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Abstract
There has been interesting research on the superconducting diode recently. A possible structure for this is the Super-
conductor/Ferroelectric/Superconductor (S/FE/S) Josephson junction. Our goal is to simulate a S/FE/S junction with
a magnetic field and see if this leads to a superconducting diode effect. First this junction and its properties are studied
through a numerical simulation. Then a magnetic field is applied and we look at how this affects the junction. For
our simulation we use the Velocity Verlet method. We start by simulating a normal RCSJ. The results agree with what
we expect from the theory, however there is small but noticeable error which we attribute to the numerical method.
Next a S/FE/S junction is simulated. The polarisation of the ferroelectric only affects the RCSJ when it oscillates at a
frequency which is close to the plasma frequency. If we apply a magnetic field we see small gaps for the retrapping
current however these are close to the numerical error thus they are to small too be detected by our simulation.
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1. Introduction
In the modern era, electronic devices have become ubiquitous, making it difficult to envision our lives without them.
From mobile phones to household lighting, the influence of these devices is evident in every aspect of our daily rou-
tines. These electric devices consist of electric components and we call a system om these components an electric
circuit. The electric circuit of a device can vary greatly, leading to different devices with different functions. However
there are only a limited amount of different electrical components and no matter how complex the electrical circuit
may seem it is still built of these electrical components. This means that the technology depends on these components.
Therefore if we discover new components this may lead to new electronic devices. Such was the case for the semicon-
ducting diode. This discovery paved the way for much of our current technology. So much so that semiconductors are
in almost all of the today’s electronic devices such as computers, mobile phones, refrigerators and televisions.

Recently there has been a lot of interest in the superconducting diode. This should come as no surprise considering
the discovery of the semiconducting diode has had a major impact on technology. Super conducting diodes are not
quite the same as semiconductor diodes. While the latter only allow current to flow in one direction the former allows
current to flow in both directions but one of these directions has electrical resistance while the other does not. Thus
the superconducting diode is superconducting in only one direction. Possible applications of superconducting diodes
include superconducting electronics and quantum information and communication technology [1, 2].

The superconducting diode effect has already been observed in both junction free superconductors [3, 4] and
Josephson Junctions [5, 6]. However the topic is still relatively new and there is till a lot to be discovered. Inspired
by recent developments we will study a superconducting/ferroelectric/superconductor (SFES) Josephson junction and
the effect of a magnetic field on this junction. This is done through a numerical simulation using the Velocity Verlet
method.

First we will discuss the theory needed to understand the SFES junction. In chapter 2 we explain the theory of
Josephson junctions. In chapter 3 the theory of ferroelectricity is treated. Chapter 4 combines the knowledge of these
two chapters and applies it to the SFES junction. Chapter 5 gives a explanation of the Velocity Verlet method and
how we can apply this to our problem. In chapter 6 we will show the results and discuss them. In chapter 7 we state
our conclusions. In appendix A a table of the used parameters is given. In appendix B the python code used for the
simulations is given.
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2. Theory of Josephson Junctions

2.1. The Josephson effect
A Josephson junction is a thin gap of two superconductors with a “weak link” in between. The effects of supercon-
ductivity are extended inside this “weak link”.

Figure 1: An schematic of a Josephson junction. In this figure A and B are superconductors and C thin insulating
barrier. Image taken from [7]

In this junction a nonzero current can flow while the voltage is zero. This is called the DC Josephson effect and the
super current is given by

Is = Ic sin(∆φ), (1)

where Is is the super current, Ic is the maximal zero resistance current and ∆φ is the phase difference between the
two superconducting electrodes.

If a voltage is applied to the junction we get the AC Josephson effect : the phase changes in time according to

d∆φ

dt
=

2eV

h̄
, (2)

where V is the voltage, e is the electron charge and h̄ is Planck’s reduced constant. This means that if we apply a
constant voltage to a Josephson junction the super current will oscillate with frequency

ν =
2eV

h̄
(3)

2.2. RCSJ model
When the applied current I is less than the critical current Ic the junction is superconducting and the zero voltage
current is given by equation (1). However if the applied current is larger than the critical current the junction has a
capacitance and resistance. To describe this we use the Resistively and Capacitively Shunted Juntion (RCSJ) model.
In this model the physical junction is represented by an ideal junction (one without resistance and capacitance) shunted
by a resistor and capacitance. This is illustrated in figure 2.
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Figure 2: The Resistively and Capacitively Shunted Junction (RCSJ) model circuit. The cross in the middle represents
an ideal Josephson junction. On the left side is a capacitor with capacitance C and on the right side is a resistor with
resistance R. Image taken from [8]

The applied current splits into three different currents. One going through the capacitor which we shall call IC , one
going through the resistor which we will call IR, and one going through the ideal Josephson junction which we shall
call Is. The sum of the currents in the branches of figure 2 should be equal to the applied current I . This gives:

I = Is + IR + IC . (4)

Using the current voltage relations of a capacitor IC = C dV
dt and a resistor IR = V

R together with the current through
an ideal Josephson junction given by equation (1) we obtain the following:

I = Ic sin(φ) + C
dV

dt
+

V

R
(5)

We introduce the following variables

ωp =

(
2eIc
h̄C

) 1
2

, (6)

τ = ωpt, (7)

Q = ωpRC. (8)

Here, ωp is the plasma frequency which will be explained later when we treat the “tilted washboard potential”. 1
Q is

the damping factor. Using these variables and equation (2), we can write equation (5) as:

d2∆φ

dτ2
+

1

Q

d∆φ

dτ
+ sin(∆φ) =

I

Ic
. (9)

If I < Ic, then there is no voltage in the junction and thus we can use equation (1) to obtain ∆φ = sin−1
(

I
Ic

)
.

If I > Ic we distinguish two regimes, one with high damping and one with low damping. If Q << 1, the damping
is high and the second term on the left hand side of equation (13) will dominate. In this case the differential equation
reduces to a first order differential equation:

d∆φ

dt
=

2eIcR

h̄

(
I

Ic
− sin(∆φ)

)
. (10)

This is called a overdamped junction. Note that ∆φ is a periodic function. If we integrate (10) we can find the period
T of ∆φ, then using (3) we can find V with

ν ≡ 2π

T
=

2eV

h̄
. (11)

We then get [9]
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V = R(I2 − I2c )
1
2 . (12)

This is illustrated in figure 3.

Figure 3: The voltage is plotted against the current for a overdamped RCSJ (the solid blue line). The red dotted line
is given by V = IR, which is Ohm’s law. The voltage is zero when I is smaller than the critical current Ic. When
I ≫ Ic the curve approaches V = IR asymptotically.

For I < Ic we have V = 0 and for I ≫ Ic we get Ohm’s law: V = IR.
If Q is not too small, the damping term will not dominate. The junction is then called underdamped and equation

(13) needs to be solved numerically. When we do this we get a I-V curve which is hysteretic. This is illustrated in
figure 4.
We start by increasing the current from zero. This is the blue line. As long as the current is smaller than the critical
current the voltage is zero. When the current surpasses the critical current the voltage jumps to a finite value and now
increases linearly. When we now decrease the current we get the orange line. We note that the current does not jump
back to zero at the critical current but at a smaller current. This is called the retrapping current. For negative current
the behaviour is the same but now the voltage is negative as indicated by the green and red lines.

One way to understand the behaviour of the RCSJ is through the “tilted washboard potential” [9]. We can write
equation (5) as [10]:

C
h̄

2e

d2∆φ

dt2
+

1

R

h̄

2e

d∆φ

dt
+

∂U

∂∆φ
= 0, (13)

where

U = −Ic cos(∆φ)− I∆φ (14)

We can thus interpret the phase as a particle in this potential. The potential consists of a cosine term and a linear term.
Thus it is a tilted cosine whose slope is equal to I . as shown in figure 5.
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Figure 4: A hysteretic I-V curve. Along the x axis we have the current I divided by the critical current Ic. Along the
y axis we have the voltage in µV The blue line represents a current sweep from 0 to 1.5, the orange line represents
a current sweep from 1.5 to 0, the green line represents a current sweep from 0 to -1.5 and the red line represents a
current sweep from -1.5 to 0. As we increase the current from 0 the voltage remains zero as long as the current is
smaller than the critical current. When the current surpasses the critical current the voltage jumps to a finite value
and now increases linearly. When decreasing the current back to 0 the voltage does not jump back to 0 at the critical
current but at a smaller current. For negative current we have the same behaviour except now the voltage is negative.

Figure 5: The tilted washboard potential is shown for different currents between 0 and Ic. For I = 0 the potential is a
cosine. A particle in this potential is trapped around a minimum. As I is increased from zero the potential starts to tilt
downward. As this happens the right side of the barrier containing the particle becomes smaller. When I reaches the
critical current there are no more barriers and the particle can move freely.
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As seen in the figure for zero current the potential and the phase can be interpreted as a particle trapped around
one of the minima. If we increase the current the potential tilts downward. If the tilt is big enough there are no more
minima and the particle can roll downwards. The minima vanish for I ≥ Ic.

We can use the “tilted washboard potential” to understand the RCSJ graph in figure 4. If we increase I from zero
the potential stars as a normal cosine and tilts downward with increasing I . The particle is prevented from rolling down
due to the barrier of the cosine and oscillates in a well. The frequency at which it oscillates is the plasma frequency
given by equation (6). When I reaches the critical current there are no more barriers and the particle can roll down.
This causes a voltage jump. When we decrease I the particle now has a momentum and thus with light dampin the
particle can still move over small barriers. This explains why the retrapping current is smaller then critical current. If
the current is negative the potential tilts upwards and the particle moves in the other direction. This causes a negative
voltage.The rest of the process is the same as for positive current.

2.3. Josephson Junction with a Static Magnetic Field
We now apply a static magnetic field perpendicular to the junction. We will see that the magnetic field has an influence
on the phase difference and thus from (1) also on the current. Here we will take a look at a magnetic field applied to a
rectangular Josephson junction and the resulting effects.
The theory of superconductivity tells us that magnetic fields are expelled from superconductors. This is known as the
Meissner effect. However the magnetic field penetrates a tiny distance into a superconductor [9]. This depth is called
the penetration depth.

We apply a magnetic field B perpendicular to a Josephson junction and choose a flux surface as indicated with the
dotted line in figure 6.

Figure 6: A rectangular Josephson junction with a magnetic field B applied in the y direction. The width of the
gap between the superconductors is t. λL and λR are the left and right penetration depth of the magnetic field
respectively. L is the height of the junction. φL(x) and φR(x) indicate the phase of the left and right superconductor
at x respectively. The dotted line is the contour along which we integrate the phase gradient. zL and zR indicate the
left and right edge of the contour respectively. Image taken from [11].

The magnetic field B is in the y direction, B = By(x, z)ŷ. The junction has height L and the thickness of the barrier
is t. The magnetic field penetrates the left and right superconductor with depth λL and λR respectively. We define

d = λL + t+ λR. (15)

d represents the width of the region where the magnetic field is non zero. The phase in the left and right superconduc-
tors are given by φL and φR respectively.
We also define
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Φ0 ≡ h

2e
=

2πh̄

2e
(16)

Φ0 is known as the magnetic flux quantum.
The gauge - invariant phase difference in a Josephson junction γ is given by [9]

γ ≡ ∆φ− 2π

Φ0

ˆ
A · ds (17)

where A is the magnetic vector potential defined by B = ∇ × A and ∆φ is the phase difference across the gap. If
there is no magnetic field the gauge-invariant phase difference is the same as the phase difference.
If there is a magnetic field we get:

γ(x) = φL(x)− φR(x)−
2π

Φ0

ˆ
Adz, (18)

where we integrate from zl to zr. The phase gradient is given by [11]

∇φ =
2e

h̄

( mJ
2e2ρ

+ A
)

(19)

In our junction we can neglect the first term because J is perpendicular in the parts of the contour parallel to the x axis
and negligibly deep in the parts of the contour parallel to the z axis. We then get

∇φ =
2e

h̄
A =

2π

Φ0
A (20)

If we now go one trip along the dotted line in figure 6 we land at the same spot where the phase must be the same.
Thus we must have a phase gain of 0. So we must have [12]

˛
∇φ · dl =

2π

Φ0

˛
A · dl +∆φ(x)−∆φ(x+∆x) = 0 (21)

Now we assume B is constant. Using the definition of A gives:

∆φ(x+∆x)−∆φ(x) =
2π

Φ0
Bd∆x (22)

Dividing by ∆x and taking the limit ∆x → 0 we get

∂∆φ

∂x
=

2πBd

Φ0
(23)

This tells us that the phase difference across the gap varies in the junction along the x axis. Namely

∆φ(x) = ∆φ0 +
2πBd

Φ0
x (24)

Equation (1) then says that this causes a non uniform current along the x axis Since the current in not uniform in the
junction we need to look at the current density, which is the current per unit area. Using (1) and (23) we get

J = Jc0 sin
(
∆φ0 +

2πBd

Φ0
x
)

(25)

If we integrate (25) over the junction we get the critical current as a function of the flux Φ = BdL

Ic(Φ) = Ic0

∣∣∣∣∣ sin
(
π Φ

Φ0

)
π Φ

Φ0

∣∣∣∣∣ (26)
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Where Ic0 = Jc0BdL. This is called the Fraunhofer pattern. This is exactly the diffraction pattern we get when
sending light through a single slit. This pattern is illustrated in figure 7

Figure 7: The Fraunhofer pattern is shown. The x axis is the flux divided by the magnetic flux quantum Φ0. The y axis
is the critical current divided by the critical current at zero flux. When there is no flux the critical current is maximum.
When the flux is an integer multiple of the magnetic flux quantum the critical current is 0.

The RSCJ I − V graph is shown for different flux values in figure 8

Figure 8: The graph of a RCSJ for different values of the flux in units of the magnetic flux quantum.Φ0. The x axis
is the current in units of the critical current. The y axis is the voltage. Note that for zero flux the graph is the same as
figure 4 as expected. When the flux is equal to the the magnetic flux quantum the graphs is just a straight line so the
RCSJ behaves according to Ohm’s law. This is what we expect as according to equation (26) the critical current is 0
when the flux is a integer multiple of the magnetic flux quantum.
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3. Theory of Ferroelectrics

3.1. Landau Devonshire theory
A Josephson junction is a electrical component with a ,current-voltage relation, just like a resistor or a capacitor. The
current-voltage relation of resistors and capacitors is determined by the the resistance and capacitance respectively.
These are dependent on the material and the physical form of the resistor and capacitor. Similarly, in a Josephson
junction the shape and material affect the current-voltage relation. Here the material can be the superconductors
themselves or the material in the gap. An interesting idea is to put a ferroelectric material in the gap of a Josephson
junction. A ferroelectric material has an intrinsic electrical polarisation, which means that the material has a electrical
polarisation even in the absence of a electric field. This is in contrast to dielectric materials which only have a electrical
polarisation in the presence of an electric field. With a electrical polarisation the junction is no longer symmetric as
current in one direction aligns with the polarisation while current in the other direction is opposite to the polarisation.
This asymmetry may lead to the current-voltage relation being dependent on the direction of the current which may
lead to a superconducting diode effect. The intrinsic polarisation in a ferroelectric is caused by the displacement of
atoms in the structure which causes a net polarisation in the material.

Ferroelectrics are defined as materials with a spontaneous polarisation that can be reoriented with an applied
electric field [13]. We will describe the theory of ferroelectrics in this section. In order to do this we will use Landau-
Devonshire theory which uses the Landau theory of phase transitions to explain ferroelectricity [14].

Landau theory characterizes a phase transition in terms of a order parameter. This order parameter is 0 when there
is high symmetry and has a finite value when the symmetry is broken. For ferroelectrics the order parameter is the
polarisation P . The free energy can be expressed as a power series of the order parameter P . In this expansion,
ignoring the effect of an external electric field E, we keep only terms which are symmetric. So we assume F (−P ) =
F (P ) [14]. This gives :

F (P ) =
a

2
P 2 +

b

4
P 4 − EP (27)

where we have left out sixth order and higher terms. We have :

a =
1

χ
, (28)

where χ is the linear dielectric susceptibility given by [13] εr = 1 + χ, where εr is the relative electric permittivity.
For temperatures close to the Curie temperature :

a = a0(T − Tc), (29)

where a0 is positive for ferroelectrics, T is the temperature and Tc is the Curie temperature.
We assume that we have a second order transition which at T = Tc occurs when b > 0. Second order transitions

have continuous first derivative but discontinuous second derivative [15]. The spontaneous polarisation Ps are the
equilibrium points of (27) in the absence of an electric field. In order to find these we take the first derivative of the
free energy and set it equal to zero, we then get:

0 = aP + bP 3 − E. (30)

Setting E = 0 we find for the spontaneous polarisation :

Ps = ±
√

−a

b
. (31)

In equation (31) we have two unknown variables Ps and b. One of these must be determined experimentally and the
other can then be obtained- from 31.

For ferroelectric materials a < 0 and a0 > 0 [14]. If we look at equation (29) we see that materials are in the
ferroelectric state when T < Tc. This means that at Tc we have a transition from a paraelectric to a ferroelectric state.
This is illustrated in figure 9.
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Figure 9: Transition from a paraelectric state, the green line at T = Tc, to a ferroelectric state, the blue line at T < Tc.
We see that the free energy goes form having one minimum at zero to having to minima at ±Ps.

We now apply an electric field. According to equation (27) the free energy depends linearly on the electric field.
This means the graph can be seen as a fourth order polynomial plus a linear term. Visually we can interpret this as the
electric field giving a tilt to the graph in figure 9. For positive field strength E > 0 this is shown in figure 10.

Figure 10: The polarisation free energy for different voltages. The blue line corresponds to zero voltage and the brown
line corresponds to the highest voltage. The voltage applied is positive which causes the graph to tilt downward.

We observe that at some point the free energy only has one minimum. Thus there is some voltage for which the
system goes from having two minima to one. In order to find this critical voltage we note that at the turning point a
minimum becomes a saddle point. Hence we need to calculate the first and second order derivative and set them equal
to zero. This gives for the critical voltage:

10



{
0 = F ′(P ) = aP + bP 3 − V

0 = F ′′(P ) = a+ 3bP 2
. (32)

Solving for P and V gives:

P0± = ±
√

−a

3b
(33)

and
Vc∓ = ∓ 2b

3
√
3
P 3
0 . (34)

Note that since a < 0 and b > 0 the root is real. In equation (34) there are two critical voltages, one positive and one
negative. These correspond to different tilts of the graph. When we have a positive voltage the graph tilts downward,
as shown in figure 10, and the saddle point occurs at negative polarisation. When the voltage is positive the graph tilts
upwards and the saddle point occurs at positive polarisation. In figure 11 the free energy is shown for zero voltage
(green), positive critical voltage(red) and negative critical voltage (blue).

Figure 11: The free energy as a function of the polarisation for zero voltage, positive critical voltage and negative
critical voltage. The green line corresponds to zero voltage, the red line corresponds to positive critical voltage and
the blue line corresponds to negative critical voltage. For zero voltage we have a minimum at P = ±Ps. For positive
critical voltage Vc+ we have a saddle point at P0− . For negative Vc− we have a saddle point at P0+.

3.2. Dynamics of Polarisation
We now look at the dynamical behaviour of the polarization. For this we use the free energy as the potential in which
the polarisation finds itself [16]. We then use Newton’s equation of motion with a drag term to obtain

m
d2P

dt2
+ γP

dP

dt
= V − aP − bP 3 (35)

where m is the inertia of the polarisation and hence the effective mass. γP is the damping factor. Equation (35)
resembles an oscillator with a damping factor γP , mass m and a restoring force −dF (P )

dP = V −aP − bP 3. If we look
at figure 9 we can solve equation (35) when P is in one of the minima ±Ps. For this oscillation we can calculate the
frequency. To do this we assume that P is close to one of the minima so
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P = Ps + δP, (36)

where δP is small enough so that P is inside the well. With equation (35) and equation (36) and setting V = 0 we
obtain :

mδP̈ + γP δṖ = −a(Ps + δP )− b(P 3
s + 3P 2

s δP + 3PsδP
2 + δP 3). (37)

Leaving out all terms with second or higher order δP we get :

mδP̈ + γP δṖ = −a(Ps + δP )− b(P 3
s + 3P 2

s δP ). (38)

We assume that equation has solution of the form :

δP = e−zt, (39)

where z = Γ + iωpol is a complex number. With equation (38) and (39) and using equation (31) for Ps we obtain :

mz2 − γP z = 2a. (40)

Solving for z we get :

z =
γP
2m

±
√

γ2
P + 8am

2m
. (41)

Since a is negative, if γP ≥ 2
√
−2am, z is real and positive. In this case δP decays exponentially. If γP < 2

√
−2am,

z is complex and δP oscillates. We get:

z =
γP
2m

±
i
√
−γ2

P − 8a

2m
. (42)

Thus the system has frequency:

ωpol =

√
−2a

m

(√
1 +

γ2
P

8ma

)
, (43)

and period

T = π

√
m

−2a

(√
1

1 +
γ2
P

8ma

)
, (44)

and damping rate,

Γ =
γP
2m

. (45)

The damping time is therefore

tΓ =
2m

γP
. (46)
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4. The Superconductor Ferroelectric Superconductor Josephson Junction
We now have everything we need to analyse a superconductor ferroelectric superconductor Josephson junction. In
order to describe the effect of the polarisation in a Josephson junction we will ad the term dP

dt to equation (5).[17] We
then get:

I = Ic sin(φ) +
V

R
+ C

dV

dt
+

dP

dt
. (47)

We use equations (6), (7) and (8) to get:

d2φ

dτ2
=

I

Ic
− sin(φ)− 1

Q

dφ

dτ
− ωp

Ic

dP

dτ
(48)

With the polarisation described by equation (35) and equation(2) we get the following system of second order differ-
ential equations: 

d2φ

dτ2
=

I

Ic
− sin(φ)− 1

Q

dφ

dτ
− ωp

Ic

dP

dτ
d2P

dτ2
=

h̄

2emωp

dφ

dτ
− 1

mω2
p

(aP + bP 3)− γp
mωp

dP

dτ
.

(49)

The system (49) can be understood by looking at each of the equations separately. Assume that the polarisation
starts in one of equilibrium points of the free energy with zero voltage. Thus the initial polarisation is equal to the
one of the spontaneous polarisations. Since it is in a equilibrium point it does not change. We start by increasing the
current from zero. As long as the current is smaller than the critical current the junction is in the superconducting state
and there is no voltage. When the current surpasses the critical current we get a finite voltage in the junction. This
voltage causes a tilt in the free energy as shown in figure 10. This causes the minima to move and so the polarisation
is now no longer in one of the equilibria but is slightly displaced. The polarisation will now oscillate around the new
equilibrium. Hence dP

dτ ̸= 0 and thus this influences the first equation.
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5. The Velocity Verlet Method
We solve the differential equations in this report numerically. For this we use the Velocity Verlet method. The velocity
Verlet method is used to solve equations of the form

ẍ(t) = a(x(t)). (50)

To solve this numerically the Velocity Verlet method uses the following:

x(t+∆t) = x(t) + v(t)∆t+
1

2
a(t)∆t2 (51)

v(t+∆t) = v(t) +
a(t) + a(t+∆t)

2
∆t, (52)

where v(t) = ẋ(t) is the first derivative of x(t) and a(t) = ẍ(t) is the second derivative of x(t). Applying this method
to our system of equations (49) we get :

φ(t+∆t) = φ(t) + φ̇(t)∆t+
1

2
φ̈(t)∆t2 (53)

P (t+∆t) = P (t) + Ṗ (t)∆t+
1

2
P̈ (t)∆t2. (54)

φ̇(t+∆t) = φ̇(t) +
φ̈(t) + φ̈(t+∆t)

2
∆t (55)

Ṗ (t+∆t) = Ṗ (t) +
P̈ (t) + P̈ (t+∆t)

2
∆t. (56)

With the Velocity Verlet integrator the idea is to calculate x(t + ∆t) for a given time t and time step ∆t. Since
x(t + ∆t) only depends on data from time t this step is straightforward, just use the values at time t tot calculate
x(t+∆t). The next step is to calculate a(t+∆t) using x(t+∆t). Usually when using the Velocity Verlet algorithm
a(t + ∆t) is a function of x(t + ∆t) only and thus this is also simple. However in our case we have that a(t + ∆t)
depends on v(t+∆t) for both the polarisation P and the phase φ, as seen in equations (49). To solve this problem we
start by writing out P̈ (t+∆t) in equation (56). We then obtain :

Ṗ (t+∆t) = Ṗ (t)+
P̈ (t)

2
∆t+

∆t

2

[
h̄

2emωp
φ̇(t+∆t)− 1

mω2
p

(aP (t+∆t)+bP 3(t+∆t))− γP
mωp

Ṗ (t+∆t)

]
. (57)

If we set D = h̄
2emωp

, E = γP

mωp
and η = 1 + E∆t

2 we can rewrite equation (57) as

Ṗ (t+∆t) =
1

η

{
Ṗ (t) +

P̈ (t)

2
∆t+

∆t

2

[
Dφ̇(t+∆t)− 1

mω2
p

(aP (t+∆t) + bP 3(t+∆t))

]}
. (58)

We can do the same for equation (55). We then obtain :

φ̇(t+∆t) = φ̇(t) +
φ̈(t)

2
∆t+

∆t

2

[
I

Ic
− sin(φ(t+∆t))− 1

Q
φ̇(t+∆t)− ωp

Ic
Ṗ (t+∆t)

]
. (59)

Setting A = 1
Q , B =

ωp

Ic
and ξ = 1 + A∆t

2 we get :

φ̇(t+∆t) =
1

ξ

{
φ̇(t) +

φ̈(t)

2
∆t+

∆t

2

[
I

Ic
− sin(φ(t+∆t))−BṖ (t+∆t)

]}
. (60)

We can then use equation (58) in equation (60). Setting ζ = ξ + BD∆t2

4η we obtain:
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φ̇(t+∆t) =
1

ζ

{
φ̇(t) +

φ̈(t)

2
∆t+

∆t

2

[
I

Ic
− sin(φ(t+∆t))

]
+
B∆t2

4η

[
1

mω2
p

(aP (t+∆t) + bP 3(t+∆t)

]
− B∆t

2η

[
Ṗ (t) +

P̈ (t)

2
∆t

]}
.

(61)

We know all the values on the right side of equation (61), thus we can solve it. We can then use the value found for
φ̇(t+∆t) in equation (58).

Thus we can then solve the system of equations (49) using the Velocity Verlet method by first calculating φ(t+∆t)
and P (t+∆t) through equations (53) and (54). We can then use the results to calculate φ̇(t+∆t) via equation (61).
Finally we can then calculate P (t+∆t) using equation (58).
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6. Results and Discussion
In this section we shall show our results and discuss them. For our simulation we have used the following values:

Table 1: The paramters used for the RCSJ simulation. These give an underdamped RCSJ.

R = 0.5µΩ
C = 30mF
Ic = 1A
t = 1000s
∆t = 0.01s
ωp = 318.25MHz
Ps = 0.1 C

m2

The parameters in table 1 are chosen such that the RCSJ is underdamped.

6.1. The Standard RCSJ Model
If we run the simulation for a standard RCSJ with current I = 1.5A, initial conditions all equal to zero and the values
in table 1 we get the following graphs for the phase and its first two derivatives.

Figure 12: The phase difference ∆φ, its first derivative d∆φ
dt and its second derivative d2∆φ

dt2 are shown for a RCSJ with
values given in table 1. The phase increases linearly. The first derivative makes small oscillations around a constant
value. The second derivative oscillates around 0.

The phase increases linearly, its first derivative oscillates around a constant value and the second derivative oscillates
around zero. This is what we expect intuitively as the first derivative of the phase is related to the voltage, and if we
leave the junction long enough we expect a constant voltage. We can also understand these results by looking at the
tilted washboard potential. When I > Ic we can interpret the RCSJ as a particle moving downward along a potential
given by (5) and illustrated in figure 5. We can see that the slope of the curve oscillates around a constant value. This
is exactly what we see in figure 12. We simulate the RCSJ for a current sweep 0A → 1.5A → 0A → −1.5A → 0A.
We simulate with current steps of 0.01A, 0.001A and 0.0001A. At each current we take the average of the first two
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derivatives of the phase and assume in the next step that the initial conditions are equal to these. For the initial condition
of the phase we use its last value of the previous current. We take the absolute value of the voltage at negative current
and plot this on the positive axis. We do this to see how good the two graphs overlap. For a normal RCSJ they should
overlap perfectly.

For current step 0.01A, the graph is given in figure 13. The graphs overlap perfectly and retrapping current
Ir = 0.27A. In the simulation we observe that at the critical and retrapping currents the voltage does not jump
instantaneously but has a few points in between.

For current step 0.001A, the graph is given in figure 14. The graphs overlap perfectly and retrapping current
Ir = 0.387A. The jumps at the critical current and the retrapping current are immediate.

For current step 0.0001A the graph is given in figure 15. The graphs do not overlap perfectly. There are two
different retrapping currents Ir = 0.3879 and Ir = 0.3805. There is a gap of 0.0074A. The jumps at the critical
current and the retrapping current are also immediate.

For future simulations we shall use a current step of 0.001A. The graph obtained for step size 0.001 is better than
the graph of step size 0.01A, while the run time for the simulation is significantly shorter than that of a simulation
with step size 0.0001A. We take note of the gap between the retrapping currents for step size 0.0001A. This gives a
rough idea of the error which occurs due to the numerical method.

Figure 13: The Voltage current graph for a RCSJ with parameters from table 1. We have plotted the absolute value
of the voltage against the absolute value of current. This makes it easy to see how well the graphs overlap. The solid
blue line is the current voltage graph for positive current. The dotted red line is the current voltage graph for negative
current. The current step size is 0.01A. The graphs overlap perfectly. The retrapping current is 0.27A. The jumps at
the critical current and the retrapping current are not immediate, there are some intermediate points.
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Figure 14: The Voltage current graph for a RCSJ with parameters from table 1. We have plotted the absolute value
of the voltage against the absolute value of current. This makes it easy to see how well the graphs overlap. The solid
blue line is the current voltage graph for positive current. The dotted red line is the current voltage graph for negative
current. The current step size is 0.001A. The graphs overlap perfectly. The retrapping current is 0.387A. The jumps
at the critical current and the retrapping current are immediate.

Figure 15: The Voltage current graph for a RCSJ with parameters from table 1. We have plotted the absolute value
of the voltage against the absolute value of current. This makes it easy to see how well the graphs overlap. The solid
blue line is the current voltage graph for positive current. The dotted red line is the current voltage graph for negative
current. The current step size is 0.001A. The graphs do not overlap perfectly. There are two different retrapping
currents, 0.3879A and 0.3805A. There is a gap 0.0074. The jumps at the critical current and the retrapping current
are immediate.
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6.2. The RCSJ Model with a Ferroelectric Barrier
We will now run the simulation for a RCSJ with a ferroelectric barrier. For this simulation we will assume that we
have temperature T = 90K and Curie temperature Tc = 100K. We shall first consider the case γP = 0. First we
set a0 = 1 and vary m. Then we set m = 1 and vary a0. This is done for the current values I = 0A, I = 0.5A
and I = 1.25A. Since I = 0A and I = 0.5A are both smaller than the critical current we do not expect anything to
happen for these currents.

Figure 16 shows the results for m = 1 and a0 = 1. The frequency of the polarisation oscillation ωpol is then of
order 10 rad

s . Thus the two systems have frequencies differing by several magnitudes. The plasma frequency ωp is
much larger. This can be seen in the figure as in the duration of the simulation the voltage makes many oscillations
but the polarisation and its first derivative do not change much.

Next we set a0 = 1 and m = 10−11, which gives ωpol of order 106 rad
s . This is shown in figure 17. The two

frequencies are now closer. P and dP
dt both make more than two oscillations in the simulation time.

Now we set a0 = 1 and m = 10−17, which gives ωpol of order 109 rad
s . The polarisation frequency is now larger

than the plasma frequency. This is shown in figure 18. Now P and dP
dt both make many oscillations in the simulation

time.

Figure 16: The polarisation P , its first derivative dP
dt and the voltage V in a RCSJ junction are shown for a time span

of 1000s. We use the values in table 1 and γp = 0, a0 = 1 and m = 1. We show the results for I = 0A, the green
line, I = 0.5A, the orange line, and I = 1.25A the blue line. We observe that for I = 0A and I = 0.5A not much
happens. This is what we expect as both are smaller than the critical current. For I = 1.25A we see that the voltage
V oscillates around a certain value. dP

dt seems to linearly increase however this increase is very small and P remains
approximately constant. The difference of the plasma frequency ωp and the polarisation frequency is clearly seen as V
which oscillates at the plasma frequency makes many oscillations while dP

dt and P do not even make one oscillation.
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Figure 17: The polarisation P , its first derivative dP
dt and the voltage V in a RCSJ junction are shown for a time span

of 1000s. We use the values in table 1 and γp = 0, a0 = 1 and m = 10−11. We show the results for I = 0A, the
green line, I = 0.5A, the orange line, and I = 1.25A the blue line. We observe that for I = 0A and I = 0.5A not
much happens. This is what we expect as both are smaller than the critical current. For I = 1.25A we see that the
voltage V oscillates around a certain value. dP

dt oscillates around zero. P oscillates around some value larger than Ps.
The difference of the plasma frequency ωp and the frequency of the polarisation oscillation is clearly seen as V which
oscillates at the plasma frequency makes many oscillations while dP

dt and P make approximately two oscillations.
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Figure 18: The polarisation P , its first derivative dP
dt and the voltage V in a RCSJ junction are shown for a time span

of 1000s. We use the values in table 1 and γp = 0, a0 = 1 and m = 10−17. We show the results for I = 0A, the green
line, I = 0.5A, the orange line, and I = 1.25A the blue line. We observe that for I = 0A and I = 0.5A not much
happens. This is what we expect as both are smaller than the critical current. For I = 1.25A we see that the voltage V
oscillates around a certain value, dP

dt oscillates around zero, and P oscillates around some value larger than Ps. The
plasma frequency ωp and the frequency of the polarisation oscillation are now both very large as V , which oscillates
at the plasma frequency, dP

dt and P all make many oscillations.

We set m = 1 and look at a0 = 1011 and a0 = 1017. This is shown in figure 19 and figure 20 respectively. In
both cases P and dP

dt change very little. This is because we have made a0 much larger while keeping V the same. As
a result of this V has a negligible effect on the polarisation.
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Figure 19: The polarisation P , its first derivative dP
dt and the voltage V in a RCSJ junction are shown for a time span

of 1000s. We use the values in table 1 and γp = 0, a0 = 1011 and m = 1. We show the results for I = 0A, the green
line, I = 0.5A, the orange line, and I = 1.25A the blue line. For the polarisation and its first derivative we do not
observe a difference between I = 0A, I = 0.5A and I = 1.25A. This is because now a0 is so large that the voltage
V has a negligible effect on the polarisation. For I = 1.25A we see that the voltage V oscillates around a certain
value. dP

dt seems to linearly decrease however this decrease is very small and P remains approximately constant. The
difference of the plasma frequency ωp and the frequency of the polarisation oscillation is clearly seen as V which
oscillates at the plasma frequency makes many oscillations while dP

dt does not even make one oscillation.
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Figure 20: The polarisation P , its first derivative dP
dt and the voltage V in a RCSJ junction are shown for a time span

of 1000s. We use the values in table 1 and γp = 0, a0 = 1017 and m = 1. We show the results for I = 0A, the green
line, I = 0.5A, the orange line, and I = 1.25A the blue line. For the polarisation and its first derivative we do not
observe a difference between I = 0A, I = 0.5A and I = 1.25A. This is because now a0 is so large that the voltage V
has a negligible effect on the polarisation. Both the frequency of the polarisation oscillation and the plasma frequency
are large. dP

dt and V both make many oscillations. However, dP
dt is so small that P does not change significantly.

We want to run the above simulations for different currents. At each current we must pick a single value for all the
variables which vary over time. For the phase we choose the last value, for its first two derivatives we take the time
average. For the polarisation we take the time average, for its first derivative we take the maximum value and for its
second derivative we take the last value. In figure 21 we show the I − V curve for a0 = 1 and different m and in
figure 22 we to this for m = 1 and different a0. We notice that varying m has a greater effect than varying a0. This is
because greatly increasing a0 decreases the effect the voltage V has on the polarisation P .
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Figure 21: The voltage plotted against the current for an RCSJ with a ferroelectric. The parameters used are given in
table 1. Furthermore we take a0 = 1 and γp = 0. We show the graph for the normal RCSJ, the red dotted line and for
the values m = 1, the blue line, m = 10−11, the orange line and m = 10−17, the green line. We see that m = 10−17

has the greatest effect on the curve.

Figure 22: The voltage plotted against the current for an RCSJ with a ferroelectric. The parameters used are given in
table 1. Furthermore we take m = 1 and γp = 0. We show the graph for the normal RCSJ, the red dotted line and for
the values a0 = 1, the blue line, a0 = 1011, the orange line and a0 = 1017, the green line. We see that effect on the
curve is less than when changing m. This is due to the large a0 making the effect of the voltage V negligible.

Last we apply a magnetic field perpendicular to the junction. We use parameters a0 = 1, m = 10−17 and
γp = 10−10. We look at the gap at the retrapping current for different magnetic flux values. The result is shown in
figure 23. Int his graph we do not directly see a pattern. We also notice that the current gap values are close to the
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current gap for a normal RCSJ at current step 0.0001A which is 0.0074A. It is therefore possible that these gaps are
due to the numerical method used.

Figure 23: The gap in the retrapping current is plotted against the flux Φ divided by the magnetic flux quantum Φ0.
Here we have used current step 0.001A, a0 = 1, m = 10−17 and γp = 10−10. The gaps here are close to the gap for
a normal RCSJ with current step 0.0001A which is 0.0074A. There is also no directly obvious pattern.
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7. Conclusion
We have run simulations using the Velocity Verlet method on a normal RCSJ with parameters R = 0.5µΩ, C = 30mF
and Ic = 1A. These parameters give a underdamped RCSJ. We use time steps ∆t = 0.01s and a time span t = 1000s.
First we run the simulation for a single current value larger than the critical current, I = 1.5A. This simulation gives
results which coincide with the theory. Next we perform a current sweep where we go from 0A to 1.5A, then from
1.5A to 0A, then from 0A to −1.5A, and finally from −1.5A to 0A. We plot the voltage against the current. This is
done for current steps of sizes 0.01A, 0.001A, and 0.0001A. For 0.01A the jumps in the graph are not instantaneous
and have a few intermediate points, causing a line with a slope rather than a vertical line. We would like a graph
with a immediate jump and thus a vertical line. This occurs for both the simulation with step size 0.001A and the
simulation with step size 0.0001A. We choose to use step size 0.001A in future simulations as simulations using step
size 0.0001A consume a significant amount of time. For step size 0.0001A we notice that there is a gap of 0.0074A
between the the positive and negative retrapping currents. Theoretically there should be no gap so our results contradict
the theory. We conclude that this gap is due to the numerical method.

Next we simulate a RCSJ with a ferroelectric barrier. We observe that when a0 = 1, the polarisation is only
affected for small m. This can be explained through the frequency of the polarisation oscillation. If this frequency
is too small, the polarisation will not change significantly in the time span of the simulation. The time span for the
simulation is chosen based on the plasma frequency, thus the frequency of the oscillation of the polarisation must be
close tot the plasma frequency for the polarisation to change significantly and have an effect on the RCSJ. We also
notice that varying either m or a0 and keeping the other constant leads to different results even when the polarisation
frequency is the same. Specifically, varying m has a greater effect on the current voltage graph than varying a0. This
is because m, which can be interpreted as the inertia of the polarisation, does not have an effect on the free energy
of the polarisation while a0 does. Therefore if a0 is too large, the voltage will be negligible in the polarisation free
energy and the polarisation will be unaffected by the junction. From the graphs we observe a difference between a
normal RCSJ and a RCSJ with a ferroelectric barrier at the retrapping current.

Lastly the effect of a magnetic field on a RCSJ with a ferroelectric barrier is studied. We look at the gap between
the positive and negative retrapping current. Such a gap would mean that there is some region in which we have
superconductivity in one direction but not the other, which is the superconducting diode effect. We do not observe a
recognizable pattern. The gaps are also close to the gap observed for a normal RCSJ. Thus the numerical method used
is not accurate enough to detect a gap between retrapping currents because if these gaps are present, they are to small
to distinguish from the numerical error.

To enhance the accuracy of our simulations, we propose experimenting with alternative numerical methods, such
as the fourth-order Runge-Kutta method or Euler’s method, to assess whether they can effectively reduce the numerical
error. Additionally, another approach would be to decrease the time and current step sizes to determine if this leads
to improved accuracy in our results. However, there is a trade-off as this adjustment could demand more computing
power, potentially prolonging simulation times. An alternative approach would be to improve the code used for the
simulation.

In future research, interesting idea would be to consider a magnetic field which both depends on and affects the
polarisation. Taking this idea one step further, an intriguing direction to pursue is the analysis of a Josephson junction
with a multiferroic barrier. Multiferroic materials possess both ferroelectric and ferromagnetic characteristics. Hence,
they can possess both an electric and magnetic dipole moment, making them an excellent choice for further study.
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A. Parameters

Quantity Meaning Symbol Unit
Current The amount of charge flowwing per second I AmpereA
Voltage The electric potential V Volt (V )
Resistance The electrical resistance R Ohm (Ω)
Capacitance The electrical capacitance C Farad(F )
Polarisation The electrical Polarisation P Coulomb/squaremeter (C/m2)
time the elapsed time t second (s)
Phase The phase difference between two wavefunctions φ radians(rad)
Angular frequency The rate at which teh phase changes ω radians/second (rad/s)
frequency The number of oscillations per second f Hertz (Hz) or (1/s)
Magnetic Field The magnetic field B Tesla (T )

Magnetic Flux
The normal component of a magnetic field
integrated over an area Φ Tesla squaremeter (Tm2)

Magnetic vector potential
The vector potential of the magnetic field
defined by B = ∇× A A Tesla meter (Tm)
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B. Python Code

1 # -*- coding: utf-8 -*-
2 """
3 Created on Thu Jun 8 17:05:34 2023
4

5 @author: Keane
6 """
7

8 # In[Import packages]
9

10 import numpy as np
11 import matplotlib.pyplot as plt
12 from matplotlib import rcParams
13 from scipy.integrate import odeint
14 from scipy import constants
15 from numba import jit
16 from numba import njit
17 import time
18

19 # In[Physical constants]
20

21 h = constants.h # h = 6.62607015e
-34

22 hbar = constants.hbar # hbar =
1.0545718176461565e-34

23 pi = constants.pi # Pi =
3.141592653589793

24 e = constants.e # Elementary charge = 1.602176634
e-19

25 Phi_0 = constants.physical_constants[’mag. flux quantum’][0] # Flux quantum = 2.067833848
e-15

26 cVphi = hbar/(2*e) # V/dphidt =
3.2910597847545335e-16

27

28 # In[Independent parameters]
29

30 C = 3*10**(-2) # Capacitance
31 R = 5*10**(-7) # Resistance
32

33 gamma_p = 1*10**(-5) # Damping factor of the polarisation
34

35 Tcurie = 100
36 T = 10
37 P_0 = 1e-5
38 a_0 = 1e13
39

40 # In[Dependent parameters]
41

42 @njit
43 def beta_c (I_c, R, C) :
44 return I_c*C*R**2/cVphi
45

46 @njit
47 def omega_p (I_c, C) :
48 """Frequency of the phase omegap = (2eI_c/Chbar)^1/2"""
49 return np.sqrt(I_c/(cVphi*C))
50

51 @njit
52 def Q (I_c, R, C) :
53 """Damping of the phase Q = omegap*R*C"""
54 return np.sqrt(I_c*C*R**2/cVphi)
55

56 @njit
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57 def m_eff (I_c, C) :
58 """Inertia of the polarisation m_eff = 1/omegap"""
59 return np.sqrt(cVphi*C/I_c)
60

61 @njit
62 def A_p (a0, T) :
63 """First Landau parameter A_p = a0(t-T_curie)"""
64 return a0*(T - T_Curie) # T<T_Curie,a0 ~ 10^13
65

66 @njit
67 def B_p (A, P0) :
68 """Second Landau parameter B_p = -A/P0^2"""
69 return -A/P0**2
70

71

72 # In[Data points]
73

74 @njit
75 def current_points (I_max, num_steps) :
76 """" Makes num_steps points for intervals (0, I_max), (I_max, 0),
77 (0, -I_max), (-I_max, 0) and returns them in that order.
78 Also returns the sweep concatenated in the same order and reverse order.
79 Return object is a tuple"""
80

81 I_forward = np.linspace(0, I_max, num = num_steps) # Bias
current 0 - 1.5*I_c

82 I_backward = np.flip(I_forward) # Bias
current 1.5*I_c - 0

83 I_forwardneg = np.linspace(0, -I_max, num = num_steps) # Bias
current 0 - -1.5*I_c

84 I_backwardneg = np.flip(I_forwardneg) # Bias
current -1.5*I_c - 0

85 I_cycle = np.concatenate((I_forward,I_backward,
86 I_forwardneg,I_backwardneg)) # Bias current cycle 0 -> 1.5*

I_C ->
87 # 0 -> -1.5*

I_c -> 0
88 I_backw_cycle = np.concatenate((I_forwardneg, I_backwardneg,
89 I_forward, I_backward))
90

91 I_pos_cycle = np.concatenate((I_forward, I_backward)) # Bias current cycle 0 -> -1.5*I_C
->

92 # 0 -> 1.5*
I_c -> 0

93

94 I_neg_cycle = np.concatenate((I_forwardneg, I_backwardneg))
95

96 return (I_forward, I_backward, I_forwardneg,
97 I_backwardneg, I_cycle, I_backw_cycle, I_neg_cycle, I_pos_cycle)
98

99 @njit
100 def time_points (tspan, stepsize) :
101 """ Makes steps of size stepsize from 0 to tspan.Calculates the staring
102 point for averaging. Returns an array with the time points and
103

104 the starting point for overaging in a tuple"""
105

106

107 num_steps = np.array([(tspan/stepsize)]).astype(np.int_)
108

109 t = np.linspace(0, tspan, num = num_steps[0]+1)
110

111 return t
112

113 @njit
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114 def I_gap (V, I) :
115 ip = np.nonzero(V > 1e-8)
116 i = np.nonzero(V < -1e-8)
117 I_c_diffh = (np.absolute(I[ip[0][0]]) - np.absolute(I[i[0][0]]))
118 I_c_diffl = (np.absolute(I[ip[0][-1]]) - np.absolute(I[i[0][-1]]))
119

120 return (I_c_diffh, I_c_diffl)
121

122 # In[Numerical Methods]
123

124 @njit
125 def Velocity_Verlet_RCSJ (R, C, I_c, I, time_step, tspan, initc) :
126

127 t = time_points(tspan, time_step)
128 damp = Q(I_c, R, C)
129 dt = time_step
130 B = 1/(1 + dt/(2*damp))
131

132 # The number of points in t as an integer
133 num_steps = np.array([t.shape[0]]).astype(np.int_)[0]
134 # Create a zero array of shape (num_steps,3) for phi, dphi/dt and dphi^2/dt^2
135 phi = np.zeros((3, num_steps))
136 # Assign initial conditions
137 phi[0][0] = initc[0]
138 phi[1][0] = initc[1]
139 phi[2][0] = initc[2]
140

141 # Use the velocity verlet algorithm
142 for i in range(num_steps-1) :
143 phi[0][i+1] = phi[0][i] + phi[1][i]*dt + phi[2][i]*dt**2/2
144 phi[1][i+1] = B*(phi[1][i] + phi[2][i]*dt/2 + (I/I_c - np.sin(phi[0][i+1]))*dt/2)
145 phi[2][i+1] = I/I_c - np.sin(phi[0][i+1]) - phi[1][i+1]/damp
146

147 return (t, phi)
148 # In[]
149 ts = time.perf_counter_ns()
150 data = Velocity_Verlet_RCSJ(R, C, 1, 1.5, 0.1, 100, np.array([0,0,0]))
151 tf = time.perf_counter_ns()
152 tr = tf-ts
153 print(tr*1e-9)
154

155 # In[Plot]
156

157

158

159 t = data[0]
160 x = data[1][0]
161 v = data[1][1]
162 a = data[1][2]
163

164 %matplotlib qt5
165

166 rcParams.update({’font.size’: 22})
167 rcParams["mathtext.fontset"] = "cm"
168

169 fig, (ax1, ax2, ax3) = plt.subplots(3, 1, sharex= True)
170

171

172

173 ax1.plot(t,x, ’b’)
174 #ax1.set_xlabel(’time(s)’)
175 ax1.set_ylabel(r’$\varphi$’)
176 ax1.grid()
177

178 ax2.plot(t, v, ’r’)
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179 #ax2.set_xlabel(’time(s)’)
180 ax2.set_ylabel(r’$d\varphi/dt$’)
181 ax2.grid()
182 #ax2.set_yticks([0, 2, 4, 6, 7, 8])
183

184

185 ax3.plot(t, a, ’g’)
186 ax3.set_xlabel(’time(s)’)
187 ax3.set_ylabel(r’$d\varphi^2/dt^2$’)
188 ax3.grid()
189 #ax3.set_yticks([-1, -2, 0, 1, 2])
190

191 fig.set_size_inches(15,10)
192

193 plt.savefig(’C:/Users/Keane/Desktop/BEP/Figures/RCSJ phase behaviour.png’)
194

195 # In[ Velocity verlet RCSJ system]
196 @njit
197 def VV_RCSJ (R, C, I_c, I_max, num_current_steps, time_step, tspan, initc, avstart) :
198

199 t = time_points(tspan, time_step)
200 dt = time_step
201

202 # Calculate number of current points as an integer
203 I_data = current_points(I_max, num_current_steps)
204 I_steps = current_points(I_max, num_current_steps)[4].shape[0]
205 CPR = np.zeros(I_steps)
206 # The number of points in t as an integer
207 num_steps = np.array([t.shape[0]]).astype(np.int_)[0]
208 # Create a zero array of shape (num_steps,3) for phi, dphi/dt and dphi^2/dt^2
209 phi = np.zeros((3, num_steps))
210 # Assign initial conditions
211 phi[0][0] = initc[0]
212 phi[1][0] = initc[1]
213 phi[2][0] = initc[2]
214

215 if I_c == 0 :
216 labda = 1 + (dt/(2*R*C))
217 for j in range(I_steps) :
218 # Use the velocity verlet algorithm
219 I = I_data[4][j]
220 mu = I/(cVphi*C)
221 for i in range(num_steps-1) :
222 phi[0][i+1] = phi[0][i] + phi[1][i]*dt + phi[2][i]*dt**2/2
223 phi[1][i+1] = (1/labda)*(phi[1][i] + phi[2][i]*dt/2 + mu*dt/2)
224 phi[2][i+1] = mu - phi[1][i+1]/(R*C)
225

226 avs = np.array([avstart*tspan]).astype(np.int_)[0]
227 phi_avg = np.average(phi[0][avs:])
228 dphi_avg = np.average(phi[1][avs:])
229 d2phi_avg = np.average(phi[2][avs:])
230 V = dphi_avg*cVphi
231 CPR[j] = V
232 phi[0][0],phi[1][0] = phi[0][-1], phi[1][-1]
233

234 else :
235 damp = Q(I_c, R, C)
236 B = 1/(1 + dt/(2*damp))
237 for j in range(I_steps) :
238 # Use the velocity verlet algorithm
239 I = I_data[4][j]
240 for i in range(num_steps-1) :
241 phi[0][i+1] = phi[0][i] + phi[1][i]*dt + phi[2][i]*dt**2/2
242 phi[1][i+1] = B*(phi[1][i] + phi[2][i]*dt/2 + (I/I_c - np.sin(phi[0][i+1]))*dt/2)
243 phi[2][i+1] = I/I_c - np.sin(phi[0][i+1]) - phi[1][i+1]/damp
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244

245 avs = np.array([avstart*tspan]).astype(np.int_)[0]
246 phi_avg = np.average(phi[0][avs:])
247 dphi_avg = np.average(phi[1][avs:])
248 dphi_max = np.max(phi[1])
249 d2phi_avg = np.average(phi[2][avs:])
250 V = dphi_avg*cVphi*omega_p(I_c, C)
251 CPR[j] = V
252 phi[0][0],phi[1][0] = phi[0][-1], dphi_avg
253

254 return (I_data, CPR)
255 # In[Retrieve data]
256 ncp = 15001
257 ts = time.perf_counter_ns()
258 ic = np.array([0, 0, 0])
259 RCSJ = VV_RCSJ(R, C, 1, 1.5, ncp, 0.01, 100, ic, 0.5)
260 tf = time.perf_counter_ns()
261 tr = (tf - ts)*1e-9
262 print(tr)
263 x = RCSJ[0][4]
264 y = RCSJ[1]
265

266 ipos = np.nonzero(y > 1e-8)
267 ineg = np.nonzero(y < -1e-8)
268 Iretrappos = x[ipos[0][-1]]
269 Iretrapneg = x[ineg[0][-1]]
270

271 print(Iretrappos, Iretrapneg)
272

273 g = I_gap(y, x)
274 print(g)
275

276

277 # In[Plot data]
278

279 font = {’family’: ’serif’,
280 ’color’: ’black’,
281 ’weight’: ’normal’,
282 ’size’: 20,
283 }
284

285 %matplotlib qt5
286 plt.figure()
287 plt.plot(x, y, ’k’)
288 plt.xlabel(’$I / I_c$’, fontdict = font)
289 plt.ylabel(’V (V)’, fontdict = font)
290 plt.grid()
291 plt.show()
292 # Till here everything works fine
293

294 # In[Plot data]
295 x1 = x[:ncp]
296 x2 = x[ncp:2*ncp]
297 x3 = x[2*ncp:3*ncp]
298 x4 = x[3*ncp:]
299 y1 = y[:ncp]*1e6
300 y2 = y[ncp:2*ncp]*1e6
301 y3 = y[2*ncp:3*ncp]*1e6
302 y4 = y[3*ncp:]*1e6
303

304 rcParams.update({’font.size’: 22})
305

306 plt.figure(figsize=[15, 10], dpi = 150)
307 plt.plot(x1, y1, ’-’, label = ’0 -> 1.5’)
308 plt.plot(x2, y2, ’-’, label = ’1.5 -> 0’)
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309 plt.plot(x3, y3, ’-’, label = ’0 -> -1.5’)
310 plt.plot(x4, y4, ’-’, label = ’-1.5 -> 0’)
311 plt.xlabel(’$I/I_c$’)
312 plt.ylabel(’$V (\mu V)$’)
313 plt.legend(loc = ’best’)
314 plt.grid()
315 #plt.show()
316 plt.savefig(’C:/Users/Keane/Desktop/BEP/Figures/RCSJ different colors 2.png’)
317 print(Iretrappos, Iretrapneg)
318 # In[RCSJ with flux]
319 @njit
320 def RCSJ_f(flux, R, C, I_max, I_0, num_current_steps, time_step, tspan, initc, avstart ) :
321

322 fsteps = np.array([flux.shape[0]]).astype(np.int_)[0]
323 I_data = current_points(I_max, num_current_steps)
324 I_stepsf = I_data[4].shape[0]
325 VIf = np.zeros((fsteps,I_stepsf))
326

327 for i in range(fsteps) :
328 I_c = I_0*np.abs(np.round(np.sinc(flux[i]), 16))
329 data = VV_RCSJ(R, C, I_c, I_max, num_current_steps, time_step, tspan, initc, avstart)
330 VIf[i] = data[1]
331 return (I_data, VIf)
332

333 # In[ Retrieve flux data]
334 ts = time.perf_counter_ns()
335 fl = np.linspace(0, 1, num = 6)
336 initc = np.array([0, 0, 0])
337 fl_data = RCSJ_f(fl, R, C, 1.5, 1, 1001, 0.01, 100, initc, 0.5)
338 tf = time.perf_counter_ns()
339 tr = (tf - ts)*1e-9
340 print(tr)
341 # In[]
342 flux = np.linspace(0, 2, num = 9)
343 for i in range(len(flux)) :
344 I_c = np.abs(np.round(np.sinc(flux[i]), 16))
345 print(I_c, i*0.2)
346 # In[]
347 flvals = np.linspace(-5, 5, num = 10001)
348 I_vals =np.abs( np.sinc(flvals) )
349

350 %matplotlib qt5
351

352 rcParams.update({’font.size’: 35})
353

354 plt.figure(figsize=[15, 10], dpi = 150)
355 plt.plot(flvals, I_vals)
356 plt.xlabel(’$\Phi/\Phi_0$’)
357 plt.ylabel(’$I_c/I_{c0}$’)
358 plt.xticks([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5])
359 plt.grid()
360 plt.show()
361 plt.savefig(’C:/Users/Keane/Desktop/BEP/Figures/Fraunhofer pattern.png’)
362 # In[]
363 %matplotlib qt5
364 x = fl_data[0][4]
365 yd = fl_data[1]*1e6
366

367 rcParams.update({’font.size’: 22})
368

369 plt.figure(figsize=[15, 10], dpi = 150)
370 k = 0
371 for p in yd :
372 l = np.round(fl[k],3)
373 plt.plot(x, p, label = l )
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374 k = k+1
375

376 plt.xlabel(’$I/I_c$’)
377 plt.ylabel(’$V (\mu V)$’)
378 plt.legend(loc = ’upper left’, ncol=3)
379 plt.grid()
380 plt.show()
381 plt.savefig(’C:/Users/Keane/Desktop/BEP/Figures/RCSJ with flux.png’)
382

383 # In[]
384

385 Tcurie = 100
386 T = 10
387 P_0 = 0.1
388 a_0 = 1e-5
389 A = a_0*(T-Tcurie)
390 B = ((-A)/(P_0**2))
391 P = np.linspace (-0.25, 0.25, num=2001)
392 F00 = B/4*P**4
393 F0 = A/2*P**2 + B/4*P**4
394

395 rcParams.update({’font.size’: 22})
396

397 plt.figure(figsize=[15, 10], dpi = 150)
398 plt.plot(P, F00, ’g’, label = ’$T=T_c$’)
399 plt.plot(P, F0, ’b’, label = ’$T<T_c$’)
400 plt.xlabel(’$P (C/m^2)$’)
401 plt.ylabel(’$F (J)$’)
402 plt.legend(loc = ’best’)
403 plt.grid()
404 plt.show()
405 plt.savefig(’C:/Users/Keane/Desktop/BEP/Figures/Polarisation free energy for ferroelectric and

paraelectric.png’)
406

407

408 # In[Velocity verlet polarisation]
409 Tcurie = 100
410 T = 10
411 P_0 = 0.1
412 a_0 = 1e-5
413 A = a_0*(T-Tcurie)
414 B = ((-A)/(P_0**2))
415 P = np.linspace (-0.25, 0.25, num=2001)
416 Vm = 2*np.abs(A)*P_0/(3*np.sqrt(3))
417 F0 = A/2*P**2 + B/4*P**4
418 F = A/2*P**2 + B/4*P**4 -Vm*P
419 F2 = A/2*P**2 + B/4*P**4 +Vm*P
420 # In[]
421 %matplotlib qt5
422

423 rcParams.update({’font.size’: 22})
424

425 plt.figure(figsize=[15, 10], dpi = 150)
426 plt.plot(P, F0, ’g’, label = ’0 Voltage’)
427 plt.plot(P, F, ’r-’, label= ’Positive Critical Voltage’)
428 plt.plot(P, F2, ’b’, label= ’NegativeCritical Voltage’)
429

430 plt.xlabel(’$P (C/m^2)$’)
431 plt.ylabel(’$F (J)$’)
432 plt.legend(loc = ’best’)
433 plt.grid()
434 plt.show()
435 plt.savefig(’C:/Users/Keane/Desktop/BEP/Figures/Polarisation free energy with 0 and critical

voltage.png’)
436
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437 print(Vm)
438

439 # In[]
440 %matplotlib qt5
441 V = np.linspace(0, 1e-4, num = 6)
442

443 rcParams.update({’font.size’: 22})
444

445 plt.figure(figsize=[15, 10], dpi = 150)
446

447 for i in V :
448 f = np.round(i, 7)
449 F = A/2*P**2 + B/4*P**4 - f*P
450 plt.plot(P, F, label = f)
451

452

453 plt.xlabel(’$P (C/m^2)$’)
454 plt.ylabel(’$F (J)$’)
455 #plt.legend(loc = ’best’)
456 plt.grid()
457 plt.show()
458 plt.savefig(’C:/Users/Keane/Desktop/BEP/Figures/Polarisation free energy with different voltages.

png’)
459

460

461 # In[]
462 @njit
463 def pol (m, gamma, a0, p0, V, dt, tspan, ic) :
464 tst = np.array([tspan/dt + 1]).astype(np.int_)[0]
465 t = time_points(tspan, dt)
466 omp = omega_p(1, C)
467 A = gamma/(m*omp)
468 a = a0*(T-Tcurie)
469 b = ((-a)/(p0**2))
470 p = np.zeros((3,tst ))
471 p[0][0] = ic[0]
472 p[1][0] = ic[1]
473 p[2][0] = (1/(m*omp**2))*(V - a*(p[0][0]) - b*(p[0][0])**3) - A*p[1][0]
474 for i in range(tst-1) :
475 p[0][i+1] = p[0][i] + p[1][i]*dt + p[2][i]*dt**2/2
476 p[1][i+1] = (1/(1 + A*dt/2))*( p[1][i] + p[2][i]*dt/2 + V*dt/(2*m*omp**2) + (dt/(2*m*omp

**2))*(-a*(p[0][i+1]) - b*(p[0][i+1])**3) )
477 p[2][i+1] = (1/(m*omp**2))*(V - a*(p[0][i+1]) - b*(p[0][i+1])**3) - A*p[1][i+1]
478

479 return (t, p)
480

481 # In[]
482 ts = time.perf_counter_ns()
483 ic = np.array([1e-8, 0, 0])
484 po = pol(1e-11, 0, 1, 1, 1e-8, 0.01, 1000, ic)
485 t = po[0]
486 x = po[1][0]
487 v = po[1][1]
488 a = po[1][2]
489 tf = time.perf_counter_ns()
490 tr = (tf - ts)*1e-9
491 print(tr)
492

493

494 # In[]
495 %matplotlib inline
496 plt.figure()
497 plt.plot(t, x)
498 plt.xlabel(’t’)
499 plt.ylabel(’P’)
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500 plt.grid()
501 plt.show()
502

503 plt.figure()
504 plt.plot(t, v)
505 plt.xlabel(’t’)
506 plt.ylabel(’dP/dt’)
507 plt.grid()
508 plt.show()
509

510 plt.figure()
511 plt.plot(t, a)
512 plt.xlabel(’t’)
513 plt.ylabel(’d2P/dt2’)
514 plt.grid()
515 plt.show()
516

517 # In[]
518 tspan = 10
519 dt = 0.01
520 gamma = 0
521 m = 1
522 a0 = 1
523 T = 10
524 Tcurie = 100
525 V = 0.1
526 p0 = 1
527

528 ts = time.perf_counter_ns()
529 ic = np.array([1, 0, 0])
530

531 tst = np.array([(tspan/dt)+1]).astype(np.int_)[0]
532 t = time_points(tspan, dt)
533 A = gamma/m
534 a = a0*(T-Tcurie)
535 b = ((-a)/(p0**2))
536 p = np.zeros((3,tst ))
537 p[0][0] = ic[0]
538 p[1][0] = ic[1]
539 p[2][0] = ic[2]
540 for i in range(tst-1) :
541 p[0][i+1] = p[0][i] + p[1][i]*dt + p[2][i]*dt**2/2
542 p[1][i+1] = (1/(1 + A))*( p[1][i] + p[2][i]*dt/2 + V*dt/2 + (dt/(2*m))*(-a*(p[0][i+1]) - b*(p

[0][i+1])**3) )
543 p[2][i+1] = (1/m)*(V - a*(p[0][i+1]) - b*(p[0][i+1])**3) - A*p[1][i+1]
544

545 tf = time.perf_counter_ns()
546 tr = (tf - ts)*1e-9
547 print(tr)
548 x = p[0]
549 v = p[1]
550 a = p[2]
551

552 # In[]
553 %matplotlib inline
554 plt.figure()
555 plt.plot(t, x)
556 plt.xlabel(’t’)
557 plt.ylabel(’P’)
558 plt.grid()
559 plt.show()
560

561 plt.figure()
562 plt.plot(t, v)
563 plt.xlabel(’t’)
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564 plt.ylabel(’dP/dt’)
565 plt.grid()
566 plt.show()
567

568 plt.figure()
569 plt.plot(t, a)
570 plt.xlabel(’t’)
571 plt.ylabel(’d2P/dt2’)
572 plt.grid()
573 plt.show()
574

575

576

577 # In[]
578 @njit
579 def VV_RCSJ_pt (R, C, gamma, m, a0, p0, I_c, I, time_step, tspan, initc) :
580 # Equation constants
581 t = time_points(tspan, time_step)
582 damp = Q(I_c, R, C)
583 omegap = omega_p(I_c, C)
584 dt = time_step
585 a = a0*(T-Tcurie)
586 b = ((-a)/(p0**2))
587

588 # Velocity verlet constants
589 A = -1/damp
590 B = -omegap/I_c
591 D = cVphi/(omegap*m)
592 E = - gamma/(m*omegap)
593 eta = 1 - E*dt/2
594 xi = 1 - A*dt/2 - B*D*dt**2/(4*eta)
595

596 # The number of points in t as an integer
597 num_steps = np.array([t.shape[0]]).astype(np.int_)[0]
598 # Create a zero array of shape (num_steps,3) for phi, dphi/dt and dphi^2/dt^2
599 phi, p = np.zeros((3, num_steps)), np.zeros((3, num_steps))
600 # Assign initial conditions
601 phi[0][0] = initc[0]
602 phi[1][0] = initc[1]
603 phi[2][0] = I/I_c - np.sin(phi[0][0]) - phi[1][0]/damp - (omegap/I_c)*p[1][0]
604

605 p[0][0] = initc[3]
606 p[1][0] = initc[4]
607 p[2][0] = (cVphi/(m*omegap))*phi[1][0] - (gamma/(m*omegap))*p[1][0] - (1/(m*omegap**2))*(a*p

[0][0] + b*p[0][0]**3)
608

609 for i in range(num_steps-1) :
610 phi[0][i+1] = phi[0][i] + phi[1][i]*dt + phi[2][i]*dt**2/2
611 p[0][i+1] = p[0][i] + p[1][i]*dt + p[2][i]*dt**2/2
612

613 phi[1][i+1] = (1/xi)*( phi[1][i] + phi[2][i]*dt/2 + (B*dt/(2*eta))*(p[1][i] + p[2][i]*dt
/2) + (I/I_c - np.sin(phi[0][i+1]))*dt/2 + (B*dt**2/(4*eta))*(1/(m*omegap**2))*(-a*p[0][i+1]
- b*p[0][i+1]**3) )

614 p[1][i+1] = (1/eta)*( p[1][i] + p[2][i]*dt/2 + (D*dt/2)*phi[1][i+1] + (1/(m*omegap**2))

*(-a*p[0][i+1] - b*p[0][i+1]**3) )
615

616 phi[2][i+1] = I/I_c - np.sin(phi[0][i+1]) - phi[1][i+1]/damp - (omegap/I_c)*p[1][i+1]
617 p[2][i+1] = (cVphi/(m*omegap))*phi[1][i+1] - (gamma/(m*omegap))*p[1][i+1] - (1/(m*

omegap**2))*(a*p[0][i+1] + b*p[0][i+1]**3)
618

619 return (t, p, phi)
620

621 # In[RCSJ polarisation for 1 current]
622 ts = time.perf_counter_ns()
623 Pin = 10
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624 ic = np.array([0, 0, 0, Pin, 0, 0])
625 RCSJpt = VV_RCSJ_pt(R, C, 0, 1e-11, 1, Pin, 1, 1.5, 0.1, 1000, ic)
626 tf = time.perf_counter_ns()
627 tr = (tf - ts)*1e-9
628 print(tr)
629 t = RCSJpt[0]
630 xphi = RCSJpt[2][0]
631 vphi = cVphi*omega_p(1, C)*RCSJpt[2][1]
632 aphi = RCSJpt[2][2]
633 xp = RCSJpt[1][0]
634 vp = RCSJpt[1][1]
635 ap = RCSJpt[1][2]
636

637 # In[RCSJ polarisation for different currents]
638 %matplotlib inline
639 ts = time.perf_counter_ns()
640 k = np.linspace(0, 1.5, num=16)
641 plt.figure()
642 for i in range(len(k)) :
643 curr = k[i]
644

645 Pin = 10
646 ic = np.array([0, 0, 0, Pin, 0, 0])
647 RCSJpt = VV_RCSJ_pt(R, C, 1e-5, 1e-11, 1, Pin, 1, curr, 0.1, 1000, ic)
648

649 t = RCSJpt[0]
650 xphi = RCSJpt[2][0]
651 vphi = cVphi*omega_p(1, C)*RCSJpt[2][1]
652 aphi = RCSJpt[2][2]
653 xp = RCSJpt[1][0]
654 vp = RCSJpt[1][1]
655 ap = RCSJpt[1][2]
656

657 val = np.round(k[i], 3)
658 plt.plot(t, vp, label = val)
659

660 tf = time.perf_counter_ns()
661 tr = (tf - ts)*1e-9
662 print(tr)
663

664 plt.xlabel(’t’)
665 plt.ylabel(’dP/dt’)
666 plt.legend(loc = ’best’)
667 plt.grid()
668 plt.show()
669

670 # In[]
671

672 %matplotlib qt5
673

674 ts = time.perf_counter_ns()
675

676 plt.figure()
677

678 Pin = 1e-8
679 ic = np.array([0, 0, 0, Pin, 0, 0])
680 RCSJpt = VV_RCSJ_pt(R, C, 0, 1e-11, 1, Pin, 1, 1.5, 1e-1, 1000, ic)
681

682 t = RCSJpt[0]
683 xphi = RCSJpt[2][0]
684 vphi = cVphi*omega_p(1, C)*RCSJpt[2][1]
685 aphi = RCSJpt[2][2]
686 xp = RCSJpt[1][0]
687 vp = RCSJpt[1][1]
688 ap = RCSJpt[1][2]
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689

690 plt.plot(t, vp, ’-’, label = tstep)
691

692 plt.xlabel(’t’)
693 plt.ylabel(’dP/dt’)
694 plt.legend(loc = ’best’)
695 plt.grid()
696 plt.show()
697

698 tf = time.perf_counter_ns()
699 tr = (tf - ts)*1e-9
700 print(tr)
701

702 # In[]
703 %matplotlib inline
704 plt.figure()
705 plt.plot(t, xphi)
706 plt.xlabel(’t’)
707 plt.ylabel(’phi’)
708 plt.grid()
709 plt.show()
710

711 plt.figure()
712 plt.plot(t, vphi)
713 plt.xlabel(’t’)
714 plt.ylabel(’V’)
715 plt.grid()
716 plt.show()
717

718 plt.figure()
719 plt.plot(t, aphi)
720 plt.xlabel(’t’)
721 plt.ylabel(’d2phi/dt2’)
722 plt.grid()
723 plt.show()
724

725 plt.figure()
726 plt.plot(t, xp)
727 plt.xlabel(’t’)
728 plt.ylabel(’P’)
729 plt.grid()
730 plt.show()
731

732 plt.figure()
733 plt.plot(t, vp)
734 plt.xlabel(’t’)
735 plt.ylabel(’dP/dt’)
736 plt.grid()
737 plt.show()
738

739 plt.figure()
740 plt.plot(t, ap)
741 plt.xlabel(’t’)
742 plt.ylabel(’d2P/dt2’)
743 plt.grid()
744 plt.show()
745

746 # In[RCSJ with polarisation]
747 @njit
748 def VV_RCSJ_p (R, C, gamma, m, a0, p0, I_c, I_max, num_current_steps, time_step, tspan, initc,

avstart) :
749 # Equation constants
750 t = time_points(tspan, time_step)
751 damp = Q(I_c, R, C)
752 omegap = omega_p(I_c, C)
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753 dt = time_step
754 a = a0*(T-Tcurie)
755 b = ((-a)/(p0**2))
756

757 # Velocity verlet constants
758 A = -1/damp
759 B = -omegap/I_c
760 D = cVphi/(omegap*m)
761 E = - gamma/(m*omegap)
762 eta = 1 - E*dt/2
763 xi = 1 - A*dt/2 - B*D*dt**2/(4*eta)
764

765 # Calculate number of current points as an integer
766 I_data = current_points(I_max, num_current_steps)
767 I_steps = current_points(I_max, num_current_steps)[4].shape[0]
768 CPR = np.zeros((6, I_steps))
769 dpv = np.zeros(I_steps)
770 # The number of points in t as an integer
771 num_steps = np.array([t.shape[0]]).astype(np.int_)[0]
772 # Create a zero array of shape (num_steps,3) for phi, dphi/dt and dphi^2/dt^2
773 phi, p = np.zeros((3, num_steps)), np.zeros((3, num_steps))
774 # Assign initial conditions
775 phi[0][0] = initc[0]
776 phi[1][0] = initc[1]
777 phi[2][0] = I_data[4][0]/I_c - np.sin(phi[0][0]) - phi[1][0]/damp - (omegap/I_c)*p[1][0]
778

779 p[0][0] = initc[3]
780 p[1][0] = initc[4]
781 p[2][0] = (cVphi/(m*omegap))*phi[1][0] - (gamma/(m*omegap))*p[1][0] - (1/(m*omegap**2))*(a*p

[0][0] + b*p[0][0]**3)
782

783

784 for j in range(I_steps) :
785 # Use the velocity verlet algorithm
786 I = I_data[4][j]
787 for i in range(num_steps-1) :
788 phi[0][i+1] = phi[0][i] + phi[1][i]*dt + phi[2][i]*dt**2/2
789 p[0][i+1] = p[0][i] + p[1][i]*dt + p[2][i]*dt**2/2
790

791 phi[1][i+1] = (1/xi)*( phi[1][i] + phi[2][i]*dt/2 + (B*dt/(2*eta))*(p[1][i] + p[2][i
]*dt/2) + (I/I_c - np.sin(phi[0][i+1]))*dt/2 + (B*dt**2/(4*eta))*(1/(m*omegap**2))*(-a*p[0][i
+1] - b*p[0][i+1]**3) )

792 p[1][i+1] = (1/eta)*( p[1][i] + p[2][i]*dt/2 + (D*dt/2)*phi[1][i+1] + (1/(m*omegap

**2))*(-a*p[0][i+1] - b*p[0][i+1]**3) )
793

794 phi[2][i+1] = I/I_c - np.sin(phi[0][i+1]) - phi[1][i+1]/damp - (omegap/I_c)*p[1][i+1]
795 p[2][i+1] = (cVphi/(m*omegap))*phi[1][i+1] - (gamma/(m*omegap))*p[1][i+1] - (1/(m*

omegap**2))*(a*p[0][i+1] + b*p[0][i+1]**3)
796

797 phi_avg = np.average(phi[0][avstart*tspan:])
798 dphi_avg = np.average(phi[1][avstart*tspan:])
799 d2phi_avg = np.average(phi[2][avstart*tspan:])
800 p_avg = np.average(p[0][avstart*tspan:])
801 dp_avg = np.average(p[1][avstart*tspan:])
802 d2p_avg = np.average(p[2][avstart*tspan:])
803 V = dphi_avg*cVphi*omegap
804 CPR[0][j], CPR[1][j], CPR[2][j], CPR[3][j], CPR[4][j], CPR[5][j] = phi[0][-1], V, phi

[2][-1], p[0][-1], dp_avg, d2p_avg
805 phi[0][0],phi[1][0], p[0][0], p[1][0], p[2][0] = phi[0][-1], dphi_avg, p_avg, dp_avg, p

[2][-1]
806

807 return (I_data, CPR)
808

809 # In[]
810
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811 ts = time.perf_counter_ns()
812 ic = np.array([0, 0, 0, 10, 0, 0])
813 RCSJp = VV_RCSJ_p(R, C, 1e-5, 1e-11, 1, 10, 1, 1.5, 1001, 0.01, 100, ic, 0.5)
814 tf = time.perf_counter_ns()
815 tr = (tf - ts)*1e-9
816 print(tr)
817 x = RCSJp[0][4]
818 yV = RCSJp[1][1]
819 yp = RCSJp[1][3]
820 ydp = RCSJp[1][4]
821

822 g = I_gap(yV, x)
823 print(g)
824

825 # In[Plot Data]
826 %matplotlib inline
827 plt.figure()
828 plt.plot(x, yV)
829 plt.title(’RCSJ Hysteretic plot’)
830 plt.xlabel(’I’)
831 plt.ylabel(’V’)
832 plt.grid()
833 plt.show()
834

835 plt.figure()
836 plt.plot(x, yp)
837 plt.title(’polarisation’)
838 plt.xlabel(’I’)
839 plt.ylabel(’P’)
840 plt.grid()
841 plt.show()
842

843 plt.figure()
844 plt.plot(x, ydp)
845 plt.title(’polarisation speed’)
846 plt.xlabel(’I’)
847 plt.ylabel(’dP’)
848 plt.grid()
849 plt.show()
850

851 # In[]
852 x1 = RCSJp[0][0]
853 x2 = RCSJp[0][1]
854 x3 = RCSJp[0][2]
855 x4 = RCSJp[0][3]
856 xp = RCSJp[0][7]
857 xn = RCSJp[0][6]
858

859 yV1 = RCSJp[1][1][:1001]
860 yV2 = RCSJp[1][1][1001:2002]
861 yV3 = RCSJp[1][1][2002:3003]
862 yV4 = RCSJp[1][1][3003:]
863 yV12 = RCSJp[1][1][:2002]
864 yV34 = np.abs(RCSJp[1][1][2002:])
865

866

867

868

869 plt.figure()
870 plt.plot(x1, yV1)
871 plt.plot(x2, yV2)
872 plt.plot(x3, yV3)
873 plt.plot(x4, yV4)
874 plt.title(’Hysteresis’)
875 plt.xlabel(’I’)
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876 plt.ylabel(’P’)
877 plt.grid()
878 plt.show()
879

880 %matplotlib qt5
881 plt.figure()
882 plt.plot(xp, yV12, ’g’, label = ’pos I’)
883 plt.plot(xp, yV34, ’r--’, label = ’neg I’)
884 plt.title(’Voltage’)
885 plt.xlabel(’I’)
886 plt.ylabel(’V’)
887 plt.legend(loc=’best’)
888 plt.grid()
889 plt.show()
890

891 # In[RCSJ with polarisation]
892 @njit
893 def VV_RCSJ_pm (R, C, gamma, m, a0, p0, I_c, I_max, num_current_steps, time_step, tspan, initc,

avstart) :
894 # Equation constants
895 t = time_points(tspan, time_step)
896 dt = time_step
897 a = a0*(T-Tcurie)
898 b = ((-a)/(p0**2))
899

900 avs = np.array([avstart*tspan]).astype(np.int_)[0]
901

902 # Calculate number of current points as an integer
903 I_data = current_points(I_max, num_current_steps)
904 I_steps = current_points(I_max, num_current_steps)[4].shape[0]
905 CPR = np.zeros((6, I_steps))
906 CPR2 = np.zeros((6, I_steps))
907 # The number of points in t as an integer
908 num_steps = np.array([t.shape[0]]).astype(np.int_)[0]
909 # Create a zero array of shape (num_steps,3) for phi, dphi/dt and dphi^2/dt^2
910 phi, p = np.zeros((3, num_steps)), np.zeros((3, num_steps))
911 phi2, p2 = np.zeros((3, num_steps)), np.zeros((3, num_steps))
912

913 if I_c == 0 :
914 om = np.sqrt(1/(cVphi*C))
915 q0 = om*R*C
916 # Assign initial conditions
917 phi[0][0] = initc[0]
918 phi[1][0] = initc[1]
919 phi[2][0] = I_data[4][0] - phi[1][0]/q0 - om*p[1][0]
920

921 p[0][0] = initc[3]
922 p[1][0] = initc[4]
923 p[2][0] = (cVphi/(m*om))*phi[1][0] - (gamma/(m*om))*p[1][0] - (1/(m*om**2))*(a*p[0][0] +

b*p[0][0]**3)
924

925

926 for j in range(I_steps) :
927 # Use the velocity verlet algorithm
928 I = I_data[4][j]
929 A1 = I/(cVphi*C)
930 A2 = 1/(R*C)
931 A3 = 1/(cVphi*C)
932 B1 = cVphi/(m*om)
933 B2 = a/(om**2)
934 B3 = b/(m*om**2)
935 B4 = gamma/(m*om)
936 theta = 1 + B4
937 sigma = 1 + (A2*dt/2) + (A3*B1*dt**2)/(4*theta)
938 for i in range(num_steps-1) :
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939 phi[0][i+1] = phi[0][i] + phi[1][i]*dt + phi[2][i]*dt**2/2
940 p[0][i+1] = p[0][i] + p[1][i]*dt + p[2][i]*dt**2/2
941

942 phi[1][i+1] = (1/sigma)*( phi[1][i] + phi[2][i]*dt/2 + A1*dt/2 - (A3*dt/(2*theta)
)*((p[1][i] + p[2][i]*dt/2) + (dt/(2*m*om**2))*(-a*p[0][i+1] - b*p[0][i+1]**3)) )

943 p[1][i+1] = (1/theta)*( p[1][i] + p[2][i]*dt/2 + (B1*dt/2)*phi[1][i+1] + (dt
/(2*m*om**2))*(-a*p[0][i+1] - b*p[0][i+1]**3) )

944

945 phi[2][i+1] = A1 - A2*phi[1][i+1] - A3*p[1][i+1]
946 p[2][i+1] = B1*phi[1][i+1] - B2*p[0][i+1] - B3*p[0][i+1]**3 - B4*p[1][i+1]
947

948 phi_avg = np.average(phi[0][avs:])
949 dphi_avg = np.average(phi[1][avs:])
950 d2phi_avg = np.average(phi[2][avs:])
951 p_avg = np.average(p[0][avs:])
952 dp_avg = np.average(p[1][avs:])
953 d2p_avg = np.average(p[2][avs:])
954 V = dphi_avg*cVphi*om
955 CPR[0][j], CPR[1][j], CPR[2][j], CPR[3][j], CPR[4][j], CPR[5][j] = phi[0][-1], V, phi

[2][-1], p[0][-1], dp_avg, d2p_avg
956 phi[0][0],phi[1][0], p[0][0], p[1][0], p[2][0] = phi[0][-1], dphi_avg, p[0][-1],

dp_avg, p[2][-1]
957

958

959 dphi_max = np.max(phi[1])
960 d2phi_avgf = np.average(phi[2][avs:])
961 p_avgf = np.average(p[0])
962 dp_max = np.max(p[1])
963 d2p_avgf = np.average(p[2][avs:])
964 Vm = dphi_max*cVphi*om
965 CPR2[0][j], CPR2[1][j], CPR2[2][j], CPR2[3][j], CPR2[4][j], CPR2[5][j] = phi[0][-1],

Vm, phi[2][-1], p[0][-1], dp_max, d2p_avgf
966 phi2[0][0],phi2[1][0], p2[0][0], p2[1][0], p2[2][0] = phi2[0][-1], dphi_max, p_avgf,

dp_max, p[2][-1]
967

968

969 else :
970 damp = Q(I_c, R, C)
971 omegap = omega_p(I_c, C)
972

973 # Velocity verlet constants
974 A = -1/damp
975 B = -omegap/I_c
976 D = cVphi/(omegap*m)
977 E = - gamma/(m*omegap)
978 eta = 1 - E*dt/2
979 xi = 1 - A*dt/2 - B*D*dt**2/(4*eta)
980

981 # Assign initial conditions
982 phi[0][0] = initc[0]
983 phi[1][0] = initc[1]
984 phi[2][0] = I_data[4][0]/I_c - np.sin(phi[0][0]) - phi[1][0]/damp - (omegap/I_c)*p[1][0]
985

986 p[0][0] = initc[3]
987 p[1][0] = initc[4]
988 p[2][0] = (cVphi/(m*omegap))*phi[1][0] - (gamma/(m*omegap))*p[1][0] - (1/(m*omegap**2))*(

a*p[0][0] + b*p[0][0]**3)
989

990

991 for j in range(I_steps) :
992 # Use the velocity verlet algorithm
993 I = I_data[4][j]
994 for i in range(num_steps-1) :
995 phi[0][i+1] = phi[0][i] + phi[1][i]*dt + phi[2][i]*dt**2/2
996 p[0][i+1] = p[0][i] + p[1][i]*dt + p[2][i]*dt**2/2
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997

998 phi[1][i+1] = (1/xi)*( phi[1][i] + phi[2][i]*dt/2 + (B*dt/(2*eta))*(p[1][i] + p
[2][i]*dt/2) + (I/I_c - np.sin(phi[0][i+1]))*dt/2 + (B*dt**2/(4*eta))*(1/(m*omegap**2))*(-a*p
[0][i+1] - b*p[0][i+1]**3) )

999 p[1][i+1] = (1/eta)*( p[1][i] + p[2][i]*dt/2 + (D*dt/2)*phi[1][i+1] + (1/(m*
omegap**2))*(-a*p[0][i+1] - b*p[0][i+1]**3) )

1000

1001 phi[2][i+1] = I/I_c - np.sin(phi[0][i+1]) - phi[1][i+1]/damp - (omegap/I_c)*p[1][
i+1]

1002 p[2][i+1] = (cVphi/(m*omegap))*phi[1][i+1] - (gamma/(m*omegap))*p[1][i+1] -
(1/(m*omegap**2))*(a*p[0][i+1] + b*p[0][i+1]**3)

1003

1004 phi_avg = np.average(phi[0][avs:])
1005 dphi_avg = np.average(phi[1][avs:])
1006 d2phi_avg = np.average(phi[2][avs:])
1007 p_avg = np.average(p[0][avs:])
1008 dp_avg = np.average(p[1][avs:])
1009 d2p_avg = np.average(p[2][avs:])
1010 V = dphi_avg*cVphi*omegap
1011 CPR[0][j], CPR[1][j], CPR[2][j], CPR[3][j], CPR[4][j], CPR[5][j] = phi[0][-1], V, phi

[2][-1], p[0][-1], dp_avg, d2p_avg
1012 phi[0][0],phi[1][0], p[0][0], p[1][0], p[2][0] = phi[0][-1], dphi_avg, p[0][-1],

dp_avg, p[2][-1]
1013

1014 dphi_max = np.max(phi[1])
1015 d2phi_avgf = np.average(phi[2][avs:])
1016 p_avgf = np.average(p[0])
1017 dp_max = np.max(p[1])
1018 d2p_avgf = np.average(p[2][avs:])
1019 Vm = dphi_max*cVphi*omegap
1020 CPR2[0][j], CPR2[1][j], CPR2[2][j], CPR2[3][j], CPR2[4][j], CPR2[5][j] = phi[0][-1],

Vm, phi[2][-1], p[0][-1], dp_max, d2p_avgf
1021 phi2[0][0],phi2[1][0], p2[0][0], p2[1][0], p2[2][0] = phi2[0][-1], dphi_max, p_avgf,

dp_max, p[2][-1]
1022

1023

1024 return (I_data, CPR, CPR2)
1025

1026 # In[]
1027

1028 ts = time.perf_counter_ns()
1029 ic = np.array([0, 0, 0, 1, 0, 0])
1030 RCSJp = VV_RCSJ_pm(R, C, 1e-5, 1e-11, 1, 1, 1, 1.5, 1501, 0.01, 100, ic, 0.5)
1031 tf = time.perf_counter_ns()
1032 tr = (tf - ts)*1e-9
1033 print(tr)
1034 x = RCSJp[0][4]
1035 yV = RCSJp[1][1]
1036 yp = RCSJp[1][3]
1037 ydp = RCSJp[1][4]
1038

1039 yV2 = RCSJp[2][1]
1040 yp2 = RCSJp[2][3]
1041 ydp2 = RCSJp[2][4]
1042

1043 g = I_gap(yV, x)
1044 g2 = I_gap(yV2, x)
1045 print(g, g2)
1046

1047 # In[Plot Data]
1048 %matplotlib qt5
1049 plt.figure()
1050 plt.plot(x, yV2, ’r--’)
1051 plt.plot(x, yV)
1052 plt.title(’RCSJ Hysteretic plot’)
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1053 plt.xlabel(’I’)
1054 plt.ylabel(’V’)
1055 plt.grid()
1056 plt.show()
1057

1058 plt.figure()
1059 plt.plot(x, yp2, ’r--’)
1060 plt.plot(x, yp)
1061 plt.title(’polarisation’)
1062 plt.xlabel(’I’)
1063 plt.ylabel(’P’)
1064 plt.grid()
1065 plt.show()
1066

1067 plt.figure()
1068 plt.plot(x, ydp2, ’r--’)
1069 plt.plot(x, ydp)
1070 plt.title(’polarisation speed’)
1071 plt.xlabel(’I’)
1072 plt.ylabel(’dP’)
1073 plt.grid()
1074 plt.show()
1075

1076 # In[]
1077 x1 = RCSJp[0][0]
1078 x2 = RCSJp[0][1]
1079 x3 = RCSJp[0][2]
1080 x4 = RCSJp[0][3]
1081 xp = RCSJp[0][7]
1082 xn = RCSJp[0][6]
1083

1084 yV1 = RCSJp[1][1][:1001]
1085 yV2 = RCSJp[1][1][1001:2002]
1086 yV3 = RCSJp[1][1][2002:3003]
1087 yV4 = RCSJp[1][1][3003:]
1088 yV12 = RCSJp[1][1][:2002]
1089 yV34 = np.abs(RCSJp[1][1][2002:])
1090

1091

1092

1093

1094 plt.figure()
1095 plt.plot(x1, yV1)
1096 plt.plot(x2, yV2)
1097 plt.plot(x3, yV3)
1098 plt.plot(x4, yV4)
1099 plt.title(’Hysteresis’)
1100 plt.xlabel(’I’)
1101 plt.ylabel(’P’)
1102 plt.grid()
1103 plt.show()
1104

1105 %matplotlib qt5
1106 plt.figure()
1107 plt.plot(xp, yV12, ’g’, label = ’pos I’)
1108 plt.plot(xp, yV34, ’r--’, label = ’neg I’)
1109 plt.title(’Voltage’)
1110 plt.xlabel(’I’)
1111 plt.ylabel(’V’)
1112 plt.legend(loc=’best’)
1113 plt.grid()
1114 plt.show()
1115

1116 # In[RCSJ polarisation for different Ic including 0]
1117
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1118 @njit
1119 def VV_RCSJ_p2 ( R, C, gamma, m, a0, p0, I_c, I_max, num_current_steps, time_step, tspan, initc,

avstart) :
1120 # Equation constants
1121 t = time_points(tspan, time_step)
1122 dt = time_step
1123 a = a0*(T-Tcurie)
1124 b = ((-a)/(p0**2))
1125

1126 avs = np.array([avstart*tspan]).astype(np.int_)[0]
1127

1128 # Calculate number of current points as an integer
1129 I_data = current_points(I_max, num_current_steps)
1130 I_steps = current_points(I_max, num_current_steps)[4].shape[0]
1131 CPR = np.zeros((6, I_steps))
1132 # The number of points in t as an integer
1133 num_steps = np.array([t.shape[0]]).astype(np.int_)[0]
1134 # Create a zero array of shape (num_steps,3) for phi, dphi/dt and dphi^2/dt^2
1135 phi, p = np.zeros((3, num_steps)), np.zeros((3, num_steps))
1136

1137 if I_c == 0 :
1138 om = np.sqrt(1/(cVphi*C))
1139 q0 = om*R*C
1140 # Assign initial conditions
1141 phi[0][0] = initc[0]
1142 phi[1][0] = initc[1]
1143 phi[2][0] = I_data[4][0] - phi[1][0]/q0 - om*p[1][0]
1144

1145 p[0][0] = initc[3]
1146 p[1][0] = initc[4]
1147 p[2][0] = (cVphi/(m*om))*phi[1][0] - (gamma/(m*om))*p[1][0] - (1/(m*om**2))*(a*p[0][0] +

b*p[0][0]**3)
1148

1149

1150 for j in range(I_steps) :
1151 # Use the velocity verlet algorithm
1152 I = I_data[4][j]
1153 A1 = I/(cVphi*C)
1154 A2 = 1/(R*C)
1155 A3 = 1/(cVphi*C)
1156 B1 = cVphi/(m*om)
1157 B2 = a/(om**2)
1158 B3 = b/(m*om**2)
1159 B4 = gamma/(m*om)
1160 theta = 1 + B4
1161 sigma = 1 + (A2*dt/2) + (A3*B1*dt**2)/(4*theta)
1162 for i in range(num_steps-1) :
1163 phi[0][i+1] = phi[0][i] + phi[1][i]*dt + phi[2][i]*dt**2/2
1164 p[0][i+1] = p[0][i] + p[1][i]*dt + p[2][i]*dt**2/2
1165

1166 phi[1][i+1] = (1/sigma)*( phi[1][i] + phi[2][i]*dt/2 + A1*dt/2 - (A3*dt/(2*theta)
)*((p[1][i] + p[2][i]*dt/2) + (dt/(2*m*om**2))*(-a*p[0][i+1] - b*p[0][i+1]**3)) )

1167 p[1][i+1] = (1/theta)*( p[1][i] + p[2][i]*dt/2 + (B1*dt/2)*phi[1][i+1] + (dt
/(2*m*om**2))*(-a*p[0][i+1] - b*p[0][i+1]**3) )

1168

1169 phi[2][i+1] = A1 - A2*phi[1][i+1] - A3*p[1][i+1]
1170 p[2][i+1] = B1*phi[1][i+1] - B2*p[0][i+1] - B3*p[0][i+1]**3 - B4*p[1][i+1]
1171

1172 phi_avg = np.average(phi[0][avs:])
1173 dphi_avg = np.average(phi[1][avs:])
1174 d2phi_avg = np.average(phi[2][avs:])
1175 p_avg = np.average(p[0][avs:])
1176 dp_avg = np.average(p[1][avs:])
1177 d2p_avg = np.average(p[2][avs:])
1178 V = dphi_avg*cVphi*om
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1179 CPR[0][j], CPR[1][j], CPR[2][j], CPR[3][j], CPR[4][j], CPR[5][j] = phi[0][-1], V, phi
[2][-1], p[0][-1], dp_avg, d2p_avg

1180 phi[0][0],phi[1][0], p[0][0], p[1][0], p[2][0] = phi[0][-1], dphi_avg, p[0][-1],
dp_avg, p[2][-1]

1181

1182 else :
1183 damp = Q(I_c, R, C)
1184 omegap = omega_p(I_c, C)
1185

1186 # Velocity verlet constants
1187 A = -1/damp
1188 B = -omegap/I_c
1189 D = cVphi/(omegap*m)
1190 E = - gamma/(m*omegap)
1191 eta = 1 - E*dt/2
1192 xi = 1 - A*dt/2 - B*D*dt**2/(4*eta)
1193

1194 # Assign initial conditions
1195 phi[0][0] = initc[0]
1196 phi[1][0] = initc[1]
1197 phi[2][0] = I_data[4][0]/I_c - np.sin(phi[0][0]) - phi[1][0]/damp - (omegap/I_c)*p[1][0]
1198

1199 p[0][0] = initc[3]
1200 p[1][0] = initc[4]
1201 p[2][0] = (cVphi/(m*omegap))*phi[1][0] - (gamma/(m*omegap))*p[1][0] - (1/(m*omegap**2))*(

a*p[0][0] + b*p[0][0]**3)
1202

1203

1204 for j in range(I_steps) :
1205 # Use the velocity verlet algorithm
1206 I = I_data[4][j]
1207 for i in range(num_steps-1) :
1208 phi[0][i+1] = phi[0][i] + phi[1][i]*dt + phi[2][i]*dt**2/2
1209 p[0][i+1] = p[0][i] + p[1][i]*dt + p[2][i]*dt**2/2
1210

1211 phi[1][i+1] = (1/xi)*( phi[1][i] + phi[2][i]*dt/2 + (B*dt/(2*eta))*(p[1][i] + p
[2][i]*dt/2) + (I/I_c - np.sin(phi[0][i+1]))*dt/2 + (B*dt**2/(4*eta))*(1/(m*omegap**2))*(-a*p
[0][i+1] - b*p[0][i+1]**3) )

1212 p[1][i+1] = (1/eta)*( p[1][i] + p[2][i]*dt/2 + (D*dt/2)*phi[1][i+1] + (1/(m*
omegap**2))*(-a*p[0][i+1] - b*p[0][i+1]**3) )

1213

1214 phi[2][i+1] = I/I_c - np.sin(phi[0][i+1]) - phi[1][i+1]/damp - (omegap/I_c)*p[1][
i+1]

1215 p[2][i+1] = (cVphi/(m*omegap))*phi[1][i+1] - (gamma/(m*omegap))*p[1][i+1] -
(1/(m*omegap**2))*(a*p[0][i+1] + b*p[0][i+1]**3)

1216

1217 phi_avg = np.average(phi[0][avs:])
1218 dphi_avg = np.average(phi[1][avs:])
1219 d2phi_avg = np.average(phi[2][avs:])
1220 p_avg = np.average(p[0][avs:])
1221 dp_avg = np.average(p[1][avs:])
1222 d2p_avg = np.average(p[2][avs:])
1223 V = dphi_avg*cVphi*omegap
1224 CPR[0][j], CPR[1][j], CPR[2][j], CPR[3][j], CPR[4][j], CPR[5][j] = phi[0][-1], V, phi

[2][-1], p[0][-1], dp_avg, d2p_avg
1225 phi[0][0],phi[1][0], p[0][0], p[1][0], p[2][0] = phi[0][-1], dphi_avg, p[0][-1],

dp_avg, p[2][-1]
1226

1227 return (I_data, CPR)
1228 # In[]
1229 ts = time.perf_counter_ns()
1230 ic = np.array([0, 0, 0, 1, 0, 0])
1231 RCSJp = VV_RCSJ_p2(R, C, 1e-5, 1e-11, 1, 1, 1, 1.5, 1001, 0.01, 100, ic, 0.5)
1232 tf = time.perf_counter_ns()
1233 tr = (tf - ts)*1e-9
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1234 print(tr)
1235 x = RCSJp[0][4]
1236 yV = RCSJp[1][1]
1237 yp = RCSJp[1][3]
1238

1239 cpr = RCSJp[1]
1240

1241 # In[Plot Data]
1242 %matplotlib inline
1243 plt.figure()
1244 plt.plot(x, yV)
1245 plt.title(’RCSJ Hysteretic plot’)
1246 plt.xlabel(’I’)
1247 plt.ylabel(’V’)
1248 plt.grid()
1249 plt.show()
1250

1251 plt.figure()
1252 plt.plot(x, yp)
1253 plt.title(’polarisation’)
1254 plt.xlabel(’I’)
1255 plt.ylabel(’P’)
1256 plt.grid()
1257 plt.show()
1258

1259 # In[]
1260 x1 = RCSJp[0][0]
1261 x2 = RCSJp[0][1]
1262 x3 = RCSJp[0][2]
1263 x4 = RCSJp[0][3]
1264 xp = RCSJp[0][7]
1265 xn = RCSJp[0][6]
1266

1267 oc = 1001
1268

1269 yV1 = RCSJp[1][1][:oc]
1270 yV2 = RCSJp[1][1][oc:2*oc]
1271 yV3 = RCSJp[1][1][2*oc:3*oc]
1272 yV4 = RCSJp[1][1][3*oc:]
1273 yV12 = RCSJp[1][1][:2*oc]
1274 yV34 = np.abs(RCSJp[1][1][2*oc:])
1275

1276 plt.figure()
1277 plt.plot(x1, yV1)
1278 plt.plot(x2, yV2)
1279 plt.plot(x3, yV3)
1280 plt.plot(x4, yV4)
1281 plt.title(’Hysteresis’)
1282 plt.xlabel(’I’)
1283 plt.ylabel(’P’)
1284 plt.grid()
1285 plt.show()
1286

1287 %matplotlib qt5
1288 plt.figure()
1289 plt.plot(xp, yV12, ’g’, label = ’pos I’)
1290 plt.plot(xp, yV34, ’r--’, label = ’neg I’)
1291 plt.title(’Voltage’)
1292 plt.xlabel(’I’)
1293 plt.ylabel(’V’)
1294 plt.legend(loc=’best’)
1295 plt.grid()
1296 plt.show()
1297

1298 # In[RCSJ with pol and flux]
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1299 @njit
1300 def RCSJ_pf(flux, R, C, gamma, m, a0, p0, I_0, I_max, num_current_steps, time_step, tspan, initc,

avstart) :
1301

1302 fsteps = np.array([flux.shape[0]]).astype(np.int_)[0]
1303 I_data = current_points(I_max, num_current_steps)
1304 I_stepsf = I_data[4].shape[0]
1305 VIf = np.zeros((fsteps, 6, I_stepsf))
1306 Ics = np.zeros(fsteps)
1307

1308 for i in range(fsteps) :
1309 I_c = I_0*np.abs(np.round(np.sinc(flux[i]), 16))
1310 Ics[i] = I_c
1311 initc[0] = 2*pi*flux[i]
1312 data = VV_RCSJ_pm( R, C, gamma, m, a0, p0, I_c, I_max, num_current_steps, time_step,

tspan, initc, avstart)
1313 VIf[i] = data[2]
1314 return (I_data, VIf, Ics)
1315

1316 # In[]
1317 ts = time.perf_counter_ns()
1318 fl = np.linspace(0, 1, num = 501)
1319 ic = np.array([0, 0, 0, 1, 0, 0])
1320 pfl_data = RCSJ_pf(fl, R, C, 1e-5, 1e-11, 1, 1, 1, 1.5, 15001, 0.01, 100, ic, 0.5)
1321 tf = time.perf_counter_ns()
1322 tr = (tf - ts)*1e-9
1323 print(tr)
1324

1325 x = pfl_data[0]
1326 y = pfl_data[1]
1327

1328 # In[]
1329 %matplotlib inline
1330 Icdata = pfl_data[2]
1331 thIc = np.abs(np.sinc(fl))
1332 plt.figure()
1333 plt.plot(fl, Icdata)
1334 plt.plot(fl, thIc, ’r--’)
1335 plt.grid()
1336

1337 # In[]
1338 %matplotlib inline
1339 times = np.zeros((len(Icdata)))
1340 oms = np.zeros((len(fl)))
1341 for i in range(len(Icdata)) :
1342 Ic = Icdata[i]
1343 if Ic == 0 :
1344 w = omega_p(1, C)
1345 t = (1/w)*100
1346 oms[i] = w
1347 else :
1348 w = omega_p(Ic, C)
1349 t = (1/w)*100
1350 oms[i] = w
1351 times[i] = t
1352 plt.figure()
1353 plt.plot(fl, times, ’-’)
1354 #plt.plot(fl, oms, ’-’)
1355 plt.xlabel(’phi/phi_0’)
1356 plt.ylabel(’time’)
1357 plt.grid()
1358 # In[]
1359 xpfl = x[4]
1360

1361 x1 = x[0]
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1362 x2 = x[1]
1363 x3 = x[2]
1364 x4 = x[3]
1365 xp = x[7]
1366 xn = x[6]
1367

1368 fc = 15001
1369 Igap = np.zeros(501)
1370

1371 %matplotlib inline
1372

1373 for i in range(501) :
1374

1375 ydata = y[i]
1376 yVp = ydata[1][:2*fc]
1377 yVn = np.abs(ydata[1][2*fc:])
1378 yP = ydata[3]
1379 ydP = ydata[4]
1380

1381 m = np.round(fl[i], 3)
1382 g = np.round(I_gap(ydata[1], xpfl), 7)
1383

1384 Igap[i] = g[1]
1385

1386 # plt.figure()
1387 # plt.plot(xp, yVp, ’g’, label = ’pos I’)
1388 # plt.plot(xp, yVn, ’r--’, label = ’neg I’)
1389 # plt.title(str(g) + str(m))
1390 # plt.xlabel(’I’)
1391 # plt.ylabel(’V’)
1392 # plt.legend(loc=’best’)
1393 # plt.grid()
1394 # plt.show()
1395

1396 # In[]
1397 %matplotlib qt5
1398

1399 rcParams.update({’font.size’: 22})
1400

1401 plt.figure(figsize=[15, 10], dpi = 150)
1402 plt.plot(fl, Igap, ’-’)
1403 plt.xlabel(’$\Phi/\Phi_0$’)
1404 plt.ylabel(’I gap’)
1405 plt.grid()
1406 plt.show()
1407 plt.savefig(’C:/Users/Keane/Desktop/BEP/Figures/RCSJ Igap versua flux.png’)
1408

1409 # In[]
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