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A B S T R A C T

Supply chain visibility concerns the ability to track parts, components, or products in transit from supplier
to customer. The data that organizations can obtain to establish or improve supply chain visibility is often
sparse. This paper presents a classification of the dimensions of data sparseness and quantitatively explores the
impact of these dimensions on supply chain visibility. Based on a review of supply chain visibility and data
quality literature, this study proposes to characterize data sparseness as a lack of data quality across the entire
supply chain, where data sparseness can be classified into three dimensions: noise, bias, and missing values.
The quantitative analysis relies on a stylized simulation model of a moderately complex illicit supply chain.
Scenarios are used to evaluate the combined effect of the individual dimensions from actors with different
perspectives in the supply chain, either supply or demand-oriented. Results show that when a data sparseness
of 90% is applied, supply chain visibility reduces to 52% for noise, to 65% for bias, and to 32% for missing
values. The scenarios also show that companies with a supply-oriented view typically have a higher supply
chain visibility than those with a demand-oriented view. The classification and assessment offer valuable
insights for improving data quality and for enhancing supply chain visibility.
1. Introduction

The COVID-19 pandemic caused a steep rise in the worldwide
demand for Personal Protective Equipment (PPE) such as face masks,
gloves, goggles, and glasses (Omar, Debe, Jayaraman, Salah, Omar, &
Arshad, 2022). To enable proper planning for purchasing and produc-
ing PPE in such a high-demand situation, a good insight into the overall
supply chain is required. There is a range of PPE products available,
which can generally be classified as medical PPE or non-medical PPE.
Medical PPE is certified and has a higher price and profit margin. This
made it attractive for fraudulent organizations to enter the market, and
sell non-medical PPE as medical (Ippolito, Gregoretti, Cortegiani, &
Iozzo, 2020). Hashemi, Huang, and Shelley (2022) found that during
the initial stages of the COVID-19 pandemic, the majority of fraud-
ulent PPE manufacturers emerged in Asia. However, counterfeit PPE
activities and related logistics operations remained largely invisible due
to little historical data on COVID-19 and on fraudulent organizations
trying to obfuscate their data (van Schilt, Kwakkel, Mense, & Verbraeck,
2023). This counterfeit PPE case exemplifies a scenario where supply
chain visibility is of the utmost importance, but it is hampered by sparse
data (Zhao, Hong, & Lau, 2023).

Supply chain visibility focuses on the ability to track parts, com-
ponents, or products in transit from supplier to customer, addressing
the actors’ capability to monitor and trace the movement of goods

∗ Correspondence to: Faculty of Technology, Policy and Management, Delft University of Technology, Jaffalaan 5, Room C2.020, 2628 BX Delft, Netherlands.
E-mail address: I.M.vanschilt@tudelft.nl (I.M. van Schilt).

with accurate and timely information (Kalaiarasan, Olhager, Agrawal,
& Wiktorsson, 2022; Saqib, Saqib, & Ou, 2019). When supply chain
visibility increases, logistical processes within the supply chain can be
more effectively aligned (Kalaiarasan et al., 2022; Srinivasan & Swink,
2018). For example, hospitals can more effectively prepare for stock-
outs of medical PPE, or align with trustworthy organizations from
whom they can buy legitimate medical PPE.

Even in this digital era, many supply chain organizations still face
challenges in processing and retrieving visibility data. Tiwari, Wee,
and Daryanto (2018), Wang, Gunasekaran, Ngai, and Papadopoulos
(2016) and Wang and Zhuo (2020). Additionally, the data required
to improve supply chain visibility, such as data on demand, inventory
levels, processing times of a manufacturer, and transportation times, is
often sparse (Kuipers, 2021; Somapa, Cools, & Dullaert, 2018). One of
the causes is reluctance among actors within a supply chain to share
(correct) data for various reasons such as competition and high costs
of data solutions, or because of illegal behavior in case of fraudulent
supply chain partners (Boone, Ganeshan, Jain, & Sanders, 2019). Other
potential problems in data collection and sharing are malfunctioning
sensors leading to biased values or missing data points, inconsistency
in data formats between different systems, or simply typos (Oliveira &
Handfield, 2019).
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Table of Notation

𝑎𝑛 Quantity percentage of data for node 𝑛
𝑢𝑡𝑛 Bias value of time 𝑡 and node 𝑛 for the

ground truth data
𝑣𝑡𝑛 Value of time 𝑡 and node 𝑛 for the ground

truth data
𝑣′𝑡𝑛 Value of time 𝑡 and node 𝑛 for the sparse

data
𝑠𝑐𝑣𝑛 Supply chain visibility for node 𝑛
𝑠𝑐𝑣 Global supply chain visibility
𝑞𝑛 Quality percentage of data for node 𝑛
𝑤𝑛 Weight for node 𝑛 based on average inven-

tory
𝐴𝑛 Set of values that are not NaN for each node

𝑛, ∀𝑡 ∈ 𝑇
𝑁 Set of nodes in the data of the supply chain

model, 𝑛 ∈ 𝑁 , where each node represents
an actor in the supply chain network

𝑇 Set of elements in the time domain in
the ground truth data of the supply chain
model, 𝑡 ∈ 𝑇

𝑇 ∗ Set of elements in the time domain in the
ground truth data indicating bias

Gaining more insight into the effect of data sparseness on supply
hain visibility is essential for making improvements. A first step is
o define data sparseness for supply chains. Unfortunately, there is no
lear and agreed definition of data sparseness in the context of supply
hain management. Various data quality issues can be seen as data
parseness, such as noise, bias, missing values, out-of-date information,
ifferent representations of the same data, or data that is not relevant
or its use (Laranjeiro, Soydemir, & Bernardino, 2015; van Schilt et al.,
023). Laranjeiro et al. (2015) presents a large variety of poor data
nstances and how they impact data quality. Although a large variety
f poor data instances is presented in the literature, a clear and concise
ormalization of data sparseness is still lacking, especially in the field
f supply chain management. Oliveira and Handfield (2019) found
hat information quality plays a key role in supply chain visibility,
nd poor data resulting from data errors impacts decision-making. For
xample, when supply chain partners act on incomplete, inaccurate,
nd outdated data, this can lead to forecasting errors and supply
hain disruptions (Agrawal, Kalaiarasan, Olhager, & Wiktorsson, 2022).
ertain errors may have a more significant impact on supply chain
isibility than others. For example, missing data values can result
n a complete lack of knowledge of the supply chain, while noisy
bservations provide some indication of the value’s magnitude in the
upply chain (Laranjeiro et al., 2015). The exact effect of these different
ypes of data errors (i.e., data sparseness) on supply chain visibility is
till poorly understood.

This paper, therefore, focuses on the conceptualization of data
parseness in the context of supply chain management and the impact
f data sparseness on supply chain visibility. Based on a review of
upply chain visibility and data quality literature, a 3-dimensional
lassification of data sparseness is derived. Next, the effects of these di-
ensions of data sparseness on supply chain visibility are quantitatively

ssessed through a case study. A simulation model of a stylized supply
hain of counterfeit PPE is used as ground truth. Complete data is
xtracted from this model, and then this data is systematically modified
o increase sparseness along each of the three dimensions. Next, we
ssess how supply chain visibility changes. To evaluate the role of
nteraction effects between the three dimensions, we use scenarios
2

o investigate the combined effect of the three dimensions of data
sparseness. These scenarios describe data sparseness situations that
could occur in real-life supply chains from the perspective of different
actors, such as those positioned at the beginning of the supply chain
(supply-oriented) or at the end (demand-oriented).

The contribution of this research is two-fold: (i) to provide a classi-
fication of data sparseness, and (ii) to assess its impact on supply chain
visibility. By explicitly including data sparseness, our study is novel
compared to the most recent systematic literature reviews on supply
chain visibility of Kalaiarasan et al. (2022) and Somapa et al. (2018).
Although both studies discuss data quality, they do not specifically
focus on the dimensions of data sparseness and their impact on supply
chain visibility. As for managerial implications, it is important for
companies in a supply chain to be aware of the different dimensions
of data sparseness and the differences in their impact on supply chain
visibility. This might help companies to prioritize how to improve their
data and, thereby, their visibility. Supply chain visibility is key for
making the supply chain operations more efficient (Sodhi & Tang, 2019;
Srinivasan & Swink, 2018).

The paper is structured as follows. Section 2 presents the method for
performing the literature review. Section 3 discusses the current state-
of-the-art for supply chain visibility. Section 4 reviews the literature
on data quality. Section 5 combines these two bodies of literature
and presents a classification of data sparseness. Section 6 formalizes
data sparseness and supply chain visibility, explains the design of
the simulation experiment, and introduces the case study. Section 7
presents the effects of an increasing degree of sparseness for each of
the identified dimensions of data sparseness on supply chain visibility,
and evaluates the effect of data sparseness on supply chain visibility for
plausible real-life scenarios. Section 8 discusses the results. Section 9
concludes this study and provides directions for further research.

2. Literature review method

A literature review was conducted for papers in the fields of supply
chain visibility and data quality. For a comprehensive overview, the
authors have executed a systematic search for relevant literature fol-
lowing the method described by van Wee and Banister (2016). Database
engines such as Scopus and Google Scholar were used to identify the
relevant literature. The scope of this literature review was restricted
to academic papers and books in English. Papers were selected based
on the number of citations, while taking into account how recently the
papers were published, to not miss recent contributions. Papers had
to meet a minimum threshold of 50 citations, subject to their year of
publication and relevance to the topic, with the exception of a few
papers that provided a key insight into the literature but had fewer
citations. The specified publication date range is from 2000 to 2023,
permitting a few exceptions for older literature that is still heavily cited.
This research examines two bodies of literature: supply chain visibility,
and data quality. In searching for the papers, we explicitly looked for
different viewpoints and approaches for supply chain visibility and data
quality over the years.

For supply chain visibility, the first step was to search for cur-
rent state-of-the-art literature defining supply chain visibility using
the search keywords: ‘‘supply chain visibility’’, ‘‘supply chain trans-
parency’’, ‘‘supply chain visibility definition’’, and ‘‘supply chain man-
agement and visibility’’. The date range for filtering the literature
is from 2000 to 2023. Papers were selected based on the number
of citations. In the second step, additional papers were found using
snowballing. In the third step, the search was focused on the literature
for measuring supply chain visibility with the date range of 2000 to
2023 using the search keywords: ‘‘measure’’, ‘‘calculate supply chain
visibility’’, ‘‘assessing supply chain visibility’’, and ‘‘operationalize’’. We
limited the papers to those that include the calculation of supply chain
visibility, and rejected papers that only mention the characterization of
supply chain visibility. For all papers, the title, keywords, introduction,
conclusion, and approach section were scanned. Papers were selected
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based on the number of citations, taking into account the publication
date of the paper. In the fourth step, related papers were searched using
snowballing.

For data quality, the first step was to search for current state-of-the-
art literature on data quality with a date range from 2000 to 2023 using
the specific search keywords: ‘‘data quality’’, ‘‘data quality dimensions’’,
‘‘characterize data quality’’, and ‘‘sparse data quality’’. In the second
step, related papers were searched using snowballing. Some papers
from before the year 2000 were also included in the literature search as
there is a relatively older body of literature about data quality. In the
third step, the search was targeted toward literature on data quality
issues from year 2000 onwards using the keywords: ‘‘data issues’’,
‘‘degraded data’’, ‘‘data completeness’’, and ‘‘poor data’’. More in-depth
papers on the definition of data quality issues were searched in the
fourth step using snowballing and the specific keywords ‘‘measuring
data quality issues’’ and ‘‘calculate noise/bias/missing values’’. In ad-
dition to recent research from the years 2000 to 2023, literature from
before 2000 has also been included as a basis of reference.

Through this systematic literature review of the two bodies of
literature, the overlap between the topics was examined, facilitating
the identification and classification of dimensions of data sparseness
in relation to supply chain visibility. The evaluation of the obtained
publications involved assessing their quality and comprehensiveness
through the application of a quality filter at the beginning of the search
and during snowballing. The quality filter checked the relevance of
the literature based on the publication’s keywords, title, and abstract,
as well as the impact factor of the journal of publication. The filter
has been applied for the initial list of literature and for the literature
resulting from snowballing. To obtain extra feedback, the results were
presented and discussed by the researchers during a conference in the
field of transport and logistics.

3. Supply chain visibility

In recent years, supply chain visibility has become key for improv-
ing supply chain management and design (Busse, Schleper, Weilen-
mann, & Wagner, 2017; Roy, 2021). Successful supply chain manage-
ment is heavily dependent on the availability of information shared by
multiple actors within the supply chain (Brun, Karaosman, & Barresi,
2020). Research shows that to improve competitiveness by reducing
costs, fulfilling demand, enhancing operational efficiency, or increasing
customer service, it helps to have a more visible supply chain (Lavas-
tre, Gunasekaran, & Spalanzani, 2014; Swift, Guide, & Muthulingam,
2019). Supply chain visibility creates a valuable opportunity to gain
insights and exchange knowledge with other stakeholders in the net-
work, which in turn is beneficial for designing an efficient supply
chain system (Somapa et al., 2018; Wei & Wang, 2010). Moreover, it
facilitates action and reduces (decision) risk, making the supply chain
more resilient (Rogerson & Parry, 2020; Saqib et al., 2019).

The outbreak of COVID-19 showed the vulnerabilities of supply
chains with low visibility, leading to a vast array of distribution issues
and shortages (Junaid, Zhang, Cao, & Luqman, 2023; Zhao et al., 2023).
Both a lack of upstream visibility to the suppliers and downstream
visibility to the customers existed (Busse et al., 2017; Kalaiarasan et al.,
2022).

Our literature overview focuses on the definition of supply chain
visibility, and the methods for assessing and measuring it. The current
state-of-the-art papers on these topics are used for operationalizing
supply chain visibility for this research.

3.1. Definition

Supply chain visibility is a commonly and broadly used term in
supply chain and logistics with a variety of meanings. Francis (2008,
3

p. 182) proposes a general definition based on a literature review:
‘‘Supply chain visibility is the identity, location and status of entities tran-
siting the supply chain, captured in timely messages about events, along
with the planned and actual dates/times for these events’’. Similar to Saqib
et al. (2019), this definition assumes that a detailed picture of the
entities, i.e., any object moving through the supply chain, is needed.
Providing complete information about all objects in the supply chain
presents a challenge for the stakeholders in the supply chain, who
might need to provide confidential and competitive information, and
as a result, they are often reluctant to share such information (Pero &
Rossi, 2014; Wang & Zhuo, 2020). Second, not all stakeholders benefit
from improved supply chain visibility: having too much information
without a clear use case can be a distraction. Barratt and Oke (2007)
includes the extent to which data is key or useful for supply chain
visibility according to their definition. This definition is often referred
to by other authors Kalaiarasan et al. (2022). Concluding, a weakness
in the general definition offered by Francis (2008) is the absence
of the relevance of the information for the stakeholders. Barratt and
Oke (2007), McCrea (2005) and Schoenthaler (2003) do include this
relevance in their definitions of supply chain visibility.

Later, Williams, Roh, Tokar, and Swink (2013) adds the quality of
supply and demand information on accuracy, timeliness, completeness,
and usability in their definition of supply chain visibility. Kalaiarasan
et al. (2022, p. 4) takes this a step further by defining supply chain
visibility as ‘‘the extent to which actors within a supply chain have visual
access to the timely and accurate demand and supply information that they
consider to be key or useful to their operations and supply chains.’’

Most literature indicates that supply chain visibility is dependent on
good data, either stating usefulness or data quality dimensions. Some
definitions require a detailed picture of the entire supply chain (Francis,
2008), while other definitions are more aggregated on either the supply
or the demand side (Barratt & Oke, 2007; Kalaiarasan et al., 2022;
Williams et al., 2013). Combining the major insights from the literature,
supply chain visibility for this research is defined as:

Supply chain visibility refers to the ability of tracking parts, components
or products in transit from supplier to customer through relevant data of
stakeholders.

Next to the dependence on good quality data, supply chain visi-
bility also depends on the willingness of organizations to share this
data. Bartlett, Julien, and Baines (2007) uses transparency as a measure
of visibility, and combines it with a degree of obscurity. Sodhi and Tang
(2019) refers to supply chain visibility as the company’s effort to gather
information and data, and supply chain transparency as the company’s
willingness to share information with the public. Brun et al. (2020)
notes that collaboration amongst supply chain partners and the level
of trust should increase to achieve supply chain visibility. Since our
study does not focus on the general public but on supply chain partners,
transparency in the context of supply chain visibility is defined as the
willingness to share relevant data with stakeholders.

3.2. Methods for assessing supply chain visibility

Somapa et al. (2018) is the most recent literature review that
discusses the characterization and the quantification of supply chain
visibility in a network. They define three characteristics to capture
supply chain visibility: (1) accessibility of information, (2) quality of
information, and (3) usefulness of information. The first characteristic
focuses on the capability of information and communication technology
(ICT) systems to collect data, whereas the other two characteristics fo-
cus on the quality of information for obtaining the organization’s goal.
In recent years, a new generation of ICT systems has arisen to collect
data for improving supply chain visibility. One of the most interesting
recent concepts is the Internet-of-Things (IoT), consisting of Internet-
embedded sensors and ICT components to provide data on supply chain

and logistics activities (Calatayud, Mangan, & Christopher, 2019). IoT
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can make more data accessible such that the supply chain is more
visible for all actors in real-time (Kumar, Singh, Mishra, & Wamba,
2022). Another useful concept is the Radio-frequency identification
transponder (RFID), an auto-identification system for detecting objects
and elements while they move along the supply chain (Pero & Rossi,
2014). Kalaiarasan, Agrawal, Olhager, Wiktorsson, and Hauge (2023)
notes that many studies show how these concepts can be used for
improving supply chain visibility. The authors show the potential of this
new generation of ICT systems, including IoT, RFID and blockchain, for
collecting data in real-time from all stakeholders. One of the key aspects
for these systems is the collaboration between actors within the supply
chain (Kalaiarasan et al., 2023; Pero & Rossi, 2014). As mentioned be-
fore, competition can limit the necessary collaboration between actors.
In our example case of counterfeit PPE supply chains, the necessary
collaboration and sharing of data are out of the question, since data can
give away information about illegal activities. Collaboration between
supply chain partners is therefore not always a given.

Somapa et al. (2018) gives an overview of quantitative and qualita-
tive approaches for measuring supply chain visibility. Common quanti-
tative methods are regression analysis, visibility scorecards, utilization
ratios, and mathematical models rooted in, e.g., set theory. Only a
few methods consider the global supply chain level instead of the
firm level (Somapa et al., 2018). One of these methods is presented
by Zhang, Goh, and Meng (2011) who measure supply chain inventory
visibility by using set theory. They define visibility as the capability to
access and provide information among several companies. Lee and Rim
(2016) uses the Six Sigma method to evaluate the end-to-end supply
chain visibility with a focus on operational capabilities. In contrast
to studies that focus on the information perspective of visibility, they
focus on the visibility of processes to asses whether the supply chain
has the capability to execute the supply chain plan (Somapa et al.,
2018). Lee and Rim (2016) calculate the mean and standard deviation
of individual processes for lead time, yield, quality, and utilization.

Another method to determine supply chain visibility that includes
the end-to-end supply chain is the calculation of geometric means of
information quantity and quality shared between the other actors and
the focal company, as designed by Caridi, Crippa, Perego, Sianesi, and
Tumino (2010), Caridi, Perego, and Tumino (2013). A strength of this
paper is that the authors focus on measuring supply chain visibility
in complex networks, which is particularly challenging. In contrast,
most of the literature focuses on relatively simple two-tier or linear
supply chains. Caridi et al. (2010, 2013) is a notable exception by
giving a quantitative approach to assess the degree of supply chain
visibility in complex systems for inbound and outbound logistics. They
distinguish four types of information flows for supply chain visibility:
(1) transactions/events, (2) status information, (3) master data, and (4)
operational plans. They measure visibility as the amount and the qual-
ity of information the focal company possesses, compared to the total
information that could be obtained. First, the visibility that the focal
company has of each individual actor in the supply chain is measured
by supply chain managers who judge the quality and the quantity of
information available for providing visibility. These judgments are col-
lected for each type of information flow and for each supply chain actor
on a relative scale from 1 (lowest) to 4 (best). An argument against
this technique is that it is subjective. After obtaining the judgments,
the individual visibility measures are combined to calculate the global
visibility. The global measure is the weighted average of visibility for
each actor. The weight for each actor is based on how much the focal
company purchases from an actor, and how much an actor buys from
the focal company, and the distance between the companies in terms
of the number of tiers and vertical integration. So, the more an actor
sells to or buys from the focal company or the closer it is to the focal
4

company in the supply chain, the higher the weight.
3.3. Operationalization

Combining the insights of Calatayud et al. (2019), Caridi et al.
(2010, 2013), Kalaiarasan et al. (2022) and Somapa et al. (2018), this
research measures supply chain visibility as the weighted average of
the available information quantity and quality divided by their theoretical
maximum for all actors in the supply chain given the goods, information,
and financial flows. The characteristics for measurement can be captured
by the quality and the quantity of information (Caridi et al., 2010,
2013; Somapa et al., 2018). This means that accessibility of information
(e.g., the capability of IT systems, IoT, RFID) will be out of scope. Three
types of flows can be distinguished for measuring supply chain visibil-
ity: the goods flow, the information flow, and the financial flow (Min
& Zhou, 2002; Stadtler & Kilger, 2002). For each of these flows, data
can be extracted to assess visibility. This paper primarily focuses on the
goods flow.

To measure supply chain visibility, the available quantity and
quality of the information are compared to their theoretical maxi-
mum (Caridi et al., 2010). Instead of using expert judgments, quan-
titative measures are used to calculate the quantity and the quality.
Quantity is measured as the percentage of the number of data points
that are available to the actor in comparison to the full data set. Quality
is measured as the mean absolute percentage error of the data set
of the actor compared to the full data set. Along the lines of Caridi
et al. (2010), these percentages are combined into a geometric mean
to determine the supply chain visibility of an individual actor.

Similar to Caridi et al. (2010), supply chain visibility is first mea-
sured for each actor, but without the presence of a focal company. Next,
the supply chain visibility scores of individual actors are aggregated
into a global measure using a weighted average. The weight of an actor
is determined by the number of orders and the costs they represent.
The weight is assigned to each corresponding actor to determine the
weighted visibility of the actor. The sum of the visibility scores of all
actors in the supply chain results in a percentage value for the global
supply chain visibility.

4. Data quality

Data quality is a topic that has been researched for many years
and in various disciplines (Ehrlinger & Wöß, 2022). Data quality man-
agement involves data collection (data profiling), the characterization
of data quality, the measurement of data quality, and data quality
monitoring (Bronselaer, 2021). Our research focuses on sparse data
with a low volume, whereas big data literature focuses on high volumes
of data (see e.g., Günther, Mehrizi, Huysman, & Feldberg, 2017; Jeble,
Dubey, Childe, Papadopoulos, Roubaud, & Prakash, 2018). Therefore,
literature on big data, e.g., the 5 V’s for the quality of data: Volume, Va-
riety, Velocity, Veracity, and Value (Wamba, Akter, Edwards, Chopin,
& Gnanzou, 2015) is kept out of scope.

4.1. Data quality dimensions

Several papers have provided a categorization of data quality. Wang
and Strong (1996) defines data quality as ‘‘the fitness of use’’ and
presents a framework of data quality aspects that are important to data
customers. They identify four main categories: (1) accuracy, (2) rele-
vance, (3) representation, and (4) accessibility. Pipino, Lee, and Wang
(2002) defines a detailed list of sixteen data quality dimensions based
on a survey of healthcare, finance, and consumer product companies.
Most of them fall into the categories of Wang and Strong (1996). One
new dimension has been added: ease of modification, i.e., the level to
which data is easy to modify. Fan and Geerts (2012) states five central
issues for data quality: (1) data consistency, i.e., the validity of data to
the real-world, (2) data deduplication, i.e., multiple points referring to

the same real-world entity (3) data accuracy, i.e, closeness of a value
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to its true value, (4) information completeness, i.e., complete data to
answer the question, and (5) data currency, i.e., timeliness.

Huang (2013) aggregates data quality into three main categories:
(1) syntactic quality, the level to which data follows the rules of a
data model, with subcriteria including accuracy and consistency, (2)
semantic quality, the level to which data is relevant and required for
the purpose, with subcriteria including accuracy, completeness, and
mapping consistency, and (3) pragmatic quality, the level to which
data is suitable for a given application, with subcriteria including
completeness, timelineness, and presentation suitability. Hazen, Boone,
Ezell, and Jones-Farmer (2014) defines four dimensions of data quality
in the context of supply chain management: (1) accuracy, the degree
to which data has errors, i.e., the degree to which it is similar to the
‘‘real’’ value, (2) timeliness, the degree to which data is up-to-date,
(3) consistency, the degree to which similar data is presented in the
same format, and (4) completeness, the degree to which necessary data
is available. These dimensions are similar to the subcriteria of Huang
(2013) and the taxonomy presented in Gao, Xie, and Tao (2016).
In a comparison study on data quality frameworks, Cichy and Rass
(2019) shows that accessibility, accuracy, completeness, consistency,
and timeliness have the highest number of occurrences as data quality
criteria. Although there is an ongoing discussion on the dimensions
of data quality in literature, the criteria identified by the above au-
thors (accuracy, timeliness, consistency, completeness) are the most
frequently used ones to describe data quality (Ehrlinger & Wöß, 2022).

4.2. Data quality issues

Data quality issues such as data sparseness or errors in the data for
one or more of the dimensions of data quality lead to poor decision
quality (Bronselaer, 2021; Heinrich, Hristova, Klier, Schiller, & Szubar-
towicz, 2018). Accuracy decreases when data deviates from the ‘‘real’’
value; timeliness decreases when the data is outdated; consistency
decreases when different data points are not presented in the same
format; completeness decreases when there is missing data (Souibgui,
Atigui, Zammali, Cherfi, & Yahia, 2019). Additionally, in the case of
(partly) illicit supply chains, data can be manipulated or masked to
avoid detection (van Schilt et al., 2023). In terms of the data quality
dimensions, this study identifies and addresses three main data quality
issues that are relevant for decision-making: noise, bias, and missing
values (Janssen, van der Voort, & Wahyudi, 2017; Oliveira, Rodrigues,
& Henriques, 2005).

Noise in data results in corrupted or distorted data, potentially
rendering it meaningless (Sáez, Galar, Luengo, & Herrera, 2014). Noise
in a data point is generally defined as a deviation of that particular
data point, where the distribution of the deviation has a mean and a
noise width (Gaussian noise) (Teng, 1999; Zhu & Wu, 2004; Zhu, Wu,
& Yang, 2004). So, a data point with noise results in the original value
plus or minus a deviation. There is a difference between noise that is
inherent (natural), and injected (artificial). When analyzing noise, it is
important to take this distinction into account (Seiffert, Khoshgoftaar,
Van Hulse, & Folleco, 2014).

Bias in data means that the data is not representative of the popu-
lation or the phenomenon of study (Tripepi, Jager, Dekker, & Zoccali,
2010). Bias means that some members are more likely to be included
than others, thus the probability of a member being included is un-
equally distributed. Data produced by humans may contain bias as a
result of human preferences or human observational capabilities. The
most common types of bias are (i) selection bias, i.e., group represen-
tation, (ii) reporting bias, i.e., some observations are more likely to
be reported than others, and (iii) detection bias, i.e., a phenomenon
is more likely to be observed than others (Ntoutsi et al., 2020).

Missing values relate to the completeness of a data set. Peng, Hahn,
and Huang (2023) presents a review and notes that missing values
are a widespread data quality problem. They categorize missing values
5

into three categories, building on research by Rubin (1976). This first
category addresses data that is missing completely at random, meaning
the absence of a data value is based on a random sample of the
complete data set. The second category of missing values is missing
at random, meaning the absence of a data value is related to some
properties of the observed data (the data set without the missing values)
but not to the missing data. The third category is missing not at random,
meaning the absence of a data value is systematically correlated to
properties of the missing data itself (Fox, 2015). As an example of the
second category, people with a higher age are more likely to withhold
information on their income, meaning that the probability of missing
data depends on the age (a property of the observed data). As an
example of the third category, people with a higher income are more
likely to withhold information on their income, meaning the probability
of missing data depends on the income level itself (a property of the
missing data).

5. Classification of data sparseness

In this section, the literature on supply chain visibility is combined
with the literature on data quality for classifying data sparseness in
the field of supply chain management. First, the overlap between the
two bodies of literature is discussed. Next, the classification of data
sparseness based on the literature review is presented.

Supply chain visibility is primarily determined by the quality and
the quantity of the data (Caridi et al., 2010; Kalaiarasan et al., 2022).
For quality, the data quality criteria of Ehrlinger and Wöß (2022),
Gao et al. (2016) and Huang (2013) are used as these are the most
frequently used ones to describe data quality. Quality and quantity
of data are specified by the syntactic and semantic criteria, more
specifically by their accuracy, consistency, and completeness. In the
field of supply chain management, these data quality criteria are of rel-
evance for enhancing supply chain visibility, and for informed decision-
making (Kalaiarasan et al., 2022; Munir, Jajja, Chatha, & Farooq,
2020). Accuracy ensures precise information on important supply chain
variables such as inventory, order status, and lead times. This helps,
for example, to make accurate demand forecasts to prevent excess
inventory, which is important for the predictive real-time nature of
the supply chain. Consistency ensures reliable data of supply chain
operations that is shared between stakeholders. For example, a consis-
tent data format between stakeholders helps to track the movement of
goods. Considering the multi-sourced and geospatial characteristics of a
supply chain, a consistent data set shared among the many stakeholders
is of high importance to enhance supply chain visibility by enabling the
tracking of the movement of goods and inventory levels. Completeness
ensures comprehensive data of the supply chain operations. For exam-
ple, this helps to anticipate demand and avoid stockouts, or to enable
efficient planning when looking at the temporal characteristics of the
supply chain.

For data sparseness, three main issues for data quality are distin-
guished: noise, bias, and missing values (Janssen et al., 2017; Oliveira
et al., 2005; van Schilt et al., 2023). These issues are classified as
the dimensions of data sparseness. The logical relationships between
the dimensions of data sparseness and data quality criteria including
their impact on supply chain visibility are illustrated as follows: Noise
impacts the accuracy and the consistency of data quality. For example,
in a case where the inventory of medical PPE is monitored manually, a
typo in the data leads to noise. Inaccurate data on the inventory levels
affects the accuracy and reliability of the supply chain visibility. Bias
impacts the consistency and completeness of the data. For example,
using the PPE case again, large hospitals could be overrepresented in
the supply chain data, making small hospitals invisible. This would
make the supply chain data skewed and incomplete as there is less
information on small hospitals. As a result, fewer resources could be
allocated to smaller hospitals, leading to stockouts. Missing values
impact the completeness criteria. As an example in the PPE case, there

could be no data on the lead times from the supplier to the hospitals,
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Table 1
Classification of data sparseness in three dimensions.

Description Level of data quality Fraction of intentional
sparseness

Noise Distortedness. Value is modified by adding
a deviation following a distribution
in x% of original data elements.

Noise is for y% intentionally
sparse in the data.

Bias Representativeness. Value is structurally
more likely to be present in
x% of the original data elements.

Bias is for y% intentionally
sparse in the data.

Missing values Completeness. Value is missing in x% of
the original data elements.

Missing values is for y%
intentionally sparse in the data.
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meaning that the hospitals have no visibility on how to manage their
stock.

Other criteria, such as the pragmatic criteria of Huang (2013) and
the timeliness of Ehrlinger and Wöß (2022), are not included in our
classification. These criteria describe the relevance of the data, and
indicate whether it is suitable and up-to-date for a given application.
However, relevance is a very different kind of criterion than noise, bias,
and missing values. Relevance concerns the applicability of the data set
as a whole given a specific type of analysis or decision, whereas the
other dimensions concern the modification of values within the data
set for any analysis or decision purpose (Bronselaer, 2021). Especially
considering the temporal and dynamic nature of a supply chain, the
relevance of the data is subject to time-sensitive and up-to-date infor-
mation. For example, accurate demand forecasting needs a relevant and
up-to-date data set but still faces challenges when some data values
with the data set are inaccurate, inconsistent, and incomplete.

Data in a supply chain can either be sparse by itself (i.e., uninten-
tional sparseness) or sparse by manipulation (i.e., intentional sparse-
ness) (Bartlett et al., 2007). Intentional manipulation of data is also
a data quality issue (Janssen et al., 2017). The willingness of stake-
holders to share this sparse data is the primary factor that determines
transparency in the context of supply chain visibility (Baah et al., 2022;
Wang & Zhuo, 2020). Combining (un)intentional sparseness and (non-
)transparency leads to four cases, where stakeholders are either (1)
willing to share unintentionally sparse data to improve supply chain
management, (2) unwilling to share unintentionally sparse data to hide
data, (3) willing to share intentionally sparse data to mislead other
stakeholders, or (4) unwilling to share intentionally sparse data to
prevent poor data availability. The fraction of intentional sparseness
of the data has an impact on how to cope with data in supply chain
management and how to use it in decision-making (Bronselaer, 2021;
Oliveira & Handfield, 2019). For example, if a supplier intentionally
withholds key production data about the fabric of medical PPE to
gain a competitive advantage, the manufacturer may make sub-optimal
decisions on inventory levels, leading to potential disruptions in the
supply chain and increased costs.

This literature study led to the following definition of sparse data
in relation to supply chain visibility:

Sparse data in supply chain management refers to the lack of data
quality across the entire supply chain for the quality dimensions: noise,
bias, and missing values, where a certain fraction of data sparseness is
intentional.

Table 1 presents the classification of sparse data in the context of
supply chain management. In summary, there are three dimensions of
data sparseness: (1) noise, i.e., values in the data set are distorted; (2)
ias, i.e., values in the data set are not representative of the population
r the phenomenon of study; (3) missing values, i.e., values in the data
et are missing. Each dimension has a certain fraction of intentional
parseness. Thus, each dimension of data sparseness consists of (i) the
evel of data quality, and (ii) the fraction of intentional sparseness.
6

6. Methods

In this research, the effect of the identified dimensions of data
sparseness on supply chain visibility is assessed by systematically in-
creasing the degree of sparseness in the data. First, the quantification
of the dimensions of data sparseness is described. Second, the formal-
ization of global supply chain visibility is discussed. Next, the design of
experiments using a ground truth simulation is explained. Last, the case
study used in this research for performing experiments is presented.

6.1. Formalization of dimensions

Let 𝑡 ∈ 𝑇 be an index 𝑡 in the set of elements of the time domain
𝑇 in the data. Let 𝑛 ∈ 𝑁 be a node 𝑛 (in this case, an actor) in the set
of nodes 𝑁 in the data. Let 𝑣𝑡𝑛 be a value of time 𝑡 and node 𝑛 for the
round truth data, and let 𝑣′𝑡𝑛 be a value of time 𝑡 and node 𝑛 for the
parse data. The degree of data sparseness is systematically increased
n the three identified dimensions of data sparseness as follows:
Noise level of x% is defined as x% of original data elements are

odified by adding a deviation following a distribution. This means
hat, over the entire data set, x% of the data has noise. It is randomly
etermined, using a discrete Uniform distribution, which elements of
he data set have noise. The deviation of the noise follows a Gaussian
istribution with a standard deviation of 1. A value with noise can be
efined as:
′
𝑡𝑛 ∼ 𝑣𝑡𝑛 + (𝜇 = 0, 𝜎 = 1) (1)

Bias level of x% is defined as values that are structurally more likely
o be present in x% of the original data elements. A sample of x% of
he rows is randomly drawn to represent bias. Every row is allocated
weight through a log-normal distribution with 𝜇 = 0 and 𝜎 = 1, and
sample is selected based on these weights. For example, there are

00 data rows with 25% bias. This means that on average 25 rows are
ampled using the weights resulting from the log-normal distribution,
nd replace a selected row from the ground truth data set. The other 75
ows remain the same as the ground truth data set. Let 𝑇 ∗ ⊂ 𝑇 be the
et of elements in the time domain indicating bias. Let 𝑢𝑡𝑛 be a historical
alue that is already present in the data set, and used to create bias:

𝑡𝑛 ∈ {𝑣𝑡′𝑛′ ∶ 𝑡′ ∈ 𝑇 , 𝑛′ ∈ 𝑁} (2)

A value with bias can be defined as:

′
𝑡𝑛 =

{

𝑣𝑡𝑛, ∀𝑡 ∉ 𝑇 ∗,
𝑢𝑡𝑛, ∀𝑡 ∈ 𝑇 ∗

(3)

Missing values level of x% means that a value is missing in x%
f the original data elements. Similar to the noise level, it is randomly
etermined which x% of data points are missing over the entire data
et by following a discrete Uniform distribution. A missing value can
e defined by a non-value (NaN, indicating Not a Number) as follows:
′
𝑡𝑛 = 𝑁𝑎𝑁 (4)

Important to note is that a non-value differs from a zero value. In
he context of supply chain management, many true values can be zero,
uch as zero inventory of a product, so a missing value is encoded as
aN rather than as zero (Heinrich et al., 2018).
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6.2. Formalization of supply chain visibility

Supply chain visibility is measured by comparing the available
quantity and quality of the information to its theoretical maximum,
as described in Section 3.3. The calculation of supply chain visibility
in our research is as follows: first, the quantity and the quality of the
information at each node are measured. For each node 𝑛 ∈ 𝑁 , the
uality as a percentage is defined as follows:

𝑛 = 100 −𝑀𝐴𝑃𝐸(𝑣𝑛, 𝑣′𝑛) (5)

here MAPE is the mean absolute percentage error relative to the
verage of the data elements of the node. Hereby, the magnitude of the
ean absolute percentage error is taken into account. MAPE is defined

s,

𝐴𝑃𝐸(𝑣𝑛, 𝑣′𝑛) =
100
#𝑇

∑

𝑡∈𝑇

|

|

|

|

𝑣𝑡𝑛 − 𝑣′𝑡𝑛
𝑣𝑛

|

|

|

|

(6)

For each node 𝑛 ∈ 𝑁 , the quantity as a percentage is defined as
follows:

𝑎𝑛 = 100 ×
#𝐴𝑛
#𝑇

,𝐴𝑛 = {𝑣′𝑡𝑛 ≠ 𝑁𝑎𝑁,∀𝑡 ∈ 𝑇 } (7)

The supply chain visibility for each 𝑛 ∈ 𝑁 is calculated as:

𝑠𝑐𝑣𝑛 =
√

𝑞𝑛 × 𝑎𝑛 (8)

Second, the weight of each node in the supply chain is determined.
he weight is based on the average number of orders 𝑤𝑛 of each node 𝑛.
he average number of orders is normalized over all nodes. This gives,

𝑛 =
𝑣𝑛

∑

𝑛∈𝑁 𝑣𝑛
(9)

The global supply chain visibility as a percentage can be calculated
s follows:

𝑐𝑣 =
∑

𝑛∈𝑁
𝑤𝑛 × 𝑠𝑐𝑣𝑛 (10)

.3. Design of experiments

This research uses a ground truth simulation model to evaluate
nd compare the supply chain visibility for varying degrees of data
parseness in each of the dimensions. The simulation model calculates
he ground truth values to obtain the theoretical maximum quality and
uantity of information. This set-up allows for correctly assessing how
upply chain visibility changes as the true maximum is known which is
ften not the case in real life (Khondoker, Dobson, Skirrow, Simmons,
Stahl, 2016).
Fig. 1 presents the method used for calculating supply chain vis-

bility for various degrees of data sparseness using the ground truth.
irst, the ground truth data for each time element 𝑡 ∈ 𝑇 and each
ode 𝑛 ∈ 𝑁 , 𝑣𝑡𝑛, is extracted from the simulation model. This ground
ruth data does not include any sparseness. Then, a certain percentage
f data sparseness is added: noise, bias, and missing values. Next, the
round truth data values (𝑣𝑡𝑛) and the sparse data values (𝑣′𝑡𝑛) are
sed to calculate the supply chain visibility. First, the supply chain
isibility is calculated for each node, 𝑛 ∈ 𝑁 , using the ground truth
ata and the sparse data. The quantity and the quality of the sparse
ata is compared to the ground truth. Next, the weights of each node
re determined based on the average number of orders. Then, these
easures are combined to a global supply chain visibility (indicated

y SCV in Fig. 1) as a percent value.
Two experiments are performed in this study: (1) systematically

ncrease the degree of data sparseness for each individual dimension,
nd (2) design and evaluate plausible real-life scenarios with regard to
ata sparseness. First, the degree of data sparseness is systematically in-
reased by 10% for each dimension. More specifically, the experiments
re 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%. For
7

the ground truth data, i.e., the base case, there is no data sparseness in
any dimension so the supply chain visibility is always 100%.

Second, the effect of the three dimensions of data sparseness on
stylized scenarios that are theoretically plausible in real-life supply
chains is evaluated. In these stylized scenarios, all three dimensions
of data sparseness are used as most real-world data sets include all
these dimensions of data sparseness. The dimensions are added in the
following order to the data set: (1) add bias, so bias only exists for true
values of the data, (2) add noise to this biased data set, (3) delete values
to create missing values. The configuration of these stylized scenarios
is presented in Section 7.2.

Each experiment is performed with 200 unique seeds to account for
the effect of stochasticity on supply chain visibility. By transforming
the ground truth data using the same seeds for each experiment, it
is ensured that the exact same observations are modified for each
dimension of data sparseness.

6.4. Case study

In this research, a stylized counterfeit PPE supply chain is used as
a case study for performing experiments. This supply chain is char-
acterized by sparse data since (1) the production of counterfeit PPE
during COVID-19 presented a new and unexpected phenomenon with
little historical data, and (2) counterfeit PPE supply chains are op-
erated by fraudulent organizations that obfuscate as much data as
possible (Hashemi, Jeng, Mohiuddin, Huang, & Shelley, 2023).

Fig. 2 visualizes the stylized counterfeit PPE supply chain simulation
model. The symbols in the figure represent the main actors in the
supply chain, and the arrows represent the transportation flows. The
supply chain starts with the raw materials supplier, placed in this
stylized case in Vietnam, who supplies products for PPE such as fabrics.
Next to China and India, many PPE come from Vietnam (Nikkei Asia,
2020). These products are transported over land to one of the two
manufacturers in the same country, Vietnam. These manufacturers
produce counterfeit PPE in the factory and pack them in batches for
transport. Each batch has a certain quantity of counterfeit PPE. For
example, a batch consists of 2000 boxes of 200 PPE which equals a
quantity of 200,000 PPE in total. Next, a batch of finished counterfeit
PPE is transported from the manufacturers’ location via a truck to the
export port in Hai Phong, Vietnam. The batch is loaded into a 40
ft container and transported by a small container ship to the transit
port, Tanjung Pelepas, Malaysia. The small container ship unloads the
container with counterfeit PPE at the transit port. At the same port, the
container is loaded onto a larger container ship for overseas transport.
The destination of this ship, also the import port, is either the Port of
Rotterdam, The Netherlands, or the Port of Antwerp, Belgium. The con-
tainer is unloaded at one of these ports and waits for inland transport
to the (illegal) wholesales distributor in Eindhoven, The Netherlands.
This means when the container arrives in Antwerp, the truck crosses a
land border to arrive at the wholesales distributor. At the wholesales
distributor, the batch of counterfeit PPE in the container is equally
divided into three smaller batches for the three retailers. These smaller
batches are transported by small trucks to the retailers in Amsterdam,
Utrecht, and Venlo in The Netherlands. When the counterfeit PPE
arrives at the retailer, the products are being sold with or without
knowing that they are counterfeit.

A discrete event simulation model of this stylized configuration of a
counterfeit PPE supply chain from Vietnam to stores in the Netherlands
is used to gather the ground truth data. Table 2 shows the input
parameters for the actors and the links used in the stylized simulation
model.

In the simulation model, most uncertainties such as delays of trans-
port modalities and speed of transport modalities follow triangular
distributions inspired by real-world data of a fashion retailer (Kuipers,
2021). Table 3 shows the input parameters and the distributions of

the speed and the delays of the transport modalities for the simulation
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Fig. 1. Method for calculating global Supply Chain Visibility (SCV).
Fig. 2. Stylized supply chain of counterfeit PPE.
Table 2
Input parameters of actors and links for the simulation model of the stylized counterfeit PPE supply chain.

Actors Links

Input parameter Distribution Value Unit Name Value Unit

Interarrival time of product at supplier Exponential 1.5 days Supplier to manufacturer 1 50 km
Time at manufacturer None 2.5 days Supplier to manufacturer 2 45 km
Time at ports Triangular 1, 2, 2 days Manufacturer 1 to export port 125 km
Time at wholesales distributor Triangular 0.5, 1, 2 days Manufacturer 2 to export port 100 km
Time at retailers Exponential 0.2 days Export port to transit port 1656 nautical miles

Transit port to import port Rotterdam 9286 nautical miles
Transit port to import port Antwerp 9195 nautical miles
Import port Rotterdam to wholesales distributor 135 km
Import port Antwerp to wholesales distributor 100 km
Wholesales distributor to retailer Amsterdam 125 km
Wholesales distributor to retailer Utrecht 92 km
Wholesales distributor to retailer Venlo 60 km
model of this study. This case study represents a complex network
suitable for our study due to the many uncertainties in the supply
chain simulation model (e.g., delay in transport modalities, loading and
unloading times). For example, the retailer’s inventory can fluctuate
very much, depending on whether a vessel has a 1-day delay or a 7-day
delay.

From this simulation model, time series data on the stylized supply
chain is extracted as ground truth data. The time series data entails data
on the inventory that is located at each actor (e.g., manufacturer, export
port, import port) in the supply chain per day. Each data element in the
time series data is thus the inventory of an actor at a specific time. The
mean inventory value per day is calculated for the multiple replications
8

of the simulation model. A simulation time of 52 weeks with 20 unique
replications is used. The simulation model has been developed with the
library pydsol in Python. This library is a Python implementation of the
Distributed Simulation Object Library (DSOL), originally implemented
in Java (Jacobs, 2005).

7. Results

This section presents the results of variations in supply chain visi-
bility given an increasing degree of sparseness for each of the identified
dimensions of data sparseness using the case study. Next, the plausible
scenarios that could theoretically occur in real life are described. These
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Table 3
Input parameters of speed and delay of the transport modalities for the simulation model of the stylized counterfeit PPE supply chain.

Transport modalities

Input parameter Distribution Value Unit Input parameter Distribution Value Unit

Speed of small truck Triangular 0, 100, 120 km/h Delay of small truck Triangular 0, 0.2, 0.5 days
Speed of large truck Triangular 0, 80, 120 km/h Delay of large truck Triangular 0, 0.5, 1 days
Speed of feeder Triangular 10, 18, 25 knots Delay of feeder Triangular 0, 4, 16 days
Speed of vessel Triangular 10, 18, 25 knots Delay of vessel Triangular 0, 7, 16 days
Fig. 3. Results for dimension noise for 200 seeds for various degrees of data sparseness.
scenarios are evaluated for the impact of data sparseness on supply
chain visibility.

7.1. Effect of the individual dimensions

Figs. 3, 4, and 5 show, for each individual dimension of data sparse-
ness, a boxplot of global supply chain visibility for various degrees of
data sparseness. The boxplot displays the minimum, the 1st quartile
(i.e., 25th percentile), the median, the 3rd quartile (i.e., 75th per-
centile), and the maximum of the percentage of supply chain visibility
for each degree of data sparseness. Also, the average supply chain
visibility of each actor in the supply chain over various degrees of data
sparseness including a 95% confidence interval is shown. The size of the
markers in the plot is equal to the size of the 95% confidence interval.

Fig. 3(a) presents the boxplot of supply chain visibility when adding
noise to the ground truth data. It shows that the global supply chain
visibility gradually decreases when more noise is present in the data
with average steps of 4% to 7% per 10% of extra noise. The highest
median value of supply chain visibility, excluding the base case, is
95.9% at 10% noise. The lowest median value of supply chain visibility
is 52.9% at 90% noise. The spread of the supply chain visibility over
the 200 seeds becomes wider with a higher degree of noise, meaning
9

that the interquartile distance (i.e., the distance between the 1st and
3rd quartiles) becomes wider. However, this distance stays limited to
at most 4.3%. The distance between the minimum and the maximum
value of supply chain visibility becomes even wider over the vari-
ous degrees of noise with the largest distance of 14% at 90% data
sparseness.

When looking more closely at which actors contribute to this spread,
Fig. 3(b) shows that most actors follow the same decreasing trend over
the various degrees of noise regarding their supply chain visibility.
Represented by the size of the marker in this figure, the retailer in
Amsterdam has the widest confidence interval of 1.2% when increasing
the degree of noise in the data. Other actors have a confidence interval
between 0.8% to 1.0% at the highest degree of data sparseness (90%).

Fig. 4(a) shows the boxplot of global supply chain visibility when
adding bias to the ground truth data. The boxplot shows that supply
chain visibility decreases when more bias is present in the data with on
average steps of 3% to 5% per 10% of extra bias. The highest median
value of supply chain visibility, excluding the base case, is 96.8% at
10% bias. The lowest median value of supply chain visibility is 64.9%
at 90% bias. The spread of supply chain visibility becomes wider up
to 50% bias with an interquartile distance from 0.5% to 1.4%, and
the distance between the minimum and the maximum values from



Computers & Industrial Engineering 191 (2024) 110108I.M. van Schilt et al.
Fig. 4. Results for dimension bias for 200 seeds for various degrees of data sparseness.
1.8% to 5.5%. At 60% bias, the spread becomes smaller (4.5%) and
afterwards, it increases by 2% for 70% data sparseness. After 70%,
the spread becomes wider with the widest spread at 90% bias with an
interquartile distance of 4.9% and a distance between the minimum
and the maximum of 8.8%.

When looking at the supply chain visibility per actor including
the 95% confidence interval in Fig. 4(b), it shows that the average
supply chain visibility percentage of the actors retailer in Amsterdam
converges to 2.7% at 90% bias. From 60% onwards, the average supply
chain visibility of retailer in Amsterdam is decreasing steeply with steps
of 10% to 20%, and with a confidence interval higher than 1.2%. This
could explain why the spread of the global supply chain visibility is
smaller at 60% bias, and becomes considerably wider afterwards. Also,
for this actor, the average supply chain visibility percentage decreases
relatively steeply compared to the other actors. The percentage of
supply chain visibility of the manufacturers gradually decreases with
on average steps of 1% to 2% per 10% bias increase over the various
degrees of bias as data sparseness. For the transit port, import ports, and
wholesales distributor, supply chain visibility decreases with average
steps of 2% to 3%. The percentage of supply chain visibility of the actor
export port decreases slightly more steep with average steps of 4% to
5% when increasing bias in the data.

Fig. 5(a) presents the boxplot of global supply chain visibility when
adding missing values to the ground truth data. It shows that the supply
chain visibility decreases when more missing values are present in the
data. The decrease starts with steps of 5% to 6% per 10% increase in
missing values. From 50% missing values onwards, the median value
of supply chain visibility decreases with 7% to 13% per 10% step. The
highest median value of supply chain visibility, excluding the base case,
is 94.8% at 10% missing values. The lowest median value of supply
chain visibility is 31.9% at 90% missing values in the data. The spread
10
Table 4
Supply chain visibility (%) mean and standard deviation for each dimension of data
sparseness and for various degrees of data sparseness.

Percentage of Noise Bias Missing

data sparseness Mean Std Mean Std Mean Std

0% 100.0 0.0 100.0 0.0 100.0 0.0
10% 95.9 0.8 96.8 0.4 94.8 0.6
20% 91.7 1.2 93.4 0.5 89.5 0.9
30% 87.2 1.4 89.9 0.7 83.7 1.1
40% 82.4 1.6 86.3 0.8 77.5 1.2
50% 77.3 1.8 82.5 1.0 70.7 1.4
60% 71.8 2.0 78.5 1.0 63.2 1.5
70% 66.1 2.3 74.3 1.4 54.8 1.5
80% 59.9 2.7 69.8 1.5 44.9 1.7
90% 52.8 3.0 65.0 1.9 31.7 1.7

of the supply chain visibility is relatively small but increases over the
various degrees of missing values. The interquartile distance is 0.8% at
10% missing values and is gradually increasing to 2.4% at 90% missing
values. The distance between the minimum and the maximum value of
supply chain visibility is increasing from 2.8% to 8.6%.

When looking at the supply chain visibility for each actor in
Fig. 5(b), it shows that most actors in the supply chain follow the same
trend regarding the average percentage of supply chain visibility over
the various degrees of missing values. The 95% confidence interval
of all the actors, except for the retailer in Utrecht and the retailer in
Venlo, becomes slightly wider when the percentage of data sparseness
increases. However, this is still not more than 0.7%.

Table 4 shows the mean and the standard deviation, i.e., the spread,
of the supply chain visibility as a percentage for each dimension in
more detail. It can be observed that the standard deviation of the supply
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Fig. 5. Results for dimension missing values for 200 seeds for various degrees of data sparseness.
chain visibility increases when more noise is added to the data. The
increase of the standard deviation from 0.8% at 10% sparseness to 3.0%
at 90% sparseness is the highest of all dimensions. The table also makes
clear that missing values assert the most influence on supply chain
visibility. For missing values, the average percentage of supply chain
visibility decreases all the way down to 31.7% for 90% data sparseness.
Missing values has the lowest standard deviation over most degrees of
data sparseness compared to noise and bias.

7.2. Scenario analysis

To compare the effect of data sparseness on real-life supply chain
cases, plausible scenarios that theoretically could occur in a supply
chain for assessing supply chain visibility are developed. Table 5
presents the configuration of the percentages of noise and missing
values of four stylized scenarios: (i) competitor, (ii) key actor, (iii)
supply-oriented, and (iv) demand-oriented. For each scenario, a bias of
25% over the entire data set is added as real-life data often includes
values that are structurally more present than others. For example,
companies have structurally more information on their own inventory
than on the inventory of other actors.

The first scenario, competitor, reconstructs the case where only one
of two actors in a competitive position in a supply chain is willing
to share data. A possible reason is that an actor is reluctant to share
good data for competitive reasons. In our case, this is a manufacturer
(referred to as manufacturer 2) with a noise of 95% and missing values
of 95%. In real life, it is unlikely that the data of the other actors is
perfect. To account for this, the other actors have a noise of 10% and
25% missing values.

The second scenario, key actor, shows the case where an actor at
a key position, i.e., in the middle of the supply chain, only provides
11
sparse data to the rest of the supply chain with noise and missing values
of 95%. Similar to the competitor scenario, the other actors have a noise
of 10% and 25% missing values.

The third scenario, supply-oriented, represents the case where much
is known on the supply side (starting with only 10% noise and 25%
missing values for the supplier), and less is known on the demand side
(ending with 80% noise and 95% missing values for the retailers). This
often holds for suppliers as they have more high-quality information on
actors upstream than downstream, represented by gradually degrading
data over the actors in the supply chain.

The fourth scenario, demand-oriented, represents the case where
much is known on the demand side (starting with only 10% noise and
25% missing values for the retailers), and less is known on the supply
side (ending with 80% noise and 95% missing values for the supplier).
The retailers have a higher quality and quantity of information on the
actors close to them, i.e., downstream. Similar to the supply-oriented
scenario, this is represented by a gradual increase in the percentage
of noise and missing values following the sequential ordering of the
upstream actors in the supply chain.

Fig. 6(a) shows the boxplot of the average global supply chain
visibility percentage for each scenario. In the scenarios where only one
actor provides sparse data, the competitor and the key actor, the global
supply chain visibility is 72.9% and 71.9% respectively. The spread
of these two scenarios over the 200 seeds is small as the interquartile
distance for both scenarios is only 1.3%, and the distance between the
minimum and the maximum values is at most 5.1%. Fig. 6(b) presents
the average supply chain visibility percentage per actor with the size
of the marker representing the 95% confidence interval. From this, it
can be observed that the decrease in global supply chain visibility is
directly correlated with a low average supply chain visibility of the
particular actor that has a high noise and a high number of missing
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Table 5
Configuration of percentage of noise and missing value for each actor in % for four scenarios.

Scenarios

Competitor Key actor Supply-oriented Demand-oriented

Noise Missing Noise Missing Noise Missing Noise Missing

Supplier 10 25 10 25 10 25 80 95
Manufacturer 1 10 25 10 25 20 35 70 85
Manufacturer 2 95 95 10 25 20 35 70 85
Export port 10 25 10 25 30 45 50 65
Transit port 10 25 95 95 40 55 40 55
Import port 1 & 2 10 25 10 25 50 65 30 45
Wholesales 10 25 10 25 70 85 20 35
Retailer 1, 2 & 3 10 25 10 25 80 95 10 25
Fig. 6. Results of the scenarios (1) Competitor, (2) Key actor, (3) Supply-Oriented, (4) Demand-Oriented over 200 seeds.
values in each of the two scenarios. The average supply chain visibility
of Manufacturer 2 and the transit port is around 9.2% with a 95%
confidence interval of 0.6%. Other actors have an average supply chain
visibility between 69.5% to 86.6%.

In the scenarios where noise and missing values are gradually
added to the actors in the supply chain, either supply-oriented or
demand-oriented, the global supply chain visibility is 58.5% and 40.6%
respectively (see Fig. 6(a)). For the supply-oriented scenario, the spread
is small with an interquartile distance of 2.0% and a distance between
the minimum and maximum values of 7.8%. For the demand-oriented
scenario, the spread is wider with an interquartile distance of 3.0% and
a distance between the minimum and the maximum of 11.1%.

When looking at the supply-oriented scenario, the average supply
chain visibility per actor in Fig. 6(b) decreases over the supply chain.
Given the sequential ordering of the actors in the supply chain, the
supplier and the manufacturers have the highest average supply chain
visibility between 86.6% and 89.7%. The actors with the lowest average
12
supply chain visibility in the supply-oriented scenario are the retailers;
between 7.9% to 12.9% with a relatively wide confidence interval.

For the demand-oriented scenario, a similar pattern of sequentially
decreasing average supply chain visibility over the actors in the supply
chain is present but then reversed in comparison to the supply-oriented
scenario. The actors with the highest average supply chain visibility are
the retailers in Utrecht and Venlo with 83.5%, and the supply chain
visibility of the retailer in Amsterdam is 69.6%. Actors with the lowest
average supply chain visibility are the manufacturers with 24.7% and a
relatively small confidence interval. Fig. 6(b) also shows that the global
supply chain visibility of this scenario is the lowest and it has the widest
spread.

8. Discussion

Six main elements are addressed that are essential for properly
understanding and interpreting the results of this study: (1) impact of
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artifacts of the simulation model, (2) use of sampling method, (3) way
of calculation of supply chain visibility, (4) specificity to a sequential
supply chain, (5) lack of including intentionality, and (6) limitation on
the incorporation of the data collection process.

First, the results show that in all three individual dimensions of data
sparseness, the actors at the outer end of the supply chain, i.e., the
supplier, the retailer in Utrecht, and the retailer in Venlo, have zero
to little spread in their supply chain visibility or are not influenced
(i.e., the visibility remains at 100%) when adding data sparseness. A
reason is that the inventory of these actors is often zero as this is the
starting or the ending node of the supply chain. This is an artifact
of the simulation model as the product does not stay at the supplier
for long (e.g., not longer than 1 day), and products are assumed to
be sold or used quite quickly after arriving at the retailer. Since the
average inventory of these actors is low, the weights for calculating the
global supply chain visibility are also low (Caridi et al., 2010, 2013).
Therefore, these outliers have little impact on the resulting global
supply chain visibility. Interestingly, when adding all three dimensions
of data sparseness to each actor in the scenarios, the supply chain
visibility of the supplier, the retailer in Utrecht, and the retailer in
Venlo, are somewhat affected by data sparseness, but the effects are
very limited.

Second, the sampling method for the dimensions of data sparseness
affects the results depending on the data quality criterion for which
data sparseness is introduced (Laranjeiro et al., 2015). The missing
values dimension results in a small 95% confidence interval and the
lowest standard deviation (not more than 1.7%) for the supply chain
visibility. An explanation is that the missing values dimension only
impacts the quantity of the data. It is more straightforward in which
way the data is transformed, so the spread is low. For noise and bias,
dimensions that affect the quality of the data, the ranges on how the
data can be transformed are wider and, therefore, the spread in supply
chain visibility outcomes is larger. Also, as bias is sampled using a
log-normal distribution, there is a higher probability that the correct
information of some actors is more often present in the data than
the correct information of others. This leads to a higher quality of
the data of those actors and, therefore, a higher supply chain visibil-
ity (Kalaiarasan et al., 2022). It explains that, in the bias dimension,
the average supply chain visibility of most actors is relatively high in
comparison to the fast-decreasing supply chain visibility of the retailer
in Amsterdam. The data is sampled using a Uniform distribution for
the dimensions noise and missing values. As the data of all actors are
equally likely to be modified following this Uniform distribution, the
actors logically follow the same trend regarding the impact on visibility
in these dimensions.

Third, the way of calculating supply chain visibility is of importance
when interpreting the results. For the scenarios where only one actor
is impacted, the competitor scenario and the key actor scenario, the
average supply chain visibility percentage is approximately the same.
However, in supply chain theory, a ‘‘bull-whip’’ effect of information
would be expected in the key actor scenario, i.e., every actor upstream
of the key actor would also be less visible due to the sparse data of
the key actor (Lee, Padmanabhan, & Whang, 1997). This means that,
theoretically, degrading data in the key actor scenario leads to a lower
global supply chain visibility than in the competitor scenario. However,
this effect is not represented in the formulas of global supply chain
visibility, and therefore, the results of these two scenarios are the same.
This lack of including the ‘‘bull-whip’’ effect is a limitation for the
calculation.

When comparing demand-orientation and supply-orientation, the
results show that the demand-oriented scenario has a lower global sup-
ply chain visibility than the supply-oriented scenario. Additionally, the
supply-oriented scenario includes more actors with low supply chain
visibility. A cause for this phenomenon is that the weights assigned to
each actor for calculating global supply chain visibility are based on
13

average order quantity in units (i.e., inventory levels), following Caridi
et al. (2010). Actors upstream in the supply chain generally have more
average inventory than those downstream as they use a make-to-stock
approach. More specifically, the PPE supply chain is a push supply
chain where the supplier and manufacturer create inventory for the
long-term demand instead of a pull supply chain where they respond
to real-time demand (Nag, Han, & Yao, 2014). This entails that the
supplier and the manufacturer have a high weight, contributing more
to the global supply chain visibility according to the formula used in
our study. Thus, the results hold for cases where the average inventory
is a key indicator for determining global supply chain visibility. In other
words, the supply chain characteristics are important for calculating the
average inventory and, therefore, for the validity of our results. Next
to the push and pull characteristic, the structure of the supply chain
plays a crucial role in determining the average inventory of actors (Li,
Zobel, Seref, & Chatfield, 2020). For example, if an assembly supply
chain of a car were studied with many suppliers of small products like
windows and steering wheels, the inventory load might be differently
distributed than in the case of PPE. It would be interesting to examine
whether these results hold for different types of complex supply chains
where inventory is distributed differently.

Fourth, the results are specific to the linear counterfeit PPE supply
chain model used in our study. A supply chain is often represented
as a sequential network, meaning that, for example, there is a one-
directional flow between supplier and manufacturer. On the one hand,
this direct and linear dependency between the actors could lead to
a more straightforward calculation of supply chain visibility, being a
limitation to the generalizability of the results. On the other hand,
many supply chains are characterized by a sequential network, even
when there are more actors involved. Thus, the effect of the dimensions
of data sparseness on supply chain visibility is generalizable to other
supply chains with similar complexity.

Fifth, the quality and the quantity of the data, hence the sup-
ply chain visibility, are not directly affected by the intentionality of
data sparseness as it does not matter whether the actor intention-
ally transformed the data for calculating supply chain visibility in
this study. Therefore, the intentionality aspect of data sparseness is
not included in our analysis. However, coping with sparse data and
using it for decision-making is different when data is intentionally
transformed (Janssen et al., 2017; Oliveira & Handfield, 2019). For
example, when bias is intentionally added to the data of counterfeit
PPE, it is most likely that fraudulent organizations try to mask their
real activities, and planning effective interventions on this biased data
is difficult. Whereas, if data is unintentionally sparse, masking of data
for one specific actor in the supply chain does not take place, and
effective interventions can still be planned on the biased data. The
studied scenarios for a key actor hiding information and a competitor
hiding information could be seen as first experiments with intentional
data sparseness. As the fraction of intentional sparseness impacts how
to cope with data and how to use it in decision-making, it would be
interesting to examine the impact of intentionality on data sparseness
for decision-making (Bronselaer, 2021).

Last, a limitation of the systematic literature review on supply chain
visibility and data quality is that the data collection phase was kept
out of scope. For the purpose of this research, only the impact of
data sparseness on supply chain visibility has been studied. The litera-
ture study provided some possibilities on decreasing data sparseness
during the data collection phase, such as the use of IoT, RFID, and
blockchain (Kumar et al., 2022; Pero & Rossi, 2014). Extending this
research by analyzing how to improve data quality for all phases of the
data management process and how to rank these solutions would be
interesting for academics and practitioners.

9. Conclusion

Improving data quality is crucial for enhancing supply chain vis-

ibility, because accurate and comprehensive data allows for informed
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decision-making, monitoring operations, enhancing resilience, and mit-
igating potential inefficiencies (Bronselaer, 2021; Munir et al., 2020).
Poorly informed supply chain management decisions may result from
data sparseness, creating challenges for stakeholders to coordinate
effectively, and potentially resulting in shortages of products (Janssen
et al., 2017; Kalaiarasan et al., 2022). Therefore, it is important to make
supply chain practitioners aware of the different dimensions of data
sparseness and how these dimensions impact supply chain visibility.
However, no clear and concise formalization of data sparseness exists
in the current state-of-the-art literature on supply chain management.
Additionally, a knowledge gap exists in understanding the extent of the
impact caused by different dimensions of data sparseness. Addressing
these knowledge gaps is essential for enhancing the ability of supply
chain practitioners to deal with data sparseness, and for contributing to
further developments in the supply chain field by explicitly including
the notion of data sparseness and its impact.

This research addresses the gaps in the existing literature by pro-
viding a classification of data sparseness in the context of supply
chains and assessing its impact on supply chain visibility. First, using
a systematic literature review, data sparseness is classified into three
dimensions: (1) noise, i.e., values in the data set are distorted, (2) bias,
i.e., data is not representative of the population or the phenomenon
of study, (3) missing values, i.e., values are missing in the data. Each
dimension has a certain fraction of intentional sparseness. Thus, sparse
data in relation to supply chain visibility is referred to as: ‘‘lack of data
quality across the entire supply chain for the quality dimensions: noise,
bias, and missing values, where a certain fraction of data sparseness is
intentional’’.

Next, the impact of these dimensions on the supply chain visibility
s evaluated for an increasing degree of data sparseness. A stylized
ounterfeit PPE supply chain simulation model is used as ground truth.
ata is extracted from this model, and then data sparseness for the three
imensions is systematically added to this data. Hereby, the magnitude
f change in supply chain visibility for an increasing degree of data
parseness on each individual dimension is assessed. Four stylized
cenarios that could occur in real life regarding data sparseness and
heir effect on supply chain visibility are also examined.

The main research findings demonstrate that data sparseness greatly
ffects the visibility of the counterfeit PPE global supply chain. More
pecifically, data sparseness impacts supply chain visibility, leading to a
eduction of up to 52.8% for noise, 65.0% for bias, and 31.7% for miss-
ng values. For all three individual dimensions, the average percentage
f global supply chain visibility decreases when more sparseness is
dded to the data, and the visibility values have a small 95% confi-
ence interval. The missing values dimension has the largest impact
n the decrease in supply chain visibility, whereas bias has the least
mpact. The results show the relative importance of the dimensions of
ata sparseness for actors in the supply chain. The scenario analysis
hows that the location of an actor who is unwilling to share data
either a competitor or a key actor) makes no difference for the global
upply chain visibility percentage when using the current formulas.
he scenario analysis also shows that the demand-oriented scenario has
he lowest average global supply chain visibility at 40.6%. A reason is
hat the global supply chain visibility percentage decreases more when
ctors with a high average inventory provide sparse data. It also shows
hat companies with a supply-oriented view will have a better insight
nto the supply chain visibility than those with a demand-oriented view.

To provide practical advice, this study helps supply chain practition-
rs by providing information on the relationship between dimensions
f data sparseness and supply chain visibility. The primary impact
n supply chain visibility appears to be missing data, suggesting that
upply chain practitioners should prioritize addressing missing val-
es to improve supply chain visibility. Additionally, companies with
demand-oriented view should prioritize collecting data from up-

tream as much as possible. This would enhance their decision-making
14

apabilities.
Future research should focus on evaluating the impact of data
sparseness on different supply chain configurations in the context of
supply chain visibility, e.g., non-sequential supply chain networks.
Following on this, expanding the complexity of the simulation model
(e.g., including more actors), and therefore, the complexity of the data
set is also a direction for future research. Another research direction is
to investigate the inclusion of the ‘‘bull-whip’’ effect in the calculation
of supply chain visibility, and to include intentionality for evaluating
decision-making with data sparseness. A final research direction is to
research methods to enhance the data quality management process.

CRediT authorship contribution statement

Isabelle M. van Schilt: Conceptualization, Formal analysis, Inves-
tigation, Methodology, Project administration, Software, Visualization,
Writing – original draft, Writing – review & editing. Jan H. Kwakkel:
Conceptualization, Methodology, Software, Supervision, Visualization,
Writing – original draft, Writing – review & editing. Jelte P. Mense:
Conceptualization, Resources, Supervision, Validation, Visualization,
Writing – original draft, Writing – review & editing. Alexander Ver-
braeck: Conceptualization, Methodology, Software, Supervision, Val-
idation, Visualization, Writing – original draft, Writing – review &
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data that has been used is confidential.

References

Agrawal, T. K., Kalaiarasan, R., Olhager, J., & Wiktorsson, M. (2022). Supply chain
visibility: A delphi study on managerial perspectives and priorities. International
Journal of Production Research, 1–16. http://dx.doi.org/10.1080/00207543.2022.
2098873.

Baah, C., Opoku Agyeman, D., Acquah, I. S. K., Agyabeng-Mensah, Y., Afum, E.,
Issau, K., et al. (2022). Effect of information sharing in supply chains: Under-
standing the roles of supply chain visibility, agility, collaboration on supply chain
performance. Benchmarking: An International Journal, 29(2), 434–455. http://dx.doi.
org/10.1108/BIJ-08-2020-0453.

Barratt, M., & Oke, A. (2007). Antecedents of supply chain visibility in retail supply
chains: a resource-based theory perspective. Journal of Operations Management,
25(6), 1217–1233. http://dx.doi.org/10.1016/j.jom.2007.01.003.

Bartlett, P. A., Julien, D. M., & Baines, T. S. (2007). Improving supply chain perfor-
mance through improved visibility. The International Journal of Logistics Management,
18(2), 294–313. http://dx.doi.org/10.1108/09574090710816986.

Boone, T., Ganeshan, R., Jain, A., & Sanders, N. R. (2019). Forecasting sales in the
supply chain: Consumer analytics in the big data era. International Journal of
Forecasting, 35(1), 170–180. http://dx.doi.org/10.1016/j.ijforecast.2018.09.003.

Bronselaer, A. (2021). Data quality management: An overview of methods and chal-
lenges. In T. Andreasen, G. De Tré, J. Kacprzyk, H. Legind Larsen, G. Bordogna, &
S. Zadrożny (Eds.), Flexible query answering systems (pp. 127–141). Cham: Springer
International Publishing, http://dx.doi.org/10.1007/978-3-030-86967-0_10.

run, A., Karaosman, H., & Barresi, T. (2020). Supply chain collaboration for
transparency. Sustainability, 12(11), 4429. http://dx.doi.org/10.3390/su12114429.

usse, C., Schleper, M. C., Weilenmann, J., & Wagner, S. M. (2017). Extending
the supply chain visibility boundary: Utilizing stakeholders for identifying supply
chain sustainability risks. International Journal of Physical Distribution and Logistics
Management, 47(1), 18–40. http://dx.doi.org/10.1108/IJPDLM-02-2015-0043.

alatayud, A., Mangan, J., & Christopher, M. (2019). The self-thinking supply chain.
Supply Chain Management: An International Journal, 24(1), 22–38. http://dx.doi.org/
10.1108/SCM-03-2018-0136.

Caridi, M., Crippa, L., Perego, A., Sianesi, A., & Tumino, A. (2010). Measur-
ing visibility to improve supply chain performance: A quantitative approach.
Benchmarking: An International Journal, 17(4), 593–615. http://dx.doi.org/10.1108/

14635771011060602.

http://dx.doi.org/10.1080/00207543.2022.2098873
http://dx.doi.org/10.1080/00207543.2022.2098873
http://dx.doi.org/10.1080/00207543.2022.2098873
http://dx.doi.org/10.1108/BIJ-08-2020-0453
http://dx.doi.org/10.1108/BIJ-08-2020-0453
http://dx.doi.org/10.1108/BIJ-08-2020-0453
http://dx.doi.org/10.1016/j.jom.2007.01.003
http://dx.doi.org/10.1108/09574090710816986
http://dx.doi.org/10.1016/j.ijforecast.2018.09.003
http://dx.doi.org/10.1007/978-3-030-86967-0_10
http://dx.doi.org/10.3390/su12114429
http://dx.doi.org/10.1108/IJPDLM-02-2015-0043
http://dx.doi.org/10.1108/SCM-03-2018-0136
http://dx.doi.org/10.1108/SCM-03-2018-0136
http://dx.doi.org/10.1108/SCM-03-2018-0136
http://dx.doi.org/10.1108/14635771011060602
http://dx.doi.org/10.1108/14635771011060602
http://dx.doi.org/10.1108/14635771011060602


Computers & Industrial Engineering 191 (2024) 110108I.M. van Schilt et al.

E

F

H

I

J

J

J

J

M

M

N

N

N

O

O

O

P

P

P

R

R

R

S

S

S

Caridi, M., Perego, A., & Tumino, A. (2013). Measuring supply chain visibility in
the apparel industry. Benchmarking: An International Journal, 20(1), 25–44. http:
//dx.doi.org/10.1108/14635771311299470.

Cichy, C., & Rass, S. (2019). An overview of data quality frameworks. IEEE Access, 7,
24634–24648. http://dx.doi.org/10.1109/ACCESS.2019.2899751.

hrlinger, L., & Wöß, W. (2022). A survey of data quality measurement and monitoring
tools. Frontiers in Big Data, 5, Article 850611. http://dx.doi.org/10.3389/fdata.
2022.850611.

an, W., & Geerts, F. (2012). Foundations of data quality management (3rd ed.).
Switzerland: Springer Nature, http://dx.doi.org/10.1007/978-3-031-01892-3.

Fox, J. (2015). Applied regression analysis and generalized linear models (3rd ed.). CA,
USA: Sage Publications.

Francis, V. (2008). Supply chain visibility: lost in translation? Supply Chain Man-
agement: An International Journal, 13(3), 180–184. http://dx.doi.org/10.1108/
13598540810871226.

Gao, J., Xie, C., & Tao, C. (2016). Big data validation and quality assurance–Issuses,
challenges, and needs. In Symposium on service-oriented system engineering (pp.
433–441). Oxford, UK: IEEE, http://dx.doi.org/10.1109/SOSE.2016.63.

Günther, W. A., Mehrizi, M. H. R., Huysman, M., & Feldberg, F. (2017). Debating big
data: A literature review on realizing value from big data. The Journal of Strategic
Information Systems, 26(3), 191–209. http://dx.doi.org/10.1016/j.jsis.2017.07.003.

Hashemi, L., Huang, E., & Shelley, L. (2022). Counterfeit ppe: Substandard respirators
and their entry into supply chains in major cities. Urban Crime. An International
Journal, 3(2), 74–109. http://dx.doi.org/10.26250/heal.panteion.uc.v3i2.290.

Hashemi, L., Jeng, C. C., Mohiuddin, A., Huang, E., & Shelley, L. (2023). Simulating
counterfeit personal protective equipment (PPE) supply chains during COVID-19.
In B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C. Corlu, L. Lee, E. Chew,
T. Roeder, & P. Lendermann (Eds.), Proceedings of the 2022 winter simulation con-
ference (pp. 522–532). Singapore: Institute of Electrical and Electronics Engineers,
Inc, http://dx.doi.org/10.1109/WSC57314.2022.10015398.

Hazen, B. T., Boone, C. A., Ezell, J. D., & Jones-Farmer, L. A. (2014). Data quality
for data science, predictive analytics, and big data in supply chain management:
An introduction to the problem and suggestions for research and applications.
International Journal of Production Economics, 154, 72–80. http://dx.doi.org/10.
1016/j.ijpe.2014.04.018.

Heinrich, B., Hristova, D., Klier, M., Schiller, A., & Szubartowicz, M. (2018). Require-
ments for data quality metrics. Journal of Data and Information Quality, 9(2), 1–32.
http://dx.doi.org/10.1145/3148238.

uang, Y. (2013). Automated simulation model generation (Doctoral thesis), Delft Uni-
versity of Technology, http://dx.doi.org/10.4233/uuid:dab2b000-eba3-42ee-8eab-
b4840f711e37.

ppolito, M., Gregoretti, C., Cortegiani, A., & Iozzo, P. (2020). Counterfeit filtering
facepiece respirators are posing an additional risk to health care workers during
covid-19 pandemic. American Journal of Infection Control, 48(7), 853. http://dx.doi.
org/10.1016/j.ajic.2020.04.020.

acobs, P. H. M. (2005). The DSOL simulation suite (Doctoral Thesis), Delft Uni-
versity of Technology, http://dx.doi.org/10.4233/uuid:4c5586e2-85a8-4e02-9b50-
7c6311ed1278.

anssen, M., van der Voort, H., & Wahyudi, A. (2017). Factors influencing big data
decision-making quality. Journal of Business Research, 70, 338–345. http://dx.doi.
org/10.1016/j.jbusres.2016.08.007.

eble, S., Dubey, R., Childe, S. J., Papadopoulos, T., Roubaud, D., & Prakash, A.
(2018). Impact of big data and predictive analytics capability on supply chain
sustainability. The International Journal of Logistics Management, 29(2), 513–538.
http://dx.doi.org/10.1108/IJLM-05-2017-0134.

unaid, M., Zhang, Q., Cao, M., & Luqman, A. (2023). Nexus between technology
enabled supply chain dynamic capabilities, integration, resilience, and sustainable
performance: An empirical examination of healthcare organizations. Technological
Forecasting and Social Change, 196, Article 122828. http://dx.doi.org/10.1016/j.
techfore.2023.122828.

Kalaiarasan, R., Agrawal, T. K., Olhager, J., Wiktorsson, M., & Hauge, J. B. (2023).
Supply chain visibility for improving inbound logistics: A design science approach.
International Journal of Production Research, 61(15), 5228–5243. http://dx.doi.org/
10.1080/00207543.2022.2099321.

Kalaiarasan, R., Olhager, J., Agrawal, T. K., & Wiktorsson, M. (2022). The abcde of
supply chain visibility: A systematic literature review and framework. International
Journal of Production Economics, 248, Article 108464. http://dx.doi.org/10.1016/j.
ijpe.2022.108464.

Khondoker, M., Dobson, R., Skirrow, C., Simmons, A., & Stahl, D. (2016). A comparison
of machine learning methods for classification using simulation with multiple real
data examples from mental health studies. Statistical Methods in Medical Research,
25(5), 1804–1823. http://dx.doi.org/10.1177/0962280213502437.

Kuipers, L. (2021). Increasing supply chain visibility with limited data availability: data as-
similation in discrete event simulation (M.Sc. Thesis), Delft University of Technology,
https://resolver.tudelft.nl/uuid:5f68b82f-205e-4509-9a64-22082c46065f.

Kumar, D., Singh, R. K., Mishra, R., & Wamba, S. F. (2022). Applications of the
internet of things for optimizing warehousing and logistics operations: A systematic
literature review and future research directions. Computers & Industrial Engineering,
171, Article 108455. http://dx.doi.org/10.1016/j.cie.2022.108455.
15
Laranjeiro, N., Soydemir, S. N., & Bernardino, J. (2015). A survey on data quality:
Classifying poor data. In G. Wang, T. Tsuchiya, & D. Xiang (Eds.), 2015 IEEE
21st Pacific Rim international symposium on dependable computing (pp. 179–188).
Zhangjiajie, China: IEEE, http://dx.doi.org/10.1109/PRDC.2015.41.

Lavastre, O., Gunasekaran, A., & Spalanzani, A. (2014). Effect of firm characteristics,
supplier relationships and techniques used on supply chain risk management
(SCRM): an empirical investigation on french industrial firms. International Journal
of Production Research, 52(11), 3381–3403. http://dx.doi.org/10.1080/00207543.
2013.878057.

Lee, H. L., Padmanabhan, V., & Whang, S. (1997). Information distortion in a supply
chain: The bullwhip effect. Management Science, 43(4), 546–558. http://dx.doi.org/
10.1287/mnsc.43.4.546.

Lee, Y., & Rim, S.-C. (2016). Quantitative model for supply chain visibility: Process
capability perspective. Mathematical Problems in Engineering, 2016, http://dx.doi.
org/10.1155/2016/4049174.

Li, Y., Zobel, C. W., Seref, O., & Chatfield, D. (2020). Network characteristics and
supply chain resilience under conditions of risk propagation. International Journal of
Production Economics, 223, Article 107529. http://dx.doi.org/10.1016/j.ijpe.2019.
107529.

McCrea, B. (2005). EMS completes the visibility picture. Logistics Management, 44(6),
57–61.

in, H., & Zhou, G. (2002). Supply chain modeling: past, present and future.
Computers & Industrial Engineering, 43(1–2), 231–249. http://dx.doi.org/10.1016/
S0360-8352(02)00066-9.

unir, M., Jajja, M. S. S., Chatha, K. A., & Farooq, S. (2020). Supply chain risk
management and operational performance: The enabling role of supply chain
integration. International Journal of Production Economics, 227, Article 107667.
http://dx.doi.org/10.1016/j.ijpe.2020.107667.

ag, B., Han, C., & Yao, D.-q (2014). Mapping supply chain strategy: an industry
analysis. Journal of Manufacturing Technology Management, 25(3), 351–370. http:
//dx.doi.org/10.1108/JMTM-06-2012-0062.

ikkei Asia (2020). Vietnam revamps as ‘world’s mask factory’ to offset COVID hit.
available at: https://asia.nikkei.com/Economy/Trade/Vietnam-revamps-as-world-s-
mask-factory-to-offset-COVID-hit. (accessed on 2022-03-15).

toutsi, E., Fafalios, P., Gadiraju, U., Iosifidis, V., Nejdl, W., Vidal, M.-E., et al. (2020).
Bias in data-driven artificial intelligence systems — An introductory survey. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(3), Article e1356.
http://dx.doi.org/10.1002/widm.1356.

liveira, M. P. V. d., & Handfield, R. (2019). Analytical foundations for development
of real-time supply chain capabilities. International Journal of Production Research,
57(5), 1571–1589. http://dx.doi.org/10.1080/00207543.2018.1493240.

liveira, P., Rodrigues, F., & Henriques, P. (2005). A formal definition of data quality
problems. In F. Naumann, M. Gertz, & S. Madnick (Eds.), Proceedings of the MIT
information quality conference (pp. 1–14). Cambridge, MA: MIT.

mar, I. A., Debe, M., Jayaraman, R., Salah, K., Omar, M., & Arshad, J. (2022).
Blockchain-based supply chain traceability for COVID-19 personal protective equip-
ment. Computers & Industrial Engineering, Article 107995. http://dx.doi.org/10.
1016/j.cie.2022.107995.

eng, J., Hahn, J., & Huang, K.-W. (2023). Handling missing values in information
systems research: A review of methods and assumptions. Information Systems
Research, 34(1), 5–26. http://dx.doi.org/10.1287/isre.2022.1104.

ero, M., & Rossi, T. (2014). Rfid technology for increasing visibility in eto supply
chains: A case study. Production Planning and Control, 25(11), 892–901. http:
//dx.doi.org/10.1080/09537287.2013.774257.

ipino, L. L., Lee, Y. W., & Wang, R. Y. (2002). Data quality assessment. Communications
of the ACM, 45(4), 211–218. http://dx.doi.org/10.1145/505248.506010.

ogerson, M., & Parry, G. C. (2020). Blockchain: case studies in food supply chain
visibility. Supply Chain Management: An International Journal, 25(5), 601–614. http:
//dx.doi.org/10.1108/SCM-08-2019-0300.

oy, V. (2021). Contrasting supply chain traceability and supply chain visibility:
are they interchangeable? The International Journal of Logistics Management, 32(3),
942–972. http://dx.doi.org/10.1108/IJLM-05-2020-0214.

ubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581–592. http:
//dx.doi.org/10.1093/biomet/63.3.581.

áez, J. A., Galar, M., Luengo, J., & Herrera, F. (2014). Analyzing the presence of noise
in multi-class problems: alleviating its influence with the one-vs-one decomposition.
Knowledge and Information Systems, 38(1), 179–206. http://dx.doi.org/10.1007/
s10115-012-0570-1.

aqib, Z., Saqib, K., & Ou, J. (2019). Role of visibility in supply chain management.
In S. A. R. Khan, & S. I. Sümer (Eds.), Modern perspectives in business applications
(pp. 1–14). IntechOpen, http://dx.doi.org/10.5772/intechopen.87202.

choenthaler, R. (2003). Creating real-time supply chain visibility. Electronic Business,
29(8), 12.

Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., & Folleco, A. (2014). An empirical study
of the classification performance of learners on imbalanced and noisy software
quality data. Information Sciences, 259, 571–595. http://dx.doi.org/10.1016/j.ins.
2010.12.016.

Sodhi, M., & Tang, C. (2019). Research opportunities in supply chain transparency.
Production and Operations Management, 28(12), 2946–2959. http://dx.doi.org/10.
1111/poms.13115.

http://dx.doi.org/10.1108/14635771311299470
http://dx.doi.org/10.1108/14635771311299470
http://dx.doi.org/10.1108/14635771311299470
http://dx.doi.org/10.1109/ACCESS.2019.2899751
http://dx.doi.org/10.3389/fdata.2022.850611
http://dx.doi.org/10.3389/fdata.2022.850611
http://dx.doi.org/10.3389/fdata.2022.850611
http://dx.doi.org/10.1007/978-3-031-01892-3
http://refhub.elsevier.com/S0360-8352(24)00229-8/sb15
http://refhub.elsevier.com/S0360-8352(24)00229-8/sb15
http://refhub.elsevier.com/S0360-8352(24)00229-8/sb15
http://dx.doi.org/10.1108/13598540810871226
http://dx.doi.org/10.1108/13598540810871226
http://dx.doi.org/10.1108/13598540810871226
http://dx.doi.org/10.1109/SOSE.2016.63
http://dx.doi.org/10.1016/j.jsis.2017.07.003
http://dx.doi.org/10.26250/heal.panteion.uc.v3i2.290
http://dx.doi.org/10.1109/WSC57314.2022.10015398
http://dx.doi.org/10.1016/j.ijpe.2014.04.018
http://dx.doi.org/10.1016/j.ijpe.2014.04.018
http://dx.doi.org/10.1016/j.ijpe.2014.04.018
http://dx.doi.org/10.1145/3148238
http://dx.doi.org/10.4233/uuid:dab2b000-eba3-42ee-8eab-b4840f711e37
http://dx.doi.org/10.4233/uuid:dab2b000-eba3-42ee-8eab-b4840f711e37
http://dx.doi.org/10.4233/uuid:dab2b000-eba3-42ee-8eab-b4840f711e37
http://dx.doi.org/10.1016/j.ajic.2020.04.020
http://dx.doi.org/10.1016/j.ajic.2020.04.020
http://dx.doi.org/10.1016/j.ajic.2020.04.020
http://dx.doi.org/10.4233/uuid:4c5586e2-85a8-4e02-9b50-7c6311ed1278
http://dx.doi.org/10.4233/uuid:4c5586e2-85a8-4e02-9b50-7c6311ed1278
http://dx.doi.org/10.4233/uuid:4c5586e2-85a8-4e02-9b50-7c6311ed1278
http://dx.doi.org/10.1016/j.jbusres.2016.08.007
http://dx.doi.org/10.1016/j.jbusres.2016.08.007
http://dx.doi.org/10.1016/j.jbusres.2016.08.007
http://dx.doi.org/10.1108/IJLM-05-2017-0134
http://dx.doi.org/10.1016/j.techfore.2023.122828
http://dx.doi.org/10.1016/j.techfore.2023.122828
http://dx.doi.org/10.1016/j.techfore.2023.122828
http://dx.doi.org/10.1080/00207543.2022.2099321
http://dx.doi.org/10.1080/00207543.2022.2099321
http://dx.doi.org/10.1080/00207543.2022.2099321
http://dx.doi.org/10.1016/j.ijpe.2022.108464
http://dx.doi.org/10.1016/j.ijpe.2022.108464
http://dx.doi.org/10.1016/j.ijpe.2022.108464
http://dx.doi.org/10.1177/0962280213502437
https://resolver.tudelft.nl/uuid:5f68b82f-205e-4509-9a64-22082c46065f
http://dx.doi.org/10.1016/j.cie.2022.108455
http://dx.doi.org/10.1109/PRDC.2015.41
http://dx.doi.org/10.1080/00207543.2013.878057
http://dx.doi.org/10.1080/00207543.2013.878057
http://dx.doi.org/10.1080/00207543.2013.878057
http://dx.doi.org/10.1287/mnsc.43.4.546
http://dx.doi.org/10.1287/mnsc.43.4.546
http://dx.doi.org/10.1287/mnsc.43.4.546
http://dx.doi.org/10.1155/2016/4049174
http://dx.doi.org/10.1155/2016/4049174
http://dx.doi.org/10.1155/2016/4049174
http://dx.doi.org/10.1016/j.ijpe.2019.107529
http://dx.doi.org/10.1016/j.ijpe.2019.107529
http://dx.doi.org/10.1016/j.ijpe.2019.107529
http://refhub.elsevier.com/S0360-8352(24)00229-8/sb39
http://refhub.elsevier.com/S0360-8352(24)00229-8/sb39
http://refhub.elsevier.com/S0360-8352(24)00229-8/sb39
http://dx.doi.org/10.1016/S0360-8352(02)00066-9
http://dx.doi.org/10.1016/S0360-8352(02)00066-9
http://dx.doi.org/10.1016/S0360-8352(02)00066-9
http://dx.doi.org/10.1016/j.ijpe.2020.107667
http://dx.doi.org/10.1108/JMTM-06-2012-0062
http://dx.doi.org/10.1108/JMTM-06-2012-0062
http://dx.doi.org/10.1108/JMTM-06-2012-0062
https://asia.nikkei.com/Economy/Trade/Vietnam-revamps-as-world-s-mask-factory-to-offset-COVID-hit
https://asia.nikkei.com/Economy/Trade/Vietnam-revamps-as-world-s-mask-factory-to-offset-COVID-hit
https://asia.nikkei.com/Economy/Trade/Vietnam-revamps-as-world-s-mask-factory-to-offset-COVID-hit
http://dx.doi.org/10.1002/widm.1356
http://dx.doi.org/10.1080/00207543.2018.1493240
http://refhub.elsevier.com/S0360-8352(24)00229-8/sb46
http://refhub.elsevier.com/S0360-8352(24)00229-8/sb46
http://refhub.elsevier.com/S0360-8352(24)00229-8/sb46
http://refhub.elsevier.com/S0360-8352(24)00229-8/sb46
http://refhub.elsevier.com/S0360-8352(24)00229-8/sb46
http://dx.doi.org/10.1016/j.cie.2022.107995
http://dx.doi.org/10.1016/j.cie.2022.107995
http://dx.doi.org/10.1016/j.cie.2022.107995
http://dx.doi.org/10.1287/isre.2022.1104
http://dx.doi.org/10.1080/09537287.2013.774257
http://dx.doi.org/10.1080/09537287.2013.774257
http://dx.doi.org/10.1080/09537287.2013.774257
http://dx.doi.org/10.1145/505248.506010
http://dx.doi.org/10.1108/SCM-08-2019-0300
http://dx.doi.org/10.1108/SCM-08-2019-0300
http://dx.doi.org/10.1108/SCM-08-2019-0300
http://dx.doi.org/10.1108/IJLM-05-2020-0214
http://dx.doi.org/10.1093/biomet/63.3.581
http://dx.doi.org/10.1093/biomet/63.3.581
http://dx.doi.org/10.1093/biomet/63.3.581
http://dx.doi.org/10.1007/s10115-012-0570-1
http://dx.doi.org/10.1007/s10115-012-0570-1
http://dx.doi.org/10.1007/s10115-012-0570-1
http://dx.doi.org/10.5772/intechopen.87202
http://refhub.elsevier.com/S0360-8352(24)00229-8/sb56
http://refhub.elsevier.com/S0360-8352(24)00229-8/sb56
http://refhub.elsevier.com/S0360-8352(24)00229-8/sb56
http://dx.doi.org/10.1016/j.ins.2010.12.016
http://dx.doi.org/10.1016/j.ins.2010.12.016
http://dx.doi.org/10.1016/j.ins.2010.12.016
http://dx.doi.org/10.1111/poms.13115
http://dx.doi.org/10.1111/poms.13115
http://dx.doi.org/10.1111/poms.13115


Computers & Industrial Engineering 191 (2024) 110108I.M. van Schilt et al.

S

S

S

S

T

T

T

v

v

W

W

W

W

Somapa, S., Cools, M., & Dullaert, W. (2018). Characterizing supply chain visibility - A
literature review. The International Journal of Logistics Management, 29(1), 308–339.
http://dx.doi.org/10.1108/IJLM-06-2016-0150.

ouibgui, M., Atigui, F., Zammali, S., Cherfi, S., & Yahia, S. B. (2019). Data quality
in ETL process: A preliminary study. Procedia Computer Science, 159, 676–687.
http://dx.doi.org/10.1016/j.procs.2019.09.223.

rinivasan, R., & Swink, M. (2018). An investigation of visibility and flexibility as
complements to supply chain analytics: An organizational information processing
theory perspective. Production and Operations Management, 27(10), 1849–1867.
http://dx.doi.org/10.1111/poms.12746.

tadtler, H., & Kilger, C. (2002). Vol. 4, Supply chain management and advanced planning:
concepts, models, software, and case studies. Berlin, Heidelberg: Springer Berlin
Heidelberg.

wift, C., Guide, V. D. R., Jr., & Muthulingam, S. (2019). Does supply chain visibility
affect operating performance? Evidence from conflict minerals disclosures. Journal
of Operations Management, 65(5), 406–429. http://dx.doi.org/10.1002/joom.1021.

eng, C.-M. (1999). Correcting noisy data. In I. Bratko, & S. Dzeroski (Eds.), Proceedings
of the sixteenth international conference on machine learning (pp. 239–248). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

iwari, S., Wee, H.-M., & Daryanto, Y. (2018). Big data analytics in supply chain
management between 2010 and 2016: Insights to industries. Computers & Industrial
Engineering, 115, 319–330. http://dx.doi.org/10.1016/j.cie.2017.11.017.

ripepi, G., Jager, K. J., Dekker, F. W., & Zoccali, C. (2010). Selection bias and
information bias in clinical research. Nephron Clinical Practice, 115(2), c94–c99.
http://dx.doi.org/10.1159/000312871.

an Schilt, I. M., Kwakkel, J., Mense, J. P., & Verbraeck, A. (2023). Calibrating
simulation models with sparse data: Counterfeit supply chains during covid-19.
In B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C. Corlu, L. Lee, E. Chew,
T. Roeder, & P. Lendermann (Eds.), Proceedings of the 2022 winter simulation con-
ference (pp. 496–507). Singapore: Institute of Electrical and Electronics Engineers,
Inc, http://dx.doi.org/10.1109/WSC57314.2022.10015241.

an Wee, B., & Banister, D. (2016). How to write a literature review paper? Transport
Reviews, 36(2), 278–288. http://dx.doi.org/10.1080/01441647.2015.1065456.
16
amba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How ‘big
data’can make big impact: Findings from a systematic review and a longitudinal
case study. International Journal of Production Economics, 165, 234–246. http://dx.
doi.org/10.1016/j.ijpe.2014.12.031.

ang, G., Gunasekaran, A., Ngai, E. W., & Papadopoulos, T. (2016). Big data analytics
in logistics and supply chain management: Certain investigations for research
and applications. International Journal of Production Economics, 176, 98–110. http:
//dx.doi.org/10.1016/j.ijpe.2016.03.014.

ang, R. Y., & Strong, D. M. (1996). Beyond accuracy: What data quality means
to data consumers. Journal of Management Information Systems, 12(4), 5–33. http:
//dx.doi.org/10.1080/07421222.1996.11518099.

ang, J., & Zhuo, W. (2020). Strategic information sharing in a supply chain under
potential supplier encroachment. Computers & Industrial Engineering, 150, Article
106880. http://dx.doi.org/10.1016/j.cie.2020.106880.

Wei, H.-L., & Wang, E. T. (2010). The strategic value of supply chain visibility:
Increasing the ability to reconfigure. European Journal of Information Systems, 19(2),
238–249. http://dx.doi.org/10.1057/ejis.2010.10.

Williams, B. D., Roh, J., Tokar, T., & Swink, M. (2013). Leveraging supply chain
visibility for responsiveness: The moderating role of internal integration. Journal of
Operations Management, 31(7–8), 543–554. http://dx.doi.org/10.1016/j.jom.2013.
09.003.

Zhang, A. N., Goh, M., & Meng, F. (2011). Conceptual modelling for supply chain
inventory visibility. International Journal of Production Economics, 133(2), 578–585.
http://dx.doi.org/10.1016/j.ijpe.2011.03.003.

Zhao, N., Hong, J., & Lau, K. H. (2023). Impact of supply chain digitalization on
supply chain resilience and performance: A multi-mediation model. International
Journal of Production Economics, 259, Article 108817. http://dx.doi.org/10.1016/j.
ijpe.2023.108817.

Zhu, X., & Wu, X. (2004). Class noise vs. attribute noise: A quantitative study. Artificial
Intelligence Review, 22(3), 177–210. http://dx.doi.org/10.1007/s10462-004-0751-8.

Zhu, X., Wu, X., & Yang, Y. (2004). Error detection and impact-sensitive instance
ranking in noisy datasets. In Proceedings of the nineteenth national conference on
artificial intelligence (pp. 378–384). San Jose, CA, USA: American Association for
Artificial Intelligence, https://www.aaai.org/Papers/AAAI/2004/AAAI04-061.pdf.

http://dx.doi.org/10.1108/IJLM-06-2016-0150
http://dx.doi.org/10.1016/j.procs.2019.09.223
http://dx.doi.org/10.1111/poms.12746
http://refhub.elsevier.com/S0360-8352(24)00229-8/sb62
http://refhub.elsevier.com/S0360-8352(24)00229-8/sb62
http://refhub.elsevier.com/S0360-8352(24)00229-8/sb62
http://refhub.elsevier.com/S0360-8352(24)00229-8/sb62
http://refhub.elsevier.com/S0360-8352(24)00229-8/sb62
http://dx.doi.org/10.1002/joom.1021
http://refhub.elsevier.com/S0360-8352(24)00229-8/sb64
http://refhub.elsevier.com/S0360-8352(24)00229-8/sb64
http://refhub.elsevier.com/S0360-8352(24)00229-8/sb64
http://refhub.elsevier.com/S0360-8352(24)00229-8/sb64
http://refhub.elsevier.com/S0360-8352(24)00229-8/sb64
http://dx.doi.org/10.1016/j.cie.2017.11.017
http://dx.doi.org/10.1159/000312871
http://dx.doi.org/10.1109/WSC57314.2022.10015241
http://dx.doi.org/10.1080/01441647.2015.1065456
http://dx.doi.org/10.1016/j.ijpe.2014.12.031
http://dx.doi.org/10.1016/j.ijpe.2014.12.031
http://dx.doi.org/10.1016/j.ijpe.2014.12.031
http://dx.doi.org/10.1016/j.ijpe.2016.03.014
http://dx.doi.org/10.1016/j.ijpe.2016.03.014
http://dx.doi.org/10.1016/j.ijpe.2016.03.014
http://dx.doi.org/10.1080/07421222.1996.11518099
http://dx.doi.org/10.1080/07421222.1996.11518099
http://dx.doi.org/10.1080/07421222.1996.11518099
http://dx.doi.org/10.1016/j.cie.2020.106880
http://dx.doi.org/10.1057/ejis.2010.10
http://dx.doi.org/10.1016/j.jom.2013.09.003
http://dx.doi.org/10.1016/j.jom.2013.09.003
http://dx.doi.org/10.1016/j.jom.2013.09.003
http://dx.doi.org/10.1016/j.ijpe.2011.03.003
http://dx.doi.org/10.1016/j.ijpe.2023.108817
http://dx.doi.org/10.1016/j.ijpe.2023.108817
http://dx.doi.org/10.1016/j.ijpe.2023.108817
http://dx.doi.org/10.1007/s10462-004-0751-8
https://www.aaai.org/Papers/AAAI/2004/AAAI04-061.pdf

	Dimensions of data sparseness and their effect on supply chain visibility
	Introduction
	Literature Review Method
	Supply Chain Visibility
	Definition
	Methods for Assessing Supply Chain Visibility
	Operationalization

	Data Quality
	Data Quality Dimensions
	Data Quality Issues

	Classification of Data Sparseness
	Methods
	Formalization of Dimensions
	Formalization of Supply Chain Visibility
	Design of Experiments
	Case Study

	Results
	Effect of the Individual Dimensions
	Scenario Analysis

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


