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Abstract

Continuous Integration (CI) systems automate the
building, testing, and possibly more. However, it
is still unclear how CI should be implemented in
different contexts. Therefore, this paper tries to an-
swer the question ”What metrics can be used to de-
scribe project activity”, as part of a bigger study.
We mined information from 500 repositories and
then applied several analysis techniques to find out
whether a metric can be used to describe activity
or not. Among the results, we show that the activ-
ity around a release date increases, and that Java is
a way more active language than other languages,
with the highest amount of commits, closed pull re-
quests, contributors, issues, and releases.

1 Introduction
Continuous Integration (CI) is a software development prac-
tice that focuses on frequent integration of code changes from
multiple developers into a shared repository, followed by au-
tomated build and test processes to ensure the code quality
of high standard and bug detection early in the development
process [12]. CI has become the best practice of modern
software development and it has already been proven that
CI has positive effects on software development by for ex-
ample an increase in productivity within project teams [2;
9].

Traditionally, software development followed a sequential
and isolated approach, with developers working on separate
code branches and integrating their changes only periodically,
typically during the latter stages of a project. This approach
often led to integration issues, as the codebase became more
complex and conflicts emerged when merging individual con-
tributions. Moreover, identifying and resolving these con-
flicts took significant time and effort, delaying the overall
development process [12]. Continuous Integration emerged
as a response to these challenges, aiming to streamline and
enhance the software development lifecycle.

The primary objective of this study is to identify and
analyze the descriptive factors that influence the imple-
mentation of CI projects. By gaining a comprehensive
understanding of these factors, the research aims to pro-
vide valuable insights and guidelines for enhancing the
maturity of the CI process. Concretely, the study looks
at metrics for project activity, maturity, and topic clas-
sification, as well as how the project performs in the
build-life cycle and how the CI pipeline is implemented.
This paper focuses solely on the project activity aspect of
this study, trying to answer the following research question:

What metrics can be extracted to describe project activity?

In order to address the main research question more effec-
tively, it has been segmented into sub-research questions:

RQ1: What metrics do other research use to describe
project activity?

RQ2: What other metrics can be used to describe project
activity?

The rest of this paper is structured in such a way that it
builds up to answer the sub-research questions and thereby
also the main research question, to start with an overview of
what already has been done in the area of project activity. Af-
ter discussing previous work, we explain the data collection
process in the methodology, followed by how the experiments
were set up and the results. We conclude with the limitations
during this research, a section that reflects on the ethical as-
pects of the research, a small discussion on the results and the
conclusion.

2 Previous work
There has been some work on metric analysis for project ac-
tivity, but not much. Most of the research that use activity
in one way or the other just use the metrics that best fits in
that particular situation [3]. The metrics that were proven in
other papers to have a correlation with project activity will be
selected in this study as well.

There are also some papers which made an equation that
can calculate the activity level of a project. Yang et al. [11]
is an example of that. However, since the equation is based
solely on commits, it is discouraged to make use of such an
equation. This goes against the principle of this study to ac-
tually find more metrics to describe activity.

3 Methodology
The data collection process will be described here. The
project selection process comes first, followed by the metric
selection and finally the metric extraction.

3.1 Project selection
The selected projects come from GitHub1, a widely popular
platform for hosting and managing code repositories which
provides a rich source of data for mining insights into soft-
ware development projects. With the help of GitHub Search2,
all the open source projects on GitHub can be traversed with
a simple GUI. Many filters can be passed in the query, and
for this study, the projects were selected which had a lower
bound of 1 for all the filters in the History and Activity part
(i.e., the number of commits, the number of issues, the num-
ber of branches, the number of contributors, the number of
pull requests and the number of releases). Applying a lower
bound of 1 for all those filters significantly reduces the num-
ber of projects and allows for more insight later on in the re-
search. If for example the number of issues need to be closely
looked at, but the majority of the projects have 0 issues, then
no valid conclusion can be drawn.

After that, 500 random projects were selected that all use
GitHub Actions3 with the additional filter of 100 projects per
language. This limit was also imposed to allow for valid con-
clusions in the experiments. Figure 1 shows the process visu-
alized.

1https://github.com
2https://seart-ghs.si.usi.ch
3https://github.com/features/actions

https://github.com
https://seart-ghs.si.usi.ch


Figure 1: Visualization of the project selection process.

3.2 Metric selection
In order to establish a comprehensive and quantifiable set of
metrics to assess their impact on project activity, an extensive
review of relevant literature has been conducted. During the
literature review, it was found that different papers use differ-
ent metrics when talking about the activity within a project.
Cosentino et al. [3] dedicate this to the different contexts in
which every paper is written.

Given the subjective nature of activity across papers, the
selection process for the current study focused on identifying
the most commonly utilized metrics across multiple papers,
as well as those metrics which were proven to have some cor-
relation with activity in other papers.

The full table of metrics that were selected is visible in Ta-
ble 1. The number of merged pull requests can be a good in-
dicator for project activity because more pull-request merged
commits add to the net project activity level [10]. Every
merged pull request represents a contribution to the project,
and hence represents project activity [6; 9].

Pull requests, commits and contributors are the strongest
drivers for the project activity level, as shown by Hamilton et
al. [7]. The total amount of issues in the repository is also
a valid metric, as a higher number of issues contributes to
higher participation of the community around the repository
[8]. And the number and frequency of releases also influence
the activity levels in the project. The activity increases ex-
ponentially towards the release date and then rapidly drops
again [1].

At some point, watchers, forks, and stars were also con-
sidered to be used as metrics, however they have negligi-
ble effect on the activity level [7]. For forks, the addi-
tional reason as to why it should not be used is because
forks are a copy of another user’s repository where new
ideas can be implemented. This then draws away the ac-
tivity from the original project to the forked project [1;
7].

3.3 Metric extraction
After the projects and metrics were selected, the actual met-
rics were extracted from the repositories on GitHub with the
GitHub API4. This was done with a custom-made tool in
Python with the help of PyGitHub5. This is a library which
acts as a wrapper-API around the GitHub API. By using
this library, tremendous amount of implementation time was
saved and low-level coding was avoided.

4 Experimental Setup
Our sample size consists of 500 repositories with 100 repos-
itories per programming language. We already presented the
5 default metrics in Table 1, and in general we will try to find
more metrics which can represent project activity.

Several different techniques were used in the analysis of
the metrics to approach the research from as many differ-
ent angles as possible. In three metrics, Spearman’s rank
correlation coefficient was used to apply correlation analy-
sis. The decision to use Spearman’s rank correlation coef-
ficient instead of alternatives like Pearson was motivated by
its suitability for small data sets and its robustness against
outliers[5]. The idea behind correlation analysis is the more
metrics the metric under study has a correlation with, the bet-
ter it can be used to describe project activity.

5 Results
This section presents the findings of the researched metrics.
The first section takes a closer look at one of the default met-
rics from Table 1. It studies when the activity around a release
date is the highest.

The second section clusters all the repositories by their
main language and studies whether certain languages show
more activity than others.

The last three metrics use correlation analysis with Spear-
man’s rank correlation coefficient.

5.1 Activity around a release date
The hypothesis for activity around a release date was that
there would be an increase in commits towards the release
date, and then a quick drop again after the release date [3].
The findings from my experiment however, show something
else and are demonstrated in Table 2.

In the table you can see the percentage of repositories
which have a more than 1 and 2 times increase in commits.
The amount of days spread suggest how many days were
taken into account before and after the release date(s). So a

4https://docs.github.com/en/rest?apiVersion=2022-11-28
5https://github.com/PyGithub/PyGithub



Metric Description
# closed pull requests The total number of successfully merged pull requests.
# commits The total number of commits.
# contributors The unique number of contributors.
# issues The total number of open and closed issues.
# releases The total number of releases.

Table 1: The selected metrics to analyse project activity.

spread of 2 means that 2 days before the release date, the re-
lease date itself, and 2 days after the release date were taken
into account. The increase in commits was calculated as fol-
lows: average amount of commits around the release date di-
vided by the average amount of commits in the baseline. The
baseline refers to all the days which is not also a day around
a release date. So if there are 7 days with day 3 as a release
date and spread 1, then day 2, 3, and 4 are the dates around
the release date and day 1, 5, 6, and 7 are the baseline days.

From the experiment it can be clearly visible that on the re-
lease date itself (0 days spread), the vast majority of the repos-
itories have at least some increase in commits, namely 66%
of the repositories, and even a slight portion (almost 19%) of
the repositories have an at least 2 times increase in commits.

However, including the day before and after the release
date, the numbers already shrink rapidly to only 2% of the
repositories having a more than 2 times increase and only
21% of the repositories having an at least 1 time increase in
commits. From here on, the numbers keep decreasing, but on
a more slow and steady decline than the big drop from 0 to 1
days spread.

This trend could explain that a lot of small work is done
(i.e., updating documentation, a new README) that can be
finished quick (and hence more commits can be pushed on
the day). Furthermore, developers who have been working
on their feature (for some time) have to finish in time for the
release date, so they might work on it until the last possible
moment to ensure no mistakes and then push their work on
the release date. The small increase in activity the day be-
fore and after could suggest developers finishing their feature
’early’ and bug fixing respectively.

So for developers who are looking for an active project,
they might want to consider repositories which are 1-2 days
away from a release date. Or preferably, if they want to tackle
bigger issues, start to look a week ahead of the release date, to
make sure that he / she has enough time to actually implement
the feature.

5.2 Programming Language
It may not be obvious that the programming language can
say something about project activity, but that does not mean
that it should not be investigated. Table 3 shows the results
after clustering the repositories on their main programming
language.

The main programming language of a repository was de-
cided by the amount of lines of code belonging to that pro-
gramming language. The language with the most amount of
lines of code was chosen to be the main language.

If you take a close look at Java, you can see that it has

# days spread ≥ 1 ≥ 2

0 66.12% 18.69%
1 20.94% 2.67%
2 9.03% 0.62%
3 5.75% 0.82%
4 4.11% 0.82%
5 2.87% 0.82%
6 2.87% 0.41%
7 3.08% 0.21%

Table 2: The percentage of repositories which have a more than 1
and 2 times increase in commits with n days spread. The number
of days spread refers to how many days before and after the release
date were included.

the highest numbers for all metrics. It has a high amount of
contributors, a high amount of closed pull requests and a high
amount of commits, concluding that repositories which use
Java as their main language are evidently more active. This
could be due to the wide variety of applications Java could be
used in. Think about the gaming industry, phone applications
or websites. These projects usually tend to be developed for
a long time, hence giving an increased activity in that area.

5.3 Repository size
The third metric that was looked into was the repository size.
In this case, the repository size refers to the amount of kilo-
bytes (KB) worth of files in the repository.

This experiment employed correlation analysis with Spear-
man’s rank coefficient to investigate the relationship between
repository size and the 5 metrics in Table 1. The results, dis-
played in Table 4, revealed a decent correlation between the
repository size and the number of commits, indicating that
as the repository size increased, the number of commits in-
creased as well. This finding is supported by the plot dis-
played in Figure 2, which visually represents the positive cor-
relation between repository size and the number of commits.

A possible explanation for this is that the more commits are
pushed in the project, the further the development process is.
And the further the development process is, the more features
have been added and hence the bigger the project gets.

5.4 Average closing time of issues
As for reasons noted in the Limitations, only issues with the
label bug were inspected, also known as bug reports. The
closing time is measured in seconds from the creation date
of the issue until the closing time of the issue. The Spear-
man rank coefficients for all the five metrics with the average



Table 3: The average amount of commits, closed pull requests, contributors, issues, and releases by language.

Language avg. # commits avg. # closed pull req. avg. # contributors avg. # issues avg. # releases
C 1103.97 34.52 23.53 93.1 7.49

Java 4142.56 1241.86 129.6 2570.47 41.27
Python 191.67 23.98 7.05 50.69 4.96

C# 415.63 32.73 11.16 59.64 8.45
Swift 181.19 34.26 7.19 64.81 9.01

Figure 2: Scatter plot of the repository size against the number of
commits.

Metric 1 Metric 2 Spearman’s rank
# closed pull requests 0.43
# commits 0.65

Repository size # contributors 0.43
# issues 0.49
# releases 0.33

Table 4: Spearman’s rank coefficients for each of the five metrics
were the repository size was compared against.

Metric 1 Metric 2 Spearman’s rank
# closed pull requests 0.22

Average # commits 0.26
closing # contributors 0.32

time # issues 0.31
# releases 0.12

Table 5: Spearman’s rank coefficients for each of the five metrics
were the average closing time of bug reports were compared against.

Metric 1 Metric 2 Spearman’s rank
# closed pull requests 0.23

Average # commits 0.44
frequency # contributors 0.25

change # issues 0.27
# releases 0.20

Table 6: Spearman’s rank coefficients for each of the five metrics
were the average frequency change of files were compared against.

closing time are shown in Table 5.
Looking at the Spearman coefficients, there does not seem

to be any correlation with any of the five default metrics.
Therefore, it seems unlikely that the average closing time of
bug reports can say anything about project activity.

5.5 Frequency change of files
In the last metric we study the average frequency change of
files. As described in Limitations, we only looked at the fre-
quency change of source files of the main programming lan-
guage of the repository. Then the average of all those files
were taken to give the average frequency change of files in
that repository. The Spearman coefficients for all the five met-
rics with average frequency change of files are shown in Table
6.

There seems to be no correlation with the average fre-
quency change of files and with the five default metrics. How-
ever, upon inspection of the coefficients, it can be seen that
the correlation with the number of commits is slightly higher
than the other 4 metrics. This slightly higher coefficient can
be explained by how the files are modified: by commits. So
it makes sense that the higher the frequency change, the more
commits there are, because file changes happen through com-
mits.

6 Limitations
Despite the valuable insights gained from this study, it is im-
portant to acknowledge the limitations:



• Small sample size: Mostly due to time constraints, the
sample size was limited to 500 repositories. Extracting
metrics with the GitHub API usually took several hours,
if not more. The limit imposed by GitHub to only allow
5000 requests per hour unnecessarily increased the time
it took to successfully extract all the metrics. Increasing
the sample size by hundreds or thousands more reposi-
tories would only make this process longer, time that we
do not have during this short research period and time
that is better spent on analyzing the data.

• Only issues with a bug label: Unfortunately, also issues
were very time consuming to collect due to the 5000 re-
quests per hour limit imposed by GitHub. That is why
a filtered approach has been applied, namely only issues
with a bug label. The idea behind this is that bugs should
in general be fixed as soon as possible. If there is a
short response time for bug reports, this could indicate a
higher active project.

• Only files of the main programming language: Some-
times a repository can host many files. Not only source
code files, but also images, markdown files, and GitHub-
related files. Requesting the frequency change of all
those files would take a really long time, and actually,
the focus is not really on those files either. Source code
files is where the implementation happens, so hence we
only request those files. To filter it even more down, we
only request the source files from the primary language
of the repository.

• Limited amount of metrics: Due to time constraints
and the imposed request limit of the GitHub API, it was
not feasible to analyze all available metrics within the
given timeframe. Consequently, certain results could not
be obtained.

7 Responsible Research
In this research project, we worked with publicly available
repositories on GitHub. It is important to respect the princi-
ples of ethical research. Although the data is publicly avail-
able, it is crucial to ensure that the privacy and confidentiality
of individual contributors or organizations are upheld. Only
anonymized data was used that cannot be traced back to spe-
cific individuals.

Additionally, this study adhered to the guidelines for re-
sponsible and ethical conduct in research, including proper
citation and acknowledgment of sources and transparency in
the research methodology. The code that was used in this re-
search is publicly available on GitHub.

For the reproducibility of the methods, future engineers
should also take great care in that they do not use privacy
sensitive data or data that can be traced back to specific in-
dividuals. If that is the case, then that information should be
left out for research.

8 Discussion
This section discusses some interesting results found in the
previous section.

8.1 Average closing time revisited

Looking again at the Spearman coefficients for the average
closing time in Table 5, we take the three highest coefficients
and show the plots in Figure 3.

Despite the presence of a low correlation coefficient, the
observed plots hint at the possibility of a potential correlation.
The limited strength of the correlation could be attributed to
factors such as the small sample size or the need for a broader
range of issues to be considered (e.g., all issues, or bug reports
and feature requests).

8.2 Correlation analysis revisited

From the three correlation analysis that were performed, two
had a high correlation with the number of commits (high in
this context means relatively in comparison with the other
numbers). This could suggest that commits is a stronger in-
dicator for project activity than the other metrics. This is also
suggested by Alshomali et al. [1].

9 Conclusions and Future Work

This paper has studied metrics to describe project activity.
The most kind of metrics that other researchers use are {the
number of pull requests, the number of commits, the number
of contributors, the number of issues, the number of releases,
the number of forks, the number of stars}. However it should
be noted that the number of forks and the number of stars are
not representative for project activity [7]. The other kind of
metrics that can be used to describe project activity are {the
release date, language, repository size}. That gives us the
following set of metrics that can be used to describe project
activity: {the number of closed pull requests, the number of
commits, the number of contributors, the number of issues,
the number of releases, the release date, language, repository
size}.

Moving forward, several directions for future research
emerge from the findings of this study. These suggestions en-
compass areas that could further enhance our understanding
of project activity. Firstly, we could look at release predic-
tion. This paper showed that the release date is a good metric
for project activity, but, unless the project owners specifically
announce it, as an outsider it is not known when releases hap-
pen. Predicting when release dates are near could help further
in finding active projects. Secondly, what characteristics do
active projects share? Finding out characteristics between ac-
tive projects can identify new types of metrics that can be
used to describe project activity. Gautam et al. [4] describe
a way of clustering repositories into 4 categories in terms of
their activity, popularity, size, testing and stability. A sim-
ilar research could be conducted solely focusing on project
activity. Lastly, a new study on the correlation between the
average closing time, the number of commits, the number of
contributors and the number of issues could shed new light of
whether there is actually a correlation or not, as described in
Average closing time revisited.



Figure 3: The 3 scatter plots of the number of commits, the number
of contributors, and the number of issues respectively against the
average closing time.
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