − βω̂2 + ∂

∂xj

[(
ν + ν̂t

σω

)
∂ω̂

∂xj

]
(4.9)

in which the eddy viscosity is computed as

ν̂t = k⋆

ω̂
. (4.10)

Alongside the computation of ω, the variables ui, k and bij are kept frozen and the residual R is
computed from (4.8) and fed back into (4.9). The outputs are the additive terms b∆

ij and R. The
main purpose of this framework is to assess the performance of the SpaRTA approach on a standard
turbulence model and to provide a baseline for comparison with the second framework.

4.4.2. Framework 2 - Elliptic Blending Lag Parameter Model
An augmented version of the elliptic blending lag parameter model (Section 2.4.4) is used in the second
framework. Equations (4.11) to (4.13) show the augmented equations of the elliptic blending k− ω lag
parameter model.
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ν̂t = k⋆ min
(
φ̂∗

ω̂
,
αs

|S|⋆

)
. (4.14)

While Ui, k and τij are kept frozen, the transport equations for ω and φ∗ are solved, in which the
computed residual from the k transport equation is fed back into (4.12) and (4.13). Furthermore, the
elliptic equation for α is solved, as the elliptic blending parameter α is used in the transport equations
of (4.12) and (4.13). In this framework, SpaRTA is used in combination with the elliptic blending lag
parameter model and the main purpose of this framework is to be able to assess its performance in
terms of generalizability, interpretability and ability to infer the quantities of interest. A schematic
overview of this framework is presented in Fig. 4.7.	
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Figure 4.7: Schematic overview of framework 2.

4.5. Sparse Regression of Turbulent Stress Anisotropy
Opposed to the non-deterministic Gene Expresson Programming algorithm, SpaRTA is a deterministic
symbolic regression algorithm. It constructs a set of functionals to perform regression. As a first step,
a library of candidate functions have to be build.

4.5.1. Construction of Candidate Functions
In the work of [5], the input features I1 and I2 are squared to form the following set:

BBB1 =
[
I1, I2, I

2
1 , I

2
2
]T

. (4.15)

The candidates in (4.15) are multiplied with each other to form the set BBB2, which is given by
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[
I1I2, I

2
1I2, I

3
1 , I

2
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3
2 , I

2
1I

2
2
]T

. (4.16)

As a final step in the process of the construction of candidate functions, the candidates in BBB1 are
multiplied with the candidates in BBB2, which leads to a maximum degree of 6. Duplicates are removed
and a constant is added, which leads to the following final set of input features:
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]T (4.17)
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which has a total of 16 elements, i.e. |BBB| = 16.
In this study, a similar approach is followed in which, opposed to Schmelzer et al [5], the full integrity

basis is used. The set of input features then consists of 207 features:

BBB =
[
c, I1, I2, I3, I4, I5, . . . , I

2
3I

2
4I

2
5 , I

3
4I

2
5 , I

4
4I

2
5
]T

. (4.18)

Functionals for b∆
ij and R are explored in the form of

bij (Sij , Ωij) =
10∑

n=1
T

(n)
ij αn (I1, . . . , I5) , (4.19)

R = 2kbR
ij

∂ui

∂xj
, (4.20)

in which αn denotes the coefficients that can be dependent upon the five invariants.
Therefore, in order to create a library of tensorial candidate functions to regress models for b∆

ij , each
of the input features in BBB is multiplied with each base tensor T (n)

ij , resulting in the following library

CCCb∆
ij

=
[
cT

(1)
ij , cT

(2)
ij , . . . , I4

4I
2
5T

(10)
ij

]T

. (4.21)

The library of candidate functions to identify models for R is created by taking the double dot product
of each term in the library of CCCb∆

ij
with the mean velocity gradient tensor ∂ui

∂xj
, which results in the

following library

CCCR =
[
cT

(1)
ij

∂ui

∂xj
, cT

(2)
ij

∂ui

∂xj
, . . . , I4

4I
2
5T

(10)
ij

∂ui

∂xj

]T

. (4.22)

The terms in the libraries of CCCb∆
ij

and CCCR can then be evaluated for each validation case by using the
corresponding high-fidelity data. After evaluation, the libraries read

CCCb∆
ij

=


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(1)
xx |k=0 cT
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2
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(2)
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2
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4I
2
5T

(10)
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(2)
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2
5T

(10)
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(1)
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(2)
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4I
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5T

(10)
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cT
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...
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...
cT
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|
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CCCR =


cT

(1)
ij
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∂xj
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4I
2
5T

(10)
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...
...
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4I
2
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(10)
ij

∂ui

∂xj
|k=K

 ∈ RK×|CCCR|, (4.24)

in which k denotes the number of grid points.

4.5.2. Model Selection using Elastic Net Regression
Following the construction of the library with candidate functions, the next step in the SpaRTA approach
is the model selection. In order to to regress the target data ∆∆∆, which consists of bbb∆ and RRR, a linear
model is formed. This model is formed by finding the coefficients ΘΘΘ in

∆∆∆ = CCC∆ΘΘΘ . (4.25)

Equation (4.25) presents a system of equations that is overdetermined. Standard least-squares regression
on (4.25) would result in a dense coefficient vector Θ [5]. Consequently, this would result in models
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that are too complex with the risk of overfitting. Although the candidate functions are constructed
not to be collinear, they can be approximately multi-collinear, and as a result, the libraries CCC∆ can
be ill-conditioned. This in turn would have the consequence of having coefficients that significantly
vary in magnitude. Resulting models would be unsuitable for CFD solvers as their implementation
leads to additional numerical stiffness of the problem. Furthermore, it would hinder the convergence of
the solution [5]. In SpaRTA, the selection of models is constrained such that the selected models have
an optimal balance between error and complexity, and do not overfit the target data. A combinatoric
study could be performed for the two libraries, but due to the exponential growth of the possible models
with the amount of candidate functions I, this would already become unfeasible for the simple libraries
mentioned in (4.21) and (4.22). Therefore, SpaRTA utilizes the elastic net formulation

Θ = arg min
Θ̂̂Θ̂Θ

∥∥∥CCC∆Θ̂̂Θ̂Θ − ∆∆∆
∥∥∥2

2
+ λρ

∥∥∥Θ̂̂Θ̂Θ∥∥∥
1

+ 0.5λ (1 − ρ)
∥∥∥Θ̂̂Θ̂Θ∥∥∥2

2
(4.26)

which promotes the sparsity of the coefficients ΘΘΘ by blending the l1-norm (Lasso regression) and l2-
norm (Ridge-regression). In (4.26), the mixing parameter is denoted by ρ and the regularisation weight
by λ. Lasso regression only allows for a few nonzero coefficients, while setting the others coefficients
to zero, thereby promoting sparsity. In contrast, Ridge-regression does not shrink the coefficients to
zero, but does enforce the coefficients to be relatively small. In addition, it has the ability to identify
the candidate functions that are correlated. The regularisation weight λ effects the model in such a
way that for a very large regularisation weight, all the coefficients ΘΘΘ will be zero. By decreasing λ,
the number of nonzero coefficients increase, which in turn allows the construction of a sparse model.
It is necessary to specify the regularisation weight and the mixing parameter in order to solve the
optimisation problem shown in (4.26). In [77], a range of mixing parameters is chosen, see (4.27), such
that varying regularisation types are covered.

ρρρ = [0.01, 0.1, 0.2, 0.5, 0.7, 0.9, 0.95, 0.99, 1.0]T . (4.27)

In total, 100 entries are used for the regularisation vector λ. These entries are uniformly spaced on a
log-scale between λ0 = ελmax and λmax, where ε = 10−3. Now that the search space of (λλλ, ρρρ), also
referred to as elastic net, is constructed, the coordinate descent algorithm is used to find the solution
ΘΘΘ(i,j)

∆ at each point (λi, ρj) of the optimisation problem shown in (4.26). This could result in solution
vectors ΘΘΘ(i,j)

∆ that have the same zero entries, i.e., non-unique model forms, and therefore, SpaRTA
filters out the unique abstract model forms DDD∆ =

{
Θ̄ΘΘd

∆

∣∣∣ d = 1, . . . , D
}

where D denotes the amount of
unique model forms.

4.5.3. Inference of Model Coefficients
The final step of SpaRTA involves the model inference, in which a model with the correct units is
obtained. The candidate functions in DDD∆ are standardised, such that the relevance of each function
was not based on its magnitude. Therefore, an additional regression has to be performed that uses
unstandardised candidate functions, such that the correct units are obtained. The convergence of
solutions by CFD solvers is affected by large coefficients [30, 31, 66]. For that reason, the required
additional regression will be performed by a Ridge regression

ΘΘΘs,d
∆ = arg min

Θ̂ΘΘs,d

∆

∥∥∥CCCS
∆Θ̂ΘΘ

s,d

∆ − ∆∆∆
∥∥∥2

2
+ λr

∥∥∥Θ̂ΘΘs,d

∆

∥∥∥2

2
, (4.28)

in which s indicates the selected columns or elements in CCC∆ and ΘΘΘd
∆, respectively, and λr denotes the

Tikhonov-regularisation parameter. Finally, the models are obtained by taking the dot product of the
library of candidate functions CCC∆ and the coefficients ΘΘΘd

∆ as

Md
∆ := CCCd

∆ΘΘΘd
∆ . (4.29)

4.6. Computational Cost
As the methodology can be divided in several phases, the computational cost of each phase will be
discussed in this section. As this approach depends on full field data from high-fidelity simulations such
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as DNS or LES, the corresponding computational cost can be quite significant if the high-fidelity data
is not readily available. The required number of grid points for a DNS N3

L in three dimensions scales
with N3

L ∼ L/η ∼ Re9/4, in which L is the integral length scale and η is the Kolmogorov length scale.
The computational cost Nt in terms of time steps scales with Nt ∼ T/∆t ∼ Re3/4. Using the above
estimates, the total computational cost N of a DNS scales as N ∼ N3

L ·Nt ∼ Re3.
The computational cost of a LES depends on the type of turbulent flow that is being solved. For

homogeneous isotropic turbulence and free shear flows the amount of required modes is in the order of
403, which is satisfactory if one wants to resolve 80% of the energy [10]. In wall bounded flows, the
costs of a LES scale differently, as the resolution requirements are different. Chapman [78] estimated
that (in aerodynamic applications) a LES with near wall resolution scales with the Reynolds number as
Re1.8, which makes its application in high-Reynolds number flow infeasible [10]. Alternatively, near-wall
modeling can be used to overcome the problem of resolving the scales near the wall. Then, depending
on the implementation, the computational expenses are not dependent on the Reynolds number or
increase weakly with the Reynolds number as ln (Re) [10]. Generally speaking, complete databases that
are tailored for the purpose of data-driven turbulence modeling can be said to be lacking [79]. However,
new databases are being created for the sole purpose of data-driven turbulence modeling. For example,
Xiao et al. [51] generated a database of DNS data for a family of flows over periodic hills that vary in
slope.

The computational cost associated with the k-corrective-frozen-RANS approach is not significant, as
the computation of the additive correction terms b∆

ij and R is performed within the order of a couple of
minutes on a normal personal computer. Propagating these additive terms through a CFD solver results
in a computational time that is in the order of tens of minutes. Furthermore, the computational costs
associated with the machine learning phase are not significant, as SpaRTA utilizes sparse regression
to identify the models, which is computationally inexpensive. The cross-validation phase is the most
expensive part in terms of time, as the models have to be propagated through a CFD solver, which can
take up to tens of minutes each time.



5
Test Cases

The purpose of this chapter is to provide the reader with a description of the four flow cases that are
selected for the purpose of verification, comparison and assessment of the machine learning framework
applied to the lag parameter model. For each of the cases, a description is given with regard to the
boundary conditions, flow characteristics and source of the high-fidelity data. In addition, it aims to
explain to the reader the relevance of the flow cases used in this study.

First, Section 5.1 describes the periodic hill flow case. Section 5.2 presents the converging-diverging
channel. Then, the backward-facing step is shown in Section 5.3. Finally, the curved backward-facing
step is presented in Section 5.4.

5.1. Periodic Hills
The periodic hill geometry is shown in Fig. 5.1. The distance between the two hill crests is Lx = 9h
and the channel height is Ly = 3.035h, where h denotes the height of the hill crest. The Reynolds
number, which is based on the bulk velocity Ub and the hill crest height h, is Re = 10595. No-slip
boundary conditions are imposed on the upper- and lower walls. Periodicity is assumed for the flow in
the streamwise direction and thus cyclic boundary conditions are imposed on the inlet and outlet. In
the streamwise direction, a source term is added to the momentum equation, because of the periodicity
of the flow in this direction. High-fidelity data for this flow case was obtained from Breuer et al. [6]. In
their research, the flow was solved using DNS for Reynolds numbers of Re = 700, Re = 1400, Re = 2800
and Re = 5600. In addition, high-resolved LES were done to solve the flow for Reynolds numbers of
Re = 5600 and Re = 10595.

1 2 3 4 5 6 7 8

x

0

1

2

3

y

−0.15

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

Figure 5.1: Contours of mean velocity magnitude |U |. Re = 10595. Data from a LES by Breuer et al [6].

Originally proposed by Mellen et al. [80], the periodic hill flow case is used as a test case that is
computationally affordable and one that involves separation and reattachment. The flow case makes
an interesting test case for the benchmarking of turbulence models, due to several properties, such as
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mean flow curvature, non-parallel shear layers, separation from a curved surface and reattachment at
a flat plate [6]. These properties pose a challenge for RANS models and are often encountered in flows
of engineering interest [29].

5.2. Converging-Diverging Channel

The geometry of the converging-diverging channel is shown in Fig. 5.2. The hill crest is located near
x = 5.21564 and has a height of approximately y = 2/3. The channel half-height is h = 1. The Reynolds
number, which is based on the channel half-height h and the maximum velocity Umax at the inlet, is
Re = 12600. On the upper- and lower wall, no-slip boundary conditions are imposed. Furthermore,
the flow is fully developed at the inlet of the channel. Laval and Marquillie [7] used DNS to solve this
flow case and made the results available through the TMR by NASA. In their research, two DNS were
simulated for a friction Reynolds number of Reτ = 395 and Reτ = 617.
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Figure 5.2: Contours of mean velocity magnitude |U |. Re = 12600. Data from a DNS by Laval and Marquillie [7].

This flow case involves curvature and an adverse pressure gradient, thereby making it an interesting
test case for the evaluation of RANS models. The results indicate that separation occurs on the lower
wall, and more specifically, on the leeward side of the hill. Separation of the flow starts at x = 5.8 on
the lower wall and continues till x = 6.6, after which the flow reattaches.

5.3. Backward-Facing Step

The backward-facing step flow case is shown in Fig. 5.3. This flow case features a turbulent boundary
layer that suddenly encounters a backward-facing step, which leads to flow separation at a fixed location.
The entry section in the streamwise direction, measured from the inlet to the step, has a length of 10h,
where h is the step height. The section behind the expansion has a length of 20h in the streamwise
direction. The expansion ratio is ER = 1.2, as the vertical height is W1 = 5h before the step and
W2 = 6h post expansion. No-slip boundary conditions are imposed on the lower wall. Inlet boundary
conditions is given by a boundary layer simulation. The Reynolds number, which is based on the step
height h and the mean inlet freestream velocity U0, is Re = 5100. DNS data by Le et al. [8] is available
for this flow case.
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Figure 5.3: Contours of mean velocity magnitude |U |. Re = 5100. Data from a DNS by Le et al. [8].

The backward-facing step flow cases features separated flow in which two circulatory regions exist.
A smaller circulatory region rotating counter-clockwise is located in the corner, followed by a larger
region rotating clockwise. In addition, the separation location is fixed, which alltogether makes it an
interesting test case. Results from the DNS study by Le et al. [8] show that the flow reattaches again
around x = 6.0.

5.4. Curved Backward-Facing Step
Figure 5.4 shows the geometry of the curved backward-facing step flow case. The height of the duct
upstream is 8.52h, where h is the height of the step. The Reynolds number, which is based on the
step height h and the inlet free-stream velocity Uin, is Re = 13700. No-slip boundary conditions are
enforced on the upper- and lower walls. The inlet boundary conditions were taken from a turbulent
channel flow simulation. This precursor simulation was in close agreement with DNS results [9], and
thus, leads to a high-fidelity representation of the turbulent boundary layer as it approaches the curved
backward-facing step. Bentaleb et al. [9] presented the results of a highly-resolved LES, which was used
to investigate separation of the boundary layer from a curved backward-facing step.
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Figure 5.4: Contours of mean velocity magnitude |U |. Re = 13700. Data from a LES by Bentaleb et al. [9].

The study of Bentaleb et al. [9] focuses on the separation process and the corresponding properties in
this region, making it an interesting test case to benchmark the performance of a RANS models in terms
of predicting the onset of separation and the reattachment location. As RANS models often perform
poorly in the prediction of separation from curved surfaces, this high-fidelity data cannot only be used to
assess the performance, but also to identify the origins of defects in turbulence closure approximations
[9]. The time-averaged results reveal that the flow separates at x/h = 0.83 and reattaches at x/h =
4.36.





6
Results

This chapter presents the results of the k-corrective-frozen-RANS approach and the SpaRTA method.
The aim is to provide an answer to whether an additional transport equation leads to an improvement
in performance with regard to predictive capability, generalizability and the ability to infer quantities
of interest. In addition, the question to whether a full integrity basis shows advantages over a reduced
integrity basis is answered.

First, the correct implementation of the elliptic blending lag parameter model in OpenFOAM is
verified in Section 6.1. In Section 6.2, the ability of the frameworks to capture the model-form error
is validated. The results of the SpaRTA approach are presented in Sections 6.3 and 6.4, in which the
discovered models and the process of cross-validation is shown, respectively. The predictive capability
and generalizability are assessed in Section 6.5. Finally, the usage of a reduced integrity basis versus
a full integrity basis for the construction of the functionals of the corrective terms is discussed in
Section 6.6.

6.1. Verification of Model Implementation
This section verifies the correct implementation in OpenFOAM of the elliptic blending lag parameter
model. These results are compared to high-fidelity data such as DNS, LES or experiments. In addition,
the OpenFOAM results from the various RANS models are compared to the results from Biswas et al.
[21]. Section 6.1.1 presents the results for the periodic hill flow case. The verification process for the
backward-facing step is shown in Section 6.1.2. Finally, Section 6.1.3 presents the verification results
from the curved backward-facing step flow case.

6.1.1. Periodic Hill
The implementation of the elliptic blending k−ω lag parameter model in OpenFOAM is verified against
the results of Biswas et al. [21]. Figure 6.1 shows a comparison of the skin friction coefficients for the
periodic hill flow case, which is described in Section 5.1. The OpenFOAM results for the skin friction
coefficient are in close agreement with the results from Biswas et al. [21]. Small discrepancies can be
seen around the peaks at x/h = 0.1 and x/h = 8.6, as the OpenFOAM simulation predicts a slightly
larger peak for the k − ω lag EB model. A similar observation can be done for the k − ω model, which
also predicted a larger skin friction coefficient compared to the k − ω results of Biswas. A possible
explanation for this difference could be that there is a small difference in the bulk velocity, which is
used to normalize the wall shear stress τw.
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Figure 6.1: Comparison of skin friction coefficients.

The comparison of the velocity profiles for the periodic hill flow case is shown in Fig. 6.2. It can be
observed that these profiles predicted by the various RANS models and high-fidelity data are in close
agreement.
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Figure 6.2: Comparison of velocity profiles.

One of the best ways to assess the performance of RANS models is to compare the eddy viscosity
νt, but computing it from DNS/LES data can be ambiguous for non-equilibrium flows, which is why
Biswas et al. [21] suggested to use shear stress profiles instead. Significant differences between the
RANS models and the high-fidelity data are observed. Close to the hills, none of the RANS models
predict a shear profile that is in close agreement with the high-fidelity data. Overall, the k − ω lag EB
model proves to be the most accurate in terms of representing the high-fidelity data. Furthermore, the
shear stress profiles predicted by the k − ω lag EB model and those by Biswas et al. [21] are in close
agreement. A similar observation can be made for the k − ω results.
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Figure 6.3: Comparison of shear stress profiles.

6.1.2. Backward-Facing Step
The second case that has been used to verify the OpenFOAM implementation of the model is the
backward-facing step flow case. Please note that the flow case used for verification is different than the
one described in Section 5.3. In the current flow case, the Reynolds number, which is based on the step
height h, is approximately Re = 36000. Experimental data from Driver and Seegmiller [81] has been
used to validate the various RANS models. Figure 6.4 gives a comparison of the skin friction coefficients.
All RANS models accurately predict the location where the separated flow reattaches. Comparing the
OpenFOAM results with the results by Biswas et al. [21], it can be seen that the results are similar
behind the step up to a point of x/h ≈ 8. After this point, the OpenFOAM results for the lag EB
k−ω model follow more closely. However, the OpenFOAM results for the k−ω model also show some
discrepancies in comparison with the results of Biswas et al. [21]. A possible explanation for this could
be a small difference in the boundary conditions for k, ω, U or p, as similar discrepancies are observed
for both k − ω models and both lag models. Unfortunately, it was not possible to check this further
and (possibly) resolve these discrepancies, as the complete description of boundary conditions used in
[21] is unavailable.
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Figure 6.4: Comparison of skin friction coefficients.
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The velocity profiles are compared in Fig. 6.5. It can be seen that the velocity profiles predicted
by the RANS models recover more slowly than those from the experiments. The predictions by the lag
EB k − ω model and those of Biswas et al. [21] correspond reasonably well. Discrepancies between the
OpenFOAM implementation and the results by Biswas et al. [21] are observed around y/h = 2 for all
streamwise profiles. However, this is true for both the k − ω model and the k − ω lag EB model.

The shear stress profiles are shown in Fig. 6.6 for the backward-facing step flow case. In comparison
with the experimental data, the RANS models accurately predict the shear stress profiles. The shear
stress profiles predicted by the k − ω lag EB model in OpenFOAM, are truly similar to those from the
work of Biswas et al. [21].
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Figure 6.5: Comparison of velocity profiles.
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Figure 6.6: Comparison of shear stress profiles.

6.1.3. Curved Backward-Facing Step
The curved backward-facing step, as described in Section 5.4, is the final case that has been used to
verify the implementation of the model. The high-fidelity data used for this comparison is a LES by
Bentaleb et al. [9]. A comparison between predicted skin friction coefficients by the various RANS
models and high-fidelity data is given in Fig. 6.7. Out of the three verification cases, the differences



6.1. Verification of Model Implementation 49

between the OpenFOAM results of the lag EB k− ω model and that of Biswas et al. [21] are the most
significant for the current flow case. However, this is also true for the other RANS models. Therefore,
it is likely that it is a difference in the case setup in OpenFOAM, rather than a difference in the model
implementation. A possible explanation is that there is a difference in the boundary conditions for k,
ω, U or p, as similar discrepancies are observed for both k − ω models and both lag models.
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Figure 6.7: Comparison of skin friction coefficients.

Figure 6.8 provides a comparison of the velocity profiles for the curved backward-facing step. Qual-
itatively, the differences are less apparent than those in the skin friction results. The velocity profiles
predicted by the lag EB k − ω model show close agreement with the LES data. The most significant
difference between the predictions of the lag EB k − ω model and the results of Biswas et al. [21] can
be found at a streamwise location of x/h = 2, as the velocity profile predicted by the OpenFOAM
simulation is in closer agreement with the LES results. Results by both models in [21] predict a larger
normalized mean velocity compared to the LES data for the streamwise profiles x/h = 2 and x/h = 4,
whereas the results by the OpenFOAM implementation do not.

0 20 40 60 80 100 120
10(U/U0+x/h)

0.0

0.5

1.0

1.5

y/
h

k-ω

k-ω (Biswas et al.)

k-ω lag EB

k-ω lag EB (Biswas et al.)

LES

Figure 6.8: Comparison of velocity profiles.

The turbulence kinetic energy profiles are shown in Fig. 6.9. In the near-wall region (y/h ≤ 1.0),
the differences between the k profiles by the RANS models and the LES data is the most significant.



50 6. Results

This difference is largest after the curved backward-facing step, but decreases as one progresses in the
streamwise direction. Furthermore, among all the RANS models, the largest discrepancy with the LES
data is shown by the lag EB k− ω model, which is true for both implementations. An exception is the
OpenFOAM implementation of the k−ω lag EB model, which shows an improvement over the standard
k − ω model for streamwise profiles downstream of x/h = 6.
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Figure 6.9: Comparison of turbulence kinetic energy profiles.

6.2. Validation of Model-Form Error Identification
When the process of frozen-RANS has converged, the additive terms b∆

ij and R are added as static fields
in OpenFOAM, after which a simulation is performed for the flow cases in Chapter 5 using the same
initial conditions. The ability of both frameworks to capture the model-form error is validated in this
section. First, the results for the periodic hill flow case are shown in Section 6.2.1. Then, Section 6.2.2
presents the results for the converging-diverging channel. Finally, the results for the curved backward-
facing step are given in Section 6.2.3.

6.2.1. Periodic Hills
The streamwise velocity profiles for the periodic hill flow case are shown in Fig. 6.10. Framework 1 is
indicated by b∆

ij and R (k-ω) and Framework 2 is denoted by b∆
ij and R (lag EB). It can be seen that

the mean flow velocity is essentially reproduced by both approaches.
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Figure 6.10: Predictions of streamwise velocity profiles.
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The turbulence kinetic energy profiles are shown in Fig. 6.11. For the profiles at x/h = 1 and
x = h2, there is a small discrepancy between the reproduced results and the LES results, which is
located downstream of the point where flow separation occurs. The k-ω SST and k-ω lag EB model
are unable to capture the large scale motion behind the first hill crest, which is inherent to RANS
turbulence modeling and therefore not suprising. In general, the turbulence kinetic energy profiles are
well reproduced by both approaches.
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Figure 6.11: Predictions of streamwise turbulence kinetic energy profiles.

The shear velocity profiles are presented in Fig. 6.12. Near the hills, the discrepancy with the LES
data is the most significant, although improvements are shown compared to the predictions by the k-ω
SST and k-ω lag EB models.
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Figure 6.12: Predictions of streamwise shear velocity profiles.

The skin friction coefficient results are shown in Fig. 6.13. The spike near x/h = 0 is overestimated by
all models, but this overestimation is most significant for the predictions of framework 1 and framework
2. From x/h = 3 onwards, the predictions by both frameworks show an improvement over the other
models. Both frameworks accurately predict the reattachment location. The peak between x/h = 8
and x/h = 9 is slightly overestimated by both frameworks, whereas the other models underpredict this
peak.
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Figure 6.13: Predictions of skin friction coefficients.

6.2.2. Converging-Diverging Channel

This subsection presents the resuls for the converging-diverging channel. Figure 6.14 shows the predicted
streamwise velocity profiles. It can be seen that all the predictions are similar to the DNS data, with
the exception of the predictions by the k-ω SST model. On the lee-side and downstream of the bump,
the k-ω SST model predicts a too slow recovery.
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Figure 6.14: Predictions of streamwise velocity profiles.

The predictions of the streamwise turbulence kinetic energy profiles are shown in Fig. 6.15. Both
approaches predicted accurate profiles compared to the DNS data. The largest discrepancy is observed
at x/h = 7, located downstream of the small separation bubble, in which the turbulence kinetic energy
is underestimated by both frameworks compared to the DNS data. However, an improvement is shown
over the other models. Both approaches seem to have difficulty in fully recovering the DNS profile
downstream of the small separation bubble on the lee-side of the bump, which is in line with the
observation for the periodic hill flow case.
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Figure 6.15: Predictions of streamwise turbulence kinetic energy profiles.

Figure 6.16 presents the streamwise shear velocity profiles. In general, the predictions follow the
DNS profiles closely, with the exception of the predictions downstream of the separation bubble on the
lee-side of the bump. Both frameworks show a minor improvement over the other models.
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Figure 6.16: Predictions of streamwise shear velocity profiles.

The results for the skin friction coefficient are shown in Fig. 6.17. Both frameworks fail to predict
the small separation bubble, although it seems that both frameworks captured the correct form with a
wrong magnitude between x/h = 6 and x/h = 7, which is a remarkable observation. Out of all models,
the k-ω SST model is the only one that predicts separation. However, the length of the separation
region is significantly overpredicted.
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Figure 6.17: Predictions of skin friction coefficients.

6.2.3. Curved Backward-Facing Step

This subsection presents the validation results for the curved backward-facing step flow case. The
predicted streamwise velocity profiles are given in Fig. 6.18. From all the flow cases that are used
for validation, the mean velocity predictions for the curved backward-facing step showed the most
discrepancies with the high-fidelity data. The velocity profiles are systematically underestimated above
y/h ≈ 1. Both frameworks predict an accurate recovery and thereby show an improvement compared
to the other models, which fail to do so as the predicted recovery is too slow.
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Figure 6.18: Predictions of streamwise velocity profiles.

The turbulence kinetic energy profiles are shown in Fig. 6.19. The largest discrepancies are observed
between x/h = 2H and x/h = 4, as both frameworks underestimate the turbulence kinetic energy
compared to the LES data. However, a significant improvement is observed in comparison with the
other models.
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Figure 6.19: Predictions of streamwise turbulence kinetic energy profiles.

Figure 6.20 present the predicted streamwise shear velocity profiles. Both frameworks show a minor
improvement over the other models, but the discrepancy with the LES data is still significant, especially
between x/h = 2 and x/h = 4.
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Figure 6.20: Predictions of streamwise shear velocity profiles.

The predictions for the skin friction coefficient are shown in Fig. 6.21. It can be seen that both
approaches predict the separation location too far downstream, whereas the other models predict this
location accurately. However, the point of reattachment is predicted more accurately by b∆

ij and R (k-ω).
Furthermore, the initial peak is represented accurately by both frameworks in comparison with the LES
data.
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Figure 6.21: Predictions of skin friction coefficients.

To conclude this section, both frameworks are able to capture the model-form error. Furthermore,
these frameworks give essentially the same results in terms of predictive capability and the ability to
infer quantities of interest. Any improvements of the data-driven lag parameter models, that have an
additional transport equation, has to come from their ability to generalize, which will be the topic of
discussion in Sections 6.4 and 6.5.

6.3. Discovery of Models
Following the approach of Schmelzer et al. [5], the goal of this step in the SpaRTA method is to find a
set of different models, i.e., that vary in complexity and accuracy. The reason is that such a set is better
suited for the following step, the cross-validation. Instead of selecting the best models based on only the
training data, the ensemble of models will be tested on unseen test cases and the final selection will be
based on the lowest mean-squared error on the velocity field ε(U). For the model inference step, several
regularisation parameters (λr = [0, 0.0001, 0.01]) have been tested. Selecting the final regularisation
parameter comes down to a trade-off between the numerical stability of the model, predictive capability
and its accuracy. In this study, the Ridge regression is performed with λr = 0.01 as regularisation
parameter, which is mainly chosen due to the resulting numerical stability of the models. Selecting
a lower regularisation parameter leads to increased coefficients, which in turn led to unstable models
and possibly overfitted models. For each flow case, a representative subset is hand-selected and used
for the cross-validation step. Five models for b∆

ij and five models for R̂̂R̂R are selected. These models are
visualized in Fig. 6.30 for the various flow cases. First, Section 6.3.1 presents the discovered and selected
models using the baseline approach, which is referred to as framework 1. Then, Section 6.3.2 shows the
discovered and selected models for b∆

ij and R̂̂R̂R found using the approach with the lag parameter, referred
to as framework 2.

6.3.1. Framework 1 - Standard k-ω Model
The SpaRTA approach that is described in Section 4.5 has been used on the flow cases mentioned in
Chapter 5 and a visualization of all the discovered models for b∆

ij for the periodic hill flow case is given
in Fig. 6.22. As can be seen, 193 models have been discovered. The matrix shows the model-structure
and the mean-squared error of the discovered models for b∆

ij . It indicates the active (coloured) candidate
functions (x-axis) for each model Mi with index i (y-axis). Furthermore, the values of the coefficients
are indicated by the colour.

The discovered models for bR
ij are visualized in Fig. 6.23. As can be seen, 39 different models have

been discovered for bR
ij for the periodic hill flow case. Similar to Schmelzer et al. [5], T (1)

ij and T
(1)
ij I1

have been identified as relevant candidates. Although T (1)
ij I2 is a relevant candidate, it is not the third

most relevant candidate as in the work of [5]. Instead, T (6)
ij seems to be a more relevant term and is

also seen in T
(6)
ij I2.
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Figure 6.22: Models for b∆
ij
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Figure 6.23: Models for R

The discovered models for both b∆
ij and bR

ij for the converging-diverging channel and the curved
backward-facing step can be found in Appendix D. It can be seen that 72 models have been discovered
for b∆

ij for the converging-diverging flow case. In addition, 37 different models have been discovered
for bR

ij . For the curved backward-facing step flow case, 107 models have been discovered for b∆
ij and 19

models for bR
ij . These discovered models for bR

ij are significantly less than those of the periodic hill and
converging-diverging channel flow cases.

The selected models for b∆
ij for the various flow cases are visualized in Fig. 6.24. These models will

be used for cross-validation, which is the next step.
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(c) Curved backward-facing step.

Figure 6.24: Model-structure and mean-squared error of selected models for b∆
ij for the various flow cases. The matrix

indicates the active (coloured) candidate functions (x-axis) for each model Mi with index i (y-axis). Value of the
coefficients is indicated by the colour.

A visualization of the selected models for bR
ij for the three flow cases is given in Fig. 6.25.
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(b) Converging-diverging channel.
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Figure 6.25: Model-structure and mean-squared error of identified models for R̂̂R̂R for the various flow cases. The matrix
indicates the active (coloured) candidate functions (x-axis) for each model Mi with index i (y-axis). Value of the

coefficients is indicated by the colour.
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6.3.2. Framework 2 - Elliptic Blending Lag Parameter Model
The SpaRTA approach applied to the periodic hill flow case led to the models shown in Figs. 6.26a
and 6.26b for b∆

ij and bR
ij , respectively. As can be seen, 138 distinct models were identified for b∆

ij and
34 distinct models for bR

ij .
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Figure 6.26: Model-structure and mean-squared error of identified models based on training data for the periodic hill
flow case. The matrix indicates the active (coloured) candidate functions (x-axis) for each model Mi with index i

(y-axis). Value of the coefficients is indicated by the colour.

In a similar fashion, the models that were obtained by applying the SpaRTA approach to the
converging diverging channel flow case are shown in Fig. D.5. As can be seen, 72 models for b∆

ij and 27
models for bR

ij have been discovered. The discovered models for b∆
ij and bR

ij for the curved backward-
facing step are shown in Figs. D.7 and D.8, respectively. In total, 133 models have been discovered for
b∆

ij and 33 different models for bR
ij .

The selected models for b∆
ij that have been trained on the periodic hill, converging diverging channel

and curved backward-facing step training cases are shown in Fig. 6.27.
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Figure 6.27: Selected models for b∆
ij .

The selected models for bR
ij are presented in Fig. 6.28.
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Figure 6.28: Selected models for bR
ij .

The performance of the selected models of both frameworks in terms of predictive capability and
generalizability will be tested and ranked using cross-validation, which will be elaborated upon in the
next section.

6.4. Cross-Validation
In order to test the performance of the selected models on unseen data, cross-validation is used [82].
This way, it is possible to select the best predictive models. Combinations of models for b∆

ij and bR
ij have

been tested, as well as individual models for b∆
ij and bR

ij , since the corrections are regressed individually.
Thus, a model with only a correction for b∆

ij and no correction for bR
ij can be implemented in a CFD

solver, and vice-versa. For each flow case, five models for b∆
ij and five for bR

ij are used, leading to a total
of 35 distinct models per training case. Thus, in total, 105 distinct models have been tested and a total
of 315 simulations have been conducted.
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6.4.1. Framework 1 - Standard k-ω Model
For all individual and combination of models, Fig. 6.29 shows the mean squared error on the velocity
field ϵ(U) of each model, normalized by the mean squared error on the velocity field ϵ(U0) of the baseline
k − ω model.
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Figure 6.29: Mean squared error of each model on the velocity field, normalized by the mean squared error of the
baseline k − ω model. Colors indicate on which flow case the models have been trained. The labels on the x-axis

indicate the test cases. Individual models for b∆
ij and bR

ij are indicated by the thickness of the markers’ edge, as can be
seen from the legend.

Out of the three different test cases, the most significant improvements are observed for the periodic
hill flow case. An interesting thing to note is that some of the models that have a different train and
test case actually performed better than models that had already seen the data, i.e., trained and tested
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on the same flow case. For example, some of the models trained on the converging-diverging channel
show a significant improvement for the periodic hill test case in comparison with the models that were
actually trained on the periodic hill case.

As can be seen, the best performing models consists of combinations of corrections, as well as
individual corrections. A clear exception to this is the periodic hill test case, as individual models for
b∆

ij , which are trained on the periodic hill and curved backward-facing step flow cases, show a significant
improvement over combinations of models for b∆

ij and bR
ij . Although there are some models that do not

improve or only show minimal improvement to the baseline prediction, it can be stated that overall the
predictions are improved.

Figures 6.30a to 6.30c presents an ordered list of the models’ performance for each test case, in
which the vertical position indicates the accuracy, i.e., the best performing model starts at index 1 and
the worst performing model has the index 105.

1 2 3 4 5
Model index

b∆
ij

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

1 2 3 4 5
Model index

bR
ij

0.0 1.0 2.0
ǫ(U)/ǫ(U0)

MP H MCD MCBF S

(a) Periodic hill.
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(b) Converging-diverging channel.
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(c) Curved backward-facing step.

Figure 6.30: Left and middle matrices indicate the index of the selected model for b∆
ij and bR

ij , respectively. On the right,
the mean squared error of the velocity field normalized by the mean squared error of the k − ω model is shown.

The colours of the matrices indicate on which flow case the models have been trained. If all squares
are empty, no correction has been used. The amount of squares indicate which of selected models of has
been used, in which one colored square indicates the simplest model and five colored squares indicate
the most complex model. Overall, the models trained on the converging-diverging channel show the
best performance in terms of accuracy. For the periodic hill and curved backward-facing step test cases,
three groups can be identified, namely a (small) group that does not show an improvement compared
to the baseline, a group that is close or similar to the baseline and a group that clearly shows an
improvement to the baseline. However, for the converging-diverging channel test case, the majority of
the models show a result that is close or similar to the baseline, with only a few models that show an
improvement.
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Based on this cross-validation, the following models are selected:

M
(1)
b∆ =

(
0.04774 + 2.60258I1 + 0.19508I2

1 + 0.2869I3
)
T

(1)
ij

+
(
7.25465 − 31.60593I1 + 1.7335I1I2 − 2.17851I2

1 + 25.41991I2 − 2.14463I2
2 + 0.86626I5

)
T

(2)
ij

+ (2.47908 + 1.32854I2)T (3)
ij

+
(
−2.51541 + 1.40518I1 + 0.28088I2

2
)
T

(4)
ij

+ − 0.14138I2
2T

(6)
ij

+ (−12.70996 − 0.86675I1 + 1.07231I2)T (7)
ij

+ (−15.7871 − 1.08849I1 + 0.86577I2)T (8)
ij

+1.32336T (9)
ij ,

M
(1)
R =

(
0.65403 − 0.38525I2

1
)
T

(1)
ij

(6.1)

M
(2)
b∆ =

(
0.44424 + 1.14252I1 + 0.08237I2

1 + 5.98153I2 − 0.04833I2
2
)
T

(1)
ij

+
(
7.64381 − 17.35012I1 − 0.58208I2

2
)
T

(2)
ij

+
(
1.67877 + 0.02441I2

1 − 5.04813I2
)
T

(3)
ij

+
(
−5.04803I1 − 0.17578I2

2
)
T

(4)
ij

+ − 0.00739T (5)
ij

+ (6.02141 − 0.0493I2)T (6)
ij

+0.29104I2T
(7)
ij

+ − 8.67492T (8)
ij

+ − 5.04816T (9)
ij ,

M
(2)
R =0

(6.2)

M
(3)
b∆ =4.21876T (2)

ij ,

M
(3)
R =0.65327T (1)

ij

(6.3)

The data on which each of the selected models is trained is indicated by ’TRAIN’ and their respective
ranks per test case are shown in Table 6.1.

Table 6.1: Specification of ranking and training data for selected models from framework 1.

PH10595 CD12600 CBFS13700
Model Index i Error Index j Error Index k Error
M (1) 2 0.40004 TRAIN 0.851741 10 0.799251
M (2) TRAIN 0.548669 3 0.85551 52 0.831338
M (3) 16 0.531676 TRAIN 0.883539 1 0.784259

6.4.2. Framework 2 - Elliptic Blending Lag Parameter Model
The results of the SpaRTA approach applied to the lag parameter model are visualized in Fig. 6.31, in
which the mean squared error on the velocity field for each model is shown for the various test cases.
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Figure 6.31: Mean squared error of each model on the velocity field, normalized by the mean squared error of the
baseline k − ω model. Colors indicate on which flow case the models have been trained. The labels on the x-axis

indicate the test cases. Individual models for b∆
ij and bR

ij are indicated by the thickness of the markers’ edge, as can be
seen from the legend.

Most of the models tested on the periodic hill and curved backward-facing step test cases show
significant improvements. The majority of the models tested on the converging-diverging channel has a
slightly lower or equal performance to the baseline k−ω model. This is in contrast to what one has seen
from framework 1, in which almost all of the models were slightly below the line of ϵ(U)/ϵ(U0) = 1.0, but
neither showed a significant improvement as is the case for the periodic hill and the curved backward-
facing step.

The majority of the models based on combination of corrections that are tested on the periodic
hill flow case show a significant improvement, which is in contrast with the result of framework 1.
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Individual corrections for b∆
ij show minor improvements over the baseline k − ω model. However, no

improvements are shown for the curved backward-facing step when individual corrections for b∆
ij are

used. Furthermore, these individuals models for b∆
ij are the only models that showed an improvement

over the baseline for the converging-diverging channel. Individual models for bR
ij and combination of

corrections had a significant impact on the performance for the periodic hill and curved backward-facing
step flow cases, as these were among the best performing models. For the converging-diverging channel,
almost no improvements were observed, as only some of the individuals individual models for b∆

ij showed
an improvement over the baseline.

The performance of each model per test case is ranked based on the lowest mean squared error on
the velocity field in Fig. 6.32.
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(b) Converging-diverging channel.
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(c) Curved backward-facing step.

Figure 6.32: Left and middle matrices indicate the index of the selected model for b∆
ij and bR

ij , respectively. On the right,
the mean squared error of the velocity field normalized by the mean squared error of the k − ω model is shown.

The most significant improvements can be observed for the periodic hill test case. For the converging-
diverging channel, most of the models show a performance that is similar to that of the baseline k − ω
model. Only a few models, all individual corrections for b∆

ij , show a slightly increases accuracy. For the
curved backward-facing step, three categories of models can be observed. Roughly half of the models
have an increased accuracy, while the remaining models have a similar or worse performance in terms
of accuracy compared to the baseline k − ω model. A clear difference with the results from framework
1 is the amount of models that have a performance in the range of ϵ(U)/ϵ(U0) ≤ 2.0, which is a lower
amount for framework 2. This can be attributed to an increase in numerical instability, most probable
a result stemming from the addition of an extra transport equation.

Based on this cross-validation, the following models are selected:

M
(4)
b∆ =4.55351T (2)

ij ,

M
(4)
R =0.71476T (1)

ij

(6.4)
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M
(5)
b∆ =

(
0.62733 + 0.676I2

1 + 3.44735I2 + 0.24795I2
2
)
T

(1)
ij

+ (10.36939 − 8.69553I1)T (2)
ij

+
(
2.49994 + 0.0059I2

1 − 4.00825I2
)
T

(3)
ij

−4.0099I1T
(4)
ij

+ (3.47917 + 0.24724I2)T (6)
ij

−4.34745T (8)
ij

−4.00827T (9)
ij ,

M
(5)
R =1.17598T (1)

ij

(6.5)

M
(6)
b∆ =

(
0.55506 + 3.53055I1 + 0.35542I2

1 + 3.91245I2 + 0.20333I2
2 + −0.0874I5

)
T

(1)
ij

+
(
10.54569 − 8.31959I1 + 0.29447I1I2 + −0.39661I2

1 + 5.8563I2 + 0.14723I5
)
T

(2)
ij

+
(
−3.06951 + 1.57336I1 + 0.07269I2

1 − 1.72248I2
)
T

(3)
ij

+ (−8.60453 − 1.72392I1 + 1.24944I2)T (4)
ij

+0.03653T (5)
ij

+ (3.93653 + 0.20289I2)T (6)
ij

+ (−2.92815 − 0.14723I1)T (7)
ij

+ (−4.1595 − 0.1983I1 + 0.14722I2)T (8)
ij

−1.72244T (9)
ij ,

M
(6)
R =1.17598T (1)

ij

(6.6)

The rank of the selected models and their respective training data are indicated in Table 6.2.

Table 6.2: Specification of ranking and training data for selected models from framework 2.

PH10595 CD12600 CBFS13700
Model Index i Error Index j Error Index k Error
M (4) 13 0.473898 TRAIN 1.05551 32 0.8571
M (5) TRAIN 0.444028 13 1.05021 16 0.809185
M (6) TRAIN 0.428085 10 1.04469 18 0.814275

6.4.3. Discussion
A significant portion of the models developed by both frameworks are able to capture the model-form
error of different flow cases, which validates the combination of the k-corrective-frozen-RANS approach
and SpaRTA method again as an effective way of enhancing RANS models using full-field high-fidelity
data. Models developed by the second framework suffer more from numerical instability, which can be
seen from their relatively large corresponding mean-squared error of the velocity field that is normalized
by the mean-squared error of the conventional k − ω model. No significant improvements are observed
in terms of predictive capability and generalizability when comparing the two frameworks. The cross-
validation results of framework 1 for the converging-diverging channel even show an improvement over
the second framework. Another observation is that the results by both frameworks are (to a certain
extent) grouped, which means that the errors on the velocity field are similar, which is especially true
for the predictions by the individuals models Mb∆ and MR. Generally speaking, neither the individual
or combined corrections showed a clear advantage over one another for the various test cases. All
corrections showed the ability to improve the predictions over the baseline prediction. In order to have
a more in-depth comparison of the two frameworks, the three best overall models of each framework are
compared in Section 6.5, in which the velocity- and turbulence kinetic energy profiles of these selected
models are shown in order to assess their predictive capability and generalizability.
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6.5. Assessment of Predictive Capability and Generalizability
This section assesses the predictive capability and generalizability of the selected models of framework
1 and framework 2. These models are tested on the periodic hill, converging-diverging channel and
curved backward-facing step.

6.5.1. Periodic Hill
The velocity profiles predicted by the selected models are shown in Fig. 6.33. The models M (2), M (5)

and M (6) have been trained on the periodic hill flow case.
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Figure 6.33: Streamwise velocity profiles.

In general, the predicted velocity profiles are in close agreement with the high-fidelity data by Breuer
et al. [6]. The largest discrepancy is observed for M (2) at streamwise locations where y/h ≤ 1.0, as
the velocity profiles are slightly underpredicted. A possible explanation could be that M (2) has no
correction M

(2)
R , which in turn leads to a lower k.

The turbulence kinetic energy profiles are visualized in Fig. 6.34.
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Figure 6.34: Streamwise turbulence kinetic energy profiles.
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The differences between the selected models are more significant, as well as the discrepancies with
the high-fidelity data. The two models from framework 1 (M (1) and M (3)) that are not trained on
the periodic hill data show the largest discrepancy out of all models. These two models also seem to
systematically overpredict k, which could be explained by the fact that a correction for MR is used,
while M (2) has no correction M (2)

R . Although model M (4) from framework 2 has not seen this training
data, it shows a significant improvement over the models from framework 1 and is in close agreement
with the two models that are actually trained on this data.

6.5.2. Converging-Diverging Channel
In order to assess the predictive capability of the models, the converging-diverging channel has been
used as a second test case. The predicted streamwise velocity profiles by the various models are shown
in Fig. 6.35.

6 8 10 12

U/U0+x/h

0.0

0.5

1.0

1.5

2.0

y
/h

M(1) M(2) M(3) M(4) M(5) M(6) DNS

Figure 6.35: Streamwise velocity profiles.

Models M (1), M (3) and M (4) have been trained on high-fidelity data from the converging-diverging
channel flow case. As can be seen, all models are in close agreement with the DNS data, except for
model M (2). Being the only model from framework 1 that has not been trained on data from the
converging-diverging channel, it shows minor discrepancies around y/h ≤ 0.3 for the streamwise profiles
located at x/h = 8, x/h = 9 and x/h = 10. None of these discrepancies have been observed for the
models from framework 2.

The turbulence kinetic energy profiles are shown in Fig. 6.36.
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Figure 6.36: Streamwise turbulence kinetic energy profiles.

Again, the largest discrepancies are observed for the turbulence kinetic energy profiles. It can be
observed that most of the models overpredict the turbulence kinetic energy. However, certain models
show a larger discrepancy than others. Model M (2) most accurately predicts the turbulence kinetic
energy out of the models from framework 1, which is remarkable since it is the only model out of the
three that has not been trained on the converging-diverging channel. A possible explanation could be
that for M (1) and M (3) corrections have been used, while this was not the case for M (2). The models
obtained from framework 2 show a more significant overprediction for y/h = 0.7 − 1.5, except for model
M (6). However, for streamwise profiles x/h = 9, x/h = 10 and x/h = 11, the models of framework 2
are more accurate.

6.5.3. Curved Backward-Facing Step
The third and final test case is the curved backward-facing step. None of the models from framework
1 and 2 have been trained on high-fidelity data from the current flow case. The velocity profiles are
shown in Fig. 6.8.
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Figure 6.37: Streamwise velocity profiles.



72 6. Results

All models systematically overpredict the velocity profiles around y/h ≤ 1.5 Again, model M (2)

shows a slightly different prediction compared to the other models, as it predicts lower velocity profiles
than the other models. A possible explanation could be that this results from not having a correction
M

(2)
R .
The turbulence kinetic energy profiles are shown in Fig. 6.38.

0 1 2 3 4 5 6 7

20k/U2
ref + x/h

0

1

2

3

y
/h

M(1) M(2) M(3) M(4) M(5) M(6) LES

Figure 6.38: Streamwise turbulence kinetic energy profiles.

The models obtained by using framework 1 overpredict the turbulence kinetic energy from the
streamwise profile at x/h = 4 onwards, especially models M (1) and M (3). The opposite can be observed
for the models obtained using framework 2, which underpredict or are close to the high-fidelity data
of the turbulence kinetic energy profiles. Among the models obtained from the second framework, no
significant differences are observed.

6.5.4. Discussion
A more detailed view on the predictions by the best overall selected models confirms the observations
and conclusions drawn in Section 6.4. The velocity profiles predicted by the various selected models are
truly similar, with an exception for M (2), which showed a minor difference with the other five models.
This confirms the ability of the models to generalize their predictions to two-dimensional flow cases that
differ in complexity. It also shows that there is no significant improvement observed between the two
frameworks with respect to predictive capability or generalizability, and thus, the additional transport
equation in the data-driven lag parameter model does not result in an improvement in performance.

6.6. Reduced versus Full Integrity Basis
In the work of Schmelzer et al. [68], a reduced integrity basis is used to construct a library of candidate
functions. This reduced integrity basis consists of the tensors T (1)

ij , T (2)
ij , T (3)

ij and the invariants I1
and I2. Comparing the results in this study with the results in [68] would not make a fair comparison
to assess the performance of a full integrity versus that of reduced integrity basis, since a different
turbulence model is used and minor differences might be present in the setup. Instead, framework 1,
which is an augmented version of the conventional k−ω model, has been used to compute the additive
terms b∆

ij and R. Then, SpaRTA is utilized to explore the functional forms of the additive terms using
the reduced integrity basis, i.e. in the form of

bij (Sij , Ωij) =
3∑

n=1
T

(n)
ij αn (I1, I2) , (6.7)
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R = 2kbR
ij

∂ui

∂xj
. (6.8)

Following the approach in this study, five models for b∆
ij have been handpicked for each flow case, such

that a representative subset is selected. For bR
ij , three models have been handpicked per flow case to

form a representative subset. Please refer to Appendix E for a visualization of the full set of discovered
models and for the handpicked models that are used for cross-validation purposes. The results of the
cross-validation are shown in Fig. 6.39 and are compared to the cross-validation results of framework
1, which made use of the full integrity basis.
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Figure 6.39: Mean squared error of each model on the velocity field, normalized by the mean squared error of the
baseline k − ω model. Colors indicate on which flow case the models have been trained. The labels on the x-axis

indicate the test cases. Individual models for b∆
ij and bR

ij are indicated by the thickness of the markers’ edge, as can be
seen from the legend.

As can be seen from Fig. 6.39, the result of the cross-validation using the reduced integrity basis
is similar to that of the full integrity basis. For each test case, similar improvements over the baseline
k − ω model are observed when comparing the reduced integrity basis with the full integrity basis.
Furthermore, the aforementioned grouping of the results, which refers to the errors on the velocity field
being similar, is also observed for the reduced integrity basis. It is concluded that, in its current form,
a full integrity basis shows no advantage over a reduced integrity basis.





7
Conclusions and Recommendations

A novel framework has been introduced that utilizes the k-corrective-frozen-RANS approach and the
Sparse Regression of Turbulent Stress Anisotropy (SpaRTA) method to infer algebraic stress models
from high-fidelity data. These algebraic stress models have been formed using the full integrity basis
and are added as corrections to existing turbulence models, such that new data-driven models are
formed. This concept has been applied to the standard k − ω model by Wilcox [55] and the elliptic
blending lag parameter model by Biswas et al. [21] such that the impact of the additional transport
equation for the lag parameter can be assessed. Both frameworks have been tested on the periodic hill,
converging-diverging channel and curved backward-facing step flow cases.

Conclusions regarding the findings in this work are given in Section 7.1. In Section 7.2, recommen-
dations for future work are provided.

7.1. Conclusions
The findings in this study will be concluded by answering the main research questions.

RQ1 What is the ability of the data-driven elliptic blending lag parameter model in terms
of generalizing its predictions to other flow cases?
The elliptic blending lag parameter model was implemented in OpenFOAM and the results were
verified against the results from Biswas et al. [21]. The k-corrective-frozen-RANS approach has
been used to identify the corrective terms b∆

ij and R, which are corrections to the stress-strain
relation and the transport equations, using high-fidelity data. In order to assess the impact of
the lag parameter, two frameworks have been utilized. In the first framework, the standard two-
equation k−ω has been used as a baseline for the data-driven approach. In the second framework,
the elliptic blending lag parameter model has been used, which has a transport equation for the
lag parameter in addition to the conventional k − ω transport equations, to test the data-driven
approach. It was validated that the computed corrective terms capture the model-form error
for both frameworks and that the high-fidelity mean flow data was reproduced. SpaRTA has
been used to infer algebraic stress models for these corrective terms. Both frameworks produced
models using high-fidelity data of the periodic hill, converging-diverging channel and the curved
backward-facing step, of which a representative subset in terms of complexity and accuracy was
handpicked. Cross-validation was done using CFD in order to test the performance of the selected
models on unseen data and to rank the models. In general, neither the individual or combined
corrections showed a clear advantage over one another for the various test cases, but they all
showed the ability to improve the predictions over the baseline prediction. A significant portion
of these data-driven models showed an increase in accuracy over the baseline two-equation k − ω
model, even on unseen data. Some models even performed superior compared to models that
actually had the same training and test data. The final three models of each framework were
selected based on a low mean-squared error on the various test cases. All the models were able
to generalize their predictions to two-dimensional flow cases with similar Reynolds number that
had different complexity, as significant improvements over the baseline two-equation k− ω model
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were observed. Features from the integrity basis that were observed in all the selected models
from different training data were T (2)

ij for Mb∆ and T (1)
ij for MR. Utilizing an additional transport

equation for the lag parameter in this data-driven approach did not result in any significant
improvements in terms of predictive capability or generalizability, as both data-driven approaches
showed a similar performance, although the data-driven k − ω models were more numerically
stable. It was found that corrective terms formulated using a reduced integrity basis yields data-
driven models that have a similar predictive capability compared to models that used the full
integrity basis to construct the corrective terms.

RQ2 What are the strengths and weaknesses of applying the k-corrective-frozen-RANS
approach to the lag parameter model?

For the two-dimensional flow cases considered in this study, it was demonstrated for both frame-
works that the k-corrective-frozen-RANS approach has the ability to capture the model-form
error and reproduce the high-fidelity mean flow quantities. When the corrective terms were mod-
elled using the integrity basis, it was shown that a large portion of the resulting models was
able to infer the quantities of interest and improve the prediction of the mean velocity field over
the baseline prediction by the conventional k − ω model. Accurately predicting the turbulence
kinetic energy profiles proved to be more challenging, as these showed discrepancies with the high-
fidelity data. The data-driven lag parameter model has the ability to generalize its predictions to
two-dimensional flow cases that have a similar Reynolds number and different complexity. The
k-corrective-frozen-RANS approach does not depend on an optimization procedure and is a very
cost-efficient method. It is, however, also limited to full-field data. Applying the k-corrective-
frozen-RANS approach and SpaRTA method to the lag parameter model resulted in an increase
in numerical instability, compared to the data-driven k − ω model, which is likely to be a result
of the additional transport equation. The computational cost associated with the k-corrective-
frozen-RANS approach is not significant, as the computation of the corrective terms b∆

ij and R is
performed within the order of a couple of minutes on a normal personal computer. Propagating
these terms through a CFD solver results in a computational time that is in the order of tens of
minutes, similar to RANS simulations. Furthermore, the computational costs associated with the
machine learning phase are not significant, as SpaRTA utilizes sparse regression to identify the
models, which is computationally inexpensive.

7.2. Recommendations
Machine Learning
Currently, two-dimensional flow cases with similar Reynolds number have been used for the train and
test phase of the models. It would be interesting to see how a model, that is trained on three-dimensional
data, performs on a two-dimensional test case. Two- and three-dimensional flows have different char-
acteristics, and thus, different features. It is an interesting way to see if the model is able to recognize
the differences and possibly improve the generalizability. Another important and natural step is to
gather more full-field high-fidelity data in order to train and test the machine learning algorithm on
a larger variety of flow cases. A nice follow up study would be to investigate the performance on the
periodic hills of parametrized geometries by Xiao et al. [51]. Preferably also flow cases that have a
higher Reynolds number, as the current study involves test cases that have similar Reynolds numbers.
Therefore, a nice extension of this work could be to investigate the predictions of higher Reynolds
number flows to further research the ability of the model to generalize.

In this study, the models were trained separately on each of the data sets, after which cross-validation
was used to test the performance of the models. As a next step, the data sets from the periodic hill,
converging-diverging channel and curved backward-facing step could be combined to create one large
data set for training purposes. This would require more available full field high-fidelity data such that
the performance of the trained models can be tested. By combining the data sets, new patterns in the
data might be discovered that, when using the data set separately, might have been missed. As a result,
the ability to infer quantities of interest and generalizability of the models could possibly be improved.

Validation has shown that the k-corrective-frozen-RANS approach has the ability to capture the
model-form error. However, in this research, utilizing an additional transport equation for the lag
parameter didn’t result in an improvement over the data-driven k − ω approach, as both frameworks
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showed a similar performance. An improvement could be the usage of more complex function approxi-
mators for the corrective terms, which would be a nice extension for future work. More complex function
approximators such as neural networks or random forests capture more details of the flow [68], which
in combination with an additional transport equation could enhance the ability to generalize and infer
quantities of interest.

Another very interesting approach would be the use of Bayesian inversion in combination with
adjoint theory to enhance the turbulence model. High-fidelity data such as DNS or LES will be used
to infer the corrective terms. This approach has already been demonstrated on a simple problem in
Appendix B, namely a one-dimensional heat conduction problem. However, due to time constraints and
the implementational complexity of adjoints it was decided to continue in a different way. Extending
Bayesian inversion together with this adjoint approach to the elliptic blending k−ω lag parameter model
would provide useful insight into how this approach influences the generalizability of the algorithm, as
the eddy viscosity is altered in a more physical manner. This indirect modification of the eddy viscosity
could pave the way for innovative developments in the prediction of eddy viscosity in future research.

Generalizations of k-Corrective-Frozen-RANS Approach
In its current form, the corrective term R is added as an additive term to the production term P in
the additional transport equation of the lag parameter. Some research has already been done into a
separate corrective term that accounts for the deficit between the lag parameter computed from high-
fidelity data and that from a RANS simulation. It was decided to not continue down this path, since
the distributions are significantly different and the assumptions taken to derive the transport equation
of the lag parameter are too large to allow a comparison. A truly interesting topic for future research
would be to further investigate the generalizations of the k-corrective-frozen-RANS approach. There
are so many possibilities left with regard to the placement of a single (or multiple) corrective term(s).
First of all, the location of the placement of a corrective term could be an interesting topic for future
work. Secondly, the type of corrective term to use in an additional transport equation should be further
investigated. In this study, all the corrections were constructed using the integrity basis. It would also
be interesting to see how different features influence the performance of the algorithm. For example, a
corrective term that is trained on different mean flow features could be a topic of future research.





A
Field Inversion and Adjoint Methodology

In this study, field inversion is used to enhance the model by using high-fidelity data such as DNS,
LES or experimental data. In practice, these observations always contain some noise. Thus, the data
is assumed to consist of the output by the forward model and noise, i.e.:

ddd = h(βββ) + ε (A.1)

where βββ denotes a spatially varying corrective term and ε indicates the noise. In a forward problem,
the goal is to find the data given a certain model hhh, which is referred to as the forward model. The
forward model that is used in this study is the lag model augmented with the corrective term. The goal
of field inversion in this research is to obtain a corrective term βββtrue such that the solution hhh(βββtrue) best
approximates the high-fidelity data dddtrue.

A possible approach for a discrete linear inverse problem is to assume that the data errors are
independent and Gaussian. Then, it can be shown that the maximum likelihood principle solution
is the solution to a least-squares problem, which is found by minimizing the 2-norm of the residual
between the output by the forward model and the data, i.e.:

βββMLE = arg min
βββ

‖h (βββ) − ddd‖2
2 . (A.2)

However, there are challenges that come along with this approach. In many cases, the least-squares
problem is not well-conditioned [83], which leads to a large set of solutions that can significantly vary
from each other. In such cases, regularization may be required in order to obtain a stable solution. For
nonlinear problems, several local optima might exists, and thus, it can be difficult to find the global
minimum.

In this study, the Bayesian approach is used, in which the solution has the form of a probability
distribution over the corrective fields, referred to as the posterior distribution. This is a fundamental
difference with respect to the classical approach, in which a single corrective field is the final solution.
It is possible to derive an expression for the posterior distribution using conditional probability and
Bayes’ formula. Conditional probability is given by

P (A | B) = P (A ∩B)
P (B)

(A.3)

which can be rewritten to obtain Bayes’ formula:

ρ (βββ | ddd) = ρ (ddd | βββ) ρ (βββ)
ρ (ddd)

(A.4)

where ρ (ddd | βββ) is the likelihood, ρ (βββ) is the prior distribution and ρ (ddd) is used as normalization. In the
case that the observations ddd, the corrective field βββ and the likelihood ρ (ddd | βββ) are normally distributed,
it can be shown that the process of finding the distribution of the corrective field reduces to finding the
maximum a posteriori (MAP) solution [83], i.e.

βββMAP = arg max
β

ρ(βββ | ddd) . (A.5)
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The observation noise is assumed to be unbiased Gaussian noise, i.e.:

ε ∼ N (0, Cm) (A.6)

where Cm is the observational covariance matrix. Then, because the noise has a Gaussian distribution,
the likelihood has a Gaussian distribution as well. The resulting expression for the likelihood is given
by

ρ (ddd|βββ) = ρε (ddd− h(βββ)) ∼ N (0, Cm) . (A.7)
In addition to the aforementioned assumptions, the corrective field βββ is assumed to have a Gaussian
prior:

βββ ∼ N (βββprior, Cβ) (A.8)
where βββprior is the prior mean and Cβ is the prior covariance matrix. In the work of [22], Parish and
Duraisamy suggested to use a Gaussian prior and determine the prior variance based on the following
procedure:

1. Assume prior variance σ2
β .

2. Sample the prior distribution of β with assumed covariance matrix Cβ .

3. Propagate samples through forward model.

4. Check whether observed solution falls within the ±2σ limits of the distribution predicted by the
forward model.

5. If necessary, adjust σ2
β to ensure observed solution falls within the aforementioned limits.

The posterior is then proportional to

ρ(βββ|ddd) ∝ exp
[
−1

2
(ddd− h (βββ))T

C−1
m (ddd− h (βββ)) − 1

2
(βββ − βββprior)T

C−1
β (βββ − βββprior)

]
. (A.9)

However, the optimization problem involves an exponential function and can be rewritten in a simpler
form as

βββMAP = arg min
β

1
2

(ddd− h (βββ))T
C−1

m (ddd− h (βββ)) + 1
2

(βββ − βββprior)T
C−1

β (βββ − βββprior)︸ ︷︷ ︸
J

(A.10)

where J is the cost function. However, this optimization is difficult, as β is high-dimensional. Therefore,
gradient-based optimization is used. A naive approach would be to evaluate the chain rule directly as

dJ

dβi
= ∂J

∂βi
+ ∂J

∂Qk

dQk

dβi
(A.11)

and differentiate the residuals of the primal equations R(Q, β), which gives a linear system of equations

to solve for dQk

dβi
:

dRm

dβi
= ∂Rm

∂βi
+ ∂Rm

∂Qk

dQk

dβi
= 0 (A.12)

This leads to the requirement of solving N linear systems to obtain dQk

dβi
, which is the drawback of the

so-called direct approach. A more clever way to obtain dJ
dβi

is by introducing the Lagrangian:

L(β,Ψ) = J(Q, β) + ΨTR(Q, β) (A.13)

where Ψ is the adjoint vector. Note that L ≡ J , since R(Q, β) = 0, and thus

dJ

dβi
= dL

dβi
= ∂J

∂βi
+ ∂J

∂Qk

dQk

dβi
+ ΨT

(
∂Rm

∂βi
+ ∂Rm

∂Qk

dQk

dβi

)
= ∂J

∂βi
+ ΨT ∂Rm

∂βi
+
(
∂J

∂Qk
+ ΨT ∂Rm

∂Qk

)
dQk

dβi
(A.14)
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The freedom of choice of Ψ can be used to eliminate dQk

dβi
. In order to do so, Ψ has to satisfy the adjoint

equation:
ΨT ∂Rm

∂Qk
= − ∂J

∂Qk
(A.15)

One linear system has to be solved in order to find the solution to the adjoint equation. Equation (A.14)
then reduces to the form of (A.16), where the sensitivity of the primal variable Q with respect to the
corrective term β is removed from the equation:

dJ

dβi
= ∂J

∂βi
+ ΨT ∂Rm

∂βi
(A.16)

Generally, the observational covariance matrix Cm depends upon the statistics of the data that is
observed and can be constructed in various ways [22]. The most simple model is defined as

Cm = σ2
obsIII (A.17)

where σobs is a scalar that only represents the mean standard deviation, and thus, all covariances are
neglected. A more elaborate model is defined as

Cm = σσσ2
obsIII (A.18)

where σσσobs is a vector that represents the standard deviation at each observation point. The last model
is the most elaborate and makes the assumption that multiple realizations of the same dataset D are
available. Then, the exact covariance matrix is given by

Cm = E
[(
Di −Di

) (
Dj −Dj

)]
(A.19)

in which Di = E [Di].
In order to determine the posterior covariance, the computation of the Hessian is required. The

adjoint-adjoint approach is used to perform this computation, which is given by

Hij = ∂2J

∂βi∂βj
+ ψm

∂2Rm

∂βi∂βj
+ µi,m

∂Rm

∂βj
+ νi,m

∂2J

∂Qn∂βj
+ νi,nψm

∂2Rm

∂Qn∂βj
m,n ϵ [1,M ] (A.20)

where
νi,n

∂Rm

∂Qn
= −∂Rm

∂βi
m,n ϵ [1,M ] i ϵ [1, N ] (A.21)

µi,m
∂Rm

∂Qk
= − ∂2F

∂βi∂uk
− ψm

∂2Rm

∂βi∂Qk
− νi,n

∂2J

∂Qn∂Qk
− νi,nψm

∂2Rm

∂Qn∂Qk
. (A.22)

The posterior covariance can be determined by evaluating the inverse of the Hessian of the cost
function J at the MAP point [22]

CCCβmap
= HHH−1

∣∣∣∣
βmap

=
(

d2J

dβidβj

)−1 ∣∣∣∣
βmap

. (A.23)

The Newton-CG method, which is a gradient-based optimization algorithm, is given by

βk+1
i − βk

i

αk
= −

[
d2Jk

dβidβj

]−1
∂Jk

∂βi
(A.24)

in which the positive scalar αk denotes the step length. This method uses the conjugate gradient (CG)
method to compute the search direction [84].





B
Field Inversion - 1D Heat Conduction

B.1. Inversion
The field inversion phase and the machine learning phase is first illustrated on a simple test case, the
one-dimensional heat equation from Parish and Duraisamy [22]. This one-dimensional heat equation
has a radiative and a convective term and is given by

d2T

dz2 = ε(T )
(
T 4

∞ − T 4)+ h (T∞ − T ) , z ϵ [0 . . . 1] (B.1)

where ε is the emissivity of the material, the convection coefficient has a value of h = 0.5, T∞ is the
temperature of the surroundings and z is the spatial coordinate. Equation (B.1) is referred to as the
’true’ model, in which the emissivity is given by

ε (T ) =
[
1 + 5 sin

(
3πT
200

)
+ exp (0.02T ) + N

(
0, 0.12)] · 10−4 . (B.2)

This process is imperfectly modelled as

d2T

dz2 = ε0
(
T 4

∞(z) − T 4) (B.3)

which is referred to as the base model. The constant emissivity is given as ε0 = 5 · 10−4. The model
outputs for the base and true solution for surroundings temperatures T∞ = [10, 20, 30, 40, 50] are shown
in Fig. B.1.

The inversion phase is initiated by placing a spatial multiplier to ε0, which yields

d2T

dz2 = β(z)ε0
(
T 4

∞(z) − T 4) . (B.4)

Equation (B.4) is referred to as the augmented model. The goal of this phase is to optimize β(z) such
that the augmented model closely resembles the true model. The true form of the corrective term can
be derived from the expressions for the true model and the augmented model and is given by

βtrue = 1
ε0

[
1 + 5 sin

(
3πT
200

)
+ exp (0.02T ) + N

(
0, 0.12)] · 10−4 + h

ε0

T∞ − T

T 4
∞ − T 4 . (B.5)

The cost function is given by

J = 1
2

(ddd− h (βββ))T
C−1

m (ddd− h (βββ)) + 1
2

(βββ − βββprior)T
C−1

β (βββ − βββprior) . (B.6)

The data ddd consists of 100 realizations of the true model. Three different models are used for the
observational covariance matrix, which are described in Appendix A. The prior has been chosen to be
βββprior = 1, such that the augmented model reduces to the base model. The prior of the corrective term
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Figure B.1: Model output for the base and true solution for several values of T∞.

is sampled using a selected prior variance, such that the observed temperature is within 2σ limits of
the prior PDF of temperature [22]. The goal is to find the maximum a posteriori (MAP) solution, i.e.

βββMAP = arg max
β

ρ(βββ | d) . (B.7)

However, as this optimization problem is high dimensional, gradient-based methods are required to
efficiently minimize the cost function J .

B.2. Discrete adjoint
The discrete adjoint approach, which is discussed in Appendix A, is used to calculate the derivatives
that are required for the gradient-based methods. These derivatives are given by (B.10) to (B.19).
The equations that govern the one-dimensional heat equation are solved using a second order central
difference scheme on an equidistant grid consisting of 31 nodes. The optimization routine uses the
Newton-CG method, which is described in Appendix A. The discretization of the true process is, which
is done using an iterative scheme, is given by

Ti = 1
2

[
Ti+1 + Ti−1 − (∆z)2

(
ε(Ti)

(
T 4

i − T 4
∞
)

+ h (Ti − T∞)
)]

. (B.8)

In a similar fashion the augmented model, including the spatial corrective term β(z), is discretized as

Ti = 1
2

[
Ti+1 + Ti−1 − (∆z)2

β(z)ε0
(
T 4

i − T 4
∞
) ]
. (B.9)

The first order partial derivatives of the cost function and the governing equations are given by

∂J

∂βi
= C−1

β,ij (βj − βprior,j) (B.10)

∂J

∂Tl
= −HilC

−1
m,ij (dj −HjkTk) (B.11)

∂Rj

∂βi
= 1

2
(∆z)2

ε0
(
T 4

j − T 4
∞,j

)
δji (B.12)

∂Rj

∂Ti
=
(
1 + 2 (∆z)2

βjε0T
3
j

)
δji − 1

2
δj,i−1 − 1

2
δj,i+1 . (B.13)
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Consequently, the expressions for the second order partial derivatives are given by

∂2J

∂βi∂βk
= C−1

β,ijδjk (B.14)

∂2J

∂βi∂Tk
= 0 (B.15)

∂2J

∂Tl∂Tn
= HilC

−1
m,ijHjn (B.16)

∂2Rj

∂βi∂βk
= 0 (B.17)

∂2Rj

∂βi∂Tk
= 2 (∆z)2

ε0T
3
j δjiδjk (B.18)

∂2Rj

∂Ti∂Tk
= 6 (∆z)2

βjε0T
2
j δjiδjk . (B.19)

B.3. Results
The results of the inversion phase are shown in Fig. B.2 for the various expressions of the observational
covariance matrix Cm, which are discussed in Appendix A. These figures show the temperature T ,
the corrective term β and the standard deviation σ for the base, MAP and true solution where the
surroundings temperature T∞ = 50. It can be seen that the MAP solutions for the temperature closely
resembles the true solution for all three observational covariance matrices. The MAP solutions for the
corrective term only resembles the true solution when the full covariance matrix is used. For the other
two covariance matrices, the MAP solution for β is especially erroneous near the center of the domain.
The MAP solution for the standard deviation is overestimated compared to the true solution when the
diagonal covariance matrices are used. Only the full covariance matrix yields a MAP solution for σ
that closely resembles the true solution. Parish and Duraisamy [22] used several cases for the inversion,
which are listed in Table B.1.

Table B.1: Various cases used for the inversion.

Case T∞ σprior βprior

1 5 20 1
2 10 2 1
3 15 1 1
4 20 1 1
5 25 0.5 1
6 30 1 1
7 35 1 1
8 40 1 1
9 45 1 1
10 50 0.8 1

The results of the inversion for the ten cases in Table B.1 are shown in Fig. B.3 for all previously
discussed types of observational covariance matrices. The radiative and convective term, βr and βc

respectively, are extracted from βmap and are plotted against the true solution. The radiative term
is shown along with uncertainty bounds. It can be seen that both the radiative and convective terms
have been inferred correctly for all the different covariance matrices. The uncertainty bounds decrease
as the amount of information contained in the covariance matrices increases. In both cases with the
diagonal observational covariance matrices, the posterior variance does not accurately represent the
true solution, especially at either high or low temperatures. However, the full covariance matrix yields
truly accurate results for the posterior variance compared to the true solution for the whole domain.
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Figure B.2: Comparison of temperature, corrective term and standard deviation distributions for the base, MAP and
true solution.
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Figure B.3: Inferred radiative terms, convective terms and posterior variances for the ten cases from Table B.1
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C.2. Framework 2 - Elliptic Blending Lag Parameter Model

C.2.1. Periodic Hill
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C.2.2. Converging-Diverging Channel
Models for b∆
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2T
(6)
ij

+ 0.28234I3T
(1)
ij − 0.05463I4T

(1)
ij + 1.0164I5T

(2)
ij

Mb∆
ij

=0.25944T (1)
ij + 7.3372T (2)

ij + 2.58012T (3)
ij − 3.03298T (4)

ij + 0.01566T (5)
ij − 1.30781T (6)

ij

− 11.56889T (7)
ij − 15.27834T (8)

ij + 1.33998T (9)
ij − 1.788I1T

(1)
ij − 30.6007I1T

(2)
ij

− 1.85445I1T
(3)
ij + 1.43566I1T

(4)
ij + 0.1527I1T

(6)
ij − 0.79727I1T

(7)
ij − 1.03581I1T

(8)
ij

+ 0.11001I1T
(9)
ij + 0.14627I1I2T

(1)
ij + 1.59455I1I2T

(2)
ij + 0.11I1I2T

(3)
ij − 0.15082I1I2T

(4)
ij

+ 0.0227I1I2T
(6)
ij + 0.02271I1I

2
2T

(1)
ij − 0.14886I2

1T
(1)
ij − 2.07357I2

1T
(2)
ij − 0.14161I2

1T
(3)
ij

+ 0.1138I2
1T

(4)
ij + 0.01206I2

1T
(6)
ij + 0.01188I2

1I2T
(1)
ij − 1.59973I2T

(1)
ij + 23.13778I2T

(2)
ij

+ 1.34249I2T
(3)
ij − 2.53178I2T

(4)
ij + 0.88954I2T

(6)
ij + 0.93586I2T

(7)
ij + 0.79611I2T

(8)
ij

− 0.14848I2T
(9)
ij + 0.89334I2

2T
(1)
ij − 1.87172I2

2T
(2)
ij − 0.14831I2

2T
(3)
ij + 0.25731I2

2T
(4)
ij

− 0.08833I2
2T

(6)
ij + 0.33182I3T

(1)
ij − 0.00587I3T

(2)
ij − 0.05036I4T

(1)
ij + 0.0751I5T

(1)
ij

+ 0.79669I5T
(2)
ij + 0.05504I5T

(3)
ij − 0.07536I5T

(4)
ij

Models for bR
ij :

MbR
ij

=0.71476T (1)
ij

MbR
ij

=0.95975T (1)
ij − 5.7521I1T

(1)
ij + 0.33623I1T

(6)
ij + 0.33623I1I2T

(1)
ij − 0.32471I2

1T
(1)
ij

− 0.34834I2T
(6)
ij − 0.34834I2

2T
(1)
ij

MbR
ij

=1.16672T (1)
ij + 5.41532T (6)

ij − 5.20379I1T
(1)
ij − 0.30963I2T

(6)
ij − 0.30963I2

2T
(1)
ij

+ 0.14949I5T
(1)
ij

MbR
ij

=1.33829T (1)
ij + 4.93208T (6)

ij − 4.74725I1T
(1)
ij − 0.25903I2

1T
(1)
ij + 4.93207I2T

(1)
ij

− 0.2774I2T
(6)
ij − 0.2774I2

2T
(1)
ij

MbR
ij

=1.33901T (1)
ij + 4.92864T (6)

ij − 4.74399I1T
(1)
ij + 0.26773I1T

(6)
ij + 0.26773I1I2T

(1)
ij

− 0.25881I2
1T

(1)
ij + 4.92863I2T

(1)
ij − 0.27717I2T

(6)
ij − 0.27717I2

2T
(1)
ij + 0.13386I5T

(1)
ij
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C.2.3. Curved Backward-Facing Step
Models for b∆

ij :

Mb∆
ij

= + 3.61771T (2)
ij

Mb∆
ij

= + 3.62135T (2)
ij + 3.97027T (3)

ij + 4.56464I1T
(1)
ij

Mb∆
ij

= + 4.89833T (2)
ij + 15.25939T (3)

ij + 11.09354T (4)
ij + −0.35979T (5)

ij + −11.25916T (7)
ij

+ 3.06022I1T
(1)
ij + −4.67446I1T

(3)
ij + −0.62571I1T

(8)
ij + −1.15903I2T

(1)
ij + 22.51906I2T

(2)
ij

+ 0.83324I2T
(7)
ij + −1.66655I2I2T

(2)
ij + −0.42844I2I2T

(4)
ij + −0.00573I3T

(1)
ij

Mb∆
ij

= + 5.07454T (2)
ij + 15.32806T (3)

ij + 11.24558T (4)
ij + −0.36293T (5)

ij + −10.99617T (7)
ij

− 9.5395T (8)
ij + 3.03859I1T

(1)
ij + −4.69373I1T

(3)
ij + −0.60254I1T

(8)
ij + −1.17477I2T

(1)
ij

+ 21.99308I2T
(2)
ij + 1.85897I2T

(4)
ij + 0.81904I2T

(7)
ij + −1.63816I2I2T

(2)
ij

− 0.42096I2I2T
(4)
ij + −0.0091I3T

(1)
ij

Mb∆
ij

= + 5.66993T (2)
ij + 15.33432T (3)

ij + 11.25222T (4)
ij + −0.38527T (5)

ij + −10.12681T (7)
ij

− 8.40056T (8)
ij + 3.02245I1T

(1)
ij + −16.74062I1T

(2)
ij + −4.69201I1T

(3)
ij + −1.17641I2T

(1)
ij

+ 20.25436I2T
(2)
ij + 1.85837I2T

(4)
ij + −0.00923I3T

(1)
ij

Models for bR
ij :

MbR
ij

= + 1.00552T (1)
ij

MbR
ij

= + 1.00556T (1)
ij + −0.01205I2T

(6)
ij + −0.01205I2I2T

(1)
ij

MbR
ij

= + 1.0056T (1)
ij + 0.01197I1T

(6)
ij + 0.01196I1I2T

(1)
ij + −0.01205I2T

(6)
ij + −0.01205I2I2T

(1)
ij

MbR
ij

= + 1.01701T (1)
ij + 0.00076T (3)

ij + 0.15453T (6)
ij + −0.15265I1T

(1)
ij + 0.01186I1T

(6)
ij

− 0.01177I1I1T
(1)
ij + −0.01194I2T

(6)
ij

MbR
ij

= + 1.02267T (1)
ij + 0.00076T (3)

ij + 0.15368T (6)
ij + −0.15181I1T

(1)
ij + 0.01181I1T

(6)
ij

+ 0.01181I1I2T
(1)
ij + −0.01172I1I1T

(1)
ij + 0.15364I2T

(1)
ij



D
Visualization of Discovered Models

This chapter visualizes the discovered models of both frameworks for the converging-diverging channel
and the curved backward-facing step. First, Appendix D.1 shows the discovered models of framework
1. Then, the discovered models for framework 2 are presented in Appendix D.2.

D.1. Framework 1 - Standard k-ω Model
Discovered models for b∆

ij for the converging-diverging channel.
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Figure D.1: Visualization of model-structure and mean-squared error of discovered models for b∆
ij .
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Discovered models for bR
ij for the converging-diverging channel.
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Figure D.2: Visualization of model-structure and mean-squared error of discovered models for bR
ij .
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Discovered models for b∆
ij for the curved backward-facing step.
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Figure D.3: Visualization of model-structure and mean-squared error of discovered models for b∆
ij .
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Discovered models for bR
ij for the curved backward-facing step.
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Figure D.4: Visualization of model-structure and mean-squared error of discovered models for bR
ij .
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D.2. Framework 2 - Elliptic Blending Lag Parameter Model
Discovered models for b∆

ij for the converging-diverging channel.
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Figure D.5: Visualization of model-structure and mean-squared error of discovered models for b∆
ij .
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Discovered models for bR
ij for the converging-diverging channel.
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Figure D.6: Visualization of model-structure and mean-squared error of discovered models for bR
ij .
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Discovered models for b∆
ij for the curved backward-facing step.
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Figure D.7: Visualization of model-structure and mean-squared error of discovered models for b∆
ij .
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Discovered models for bR
ij for the curved backward-facing step.
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Figure D.8: Visualization of model-structure and mean-squared error of discovered models for bR
ij .



E
Reduced Integrity Basis - Discovery of

Models
Visualizations of the discovered models using a reduced integrity basis for the construction of the
functionals of the corrective terms are shown in this appendix for the periodic hill, converging-diverging
channel and curved backward-facing step.

E.1. Periodic Hill
Discovered models for b∆

ij for the periodic hill.
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Figure E.1: Models for b∆
ij
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Discovered models for bR
ij for the periodic hill.
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Figure E.2: Models for bR
ij

The handpicked models for b∆
ij that are used for cross-validation are given by

Mb∆
ij

=6.95898T (2)
ij

Mb∆
ij

= + 0.25165T (1)
ij + 6.92702T (2)

ij + (−0.35278I1I2 − 9.22585I2)T (3)
ij

Mb∆
ij

=
(
+0.43473 + 0.19091I2

1 + 9.70161I2
)
T

(1)
ij +

(
7.51305 − 17.71277I1 − 0.59692I2

2
)
T

(2)
ij

+ (1.89102 − 0.20828I1I2 + −5.22528I2)T (3)
ij

Mb∆
ij

=
(
0.43281 + 0.18341I2

1 + 9.59916I2
)
T

(1)
ij + (7.78301 − 17.28072I1 + 10.23217I2)T (2)

ij

+
(
1.89125 − 0.20828I1I2 + −5.22565I2 + 0.19459I2

2
)
T

(3)
ij

Mb∆
ij

=
(
0.41372 + 0.73374I1 + 0.24649I1I2 + 0.08832I2

1 + 9.72807I2 − 0.20618I2
2
)
T

(1)
ij

+
(
7.78426 − 17.28148I1 + 0.61479I1I2 − 0.96481I2

1 + 10.21625I2 − 0.53598I2
2
)
T

(2)
ij

+
(
1.85382 + 1.05331I1 − 0.20802I1I2 + 0.02296I2

1 − 5.2245I2 + 0.19449I2
2
)
T

(3)
ij

The models for bR
ij are given by

MbR
ij

= + 1.19914T (1)
ij

MbR
ij

= + (1.40553 − 6.09944I1)T (1)
ij

MbR
ij

= +
(
1.57506 − 5.76062I1 + 0.25543I1I2 − 0.27876I2

1 + 5.28283I2 − 0.25327I2
2
)
T

(1)
ij

− 0.32T (3)
ij
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E.2. Converging-Diverging Channel

Discovered models for b∆
ij for the converging-diverging channel.
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Figure E.3: Models for b∆
ij

Discovered models for bR
ij for the converging-diverging channel.
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The handpicked models for b∆
ij that are used for cross-validation are given by

Mb∆
ij

= + 4.21876T (2)
ij

Mb∆
ij

= + 4.22119T (2)
ij + 4.21171T (3)

ij

Mb∆
ij

=
(
−4.05436I1I2 + 6.02149I2

1 − 0.18528I2
1I2 + 4.8606I2

2
)
T

(1)
ij

+
(
5.8024 − 36.14688I1 + 2.5181I1I2 − 2.49549I2

1 − 3.40126I2
2
)
T

(2)
ij

+
(
4.13554 − 0.17882I2

1 − 2.39583I2
)
T

(3)
ij

Mb∆
ij

=
(
−4.08109I1I2 + 6.04517I2

1 − 0.18645I2
1I2 + 4.92323I2

2
)
T

(1)
ij

+
(
6.81951 − 33.19336I1 + 1.88849I1I2 − 2.29006I2

1 + 27.95848I2 − 2.34506I2
2
)
T

(2)
ij

+
(
4.14045 − 0.179I2

1 − 2.38987I2 + 0.07884I2
2
)
T

(3)
ij

Mb∆
ij

=
(
0.02291 + 2.37067I1 + 0.0113I1I2 + 0.03687I1I

2
2 + 0.18755I2

1 + 0.00109I2
1I2

−1.09365I2 + 1.02595I2
2
)
T

(1)
ij

+
(
6.82186 − 33.13731I1 + 1.88909I1I2 − 2.286I2

1 + 28.00653I2 − 2.35189I2
2
)
T

(2)
ij

+
(
4.12896 − 0.17807I2

1 − 2.46437I2 + 0.08235I2
2
)
T

(3)
ij

The models for bR
ij are given by

MbR
ij

= + 0.65327T (1)
ij

MbR
ij

= + (0.91897 − 6.17912I1)T (1)
ij

MbR
ij

= +
(
1.15185 − 5.63738I1 + 0.32064I1I2 − 0.31167I2

1 + 5.81464I2 − 0.33034I2
2
)
T

(1)
ij

E.3. Curved Backward-Facing Step
Discovered models for b∆

ij for the curved backward-facing step.
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Figure E.5: Models for b∆
ij
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Discovered models for bR
ij for the curved backward-facing step.
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The handpicked models for b∆
ij that are used for cross-validation are given by

Mb∆
ij

= + 124.67831I1T
(3)
ij

Mb∆
ij

= +
(
10.82959 + 3.98802I1 + 0.25672I2

1
)
T

(3)
ij

Mb∆
ij

= − 9.83914I2
1T

(1)
ij

+
(
1.93579 + 21.83418I2

1I2 + 0.94322I3
1I2
)
T

(2)
ij

+
(
124.568I1 + 5.89434I2

1
)
T

(3)
ij

Mb∆
ij

= − 10.18305I2
1T

(1)
ij

+
(
1.77897 + 2.44229I3

1I2
)
T

(2)
ij

+
(
10.83217 + 3.99599I1 + 0.25722I2

1
)
T

(3)
ij

Mb∆
ij

=
(
−2.74583I1 − 0.58551I2

1
)
T

(1)
ij

+
(
3.11166 − 22.14415I1 − 2.7238I1I2 + 5 exp −05I1I

4
2 − 0.18466I2

1I2 − 0.00026I2
1I

4
2

−0.00925I3
1I2 + 0.28099I2

)
T

(2)
ij

+
(
10.84359 + 3.97393I1 + 2.61039I1I2 + 0.17774I1I

2
2 + 0.25532I2

1 + 0.12292I2
1I2

+0.04917I2
1I

2
2 + 0.00383I3

1I
2
2
)
T

(3)
ij

The models for bR
ij are given by

MbR
ij

= + 0.9289T (1)
ij

MbR
ij

= + (0.93496 − 0.15839I1)T (1)
ij

− 0.00072T (3)
ij

MbR
ij

= +
(
0.94098 − 0.15759I1 + 0.01192I1I2 − 0.01193I2

1 + 0.1569I2 − 0.01194I2
2
)
T

(1)
ij

− 0.00071T (3)
ij
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