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Introduction 1

Figure 1.1: Depth information being used
for gesture recognition

Nowadays, with the fast moving advance
of technology, vehicles such as drones or
self-driving cars that need to ”see in 3D”
are increasing in popularity. One way
for devices to gather such information
is through stereo vision, which is a
technique aimed at inferring depth from
two or more passive cameras by finding
corresponding points in the images.
The information gathered this way is
required in numerous machine vision
applications to perform more advanced
tasks. Being a widely researched
topic, such applications are increasing
in popularity and, as a result, more
solutions are becoming available.

One category of devices that can use this type of information is composed of laptops
and tablets. For example, laptops equipped with such cameras can recognise and respond
to facial expressions and hand gestures, so users can interact with them more naturally
like in figure 1.1. Since software development kits for camera-equipped platforms are
starting to become available, it is very probable that we can expect the range of
applications to increase.

A system of cameras can also be mounted on other devices for different utilisation.
This has proven useful in applications such as collision avoidance [3], traffic conflict
analysis [4] or 3D reconstruction [5]. Since this are mostly real-time systems1, it is
desired that the camera information be processed as fast as possible.

These more advanced applications that require depth as input are usually mapped to
other hardware elements such as GPUs or other devices that are specialised in graphical
processing. The main reason Intel is interested in this algorithm is because it is an
essential processing element in their RealSense technology that is used for applications
such as gesture control [6].

1.1 Problem statement

The algorithms used to extract the depth information from video stereo camera systems
require a high computational load, explaining why existing solutions require expensive

1In this case, real time should be more than 25 frames per second, in order to create a smooth
sensation for the human eye
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2 CHAPTER 1. INTRODUCTION

high-end platforms that are not suitable for commodity hardware. There is a large
number of articles that provide solutions based on FPGA and GPU that can achieve
high frame rates and excellent image quality. However, their high-cost is not suitable for
entry-level solutions.

Application specific integrated circuits can also be used to detect depth and have
the advantage of offering superior performance. Currently, Intel utilises such a solution
to obtain a high number of frames per second. However, the ASIC manufacturing costs
are high, preventing the adoption of stereo vision applications for low-end solutions.
A less expensive solution would facilitate the integration of stereo vision solutions into
commodity hardware. Therefore, in this thesis we investigate the tradeoffs in terms of
performance, accuracy and power of porting the available algorithm used in the ASIC
implementation on a custom-designed image processor.

By eliminating the ASIC, it is expected to achieve a lower frame rate since the same
level of parallelism can not be reached. This decrease in performance is tolerable as long
as the frame rate remains above the speed of the human vision system and does create
a bottleneck for the rest of the computer vision system.

1.2 Approach

The use of a programmable embedded processor in computer vision systems allows to
introduce new algorithm modifications quickly by just adjusting the application code
without requiring to redesign the complete hardware architecture.

Very few depth detection solutions with of the shelf processors exist, and
unfortunately they are not able to provide sufficient speed for most applications.
Partitioning the algorithm on multiple cores, using Single Instruction, Multiple Data
(SIMD) extensions or extending the processor with new functional units are approaches
that have proven useful in the past for reaching greater performance.

Very Long Instruction Word (VLIW) processors can be very efficient when it comes
to multimedia applications [7] motivating the search using such a solution. In order to
reach a high frame rate, the algorithm needs to be adapted to take advantage of the
capabilities of the platform while maintaining the same image quality. A large number
of parameters present in the algorithm provide multiple opportunities for this.

The most computational intensive parts of the algorithm are dealt with by extending
the hardware with different processing elements. Despite increasing the area of the
processor, this can provide a significant speedup. Experiments with various hardware
configurations are possible by using the tools provided in the processor development kit.

1.3 Goal

Obtaining fast depth information on the Intel Image Processing Unit (IPU) while
maintaining the size of the core withing a tolerable range is the primary goal of this
work. As a result, we expect to provide an alternative to the previously mentioned
costly platforms that can achieve good performance. Eliminating the currently used
ASIC reduces the cost of the platform, especially for low-end solutions. Since the

build 0.9



1.4. STRUCTURE 3

manufacturing cost of the ASIC is significant, a large core would be cheaper for the
company to fabricate.

1.4 Structure

The thesis is structured the following way. Chapter 2 provides a background for depth
detection algorithms and describes standardised metrics for quality and speed evaluation.
The focus is more on fast and less on accurate algorithms, since obtaining a high frame
rate solution is the primary objective of this work.

Chapter 3 gives an overview of related works and briefly describes the approach that
each one of them used. Both FPGA and CPU implementations are considered and
their performance in terms of Millions of Disparity Evaluations per Second (Mde/s) is
recorded. For a more detailed survey on existing stereo vision solutions, the reader is
referred to the work by Tippets and Archibald [8].

In chapter 4 the general architecture of the system on which the algorithm will be
tested is described. This system contains the VLIW processor and the elements required
for controlling it and for data transfer.

Chapter 5 presents the algorithm that is used on the ASIC and evaluates the initial
porting of it on the VLIW processor. The bottlenecks are identified and described for a
better understanding of where improvements can be provided.

In chapter 6 the identified bottlenecks are addressed, and possible solutions are
explored. Both hardware and software solutions are considered, and the overall effect on
the performance is examined. Software solutions are preferred because they require no
extra hardware.

Chapter 7 presents the experimental setup and a summary of the results obtained
and compares them to other available solutions.

Finally, chapter 8 draws the conclusions and highlights other possible improvements
that have been left unexplored and that can provide better accuracy at higher speed
rates.

build 0.9



4 CHAPTER 1. INTRODUCTION
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Depth Detection Background 2
Our world is three-dimensional while images are two-dimensional; they represent the
projection of the world on the 2D plane. To detect how far objects are from us, we
use both eyes and calculate the difference between what the left eye and the right eye
perceive. The more different the left and the right eye see the object, the closer it is to
the human observer.

The book by Szeliski [9] provides an intuitive example of this concept. By holding
one finger in front of our eyes and closing them alternatively, we can see how the finger
jumps from one side to the other.

Similarly, at least two cameras are required to capture the 3D nature of a scene
and emulate the human vision system. Knowing the exact position of the cameras and
the difference between the images, the depth of a scene can be captured. There are an
abundance of algorithms that can be used and [10] provides an extensive survey along
with a taxonomy that has been widely adopted.

Left image 
preprocessing

Depth map 
calculation

ApplicationDepth map

Right image  
preprocessing

Left image

Right image

Camera 

calibration 

information

Camera 

calibration 

information

Figure 2.1: The General Data Flow of any Depth Detection Algorithm

Typical applications of such algorithms will have a structure very similar to the one
in figure 2.1. Here, we can notice that the depth calculation is only a small part of a
much larger application. Because of this, the depth map calculation should be done in
real-time. Real-time can be defined as completing a task within an a priori specified
time frame [11] which in this can should be 42ms in order to be able to achieve a frame
rate of 24 fps which should be sufficient for the human vision system.

In this chapter, section 2.1 provides a brief introduction of the terminology used by
this application and how a typical use case would be. In section 2.2 a short description

5



6 CHAPTER 2. DEPTH DETECTION BACKGROUND

and classification of this algorithms can be found and finally 2.3 provides the metrics for
image quality and speed.

2.1 Depth Detection Terminology

The first step of such an application involves a general correction of the images so that
errors caused by elements such as lenses, sensors or transmission elements are eliminated.
At the same time, the camera images are aligned by applying a separate transform to
each to limit the disparity search to a horizontal axis. This step is critical because it
reduces the search domain from a 2D one to a 1D one [12] and is known in the literature
as the epipolar constraint.

Various other steps such as white balance correction, gamma correction, dead pixel
removal or downscaling are performed in this phase. These are heavily dependent on the
camera, especially on the photographic system, and is beyond the purpose of this work.

The two rectified images are sent to the disparity map algorithm that detects the
depth of the elements based on the differences between the two images. Information
regarding the focal length and distance between the two cameras is also provided to
transform the pixel difference into actual depth information as can be shown in figure 2.2:

Focal length(f)

Z

XRXL

Baseline (B)

p p 

O

Figure 2.2: Geometrical View of the Stereo Vision Computational Elements

where:

• O is the object of interest

• p and p’ are the projection of the object on left and right camera lenses

• XL and XR represent the position of the projection on the camera lenses

• Z is the actual distance from the object to the observer
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2.2. OVERVIEW OF DISPARITY CALCULATION 7

Based on the above definitions, the distance of the pixel can be extracted easily by
applying some geometrical properties that lead to equation 2.1. The equation specifies
that the distance to the object is indirectly proportional to the disparity.

Z =
b ∗ f

XL −XR
=
b ∗ f
d

(2.1)

where:

• Z is the actual depth of the object

• d is the measured disparity or, in other words, the difference between the relative
position of the object in the right image versus the one of the object in the left
image

• b is the baseline or the distance between the optic center of the two cameras

• f the focal length of the camera

The final step involves sending the depth map to other computer vision algorithms
as an input.

2.2 Overview of Disparity Calculation

The term disparity was first introduced in the human vision literature to describe the
difference between what the left and right eye see. This can be regarded as the inverse
of the depth, and the terms are often used interchangeably.

There is an abundance of approaches that can be used to calculate the disparity map;
however, the task that each one of these algorithms has to perform is actually the same
operation. The correspondence between pixel (x,y) in reference image r and pixel (x’,y’)
in matching image m has to be calculated.

This correspondence is given by

XL = XR + s ∗ d, YL = YR

where s = ±1 is a sign chosen so the depth map pixel is always positive and d has been
defined in equation 2.1 as the position of the best matching candidate in the reference
image.

2.2.1 Processing stages

Scharstein and Szeliski [10] identify a few common steps that are present in every such
algorithm. This methodology of structuring algorithms has been adopted by the majority
of computer vision publications:

1. Matching cost computation;

2. Cost (support) aggregation;

3. Disparity computation / optimisation

4. Disparity refinement

build 0.9



8 CHAPTER 2. DEPTH DETECTION BACKGROUND

Matching cost computation

In this step, a cost of matching individual pixels is defined such as similar pixels have a
lower penalty in the matching process. Popular methods include the sum of the square
difference, absolute difference or hamming distance [13] of the census transform.

For example, the absolute difference between pixels corresponding to the same object
will likely result in a value smaller than the value between pixels corresponding to
different objects.

Cost (support) aggregation

Pixels in proximity will likely have the same disparity because they belong to the same
object. This provides the opportunity to reduce noise by gathering information from
neighbours.

The simplest methods just sum all surrounding pixels inside a small window whereas
more advanced methods sum them only if they belong to the same object. One method
to determine if pixels belong to the same object is to compare colour information or
intensity information.

Disparity computation / optimisation

Based on previously calculated differences between pixels the best candidate is selected.
The easiest and most popular method (also known as winner take it all) just chooses
the pixel with the lowest aggregated matching cost. Although other methods exist, this
proves to be the simplest and most reliable one.

Disparity refinement

This is an optional step that provides further refinement. An important step that can
be performed here is filling the pixels that have been detected incorrectly by gathering
information from the surrounding pixels that are reliable. Favourite filters that are used
to fill this incorrectly matched pixels are median filters or bilateral filters.

2.2.2 Algorithm types

There are two categories of algorithms (not mutually exclusive) that can be used to
achieve the desired depth map:

• Local algorithms that aggregate the matching cost over a small window

• Global algorithms that minimise a cost function in all images being compared

Local approaches are less accurate but are a lot faster and usually can be implemented
in a pipelined manner. They also require a lot less memory than global ones, which makes
them more suitable for embedded systems.

Global methods are a lot more precise but rely on random access in the 2D image
data and can not be performed fast on vector machines. They rely on minimising a
global energy function, which in many cases has the following general form:
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2.3. ACCURACY AND RUNTIME EVALUATION 9

E(d) = Edata(d) + Esmooth(d)

Most of the top ranking algorithms are based on global methods, but there are a few local
algorithms that manage to come close to the performance obtained by global methods.

A third category of algorithms called semi-global methods can be defined. These try
to take the best of both worlds by performing global optimisation only over a subset of
the image and usually really on techniques very similar to the one defined by Hirschmuller
in [14]

2.3 Accuracy and runtime evaluation

To test the quality of the resulting depth map, the framework proposed in [10] and
available at [15] is used. This framework measures the average percentage of bad pixels
by comparing them to the ground truth; this has become a standard for determining
the accuracy of stereo vision algorithms. The three error measurements are for all pixels
(all), non-occluded pixels(noocc)1 and discontinuities(disc)2. Based on this hierarchy is
created, and the quality of the resulting disparity image is evaluated.

More explicitly, the following are used as quality metrics of the algorithm:

1. Root MeanSquared (RMS) error between the computed image and the ground
truth

R =

√√√√ 1

N

∑
(x,y)

‖dc(x, y)− dt(x, y))‖2

where N is the total number of pixels

2. Percentage of bad pixels

B =
1

N

∑
(x,y)

(‖dc(x, y)− dt(x, y))‖ > δd)

where δd is a disparity tolerance error

Figure 2.7 shows the test images from the Middlebury website. New algorithms are
ranked based on how well they compute the disparity map of these images by calculating
the RMS between the ground truth images and the output of the new algorithm.

An alternative for this benchmark can be found at [16] where images captured from
a car driving in the city of Karlsruhe are used. The authors claim that some of the top
ranking methods from [15] are not reliable and that their method of ranking is more
effective. Despite this, since the Middlebury website is more widely used, it was used as
the default testing environment.

Apart from accuracy, a method to measure runtime based on image size and number
of disparities is needed. For this purpose, the millions of disparity evaluations per second,
proposed in [8], is used.

1pixels that are not available in both images
2pixels near edges
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10 CHAPTER 2. DEPTH DETECTION BACKGROUND

Figure 2.3: Cones test image Figure 2.4: Teddy test image

Figure 2.5: Tsukuba image Figure 2.6: Venus image

Figure 2.7: The default four images used by Middlebury to test the resulting disparity
map

Mde/s =
W ×H ×D

t
× 1

1, 000, 000

where W denotes image width, H denotes image height, D denotes the number of
disparities and t denotes the total execution time in seconds.

As mentioned in the introduction, for the requirements of the Intel platform, it would
be ideal to have a system that runs in real-time. The disparity map for a pair of stereo
images of VGA size (640 * 480) should run at least at 25fps. In other words, the proposed
system should go beyond 491Mde/s.

2.4 Conclusion

Depth can be detected efficiently estimated using a pair of stereo cameras and an efficient
processing algorithm.By knowing information about the position of the cameras and
analysing the resulting disparity map, an estimation of the depth of objects can be
provided. Given that for our implementation speed is the primary target and not image
quality, local algorithms are the best choice.

The Mde/s metric is the best option for evaluating the speed of algorithms since it
has been widely adopted by most researchers and provides relevant information about
the speed of implementations. Accuracy can be efficiently measured using the percentage
of bad pixels metric that has been standardised due to the Middlebury test framework.
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Related Work 3
Similar to other algorithms used in computer vision applications, depth detection
algorithms offer a significant amount of parallelism that can be exploited for fast
processing speed. Therefore, it is no surprise that the more parallelism the platform
offers, the better the results.

Many FPGA and GPU implementations are able to produce excellent performance
both in terms of speed and quality. These are usually orders of magnitude faster than
any other implementations; however the high cost of such a platform makes it very
unattractive for general-purpose commercial applications.

Currently, there are very few general purpose computers or embedded platforms that
have managed to obtain reasonable results. Even taking advantage of the newest SIMD
extensions and partitioning the algorithm on multiple cores is not sufficient to be able
to reach real-time performance for large images and obtain good quality results.

A common trade-off to get real-time performance is to sacrifice the accuracy of the
resulting image for speed. Despite the many different types of solutions, the fastest ones
are based on local or semi-global approaches that can be explained by the fact that global
methods are severely impacted by the memory requirements of any system and access
data in a random fashion. An excellent starting point for evaluating algorithms suitable
for resource constrained systems can be found in [17] and [8].

In this thesis, by utilising the Intel Image Processing Unit (IPU) an alternative to the
previously mentioned costly platform is proposed, which is able to achieve significantly
better performance.

This chapter is split into two sections to provide an overview of other solutions
available at the moment. The first section overviews some FPGA solutions and the
following one evaluates CPU-based solutions.

3.1 FPGA-based Solutions

FPGA are one of the fastest available platforms for creating depth maps. This category
composes the largest amount of implementations and provides excellent performance
compared to all other solutions. Despite this, the high cost makes them unattractive for
a low-cost commercial solution.

Sum of Absolute Differences (SAD) and census transform are some of the most
popular matching costs found on this type of platforms because of their robustness
and simplicity. Some implementations even combine the two matching costs and obtain
better reliability. The high speed that they are able to obtain can be explained by the
fact that all of them use fixed region aggregation, which is computational inexpensive
compared to other options.

11
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Platform Resolution fps Mde/s Matching method

Altera Cyclone V [18] 2048x2048 (16) 30 2,013 SAD
Xilinx Virtex IV [18] 640 x 480 (60) 230 4,239 Census
Quartus II [19] 450 x375 (60) 599 6,062 SAD
Xilinx Virtex V [20] 1920x1200 (64) 87 12,828 ADCensus

Table 3.1: Available Field-programable gate arrays implementations

Table 3.1 presents a list of some of the fastest FPGA solutions available at the
moment. The resolution and frames per second that each one is able to obtain is
converted into Millions of Disparity Evaluations per Second (Mde/s) and used for
ranking. All articles mention the used matching method but unfortunately, only one of
the solutions described here provides measurements on all 4 images on the Middlebury
framework.

An implementation on the Altera Cyclone V FPGA can be found in [18]. By using
a 7x7 window for both SAD calculation and region aggregation, they are able to reach
2,013 Mde/s. This design makes efficient use of a four stage pipeline in which at every
stage the number of candidates for the best disparity estimation is reduced by half. In
this case, the total number of evaluated candidates determines the size of the pipeline
and as a consequence the number of buffers that are used.

Jin et al. [21] implement a complete solution that contains a rectification module, a
stereo processing module and a post-processing module. The census transform is used
together with a modified winner takes it all module that provides sub-pixel accuracy.
This is one of the few FPGA solutions that report their accuracy on all 4 images of the
Middlebury evaluation framework. They are able to achieve an accuracy of 86%.

The work presented by Ambrosch et al. [19] is one of the earliest that manages to
obtain excellent results by implementing sum of absolute difference on an Altera Quartus
II FPGA. The key element in their implementation is that they manage to divide the
image into blocks and process them in parallel. A Tree-Based minimum selector is
used to select fast the best matching candidate. The authors experiment with different
aggregation window sizes and finally conclude that by using a window of size 9 x 9
the optimal resource usage. Unfortunately, they only report their results on one of the
images on the Middlebury test suit, which does not provide conclusive results regarding
accuracy.

At the time this work was written, the fastest FPGA implementation is on Xilinx
Virtex V [20]. The authors use a series of fully pipelined adders and comparator trees
in order to obtain a very high throughput. They utilise the census transform combined
with the absolute intensity difference from the image and fixed region aggregation in
a 5x5 window. In the final step, incorrectly matched pixels are replaced by correctly
matched ones using a technique called Scan-line belief Propagation. Unfortunately, the
authors do not report any information regarding the quality of the resulting image.
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3.2. CPU-BASED SOLUTION 13

3.2 CPU-based Solution

CPU implementations are quite slow at the moment and do not come close to their FPGA
or GPU counterparts. In order to achieve reasonable performance, a large variety of
techniques have been utilised. The processors that offered the highest level of parallelism
are the ones with the best performance.

Table 3.2 lists the available CPU-based implementations found in literature alongside
their performance results. Here we can notice that authors either use the rank transform
together with Semi-Global Matching (SGM) or the Census transform with fixed Region
Aggregation (RA). As described in [13] there should be no difference between the rank
transform and the census transform but it is more difficult to compare fixed RA with
SGM.

Platform Resolution fps Mde/s Algorithm

Freescale P4080 [22] 640x480 (91) 1.5 42 Rank + SGM
Intel Pentium IV [23] 320x240 (32) 21 51 Census + RA
TI C6416 [24] 640x480 (50) 3.8 58 Census + RA
AMD Opteron [22] 225x187 (32) 26 79 Rank + SGM
Core 2 Duo [25] 320x240 (30) 42 96 Census + RA
Tensilica LX2 [26] 640x480 (64) 20 393 Rank + SGM
Generic VLIW [27] 640x480 (64) 30 589 Rank + SGM

Table 3.2: Available general purpose processor implementations

A common technique to obtain better performance is to accelerate the computational
intensive tasks using SIMD instructions. This approach has been utilised in [23] where
SSE2 instructions available in Intel Pentium 4 are utilised. A similar approach but on a
more powerful platform namely Intel Core 2 Duo can be seen in [25] where both cores
are utilised together with the newer SSE3 instructions.

Another approach is found in [22] where they utilise a very powerful 8-core embedded
platform from Freescale that runs at 1.3GHz. Despite the high computational power of
such a platform, the lack of SIMD instructions prevents achieving good throughput.
The authors evaluate performance both by using OpenMP and by using TBB. The
same authors implement for reference purposes the algorithm on an AMD Opteron and
compare the results. The quad-core AMD processor together with its SIMD instructions
is able to provide better results due to its higher frequency.

A VLIW implementation with good results can be found in the work presented by
Humenberger et. al. [24] [1], where they use a Texas Instruments C6416 DSP to
implement a census transform based algorithm. Although this implementation is not
able to reach real-time speed for VGA images, this low-cost embedded platform still
manages to outperform more expensive processors such as the AMD Opteron. This
implementation is also able to provide very good results, reaching a report accuracy of
91% on the Middlebury test suits

Extending the instruction set of VLIW processors with SIMD instructions has proven
to be the best approach for depth estimation. The combination of this instructions
together with the already available parallelism of VLIW cores is the best combination.

build 0.9
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In one such implementation [27] they define a technique called X4 operation mode
that allows the use of FU with wider inputs/outputs without increasing the number
of operations. By using a bit-true, cycle-true simulator together with an enhanced
instruction scheduler, they were able to achieve 30 fps for a VGA image. Despite the
very good simulation results, there is no mention of synthesizing the core.

The same authors further improve their design in [26] where they modify the
Tensilica LX2 by adding new instructions and modifying the memory system. The
SIMD instructions they implement are able to process 64 pixels at a time, which gives
them a significant advantage. Although this approach is very effective it leads to an
area increase of 2.9 from the original base processor. At the current this work is being
written, this is the fastest synthesizable core.

3.3 Conclusion

In order to reach high speed, most implementations started from an accurate algorithm
and eliminated the components that proved difficult to implement on their platform.
Unfortunately, only very few authors have reported the accuracy of their results and
thus an analysis of the speed versus image quality becomes difficult. Only the maximum,
accuracy of the original algorithm can be evaluated.

A large number of FPGA solutions are able to provide a high throughput due to the
high parallelism that they offer. However, the high price and energy consumption of this
platforms does not make them viable for low-end solutions.

Compared to this, CPU-based solutions are much slower. Their performance is
usually orders of magnitude smaller than that of FPGA solutions. Despite this, some
have managed to reach real-time performance for poor resolutions. SIMD-enabled VLIW
cores are the only ones that are able to achieve real-time performance due to the intrinsic
parallelism that they offer.

A reprogrammable embedded core would be ideal for a low-cost commercial solution.
In the following chapters, such a solution is proposed.
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Intel IPU Hardware
Architecture 4
In this chapter, an overview of the system that will be used is described. The focus is
mostly on the VLIW vector core since it is responsible for the computational intensive
tasks.

Section 4.1 provides a high-level description of the system and the tools for modifying
it. Section 4.2 briefly presents the different functional units and section 4.3 provides an
overview of the memory system. Finally, in 4.4 the core that will be used as a starting
point for exploring enhancements is presented.

4.1 High-level Architecture Description

The Intel hardware platform used in this work is composed of two main elements, a host
processor and a VLIW vector coprocessor as shown in figure 4.1. The host processor is
actually an untimed C model, compiled in GCC . The main tasks of the host processor is
to initialise the system, upload the program kernel to the VLIW and control its execution
by starting/stopping it. It is also responsible with loading the data that will be processed
onto the VLIW.

Figure 4.1: High-level View of Intel IPU Hardware Architecture

Because the VLIW core is responsible for doing computational intensive image
processing, it contains multiple issue slots designed for either vector processing or scalar
processing as seen in figure 4.2. There is separate data memory for the scalar issue slots
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16 CHAPTER 4. INTEL IPU HARDWARE ARCHITECTURE

and separate data memory for the vector issue slots. The program memory contains long
instruction of 512 bits, sufficient for every processing element.

Figure 4.2: General architecture of a the VLIW processor

The process of enhancing the core can be observed in figure 4.3. The modular design
is based on the fact that individual blocks that have been previously created using a
hardware description language can be easily added. The Intel proprietary language
called The Incredible Machine (TIM) can be used to describe the structure of the core.
Another proprietary language called Hive System Description (HSD) can be used to
design the connections between the core and other elements of the processor.

By knowing the exact domain in which the processor will be used, it can be
easily tuned by adding new functional units to execute specific instructions. For
example, for signal processing applications which are known to require a large number of
multiply-accumulate operations, more such dedicated units can be added by modifying
the TIM file.

In order to easily implement applications on the newly generated hardware, a
retargetable compiler is required. It can be seen in figure 4.3 how the compiler uses
information from the same hardware description previously mentioned.

Applications are written in ANSI-C. In order to obtain high instruction-Level
Parallelism (ILP) and take full advantage of what the processor has to offer, the compiler
requires a lot of help from the programmer. Intrinsics can be used to tell the compiler
what functional unit to use and make its job easier. Loop unrolling and software
pipelining can dramatically decrease the run-time.

The purpose of all the previous tricks is to obtain a high scheduling density and keep
the issue slots as busy as possible. A good schedule is one that manages to occupy more
than 70% of the issue slots at any given time during the execution.
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Figure 4.3: Processor generation flow

4.2 Functional Units

Each issue slot contains dedicated Functional Units (FU) supporting a variety of
instructions. While some are present in most issue slots since the functionality
they perform is very common (for example addition), others perform only specialised
instruction and are fewer in number.

A loose categorisation of these units would be the following:

• Load/store units which are used to transfer information from vector memory to
the registers.

• Register transfer units that are used to transfer information from one register
to other registers. Required in order to pass information between issue slots and
avoid storing intermediary data.

• Arithmetic and logic units which are the most numerous ones and are
responsible for doing the actual computations. These units are small and have
a very small latency.

• Accelerators are much larger units and are responsible for doing more complex
operations. When operations with a high computational load become common, an
accelerator is created for them.

Calculations are performed in a pipelined manner by each unit and so even though
the latency for some units is quite large, efficient programming can provide a high
throughput.

Figure 4.4 shows how functional units are located inside issue slots. Communication
between different functional units is also displayed. In order for a functional unit to
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18 CHAPTER 4. INTEL IPU HARDWARE ARCHITECTURE

Figure 4.4: Core architecture template

access the data it first must be stored in the register corresponding to it. An extensive
interconnect network is used for this purpose.

A normal flow of operations would go in the following manner. A load/store unit
would load data from the vector memory to the a register corresponding to the required
processing unit, then the resulting data would be passed to another processing unit by a
register transfer unit for further processing. When the output data is ready, it is stored
to the vector memory by a load/store unit.

4.3 Memory Hierarchy

Image processing and computer vision systems require a large amount of fast memory in
order to handle the amount of data involved. Intel IPUs contains a few dedicated types
of memory that can be used for such purpose.

There are two basic vector data elements that can be used to store such information:

• A vector is composed of 512 bits that can be used to store 32 elements of 16 bits
each. If more then 16 bits per elements are required, then two such vectors are
needed and used side by side. At the moment there is no possibility to store more
elements of smaller size.

• Slice is composed of 64 or 128 bits, depending on the processor, that can be used
to store 4 or 8 elements of a vector. By storing the last or first elements of a
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4.3. MEMORY HIERARCHY 19

vector in such a structure, data dependencies at the edge of vectors can be handled
without using the full neighbouring vectors.

RAM

VMEM/BAMEM

Reg

Memory hierarchy

Figure 4.5: The vector memory hierarchy of a typical processor

In figure 4.5 the memory hierarchy of such a system can be observed. This structure
can be adapted for the desired system according to preferences. Smaller processors for
example, do not contain block access memory.

4.3.1 Registers

Each issue slot is connected to three types of registers files and can access data only
through this registers as can be seen in figure 4.6. Based on their size and design
purpose, 3 types of registers can be identified:

• Scalar register used for control, 32 bits width.

• Slice register that contains only a part of a vector that can be used together with
a vector

• Vector registers of 512 bits that process the actual elements

Data can be transferred between registers corresponding to different issue slots using
pass operations which are performed by FUs incorporated in every issue slot. Loads and
stores into registers from BAMEM and VMEM is done using specialised FUs that can
be found in only one issue slot.
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Figure 4.6: Registers and issue slot connections

A single load/store unit can be connected to an individual memory so only one
element can be accessed at a time. Despite this, by pipelining a throughput of one
vector per clock cycle can be read.

4.3.2 VMEM

This can be considered a type of vector cache memory that only supports 512 bits aligned
accesses. In this type of memory either vectors or slices can be stored.

This type of memory can be found on the core(VMEM) or outside the core(XVMEM)
and is accessed and loaded into the register using a specialised FU. Transferring data
between the VMEM and the BAMEM can be done only via the registers. When the bus
is free, this memory can be accessed directly by the host.

4.3.3 BAMEM

Block Access Memory (BAMEM) is a more advanced type of vector memory that
supports fine access granularity of one element of a vector for both loads and stores.
This means that the access address is element aligned and not vector aligned as with
VMEM. It can also be configured as a Lookup Table (LUT) table. In addition to this,
it also supports all the features of the VMEM [28].

The BAMEM is more expensive than the VMEM and is not implemented in all cores.

4.4 Original Core Specifications

A small core will be used as a starting point for exploring the performance of depth
detection algorithms on Intel Image Processing Units. This core was originally designed
to be used in wearable products but the project for it has been discontinued. Despite
this, it is stable and manages to run applications without any problems.

Relying on SIMD instructions, the core contains vector memory with a maximum
capacity of 2048 elements. Since each vector element contains 512 bits, which is divided
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into groups of 16 bits each, we can conclude that a maximum of 65,536 individual
elements can be kept in memory at even given time. Image data is transferred from
the host processor directly into this vector memory.

Program memory

Scalar memory

Scalar processing

VMEM

VLIW processor

Vector memory

Load/store Load/store

VLIW instructionProgram counter

IS 1 IS 2 IS 3

Figure 4.7: The structure of the initial core

As can be seen from figure 4.7 the core contains only 3 vector issue slots. Only the
most basic functional units are present. Each issue slot is connected to a vector register
file with 24 elements. There are no accelerators available and no block access memory,
since this elements are very expensive.

This is a very light core compared to other image processing cores that Intel develops.
This makes it very power and area efficient. It can be synthesized at 500Mhz.

4.5 Conclusion

The Intel IPU is a very efficient platform for image processing tasks and can also be an
excellent candidate for depth estimation. The multiple issue slots combined with the
vector processing capabilities enables a high level of parallelism that can be efficiently
exploited.

We start with a light core that contains only the essential elements and add different
hardware blocks in order to observe their influence on the performance. The core can be
easily enhanced using the in-house tools in order to experiment with different hardware
configurations. Building blocks can be easily added or eliminated and their effect on
the overall performance of the application program can be easily observed using the
retargetable compiler.
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Original DS3 algorithm 5
This chapter investigates the original algorithm found on the DeepSee3 (DS3) chip and
its performance on the Intel Image Processing Unit. Section 5.1 presents the original
algorithm and evaluates the quality of the resulting image and section 5.2 presents the
profiling results on the Intel core that are later used for analysing possible improvements.

The currently used solution to provide disparity maps is based on an ASIC developed
by Tyzx [29] that was acquired by Intel. It offers a high frame rate of 200 frames per
second at a resolution of 512x480 (52) with about 85% of the pixels detected correctly as
can be seen in section 5.1.2. By using the metrics defined in chapter 2, we can evaluate
the speed performance to 2555.9 Mde/s.

5.1 Algorithm Design

In [13] Zabih and Woodfill first described the census transform and the rank transform
as tools that can be used to reduce the influence of illumination variances and provided a
robust approach. By applying these transformations, the effect caused by different levels
of illumination in the images can be reduced; therefore the match can be performed more
accurately.

Studies [30] [31] have proven that this transform outperforms other alternatives when
radiometric changes 1 are present. This transform is still being used today in state of the
art algorithms but in combination with other elements that improve accuracy. The best
example for this is the work by Xing et. all [32] where they combine colour difference
information with the census transform and obtain very good robustness.

5.1.1 Algorithm steps

The main elements of the DS3 algorithm are presented in figure 5.1. In this section, each
one of its elements is introduced.

The census transform. The census transform is applied to both input images to
reduce the effect of radiometric changes. The transform uses a window that compares the
intensity of the central pixel, with the intensity of the rest of the pixels in the window.
For pixels with intensity lower than that of the central pixel, a ’1’ is outputted and for
pixels with intensity higher a ’0’ is outputted. The final result is a string containing all
the values.

A small example of the way the census transform would process a window of size 3
is presented:

1Change of light intensity in one or both of the images
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DS3 data flow
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Figure 5.1: The flow of data in the DS3 algorithm

200 220 233
220 230 210
210 255 200

 (5.1)

The window becomes the following after the comparisons are finished.

1 1 0
1 x 1
1 0 1

 (5.2)

And the resulting string would be:

1, 1, 0, 1, 1, 1, 0, 1 (5.3)

A more formal definition of the census transform can be formulated in this manner;
the census transform maps the neighbourhood of pixel P to a string representing the
thresholded values by the intensity of a given pixel.

C(P ) = ⊗[i,j]∈Dξ(P, P + [i, j])

where ⊗ denotes concatenation, D denotes the window around P, and ξ denotes
transform defined by

ξ(P, P + [i, j]) =

{
1 , if P > P + [i, j]

0 , otherwise

Hamming distance. Hamming distance is used to measure dissimilarity between
pixels. Every pixel in the reference image is compared with multiple pixels in the target
image. The search is restricted to a horizontal axis due to the epipolar constraint
mentioned in previous chapters. The comparison is done by simply counting the number
of different characters between the strings. The maximum distance is usually saturated
to a limited number of bits to save storage space and ignore unlikely matches.
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Region aggregation. Because more individual pixels can be identical, matching
single ones will often lead to incorrect results. One solution to this problem is to gather
more information from surrounding neighbours, seeing as they most likely belong to the
same object and have similar depth.

The simplest way to do so is to sum up all pixels within a predefined small window.
To further explain, the next example is provided. We try to determine the best match
for window A from the left image by comparing it to two possible candidates from the
right image.

A =

[ ′00′ ′11′
′10′ ′01′

]
Window left image

B =

[ ′01′ ′11′
′10′ ′01′

]
Window right image 1

C =

[ ′01′ ′00′
′10′ ′01′

]
Window right image 2

If we calculate the summed hamming distance between A and B, we get a hamming
distance of 1 because there is only a distance of 1 between ’00’ and ’01’. If we calculate
the hamming distance between A and C, we get a hamming distance of 3 because there
is a distance of 1 between ’00’ and ’01’ and of 2 between ’11’ and ’00’.

Winner Takes it All (WTA). The relative position on the horizontal axis between
the windows with the smallest hamming distance represent the disparity at that specific
point. The inverse of this disparity represents the depth at which objects are situated.

5.1.2 Image quality

To evaluate the quality of the resulting image, the algorithm was implemented in Matlab.
The resulting image was sent to the online Middlebury website for evaluation and the
results can be seen in table 5.1.

The number of correctly detected pixels is about 85% for the algorithm. The quality
was evaluated by a procedure described in section 2.3 where the total number of pixels
that differed in intensity(distance) by more that 1 were calculated. The main problem of
this algorithm is that the fixed region aggregation makes it impossible for small details
to be taken into account and as such this are blurred.

The parameters that can influence the final quality of the image are the number of
pixels that are compared in the census transform and the size of the aggregation window.
In the original DS3 implementation, the census transform uses a window of size 7x7 in
which only 24 pixels are taken into account and an aggregation window of size 7x7.

A more comprehensive study of the effects of these parameters can be found in [1] but
the conclusions can be summed up as follows; if the size of the census window increases
beyond a size of 7x7 or 9x9 no significant quality improvement is obtained. Similarly, the
aggregation window should not be larger that 7x7 or 9x9 because small objects became
blurred and they are difficult to distinguish.

Some implementations [33] use multiple predefined windows or vary the size of the
window [34] in order to adapt the size of the window according to the level of detail
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Tsukuba Venus Teddy Cones Average

Errors (%) 12.5 5.8 20.5 16.2 14.9

Table 5.1: Quality metrics of the original DS3 implementations

Variable Description

w The width of the image
h The height of the image
bit depth The number of pixels used to represent the unprocessed image
cen cmp The number of comparisons for the census transform
d The number of pixels that one pixel in the reference image is compared

against in the target image
clip The amount of bits required to store a cost between pixels
vec elements The number of elements in a vector
aggr win The size of the window for the aggregation

Table 5.2: Variables used for performance evaluation

present in that particular region of the image. Such approaches are slow and the increased
accuracy is not significant.

5.2 Algorithm Profiling

An implementation was created to evaluate the performance of the algorithm on the IPU
and identify the bottleneck. To simplify the analysis, some useful variables are defined
in table 5.2. In the rest of the chapter, all the numbers presented are for an image of
size 640x480 and a total of 64 disparity candidates.

5.2.1 Data transfer

Modelling the data transfer between kernels can help better understand where the
bottlenecks are present. As can be seen in table 5.3, a large amount of data is created by
the hamming distance kernel, which is then moved to the aggregation kernel and finally
to the winner takes it all kernel.

DMA transfers The DMA can be used to transfer data between the larger RAM
memory of the system and the smaller vector memory within the core. To set up the
DMA for reads, an initial latency of 400 clock cycles is required and to set it up for
writes, 250 clock cycles are required. After this initial latency, memory transfers can be
performed at a speed of 1 clock cycle per vector.

This can be considered the ideal case when no other traffic is present and there are
no MMU misses (which can add an extra 300-400 clock cycles). The following estimates
can be considered, a best case estimation and in actual use cases they can be larger.

Taking into account that a large amount of data is generated after each kernel, and
the limited amount of memory available on the vector processor, line-based processing
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Data element Data output(bits) Vectors DS3 algorithm

Image left/right w ∗ h ∗ bit depth 9,600
Census data w ∗ h ∗ (cen cmp2 − 1) 19,200

Hamming data w ∗ h ∗ d ∗ clip 614,400
Aggregated data w ∗ h ∗ d ∗ clip 614,400
Disparity map w ∗ h ∗ log d 9,600

Table 5.3: Data transfers for a 640x480 image with a vector of 32 elements with 16 bits
per element

Census Hamming Aggregation Winner

Percentages 1.24% 23.77% 61.91% 12.01%
Cycles 3,058,709 58,393,418 152,036,167 29,511,705

Table 5.4: Processing execution cycles for each kernel

is required. This approach is also found in other Intel kernels and proves to be effective.
For an image of size 640*480, using line based processing, 20 vectors are transferred at
a time.

By summing up all the data present in table 5.3, and taking into account that the
vectors need to be both read and written from the system memory, we can evaluate that
a total of 2572800 clock cycles are required for DMA transfers.

If the application runs at the same time with other applications, it is expected that
the total number of clock cycles will increase. Therefore, this can be considered an
optimistic estimation and in real-life use cases can increase the number of required clock
cycles significantly.

5.2.2 Execution cycles

To evaluate the execution speed, each kernel is taken into account separately. The results
are presented in table 5.4 and if we sum up all the numbers presented in this table we
can see that it takes about 243 million clock cycles to perform just the computation part
of the algorithm.

The census kernel is the fastest kernel of the entire image processing pipeline. It only
processes a small amount of data as can be seen in table 5.3. Since the comparisons
that need to be executed for each line are largely independent and the functional units
required for this are not expensive, the census transform also achieves a high scheduling
density, which also explains the high speed achieved by it.

The hamming distance kernel is slow, taking about 20% of the total execution time.
This can be explained by the fact that this kernel requires unaligned loads and the
processor currently does not support this so the unaligned loads have to be emulated by
shuffling the elements of two successive vectors.

The most computational intensive kernel is by far the aggregation kernel. The size
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Figure 5.2: The final profile of the algorithm

of the aggregation mask is the key factor that influences the speed of this kernel as this
mask has to be applied to each element created by the hamming distance kernel. For
every pixel, a total of aggr win2 has to be performed

The winner takes it all is fast compared to the other kernels. The large amount of
memory accesses represents the main bottleneck of this kernel.

The results presented here can also be confirmed by works such as [35]. In this paper
we have different types of aggregation methods, namely constant window aggregation,
adaptive weight aggregation and cross-based aggregation for which they calculated that
the kernels take up 83.88%, 93.96% and 50.28% percentage of the total execution time.

5.2.3 Profiling conclusions

In figure 5.3 a summary of the profile results on the IPU platform with colour highlighted
bottlenecks can be seen. Although there are other possible variations of this algorithm,
with different cost measures or different aggregation techniques, the bottlenecks will
largely remain the same due to similar amounts of data elements being processed at
each stage.

In this particular case, by summing up the total cycles required for processing with
the ones required for data transfers, we can see that for an image of 640x480 and 64
disparities a total of 245 million clock cycles are required. By sorting in descending order
the total execution cycles of each element, we can conclude that the biggest problems
are as follows.

1. Region aggregation is the most computational intensive kernel regardless of
implementation platform due to the high amount of computations that it has to
perform.

2. Hamming distance generates an amount of data equal to w ∗h ∗ d ∗ clip because
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Figure 5.3: Summary of the profile. Red represents computational or data intensive
elements, yellow represents medium computational intensive elements and green
represents lightweight elements

a lot of comparisons have to be processed. The platform on which it is being
implemented does not have specialised elements for this type of operations.

3. Data transfers Although the system can handle large amounts of data transfers
due to an efficient DMA system, data transfers stall the core and prevent parallel
processing. Eliminating them can improve parallelism.

Kernel Census Hamming Aggregation Winner Data transfer

Percentage 1.24% 23.77% 61.91% 12.01% 1.04%

Table 5.5: The percentage of clock cycles required for each element of the algorithm

Based on this information, the next chapter explores possible solutions for every
problem encountered and analyses their effect on the overall speed and quality of the
result. The VLIW platform can offer significant speedup if every element is explored
efficiently.

5.3 Conclusion

The DS3 ASIC is able to provide real-time performance using a very efficient algorithm.
The original algorithm utilised by it needs to be adapted to the Intel IPU in order to be
able to reach real-time performance. Despite the parallel nature of the algorithm, some
modifications have to be made to map it efficiently on the targeted platform.

The region aggregation kernel is the most computational intensive part of the
algorithm and will most likely require hardware acceleration. Since the hamming distance
kernel generates a large amount of data, a solution needs to be found to prevent this
becoming a bottleneck and create an efficient pipeline.
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Modified DS3 algorithm 6
This chapter deals with accelerating the original DeepSea3 algorithm so that real-time
performance is obtained. Software solutions are preferred due to the fact that they do
not require any extra area on the core but hardware ones are used when no other option
is available.

We start in section 6.1 by exploring possible improvements for the computational
intensive kernels identified in the previous chapter. Section 6.2 deals with how the VLIW
architecture can be further exploited by reorganising the code to take full advantage of
the modified kernels.

Combining all these elements, significant speedup is obtained at the cost of increased
area. Section 6.3 presents the final speedup obtained and the elements that were
necessary to reach it.

6.1 Kernel Acceleration

Amdahal’s law [36] states that the maximum speedup in an improved sequential program
is limited by the percentage of time that is spent in that particular part of the program.
Therefore we start by finding solutions for improving the execution time of the region
aggregation and the hamming distance kernel.

6.1.1 Region aggregation

As can be seen from table 5.3, the aggregation kernel receives a large amount of data
from the hamming distance kernel. At least w ∗ h ∗ d data elements are received and
for each one of them aggr win2 − 1 summations has to be performed. Even by using
vector instructions and processing multiple pixels at a time, this is still slow and resource
demanding.

There are multiple ways in which region aggregation can be accelerated. In the
literature, two main approaches can be identified:

Software approaches Most software optimizations are based on box-filtering
techniques [37] or on integral images techniques [38] and provide a significant speedup
by taking advantage of already calculated partial sums. Despite their effectiveness, this
techniques proves difficult to implement on an SIMD processor due to the irregular way
in which data is processed.

Hardware approaches A dedicated hardware block can be added to the processor
in order to perform the required operation. This provides the greatest speedup at a cost
of extra area.
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The hardware approach is chosen, and a solution based on the Bilateral Filter
Accelerator (BFA) is provided. This accelerator can only be found in some specialised
processors but can be integrated into the core by using the tools described in chapter 4.

The bilateral filter [39] is a non-linear, edge-preserving and noise-reducing smoothing
filter. The intensity value at each pixel in an image is replaced by a weighted average of
intensity values from nearby pixels. This preserves sharp edges by systematically looping
through each pixel and adjusting weights to the adjacent pixel accordingly.

By configuring the accelerator with the correct parameters, it can produce exactly
the same results as the region aggregation in the original DS3 ASIC. This means that
the quality of the image is not affected in any way.

Although this functional unit requires a large number of clock cycles in order to
produce an output, by processing in a pipeline manner, notable speedup should be
obtained.

Version Clock cycles Speedup Area

No accelerator 152,036,167 - -
With accelerator 30,688,920 351% +22%

Table 6.1: Effects of accelerating the region aggregation kernel

Table 6.1 shows the effects of accelerating the region aggregation kernel on both
clock cycles and added extra area. The significant increase in area of the core is justified
by the performance gained. In further chapters, the global effects on the speed of the
algorithm are explored and described.

Another option to accelerate this part of the algorithm is to use the convolution unit
that is currently being developed [40]. This unit is expected to be faster and more area
effective and might prove to be a better alternative to the bilateral filter.

6.1.2 Hamming distance

The hamming distance calculation suffers from the following problems:

• For each individual pixel, a total number of 24 output bits are generated. This
number can not be efficiently packed in vectors given that they are designed to
contain 16 bits per element. Two vectors have to be used, which is both memory
inefficient and computational inefficient as both vectors have to be processed.

• Since the reference image is compared with shifted versions of the target image,
unaligned loads are required. These unaligned loads are emulated by combining
information from two adjacent vectors

• Currently there is no operation to calculate directly the hamming distance between
vectors. This operation is done by using a series of bit shifts, which requires a total
of 13 clock cycles.

Following are a few methods that can help resolve the problems mentioned above.
Some of them affect only one problem, whereas some affect multiple ones.
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Sparse census transform The original census implementation does a number of 24
comparisons per pixel in a 7 x 7 window but other versions of the census transform that
provide similar efficiency can be explored.

In [1], the sparse census transform is defined which uses fewer comparisons but obtains
the same image quality. This idea is further refined in [2] where multiple census patterns
are analysed and described. In these articles, it is shown that pixels that are close to the
centre do not provide useful information and can be ignored.

Another more light version of the census transform is defined in [41] and is called
the mini-census transform. This alternative uses only 6 pixels arranged in a distinct
pattern within the selected window and manages to obtain good quality results. This
is the most utilised adaptation of the transform in FPGA implementation but since no
speedup would be gained by using this on the vector processor, it was decided not to use
it.

The results mentioned in these articles can be easily verified by modifying the Matlab
script that was used to test image quality in section 5.1.2. The patterns that use 16 bits
suggested by [2] were implemented in this script and the resulting disparity images were
sent to the Middlebury website for evaluation in their automatic framework.
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Figure 6.1: The average number of bad pixels in all 4 images on the Middlebury website.
Left pattern-census transform used in the ASIC. Middle pattern - sparse census transform
from [1]. Right pattern - modified census transform pattern from [2]

Figure 6.1 shows the average number of bad pixels in all 4 test images. Our results
confirm that by using the sparse census transform the quality of the resulting images
does not degrade.

In fact, by using the last census transform version, it can be seen that the quality
slightly improves. Overall it is justifiable to use the last version of the census transform
seeing that there is no downside to this approach.

All this changes offer the advantage that data transfer between the census transform
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and the hamming distance kernel is reduced to half and that the hamming distance and
so is the number of computations that have to be performed.

Block access memory A significant problem is created by the unaligned loads and
stores. A solution to this problem is to add memory that supports this type of operations.
Similar to the BFA, the Block Access Memory (BAMEM) is a specialised hardware
component that can only be found is some processors. Adding it to the processor will
increase the size of the processor and should only be done if the extra performance
obtained justifies it.

The BAMEM [28] can be considered an improved version of the of the vector
memory which enables complex data access modes that significantly improve processing
efficiency in image/video application, compared to standard vector memories. Those
access modes are unaligned block/row, unaligned vector+slice and unaligned block+slice.
Additionally, it supports general purpose features of vector memory subsystems, e.g.
static array allocation, stacks and register spilling. In figure 6.2 examples of such access
patterns can be noticed.

Figure 6.2: The multiple access patterns that the BAMEM supports.

Since now unaligned vector access is supported, it is no longer required to emulate
these using multiple operations.

Hamming distance instruction The hamming distance is performed by applying
a xor between two vectors and calculating the number of bits different from zero. The
final result is then saturated to ignore values that are too large and unrealistic.

Even though the core does not contain an instruction to count the number of bits
different from zero this can be found in other specialised processors. A new instruction
can be created around this that performs all the operations necessary in order to perform
the hamming distance calculation.

The new instruction needs as input the census transform of the left and right image
and a bit mask to clip the result to a desired number of bits. Figure 6.3 shows the
high-level diagram of the new instruction.

As can be observed, the new instruction is an extension of the popu logic. As a
result, the required number of operation to perform hamming distance calculation has
been reduced to a single instruction from the initial number of 13. Although the VLIW
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Figure 6.3: High level view of the hamming distance instruction

processor can calculate all of these instructions in parallel due to the high number of
parallel functional units, it is clearly an advantage to free them up for other operations.

In table 6.2 the effects of improving each individual element of the hamming distance
kernel are reported and the total speedup obtained is 778%.

Improvement Clock cycles Speedup Area increase

Original 58,393,418 - -
Using sparse census 42,316,456 37% -
Adding vec hamming instruction 27,806,841 109% 0.32%
Adding BAMEM 6,650,425 778% 67%

Table 6.2: Effects of accelerating the hamming distance

The BAMEM has the biggest impact on the total execution time of the kernel but
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also increases the area of the processor significantly. Since a single operation is now
required, the reads and writes to memory can now be pipelined, which explained the
significant speedup obtained.

6.1.3 Summary

The most computational intensive kernels of the algorithm have been accelerated by both
software and hardware improvements. The added hardware blocks are the ones that have
the highest impact on performance but at the same time increase the size of the core
significantly. Table 6.3 shows the effects on overall performance of the applications and
on the area.

Version Total Speedup Area

Original 245,572,800 - -
Improved kernels 72,482,559 238% 90.75%

Table 6.3: Kernel acceleration results

Real-time performance is not yet achieved, so more solutions need to be considered
for this. In the remainder of this chapter. the parallel nature of the processor is exploited
for more performance.

6.2 Parallelism improvements

VLIW processors achieve a very high level of parallelism by placing all the complexity
of the schedule to the compiler but because run-time information is not available, the
programmer needs to make changes to the code in order to obtain a better schedule.
Loop unrolling and software pipelining are very common techniques that improve ILP,
but in order for them to take effect, some modifications need to be made to the code.

6.2.1 Data storage or data recalculation

A solution for reducing data transfers between kernels is to merge them and keep the
temporary data in the previously added BAMEM. Unfortunately, the limited amount
of available memory prevents storing all the intermediate data. By summing up all the
information in table 5.3 it can be seen that a total amount of (5 ∗w ∗h+ 2 ∗w ∗h ∗ d)÷
(vec elements) vector are required, which is clearly too high. The image can be divided
into blocks but because of data dependencies, the size of this blocks is again large.

This problem can be solved by not storing everything and recalculating when
necessary. Taking into account that the hamming distance kernel is the one that produces
the most amount of data but is very fast, it seems that this is the best candidate for
data recalculation.

Another factor that needs to be taken into account is that the bilateral filter processes
4 lines at a time so at least 4 new lines should be sent at each step for an efficient flow.
The resulting structure can be seen in figure 6.4 where 4 input lines from the left line
and 4 input lines from the right image are sent at a time and 4 processed output lines
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are received. Data dependencies force a delay between input and output of 3 time steps
(or 12 lines).

Merged kernel

Output 4 
lines[n-12]

 4 lines left[n]

 4 lines right[n]

Stream process

Figure 6.4: Merged flow of the algorithm. It receives 4 inputs of the left image and 4
inputs of the right image and outputs the disparity map corresponding to the previous
12 lines.

Algorithm version Clock cycles Speedup

Separate kernels 72,482,559
Merged kernels 42,258,025 71%

Table 6.4: Separate kernel or merged version

Table 6.4 shows the clock cycles of the entire algorithm for the merged version and
the separate kernel version. Even though data is now recalculated, the compiler can
better schedule operations so higher ILP is obtained. The merged version does 2.5 more
hamming distance but since now this is done in parallel, speedup is obtained.

6.2.2 Avoiding BAMEM writes

In the previous version of the implementation, in order to reuse as much data as
possible, data is written to memory after each kernel finishes. This creates some false
synchronisation points and efficient software pipelining can not be implemented. One
technique to avoid this is to write the results of each step directly to the registers
corresponding to the FU that will further process the pixels.

Similarly to what has been done to eliminate the use of the external memory,
hamming distance elements are recalculated every time they are requested by the
accelerator. Later on, experiments with different number of functional units that are
able to calculate the hamming distance are made and the results are presented.

Figure 6.5 shows how data is now transmitted directly to the registers of the kernel
that requires them, without any need of the BAMEM. This memory is accessed now
only at the beginning for reads and at the end to store the data. In order not to put too
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Figure 6.5: Avoiding the BAMEM to enable efficient software pipelining

much pressure on the registers corresponding to the accelerator, the hamming distance
data can only be calculated when it is required.

Algorithm version Clock cycles Speedup Total speedup

Separate kernels 42,258,025 71%
Merged kernels 28,749,562 50% 152%

Table 6.5: Speedup obtained from avoiding writes to BAMEM.

From table 6.5 the speedup obtained can be clearly observed. This can be explained
by the fact that an efficient software pipeline is now crated that takes full advantage of
the resources available. The compiler can now schedule operations in an efficient way
and obtain a high scheduling density.

6.2.3 Using VMEM as BAMEM

From 6.6 shows a schedule of the algorithm with only the most important elements
displayed. It is clear that the BAMEM load/store unit is used at full capacity. In
order to further increase the processing speed, faster access to BAMEM is required.
Unfortunately, adding a new load/store unit to this memory would be very expensive so
an alternative is required.

For hamming distance calculation, two census transformed images are required: the
census transform of the reference and of the target image. Unaligned loads are not
required for the reference image. This immediately brings the idea to load the census
transform of the reference image in the VMEM.

One problem that arises is that the bilateral filter only works with blocks of 4x8 while
the VMEM can only store blocks of 1x32. The solution to this is to first load the data
to the BAMEM and use it to transpose the data in the desired way. In order to do so,
some extra clock cycles will be spent, more exactly 3∗ (width∗height)÷ (vec elements),
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Cycle Issue slot 1 Issue slot 2 Issue slot 3
1 BAMEM load

2 BAMEM load

3 BAMEM load hamming calculation

4 BAMEM load

5 BAMEM load hamming calculation

6 BAMEM load

7 BAMEM load hamming calculation

8 BAMEM load

9 BAMEM load hamming calculation

10 BAMEM load

11 BAMEM load hamming calculation

12 BAMEM load

13 BAMEM load hamming calculation

14 BAMEM load

15 BAMEM load hamming calculation BFA

Figure 6.6: The schedule of the new version of the algorithm

which for a VGA image is a negligible amount of 38400. This equation derives from the
fact that the bilateral filter requires 12 lines as input, and blocks of size 3.

VMEM

BAMEM

Figure 6.7: Transposing BAMEM data to the VMEM

In figure 6.7, the process of transposing blocks of data to the VMEM is displayed.
Since only 12 lines of the census transformed image are required at a time, only a small
part of the VMEM is used. For a VGA image, this represents less than 12% of the
available memory but for larger images more memory might be required.

In table 6.6 the effects of loading data from multiple sources can be seen. Since
there is no improvement, we can conclude that memory loads are not the bottleneck and
that input to the hamming distance functional units and the accelerator is provided fast
enough. further experiments can be done with increasing the number of these elements
and observing the results.
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Algorithm version Clock cycles Speedup Total speedup

Only BAMEM 28,749,562 152%
BAMEM and VMEM 28,749,562 none 152%

Table 6.6: Effects of partitioning the data on two memories.

6.2.4 Summary

This section presented optimisations necessary to take full advantage of the parallelism
offered by the VLIW processor. Figure 6.8 displays the data flow of the modified
algorithm that uses both BAMEM and VMEM to load data and does not access any
memory between stages.

Since the accelerator is the element with the highest latency, the main desire was
to assure that it is not remain idle at any time. It can be considered that algorithm is
now centred around the accelerator and all other elements are designed to supply it with
data.

BAMEM load

VMEM load

BAMEM load

VMEM load

BAMEM load

VMEM load
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VMEM load
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VMEM load

BAMEM load
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BAMEM store

BAMEM store

Census dataCensus data
Census data

Census data

Previous best disparity

Previous best cost

New best disparity

New best cost

Figure 6.8: Final dataflow of the algorithm

The factor that contributed to the speedup of the algorithm the most was the option
not to store intermediary results and recalculate data as much as possible. This decreased
pressure from the memory system and placed in on the processing elements. Since the
VLIW is capable of processing large amounts of data in parallel, this was clearly the
better choice.
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6.3 Conclusion

Table 6.7 shows a comparison between the original and the modified version of the
algorithm. The cost of achieving this performance is paid by increased area. The
accelerator and the block access memory are the primary elements that contribute to
this increase in core size but without them, all the other optimisations would have been
impossible.

Version Total Speedup Area

Original version 245,572,800 - -
Modified version 28,749,562 754% + 90.75%

Table 6.7: Final acceleration results

Based on the conclusions from the previous chapter, a solution for the most
computational intensive elements was explored. The region aggregation was accelerated
by using a dedicated hardware block. However, the algorithm for the hamming distance
transform had to be first modified and only then an instruction to compute it could be
created.

In order to take full advantage of the parallel nature of the VLIW core, the algorithm
was restructured to achieve higher ILP. Since the accelerator is the slowest element of
the new flow, it was necessary not to keep it idle at any time. Recalculating data and
not storing any intermediary values proved to be the essential element to enable this.
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Experimental results 7
This chapter analyses the impact on speed, area and image quality of all the changes
done in the previous chapters and concludes with the optimal algorithmic and hardware
configuration.

Section 7.1 describes the setup of the test environment and the test image that is
going to be used. In section 7.2 the impact that the performed changes have on speed,
area and data transfers are analysed while in section 7.3 the identified critical resources
are increased and the effects reported. In section 7.4 we analyse how all changes affect
image quality. Finally, 7.6 presents the conclusions and compares our solution to others
.

7.1 Simulation Environment

A simulation environment based on the configuration from chapter 4 was created to
test the speed of the implementation. The system elements are configured as seen in
figure 4.1. This host processor reads both input images from the hard drive and writes
4 lines from each in the shared memory and then waits for them to be processed. This
process is repeated until all lines have been processed.

Experiments with different numbers of functional units and accelerators were
made possible by using the in-house The Incredible Machine (TIM) and Hive System
Description (HSD) hardware description languages. The RTL code was generated to
ensure that the core could be implemented in hardware, but for testing the performance
of the application, only the simulator was utilised. The reason why the cycle accurate
simulator was used is that it is much faster than the actual RTL simulation.

The total number of clock cycles is reported by the simulator and then added to the
number of clock cycles required to transmit data. The schedule report is consulted every
time to identify potential bottlenecks. Since the core can be synthesised at 500Mhz, this
frequency is used to transform the clock cycles into frames per second.

For all tests, an image pair from the Middlebury test framework was used. The chosen
algorithm is deterministic and its execution speed does not depend on input data, only
the resolution of the image influences it. The images were grayscaled and resized to
640x480 in order to easily compare it to other implementations.

7.2 Modifications impact

This section analyses the impact on speed, area and data transfers of the modifications
described in chapter 6. We start by looking at data transfers to and from the VLIW
core.
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Figure 7.1: A comparison between stalls caused by memory transfers to the VLIW in
the original version and the enhanced version

In figure 7.1 a comparison between the memory stalls in the original version and the
new one is presented. By merging the kernels, this number decreases to a point where
they are almost insignificant. This enhancement could not have been done without
adding the BAMEM.

While these stalls do not have a severe impact on the performance of the algorithm,
they might have a more detrimental on the final system. When other data transfers are
present, the system bus might be occupied and transfer speed to the VLIW might be
slowed down.

Table 7.1 shows the speedup and area of the core after each improvement has been
done.

Version Clock cycles Fps Speedup Extra area

Original version 245,572,800 2.04 - -
Added accelerator 124,225,553 4.02 97.68% 22.00%
Sparse census 108,148,591 4.62 127.07% 22.00%
Hamming instruction 93,638,976 5.34 162.25% 22.32%
Added BAMEM 72,482,559 6.90 238.80% 90.75%
Merged kernels 42,258,025 11.83 481.13% 90.75%
No BAMEM writes 28,749,562 17.39 754.18% 90.75%
VMEM as BAMEM 28,749,562 17.39 754.18% 90.75%

Table 7.1: A summary of the speedup and increase in core size after each improvement
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We can notice that the accelerator and the block access memory are the ones that
have the heaviest impact on the area. However, all other improvements to the algorithm
could not have been done if these elements were not added. Adding the accelerator frees
up issue slots so that other elements can be processed in parallel. The BAMEM allows
fast loads and stores, without the need to emulate unaligned accesses and is able to
provide data for accelerator at sufficiently high speeds.

In graph 7.2 a plot of the speedup and total area provides better information on the
significance of each element. The biggest improvement is obtained by the methods that
take advantage of the parallel nature of the VLIW core.

Merging the kernels and avoiding BAMEM writes has the greatest impact on
performance. Both these modifications rely on the knowledge that recalculating data
is faster than storing and loading it from memory. This proves that there is a significant
difference between the speed of the memory system and that of the processing systems.
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Figure 7.2: Speedup and area behaviour

The final part of the plot shows what happens when data is loaded from two sources,
more specifically BAMEM and VMEM. At this point, memory accesses are no longer
the bottleneck and more optimisations here will not further increase the speed. In order
to go beyond this point, more processing elements need to be added to the core. Only
when these elements will be added, loading data form two memories will be useful.

7.3 Design Space Exploration

Since the accelerator and the functional unit capable of performing the hamming distance
operation are the critical resources for the algorithm, experiments are made with different
numbers of such units in order to determine their effect. This has no impact on the quality
of the resulting image since the compiler can efficiently adapt to the new hardware.

From table 7.2 it can be seen that it makes sense to have a higher number of hamming
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Accelerator Hamming FU Area increase Cycles Fps

1 1 +90,75% 28,749,562 17.39
1 2 +91,07% 20,122,883 24.85
1 3 +91,39% 20,130,563 24.84
2 1 +113,73% 14,224,043 35.15
2 2 +114,05% 13,604,245 36.75
2 3 +114,37% 13,604,245 36.75
3 1 +136,71% 13,056,081 38.30
3 2 +137,04% 11,745,561 42.57
3 3 +137,36% 9,720,302 51.44
4 1 +159,70% 14,405,741 34.71
4 2 +160,02% 10,014,201 49.93
4 3 +160,34% 9,421,262 53.07

Table 7.2: Varying the number of accelerators and hamming distance functional units
and their effects on performance and area

distance functional units to provide sufficient input to the bilateral filter accelerator. The
impact on area that hamming distance units have is insignificant compared to the one
that the bilateral filter accelerator has.

We can conclude that the Pareto Optimal design points are the ones that use at least
two hamming distance functional units. The increased speed can be explained by the
fact that this units decrease the initialisation time of the software pipeline, which is used
multiple times throughout the algorithm.

Because our target is to reach real-time speed, a solution that is able to provide more
then 25 frames per second is sufficient. The architecture with two accelerators and two
hamming distance is preferred since it is optimal and does not have a high impact on
area.
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Figure 7.3: Hardware configurations based on critical resources
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By plotting the data found in table 7.2 we can observe more easily the effects of
increasing these resources. Graph 7.3 show that the maximum performance does not
increase significantly bellow 10 million clock cycles. This proves that processing elements
are no longer the bottleneck and that memory loads could again be the problem.

Cycle Issue slot 1 Issue slot 2 Issue slot 3 Issue slot 4 Issue slot 5
1 VMEM load BAMEM load

2 VMEM load BAMEM load hamming calculation

3 VMEM load BAMEM load hamming calculation

4 VMEM load BAMEM load hamming calculation

5 VMEM load BAMEM load hamming calculation

6 VMEM load BAMEM load hamming calculation

7 VMEM load BAMEM load hamming calculation

8 VMEM load BAMEM load hamming calculation BFA

9 VMEM load BAMEM load hamming calculation

10 VMEM load BAMEM load hamming calculation

11 VMEM load BAMEM load hamming calculation

12 VMEM load BAMEM load hamming calculation

13 VMEM load BAMEM load hamming calculation

14 VMEM load BAMEM load hamming calculation

15 VMEM load BAMEM load hamming calculation BFA

Figure 7.4: Schedule of the algorithm using two accelerators

By consulting the scheduling diagram seen in 7.4 we can easily conclude that this
is the case. Even with only two accelerators, the memory system struggles to provide
enough data for calculation. Since adding more memory would be too expensive, we can
conclude that this is the maximum speed obtainable.

Graph 7.5 shows the effects that the increased number of resources has on speed and
area. The extra hardware area is negligible compared to the gained performance.

7.4 Image quality evaluation

Before actually implementing the algorithm on the VLIW core, a bit-accurate program
was created in Matlab. This was used to facilitate the evaluation of quality since this
program is much faster than an actual simulation on the hardware simulator.

By using the Matlab script and sending the resulting images to the Middlebury
website for evaluation, the reported number of pixels detected correctly is 85%. The
resulting disparity map of all 4 images is shown in figure 7.6.

In figure 7.7 a more detailed analysis of the impact of each change is analysed. It
is clear that the use of the sparse census transform instead of the original is the only
elements that has any impact on actual image quality. The effect of this modification is
small enough that it can be neglected.

Unfortunately, there is no precision information regarding the original DeepSea 3
implementation so no accurate comparison between the two can be performed. Since the
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Figure 7.5: The final speedup and extra area

implementation follows the specifications of the ASIC, it is expected that the precision
is similar.

7.5 Modified architecture

Figure 7.8 shows the structure of the core after all the previously described modifications
have been made. No elements were removed and only the necessary functional units were
added.

The newly added blocks added in the figure represent the following elements:

• BAMEM - Block access memory

• BMLSU - Block access memory load/store unit

• H - Hamming distance functional unit

• ACC - Accelerator

A load/store unit needs to be connected to the newly added memory in order to
access the elements found here. The functional unit can be placed in any issue slot but
will most likely keep it occupied since the unit will be heavily utilised.

Two more issue slots had to be added in order to accommodate the accelerators.
Adding the accelerators in the already available issue slots would have generated too
much register pressure.

The two new hamming distance functional units can be added in any issue slot present
in the core. since they do not put too much pressure on the corresponding registers.
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(a) Cones disparity map (b) Teddy disparity map

(c) Tsukuba disparity map (d) Venus disparity map

Figure 7.6: The resulting disparity map of all 4 images on the Middlebury website

7.6 Conclusion

By adding extra hardware blocks and changing the algorithm so that it takes advantage
of the increased hardware resources, real-time performance is reached while maintaining
the image quality constant. Based on the requirements of the final application, a different
hardware configuration can be chosen.

Using all the improvements and tradeoffs previously described, a single core of the
system can reach a maximum of 36.75fps for a resolution of 640x480 with 64 disparities.
This can be translated to 722 Mde/s using the metrics defined in chapter 2.

The cost for reaching this speed is paid by increasing the core area. In order to
reach this speed,one block access memory, a specialised instruction and two bilateral
filter accelerators need to be added. These improvements increase the total core area by
+114,05%.
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Figure 7.8: The modified version of the core.

Table 7.3 shows that compared to other available processor implementations, the
Mde/s obtained using the solution proposed in this work achieves the best performance.
Only two other VLIW cores were able to reach performance similar to the Intel IPU.
The Tensilica LX2 and the Generic VLIW platform are the closest competitors to the
implementation presented here.

Only one of the implementations here reports the accuracy obtained. This is the TI
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Platform Resolution fps Mde/s Algorithm

Intel Pentium IV [23] 320x240 (32) 21 51 Census + Fixed RAU
Core 2 Duo [25] 320x240 (30) 42 96 Census + Fixed RAU
Generic VLIW [27] 640x480 (64) 30 589 Rank + SGM
Tensilica LX2 [26] 640x480 (64) 20 393 Rank + SGM
Freescale P4080 [22] 640x480 (91) 1.5 42 Rank + SGM
AMD Opteron [22] 225x187 (32) 26 79 Rank + SGM
TI C6416 [24] 640x480 (50) 3.8 58 Census + Fixed RAU
Intel IPU 640x480 (64) 36.75 722 Census + Fixed RAU

Table 7.3: Available general purpose processor implementations compared to the Intel
IPU

C6416 version, which reports detecting 90% of the pixels accurately.
The original Intel ASIC is able to reach 2.555 Mde/s. Since using a single core of

the IPU a maximum speed of only 722/s can be obtained, the speed of the application is
decreased 3.53 times. This decrease in performance is expected and is acceptable, taking
into account the decrease in cost of the final system.

We can conclude that the maximum speed potential of the application on the
VLIW core has been reached and modifying the memory system or changing the SIMD
instructions to process more than 32 elements at a time are the only options for more
speed.
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Conclusions and future work 8
This chapter presents the conclusions of the work and highlights improvements that can
be done in the future.

8.1 Conclusions

In this thesis, we addressed the acceleration of stereo vision on an Intel Image Signal
Processor. The purpose of this was to investigate how real-time performance can be
obtained, without using a dedicated ASIC and thus reduce the cost of the final product.

The Intel ISP is a suitable platform for implementing deep detection and can achieve
considerable speed compared to other processors available at the moment. The SIMD
instructions and the multiple functional units provide an unmatched level of parallelism
which greatly benefits this type of computer vision algorithms.

The design of the DeepSea 3 ASIC was the initial starting point for the algorithm, but
changes had to be made to adjust it to the platform. These changes provide considerable
speed improvement, but the greatest performance enhancement is gained by using taking
full advantage of the parallel nature of the VLIW core.

During the initial porting of the algorithm to the Intel Core, it was noticed that
the SIMD resources of the algorithm were not used at full capacity. By adjusting the
algorithm, the resulting accuracy of the images was only slightly modified.

Memory that supports unaligned loads had to be added, an instruction to calculate
the similarity between pixels and an accelerator for the most computational intensive
tasks were needed. Since these are the critical resources for this application, by
experimenting with different such configurations, the tradeoff between area and speed
was explored.

Because the algorithm produces a large amount of data, frequent memory accesses
are required. Recalculating data and not storing intermediate results had a surprisingly
positive influence on the speed of the final applications. Adding more processing power
is less expensive than improving the memory system, which explains this result.

After all enhancements, a speed of 36.75 fps was reached by choosing a configuration
out of all possible ones due to the fact that it is Pareto optimal and is able to reach
real-time speed. The cost for this is a 114.05% increase in area. If this is not sufficient
for the final application, another configuration can be chosen.

8.2 Future work

The speed of the enhanced core is unmatched when comparing to other similar solutions.
Despite this, more work can be done to see how higher image accuracy can be obtained.
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A few possible directions for obtaining this are the following:

• Adding edge information to the accelerator. By reconfiguring the accelerator
to take into account edge information, smaller objects will be detected more
accurately. This would reduce the blur effect caused by aggregating pixels that
belong to different objects. A challenge that encountered here is finding a way to
deal with the increased register pressure that this task demands.

• Add intensity difference information to the matching cost. Although the census
transform is very robust, some implementation have managed to increase its
effectiveness by combining with pixel intensity difference information. Images with
low textures are the ones that are most likely to benefit from this.

• Add SGM to improve region aggregation. Semi-global matching is a reasonable
compromise between local matching and global matching. By calculating it,
alongside local matching, the resulting quality of the image can further improve.
A problem with this technique is that it is very memory intensive, and the current
system might not be powerful enough for it.

• Add post processing to fill in incorrectly detected pixels. Incorrectly matched
pixels can be filled in by adding information from neighbouring ones. A median
filter would be the simplest solution for this.

All this elements can be added alongside the already existing ones. It is expected
that the increase in accuracy will come at a cost in number of frames processed.
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