
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Embedded System Construction –
Evaluation of a Model-Driven and

Component-Based Develpoment
Approach

Christian Bunse, Hans-Gerhard Gross, Christian Peper

Report TUD-SERG-2008-020

SERG

TUD-SERG-2008-020

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

c© copyright 2008, Software Engineering Research Group, Department of Software Technology, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the publisher.

Embedded System Construction – Evaluation of a Model-
Driven and Component-Based Development Approach

Christian Bunse1, Hans-Gerhard Gross2, and Christian Peper3

1 International University, Bruchsal, Germany
Christian.Bunse@i-u.de

2 Delft University of Technology, Delft, The Netherlands
h.g.gross@tudelft.nl

3 Fraunhofer Institute for Experimental Software Engineering, Kaiserslautern, Germany
Christian.Peper@iese.fraunhofer.de

Abstract. Model-driven development, using the UML, has become an important
development paradigm. It is said to have many advantages over traditional
approaches, even for embedded systems. Along a similar line of argumentation,
component-based software engineering is advocated. In order to investigate these
claims, the model-driven and component-based method MARMOT was applied to
develop and implement several variants of a small micro-controller based automotive
subsystem, an electronic car mirror. Several key figures, like model size and
development effort, were measured and compared to the outcome of two different
approaches: the Unified Process and Agile Development. The analysis reveals that
model-based, component-oriented development performs well and leads to adaptable
systems and a higher-than-normal reuse rate. This is the case at least for the
considered application domain.

1 Introduction

Embedded software applications are typically more difficult to design and build
because of the problem domain and the constraints placed on them by the target
environment. One technique that may, at first, seem inappropriate for the embedded
domain is modeling and Model-Driven Development (MDD) with components.
Modeling is frequently used in other engineering domains as a way to solve problems
at a higher level of abstraction and to verify design decisions before committing large
resources to develop a product. Component-oriented development envisions that new

SERG Bunse, Gross, Peper – Embedded System Construction

TUD-SERG-2008-020 1

2

software applications can be created with much less effort than in traditional
approaches, simply by assembling existing parts. Although, the use of models and
components for embedded software systems is still far from being industrial best
practice.

One reason might be, that the disciplines involved, mechanical-, electronic-, and
software engineering, are not in sync, a fact which cannot be attributed to one of these
fields alone. Engineers are struggling hard to master the pitfalls of modern, complex
embedded systems. What is really lacking is a vehicle to transport the recent
advances in software engineering and component technologies to the embedded
world.

This paper shortly introduces the MARMOT system development method.
MARMOT stands for ‘Method for Component-Based Real-Time Object-Oriented
Development and Testing’ and it aims to provide the ingredients to master the multi-
disciplinary effort of developing embedded systems. It provides templates, models
and guidelines for the products describing a system, and how these artifacts are built
up throughout development. The main focus of the paper is on a series of case-studies
in which we apply MARMOT to a small control system for an exterior car mirror. In
a second run MARMOT is evaluated against other development approaches. In order
to validate the expected effects, several aspects such as model size [22] and
development effort are quantified and analyzed.

The paper is structured as follows: Section 2 gives an overview of related work.
Section 3 briefly describes MARMOT, and section 4 presents the case study and
Section 5 discusses the results obtained. Finally, Section 6 presents a brief summary,
conclusions drawn, and hypotheses for future research.

2 Related Work

Growing complexity and short release cycles of embedded systems stimulated the
transfer of model-driven development techniques to the domain of embedded
software systems. There are two research routes: Formal modeling languages for
embedded system design, and non-formal approaches using standard notations such as
UML. Initially, formal languages such as Z [12], functional decomposition [17], or
state-based notations [8] were used, but these approaches lack reuse mechanisms on
higher levels of abstraction. Newer developments such as MATLAB [16] or
MODELICA [7] provide tool and (additional) methodological support, but lack
effective reuse strategies and adaptation mechanisms.

The Unified Modeling Language (UML) [18] was adapted for modeling embedded
and real-time systems, but it still lacks precise semantics, and guidelines about its
usage. OMEGA [9], HIDOORS [21], or FLEXICON [14], or the work presented in,
[6], [10], [13], [15], or [19] define development methods for real-time and embedded
systems using the UML. Although a step in the right direction, they often do not use
the enhanced features of UML 2.0, nor do they address complexity and reuse issues.
Another problem, stated by Kahn, is the inadequate support for mapping UML (2.0)

Bunse, Gross, Peper – Embedded System Construction SERG

2 TUD-SERG-2008-020

 3

models to code [11]. Developers follow traditional approaches, and a complete
transition to object- or component technology is prevented by the required time and
space efficiency of the product, or due to standards to be followed. Embedded system
development would benefit from the advantages of model-driven development
(MDD) [11], if the technologies could be integrated into existing development
processes, for example, through keeping C as target language. Most approaches and
tools map models to sophisticated languages, for example Java, resulting in runtime
performance, memory, or timing problems [11], or they use straightforward mapping
strategies (UML to C) that neglect concepts such as inheritance or dynamic binding.

3 MARMOT Overview

Reuse is a key factor in industry, and it can be seen as a major driving force in
hardware and software development. Reuse is pushed forward mainly by the growing
complexity of systems. This section shortly introduces the MARMOT development
method for model-driven and component-based development of embedded systems,
which is specifically geared toward facilitating reuse in embedded systems
development. MARMOT builds on the principles of the KobrA Method [1], and
extends this with techniques for dealing with developing embedded systems.
MARMOT applies the key ideas of component-based software development, namely
information hiding and divide-and-conquer, even in the software models. Thus,
MARMOT components follow the principles of encapsulation, modularity and unique
identity that most component definitions put forward.

In MARMOT, Communication between components relies on interface contracts
becoming feasible in the hardware or embedded world through software abstractions.
An additional hardware wrapper can realize that the hardware communication
protocol is translated into a typical component communication contract. Further,
encapsulation requires separating the description of what a software unit does from
the description of how it does it. These descriptions are called specification and
realization, respectively (see Fig. 1).

The specification is a suite of descriptive artifacts that collectively define everything
externally knowable about a component. These descriptions fully specify a
component in a way that it can be assembled in a system and used by the system. The
realization is a suite of descriptive artifacts that collectively define how a component
is internally realized. Following this principle, each component within a system can
be described through a suite of models, for example UML diagrams or other textual
documents, as if it was an independent system in its own right.

SERG Bunse, Gross, Peper – Embedded System Construction

TUD-SERG-2008-020 3

4

Structural Model
(UML class/object dia

Functional Model
(operation specifications)

Behavior Model
(UML statechart diagram)

Specification

Structural Model
(UML class/object diag

Interaction Model
(UML collaboration

diagrams)

Activity Model
(UML activity diagrams) Realization

KobrA
C

om
ponent

Structural Model
(UML class/object dia

Functional Model
(operation specifications)

Behavior Model
(UML statechart diagram)

Specification

Structural Model
(UML class/object diag

Interaction Model
(UML collaboration

diagrams)

Activity Model
(UML activity diagrams) Realization

KobrA
C

om
ponent

Fig. 1. MARMOT component model.

The fact that components can be realized using other components, turns a MARMOT
project into a tree-shaped structure with consecutively nested abstract component
representations. Therefore, a system can be viewed as a tree-shaped hierarchy of
components, in which the parent/child relationship represents composition, i.e., a
super-ordinate component is composed out of its contained sub-ordinate components.
Such a tree is called containment tree. Any component can be a containment tree in its
own right, and, as a consequence, another MARMOT project. Acquisition of
component services across the tree turns a MARMOT project into a graph. The four
basic activities of a MARMOT development process are composition, decomposition,
embodiment, and validation as shown in Fig. 2.

Decomposition follows the divide-and-conquer paradigm, and it is performed to
subdivide the system into smaller parts that are easier to understand and control. An
embedded system development project always starts above the top left-hand side box
in Fig. 2. The box represents the entire system to be built. Prior to specifying the box,
the concepts of the domain in which the system is supposed to operate have to be
determined. This comprises descriptions of all relevant domain entities including
standard hardware components that will eventually appear on the right-hand side
towards concretization. In embedded systems, these implementation-specific entities
often determine the way in which a system is divided into smaller parts. During
decomposition, newly identified logical parts of the system are mapped to existing
components. Whether these are hard- or software does not play a role because all
components are treated in a uniform way, as software abstractions.

Bunse, Gross, Peper – Embedded System Construction SERG

4 TUD-SERG-2008-020

 5

Fig. 2. Development activities in MARMOT.

Composition represents the opposite activity, which is performed when individual
components have been implemented or reused, and the system is put together. After
having implemented some of the boxes and having some others reused, the system
can be assembled according to the abstract model. Therefore, the subordinate boxes
with their respective super-ordinate boxes have to be coordinated in a way that
exactly follows the component description standard previously introduced.

Embodiment is concerned with the implementation of a system and a move toward
more and more executable representations. It turns the abstract system represented by
models into more concrete representations that can be executed by a computer.
During decomposition, the shapes of each identified individual component were
defined in an abstract and logical way. The system parts can, then, be moved towards
more concrete representations. This means they become platform specific.
Embodiment is where MARMOT adds the most novel concepts to the KobrA
development method.

Validation checks whether the concrete representations are in line with the abstract
ones. It is carried out in order to check whether the concrete composition of the
embedded system corresponds to its abstract description.

The described approach was designed to facilitate the interchange of new component
versions with old versions provided that they do the same thing and abide by the same
interface, and to foster reuse by directly supporting the typical reuse activities.

− Development for reuse, which deals with how components have to be specified
and treated, so that they can be reused.

SERG Bunse, Gross, Peper – Embedded System Construction

TUD-SERG-2008-020 5

6

− Development with reuse, dealing with the integration and adaptation of existing
components in a new application.

A more thorough introduction of MARMOT can be found in [3]. In the following
section, we describe the system that was built with the help of MARMOT.

4 Description of the Case Study

We used an exterior mirror control system in our case study. It allows moving the
mirror horizontally and vertically into the desired position. Mirror positions can be
stored and recalled to support driver profiles. For brevity of illustration a simplified
version was used, comprising a microcontroller, a button, two potentiometers, and
two servos. The system controls the two servos via two potentiometers, and indicates
movement on a small LCD panel.

Fig. 3. Containment hierarchy (architecture).

Values are read from the potentiometers, converted to degrees, and servo control
signals (PWM) are generated, while, at the same time, movement and degree are
displayed on the LCD panel. The system stores a position through pressing the button
for more than 5 seconds.

Requirements Modeling: Use cases describe the requirements in a textual and a
graphical representation. Activity diagrams describe the general flow of control,
including a UML representation of the target platform.

Component Modeling: Component modeling creates the specification and realization
of all software components using class, state, interaction, and activity diagrams, as
well as operation schemata. Since timing is critical in embedded systems, the
component realization is extended by timing diagrams. Modeling starts at the root of
the containment hierarchy (see Fig. 3) that represents the component struc-
ture/architecture of the system. The top-level component is specified using three
different UML models. The component specification is further decomposed into the
component realization comprising the private design of the component. Figure 4

Bunse, Gross, Peper – Embedded System Construction SERG

6 TUD-SERG-2008-020

 7

depicts some of the specification models of the Application component, whereas in
Fig. 5, the related realization models are displayed. The models are devised for every
component in the containment hierarchy.

Fig. 4. Example component specification.

Implementation: Iteratively devising specifications and realizations is continued
until an existing component is found, or, until it can be implemented. Coming to a
concrete implementation from models requires reducing the level of abstraction. First,
the containment hierarchy is simplified according to technical restrictions of the used
implementation technology. Second, the models are mapped to source code, either
through a code generator, or manual mapping 0 .

In the context of several follow-up projects (see section 4.1) the system structure (the
component architecture, see Fig. 3) enabled systematic reuse. The encapsulation of
hardware-related issues in a driver component facilitated the porting of the systems to
other hardware platforms. Adaptations were supported by simply removing or adding
new components. Furthermore, the specified component interface of the overall
system allowed easy reuse in the context of another project.

SERG Bunse, Gross, Peper – Embedded System Construction

TUD-SERG-2008-020 7

8

Fig. 5. Example component realization.

Follow-Up Projects: Since the effects of reuse can only be measured and analyzed in
follow-up projects, a number of student projects, using the original mirror system as a
basis, were defined and carried out in two series. The goal of the projects was to cover
typical reuse situations: The system was ported for different processor families,
adapted by removing and adding functionality, and it was reused in the context of a
larger project. In the second run, the projects of the first run were reiterated using an
agile approach [10] and an adaptation of the Unified Process for embedded systems
[3]. The goal was compare MARMOT with two other methods.

5 Evaluation and Comparison

In the context of the first and second series of case studies, a number of measurements
were performed in order to get a first impression on the maintainability, portability,
and adaptability of software systems. Tables 1, 2, and 3 provide data concerning
model and code size, quality, effort, and reuse rates. In detail, the following data was
collected:

Bunse, Gross, Peper – Embedded System Construction SERG

8 TUD-SERG-2008-020

 9

 Table 1 Case-Study Results – 1st Series
 Original ATMega32 PICF Adapt- Adapt+ Door
LOC 310 310 320 280 350 490

NCM 8 8 8 6 10 10
NCOM 15 15 15 11 19 29

Model Size
(Abs.)

ND 46 46 46 33 52 64

assesNumberofCl
ateChartsNumberofSt

1 1 1 1 0.8 1

assesNumberofCl

erationsNumberofOp

3.25 3.25 3.25 2.5 3 3.4

Model Size
(Rel.)

assesNumberofCl

sociationsNumberofAs
1.375 1.375 1.375 1.33 1.3 1.6

Reuse Fraction(%) 0 100 97 100 89 60
New (%) 100 0 3 0 11 40
Unchanged (%) 0 95 86 75 90 95
Changed (%) 0 5 14 5 10 5

Reuse

Removed (%) 0 0 0 20 0 40
Global 26 6 10.5 3 10 24
Hardware 10 2 4 0.5 2 8
Requirements 1 0 0 0.5 1 2
Design 9.5 0.5 1 0.5 5 6
Implementation 3 1 3 0.5 2 4

Effort (h)

Test 2.5 2.5 2.5 1 2 4
Quality Defect Density 9 0 2 0 3 4

Table 2 Case Study Results – 2nd Series (Agile)
 Original ATMega32 ATMega32 PICF PICF Adapt- Adapt- Adapt+ Adapt+ Door Door
LOC 280 280 290 300 340 270 300 310 330 450 550

NCM 14 14 15 14 15 11 13 16 17 23 26
NCOM 5 5 5 5 5 4 4 7 7 12 12

Model Size
(Abs.)

ND 3 3 3 3 3 3 3 3 3 3 3

assesNumberofCl
ateChartsNumberofSt

0 0 0 0 0 0 0 0 0 0 0

assesNumberofCl

erationsNumberofOp

3.21 3.21 3.3 3.21 3.3 3.18 3.15 3.18 3.23 4.08 4.19

Model Size
(Rel.)

assesNumberofCl

sociationsNumberofAs

3.5 3.5 3.3 3.5 3.3 3.54 3.46 3.3 3.17 2.69 2.57

Reuse Fraction(%) 0 100 95 95 93 100 93 50 45 30 25
New (%) 100 0 5 5 7 0 7 50 55 70 75
Unchanged (%) 0 90 85 89 75 65 40 70 54 90 85
Changed (%) 0 10 14 8 15 15 40 20 36 10 10

Reuse

Removed (%) 0 0 1 3 10 20 20 10 10 0 5
Global 18 4 5 9 11.5 3 6 11 13.5 29 37
Hardware 6 2 2 4 4 0.5 1 2 2 8 8
Requirements 0.5 0 0 0 0 0 0.5 1 1 1 1
Design 2 0 0 0 0 0.5 1 1 1.5 3 3
Implementation 7 1.5 2 3 5 1 2 4 6 11 18

Effort (h)

Test 2.5 0.5 1 2 2.5 1 1.5 3 3 6 7
Quality Defect Density 7 0 0 1 2 1 1 4 5 7 7
Table 3 Case Study Results – 2nd Series (Unified Process)
 Original ATMega32 ATMega32 PICF PICF Adapt- Adapt- Adapt+ Adapt+ Door Door
LOC 350 350 340 340 340 300 320 370 400 470 500

NCM 10 10 10 10 10 7 8 12 12 12 13
NCOM 15 15 15 15 15 11 11 19 19 29 29

Model Size
(Abs.)

ND 59 59 59 59 59 43 45 60 60 66 68

assesNumberofCl
ateChartsNumberofSt

1.5 1.5 1.5 1.5 1.5 0.7 0.72 1.33 1.33 1.16 1.07

assesNumberofCl

erationsNumberofOp

4 4 3.5 3.5 3.5 3 3.25 2.83 3 3.5 3.46

Model Size
(Rel.)

assesNumberofCl

sociationsNumberofAs

2.5 2.5 2.3 2.5 2.3 2.57 2.5 2 2.16 1.83 1.76

Reuse Fraction(%) 0 100 100 95 94 91 88 87 86 59 58
New (%) 100 0 0 5 6 9 11 13 14 41 42
Unchanged (%) 0 96 92 84 80 73 70 88 85 90 86
Changed (%) 0 4 4 16 15 6 6 12 15 10 14

Reuse

Removed (%) 0 0 4 0 5 21 24 0 0 41 41
Global 34 7 8 11 12 5 5.5 11 13 27 29
Hardware 10 2 2 4 4 0.5 0.5 2 2 8 8
Requirements 4 1 1 1 1 1.5 1.5 2 3 4 4
Design 12 1 1 1 2 1 1 5 4 6 7
Implementation 5 1 2 3 3 1 1.5 2 2 5 6

Effort (h)

Test 3 2 2 2 2 1 1 2 2 4 4
Quality Defect Density 8 0 1 2 2 1 0 3 3 4 4

SERG Bunse, Gross, Peper – Embedded System Construction

TUD-SERG-2008-020 9

10

− System Size. Memory is a sparse resource in embedded systems (e.g., often
below 10 Kbytes), and program size is extremely important. MDD for embedded
systems will only be successful if the resulting code size, obtained from the
models, is small. Therefore, we collected the lines of code (without pretty
printing, comments, etc.) for each system.

− MDD is often believed to create a large overhead of models, even for small
projects. Therefore, we collected data concerning the model-size for all systems
absolute and relative size measures proposed in [22]. In addition, figures on the
number of classes in a model (NCM), number of components in a model
(NCOM), and the number of diagrams (ND) were used.

− Reuse is central for MDD and CBD and it must be seen as an upfront investment
paying off in many projects. Reuse must be examined between projects and not
within a project. Therefore, we collected data concerning the amount of reused
elements as the proportion of the system which can be reused without any
changes or with small adaptations. Measures are taken at the model and the code
level and are normalized using the system size (model, LOC).

− Effort saving is one promise of MDD and CBD [20] though, it does not occur
immediately (i.e., in the first project), but in follow-up projects. Effort was
measured (in hours) for all development phases to identify where savings could
be realized. Since all projects were quite small, development hours were used,
coming from daily effort sheets.

− Another promise of MDD and CBD is to support the development of high-quality
systems. The vision is that the quality of a system will benefit from reusing
“good” components. To evaluate if this effect occurred we collected the defect
density, computed per one hundred lines of code, for all systems.

5.1 First Run

It is interesting to see that porting the system to another hardware platform required
only minimal changes to the models (e.g., UML hardware representation, ports, etc.).
Thus, MARMOT supports the MDA idea of platform independent modeling. Only in
the embodiment step models become platform specific. The ease of porting a system
to different platforms is also supported by the high amount of reuse with minimal
changes, the low effort, and the low number of defects.

Concerning the adaptation of existing systems by adding or removing functionality,
the data reveal that MARMOT provides sufficient support. First of all, a large
proportion of the systems could be reused from the original system. Second, in
comparison to the initial development project (i.e., ‘Original’), the effort for
adaptation is low (26hrs vs. 3/10hrs). In addition, the quality of the system profits
from the quality assurance activities carried out in the initial component development.
Thus, the promises of component-oriented development concerning time-to-market
and quality could be confirmed in this case-study.

Bunse, Gross, Peper – Embedded System Construction SERG

10 TUD-SERG-2008-020

 11

Interesting to note is that the effort for the initial system corresponds to standardized
effort distributions over development phases as used by common cost estimation
methods, whereby the effort for the variants is significantly lower. In addition, this
supports the assumption that component-oriented development has an effort-saving
effect in subsequent projects.

In general, porting and adaptation of a component-based system takes place during
developing system variants. Thus, the systems are highly similar, which, in turn,
explains why reuse works that well. It would, therefore, be interesting to look at larger
systems (of the same domain) that reuse the original system as a whole and/or some
of its components. The ‘Door’-controller project is such a project. 60% of the overall
system was reused in form of the mirror system, which itself did not need major
adaptations. Effort- and defect density are higher than those of the mirror system
variants, due to the development of new additional components, major hardware
extensions, and intensive quality-assurance. Thus, when directly compared to the
initial effort and quality (i.e., the mirror system), a positive trend can be seen that
supports the assumption that with MARMOT, embedded systems can be quickly
developed at a low cost but with high quality.

5.2 Second Run

The second series of case studies (see Table 2 and Table 3) replicated the
development projects but used different development methods. Every project was
carried out twice for each method by independent teams in order to obtain more data
points.

Concerning the limited amount of modeling in the agile approach, at the first glance,
it appears that the initial development is truly faster while maintaining high quality.
However, this does not hold as soon as it comes to adaptations. The more complex an
adaptation becomes, the more grows the effort. In the worst case, the effort is much
higher than in the model-based approaches, and it is even comparable to the effort for
developing the system entirely from scratch. This is, especially, true in cases where
the adaptation is not performed by the initial author (i.e., more adapter classes and
workarounds were used). One reason might be the low reuse rate and missing
documentation. However, in general, the final source-code seems to be of a good
quality and highly integrated.

The results concerning the application of the Unified Process are largely comparable
to those of MARMOT. However, it seems that using the Unified Process requires
more overhead and documentation (e.g., number of diagrams) resulting in higher
development effort. Ironically, documentation and model-size seemed to have a
negative impact on quality, since defect density was quite high. This might also be the
reason that adaptations needed more effort than in a MARMOT-based development,
although this method even outperformed agile development with respect to complex
adaptations, especially if different authors were involved.

SERG Bunse, Gross, Peper – Embedded System Construction

TUD-SERG-2008-020 11

12

6 Summary and Conclusions

The presented experiments show that the promises of component-oriented
development concerning reuse, effort, and quality can be achieved in the context of
embedded system development. However, similar to product-line engineering
projects, CBSE requires an upfront investment before paying-off.

There are some threats to the validity of the ob-served results which may hinder their
generalization. First, the people participating in this study were students that are not
representative for software professionals. However, the results may be useful in an
industrial context, since engineers in industry often have no more experience in UML-
based development than students. Introducing such methodological support requires a
steep training curve, even in professional organizations. Second, the use of volunteers
may affect the validity of the study (i.e., selection bias). Individuals who volunteer for
an activity are almost certainly different from those who do not volunteer. Volunteers
are, by definition, motivated to participate and presumably expect to receive some
benefit from the intervention, whereas employees often have a negative attitude
towards new technologies. These differences between study participants and people in
real organizations limit the ability to generalize the results beyond the research
example. Finally, the systems developed in the scope of this paper are not
representative in terms of their size and complexity. However, the results can be used
as a trend indicating possible benefits and, therefore, encourage the performance of
more industrial-scale case-studies.

The growing interest in the Unified Modeling Language provides a unique
opportunity to increase the amount of modeling work in software development, and to
elevate quality standards. UML 2.0 promises new ways to apply object/component-
oriented and model-based development techniques throughout embedded systems
engineering. However, this chance will be lost, if developers are not given effective
and practical means for handling the complexity of such systems, and guidelines for
applying them in a systematic way.

This paper outlined the UML modeling practices, which are needed in order to fully
leverage the component paradigm in the development of software for embedded
systems. Following the principles of encapsulation and uniformity, and describing
both levels with a standard set of models – it becomes feasible to model hardware and
software components of an embedded system with UML. This facilitates also a
"divide and conquer" approach to modeling, in which a system unit can be developed
independently. It also allows new versions of a unit to be interchanged with old
versions provided that they do the same thing.

To validate MARMOT, a series of case-studies has been performed. Quantitative and
qualitative results of these studies indicate that MARMOT supports systematic reuse
and thereby reduces development effort, and improves the quality of a software
system. However, these results are only a starting point for more elaborate validation
and generalization of the results. Therefore, a controlled experiment with a larger
system is currently planned in order to obtain more objective data. A further step
towards enabling technology will be the provision of tools.

Bunse, Gross, Peper – Embedded System Construction SERG

12 TUD-SERG-2008-020

 13

References

[1] Atkinson, C., Bayer, J., Bunse, C., and others. Component-Based Product-Line
Engineering with UML, Addison-Wesley, UK, 2001.

[2] Bunse, C., Gross, H.-G., Peper, C., Applying a Model-based Approach for Embedded
System Development, Proc. of the 33rd Conference on Software Engineering and
Advanced Applications (SEAA), Lübeck, Germany, 2007.

[3] Bunse, C., Gross, H.-G., Unifying Hardware and Software Components for Embedded
System Development, In: Architecting Systems with Trustworthy Components, Reussner,
Staffort, Szyperski (Eds), Lecture Notes in Computer Science, Vol. 3938, Springer,
Heidelberg, 2006.

[4] Cantor, M., Rational Unified Process for Systems Engineering, the Rational Edge e-Zine,
2003, http://www.therationaledge.com/content/aug_03/f_rupse_mc.jsp.

[5] Crnkovic, I., Larsson, M. (Eds.), Building Reliable Component-Based Software Systems,
Artech House, 2002.

[6] Douglass, B.P., Real-Time Design Patterns, Addison-Wesley, 2003.

[7] Fritzson, P., Principles of Object-Oriented Modeling and Simulation with Modelica 2.1,
Wiley, 2004.

[8] Harel, D., Lachover, H., Naamad, A., and others, Statemate: A working environment for
the development of complex reactive systems, IEEE TSE, 16(4), April 1990.

[9] J. Hooman, Towards Formal Support for UML-based Development of Embedded
Systems, Proc. of the 3rd PROGRESS Workshop on Embedded Systems, Technology
Foundation STW, 2002.

[10] Hruschka, P., Rupp, C., Agile Softwareentwicklung für Embedded Real-Time Systems mit
der UML, Hanser, 2002.

[11] Khan, M.U., Geihs, K., Gutbrodt, Model-Driven Development of Real-Time Systems with
UML 2.0 and C, 3rd Int. Workshop Model-based Methodologies for Pervasive and
Embedded Software, 2006.

[12] Lano, K., Formal Object-Oriented Development. Springer, 1995.

[13] Lavagno, L., Martin, G., Selic, B. (Eds.), UML for Real Design of Embedded Real-Time
Systems, Kluwer, 2003.

[14] Marcos, M., Estevez, E., Gangoiti, U., and others, UML Modeling of Industrial Distr.
Control Systems, Proc. of the 6th Portuguese Conf. on Automatic Control, Portugal, 2004.

[15] Marwedel, P., Embedded System Design, (Updated Version), Springer, 2006.

[16] The MathWorks, Inc., Simulink Reference, 2005, http://www.mathworks.com.

[17] Mills, H.D., Basili, V.R., Gannon, J.D., and others, Principles of Computer Programming:
A Mathematical Approach. Allyn and Bacon Inc., 1987.

[18] Object Management Group, UML 2.0 Super-structure Specification, OMG document
formal/05-07-04, 2005, http://www.omg.org/cgibin/ doc?formal/05-07-04.

[19] B. Selic, G. Gullekson, P.T. Ward, Real-Time Object-Oriented Modeling, John Wiley &
Sons, 1994.

SERG Bunse, Gross, Peper – Embedded System Construction

TUD-SERG-2008-020 13

14

[20] Szyperski, J., Component Software. Beyond Object-Oriented Programming, Addison-
Wesley, 2002

[21] Ventura, J., Siebert, F., and others, HIDOORS - A High Integrity Distributed
Deterministic Java Environment, Proc. of the 7th Int. Workshop on Object-Oriented Real-
Time Dependable Systems, USA, 2002

[22] Lange, C.F., Model Size Matters, Workshop on Model Size Metrics, 2006 (co-located with
the ACM/IEEE MoDELS/UML Conference); October, 2006.

Bunse, Gross, Peper – Embedded System Construction SERG

14 TUD-SERG-2008-020

TUD-SERG-2008-020
ISSN 1872-5392 SERG

