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Abstract

Previous work [1] has demonstrated the possibility of high resolution imaging through
the use of a single element and a aberration mask. This thesis will expand on the previous
work by examining the proposed method for errors in the creation of the model. The
analysis is preformed by examining the various aspects of the measurements setup and
underlying theoretical model, after which measurements are performed to determine
their contribution and correctness with regard to the model. Results demonstrated
a systematic error of a non-linear frequency scaling and semi-linear phase shift. The
origin of the error lies in the unwanted addition of transfer functions of some of the
components. A Tikhonov regularized least squares method is proposed to estimate this
transfer function and supply compensation based on all the measurements. The results
of application of this method on the uncalibrated model are demonstrated through 1D
imaging experiments. The result of which show a significant improvement over the
previous uncalibrated results. After which the possibility of calibration due to a singular
measurement is explored and a adaptation of the Tikhonov regularized least squares
method is proposed for close approximation of the previously found transfer function.
Further to obtain an indication of possible remaining hurdles and successes with this
method, extensive simulations are preformed to examine the individual impact of various
sources of noise and interference.
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”Our deepest fear is not that we are inadequate. Our deepest fear is that we are powerful
beyond measure. It is our light, not our darkness, that most frightens us. Your playing small
does not serve the world. There is nothing enlightened about shrinking so that other people
won’t feel insecure around you. We are all meant to shine as children do. It’s not just in
some of us; it is in everyone. And as we let our own lights shine, we unconsciously give
other people permission to do the same. As we are liberated from our own fear, our presence
automatically liberates others.”

-Marianne Williamson
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1 Introduction

To supply the best possible care to any patient a physician needs as much information about
the patient and its condition as possible. This need combined with the need for affordable
treatment and the technological advancements of recent decades has generated a large push
into the field of medical electronics.
With Ischaemic heart diseases and strokes being the two leading causes of death in the world
[2] it is natural that a large amount of research focuses on the heart and veins. One such area
of research pertains to the imaging inside the veins, offering a look within the patient instead
of from the outside. Given the small amount of space available and the close proximity to
the tissue only ultrasound is currently a viable imaging modality for achieving inter atrial
imaging.
Ultrasound consists of acoustic waves which propagate through motion of particles and defor-
mation of volumes above 20 kHz up to several gigahertz. The precise mathematical derivation
of how deformation of a volume and the motion of particles lead to acoustic waves can be
read at the beginning of chapter 2. These wave travel through the medium until they hit the
boundary of another medium where part of the wave continues travelling and the remainder
bounces back. How much bounces back and how much travels and in which direction is de-
pend on the angle of arrival of the wave and the acoustic impedance of the material. The
acoustic impedance is defined as:

Z = ρc (1)

Where ρ is the medium density and c is the speed of sound of the material. The amount
reflected and transmitted is given by:

R =
Z2cos(θi)− Z1cos(θt)

Z2cos(θi) + Z1cos(θt)
(2)

T =
2Z2cos(θi)

Z2cos(θi) + Z1cos(θt)
(3)

Where Z1 and Z2 denote the acoustic impedance of material 1 and 2 where the wave starts
in material 2, θi and θt are the angle at which the wave arrives and at which it continues its
path in the new material respectively. There reflections are the basis of ultrasound imaging.
By measuring the time between transmission of a wave and when we receive the reflection,
combined with the speed of sound of the medium, allows us to compute the distance it
travelled before it hit the object. The usage of reflections or more commonly named echo’s
to measure the distance to a object or the presence of a object is called echo imaging.
Echo imaging allows for accurate measurement of the distance to a object but not the location
of a object. This is due to the spherical nature of wave, if 2 points are placed equidistant from
the source they will reflect back at the same time and therefore its not possible to determine
which one of the 2 points reflected back the signal. A visual representation of this is given
below:

Figure 1: Visualization of the reflection of 2 points[1]

A common way to solve this problem is by beam forming, beam forming consists of sending
a signal from multiple elements are different times to generate a wave in a certain direction.
A visual representation of this process is shown below:
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Figure 2: Visualization of beam forming[3]

Currently this method of imaging is used inside of the arteries by placing a array of miniature
ultrasound elements at the tip and then forming the beam to highlight certain areas inside the
arteries to obtain a image with higher spatial resolution then without. The major downside
and limiting factor in the usage of multiple elements to improve the spatial resolution is the
fact that every element needs its own wire to transmit the information, cleanly and without
generating to much heat in the catheter itself. Given the limited space inside a human artery
this imposes a natural limit to the amount of elements that can be placed at the tip of a
catheter. Therefore, alternatives are researched that are capable of obtaining high resolution
images inside the arteries without the prescribed downsides. On such alternative is was pro-
posed in [1] [4] where good results are obtained in the case of strong reflective phantoms.

1.1 Single element imaging with an aberration mask

The method proposed in [1] was to use an aberration mask to purposefully scatter the wave
from a single element to improve spatial resolution. A schematically overview of this idea is
shown below:

Figure 3: Original idea for improving single element imaging [1]
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As shown the idea behind this approach is that by purposely distorting the transmitted signal
the reflection from each point in the imaging domain will be unique. This method requires of
course to know the reflected wave from each point in space to which the received signal can
be compared to determine where it came from. Mathematically this can be described as :

y = Ax (4)

Where y contains the received signal, A contains all the known reflected waves from each point
in space and x represents the image itself. A more complete understanding and derivation of
this model an be found in chapter 2.
The mask used in [4] was not able to achieve the unique reflection of each point in each
domain but was able to reconstruct strong reflective phantoms with success as shown below:

Figure 4: Measurement setup for letter
imaging[1]

Figure 5: Resulting reconstruction of
letters[1]

This method has not been successfully applied to the imaging of biological tissue due to
the fact that tissue is a weak reflector compared to the phantoms in [4] and therefore more
susceptible to noise, interference and errors. The focus of this thesis will be on examining,
analysing and if needed improving upon the proposed method of [4] to enable the use of it for
biological tissue. The starting focus will be on the method of obtaining the model A of the im-
age domain and how it might differ from the theoretical model on which the method was build.

To that end, the thesis will be organized as follows: In chapter 2 we will give a derivation of
the signal model used in [4] and a schematic view of the measurement setup used to obtain
the model A. In chapter 3 we will introduce a measurement setup to examine the difference
that exists, offer a calibration method to compensate for this difference and demonstrate it’s
effectiveness with point on a line imaging experiments. In chapter 4 the compensation vector
is further examined through visualisation and by attempting to construct it using only a
single measurement. In chapter 5 an overview of other possible noise and interference sources
will be presented, examined through the use of simulations and ultimately used to obtain a
expected image based on the current state of single ultrasound imaging to demonstrate its
possible viability.

10



2 Signal model of the imaging modality

This section will derive a theoretical model for the imaging problem that will link the measured
signal to the information of interest. Given the high complexity of this model a practical
measurement based approach to obtaining the model parameters will be presented to result
in the final signal model that will serve as the starting point for this thesis.

2.1 Theoretical Derivation of the Signal model

Starting from the Physical equations that govern Ultrasound a derivation to the Helmholtz’s
equation for waves is made. From there on the general inverse scattering field problem is
obtained which, after discretization, will be the basis of our model.

2.1.1 Physics of Ultrasound

The field of Ultrasound concerns itself with acoustic waves which consist of longitudinal waves
that propagate through compression and decompression [5]. This behaviour is described by
the deformation equation using Hooke’s law ((5)) and the equation of motion using Newton’s
law ((6)).

q(~r, t)− κ∂p(~r, t)
∂t

= ∇v(~r, t) (5)

f(~r, t)− ρ∂v(~r, t)

∂t
= ∇p(~r, t) (6)

Where f(~r, t) is the volume density of volume force, q(~r, t) is the volume density of injection
rate , v(~r, t) is the particle velocity, p(~r, t) is the pressure and ~r is the vector representing the
spatial dimensions x, y and z. For the remainder of this derivation the dependency of time
and space will be omitted for readability.{

q − κ∂p∂t = ∇v
f − ρ∂v∂t = ∇p

→

{
∂q
∂t − κ

∂
∂t (

∂p
∂t ) = ∂

∂t (∇v)

∇f − ρ∇(∂v∂t ) = ∇(∇p)
→

{
∂q
∂t − κ

∂2p
∂2t = ∂

∂t∇v
∇(∂v∂t ) = 1

ρ [∇f −∇2p]

→

{
∂
∂t∇v = ∂q

∂t − κ
∂2p
∂2t

∂
∂t∇v = 1

ρ [∇f −∇2p]
→ ∂q

∂t
− κ∂

2p

∂2t
=

1

ρ
[∇f −∇2p] (7)

Taking the final equation from (7) and swapping the terms around to obtain:

ρ
∂q

∂t
−∇f = ρκ

∂2p

∂2t
−∇2p (8)

Using the fact that c = 1√
ρκ and moving all the terms that are not related to pressure to the

right results in the Helmholtz equation:

∇2p− 1

c2
∂2p

∂2t
= ∇f − ρ∂q

∂t
(9)

Generalising this equation to the general wave equation by renaming p = u and identifying
that ∇ − ρ∂q∂t are external sources and replace them with −q the following formulation is
obtain:

∇2u− 1

c2
∂2u

∂2t
= −q (10)

Performing the temporal Fourier transform on the formulation of (10) results in the Helmholtz
equation:

∇2û+ γ̂2û = −q̂ (11)

Where γ̂ = jω
c and c is the speed of sound that is material and therefore, location dependant.

2.1.2 Inverse Scattering Problem

The imaging problem consist of finding the material properties within the image domain
from the transmitted and received signal. This is called an inverse scattering problem and
the proper formulation of this problem can be obtained by exploiting the linearity of the wave
and equation (11). The linearity of the wave is given by:

û = ûinc + ûsc (12)
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Making û a linear combination of the incident and scattered field. The next step is defining
that inside the image domain the total field is 0 and outside the image domain its equal to
the external sources.

∇2û+ γ̂2û = 0 ~r ∈ Dobj (13)

∇2û+ γ̂2b û = −q̂ ~r /∈ Dobj (14)

The subscript b in γ̂2b is used to indicate that the velocity c that is in γ is equal to the velocity
of the background medium that is taken to be homogeneous outside the image domain. The
same definition can be applied to the incident field:

∇2ûinc + γ̂2b û
inc = 0 ~r ∈ Dobj (15)

∇2ûinc + γ̂2b û
inc = −q̂ ~r /∈ Dobj (16)

Now to obtain a equation for the scatter field start with rewriting (13) as follows:

∇2û+ γ̂2û = 0→ ∇2û = −γ̂2û→

∇2û+ γ̂2b û = −γ̂2û+ γ̂2b û→

∇2û+ γ2b û = (γ̂2b − γ̂2)û ~r ∈ Dobj (17)

Now subtract (15) from (17) to obtain:

∇2ûsc + γ2b û
sc = (γ̂2b − γ̂2)û ~r ∈ Dobj (18)

Now also subtract (16) from (14) to obtain:

∇2ûsc + γ̂2b û
sc = 0 ~r /∈ Dobj (19)

Which eliminates the outside sources and enabling the combination of (18) and (19) to:

∇2ûsc + γ̂2b û
sc = q̂sc (20)

Where q̂sc is defined as:

q̂sc(~r, ω) =

{
(γ̂2b − γ̂2)û ~r ∈ Dobj

0 ~r /∈ Dobj
(21)

Which can be rewritten as :

q̂sc(~r, ω) =

{
γ̂2bχ(~r)û ~r ∈ Dobj

0 ~r /∈ Dobj
(22)

Where χ(~r) is called the contrast source and given by:

χ(~r) =

1− γ̂2

γ̂2
b

0
=

{
1− [ cbc(~r) ]

2 ~r ∈ Dobj

0 ~r /∈ Dobj
(23)

To remove the ∇ operator in (20) the spatial Fourier transform is applied. Utilising the

following definitions ∇ F−→ −j~k [6] and ~k · ~k = k2 generates the following:

k2ũsc + γ̃2b ũ
sc = q̃sc → ũsc =

1

k2 + γ̃2b
q̃sc (24)

Before returning to the temporal frequency domain a new variable is introduced for readabil-
ities sake.

1

k2 + γ̃2b
= G̃ (25)

Transforming Eq. (24) into:
ũsc(Kr, ω) = G̃q̃sc (26)

Denoting Ĝ as the temporal frequency counterpart to G̃ and taking in to account that a
product in the spatial frequency domain results in a convolution in space:

ûsc(~r, ω) =

∫
~r′∈Dobj

Ĝ(~r − ~r′, ω)q̂sc(~r′, ω)dV (27)
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This representation gives an expression for the scattered field in the temporal frequency
domain but cannot be solved due to the fact that q̂sc which contains the contrast source χ̂
and source ũ is unknown and that the image domain Dobj is also unknown. Starting with the
latter problem, we can identify a inversion region that encompasses the entire object domain.

ûsc(~r, ω) = γ̂2b

∫
~r′∈Dinv

Ĝ(~r − ~r′, ω)χ(~r′)û(~r′, ω)dV ~r ∈ R3 (28)

Then we have to fix observation vector ~r to some point or location. The logical choice is the
observation domain where our receivers are resulting in:

ûsc(~r, ω) = γ̂2b

∫
~r′∈Dinv

Ĝ(~r − ~r′, ω)χ(~r′)û(~r′, ω)dV ~r ∈ Drec (29)

This equation is known as the data equation in integral form and connects the contrast source
χ with the receiver domain.

2.1.3 Born approximation

The data equation derived in the previous section cannot be solved due to the fact that
the total field in the inversion domain is not known. However given the weak reflections
within biological tissue it is assumed that the born approximation can be applied. The born
approximation states that we can replace the total field with the incident field if the scattered
field is negligible compared to the incident field. Transforming equation (29) in to:

ûsc(~r, ω) = γ̂2b

∫
~r′∈Dinv

Ĝ(~r − ~r′, ω)χ(~r′) ˆuinc(~r′, ω)dV ~r ∈ Drec (30)

Where the incident field can be derived using equations (15) and (16) and is left to the curious
reader. Resulting in a function that relates the scattered field to the contrast function χ(~r).
Discretizing this function in space allows us to describe it as Riemann sum of the following
form:

ûsc(~r, ω) = γ̂2b

N∑
i=1

Ĝ(~r − ~r′i, ω)χ(~r′i)
ˆuinc(~r′i, ω)∆~r′i (31)

Where ∆~r′i is the size of a voxel and N is the number of voxels. Further discretizing the

frequency spectrum and recognise the following points: ∆~r′i is a constant value for all itera-
tions of i, the receiver domain contains only 1 element and following that observation that

the amount of voxels in Ĝ are the same as in ˆuinc we can write the entire Riemann sum as
the following matrix vector product: û

sc(ω1)
...

ûsc(ωM )

 = γ̂2b∆r

G(~r − ~r′1, ω1) . . . G(~r − ~r′N , ω1)
...

. . .
...

G(~r − ~r′1, ωM ) . . . G(~r − ~r′N , ωM )

�


ˆuinc(r1, ω1) . . . ˆuinc(rN , ω1)
...

. . .
...

ˆuinc(r1, ωM ) . . . ˆuinc(rN , ωM )


χ1

...
χN


(32)

Where � is the hadamard or pointwise product and N is the amount of voxels from the spatial
discretization and M is the amount of frequency bins from the frequency discretization. Taking
the following terms together:

A = γ̂2b∆r

G(~r − ~r′1, ω1) . . . G(~r − ~r′N , ω1)
...

. . .
...

G(~r − ~r′1, ωM ) . . . G(~r − ~r′N , ωM )

�


ˆuinc(r1, ω1) . . . ˆuinc(rN , ω1)
...

. . .
...

ˆuinc(r1, ωM ) . . . ˆuinc(rN , ωM )



y =

 û
sc(ω1)

...
ûsc(ωM )

 x =

χ1

...
χN


(33)

gives us our final model:
y = Ax + n (34)

Where n is a Mx1 vector that represents the ever present noise in a practical measurement.
It is assumed to be zero mean, white complex Gaussian noise with unknown variance.
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2.2 The practical signal model

The matrix A in the derived model contains the discretized convolution of the Green’s function
times the incident field which can be seen as the transfer function of the element to each pixel.
Computing this model A would be complicated, time consuming and only be a approximation
of reality due to the nature of the solution. Therefore, it was decided to measure the transfer
function of each point in the domain to obtain a model that is as complete as possible.

2.2.1 Obtaining the signal model

Measuring each point within the signal space comes with its own set of challenges therefor
certain theorems, assumptions and generalisations where used. Below a complete list of the
assumptions, theorems and generalisation is given together with the impact the application
has.

• First, just as in the derived model the space will be divided into voxels to create a finite
and manageable set of measurement points. A voxel is a 3 dimensional space where the
vertices are significantly smaller then the wavelength. In this voxel it is assumed that
the field is the same for each possible point that exist in this space. Therefore allowing
for N measurements only, where N is the amount of voxels.

• Second, the Nyquist sampling theorem is used to limit the required sample frequency
in our measurement setup from infinitely high to only 2 times the highest frequency of
interest.

• Third, due to the linear nature of ultrasound we use reciprocity (see Appendix A) to
only measure the forward field and then use auto-convolution to obtain the full transfer
function. Reciprocity states that we can interchange source and receiver and that the
transfer function between the two is unchanged. Therefore, we can logically extrapolate
that the transfer function given by the forward field is the same as that of the reflected
field and therefore we are allowed to use the auto-convolution to obtain the full field.

• Fourth, to speed up the measurement process only the forward field of each point in
a plain is measured at the distance that enables good SNR. Then, using the Angular
Spectrum Approach (ASA) this 2D plane can be propagated along the depth axis to
obtain slices of the forward field at different depths which, after auto-convolving these
slices, allow for the creation of a complete 3D model.

• The final generalisation is the usage of a water bath in which these measurements where
done instead of inside the human arteries. The speed of sound in water is between 1450
to 1500 m/s and in blood/human tissue this is in the range of 1540 to 1560. This
relative small difference is is negligible and has shown to be of little importance over
the years of existing medical ultrasound.

To summarise, the measurements performed to obtain the signal model A are the forward
field of a set of voxels in a 2D plane that are then auto-convolved to obtain the columns of
the model A. Mathematically speaking the model A is constructed as follows:

ak(t) = fxy(t) ∗ fxy(t) (35)

Where fxy(t) is the measured forward field at the (x, y) coordinate in the 2D plane and ak(t)
is the kthe column of the model matrix A which is associated with the pixel (x, y). Visualising
this matrix results in:
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Figure 6: Visual representation of A

For the full 3D model, the 2D plane is propagated along the depth through the use of ASA
to obtain slices at different depths which extends equation (36) as follows:

ak(t) = fxyz(t) ∗ fxyz(t) (36)

Where the number of columns k is now extended to accommodate the increase in the umber
of pixels.

2.2.2 The measurement setup

The measurement of the forward field fxy(t) was performed with a measurement setup of
which a schematic overview is given below:

Sampler

Pulser
Amplifier

Ultrasound element Hydrophone
+ mask

Figure 7: Hydrophone measurement setup

The components used in this setup are the following:

• For the Pulser the PANAMETRICS 5077PR square-wave pulser/receiver was used and
set to deliver 100V pulses at 10MHz. The reason for a 10MHz pulse was to ensure that
the signal was narrow enough for the transmitted pulse to be regarded as a dirac pulse
by the system.

• The element is a unfocused 5MHz ultrasound transducer.

• The mask is made of PCMA and the holes are drilled at random locations.

• The hydrophone is a 0.2mm hydrophone from precision acoustics ltd.
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• The amplifier is a matching amplifier designed for the the hydrophone consisting of the
PA12044 pre amplifer and the DCPS286 DC Coupler.

• The sampler is the 12-bit Acqiris DP310 digitizer with 4096 discretization levels provid-
ing resolution of voltage differences larger than 1.2 mV (in case of 5 V vertical range).

Going forward in this Thesis, the measurement of the forward field after auto convolution
will be referred to as Pulse-echo estimate.
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3 Calibration

The introduced measurement setup in chapter 2.2.2 to construct the model A introduces
components that affect the measurement that are not taken into account when deriving the
measurement methodology. Their possible effects are potentially magnified due to the auto-
convolution of the received signal. In this Chapter it will be examined if the components
combined have an impact on the model A and how the model can be calibrated to compensate
for these effects.

3.1 The measurement setup components

As stated in the introduction of this chapter, the used setup from chapter 2.2.2 contains
some extra components that are not included in the signal model.It is assumed that each
component is a Linear Time Invariant(LTI) system with it’s own transfer function. These
transfer functions are listed below:

• S(t) the time signal that is transmitted

• Tx(t) the transfer function of the transmit element

• Mask1
x y(t) the transfer function of the mask on the forward field

• Medium1
x y(t) the transfer function of the medium on the forward field

• Hydro
xy (t) the transfer function of the hydrophone

• Amp1 (t) the transfer function of the amplifier

Using the LTI assumption, the total transfer function can be obtained by convolving, with
respect to time, the individual transfer functions resulting in the following expression for the
forward field:

fxy(t) = S ∗ T x ∗Mask1
xy ∗Medium1

xy ∗Hydro
xy ∗Amp1 (37)

Now to arrive at a function for each column in A we make use of equation (36) resulting in:

axy(t) = S ∗T x ∗Mask1
xy ∗Medium1

xy ∗Hydro
xy ∗Amp1 ∗S ∗T x ∗Mask1

xy ∗Medium1
xy ∗Hydro

xy ∗Amp1 (38)

It is clear that there are more components in the final columns of A then modelled in the
theoretical derivation of the columns. Furthermore, in an actual imaging experiment there
are also more components that make up the received signal then theoretically devised. To
examine if there exists a error due to the addition of these components in either scenario a
second measurement setup was devised.

Sampler

Pulser

Amplifier

Ultrasound element Hydrophone
+ mask

Figure 8: Expected point scatter measurement setup

This second setup performs measurements as would be done when imaging a object. In this
case the object is the needle of the hydrophone and the received echo’s are assumed to be
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the correct signals that should make up the columns of A. Therefore these measurements
are used as a ground truth to compare the pulse-echo estimate measurements against. These
measurements will be named Pulse echo measurements or Pulse for the remainder of the the-
sis.

Just as in the case of hydrophone measurement setup, we can determine the transfer function
of the separate components that make up this pulse echo measurement setup and arrive at a
function for the measured signal. The identified transfer functions of the components are:

• S(t) the time signal that is transmitted

• T x(t) the transfer function of the transmit element

• Mask1
x y(t) the transfer function of the mask on the forward field

• Medium1
x y(t) the transfer function of the medium on the forward field

• Reflectx y(t) the transfer function of reflecting of the contrast

• Medium2
x y(t) the transfer function of the medium on the reflected field

• Mask2
x y(t) the transfer function of the mask on the reflected field

• Rx(t) the transfer function of the receiver element

• Amp2 (t) the transfer function of the amplifier

It should be noted that a different amplifier was used in both setups so that Amp1 6= Amp2 .
The associated transfer function of this setup is given by:

aij(t) = S ∗ T x ∗Mask1
x y ∗Medium1

x y ∗Reflectxy ∗Medium2
x y ∗Mask2

x y ∗Rx ∗Amp2 (39)

Comparing equation (37) and equation (39) and removing the shared components results in:

Hydro
ij ∗Amp1 ∗S∗Tx∗Mask1

x y∗Medium1
x y∗Hydro

ij ∗Amp1 = Reflectij ∗Medium2
x y∗Mask2

x y∗Rx∗Amp2

(40)
Therefore posing the question: are these equal in which case the difference between the
measurements and the assumed signal model are not due to these components or is calibration
of the model A required?

3.2 Comparison measurements

To answer the question posed in the last section a measurement plan was drawn up, executed
and the results were analysed to determine if the pulse-echo estimate measurements are equal
to the true pulse-echo measurements.

3.2.1 Measurement grid

Before being able to show the measurement plan, a common grid system has to be established
to reference the various positions and points that are discussed in this thesis. The grid is
defined as follows:

• The location (0,0,0) is located at the center of the transducer on the pressure wave
emitting side.

• The positive z direction is away from the transducer

• The positive x direction is on the left side when looking along the positive z direction
or on the right hand side when facing the transducer

• The positive y direction is upwards and the negative direction is downwards.
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3.2.2 Measurement plan

To obtain an thorough understanding of the possible impact of mismatch between equation
(38) and equation (39) the following set of measurements (1,2,3) with permutations (a,b,c,d,e)
where preformed:

1. Dense horizontal measurements ranging from 5mm from the left of the center to 5 mm
to the right of the center at 2,5mm depth.

(a) The horizontal line was measured 2 mm above the center

(b) The horizontal line was measured 1 mm above the center

(c) The horizontal line was measured at the center

(d) The horizontal line was measured 1 mm below the center

(e) The horizontal line was measured 2 mm below the center

2. Dense Vertical measurements ranging from 5mm above the center to 5mm below the
center at 2,5mm depth.

(a) The vertical line was measured 2 mm to the left of the center

(b) The vertical line was measured 1 mm to the left of the center

(c) The vertical line was measured at the center

(d) The vertical line was measured 1 mm to the right of the center

(e) The vertical line was measured 1 mm to the right of the center

3. Dense depth measurements starting at 2.5mm and moving towards the center and stop-
ping at 0.5mm depth

(a) The depth line was measured 1 mm to the left of the center

(b) The depth line was measured 1 mm to the right of the center

(c) The depth line was measured at the center

(d) The depth line was measured 1 mm above the center

(e) The depth line was measured 1 mm below the center

Each combination (for instance, 2.e) constitutes 1 experiment where 101 measurement points
are measured with a sampling rate of 20MHz and a frequency resolution of 5KHz.

3.2.3 Measurement results

For brevity’s sake, the results shown here are relevant representations of some of the mea-
surements listed in the measurement plan. It can be safely assumed that the results for the
other cases are similar.

Before being able to compare the measured time signals in the measurement plan, a few
processing steps have to be made. First up is the subtraction of the mean of the signal to
center the signal around 0.

y(t) = x(t)− µx (41)

Where x is the measured signal, µx is the mean of the measured signal and y is the resulting
signal. This removes the DC component which is assumed to have no consequence on the
results or their interpretation given that the frequency on which the transducer operates is
orders of magnitude higher. Resulting in:
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Figure 9: Unprocessed pulse-echo measurement

From the result it is clear that we have a few sources of noise to deal with. Namely the signal
that is send is immediately recorded by the ultrasound element plus some noise and the extra
reflections of the back and side wall of the tank. This is resolved by isolating the signal by
placing a tapered cosine window across the signal.

y(t) = (x(t)− µx)w(t) (42)

Where w is the tapered cosine function that is placed across the signal at the right time. It
should be noted that this is not sufficient in all the measurement scenarios. In the depth
measurement scenarios the hydrophone comes so close that the Signal from the element and
the reflection from the hydrophone are measured at the same moment. Given the fact that this
signal is of the same frequency and due to the fact that the signal can never be perfectly know
due to the noise, it cannot be removed. Resulting in depth measurements close to the element
to deviate strongly from the remaining measurements. And finally, after mean subtraction
and windowing, the remaining signal was normalised by dividing it by the absolute maximum
value of that measurement.

y(t) =
(x(t)− µx)w(t)

max(|(x(t)− µx)w(t)|)
(43)

The results of the measurement after this processing are shown below:
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Figure 10: Measurement results for horizontal (a), vertical (b) and Depth (c) measurements

The measurement results clearly show that there is a marked difference between the assumed
signal from the model A and the real pulse echo signal.

3.3 Analysis

From the time domain image shown in the previous section it could be concluded that the
pulse-echo estimate measurements are inverted and time shifted compared to the pulse-echo
measurement. To examine the validity of that conclusion the time signal was inverted.
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Figure 11: Measurement results for horizontal (a), vertical (b) and Depth (c) measurements
after inversion of pulse-echo estimate measurements

And then to determine the time shift the auto correlation was computed and the maximum
value was taken to determine the optimal time shift. The result of that computation is shown
in the table below:

Horizontal Vertical Depth
Mode 100ns 100ns 100ns
Mean 97,8ns 173.9ns 97,4ns
Median 100ns 100ns 100ns

Table 1: Table of highest correlated time shift across the measurements

It is clear from this table that the delay is a consistent one across all measurements. Therefore,
it seems to be a systemic error instead of an incidental one which means that this time shift
can be applied to all signals. The result of applying this time shift on the data is show below:
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Figure 12: Measurement results for horizontal (a), vertical (b) and Depth (c) measurements
after time shift and inversion of pulse-echo estimate measurements

Its self evident that they align a lot closer together then before, although not perfectly, and
there is at least still a margin of error. To quantify the margin of error the following error
criterion has been chosen.

Error =

∥∥∥∥ yi

‖yi‖2
− xi

‖xi‖2

∥∥∥∥
2

yi =


yi(ω1)
yi(ω2)

...
yi(ωM )

 xi =


xi(ω1)
xi(ω2)

...
xi(ωM )


(44)

Where yi is the ithe pulse echo measurement with M frequencies and xi is the i pulse-
echo estimate measurement or inverted time shifted pulse-echo estimate measurement. The
division by the 2 norm is to set the energy of both signals to 1. This enables us to compare
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the waveforms accurately on a scale from 0 to 2. The effect of the inversion and time shifting
on the fit of the wave form is shown below:
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Figure 13: Waveform error of pulse-echo estimate and inverted time shifted pulse-echo esti-
mate for horizontal (a), vertical (b) and Depth (c) measurements

Validating the results of the visual inspection of the time signal and the error criterion shows
that the fit of the waveform has improved. However, the difference is still not zero and
the same visual inspection of the time signal reveals that there is room for improvement.
To examine where this possible improvement can be had, the Fourier transform of the time
signals were taken.
It should at this point be pointed out that the time shift and inversion of the signal have
no effect on the frequency spectrum of the signal. The time shift translates to phase shift in
the frequency domain and the inversion is a multiplication that is unaffected by the Fourier
transform. Given the fact that the spectrum is taken to be the absolute value of the Fourier
transform, the effect of multiplying with -1 is invisible in the spectrum.
Below the side by side comparison of time and frequency spectrum is shown:
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Figure 14: Time domain signals and associated FFT spectrums of horizontal (a), vertical (b)
and Depth (c) measurements

From these images its clear that part of the signal is being filtered out or suppressed in the
pulse-echo estimate measurement that is present within the pulse echo measurement. Having
earlier recognised that the previous 2 adjustments have a frequency domain counterpart it
seems logical to try and improve the fit in the frequency domain to obtain a more perfect fit
between the pulse echo and the pulse-echo estimate measurement.

3.4 The calibration method

Having found a significant set of differences between the pulse-echo estimate measurement
and the pulse echo measurement, and having recognised they can be solved in the frequency
domain, there are 2 paths forward. The first path is to separately analyse each component of
equation (40) and determining their contribution to the total error and the compensate for
each individually. The second path is trying to compensate for the found error as a whole
instead of its separate components. The latter approach was chosen due to the fact a majority
part of the expected reason for the error are position independent and are therefore assumed
constant across all measurements. Using this assumption that the error in constant we can try
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and compute a compensation vector c that will mitigate or outright cancel out this constant
error or in mathematical terms:

pk(t) = hk(t) ∗ c(t) (45)

Where pk(t) is the kthe pulse echo measurement, hk(t) is the corresponding kthe pulse-echo
estimate measurement and c(t) is the compensation vector. Given the more challenging nature
of working with convolutions and having shown that part of the improvements must be done
in the frequency domain, the FFT is applied to equation (45) resulting in:

pk(ω) = hk(ω)c(ω) (46)

And in vector form this is: 
pk(ω1)
pk(ω2)

...
pk(ωM )

 =


hk(ω1)
hk(ω2)

...
hk(ωM )

�

c(ω1)
c(ω2)

...
c(ωM )

 (47)

where M is the highest frequency bin index of the signal. Even though we assume the error to
be constant for all measurements that does not mean that there is no noise. The surrounding
noise and measurement noise due to material imperfection in the various components of the
setup will add a measure of noise. In the theoretical derivation we modelled this as white
Gaussian noise. To reduce the impact of this noise in our quest to find this constant error
we use all the available pulse echo measurements and their corresponding pulse-echo estimate
measurements to compute the compensation vector c. First we define the following variables:

pk =

 pk(ω1)
...

pk(ωM )

 diag(hk) =


hk(ω1) 0 . . . 0

0 hk(ω2) . . . 0
...

...
. . .

...
0 0 . . . hk(ωM )

 (48)

Then we combine them as follows:
p1

p2

...
pK

 =


diag(h1)
diag(h2)

...
diag(hK)


 c(ω1)

...
c(ωM )

 (49)

where K is the total number of pulse echo measurements with corresponding pulse-echo
estimate measurements. This equation can be rewritten in to the matrix form to obtain a
equation for the compensation vector c:

p = Hc (50)

Where p is the left hand side of equation (49) and represents all the Pulse echo measurements,
H is the middle matrix of equation (49) and represents all the pulse-echo estimate measure-
ments and c is the compensation vector that we are trying to find. This compensation vector
c tries to minimise the difference between p and H therefore we can pose it as the following
minimisation problem:

minimize
c

||p−Hc||22 (51)

This minimisation problem is convex but has infinite many solutions due to the large amount
of degrees of freedom. These degree’s of freedom stem from the fact that not all the frequencies
in H are directly associated with the signal and due to the complex conjugate nature of
frequency spectrums, contain many linear combinations. The easiest and fastest way to show
the rank of H is by computing its singular values.
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Figure 15: Singular values of the matrix H

The singular values that are not approximately zero show the rank of the matrix H.Due to
the absence of any prior information regarding the correct solution from the infinitely many
solutions that equation (51) offers it was decided to use the standard approach for such cases.
Namely the Tikhonov regularization:

minimize
c

||p−Hc||22 + λ||c||22 (52)

The Tihonov regularized least squares selects the compensation vector c from the solution
space with the least amount of energy. Which is equivalent to saying we want a smooth
and/or a non-sparse solution. Based on observations made from the images shown in figure
14 this seems to be a good idea.
In the interest of expedience the analytical solution has been derived by first expending the
squares in the minimisation:

pHp− pHHc− cHHHp + cHHHHc + λcHc (53)

Then to find the minimum value for c, the derivative is taken with respect to cH and set it
to zero:

−HHp + 2HHHc + 2λc = 0 (54)

Now its just a matter of moving the terms around till c remains on one side:

c =
1

2
(HHH + λI)−1HHp (55)

The value of λ has been chosen by examining a large set of values for λ from 0.0001 to
1000000 and the best results where obtained with a value of 0.01. To determine the effect of
the method, the compensation vector c was computed and the result of its application on the
pulse-echo estimate measurements in the frequency spectrum is shown below:
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Figure 16: FFT spectrum of Tikhonov calibrated horizontal (a), vertical (b) and Depth (c)
pulse-echo estimate and Pulse echo measurements

It clearly shows that the fit of these signals has improved significantly compared to the results
obtained in figure 14, only at more sharp transitions and when the signal has low energy and
is more dominated by its noise content does it mismatch. This mismatch is inherent to the
method given the forcing of generalisation through the regularisation term. Furthermore, the
mismatch in the region of 0-2MHz and 8-10MHz is due to the fact that there is no signal in
these regions and therefore the method can only try and fit noise. Even though these small
objections, its a significant improvement compared to just the time shifted and inverted signal
that was previously used as shown below:
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Figure 17: FFT spectrum of Tikhonov calibrated horizontal (a), vertical (b) and Depth (c)
pulse-echo estimate and Pulse echo measurements

Given that the spectrum shown doesn’t contain the phase information where the time shifted
technique is mostly effective, the inverse Fourier transform was applied and the time signal
was recovered.
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Figure 18: Time signal of horizontal (a), vertical (b) and Depth (c) Pulse echo, Inverted Time
shifted pulse-echo estimate and Tikhonov Calibrated pulse-echo estimate

From this comparison the effectiveness of the Tikhonov calibration method is self evidently
the best and for now a good enough solution. To determine how well it preforms across
all points and the same error function as described in equation 44 has been defined for the
difference in the time domain:

Error =

∥∥∥∥ yi

‖yi‖2
− xi

‖xi‖2

∥∥∥∥
2

yi =


yi(ω1)
yi(ω2)

...
yi(ωM )

 xi =


xi(ω1)
xi(ω2)

...
xi(ωM )


(56)

Where yi is the ith pulse echo measurement and xi is either the ithe pulse-echo estimate
measurement, inverted time shifted pulse-echo estimate measurement or the Tikhonov cali-
brated pulse-echo estimate measurement. The results of this error computation results in the
following plot:
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Figure 19: Waveform error of horizontal (a), vertical (b) and Depth (c) Inverted Time shifted,
Tikhonov Calibrated and original pulse-echo estimate measurements

The low error shows that the waveforms are almost identical and as a added benefit the
Tikhonov signal also scales the signal to the correct value.

3.5 Single point imaging

After having found an error in the measurement setup and obtained a calibration method
to compensate for this error, the question is how much teh calibrated model improves the
image. Therefore, using the data obtained from the measurements as described in chapter
3.2.2 a line imaging experiment is preformed and by stacking the separate line measurements,
a limited 2D imaging scenario is obtained.

3.5.1 Imaging method

Before we are able to show the result, first the method of obtaining the image has to be
described. In chapter 2 we derived the model for our imaging experiments, namely:

y = Ax + n (57)
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Now as stated in the same chapter, this concerns a inverse scattering problem that is usually
ill-posed. To determine if the same applies here, the singular values of A have been computed:
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Figure 20: Singular values of the matrix A

The number of singular values for the depth measurements (denoted dens depth) are twice
as high due to the fact that more pixels where measured. Clearly we can see that a large
amount of values are close to zero and therefore, we can conclude that A is rank deficient and
the problem is ill-posed. Therefore, it was decided to use the same method for imaging as for
calibration, namely the Tikhonov regularised least squares given by:

minimize
x

||y− diag(c)Ax||22 + λ||x||22 (58)

For the 1D case all the used data came from one single experiment (for instance 1.c) as
described in chapter 3.2.2 and the various vectors and matrices are constructed as follows:

y =


y(ω1)
y(ω2)

...
y(ωM )

 c =


c(ω1)
c(ω2)

...
c(ωM )

 A =

 a1(ω1) . . . aK(ω1)
...

. . .
...

a1(ωM ) . . . aK(ωM )

 x =


x1
x2
...
xK

 (59)

Where y is 1 of the pulse echo measurement taken from the pool of measurements with M
frequencies, A is constructed by taking K measurements from the pool of pulse-echo estimate
measurements(in this case all measurements are taken from the pool) and x is our image that
will be reshapen in the 2D case to create our image.

For the 2D case, the pool of measurements is expanded by using all the experiments that
are connected to the horizontal or vertical measurements (1,2). The vector y remains the
same but the pool of measurements where it can be drawn from is expanded as previously
described. The model A is expanded upon as follows:

A2D =
[
diag(ca)Aa diag(cb)Ab diag(cc)Ac diag(cd)Ad diag(ce)Ae

]
(60)

Where the subscript (a,b,c,d,e) references to the measurements of a single line measurements
as described in chapter 3.2.2 that are part of the pool of measurements and the vector x is
expanded to accommodate all the possible locations that are now within the image domain.

And finally the regularisation term λ in both cases is found by scanning over a large set
of possible values ranging from 10−20 to 1020 with increments of 1 order at the time. Then
through visual inspection the best possible value was selected for all the measurements.

3.5.2 1D Imaging

The goal of the image experiment shown here is to image a point on a line. This experiment
will give us an indication of the point spread function and show the improvement in image
reconstruction. The results are shown below:
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Figure 21: 1D imaging results for horizontal (a) and vertical (b) measurements

Its directly clear that using the calibrated model it was possible to determine the location of
the point under image with a point spread function (PSF) of 0.8mm. The uncalibrated signal
is able to successfully locate the point in some cases but not consistently due to the error that
is still within the model. The results obtained in the past contained multiple translations
and/or multiple rotations of the mask enabling for a better posed problem due to the added
measurements, resulting a better image overall. For depth the following result was obtained:
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Figure 22: 1D imaging results for depth measurements

Given the fact that time of arrival is a much larger contributing factor to determining the
depth it is possible to estimate the depth components significantly better then the horizon-
tal and vertical component. When the point moves closer to the ultrasound element the
estimation becomes worse due to the effect described in chapter 3.2.3.

3.5.3 2D Imaging

Given the success of the point on a line imaging in the previous section, an extension to the
2D domain was made by combining the measurements of the different lines in to a 2D matrix
as previously described. For accurate comparison to the uncalibrated case, the same image
experiment is preformed using the timeshifted but uncalibrated model. And finally it should
be noted that the resolution in the direction of the experiment is 0.1mm but in the other
direction is only 1mm. This is due to how the experiments where performed, the results:

Horizontale lines at 2.5mm depth
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Figure 23: Limited 2D horizontal imaging
after calibration, point on y =-1mm and
x = -2,6mm

Horizontale lines at 2.5mm depth
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Figure 24: Limited 2D horizontal imag-
ing without calibration, point on y =-1mm
and x = -2,6mm

Horizontale lines at 2.5mm depth
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Figure 25: Limited 2D horizontal imaging
after calibration, point on y = 0mm and
x = -0,4mm

Horizontale lines at 2.5mm depth
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Figure 26: Limited 2D horizontal imaging
without calibration, point on y = 0mm
and x = -0,4mm
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Horizontale lines at 2.5mm depth
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Figure 27: Limited 2D horizontal imaging
after calibration, point on y = 1mm and
x = 2,1mm

Horizontale lines at 2.5mm depth
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Figure 28: Limited 2D horizontal imaging
without calibration, point on y = 1mm
and x = 2,1mm

From the reconstruction of the 3 points in the ”horizontal 2D” image experiment it shows
that its possible to obtain reliable measurements of these points with roughly the same PSF
as found in the line imaging. The uncalibrated method was unable to reliably obtain the
point under imaging, also in line with the results of the line imaging experiments. The PSF
in case of the proper identification of the point is larger then in the calibrated case. Now for
the ”vertical 2D” imaging:
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Figure 29: Limited 2D vertical imaging
after calibration, point on y = 2,6mm and
x =-1mm
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Figure 30: Limited 2D vertical imaging
without calibration, point on y = 2,6mm
and x =-1mm
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Figure 31: Limited 2D vertical imaging
after calibration, point on y = 0,4mm and
x = 0mm
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Figure 32: Limited 2D vertical imaging
without calibration, point on y = 0,4mm
and x = 0mm

Vertical lines at 2.5mm depth
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Figure 33: Limited 2D vertical imaging
after calibration, point on y = -2,1mm and
x =-1mm

Vertical lines at 2.5mm depth
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Figure 34: Limited 2D horizontal imaging
without calibration, point on y = -2,1mm
and x =-1mm

Its equally possible to rather accurately image a point. The depth measurements are absent
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here due to the fact that the prescribed set of measurements would result in either a 3D image
or a 2D image with very little number of measurements. Therefore, it was decided to omit
them at this time.

3.6 The compensation vector c

Having created the compensation vector c, applied it to the model and shown that it is
capable of improving the image quality the question is, what does it look like? Below, the
frequency spectrum and phase domain are shown:
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Figure 35: Left the frequency spectrum of the compensation vector c, right the phase spectrum
of the compensation vector c

The frequency range is set between 2MHz and 8 MHz due to the fact that outside this domain
there is no signal. The first clear observation is that the phase spectrum contains an almost
linear line from −π to π over a large band centred around the main operating frequency
of 5MHz. This is consistent with the observations made in chapter 3.3 regarding the time
delay and the spectrum shows a scaling difference that’s more than just a scalar, clearly
demonstrating why the inverted time-shifted domain solution resulted in a worse fit then
the proposed calibration method. The edges of the approximately linear area of the angular
spectrum coincide with the range on which the signal is strongly defined. Beyond these limits
the signal is very weak and its hard to tell if its noise or signal that resides there. The large
”jump” for the vertical compensation vector c is due to wrapping of the phase in Matlab.
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4 Single measurement calibration

Having shown in the previous chapter that there exists a compensation vector c that is capable
of improving the image quality and having seen that this vector contains a certain structure,
the question is raised can we can we compute this calibration with only 1 measurement?

4.1 Analysis of single point compensation vector c

Having made plausible that the compensation done by the compensation vector is for a con-
stant error, the first step is examining how well a single measurement point can be used to
compensate for this error. To answer this question, the compensation vector c was com-
puted as follows using only a single pulse echo measurement and its corresponding pulse-echo
estimate measurement.

ci =
yi

xi
(61)

Where ci, yi and xi denote the ith compensation vector, pulse echo measurement and pulse-
echo estimate measurement respectively. They are defined as follows:

yi =


yi(ω1)
yi(ω2)

...
yi(ωM )

 xi =


xi(ω1)
xi(ω2)

...
xi(ωM )

 ci =


ci(ω1)
ci(ω2)

...
ci(ωM )

 (62)

Then the computed ci is applied to all the pulse-echo estimate measurements in the set of
measurements and a similar error to equation (44) is computed:

Error =

∥∥∥∥ yj

‖yj‖2
− xjci
‖xjci‖2

∥∥∥∥
2

(63)

Where yj is the jth pulse echo measurement, xj is the jth pulse-echo estimate measurement
and ci is the compensation vector computed using the ith measurement. The result of this
computation is shown below:
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Figure 36: Top, the result of equation 63. Bottem, result of equation 63 with Tikhonov c, as
computed in Chapter 3, instead of ci

The right image of figure 36 contains only one error line but has been stretched to make a
more visually appealing comparison to the ci. It is clear that some measurement points give
a better compensation vector then others, the question is of course why? Below the left error
plot is repeated but added to it are the frequency and phase component of the vector ci.
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waveform error of different c
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Figure 37: Error, Phase and Frequency spectrum of the ci’s

From this image it is clear that those single point computed compensation vectors ci that
have a smooth phase and spectrum result in a better compensation. Further supporting the
notion that the compensation vector c is indeed compensating for a consistent error.

4.2 Improving single point compensation vector

In the previous section it became more likely that the error across the measurement points
is a structural one and that certain points can even approximate the compensation vector c
quite nicely. Therefor in this section it will be attempted to extract the compensation vector
c from 1 single measurement point or at the very least obtain a good approximation.

4.2.1 Analysis of the deviation

To properly understand why certain points result in a mediocre to bad correction vector, one
such point is highlighted below:
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Figure 38: Example of a bad ci. On the left the Frequency spectrum, on the right the Phase
spectrum

From the representation of the correction vector at this specific point it is evident that there
is a large peak at one point in the frequency spectrum and a discontinuity in the phase
spectrum. Zooming in to the frequency domain to understand the waveform better gives us:
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Figure 39: Comparison of a bad ci and c. On the left the Freqeuncy spectrum, on te right
the Phase spectrum

It clearly shows that the ci computed at one single point contains quite some more higher
frequency components than the one obtained by using the proposed calibration technique on
the complete set.

4.2.2 Practical solution

From the analysis it is clear that 2 problems have to be solved. First, the outliers need to
be removed, and secondly the higher order components in the signal need to be suppressed.
Therefore, the following method is proposed to compute a proper calibration vector from a
single measurement point:

minimize
o,d

||(y
x
− o)−Bd||22 + λ1||d||22 + λ2||o||1 (64)

Where y and x are respectively the pulse echo measurement and pulse-echo estimate mea-
surement of the measurement point i, o is a vector of the same size as y and x that will
compensate for the outliers and d is the selection vector of the base vectors that are in B. B
consist of the first 10 Fourier base vectors to ensure that the found solution is a low frequency
signal and therefore, filters out the higher frequency noise effects. The λ1 and λ2 are found
by scanning over many different values for these, ranging from 10−10 to 1020 with a set size
of 1 order per step. The solution to this minimization problem was computed using CVX
[8][9].The result of applying this new way of computing the calibration point is shown below:
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Figure 40: Left, the error of the updated single point estimate. Right, the old single point
estimate as present in fig. 36
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From this image is clear that the updated algorithm is able to achieve a significantly better
correction vector ci than the previously used algorithm. Unfortunately it is not possible to
achieve as good a compensation vector as with the proposed method in chapter 3.6 on the
complete data set of 101 points.
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5 Simulations

Up till this point the work done has been to improve the model A and reduce the errors that
where introduced in the model through the measurement setup. However due to the weak
reflections and multiple scattering a plethora of error sources can cause significant degradation
of the image quality. With the eyes towards the future an analysis of other sources of possible
error are investigated using simulations. The chosen simulation toolbox is K-wave [10], a
Matlab toolbox that solves the wave equation at each point to simulate the acoustic wave.
THe following questions will be examined in this chapter:

• How well can we image in the ideal case?

• What is the impact of the found error on the image in a controlled environment?

• What is the is the impact of position errors?

• What is the impact of noise?

• What is the impact of mismatch in background speed?

• What is the impact of the error found in this Thesis?

5.1 Ideal case Imaging

Starting the simulation is a exploration of the best possible result that can be obtained, this
will serve as a benchmark to compare all the other results to.

5.1.1 The simulation setup

To research the questions that are posted at the start of this chapter, the following simulation
has be created and will be used to examine all the various questions that are posted:

Simulation setup
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Figure 41: Simulation setup

The light green represents the mask, the bright green represents the source and the blue
background is the background medium. The acoustic parameters of each part of the simulation
are:

1. The mask

(a) The speed of sound is 2730.
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(b) The density is 1180.

(c) Max height of the mask is 1,5mm

(d) Width of a single block is 0.3mm

2. The source

(a) The source frequency is 5MHz.

(b) The source pressure is 2Pa.

(c) The source width is 2 mm.

3. The background medium

(a) The speed of sound is 1498.

(b) The density is 997.

(c) The total domain is 10mm by 10mm

4. The simulation remaining parameters

(a) Voxel size is 0.05mm.

(b) Amount of grid points are 200x200.

(c) Translation steps are 0.05mm.

(d) Translation start at the most left side and move all the way to the most right side.

The simulations themselves consisted of 3 separate simulations that were used to construct
the image. First a base line measurement(base) was preformed to obtain the noise and
background signal measured by the transducer without any object. Secondly the forward
field of the image domain was recorded and auto-convolved to obtain the model. And finally
the pulse echo(pobject) of the object was recorded where the object was placed within the
image domain, contrary to the other measurements. These measurements where preformed
for each translation which consisted of a total of 148 translations.
The measured pulse echo signal has to be processed in the following manner before imaging
can be preformed:

y = (pobject − base) ∗ Signal (65)

Where Signal is the transmitted signal itself (see Appendix A) and the imaging is preformed
as described in Chapter 3.5.

5.1.2 Point Spread Function

First up we will try and ascertain the point spread function that is achievable with this imag-
ing setup. Given the unique nature of this approach it will be compared with the results of
the setup with out a mask. The result of both cases are shown below:

Normalized image reconstruction of a point. Step size = 0.05mm, 148 steps
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Figure 42: Point spread function with
mask

Normalized image reconstruction of a point. Step size = 0.05mm, 148 steps
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Figure 43: Point spread function without
mask
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From these images it is clear that the point spread function of the mask case is significantly
smaller in the X direction compared to the case without a mask. At the same time it seems
that there has been a slight trade-off in the Z direction. To better understand the change in
point spread function the auto correlation coefficients matrix has been computed. Due to the
fact that the image is in 2D and with the added time axis becomes a 3D problem, the auto
correlation coefficients have been computed over one axis and averaged out as shown below:

ρ(X,X) =
1

N

N∑
z=1

cov(A(z, :, :), A(z, :, :))

2σA(z,:,:)
→ corr(x) =

[
1 ρ(X,X)

ρ(X,X) 1

]

ρ(Z,Z) =
1

N

N∑
x=1

cov(A(:, x, :), A(:, x, :))

2σA(:,x,:)
→ corr(z) =

[
1 ρ(Z,Z)

ρ(Z,Z) 1

] (66)

Where the third axis is the time axis, the index of the second spatial axis is denoted by the
relevant axis variable z and x respectively. The result of these computations is shown below:

Average correlation of X-axis over Z-axis

20 40 60 80 100 120 140 160 180 200

Point on the X-axis

20

40

60

80

100

120

140

160

180

200

P
o

in
t 

o
n

 t
h

e
 X

-a
x
is

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0
d

B

Figure 44: Correlation of the x axis for the
no mask case
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Figure 45: Correlation of the z axis for the
no mask case
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Figure 46: Correlation of the x axis for the
mask case
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Figure 47: Correlation of the z axis for the
mask case

From these results it is clear that the correlation between points is significantly smaller for
the x direction and at the same time we see the occurrence of slightly more correlation in the
direction of depth. Clearly showing the trade-off made by employing the mask.

5.1.3 Image Phantom

Having examined the point spread function to create an understanding of the possibilities
with this mask and the resolution, a phantom is chosen to examine the imaging quality.
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Given the main focus of obtaining successful imaging of biological tissue the chosen phantom
is a cyst, as shown below:

Speed of sound of the phantom
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Figure 48: Sound speed distribution of the
cyst

Density of the phantom
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Figure 49: Density distribution of the cyst

Normalized image reconstruction of the phantom. Step size = 0.05mm, 148 steps
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Figure 50: Error less reconstruction

The resulting reconstructed cyst clearly suffers from speckle noise. Furthermore, the edges
of the cysts are very weakly defined which was expected given the point spread function
obtain. To quantify this result and have a numerical way of comparing it to the errors the
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the Contrast and the Contrast to Noise Ratio of the image are computed by:

Contrast = −20log10(
µL
µB

) (67)

CNR = 20log10(
|µL − µB |√
σ2
L + σ2

B

) (68)

Where µL and σ2
L are the mean and variance inside the cysts respectively and µB and σ2

B

are the mean and variance of the tissue surrounding the cyst. Applying this to our images
results in:

Contrast 8.6774
CNR -0.54469

Table 2: Baseline Contrast and CNR values

5.2 Systematic error

In the earlier chapters of this thesis a systematic error was found that most likely stopped
the successful imaging of biological tissue. In this set of simulation we will introduce such
an error into the measurement setup and examine the impact it has on the image quality
and apply our calibration methodology to demonstrate the improvement that it offers. The
chosen error is as follows:
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Figure 51: Frequency spectrum of the cho-
sen error
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Figure 52: Phase spectrum of the chosen
error

The resulting image with and withour calibration are shown below.

reconstruction with error
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Figure 53: Imaging with error

reconstruction with error after calibration
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Figure 54: Imaging after applying
tikhonov calibration

Clearly showing that our method is able to compensate adequately for a introduced error of
the prescribed shape. The contrast and CNR are given below:
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Error With error after calibration
Contrast 2.6385 7.1274

CNR -9.6982 -2.9619

Table 3: ASA, Contrast and CNR values

Further sustaining the notion that the calibration works but similarly to the results of chapter
3.4, it is not a perfect reconstruction but a close approximation.

5.3 Positioning error

Given the fact that the model is constructed from practical measurements its of interest to
examine the impact of the finite accuracy of the positioning system that is used in obtaining
these measurements. To examine the effect the following simulation has been created.

Simulation setup
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Figure 55: Positioning error

Here some of the measurements in y have been replaced with the ones of its neighbour to
emulate a positioning error.The deviations for the positioning errors have been drawn from a
uniform distributed discrete variable and the distribution is shown below:
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Distrubution of the random misplacement
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Figure 56: Distribution of the positioning error

The result of this experiment is shown below:

Maximum postion error 0.05mm
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Figure 57: Reconstruction of the cyst with
0.05mm positioning error

Maximum postion error 0.1mm
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Figure 58: Reconstruction of the cyst with
0.1mm positioning error
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Maximum postion error 0.2mm
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Figure 59: Reconstruction of the cyst with
0.2mm positioning error

Maximum postion error 0.4mm

-5 -4 -3 -2 -1 0 1 2 3 4 5

X-axis in mm

0

1

2

3

4

5

6

7

8

9

10

Z
-a

x
is

 i
n
 m

m

-40

-35

-30

-25

-20

-15

-10

-5

0

d
B

Figure 60: Reconstruction of the cyst with
0.4mm positioning error

As can be seen, a small error does not effect the results too much but when a larger error
is introduced the quality of the reconstruction quickly fades. This is further evident when
looking at the contrast and CNR:

Error 0.05mm 0.1mm 0.2mm 0.4mm
Contrast 6.7839 6.1505 3.4437 1.4453

CNR -3.3042 -3.5322 -8.3814 -15.4375

Table 4: Positioning error, Contrast and CNR values

5.4 Noise

Given the weak reflections it is of paramount importance to examine the impact of noise on
the resulting images. In the ideal case we have established the results for a noiseless case,
now we will add white zero mean Gaussian noise to both the model and the signal itself.
The added noise will represent the noise generated by the environment and the measurement
equipment that is present during the creation of the model or when measuring pulse echo
signals.The results of this experiment are as follows:

SNR = 20dB
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Figure 61: Reconstruction of the cyst with
20dB SNR

SNR = 10dB
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Figure 62: Reconstruction of the cyst with
10dB SNR
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SNR = 5dB
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Figure 63: Reconstruction of the cyst with
5dB SNR

SNR = 0dB
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Figure 64: Reconstruction of the cyst with
0dB SNR

a decent level of SNR is required to be able to reconstruct the phantom. This was expected
due to the weak reflection which generate the signal. It is advised to at least obtain a 10dB
SNR or otherwise reconstruction will prove to be extreme difficult. Computing the Contrast
and CNR to quantify this results in:

Error 20dB 10dB 5dB 0dB
Contrast 7.0106 6.6629 5.329 2.5808

CNR -3.1237 -3.3321 -4.4473 -8.836

Table 5: Noise error, Contrast and CNR values

5.5 Background speed error

In these simulations and in the practical measurements the background speed has been water.
The reason for this is that it is easy to fill a water tank and preform measurements which is
harder with blood. Given the close proximity of both liquids with regards to speed of sound
it is always assumed that water is a good substitute. Here we will examine the impact that
creating a model A at a lower background speed of sound has on the image quality when the
pulse echo is measured at a higher speed of sound. The phantom will scale with the increase
of background speed to create a fair comparison due to not changing the innate contrast.

Background speed difference of 10. Step size = 0.05mm, 148 steps
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Figure 65: Reconstruction of the cyst
background mismatch of 10 m/s

Background speed difference of 20. Step size = 0.05mm, 148 steps
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Figure 66: Reconstruction of the cyst
background mismatch of 20 m/s
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Background speed difference of 30. Step size = 0.05mm, 148 steps
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Figure 67: Reconstruction of the cyst
background mismatch of 30 m/s

Background speed difference of 40. Step size = 0.05mm, 148 steps
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Figure 68: Reconstruction of the cyst
background mismatch of 40 m/s

Background speed difference of 50. Step size = 0.05mm, 148 steps
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Figure 69: Reconstruction of the cyst
background mismatch of 50 m/s

The largest and most interesting error we observer here is that a large part of the introduced
error is focusing on the location of the mask. Furthermore we see a marginal decay of the
quality of the phantom. To quantify the results the Contrast and CNR are computed.

Error 10m/s 20m/s 30m/s 40m/s 50m/s
Contrast 6.9887 6.7649 6.4933 6.2018 5.9166

CNR -3.0383 -3.2253 -3.5051 -3.8405 -4.2029

Table 6: Background speed error, Contrast and CNR values

As expected, both the Contrast and the CNR values decay with the mismatch. But it must
be stated that it is rather small compared to the other errors.

5.6 Realistic Image

Having examined the separate sources of image degradation we will now perform a realistic
simulation with all the errors described above. The following values for the variety of sources
were used:

1. 20dB SNR

2. 0.1 mm positioning error

3. 50 m/s speed of sound difference

4. systematic error as described in section 5.2
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These values where chosen based on the authors believe that these would mimic a real simu-
lation environment the best. The 20dB SNR is chosen because of the controlled nature of the
experiments, the positioning error is chosen to be below one wavelength, the speed of sound
difference is due to the know difference between water and blood and finally the systematic
error is chosen to show how well the system functions with such a complex error. The imaging
results are as follows:

Realistic reconstruction
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Figure 70: Realistic error of 20dB SNR,
0.05mm position error, 50 m/s speed of
sound mismatch before calibration

Realistic reconstruction after calibration
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Figure 71: Realistic error of 20dB SNR,
0.1mm position error and 50 m/s speed of
sound mismatch after calibration

Its clear from these images that we cannot perfectly reconstruct our old image back but the
calibration is able to return to a semblance of a image that was lost in the scenario before
the calibration. The resulting Contrast and SNR values confirm it:

Error before calibration after calibration
Contrast 2.8652 4.122

CNR -8.9623 -6.4816

Table 7: Realistic Image experiment, Contrast and CNR values

Concluding that based on the techniques and methods presented in this thesis it should be
possible to achieve imaging of biological tissue after calibration.
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6 Discussion and Conclusion

This thesis started with the derivation of the theoretical model on which the proposed method
of [1] is based. To solve the inverse imaging problem the first order born approximation was
applied to arrive at the final model. The first order born approximation states that the total
field can be replaced by the incident field when the reflected field is relatively weak compared
to the incident field. Given that in the case of tissue imaging the speed of sound is around
1550 m/s and water is around 1500 m/s, which means a similar acoustic impedance, the
reflection coefficient will be small and therefore the reflected field will be weak. Therefore, it
is a reasonable assumption that it will have minimal to no impact on the result.
After having ascertained a model A based on reasonable assumptions a examination was made
of the measurement setup that fill the columns of this model A. It was clear from the investi-
gation that the signals that made up the columns of A are a representation of more then just
the Green’s function and the incident wave as derived in the theoretical model. Various de-
vices necessary for the capturing of the signal contributed through their own transfer function
to the signal and there possible impact was exacerbated by the use of the auto-convolution
to estimate the pulse echo signal. The components that where identified to possibly have
a unwanted contribution where: The hydrophone, the amplifier, the transducer excitation
signal, the transmit function of the transducer, the mask and the medium. Furthermore, the
pulse echo measurement contained additional components that where not present in the hy-
drophone measurement setup namely: the reflection of the wave, the medium after reflection,
the effect of the mask after reflection, the receive function of the transducer and the effect of
a different amplifier.
After comparing the measured signals it was clear that there was a difference between the
2 set of measurements, in the time domain it became evident that there was a time shift,
a inversion and a scaling difference. The inversion is easily explained by the fact that the
concolved forward wave didn’t change its direction of propagation and therefore didn’t change
sign. The time delay and the scaling are, at the present, not attributable to a specific source.
The delay is around 100ns which means the original delay was 50ns and got doubled by the
autoconvolution and which means that it possible travelled 75 micrometers more in the water
tank. The possible source of these delays can be either the amplifiers, the hydrophone or
the transducer. The mask and the medium are excluded as a possible source for the delay
due to the reciprocity principle of these 2 and the transducer excitation signal could account
for the scaling but not the delay. The delays can possibly be due to the throughput speed
difference between the 2 amplifiers, given the weak signals that are measured a relatively
large set of amplification stages need to be used to obtain a signal as well as several filters
to cancel out the noise. Each of these stages and/or filters can cause a delay but is typically
of a lower order then 50ns and are designed to be wide banded as to not interfere with the
signal that is amplified. The hydrophone is specifically designed to measure acoustic waves
but the most forward part of the hydrophone sticks out before the membrane that measures
the signal. To be responsible for the entire delay the point on which the wave in the pulse
echo setup reflects should be 75 micrometers ahead of the measuring membrane which is not
the case. For course the membrane is at the tip of the needle and the signal needs to travel
to the end, which is not always through a a highly conductive material as copper which could
cause a small delay. But given the high speed of electromagnetic wave propagation this seems
unlikely to be the reason for the delay. The final possible source of the delay is the transducer
itself which operates by transforming electric energy into motion. Each transducer has each
own transfer function for the frequency and the phase, given that a time delay is equal to a
linear phase shift in the frequency domain this could be the possible source of the difference
when the transfer function from electrical to pressure is not the same as pressure to electrical.
However it is at present unknown if this is the case the the measurement setup used in this
thesis and given the other possible sources it is the assumption that each of the individual
components attributed to this error in different measures.
Given the unknown nature of the source and after examination in the frequency domain that
the error is more then a straightforward scaling and time delay in combination with the seem-
ingly position independent nature of the possible sources of this systematic error, a method
was proposed to estimate and compensate for the assumed constant error. The proposed cali-
bration method is the Tikhonov regularized least squares approach that tries to find the least
energetic solution that minimize the difference between the pulse echo signal and the pulse
echo estimate. By finding the least energetic solution it forces generalisation in the solution
which approximates a systematic error successfully if it exists. The result of this calibration
method was applied on the the model A and then the calibrated model was used to preform
a series of 1D imaging experiments. The results far out preformed the uncalibrated method
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even after time shifting the uncalibrated method to obtain a better image. The main reason
for this seems to stem from the semi-linear nature of the phase shift that is in the calibration
vector produced by the tikhonov method. When examining the original time signals after
time shift and inversion it is clear that the signal matches perfectly in the middle but starts
to drift in time at the edges of the signal. This seems to indicate that the time shift is not a
consistent one, in line with the result of the calibration method. This small time drift means
that to properly approximate the signal in the uncalibrated case more signals are necessary
and given the spare nature of the experiments the usage of tikhonov regularized least squares
to image would work disadvantageous.
Given the apparent systematic nature of the error it stands to reason to be able to obtain
this compensation vector from a single measurement. Upon computing the results of a cali-
bration vector from a single measurement it became clear that the result heavily dependent
on the noise that was present in the measurement. Therefore, an adaptation of the Tikhonov
regularized least squares was proposed that tries to estimate and suppress any outliers while
simultaneously tries to find a low complexity polynomial that can approximate the single
measurement calibration vector. The result of this method is a calibration vector that results
in a 10% worse waveform match compared to the calibration vector found using all the mea-
surements in the originally proposed calibration method. The main reason for this seems to
stem from the fact that a smooth phase spectrum is paramount to obtaining a successful com-
pensation vector, this in turn demands a low polynomial estimate of the single measurement
calibration vector, this is however not able to properly estimate the frequency spectrum. The
main reason for this unhelpful relation stems from the fact that both the frequency spectrum
and the phase spectrum stem from both the real and imaginary part of the polynomal but
in different ways. When presented with only one measurement its unable to find the right
balance to tweak both the real and imaginary part for a ideal outcome.
Finally a extensive set of simulations where preformed to examine various sources of noise
and measurement errors and there impact on the quality of the image. It showed that posi-
tioning errors don’t effect the result much as long as its less then 1/2 of the wavelength, that
sufficient SNR needs to be reached to produce a image, ideally above 20dB. Furthermore, it
showed that the a difference in a background speed of sound comparable to the difference of
water and tissue barely effect the quality of image reconstruction. The impact of a complex
systematic error did indeed cause a large degradation in image quality but as shown before
the proposed calibration method in this paper was clearly able to significantly improve the
quality of the image. And finally realistic scenario was simulated to examine if the combined
error created by these various error and noise sources would lead to successful or unsuccessful
imaging. It is possible after calibration to obtain a image of a level of quality where the object
can still be recognised.
In conclusion, there has been established that there is a difference between the pulse-echo
estimates and the pulse-echo of a seemingly systematic nature. A calibration method was
proposed that significantly improved upon the result of the uncalibrated model in regards to
imaging. It has been shown that a close approximation of the calibration can be obtained
from a single measurement using a adapted form of the original calibration method.

7 Future work

Successfully imaging depends mainly on two thing, the accuracy of the model and how well
posed the imaging problem is. In this thesis a method was proposed to improve the former
(accuracy of the model). The Tikhonov regularized least squares method is a rather straight
forward method that attempts to solve the difference through a complex scaling of individual
frequency bins in the frequency domain. This method does not take into account the possibil-
ity of interdependence’s between different frequencies or the phase. The first avenue of future
work should be to obtain a more detailed understanding of the individual components that
make up the error. This will allow for a better understanding of the error that was found and
might lead to structures or interdependence’s that exist within the error that can be exploited
for better calibration. Furthermore, the current method only works for a systematic error but
falls short when the error is position dependant. The investigation done in this thesis has not
resulted in finding a strong reason to suspect a position dependency in the error but a more
detailed examination might shed some more definitive light on this subject.
The second proposed avenue for future work is rather straight forward, the continuation of
this work into the 3D domain. Currently this calibration method has been successfully applied
to the 1D domain and to a limited extend the 2D domain showing great promise. Extension
to the 3D domain would allow for the possibility of imaging biological tissue and ultimately,
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if successful, the application of this imaging and calibration method in a clinical setting.
The first 2 suggestions have been with respect to the accuracy of the model, the next two are
with respect to how well posed the imaging problem is. The mask used in this thesis tries to
create a scattered signal that ideally attributes a unique signal to each point is space as its
reflection. Currently the hole distribution of the mask is randomly due to the absence of a
better know structure or method to enable the desired effect. During the experiments in this
thesis it became apparent that the mask mainly offers a improvement in the resolution in the
x plan of a 2D imaging experiment consisting of a xz plane. Therefore, it is proposed that
future work in regards to optimisation of the mask should focus on creating a distribution of
the wave in such a manner that each point in the x-direction, and when extension to the 3D
domain the xy-plane, is uniquely radiated to optimised the discernibly of coordinates in this
plane. The z plane or depth is currently successfully ascertained from the time of arrival.
The final avenue of future work is to create a optimised imaging strategy. This thesis did not
touch upon this subject because its focus was on improving the accuracy of the model and
therefor only singular measurements where used in constructing the various images. However,
by taking more measurements of the same object the amount of equations is increased which
potentially leads to a better posed problem. The main requirement for these additional mea-
surements is that they offer new information on the same object by having received reflections
from the object in a new combination. If this requirements is not met then the additional
measurements will only bloat the size of the computation and slow down the imaging.
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A Reciprocity of the Mask

One of the assumptions on which the work in this thesis is based on the reciprocity. It allows
for the usage of the auto-convolution of the forward field to obtain the full field. In this
appendix we will expand on the reciprocity theorem and show through the use of simulations
that it holds.

A.1 The reciprocity theorem

The assumption is that the mask adheres to reciprocity theorem due to the linear nature of
ultrasound at relative low levels of power. Simply put, it means that due to the linear nature
the location of the observer and transmitter can be interchanged and thus that the transfer
function from transmitter to reflector is the same as from reflector to transmitter. The theo-
rem has been shown to hold in many different fields of study and has first been put to paper
for ultrasound by Lord Rayleigh in his book Theory of Sound [12] where he denotes it as
Helmholtz theorem. In the work of Fink et. al. [13] [14] [15] on time reversal this principle is
used even in the face of a chaotic medium but with linear structural dynamics and acoustics.
This theorem breaks in the case of non linearity propagation which arises when a relative
large amount of energy is produced by the ultrasound sensor, the medium is non stationary
or there are sources at the boundary. In our case one of the sides of the boundary is a source
itself.

A.2 Simulation

Due to the large set of possible factors attributing to the difference in the signals in the
practical experiment is difficult to attribute the behaviour to the lack of reciprocity specifically.
Therefore, simulations where chosen as a way to isolate the phenomena and examine the
question of reciprocity. The chosen simulation tool is k-wave [10] and the simulations will
start from a simple case and progress to a closer approximation of reality by adding complexity.

A.2.1 Reciprocity with point sources

To clearly understand if or when reciprocity possibly breaks, the simulations start off simple
and become more advanced with time till the entire scenario is completely simulated or
reciprocity breaks. The procedure for measuring reciprocity is as follows:

• First simulation.

• Source 1 sends out a pulse.

• Source 2 records the pulse at its location.

• End of first simulation.

• Second simulation

• Source 2 sends out the recorded pulse.

• Source 1 records the pulse at its location.

• End of second simulation

• autoconvolve the recorded pulse at source 2 in the first simulation.

• divide both the autoconvolved signal as the recorded signal and Source 1 by there own
maximum respectively.

Starting with the simplest situation, 2 points:
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Figure 72: Reciprocity of 2 points

Directly the simulation seems to break, this is due to a oversight in our simulations. In 3.1 we
identified all the different components that make up the setup, and that included the exitated
pulse itself. In our simulations we are not accounting for the double contribution of the signal
in the auto-convolution which is absent in the signal measured at source 1. Therefore, we
need to convolve the signal at source 1 with the pulse itself to make sure if reciprocity still
holds. The results of this compensation are as follows:
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Figure 73: Updated reciprocity of 2 points

Showing that for the simple case of 2 points that the reciprocity holds. Now to further
examine the effect of reciprocity a simple medium is placed between the 2 points:
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Figure 74: Reciprocity of 2 points with simple medium
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Again showing that reciprocity doesn’t break for such simple cases. Now to examine its effects
when the medium is more complex and multiple scattering occurs the following simulation
was created:
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Figure 75: Reciprocity of 2 points with complex medium

Given the linear nature of ultrasound at low levels of power, reciprocity still holds even when
confronted with multiple scattering.

A.2.2 Reciprocity with an element and a point source

In these simple case of 2 points it has been shown that reciprocity holds but in our case
the ultrasound element is significantly larger then our point reflector. To illustrate this the
previous simulation was repeated with this difference applied:
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Figure 76: Reciprocity of 1 element and 1 point with a complex medium

Seemingly this is where reciprocity seems to break for the first time. However after careful
examination of the simulation it was found that the grid was unable to sustain the higher
frequencies that came with the multiple scattering effects as shown in the plots below:
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Figure 77: Relation between error and supported frequencies
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The error criterion used here is the Mean Squared Error (MSE) and given by:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2 (69)

Where Yi is the signal recorded at Source 1 and Ŷi is the autoconvolved version of the signal
that was recorded at Source 2. It shows that when the supported frequencies go up due to a
finer grid the error goes down because the entire signal is now transmitted. The drop in error
around 220 micrometer spacing can easily be explained by looking at the frequency spectrum
of the transmitted signal.
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Figure 78: Freqeuency spectrum of test signal

The drop in error at the 220 micrometer mark is due to the fact that in that case the main
lobe is almost completely filtered out leaving a nice symmetrical spectrum which lowers the
mismatch. Equally the slight up jump of the error around the 75 micrometer mark is due to
cutting off halve of the side lobe on the right side of the main lobe.
Therefore this apparent mismatch can be solved by either lowering the spacing between pixels
in the simulation or allowing the signal to repeat more to create a more narrow spectrum.
The former approach was used in the remainder of the simulations.
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Figure 79: Updated reciprocity of 1 element and 1 point with a complex medium

Having shown that reciprocity holds in the simulations there is one possible effect that can
cause the reciprocity to break. Namely when the in-homogeneous medium is placed directly
against the element. Given that for reciprocity to hold there should not be any sources on
the boundary. But in this case one of the sides of the boundary is a source itself, potentially
creating a non linear transition. Therefore the following simulation was created.
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Figure 80: Reciprocity of 1 element and 1 point with a complex medium against the element

In this case a analogue to our aberration mask is placed directly against the element to
examine this phenomena. The results is that reciprocity still holds in this simulation.
For completions sake this simulation was also preformed with loses even though loses don’t
create non-linearity’s at low energy levels. The results of those are shown below:
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Figure 81: Reciprocity of 1 element and 1 point with a complex medium against the element
and loses

As expected, reciprocity still holds. Even though we where unable to definitely state if
reciprocity holds or not, after examining the theory and given the simulations results it is
very likely that it indeed holds.
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