
 
 

Delft University of Technology

Multiple and weak Markov properties in Hilbert spaces with applications to fractional
stochastic evolution equations

Kirchner, Kristin; Willems, Joshua

DOI
10.1016/j.spa.2025.104639
Publication date
2025
Document Version
Final published version
Published in
Stochastic Processes and their Applications

Citation (APA)
Kirchner, K., & Willems, J. (2025). Multiple and weak Markov properties in Hilbert spaces with applications
to fractional stochastic evolution equations. Stochastic Processes and their Applications, 186, Article
104639. https://doi.org/10.1016/j.spa.2025.104639

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.spa.2025.104639
https://doi.org/10.1016/j.spa.2025.104639


Stochastic Processes and their Applications 186 (2025) 104639 

A
0
(

 

Contents lists available at ScienceDirect

Stochastic Processes and their Applications

journal homepage: www.elsevier.com/locate/spa  

Multiple and weak Markov properties in Hilbert spaces with 

applications to fractional stochastic evolution equations
Kristin Kirchner a,b , Joshua Willems a ,∗

a Delft Institute of Applied Mathematics, Delft University of Technology, P.O. Box 5031, 2600 GA, Delft, The Netherlands
b Department of Mathematics, KTH Royal Institute of Technology, Lindstedtsvägen 25, 114 28, Stockholm, Sweden

A R T I C L E  I N F O

MSC:
60J25
60G15
60G22
35R60

Keywords:
Higher-order Markov property
Infinite-dimensional fractional Wiener process
Matérn covariance
Spatiotemporal Gaussian process

 A B S T R A C T

We define a number of higher-order Markov properties for stochastic processes (𝑋(𝑡))𝑡∈T, 
indexed by an interval T ⊆ R and taking values in a real and separable Hilbert space 𝑈 . We 
furthermore investigate the relations between them. In particular, for solutions to the stochastic 
evolution equation 𝑋 = �̇� , where  is a linear operator acting on functions mapping from T
to 𝑈 and (�̇� (𝑡))𝑡∈T is the formal derivative of a 𝑈 -valued cylindrical Wiener process, we prove 
necessary and sufficient conditions for the weakest Markov property via locality of the precision 
operator ∗.

As an application, we consider the space–time fractional parabolic operator  = (𝜕𝑡 + 𝐴)𝛾 of 
order 𝛾 ∈ (1∕2,∞), where −𝐴 is a linear operator generating a 𝐶0-semigroup on 𝑈 . We prove that 
the resulting solution process satisfies an 𝑁th order Markov property if 𝛾 = 𝑁 ∈ N and show 
that a necessary condition for the weakest Markov property is generally not satisfied if 𝛾 ∉ N. 
The relevance of this class of processes is twofold: Firstly, it can be seen as a spatiotemporal 
generalization of Whittle–Matérn Gaussian random fields if 𝑈 = 𝐿2() for a spatial domain 
 ⊆ R𝑑. Secondly, we show that a 𝑈 -valued analog to the fractional Brownian motion with 
Hurst parameter 𝐻 ∈ (0, 1) can be obtained as the limiting case of  = (𝜕𝑡 + 𝜀 Id𝑈 )

𝐻+ 1
2  for 𝜀 ↓ 0.

1. Introduction

1.1. Background and motivation

Gaussian Markov random fields play an important role for various applications, such as the analysis of time series or longitudinal 
data, image processing and spatial statistics, see e.g. [39, Section 1.3]. The latter focuses on the statistical modeling of spatial or 
spatiotemporal dependence in data collected from phenomena encountered in disciplines such as climatology [1], epidemiology [24] 
and neuroimaging [31]. The popularity of Gaussian Markov random fields among the larger class of Gaussian random fields is a 
consequence of their additional conditional independence properties, which entail a sparse precision structure and facilitate efficient 
computational methods for statistical inference. In particular, hierarchical models based on Gaussian Markov random fields allow 
for efficient Bayesian inference using Markov chain Monte Carlo methods, see for instance [39, Section 4.1].

Since a Gaussian process is fully characterized by its second-order structure, i.e., the mean and covariance function, a natural 
way to specify its distribution is to choose a suitable second-order structure. Alternatively, the dynamics of Gaussian random fields 
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defined on a Euclidean domain  ⊆ R𝑑 can be specified by means of stochastic partial differential equations (SPDEs), such as the 
white noise ((𝑥))𝑥∈ driven equation 

𝐿𝑋(𝑥) = (𝑥), 𝑥 ∈ . (1.1)

Here, 𝐿 is a linear operator acting on real-valued functions defined on . A spatial Gaussian random field (𝑋(𝑥))𝑥∈ is said to have 
the Markov property if the subcollections (𝑋(𝑥))𝑥∈1

 and (𝑋(𝑥))𝑥∈2
 corresponding to pairs of disjoint subdomains 1,2 ⊆  are 

independent conditional on (𝑋(𝑥))𝑥∈′  for some non-trivial ‘splitting’ set ′ ⊆  separating the two. The precise specification of 
these sets, which respectively carry the intuitive interpretations of past, future and present, leads to various definitions of the Markov 
property. According to the theory of Rozanov [38], a real-valued Gaussian random field satisfying (1.1) has such a Markov property 
if and only if its precision operator 𝐿∗𝐿 is local, where 𝐿∗ denotes the 𝐿2()-adjoint of 𝐿.

An important example in spatial statistics is the choice of a fractional-order differential operator 𝐿 ∶= 𝜏(𝜅2 − 𝛥)𝛽 in (1.1), 
where 𝛥 is the Laplacian,  is Gaussian white noise and 𝜏, 𝜅, 𝛽 ∈ (0,∞). Whittle [43] observed that the covariance function 
𝜚(𝑥, 𝑦) ∶= E[𝑋(𝑥)𝑋(𝑦)] of the stationary solution (𝑋(𝑥))𝑥∈ to (1.1) with  = R𝑑 then belongs to the widely used Matérn class [30]: 

𝜚(𝑥, 𝑦) = 𝐶𝜅,𝜏,𝜈,𝑑 (𝜅‖𝑥 − 𝑦‖R𝑑 )
𝜈𝐾𝜈 (𝜅‖𝑥 − 𝑦‖R𝑑 ) for all 𝑥, 𝑦 ∈ R𝑑 , (1.2)

where 𝜈 ∶= 2𝛽 − 𝑑∕2, 𝐶𝜅,𝜏,𝜈,𝑑 ∶= 𝜏−2(4𝜋)−𝑑∕221−𝜈 [𝛤 (𝜈 + 𝑑∕2)]−1𝜅−2𝜈 and 𝐾𝜈 denotes the modified Bessel function of the second kind. 
This observation motivated the SPDE approach for spatial statistical modeling proposed by Lindgren, Rue and Lindström [27]. 
Here, one considers (1.1) on a bounded Euclidean domain  ⊊ R𝑑 , augmented with boundary conditions, and approximates the 
resulting Whittle–Matérn fields by means of efficient numerical methods available for (S)PDEs. Owing to its ease of generalization 
and its computational efficiency as compared to covariance-based techniques, this approach has gained widespread popularity, see 
e.g. [5–7,9,17,26,40]. Since in this case the precision operator is given by 𝐿∗𝐿 = 𝜏2(𝜅2 −𝛥)2𝛽, we find that Whittle–Matérn fields are 
Gaussian Markov random fields in the sense of Rozanov [38] precisely when 2𝛽 ∈ N.

Recently, extensions of the SPDE approach incorporating time dependence have been discussed. A class of space–time equations 
which has been proposed in this context is 

(𝜕𝑡 + 𝐿)𝛾𝑋(𝑡, 𝑥) = ̇𝑄(𝑡, 𝑥), (𝑡, 𝑥) ∈ T ×, 𝛾 ∈ (1∕2,∞), (1.3)

where T ⊆ R represents a time interval and ̇𝑄 is spatiotemporal Gaussian noise, which is spatially colored by an operator 𝑄, 
see [23,25]. In particular, it has been shown in [23] that Eq.  (1.3) extends the Matérn model in terms of spatial marginal covariance, 
and that the interplay of its parameters governs smoothness in space and time as well as the degree of separability.

Spatiotemporal random fields can be viewed as 𝑈 -valued stochastic processes by letting a Hilbert space 𝑈 encode the spatial 
variable, so that (1.3) corresponds to a stochastic fractional evolution equation of the form 

(𝜕𝑡 + 𝐴)𝛾𝑋(𝑡) = �̇� 𝑄(𝑡), 𝑡 ∈ T. (1.4)

The (temporal) Markov property of solutions to (1.3) is then equivalent to that of the 𝑈 -valued solution process (𝑋(𝑡))𝑡∈T, where 
the Markov behavior is considered with respect to the index set T. Moreover, viewing (1.4) as a special case of 

𝑋(𝑡) = �̇� 𝑄(𝑡), 𝑡 ∈ T, (1.5)

where  is now a linear operator acting on functions from T to 𝑈 , the theory of Rozanov [38] suggests that locality of the precision 
operator ∗, also acting on functions 𝑓∶T → 𝑈 , can be used to characterize temporal Markov behavior of the solution 𝑋.

1.2. Contributions

In this work we define simple, multiple (𝑁-ple for 𝑁 ∈ N) and weak Markov properties for stochastic processes which take values 
in a Hilbert space 𝑈 . These definitions generalize those appearing for instance in [18,37,38] for real-valued processes to infinite 
dimensions, see Definitions  3.1, 3.2 and 3.4, respectively. Besides gathering them in once place, we establish their interrelations, 
see Proposition  3.5 and Remark  3.6. The main results are Theorems  3.7 and 3.9, which give necessary and sufficient conditions, 
in terms of the precision operator ∗, for the weakest notion of Markovianity for a 𝑈 -valued Gaussian process defined via (1.5). 
These results are proven by a non-trivial extension of the theory by Rozanov [38, Chapters 2 and 3] from the real-valued to the 
𝑈 -valued setting.

In order to consider the more concrete class of processes defined via (1.4), we construct a stochastic integral for deterministic 
operator-valued integrands defined on the whole of R with respect to a two-sided (cylindrical) 𝑄-Wiener process (𝑊 𝑄(𝑡))𝑡∈R, see 
Section 2.2. We employ this stochastic integral to define the mild solution process 𝑍𝛾 = (𝑍𝛾 (𝑡))𝑡∈R to (1.4) on T = R, see Definition 
4.5. Our rigorous definition of the fractional space–time operator (𝜕𝑡 +𝐴)𝛾 for 𝛾 ∈ R, see Definition  4.3, extends the Weyl fractional 
calculus in the sense that one recovers the Weyl fractional derivatives and integrals defined in [21, Section 2.3] upon specializing 
to 𝑈 = R and 𝐴 = 0.

We show that the mild solution 𝑍𝛾 to (1.4) satisfies the 𝑁-ple Markov property if 𝛾 = 𝑁 ∈ N, see Theorem  4.10. Conversely, we 
use Theorem  3.7 to show that, in general, 𝑍𝛾 is not weakly Markov for 𝛾 ∉ N. This complements [15, Theorem 2.7], which states 
that any time-homogeneous 𝑈 -valued Gaussian simple Markov process is the solution to a first-order stochastic evolution equation.

Finally, we discuss another interesting aspect of the SPDE (1.4): A fractional 𝑄-Wiener process (𝑊 𝑄
𝐻 (𝑡))𝑡∈R with Hurst parameter 

𝐻 ∈ (0, 1), as defined for instance in [13], can be obtained as a limiting case of (1.4) with 𝛾 = 𝐻 + 1∕2 and 𝐴 = 𝜀 Id  as 𝜀 ↓ 0, see 
𝑈

2 
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Table 1
Notation used throughout this article.
 Elementary sets and operations Function spaces
 N Positive integers 𝐽 Non-empty (sub)interval of R  
 N0 Non-negative integers 𝐶(𝐽 ;𝐸) Continuous functions from 𝐽 to 𝐸  
 Id𝐷 Identity map on a set 𝐷 𝐶∞

𝑐 (𝐽 ;𝐸) Compactly supported infinitely differentiable functions from 𝐽 to 𝐸  
 𝟏𝐷0

Indicator function of a subset 𝐷0 ⊆ 𝐷 𝐶∞
𝑐 (𝐽 ) Abbreviation for 𝐶∞

𝑐 (𝐽 ;R)  
 𝑠 ∧ 𝑡 Minimum of 𝑠, 𝑡 ∈ R 𝐶𝑏(𝐸) Bounded and continuous functions from 𝐸 to R  
 𝑠 ∨ 𝑡 Maximum of 𝑠, 𝑡 ∈ R (𝑆,A, 𝜇) Measure space  
 Bounded linear operators 𝐵𝑏(𝑆) Bounded and measurable functions from 𝑆 to R  
 𝑈 , 𝑈 Real and separable Hilbert spaces 𝐿𝑝(𝑆,A, 𝜇;𝐸) Bochner space of 𝑝-integrable functions from 𝑆 to 𝐸  
 ⟨ ⋅ , ⋅ ⟩𝑈 Inner product of 𝑈 𝐿𝑝(𝑆;𝐸) Abbreviation for 𝐿𝑝(𝑆,A, 𝜇;𝐸)  
 𝐸, 𝐹 Real and separable Banach spaces 𝐻1(𝐽 ;𝑈 ) Functions in 𝐿2(𝐽 ;𝑈 ) with weak derivatives in 𝐿2(𝐽 ;𝑈 )  
 ‖ ⋅ ‖𝐸 Norm of 𝐸 𝐻1

0 (0,∞;𝑈 ) Functions in 𝐻1(0,∞;𝑈 ) which vanish at zero  
 L (𝐸;𝐹 ) Bounded linear operators from 𝐸 to 𝐹  
 L (𝐸) Abbreviation for L (𝐸;𝐸) Unbounded linear operators
 𝑇 ∗ Adjoint of 𝑇 ∈ L (𝐸;𝐹 ) 𝖣(𝐴) Domain of unbounded linear operator 𝐴∶𝖣(𝐴) ⊆ 𝐸 → 𝐸 on 𝐸  
 L +(𝑈 ) Self-adjoint and positive definite operators on 𝑈 𝑆 Bochner space counterpart on 𝐿2(𝑆;𝐸) of 𝐴∶𝖣(𝐴) ⊆ 𝐸 → 𝐸, see (4.7) 
 tr 𝑇 Trace of 𝑇 ∈ L +(𝑈 )  
 L +

1 (𝑈 ) 𝑇 ∈ L +(𝑈 ) with tr 𝑇 < ∞  
 L2(𝑈 ;𝑈 ) Hilbert–Schmidt operators from 𝑈 to 𝑈  

Proposition  5.3. The proof is based on a Mandelbrot–Van Ness [29] type integral representation of 𝑊 𝑄
𝐻 , again using the two-sided 

stochastic integral from Section 2.2, see Proposition  5.2. The case 𝐻 = 1
2  corresponds to a (non-fractional) 𝑄-Wiener process and 

is thus Markov. Conversely, although the results of Theorems  3.7 and 3.9 do not apply directly, the above observation provides 
evidence that 𝑊 𝑄

𝐻  does not satisfy a weak Markov property for 𝐻 ∈ (0, 1) ⧵ { 1
2 }.

1.3. Outline

In Section 2 we begin by establishing the necessary notation, see Section 2.1, followed by the construction of the stochastic 
integral with respect to a two-sided (cylindrical) 𝑄-Wiener process in Section 2.2. Section 3 is devoted to defining, relating and (for 
solutions to (1.5)) characterizing various notions of Markov behavior for 𝑈 -valued stochastic processes. The goal of Section 4 is to 
define and analyze the mild solution to (1.4) on T = R. To this end, we first describe the setting and define (𝜕𝑡+𝐴)−𝛾 with 𝛾 ∈ (0,∞)
in Sections 4.1 and 4.2, respectively. We subsequently define the mild solution process in Section 4.3, and investigate for which 
values of 𝛾 ∈ (1∕2,∞) it exhibits Markov behavior in Section 4.4. In Section 5 we recall the definition from [13] of a 𝑄-fractional 
Wiener process and prove a Mandelbrot–Van Ness type integral representation, allowing us to exhibit it as a limiting case of (1.4).

This article is supplemented by two appendices: Appendix  A contains auxiliary results relating to specific results from the main 
text whose statements and proofs were postponed for readability; subjects include conditional independence, filtrations indexed by 
R and the mean-square differentiability of stochastic convolutions. Appendix  B is a short overview of results regarding fractional 
powers of linear operators and the interpretation of the fractional parabolic operator (𝜕𝑡 + 𝐴)𝛾 .

2. Preliminaries

2.1. Notation

Table  1 lists some notation which is used throughout this article. Positive definite operators 𝑇 ∈ L +(𝑈 ) satisfy ⟨𝑇𝑥, 𝑥⟩𝑈 ≥ 𝜃‖𝑥‖2𝑈
for all 𝑥 ∈ 𝑈 and some 𝜃 ∈ (0,∞). The trace of 𝑇 ∈ L +(𝑈 ) is defined by tr 𝑇 ∶=

∑

𝑗∈N⟨𝑇 𝑒𝑗 , 𝑒𝑗⟩𝑈 , where (𝑒𝑗 )𝑗∈N is any orthonormal 
basis of 𝑈 . The space of Hilbert–Schmidt operators L2(𝑈 ;𝑈 ) is equipped with the inner product ⟨𝑇 , 𝑆⟩L2(𝑈 ;𝑈 ) ∶=

∑

𝑗∈N⟨𝑇 𝑒𝑗 , 𝑆𝑒𝑗⟩𝑈 . 
We call 𝐴∶𝖣(𝐴) ⊆ 𝐸 → 𝐸 closed if its graph is closed with respect to the graph norm, and densely defined if 𝖣(𝐴) is dense in 𝐸. 

Throughout this work, we assume that a complete probability space (𝛺, ,P) is given, meaning that  contains the collection 
P of P-null sets. We abbreviate the phrase ‘‘P-almost surely’’ by ‘‘P-a.s’’. In what follows, we call a function 𝑍∶𝛺 → 𝐸 an 𝐸-valued 
random variable if it is strongly P-measurable. We write 𝑍 ∼ 𝑁(𝑚,𝑄) if 𝑍 is a 𝑈 -valued Gaussian random variable with mean 𝑚 ∈ 𝑈
and covariance 𝑄 ∈ L +

1 (𝑈 ); its existence is guaranteed by [4, Theorem 2.3.1]. Two stochastic processes (𝑋(𝑡))𝑡∈T and (𝑋(𝑡))𝑡∈T are 
said to be modifications of each other if P(𝑋(𝑡) = 𝑋(𝑡)) = 1, for all 𝑡 ∈ T, where T = R, T = [0,∞) or T = [0, 𝑇 ] for some 𝑇 ∈ (0,∞).

Let 1,,2 ⊆  be sub-𝜎-algebras of  . The join of two 𝜎-algebras is denoted by 1 ∨ 2 ∶= 𝜎(1 ∪ 2). We write 1 ⟂⟂ 2 to 
indicate that 1 and 2 are independent. The expression E[𝑍 ∣ ] denotes the conditional expectation of a random variable 𝑍 given 
, and the conditional probability of 𝐴 ∈  given  is defined by P(𝐴 ∣ ) ∶= E[1𝐴 ∣ ], P-a.s. The notation 1 ⟂⟂ 2 indicates 
that 1 and 2 are conditionally independent given , i.e., for all 𝐺1 ∈ 1, 𝐺2 ∈ 2 we have P(𝐺1 ∩ 𝐺2 ∣ ) = P(𝐺1 ∣ )P(𝐺2 ∣ ), 
P-a.s. When conditioning on the 𝜎-algebra 𝜎(𝑌 ) = {{𝑌 ∈ 𝐵} ∶ 𝐵 ∈ (𝐸)} generated by a random variable 𝑌 , we write 𝑌  instead of 
𝜎(𝑌 ); e.g., E[𝑍 ∣ 𝑌 ] or  ⟂⟂  .
1 𝑌 2

3 
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2.2. Stochastic integration with respect to a two-sided Wiener process

Let (𝑊 𝑄
1 (𝑡))𝑡≥0, (𝑊 𝑄

2 (𝑡))𝑡≥0 be independent 𝑈 -valued standard 𝑄-Wiener processes for a given 𝑄 ∈ L +
1 (𝑈 ), see for instance [28, 

Section 2.1], and define

𝑊 𝑄(𝑡) ∶=

{

𝑊 𝑄
1 (𝑡), 𝑡 ∈ [0,∞);

𝑊 𝑄
2 (−𝑡), 𝑡 ∈ (−∞, 0).

Then the two-sided 𝑄-Wiener process 𝑊 𝑄 ∶= (𝑊 𝑄(𝑡))𝑡∈R satisfies the following:

(WP1) 𝑊 𝑄(𝑡) has mean zero and 𝑊 𝑄(𝑡) −𝑊 𝑄(𝑠) ∼ 𝑁(0, (𝑡 − 𝑠)𝑄) for 𝑡 ≥ 𝑠;
(WP2) 𝑊 𝑄 has continuous sample paths;
(WP3) 𝑊 𝑄(𝑡4) −𝑊 𝑄(𝑡3) ⟂⟂ 𝑊 𝑄(𝑡2) −𝑊 𝑄(𝑡1) for 𝑡1 < 𝑡2 ≤ 𝑡3 < 𝑡4.

One can define a stochastic integral with respect to such a process using a construction analogous to the one-sided case, as presented 
for instance in [28, Section 2.3]. Restricting ourselves to deterministic integrands 𝛷∶R → L (𝑈 ;𝑈 ), this procedure yields a square-
integrable stochastic integral ∫R𝛷(𝑡) d𝑊 𝑄(𝑡) belonging to 𝐿2(𝛺;𝑈 ) which exists if and only if 𝛷( ⋅ )𝑄 1

2 ∈ 𝐿2(R;L2(𝑈 ;𝑈 )); see Table 
1 for the definitions of these (Bochner) spaces. In this case, it satisfies the following Itô isometry: 

‖

‖

‖

‖

∫R
𝛷(𝑡) d𝑊 𝑄(𝑡)

‖

‖

‖

‖

2

𝐿2(𝛺;𝑈 )
= ∫R

‖𝛷(𝑡)𝑄
1
2
‖

2
L2(𝑈 ;𝑈 )

d𝑡. (2.1)

As in the one-sided case, we can extend the definition of the stochastic integral to allow for 𝑄 ∈ L +(𝑈 )⧵L +
1 (𝑈 ), cf. [28, Section 2.5].

Now we turn to the matter of R-indexed filtrations on (𝛺, ,P) associated to (𝑊 𝑄(𝑡))𝑡∈R. In the one-sided case, the integral 
process (∫ 𝑡0 𝛷(𝑟) d𝑊 𝑄

1 (𝑟)
)

𝑡≥0 is a martingale with respect to the filtration 
𝑊 𝑄

1
𝑡 ∶= 𝜎

(

𝑊 𝑄
1 (𝑠) ∶ 0 ≤ 𝑠 ≤ 𝑡

)

∨ 𝜎(P) whenever 
𝛷( ⋅ )𝑄

1
2 ∈ 𝐿2(0, 𝑡;L2(𝑈 ;𝑈 )) for all 𝑡 ∈ [0,∞), which is immediate from the definition of the stochastic integral.

In the two-sided case, we instead use the (completed) filtration (𝛿𝑊 𝑄
𝑡 )𝑡∈R generated by the increments of 𝑊 𝑄, defined by 

𝛿𝑊 𝑄
𝑡 ∶= 𝜎(𝑊 𝑄(𝑢) −𝑊 𝑄(𝑠) ∶ 𝑠 < 𝑢 ≤ 𝑡) ∨ 𝜎(P), 𝑡 ∈ R. (2.2)

Note that we have 𝛿𝑊 𝑄
𝑡 ⊆ 𝑊 𝑄

𝑡  for all 𝑡 ∈ R and 𝑊 𝑄
𝑡 = 𝛿𝑊 𝑄

𝑡  for 𝑡 ∈ [0,∞), where 𝑊 𝑄
𝑡  is generated by (𝑊 𝑄(𝑠))𝑠∈(−∞,𝑡] for each 

𝑡 ∈ R. We point out that (𝛿𝑊 𝑄
𝑡 )𝑡∈R is normal, cf. [2, Example 3.6]. By (WP3), the two-sided Wiener process (𝑊 𝑄(𝑡))𝑡∈R now satisfies 

that 𝑊 𝑄(𝑡)−𝑊 𝑄(𝑠′) ⟂⟂ 𝛿𝑊 𝑄
𝑠  for all 𝑠 ≤ 𝑠′ < 𝑡, so that, analogously to the one-sided case, (∫ 𝑡−∞𝛷(𝑟) d𝑊 𝑄(𝑟)

)

𝑡∈R is a martingale with 
respect to (𝛿𝑊 𝑄

𝑡 )𝑡∈R for every 𝛷( ⋅ )𝑄
1
2 ∈ 𝐿2(R;L2(𝑈,𝑈 )). Unlike (𝑊 𝑄

1 (𝑡))𝑡≥0, however, the process (𝑊 𝑄(𝑡))𝑡∈R itself will not be a 
martingale with respect to any filtration, see Proposition  A.5 in Appendix  A. We refer the reader to [2,3] for more details on the 
subject of real-valued martingale type processes indexed by R and stochastic integration with respect to them.

3. Markov properties for Hilbert space valued stochastic processes

Let 𝑋 = (𝑋(𝑡))𝑡∈T be a 𝑈 -valued stochastic process indexed by T, see Section 2.1. Intuitively, 𝑋 is said to be a Markov process 
if, at any instant, its past and future states are independent conditional on the present. Varying the amount of information from the 
present gives rise to different Markov properties, which we will list in decreasing order of strength.

3.1. Simple Markov property

The following definition is often just referred to as the Markov property, see also [10, p. 77] or [12, Equation (6.2), p. 81]. 

Definition 3.1.  An (𝑡)𝑡∈T-adapted 𝑈 -valued stochastic process (𝑋(𝑡))𝑡∈T is said to have the simple Markov property if for all 𝑠 ≤ 𝑡
and 𝐵 ∈ (𝑈 ), we have that P(𝑋(𝑡) ∈ 𝐵 ∣ 𝑠) = P(𝑋(𝑡) ∈ 𝐵 ∣ 𝑋(𝑠)) holds P-a.s.

The simple Markov property can also be characterized by means of transition operators: The process (𝑋(𝑡))𝑡∈T is simple Markov 
if and only if there exists a family (𝑇𝑠,𝑡)𝑠≤𝑡∈T of linear operators on 𝐵𝑏(𝑈 ) satisfying 

E[𝜑(𝑋(𝑡)) ∣ 𝑠] = 𝑇𝑠,𝑡𝜑(𝑋(𝑠)), P-a.s. (3.1)

In this case, the transition operators (𝑇𝑠,𝑡)𝑠≤𝑡∈T have the following properties:

(TO1) 𝑇𝑠,𝑡𝜑(𝑥) ≥ 0 for all 𝑥 ∈ 𝑈 if 𝜑 ∈ 𝐵𝑏(𝑈 ) is non-negative, 
(TO2) 𝑇𝑠,𝑡𝟏𝑈 = 𝟏𝑈 ,
(TO3) 𝑇𝑠,𝑢𝜑(𝑋(𝑠)) = 𝑇𝑠,𝑡𝑇𝑡,𝑢𝜑(𝑋(𝑠)), P-a.s., for 𝜑 ∈ 𝐵𝑏(𝑈 ) and 𝑠 ≤ 𝑡 ≤ 𝑢.

Lastly, we can also characterize the simple Markov property in terms of conditional independence: By Theorem  A.1 in Appendix 
A, the simple Markov property is equivalent to the fact that 𝑠 ⟂⟂𝑋(𝑠) 𝜎(𝑋(𝑡)) holds for all 𝑠 ≤ 𝑡. In fact, according to [20, Lemma 11.1], 
this is in turn equivalent to the statement that  ⟂⟂ 𝜎(𝑋(𝑡) ∶ 𝑡 ≥ 𝑠) for all 𝑠 ∈ T.
𝑠 𝑋(𝑠)
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3.2. Multiple Markov property

The following weaker notion of Markov behavior dates back to Doob, who introduced it in the context of stationary real-
valued Gaussian processes [11, pp. 271–272]. We generalize it to square-integrable 𝑈 -valued processes with some mean-square 
differentiability, i.e., (𝑋(𝑡))𝑡∈T ⊆ 𝐿2(𝛺;𝑈 ) such that the function 𝑡 ↦ 𝑋(𝑡) is classically differentiable from T to 𝐿2(𝛺;𝑈 ).

Definition 3.2.  Suppose that 𝑋 = (𝑋(𝑡))𝑡∈T ⊆ 𝐿2(𝛺;𝑈 ) is an (𝑡)𝑡∈T-adapted 𝑈 -valued stochastic process and let 𝑁 ∈ N. Then 𝑋
has the 𝑁-ple Markov property if it has 𝑁 − 1 mean square derivatives and, for 𝑠 ≤ 𝑡 in T and 𝐵 ∈ (𝑈 ),

P(𝑋(𝑡) ∈ 𝐵 ∣ 𝑠) = P(𝑋(𝑡) ∈ 𝐵 ∣ 𝑋(𝑠), 𝑋′(𝑠),… , 𝑋(𝑁−1)(𝑠)), P-a.s.

Setting 𝐗(𝑡) ∶= (𝑋(𝑘)(𝑡))𝑁−1
𝑘=0 , one defines a process taking values in the direct product Hilbert space (𝑈𝑁 , ⟨ ⋅ , ⋅ ⟩𝑈𝑁), where the 

inner product, given by ⟨𝐱, 𝐲⟩𝑈𝑁 ∶=
∑𝑁
𝑗=1⟨𝑥𝑗 , 𝑦𝑗⟩𝑈  for 𝐱 = (𝑥𝑗 )𝑁𝑗=1 and 𝐲 = (𝑦𝑗 )𝑁𝑗=1 ∈ 𝑈𝑁, induces the product topology on the set 𝑈𝑁. 

In particular, the Borel 𝜎-algebra of 𝑈𝑁  satisfies (𝑈𝑁 ) = ⊗𝑁(𝑈 ) by [20, Lemma 1.2]. Theorem  A.1 in Appendix  A again yields 
an equivalent formulation of the 𝑁-ple Markov property in terms of conditional independence: 

∀𝑠 ∈ T ∶ 𝑠 ⟂⟂𝐗(𝑠) 𝜎(𝑋(𝑡) ∶ 𝑡 ≥ 𝑠). (3.2)

Note that 𝜎(𝐗(𝑠)) ∨ 𝑠 = 𝑠 since the mean-square derivatives of 𝑋 can be replaced by left derivatives, see the proof of Proposition 
3.5 below. Arguing as in [20, Lemma 11.1], one can show that this is in turn equivalent to the simple Markov property for 𝐗. Thus, 
we can apply the characterization given by (3.1) to derive the following corollary.

Corollary 3.3.  An (𝑡)𝑡∈T-adapted and square-integrable 𝑈 -valued stochastic process 𝑋 = (𝑋(𝑡))𝑡∈T with 𝑁 − 1 mean-square derivatives 
is 𝑁-ple Markov if and only if there exists a family (𝑇𝑠,𝑡)𝑠≤𝑡∈T of linear operators on 𝐵𝑏(𝑈𝑁 ) such that E[𝜑(𝐗(𝑡)) ∣ 𝑠] = 𝑇𝑠,𝑡𝜑(𝐗(𝑠)) holds 
P-a.s. for all 𝑠 ≤ 𝑡 ≤ 𝑢 in T and 𝜑 ∈ 𝐵𝑏(𝑈𝑁 ). In this case, (𝑇𝑠,𝑡)𝑠≤𝑡∈T satisfies (TO1)–(TO3).

3.3. Weak Markov properties; relations between concepts

We now define two Markov properties for which the ‘‘present’’ at time 𝑠 ∈ T is represented by information from neighborhoods 
around 𝑠. As we will prove in Proposition  3.5 below, these two notions are equivalent. They appear in, e.g., [38, p. 62] and [18, 
Equation (5.87), p. 115].

Definition 3.4.  An (𝑡)𝑡∈T-adapted 𝑈 -valued stochastic process (𝑋(𝑡))𝑡∈T has
(i) the weak Markov property if, for every 𝑠 ∈ T, there exists 𝛿 > 0 such that for all 𝜀 ∈ (0, 𝛿) it holds that 𝑠 ⟂⟂A𝜀(𝑠) 𝜎(𝑋(𝑡) ∶ 𝑡 ≥ 𝑠), 

where A𝜀(𝑠) ∶= 𝜎(𝑋(𝑢) ∶ 𝑢 ∈ (𝑠 − 𝜀, 𝑠 + 𝜀) ∩ T);
(ii) the 𝜎-Markov property if for all 𝑠 ∈ T we have 𝑠 ⟂⟂𝜕A (𝑠) 𝜎(𝑋(𝑡) ∶ 𝑡 ≥ 𝑠), where 𝜕A (𝑠) ∶=

⋂

𝜀>0 A𝜀(𝑠).

Proposition 3.5.  Suppose that 𝑋 = (𝑋(𝑡))𝑡∈T is an (𝑡)𝑡∈T-adapted 𝑈 -valued stochastic process. We have the following relations between 
Markov properties:

simple Markov ⟹ 𝜎-Markov ⟺ weak Markov.
If 𝑁,𝑀 ∈ N are such that 𝑁 ≥𝑀 and 𝑋 has 𝑁 − 1 mean-square derivatives, then we moreover have

𝑀-ple Markov ⟹ 𝑁-ple Markov ⟹ weak Markov.

Proof.  If 𝑋 has the weak Markov property, then by definition we have the following identity for fixed 𝑠 ∈ T, 𝐵− ∈ 𝑠 and 
𝐵+ ∈ 𝜎(𝑋(𝑡) ∶ 𝑡 ≥ 𝑠): 

P(𝐵− ∣ A1∕𝑛(𝑠))P(𝐵+ ∣ A1∕𝑛(𝑠)) = P(𝐵− ∩ 𝐵+ ∣ A1∕𝑛(𝑠)), P-a.s., (3.3)

whenever 𝑛 ∈ N is large enough. Note that (G𝑛)𝑛∈N ∶= (A1∕𝑛(𝑠))𝑛∈N is a non-increasing sequence of sub-𝜎-algebras of  , i.e., a 
backward filtration on (𝛺, ,P). Therefore, (P(𝐵 ∣ G𝑛))𝑛∈N is a backward martingale with respect to (G𝑛)𝑛∈N for any 𝐵 ∈  . Combined 
with the fact that ⋂𝑛∈N G𝑛 = 𝜕A (𝑠), the backward martingale convergence theorem [16, Section 12.7, Theorem 4] implies that we 
may take the P-a.s. limit as 𝑛→ ∞ in (3.3) to find that 𝑋 is 𝜎-Markov.

Now let 𝑁,𝑀 ∈ N with 𝑁 ≥ 𝑀 be such that 𝑋 has the 𝑀-ple Markov property and 𝑁 − 1 mean-square derivatives. When 
considering 𝜎(𝑋′(𝑠)) at 𝑠 ∈ T, we can restrict ourselves to mean-square left derivatives, i.e., we consider the sequence 

(𝛥𝑛(𝑠))𝑛∈N ∶= (𝑛[𝑋(𝑠) −𝑋(𝑠 − 𝑛−1)])𝑛∈N (3.4)

converging to 𝑋′(𝑠) in the 𝐿2(𝛺;𝑈 )-norm as 𝑛 → ∞. Consequently, there exists a subsequence (𝛥𝑛𝑘 (𝑠))𝑘∈N such that 𝛥𝑛𝑘 (𝑠) → 𝑋′(𝑠), 
P-a.s., as 𝑘 → ∞. Since 𝛥𝑛𝑘 (𝑠) is 𝑠-measurable for each 𝑘 ∈ N, we conclude that 𝑋′(𝑠) is 𝑠-measurable and thus 𝜎(𝑋′(𝑠)) ⊆ 𝑠. By 
induction, this extends to

𝜎(𝑋(𝑠), 𝑋′(𝑠),… , 𝑋(𝑀−1)(𝑠)) ⊆ 𝜎(𝑋(𝑠), 𝑋′(𝑠),… , 𝑋(𝑁−1)(𝑠)) ⊆  ,
𝑠
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so that Lemma  A.2(b) yields the 𝑁-ple Markov property as formulated in (3.2).
It remains to show that the 𝑁-ple Markov property for 𝑁 ∈ N and the 𝜎-Markov property imply weak Markovianity of 𝑋. Fix 

𝑠 ∈ T, 𝜀 > 0, and set
′

1 ∶= 𝜎(𝑋(𝑢) ∶ 𝑢 ∈ (𝑠 − 𝜀, 𝑠] ∩ T) ⊆ 𝑠,

′
2 ∶= 𝜎(𝑋(𝑢) ∶ 𝑢 ∈ [𝑠, 𝑠 + 𝜀) ∩ T) ⊆ 𝜎(𝑋(𝑡) ∶ 𝑡 ∈ [𝑠,∞) ∩ T),

′ ∶= ′
1 ∨′

2 = A𝜀(𝑠).

Since 𝜎(𝑋(𝑠)) ⊆ 𝜕A (𝑠) ⊆ A𝜀(𝑠), by Lemma  A.2(c) the simple (i.e., 1-ple) Markov or 𝜎-Markov property of 𝑋 would imply 

𝑠 ⟂⟂A𝜀(𝑠) 𝜎(𝑋(𝑡) ∶ 𝑡 ∈ [𝑠,∞) ∩ T), (3.5)

and thus the weak Markov property since 𝜀 > 0 was arbitrary. It remains to show that (3.5) also holds if 𝑋 is 𝑁-ple Markov. Picking 
𝐾 ∈ N so large that 𝑛𝑘 > 𝜀−1 for all 𝑘 ≥ 𝐾, we find that (𝛥𝑛𝑘 (𝑠))𝑘≥𝐾 (see (3.4)) is a sequence of A𝜀(𝑠)-measurable random variables 
converging P-a.s. to 𝑋′(𝑠). As before, repeating this argument inductively yields  ∶= 𝜎(𝑋(𝑠), 𝑋′(𝑠),… , 𝑋(𝑁−1)(𝑠)) ⊆ A𝜀(𝑠). This 
justifies the use of Lemma  A.2(c) to establish (3.5) for the remaining case, and the desired conclusion follows. □

Remark 3.6.  An analog to Definition  3.4 for generalized 𝑈 -valued stochastic processes (𝑋(𝜙))𝜙∈𝐶∞
𝑐 (T) is obtained by replacing 

𝜎(𝑋(𝑢) ∶ 𝑢 ∈ 𝐽 ) with the 𝜎-algebra generated by 𝑋 on an open set 𝐽 ⊆ T, which is given by 𝜎(𝑋(𝜙) ∶ 𝜙 ∈ 𝐶∞
𝑐 (T), supp𝜙 ⊆ 𝐽 ). Since 

pointwise evaluation is not meaningful for such processes, there is no analog to the simple Markov property. Furthermore, although 
the proof of the fact that weak Markov implies 𝜎-Markov carries over, its converse now fails: The distributional derivative of white 
noise is a generalized process which is 𝜎-Markov but not weak Markov, see [38, p. 62].

3.4. Characterization of weakly Markov Gaussian processes

A 𝑈 -valued stochastic process 𝑋 = (𝑋(𝑡))𝑡∈T is said to be Gaussian if the 𝑈𝑛-valued random variable (𝑋(𝑡1), 𝑋(𝑡2),… , 𝑋(𝑡𝑛)) is 
Gaussian, for any 𝑛 ∈ N and {𝑡𝑖}𝑛𝑖=1 ⊆ T. For such processes, we shall characterize the weak Markov property of Definition  3.4 by 
extending the theory of Rozanov [38] from real-valued to 𝑈 -valued processes.

We consider the case of a mean-square continuous Gaussian process 𝑋 which is the solution of a stochastic evolution equation of 
the form 𝑋 = �̇�  for some linear operator ∶𝖣() ⊆ 𝐿2(T;𝑈 ) → 𝐿2(T;𝑈 ); here, �̇�  denotes spatiotemporal Gaussian white noise, 
cf. (1.1) and (1.4). More precisely, we assume that  has a bounded inverse −1 which colors 𝑋, cf. [9, Definition 3], meaning 

⟨𝑋,𝜙⟩𝐿2(T;𝑈 )
𝑑
= W ([−1]∗𝜙) ∀𝜙 ∈ 𝐶∞

𝑐 (T;𝑈 ), (3.6)

where 𝑑= indicates equality in distribution. Here, (W (𝑓 ))𝑓∈𝐿2(T;𝑈 ) ⊆ 𝐿2(𝛺) is an 𝐿2(T;𝑈 )-isonormal Gaussian process, i.e., a family 
of mean-zero and real-valued Gaussian random variables satisfying

⟨W (𝑓 ),W (𝑔)⟩𝐿2(𝛺) = ⟨𝑓, 𝑔⟩𝐿2(T;𝑈 ) ∀𝑓, 𝑔 ∈ 𝐿2(T;𝑈 ).

The following theorem then states that the locality of the precision operator ∗ is necessary for 𝑋 to be weakly Markov. 

Theorem 3.7.  Let ∶𝖣() ⊆ 𝐿2(T;𝑈 ) → 𝐿2(T;𝑈 ) be a boundedly invertible linear operator, and suppose that 𝑋 = (𝑋(𝑡))𝑡∈T is a 
mean-square continuous Gaussian 𝑈 -valued process colored by −1. Let 𝐹  be a dense subset of 𝑈 for which 𝐶∞

𝑐 (T;𝐹 ) ⊆ 𝖣(). Furthermore, 
suppose that 𝐶∞

𝑐 (T;𝐹 ) and its image under  are dense subsets of 𝐿2(T;𝑈 ).
If 𝑋 has the weak Markov property from Definition  3.4 with respect to its natural filtration (𝑋

𝑡 )𝑡∈T, then 

∀𝐽 ∈ I ∶ ⟨𝜙,𝜓⟩𝐿2(T;𝑈 ) = 0 ∀𝜙 ∈ 𝐶∞
𝑐 (𝐽 ;𝐹 ), 𝜓 ∈ 𝐶∞

𝑐 (T ⧵ 𝐽 ;𝐹 ), (3.7)

where I  denotes the set of all open intervals 𝐽 ⊆ T.

Proof.  For all 𝐽 ∈ I  we define a closed subspace H(𝐽 ) of 𝐿2(𝛺) by 

H(𝐽 ) ∶= {⟨𝑋,𝜙⟩𝐿2(T;𝑈 ) ∶ 𝜙 ∈ 𝐶∞
𝑐 (𝐽 ;𝐹 )}

𝐿2(𝛺)
. (3.8)

Then the family (H(𝐽 ))𝐽∈I  is a Gaussian random field in the sense of [38, Chapter 2, Section 3.1], and we can connect it to the 
present setting by showing that 𝜎(𝑋(𝑡) ∶ 𝑡 ∈ 𝐽 ) = 𝜎(H(𝐽 )). Indeed, we have 𝜎(H(𝐽 )) ⊆ 𝜎(𝑋(𝑡) ∶ 𝑡 ∈ 𝐽 ) since ⟨𝑋,𝜙⟩𝐿2(T;𝑈 ) is measurable 
with respect to the latter 𝜎-algebra for all 𝜙 ∈ 𝐶∞

𝑐 (𝐽 ;𝐹 ) with supp𝜙 ⊆ 𝐽 .
In order to establish the converse inclusion, it suffices to verify the claim that 𝑋(𝑡) is 𝜎(H(𝐽 ))-measurable for each 𝑡 ∈ 𝐽 . Let 

(𝑒𝑗 )𝑗∈N be an orthonormal basis of 𝑈 and write 

𝑋(𝑡) =
∑∞
𝑗=1⟨𝑋(𝑡), 𝑒𝑗⟩𝑈 𝑒𝑗 in 𝐿2(𝛺;𝑈 ). (3.9)

Now we will show that ⟨𝑋(𝑡), 𝑒𝑗⟩𝑈  is 𝜎(H(𝐽 ))-measurable for every 𝑗 ∈ N. In fact, by the density of 𝐹 ⊆ 𝑈 it suffices to 
consider ⟨𝑋(𝑡), 𝑥⟩  for 𝑥 ∈ 𝐹 . Let (𝜙 ) ⊆ 𝐶∞(𝐽 ) be a sequence of bump functions concentrating around 𝑡, i.e., we have 
𝑈 𝑛 𝑛∈N 𝑐
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lim𝑛→∞ ∫T 𝑓 (𝑠)𝜙𝑛(𝑠) d𝑠 = 𝑓 (𝑡) in 𝐸 for any 𝑓 ∈ 𝐶(T;𝐸), where 𝐸 is an arbitrary Banach space. It follows from the mean-square 
continuity of 𝑋 that 𝑓 ∶= ⟨𝑋( ⋅ ), 𝑥⟩𝑈 ∈ 𝐶(T;𝐿2(𝛺)), thus with 𝐸 ∶= 𝐿2(𝛺) we obtain

⟨𝑋(𝑡), 𝑥⟩𝑈 = lim
𝑛→∞∫T

⟨𝑋(𝑠), 𝑥⟩𝑈𝜙𝑛(𝑠) d𝑠 = lim
𝑛→∞∫T

⟨𝑋(𝑠), 𝜙𝑛(𝑠)𝑥⟩𝑈 d𝑠

in 𝐿2(𝛺). Passing to a P-a.s.-convergent subsequence in the rightmost expression, we find that ⟨𝑋(𝑡), 𝑥⟩𝑈  is a limit of 𝜎(H(𝐽 ))-
measurable random variables. Thus, each summand in (3.9) is 𝜎(H(𝐽 ))-measurable, and passing to a P-a.s.-convergent subsequence 
of (∑𝑁

𝑗=1⟨𝑋(𝑡), 𝑒𝑗⟩𝑈 𝑒𝑗 )𝑁∈N proves the claim.
The theory of [38, Chapter 2, Section 3.1], now implies that 𝑋 has the weak Markov property from Definition  3.4 if and only if 

(H(𝐽 ))𝐽∈I  is Markov in the sense of [38, p. 97]. For a general 𝐵 ⊆ T, we define 

H+(𝐵) ∶=
⋂

𝜀>0 H(𝐵𝜀), (3.10)

where 𝐵𝜀 ∶= {𝑡 ∈ T ∶ dist(𝑡, 𝐵) < 𝜀} denotes an open 𝜀-neighborhood of 𝐵. Using the definition (3.10) for 𝐵 ∈ {𝜕𝐽 , 𝐽 ,T ⧵ 𝐽}, the 
Markov property for (H(𝐽 ))𝐽∈I  implies that [38, Equations (3.14), p. 97] are satisfied for every 𝐽 ∈ I : 

H+(𝜕𝐽 ) = H+(𝐽 ) ∩ H+(T ⧵ 𝐽 ) and H+(𝐽 )⟂ ⟂ H+(T ⧵ 𝐽 )⟂, (3.11)

where we take 𝐿2(𝛺)-orthogonal complements in H(T).
Next we define 𝑋∗∶𝐶∞

𝑐 (T;𝐹 ) → 𝐿2(𝛺) by 𝑋∗(𝜙) ∶= W (𝜙), P-a.s., for all 𝜙 ∈ 𝐶∞
𝑐 (T;𝐹 ), to which we associate the spaces 

H∗(𝐽 ) ∶= {𝑋∗(𝜙) ∶ 𝜙 ∈ 𝐶∞
𝑐 (𝐽 ;𝐹 )}

𝐿2(𝛺)
, 𝐽 ∈ I . (3.12)

Then 𝑋∗ is dual to (⟨𝑋,𝜓⟩𝐿2(T;𝑈 ))𝜓∈𝐶∞
𝑐 (T;𝐹 ) in the sense that 

E[⟨𝑋,𝜙⟩𝐿2(T;𝑈 )𝑋
∗(𝜓)] = E[W ([−1]∗𝜙)W (𝜓)] = ⟨𝜙,𝜓⟩𝐿2(T;𝑈 ) (3.13)

for 𝜙,𝜓 ∈ 𝐶∞
𝑐 (T;𝐹 ). Next we will prove 

H(T) = H∗(T) (3.14)

by showing that both of these sets equal Z ∶= {W (𝑓 ) ∶ 𝑓 ∈ 𝐿2(T;𝑈 )}
𝐿2(𝛺)

. First, we note that H(T) and H∗(T) are clearly contained 
in Z . Now let 𝑍 ∈ Z  and 𝜀 > 0 be arbitrary, and let 𝑓 ∈ 𝐿2(T;𝑈 ) satisfy ‖W (𝑓 )−𝑍‖𝐿2(𝛺) <

1
3 𝜀. Since the image of 𝐶∞

𝑐 (T;𝐹 ) under 
 is assumed to be dense in 𝐿2(T;𝑈 ), we may furthermore choose 𝜙 ∈ 𝐶∞

𝑐 (T;𝐹 ) such that ‖𝜙 − 𝑓‖𝐿2(𝛺;𝑈 ) <
2
3 𝜀. Then

‖𝑍 −𝑋∗(𝜙)‖𝐿2(𝛺) ≤ ‖𝑍 − W (𝑓 )‖𝐿2(𝛺) + ‖W (𝜙 − 𝑓 )‖𝐿2(𝛺)

= ‖𝑍 − W (𝑓 )‖𝐿2(𝛺) + ‖𝜙 − 𝑓‖𝐿2(T;𝑈 ) < 𝜀,

which shows 𝑍 ∈ H∗(T) since 𝜀 > 0 was arbitrary. On the other hand, since  is densely defined and has a bounded inverse, it is in 
particular closed, hence ∗ exists and is also densely defined by [42, Proposition 10.22]. It follows that the range of (−1)∗ = (∗)−1, 
which equals 𝖣(∗), is dense in 𝐿2(T;𝑈 ), so that there exists a 𝑔 ∈ 𝐿2(T;𝑈 ) satisfying ‖𝑓 − (−1)∗𝑔‖𝐿2(T;𝑈 ) <

1
3 𝜀. Finally, we choose 

𝜓 ∈ 𝐶∞
𝑐 (T;𝐹 ) such that ‖𝜓 − 𝑔‖𝐿2(T;𝑈 ) < ‖(−1)∗‖−1

L (𝐿2(T;𝑈 ))
1
3 𝜀 so that

∥ 𝑍 − ⟨𝑋,𝜓⟩𝐿2(T;𝑈 ) ∥𝐿2(𝛺) <
1
3 𝜀 + ‖W (𝑓 − [−1]∗𝑔)‖𝐿2(𝛺) + ‖W ([−1]∗(𝑔 − 𝜓))‖𝐿2(𝛺)

= 1
3 𝜀 + ‖𝑓 − [−1]∗𝑔‖𝐿2(T;𝑈 ) + ‖[−1]∗(𝑔 − 𝜓)‖𝐿2(T;𝑈 ) < 𝜀,

hence also 𝑍 ∈ H(T). We conclude that (3.14) holds.
The necessity of (3.7) for the weak Markov property of 𝑋 will follow from 

H∗(𝐽 ) ⊆ H+(T ⧵ 𝐽 )⟂ ∀𝐽 ∈ I . (3.15)

Indeed, if 𝑋 is weakly Markov, then (3.15) in combination with (3.11) would imply that the random variables defined by
𝜉 ∶= 𝑋∗(𝜙) ∈ H∗(𝐽 ) ⊆ H+(T ⧵ 𝐽 )⟂ and 𝜂 ∶= 𝑋∗(𝜓) ∈ H∗(T ⧵ 𝐽 ) ⊆ H+(𝐽 )⟂,

are orthogonal, where 𝜙 ∈ 𝐶∞
𝑐 (𝐽 ;𝐹 ) and 𝜓 ∈ 𝐶∞

𝑐 (T ⧵ 𝐽 ;𝐹 ). Therefore, we have 0 = ⟨𝜉, 𝜂⟩𝐿2(𝛺) = E[𝑋∗(𝜙)𝑋∗(𝜓)] = ⟨𝜙,𝜓⟩𝐿2(T;𝑈 ),
which shows (3.7). Note that by definition (3.12) and density, the orthogonality extends to all 𝜉 ∈ H∗(𝐽 ) and 𝜂 ∈ H∗(T ⧵ 𝐽 ).

In order to verify (3.15), we again take 𝜉 = 𝑋∗(𝜙) with 𝜙 as above. By the compact support of the latter, there exists 𝜀 > 0 such 
that ⟨𝜙,𝜓⟩𝐿2(T;𝑈 ) = 0 for all 𝜓 ∈ 𝐶∞

𝑐 ((T ⧵ 𝐽 )𝜀;𝐹 ). Hence, for 𝜂 = ⟨𝑋,𝜓⟩𝐿2(T;𝑈 ) ∈ H((T ⧵ 𝐽 )𝜀) we have 𝜉 ⟂ 𝜂 by (3.13), from which we 
can deduce 𝜉 ⟂ H+(T ⧵ 𝐽 ), and thus (3.15). □

In order to state and prove sufficient conditions for weak Markovianity of 𝑋 in terms of the locality of its precision operator, we 
first need to collect some definitions which are based on objects encountered in the proof of Theorem  3.7. Namely, we will define 
spaces ((𝐽 ))𝐽∈I  such that (T) is unitarily isomorphic to H(T) and there exists a dense injection 𝜄∶𝐶∞

𝑐 (T;𝐹 ) → (T).
Associating, to each 𝜂 ∈ H(T), a mapping 𝐼−1𝜂∶𝐶∞

𝑐 (T;𝐹 ) → R given by 

𝐼−1𝜂(𝜙) ∶= E[⟨𝑋,𝜙⟩ 𝜂], 𝜙 ∈ 𝐶∞(T;𝐹 ), (3.16)
𝐿2(T;𝑈 ) 𝑐
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sets up a linear map 𝐼−1∶H(T) → (T), where (T) is defined as the range of 𝐼−1. It is also injective since 𝐼−1𝜂(𝜙) = 0 for all 
𝜙 ∈ 𝐶∞

𝑐 (T;𝐹 ) means 𝜂 ⟂ 𝐶∞
𝑐 (T;𝐹 ) in H(T), and thus 𝜂 = 0 by (3.8).

We equip (T) with the inner product ⟨𝑣1, 𝑣2⟩(T) ∶= ⟨𝐼𝑣1, 𝐼𝑣2⟩𝐿2(𝛺) for 𝑣1, 𝑣2 ∈ H(T), rendering 𝐼∶(T) → H(T) a unitary 
isomorphism. For 𝐽 ∈ I  we can then define 

(𝐽 ) ∶=
⋁

𝜀>0 {𝑣 ∈ (T) ∶ 𝑣(𝜙) = 0 for all 𝜙 ∈ 𝐶∞
𝑐 ((T ⧵ 𝐽 )𝜀;𝐹 )}, (3.17)

where ⋁ denotes the closed linear span.
A dense injection 𝜄∶𝐶∞

𝑐 (T;𝐹 ) → (T) is obtained by defining 𝜄𝑣∶𝐶∞
𝑐 (T;𝐹 ) → R in the following way, for any 𝑣 ∈ 𝐶∞

𝑐 (T;𝐹 ):

𝜄𝑣(𝜙) ∶= ⟨𝑣, 𝜙⟩𝐿2(T;𝑈 ), 𝜙 ∈ 𝐶∞
𝑐 (T;𝐹 ).

Indeed, we find 𝜄𝑣 ∈ (T) since the duality relations (3.13) and (3.14) between 𝑋 and 𝑋∗ imply that 𝑋∗(𝑣) ∈ H∗(T) = H(T) satisfies
𝜄𝑣(𝜙) = E[⟨𝑋,𝜙⟩𝐿2(T;𝑈 )𝑋

∗(𝑣)] = [𝐼−1𝑋∗(𝑣)](𝜙) ∀𝜙 ∈ 𝐶∞
𝑐 (T;𝐹 ).

Moreover, the injectivity follows in the same way as for 𝐼−1. To show density of the range, fix an arbitrary 𝑣 ∈ (T). Then 
𝐼𝑣 ∈ H(T) = H∗(T) and thus there exists a sequence (𝜓𝑛)𝑛∈N ⊆ 𝐶∞

𝑐 (T;𝐹 ) such that 𝑋∗(𝜓𝑛) → 𝐼𝑣 in 𝐿2(𝛺). Consequently, we have 
𝜄𝜓𝑛 = 𝐼−1𝑋∗(𝜓𝑛) → 𝑣 in (T).

Remark 3.8.  For centered, real-valued Gaussian random fields (𝑍(𝑥))𝑥∈  which are indexed by a compact metric space ( , 𝑑 ) and 
moreover mean-square continuous, a unitary isomorphism can be established between the 𝐿2(𝛺;R)-closure of all linear combinations 
of point evaluations and the dual of the Cameron–Martin space for its associated Gaussian measure on the space 𝐿2( ;R), see [22, 
Lemma 4.1(iii)]. We point out its analogy to the unitary isomorphism 𝐼 between (T) and H(T) defined above.

Theorem 3.9.  Let the linear operator ∶𝖣() ⊆ 𝐿2(T;𝑈 ) → 𝐿2(T;𝑈 ), the 𝑈 -valued process 𝑋 = (𝑋(𝑡))𝑡∈T and the subset 𝐹 ⊆ 𝑈 be as 
in Theorem  3.7. Recall that (T) is the range of the linear mapping 𝐼−1 defined by (3.16) and (𝐽 ) is given by (3.17) for all 𝐽 ∈ I . If 

(𝐽 ) = 𝜄𝐶∞
𝑐 (𝐽 ;𝐹 )

(T)
∀𝐽 ∈ I , (3.18)

then (3.7) implies that 𝑋 has the weak Markov property from Definition  3.4.

Proof.  We will show that, under the additional assumption (3.18), 
H∗(𝐽 ) = H+(T ⧵ 𝐽 )⟂ ∀𝐽 ∈ I . (3.19)

Note that inclusion (3.15) also holds without this assumption, see the proof of Theorem  3.7. Identities (3.14) and (3.19) express 
that the collections (H(𝐽 ))𝐽∈I  and (H∗(𝐽 ))𝐽∈I  are dual in the sense of [38, Chapter 2, Section 3.5]. In this situation, the theorem 
on [38, p. 100] yields that 𝑋 is weakly Markov if and only if (H∗(𝐽 ))𝐽∈I  is orthogonal, meaning that H∗(𝐽 ) ⟂ H∗(T ⧵ 𝐽 ) for all 
𝐽 ∈ I , which is equivalent to (3.7) by the respective definitions of 𝑋∗ and (H∗(𝐽 ))𝐽∈I .

To verify (3.19), note that for each 𝜀 > 0,

H((T ⧵ 𝐽 )𝜀)⟂ = {𝜂 ∈ H(T) ∶ ⟨𝜂, 𝜉⟩𝐿2(𝛺) = 0 for all 𝜉 ∈ H((T ⧵ 𝐽 )𝜀)}

= {𝜂 ∈ H(T) ∶ 𝑈−1𝜂(𝜙) = 0 for all 𝜙 ∈ 𝐶∞
𝑐 ((T ⧵ 𝐽 )𝜀;𝐹 )}

≅ {𝑣 ∈ (T) ∶ 𝑣(𝜙) = 0 for all 𝜙 ∈ 𝐶∞
𝑐 ((T ⧵ 𝐽 )𝜀;𝐹 )},

and it follows that (𝐽 ) ≅ H+(T ⧵ 𝐽 )⟂. On the other hand, definition (3.12) implies (𝐽 ) ≅ H∗(𝐽 ), so together we indeed 
find (3.19). □

Remark 3.10.  In order for locality of the precision operator ∗ to imply the weak Markovianity of 𝑋, one needs to verify the 
additional condition (3.18). In the real-valued case, two examples of sufficient conditions on  for (3.18) to hold are [38, Lemmas 1 
and 2, pp. 108–111], which are expressed in terms of boundedness of multiplication and translation operators, respectively, with 
respect to the norms ‖(−1)∗ ⋅ ‖𝐿2(T) and/or ‖ ⋅ ‖𝐿2(T). In [38, Chapter 3, Section 3.2], these results are applied to differential 
operators with sufficiently regular coefficients.

Although it is expected that analogous results can be derived in the 𝑈 -valued setting, this subject is out of scope for the processes 
considered in the remainder of this article, since we establish Markovianity using direct methods instead of Theorem  3.9, see 
Section 4.4. However, we do use Theorem  3.7 to show when the process lacks Markov behavior in Section 4.4.3.

4. Fractional stochastic abstract Cauchy problem on R

The aim of this section is to define a Hilbert space valued stochastic process (𝑍𝛾 (𝑡))𝑡∈R which can be interpreted as a mild solution
to the equation 

(𝜕𝑡 + 𝐴)𝛾𝑋(𝑡) = �̇� 𝑄(𝑡), 𝑡 ∈ R, 𝛾 ∈ (1∕2,∞). (4.1)

In Section 4.1 we specify the setting in which equation (4.1) will be considered. The fractional parabolic integral operator (𝜕𝑡+𝐴)−𝛾
is defined in Section 4.2, whereas the noise term �̇� 𝑄 in (4.1) is the formal time derivative of the two-sided 𝑄-Wiener process 
8 
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defined in Section 2.2. In Section 4.3 we combine these two notions to give a rigorous definition of the process (𝑍𝛾 (𝑡))𝑡∈R, and we 
indicate its relation to the fractional 𝑄-Wiener process defined in Section 5. Lastly, in Section 4.4 we prove that (𝑍𝛾 (𝑡))𝑡∈R is 𝑁-ple 
Markov if 𝛾 = 𝑁 ∈ N, but in general does not satisfy the weak Markov property when 𝛾 ∉ N.

4.1. Setting

The standing assumption throughout this section on the Hilbert space 𝑈 and the linear operator 𝐴 is as follows.

Assumption 4.1.  The linear operator −𝐴∶𝖣(𝐴) ⊆ 𝑈 → 𝑈 on the separable real Hilbert space 𝑈 generates an exponentially stable
𝐶0-semigroup (𝑆(𝑡))𝑡≥0 of bounded linear operators on 𝑈 , i.e., 

∃𝑀0 ∈ [1,∞), 𝑤 ∈ (0,∞) ∶ ∀𝑡 ∈ [0,∞) ∶ ‖𝑆(𝑡)‖L (𝑈 ) ≤𝑀0𝑒
−𝑤𝑡. (4.2)

In addition, we may assume one or both of the following conditions on the fractional power 𝛾 and the linear operator 𝑄: 

Assumption 4.2. 
(i) There exist 𝛾0 ∈ (1∕2,∞) and 𝑄 ∈ L +(𝑈 ) such that

∫

∞

0
‖𝑡𝛾0−1𝑆(𝑡)𝑄

1
2
‖

2
L2(𝑈 ) d𝑡 < ∞.

(ii) The 𝐶0-semigroup (𝑆(𝑡))𝑡≥0 is analytic.
For a more extensive overview of the theory of 𝐶0-semigroups, the reader is referred to [14,34]. Note that the results in these 

works, while stated for complex Hilbert spaces, can be applied to the real setting by employing complexifications of (linear operators 
on) 𝑈 , see e.g. Subsection B.2.1 of [23, Appendix B].

We remark that (1∕2,∞) is the maximal range on which Assumption  4.2(i) can hold. Moreover, if Assumption  4.2(i) holds for 
some 𝛾0 ∈ (1∕2,∞) then the same is true for all 𝛾 ′ ∈ [𝛾0,∞); see Appendix  A.2.

Under Assumption  4.2(ii), we have d
d𝑡𝐴

𝑗𝑆(𝑡) = −𝐴𝑗+1𝑆(𝑡) as the classical derivative from (0,∞) to L (𝑈 ) for all 𝑗 ∈ N; moreover,

∃𝑀𝑗 ∈ [1,∞)∶ ∀𝑡 ∈ (0,∞) ∶ ‖𝐴𝑗𝑆(𝑡)‖L (𝑈 ) ≤𝑀𝑗 𝑡
−𝑗𝑒−𝑤𝑡 (4.3)

by [34, Chapter 2, Theorem 6.13(c)].

4.2. Fractional parabolic calculus and the deterministic problem

In this section we first consider the following deterministic counterpart to Eq.  (4.1): 
(𝜕𝑡 + 𝐴)𝛾𝑢(𝑡) = 𝑓 (𝑡), 𝑡 ∈ R, 𝛾 ∈ (0,∞), (4.4)

where 𝑓 ∈ 𝐿2(R;𝑈 ). In order to define its mild solution, we introduce the operation of fractional parabolic integration, generalizing 
the scalar-valued setting with 𝐴 = 0 which is treated in [21, Chapter 2].

Definition 4.3.  Let Assumption  4.1 hold. Given 𝑓∶R → 𝑈 , we define its Weyl type fractional parabolic integral I𝛾𝑓∶R → 𝑈 of order 
𝛾 ∈ (0,∞) by 

I𝛾𝑓 (𝑡) ∶= 1
𝛤 (𝛾) ∫

𝑡

−∞
(𝑡 − 𝑠)𝛾−1𝑆(𝑡 − 𝑠)𝑓 (𝑠) d𝑠 (4.5)

if this Bochner integral exists for almost all 𝑡 ∈ R.

Viewing I𝛾 as a linear operator, it turns out that for all 𝑝 ∈ [1,∞], we have I𝛾 ∈ L (𝐿𝑝(R;𝑈 )) with ‖I𝛾‖L (𝐿𝑝(R;𝑈 )) ≤
𝑀0
𝑤𝛾 , which 

follows by combining estimate (4.2) with Minkowski’s integral inequality [41, Section A.1]. Setting I0 ∶= Id𝑈 , the family (I𝛾 )𝛾≥0 is 
a semigroup of bounded operators on 𝐿2(R;𝑈 ). Indeed, the semigroup law I𝛾1+𝛾2 = I𝛾1I𝛾2 , for all 𝛾1, 𝛾2 ∈ [0,∞), follows from an 
argument involving Fubini’s theorem and [33, Equation (5.12.1)]. The adjoint operator I𝛾∗ of I𝛾 satisfies the following formula: 

I𝛾∗𝑓 (𝑡) = 1
𝛤 (𝛾) ∫

∞

𝑡
(𝑠 − 𝑡)𝛾−1[𝑆(𝑠 − 𝑡)]∗𝑓 (𝑠) d𝑠 for all 𝑡 ∈ R. (4.6)

Given 𝑇∶𝖣(𝑇 ) ⊆ 𝑈 → 𝑈 and a measure space (𝑆,A , 𝜇), we define the Bochner space counterpart 𝑆∶𝖣(𝑆 ) ⊆ 𝐿2(𝑆;𝑈 ) → 𝐿2(𝑆;𝑈 )
of 𝑇  by 

𝖣(𝑆 ) = 𝐿2(𝑆;𝖣(𝑇 )) and [𝑆𝑓 ](𝑠) ∶= 𝑇𝑓 (𝑠), a.a. 𝑠 ∈ 𝑆, 𝑓 ∈ 𝖣(𝑆 ). (4.7)

Using the above notation with 𝑇 ∶= 𝐴 and 𝑆 ∶= R, we have
(𝜕𝑡 +R)𝑓 = 𝜕𝑡𝑓 +R𝑓, 𝑓 ∈ 𝖣(𝜕𝑡 +R) = 𝐻1(R;𝑈 ) ∩ 𝐿2(R;𝖣(𝐴)),

where 𝜕𝑡 denotes the Bochner–Sobolev weak derivative, whose domain is given by 𝖣(𝜕𝑡) = 𝐻1(R;𝑈 ) ⊂ 𝐿2(R;𝑈 ); see Table  1. Since 
I𝛾 can be interpreted as a negative fractional power of 𝜕 + , see Appendix  B, it is natural to call I𝛾𝑓 a mild solution to (4.4).
𝑡 R
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4.3. Mild solution process

Combining the spatiotemporal fractional integration theory from Section 4.2 with the stochastic integral defined in Section 2.2, 
we can give a rigorous definition for the mild solution to (4.1). We first introduce the notion of predictability for a stochastic process 
indexed by R.

Definition 4.4.  An (𝑡)𝑡∈R-adapted 𝑈 -valued process (𝑋(𝑡))𝑡∈R is predictable with respect to (𝑡)𝑡∈R if (𝑡, 𝜔) ↦ 𝑋(𝑡, 𝜔) is strongly 
measurable with respect to the predictable 𝜎-algebra R×𝛺 ∶= 𝜎((𝑠, 𝑡] × 𝐹𝑠 ∶ 𝑠 < 𝑡, 𝐹𝑠 ∈ 𝑠) ∨ 𝜎(P).

Definition 4.5.  Let Assumption  4.1 be satisfied and let 𝛾 ∈ (1∕2,∞) be such that Assumption  4.2(i) holds with 𝛾0 = 𝛾. An 
(𝛿𝑊 𝑄
𝑡 )𝑡∈R-predictable modification of the process 𝑍𝛾 = (𝑍𝛾 (𝑡))𝑡∈R defined by 

𝑍𝛾 (𝑡) ∶=
1

𝛤 (𝛾) ∫

𝑡

−∞
(𝑡 − 𝑠)𝛾−1𝑆(𝑡 − 𝑠) d𝑊 𝑄(𝑠), 𝑡 ∈ R, (4.8)

is said to be a mild solution to (4.1).
Note that the stochastic integral on the right-hand side of (4.8) is convergent, i.e., it is a well-defined element in 𝐿2(𝛺;𝐻), for 

each 𝑡 ∈ R. This is a direct consequence of Assumption  4.2(i) and the Itô isometry (2.1). Moreover, by Definition  4.5, the mild 
solution process is unique up to modification.

Proposition 4.6.  Let Assumption  4.1 be satisfied. Suppose that 𝑡0 ∈ [−∞,∞), 𝛾 ∈ (1∕2,∞) are given. Define T ∶= [𝑡0,∞) if 𝑡0 ∈ R or 
T ∶= R if 𝑡0 = −∞ and let Assumption  4.2(i) hold for 𝛾0 = 𝛾. The process (𝑍𝛾 (𝑡 ∣ 𝑡0))𝑡∈T defined by 

𝑍𝛾 (𝑡 ∣ 𝑡0) ∶=
1

𝛤 (𝛾) ∫

𝑡

𝑡0
(𝑡 − 𝑠)𝛾−1𝑆(𝑡 − 𝑠) d𝑊 𝑄(𝑠), 𝑡 ∈ T, (4.9)

where 𝑍𝛾 ( ⋅ ∣ −∞) ∶= 𝑍𝛾 , is mean-square continuous on T.
If in addition Assumption  4.2(ii) is satisfied and there exists 𝑁 ∈ N such that Assumption  4.2(i) holds for 𝛾0 = 𝛾−𝑁 , then (𝑍𝛾 (𝑡 ∣ 𝑡0))𝑡∈T

has 𝑁 mean square derivatives and, for all 𝑡 ∈ [𝑡0,∞) and 𝑛 ∈ {0,… , 𝑁 − 1}, we have 
( d
d𝑡 + 𝐴

) d𝑛
d𝑡𝑛𝑍𝛾 (𝑡 ∣ 𝑡0) =

d𝑛
d𝑡𝑛𝑍𝛾−1(𝑡 ∣ 𝑡0). (4.10)

Remark 4.7.  The first part of Proposition  4.6 asserts that 𝑍𝛾 is mean-square continuous, and thus continuous in probability. 
Combined with the fact that (𝑍𝛾 (𝑡))𝑡∈R is 

(

𝛿𝑊 𝑄
𝑡

)

𝑡∈R-adapted by definition, we can apply [10, Proposition 3.7(ii)] (the proof of 
which can be generalized to unbounded index sets) to find an (𝛿𝑊 𝑄

𝑡 )𝑡∈R-predictable modification of (𝑍𝛾 (𝑡))𝑡∈R. This modification 
is a mild solution in the sense of Definition  4.5.

Proof of Proposition  4.6.  The mean-square continuity follows by Lemma  A.6 in Appendix  A, hence we turn to the mean-square 
differentiability. Define

𝑍𝛽,𝑗 (𝑡) ∶=
1

𝛤 (𝛽) ∫

𝑡

𝑡0
(𝑡 − 𝑠)𝛽−1𝐴𝑗𝑆(𝑡 − 𝑠) d𝑊 𝑄(𝑠), 𝑡 ∈ [𝑡0,∞),

for 𝑗 ∈ N0 and 𝛽 ∈ (1∕2,∞) such the right-hand side exists.
We claim that, under Assumption  4.2(i)–(ii) with 𝛾0 = 𝛾 − 𝑁 , the function 𝑡 ↦ 𝑡𝛽−1𝐴𝑗𝑆(𝑡)𝑄

1
2  belongs to 𝐻1

0 (0,∞;L2(𝑈 )) if 
𝛽 − 𝑗 − 𝛾 +𝑁 ∈ [1,∞). To this end, we first note that the product rule for the (classical) derivative yields

d
d𝑡 𝑡

𝛽−1𝐴𝑗𝑆(𝑡)𝑄
1
2 = (𝛽 − 1)𝑡𝛽−2𝐴𝑗𝑆(𝑡)𝑄

1
2 − 𝑡𝛽−1𝐴𝑗+1𝑆(𝑡)𝑄

1
2

with values in L (𝑈 ) for all 𝑡 ∈ (0,∞). Combining (4.3) with an argument involving a change of variables and the semigroup property 
(cf. the proof of Lemma  A.4 in Appendix  A), one can show that the 𝐿2(0,∞;L2(𝑈 ))-norms of the two functions on the right-hand 
side can be estimated by that of the function 𝑡 ↦ 𝑡𝛽−𝑗−2𝑆(𝑡)𝑄

1
2 , which is finite since 𝛽 − 𝑗 − 1 ≥ 𝛾0. Again by (4.3), we have

‖𝑡𝛽−1𝐴𝑗𝑆(𝑡)𝑄
1
2
‖L (𝑈 ) ≤𝑀𝑗 𝑡

𝛽−𝑗−1
‖𝑄

1
2
‖L (𝑈 ) → 0 as 𝑡 ↓ 0

since 𝛽 − 𝑗 − 1 ≥ 𝛾0 > 0. Noting that L2(𝑈 ) ↪ L (𝑈 ) and using [23, Lemma A.9] then proves the claim.
Thus, we may apply Lemma  A.6 from Appendix  A, write the result as two separate integrals, and pull the closed operator 𝐴 out 

of the stochastic integral defining 𝑍𝛽,𝑗+1 (cf. [10, Proposition 4.30]) to find

𝑍′
𝛽,𝑗 (𝑡) = 𝑍𝛽−1,𝑗 (𝑡) −𝑍𝛽,𝑗+1(𝑡). (4.11)

= 𝑍𝛽−1,𝑗 (𝑡) − 𝐴𝑍𝛽,𝑗 (𝑡). (4.12)

Rearranging equation (4.12) for 𝛽 = 𝛾 and 𝑗 = 0 implies (4.10) for 𝑛 = 0. Applying (4.11) iteratively, we find that 𝑍𝛽,𝑗 has the 𝑛th 
mean-square derivative 

𝑍(𝑛)
𝛽,𝑗 (𝑡) =

𝑛
∑

(−1)𝑚
(

𝑛
)

𝑍𝛽−𝑛+𝑚,𝑗+𝑚(𝑡), (4.13)

𝑚=0 𝑚
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provided that 𝛽 − 𝑗 − 𝛾 +𝑁 ∈ [𝑛,∞). Now we again let 𝛽 = 𝛾 and 𝑗 = 0 and apply (4.12) with 𝛽′ = 𝛾 − 𝑛+𝑚 and 𝑗′ = 𝑚 to each term 
on the right-hand side to derive (4.10) for the remaining values of 𝑛. □

The next result concerns the covariance structure of the process 𝑍𝛾 . Define the covariance operators (𝑄𝑍𝛾 (𝑠, 𝑡))𝑠,𝑡∈R ⊆ L +
1 (𝑈 ) of 

𝑍𝛾 via the relation 

⟨𝑄𝑍𝛾 (𝑠, 𝑡)𝑥, 𝑦⟩𝑈 = E
[⟨

𝑍𝛾 (𝑠) − E
[

𝑍𝛾 (𝑠)
]

, 𝑥
⟩

𝑈

⟨

𝑍𝛾 (𝑡) − E[𝑍𝛾 (𝑡)], 𝑦
⟩

𝑈

]

for all 𝑠, 𝑡 ∈ R and 𝑥, 𝑦 ∈ 𝑈 ; (4.14)

note that E[𝑍𝛾 ( ⋅ )
]

≡ 0 in this case. The following proposition states that if 𝐴 ∶= 𝜅 Id𝑈 , then 𝑄𝑍𝛾 (𝑠, 𝑡) is separable, i.e., it can be 
decomposed into a (scalar) covariance function depending only on the ‘time’ variables 𝑠, 𝑡 ∈ R, and a ‘spatial’ covariance operator 
acting on 𝑈 . Moreover, the temporal factor takes the form of a Matérn covariance function (1.2). In the language of spatiotemporal 
statistics, 𝑍𝛾 has a marginal temporal covariance structure of Matérn type. This motivates the statistical relevance of 𝑍𝛾 .

Proposition 4.8.  Let 𝛾 ∈ (1∕2,∞), 𝐴 ∶= 𝜅 Id𝑈  with 𝜅 ∈ (0,∞) and suppose that Assumption  4.2(i) is satisfied for 𝛾0 = 𝛾. Then the 
covariance of 𝑍𝛾 is separable and its temporal part is of Matérn type, i.e.,

∀𝑠, 𝑡 ∈ R, 𝑠 ≠ 𝑡 ∶ 𝑄𝑍𝛾 (𝑠, 𝑡) =
2

1
2−𝛾𝜅1−2𝛾
√

𝜋 𝛤 (𝛾)
(𝜅|𝑡 − 𝑠|)𝛾−

1
2𝐾𝛾− 1

2
(𝜅|𝑡 − 𝑠|)𝑄.

Proof.  For 𝐴 = 𝜅 Id𝑈 , Assumption  4.1 is trivially satisfied and the definition of 𝑍𝛾 takes on the following form for all 𝑡 ∈ R:

𝑍𝛾 (𝑡) =
1

𝛤 (𝛾) ∫

𝑡

−∞
(𝑡 − 𝑟)𝛾−1𝑒−𝜅(𝑡−𝑟) d𝑊 𝑄(𝑟) = ∫R

𝑘𝛾,𝜅 (𝑡 − 𝑟) d𝑊 𝑄(𝑟),

with real-valued convolution kernel 𝑘𝛾,𝜅 (𝑡) ∶= 1
𝛤 (𝛾) 𝑡

𝛾−1
+ 𝑒−𝜅𝑡, where 𝑡𝛾−1+ ∶= 𝑡𝛾−1 if 𝑡 ∈ [0,∞) and 𝑡𝛾−1+ ∶= 0 otherwise. Define 

𝑘(𝑠, 𝑟; 𝑥) ∈ L (𝑈 ;R) for 𝑠, 𝑟 ∈ R and 𝑥 ∈ 𝑈 by ̃𝑘(𝑠, 𝑟; 𝑥)ℎ ∶= 𝑘𝛾,𝜅 (𝑠− 𝑟)⟨𝑥, ℎ⟩𝑈  for all ℎ ∈ 𝑈 . Then combining the Itô isometry (2.1) and 
the polarization identity yields

E[⟨𝑍𝛾 (𝑠), 𝑥⟩𝑈 ⟨𝑍𝛾 (𝑡), 𝑦⟩𝑈 ] = E
[

∫R
�̃�(𝑠, 𝑟; 𝑥) d𝑊 𝑄(𝑟)∫R

�̃�(𝑡, 𝑟; 𝑦) d𝑊 𝑄(𝑟)
]

= ∫R
⟨�̃�(𝑠, 𝑟; 𝑥)𝑄, �̃�(𝑡, 𝑟; 𝑦)⟩L2(𝑈 ;R) d𝑟 =

⟨

∫R
𝑘𝛾,𝜅 (𝑠 − 𝑟)𝑘𝛾,𝜅 (𝑡 − 𝑟) d𝑟𝑄𝑥, 𝑦

⟩

𝑈
.

Since 𝑥, 𝑦 ∈ 𝑈 were arbitrary, we find for all ℎ ∈ R ⧵ {0} the covariance operators

𝑄𝑍𝛾 (𝑡 + ℎ, 𝑡) = 𝑄𝑍𝛾 (𝑡, 𝑡 + ℎ) = ∫R
𝑘𝛾,𝜅 (𝑡 − 𝑟)𝑘𝛾,𝜅 (𝑡 + ℎ − 𝑟) d𝑟𝑄.

Using the change of variables 𝑢(𝑟) ∶= ℎ + 2(𝑡 − 𝑟) in the integral, we obtain

∫R
𝑘𝛾,𝜅 (𝑡 − 𝑟)𝑘𝛾,𝜅 (𝑡 + ℎ − 𝑟) d𝑟 = 1

2 ∫R
𝑘𝛾,𝜅 (

𝑢−ℎ
2 )𝑘𝛾,𝜅 (

𝑢+ℎ
2 ) d𝑢

= 21−2𝛾

[𝛤 (𝛾)]2 ∫

∞

|ℎ|
(𝑢2 − ℎ2)𝛾−1𝑒−𝜅𝑢 d𝑢 = 2

1
2−𝛾𝜅1−2𝛾
√

𝜋 𝛤 (𝛾)
(𝜅|ℎ|)𝛾−

1
2𝐾𝛾− 1

2
(𝜅|ℎ|),

where the last identity follows by [32, Part I, Equation (3.13)]. □

4.4. Markov behavior

In this section we consider the Markov behavior of the process 𝑍𝛾 defined in Section 4.3. Namely, we will show that 𝑍𝑁  is 𝑁-ple 
Markov for 𝑁 ∈ N (Theorem  4.10), whereas in general 𝑍𝛾 is not weak Markov if 𝛾 ∉ N (Example  4.16).

4.4.1. Integer case; main results
We first introduce the necessary notation and intermediate results leading up to the main theorem asserting the 𝑁-ple Markov 

property of 𝑍𝑁 . The proofs are postponed to Section 4.4.2.
If 𝛾 ∈ (1∕2,∞) is such that Assumptions  4.1 and 4.2(i) hold with 𝛾0 = 𝛾, then we define for 𝑡0 ∈ R the truncated integral process 

(𝑍𝛾 (𝑡 ∣ 𝑡0))𝑡∈R by 

𝑍𝛾 (𝑡 ∣ 𝑡0) ∶=
1

𝛤 (𝛾) ∫

𝑡∧𝑡0

−∞
(𝑡 − 𝑠)𝛾−1𝑆(𝑡 − 𝑠) d𝑊 𝑄(𝑠), (4.15)

so that 𝑍𝛾 ( ⋅ ∣ 𝑡0) = 𝑍𝛾 on (−∞, 𝑡0] and 𝑍𝛾 = 𝑍𝛾 ( ⋅ ∣ 𝑡0)+𝑍𝛾 ( ⋅ ∣ 𝑡0) on (𝑡0,∞), where we recall the process (𝑍𝛾 (𝑡 ∣ 𝑡0))𝑡∈[𝑡0 ,∞) from (4.9). 
From these two identities, it follows that 𝑡 ↦ 𝑍𝛾 (𝑡 ∣ 𝑡0) has the same mean-square differentiability at 𝑡 ∈ R ⧵ {𝑡0} as 𝑍𝛾 (𝑡) (and 
𝑍𝛾 (𝑡 ∣ 𝑡0) if 𝑡 ∈ (𝑡0,∞)). In the case 𝛾 = 𝑁 ∈ N, both have 𝑁 − 1 mean-square derivatives by Proposition  4.6 if Assumption  4.2(i) is 
satisfied for 𝛾0 = 𝛾 − (𝑁 − 1) = 1. The same holds at the critical point 𝑡 = 𝑡0 since the first 𝑁 − 1 mean-square (right) derivatives of 
𝑍 ( ⋅ ∣ 𝑡 ) vanish there, see (4.13) in the proof of Proposition  4.6.
𝛾 0
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Under Assumption  4.2(ii), it holds that 𝐴𝑗𝑆(𝑡) ∈ L (𝑈 ) for all 𝑗 ∈ N0 and 𝑡 ∈ (0,∞), see (4.3). Therefore, we can define the 
function 𝛤 (𝑛, ( ⋅ )𝐴)∶ [0,∞) → L (𝑈 ) by 

𝛤 (𝑛, 𝑡𝐴) ∶=

{

∑𝑛−1
𝑗=0

𝑡𝑗

𝑗!𝐴
𝑗𝑆(𝑡), 𝑡 ∈ (0,∞);

Id𝑈 , 𝑡 = 0,
(4.16)

for 𝑛 ∈ N. Note the analogy with integer-order scalar-valued normalized upper incomplete gamma functions [33, Equations (8.4.10) 
and (8.4.11)]. We will use these functions to derive an expression for (𝑍𝑁 (𝑡 ∣ 𝑡0))𝑡∈[𝑡0 ,∞) in terms of 𝑍𝑁  and its mean-square 
derivatives at 𝑡0. Recall that the 𝑈𝑁 -valued process 𝐙𝑁 = (𝑍(𝑛)

𝑁 )𝑁−1
𝑛=0  consists of 𝑍𝑁  and its first 𝑁 − 1 mean-square derivatives. 

Proposition 4.9.  Let Assumptions  4.1 and 4.2(ii) be satisfied and suppose that Assumption  4.2(i) holds for 𝛾0 = 1. Then for all 𝑁 ∈ N, 
𝑡0 ∈ R and 𝑡 ∈ [𝑡0,∞), 

𝑍𝑁 (𝑡 ∣ 𝑡0) = 𝜁𝑁 (𝑡 ∣ 𝑡0)𝐙𝑁 (𝑡0), P-a.s., (4.17)

where we define, for any 𝝃 ∈ 𝐿2(𝛺,𝑡0 ,P;𝑈
𝑁 ) with 𝑡0 ∶= 𝛿𝑊 𝑄

𝑡0
, 

𝜁𝑁 (𝑡 ∣ 𝑡0)𝝃 ∶=
𝑁−1
∑

𝑘=0

(𝑡 − 𝑡0)𝑘

𝑘!
𝛤 (𝑁 − 𝑘, (𝑡 − 𝑡0)𝐴) 𝜉𝑘, (4.18)

using the incomplete gamma functions defined in (4.16).
In particular, adding 𝑍𝑁 (𝑡 ∣ 𝑡0) on both sides of Eq.  (4.17) yields 

∀𝑡 ∈ [𝑡0,∞) ∶ 𝑍𝑁 (𝑡) = 𝑍𝑁 (𝑡 ∣ 𝑡0,𝐙𝑁 (𝑡0)), P-a.s., (4.19)

where the process (𝑍𝑁 (𝑡 ∣ 𝑡0, 𝝃))𝑡∈[𝑡0 ,∞) is defined by 

𝑍𝑁 (𝑡 ∣ 𝑡0, 𝝃) ∶= 𝜁𝑁 (𝑡 ∣ 𝑡0)𝝃 +𝑍𝑁 (𝑡 ∣ 𝑡0), 𝑡 ∈ [𝑡0,∞). (4.20)

By (4.19), it suffices to show that (𝑍𝑁 (𝑡 ∣ 𝑡0, 𝝃))𝑡∈[𝑡0 ,∞) has the 𝑁-ple Markov property in the sense of Definition  3.2 for any 𝑡0 ∈ R
and 𝝃 ∈ 𝐿2(𝛺,𝑡0 ,P;𝑈

𝑁 ). In fact, we will show that it is 𝑁-ple Markov using Corollary  3.3; this is the subject of the following result, 
which is the main theorem of this section. 

Theorem 4.10.  Let 𝑁 ∈ N, 𝑡0 ∈ R and 𝝃 = (𝜉𝑘)𝑁−1
𝑘=0 ∈ 𝐿2(𝛺,𝑡0 ,P;𝑈

𝑁+1) be given. Let Assumptions  4.1 and 4.2(ii) hold and suppose 
that Assumption  4.2(i) is satisfied for 𝛾0 = 1. Then the process (𝑍𝑁 (𝑡 ∣ 𝑡0, 𝝃))𝑡∈[𝑡0 ,∞) from (4.20) has the 𝑁-ple Markov property in the sense 
of Definition  3.2 with respect to the transition operators (𝑇𝑠,𝑡)𝑡0≤𝑠≤𝑡 on 𝐵𝑏(𝑈𝑁 ) defined by

𝑇𝑠,𝑡𝜑(𝐱) ∶= E[𝜑(𝐙𝑁 (𝑡 ∣ 𝑠, 𝐱))], 𝜑 ∈ 𝐵𝑏(𝑈𝑁 ), 𝐱 ∈ 𝑈𝑁 ,

and the increment filtration (𝑡)𝑡∈[𝑡0 ,∞) ∶= (𝛿𝑊 𝑄
𝑡 )𝑡∈[𝑡0 ,∞) from (2.2). The process (𝑍𝑁 (𝑡))𝑡∈R from (4.8) has 𝑁 −1 mean-square derivatives 

and is 𝑁-ple Markov with respect to (𝑡)𝑡∈R ∶= (𝛿𝑊 𝑄
𝑡 )𝑡∈R, see Definition  3.2.

The statements and proofs of Proposition  4.9 and Theorem  4.10 use the following result regarding the mean-square differentia-
bility of (𝜁𝑁 (𝑡 ∣ 𝑡0)𝝃)𝑡∈[𝑡0 ,∞), which is similar to Proposition  4.6. 

Proposition 4.11.  Let 𝑁 ∈ {2, 3,…}, 𝑡0 ∈ R and 𝝃 ∈ 𝐿2(𝛺,𝑡0 ,P;𝑈
𝑁 ) be given, where 𝜉𝑘 ∈ 𝐿2(𝛺;𝖣(𝐴)) for 𝑘 ∈ {0,… , 𝑁−2}. Suppose 

that Assumptions  4.1 and 4.2(ii) hold. Then the process (𝜁𝑁 (𝑡 ∣ 𝑡0)𝝃)𝑡∈[𝑡0 ,∞) defined by (4.18) is infinitely mean-square differentiable at any 
𝑡 ∈ (𝑡0,∞) and, for 𝑛 ∈ {0,… , 𝑁 − 2}, 

( d
d𝑡 + 𝐴

) d𝑛
d𝑡𝑛 𝜁𝑁 (𝑡 ∣ 𝑡0)𝝃 = d𝑛

d𝑡𝑛 𝜁𝑁−1(𝑡 ∣ 𝑡0)(𝜉𝑘+1 + 𝐴𝜉𝑘)𝑁−2
𝑘=0 , P-a.s. (4.21)

Moreover, we have ( d
d𝑡 + 𝐴

) d𝑛
d𝑡𝑛 𝜁1(𝑡 ∣ 𝑡0)𝜉 = 0, P-a.s., for 𝜉 ∈ 𝐿2(𝛺,𝑡0 ,P;𝑈 ).

Combining Propositions  4.6, 4.9 and 4.11 yields the following corollary. 

Corollary 4.12.  Let 𝑁 ∈ {2, 3,…}, 𝑡0 ∈ R and 𝝃 ∈ 𝐿2(𝛺,𝑡0 ,P;𝑈
𝑁 ) be given, where 𝜉𝑘 ∈ 𝐿2(𝛺;𝖣(𝐴)) for 𝑘 ∈ {0,… , 𝑁 − 2}. 

Let Assumptions  4.1 and 4.2(ii) hold and suppose that Assumption  4.2(i) is satisfied for 𝛾0 = 1. Then the process (𝑍𝑁 (𝑡 ∣ 𝑡0, 𝝃))𝑡∈[𝑡0 ,∞)
from (4.20) is 𝑁 − 1 times mean-square differentiable at any 𝑡 ∈ (𝑡0,∞) and satisfies, for 𝑛 ∈ {0,… , 𝑁 − 2},

( d
d𝑡 + 𝐴

) d𝑛
d𝑡𝑛𝑍𝑁 (𝑡 ∣ 𝑡0, 𝝃) =

d𝑛
d𝑡𝑛𝑍𝑁−1

(

𝑡 ∣ 𝑡0, (𝜉𝑘+1 + 𝐴𝜉𝑘)𝑁−2
𝑘=0

)

, P-a.s.

In particular, it holds for all 𝑡 ∈ R and 𝑛 ∈ {0,… , 𝑁 − 2} that
( d
d𝑡 + 𝐴

) d𝑛
d𝑡𝑛𝑍𝑁 (𝑡) = d𝑛

d𝑡𝑛𝑍𝑁−1(𝑡), P-a.s.
12 
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Remark 4.13. Corollary  4.12 can be interpreted as saying that the process (𝑍𝑁 (𝑡 ∣ 𝑡0, 𝝃))𝑡∈[𝑡0 ,∞) for 𝑁 ∈ {2, 3,…} solves the 
𝐿2(𝛺, ,P;𝑈 )-valued initial value problem

{
( d
d𝑡 + 𝐴

)

𝑋(𝑡) = 𝑍𝑁−1(𝑡 ∣ 𝑡0, (𝜉𝑘+1 + 𝐴𝜉𝑘)𝑁−2
𝑘=0 ) ∀𝑡 ∈ (𝑡0,∞),

𝑋(𝑡0) = 𝜉0,

whenever 𝜉𝑘 ∈ 𝐿2(𝛺,𝑡0 ,P;𝖣(𝐴)) for 𝑘 ∈ {0,… , 𝑁 −2}. This observation is the key to the proofs of Propositions  4.9 and 4.14 below. 
It is also of interest for computational methods, as it implies that the computation of 𝑍𝑁 (𝑡 ∣ 𝑡0, 𝝃) amounts to solving a first-order 
problem 𝑁 − 1 times. In fact, inductively applying this result and the fact that ( d

d𝑡 + 𝐴)𝜁1(𝑡 ∣ 𝑡0)𝜂 = 0 for 𝜂 ∈ 𝐿2(𝛺,𝑡0 ,P;𝑈 ), we see 
that for 𝑁 ∈ N we may interpret (𝑍𝑁 (𝑡 ∣ 𝑡0, 𝝃))𝑡∈[𝑡0 ,∞) as the mild solution to the 𝑁th order initial value problem

{( d
d𝑡 + 𝐴

)𝑁𝑋(𝑡) = �̇� 𝑄(𝑡) ∀𝑡 ∈ (𝑡0,∞),
d𝑘
d𝑡𝑘𝑋(𝑡0) = 𝜉𝑘 ∀𝑘 ∈ {0,… , 𝑁 − 1}.

Another key step in the proof of in Theorem  4.10 is given by the following result, which essentially amounts to the fact that 
(𝑇𝑠,𝑡)𝑠≤𝑡 satisfies (TO3). 

Proposition 4.14.  Let 𝑁 ∈ N, 𝑡0 ∈ R and 𝝃 ∈ 𝐿2(𝛺,𝑡0 ,P;𝑈
𝑁 ) be given. Let Assumptions  4.1 and 4.2(ii) hold and suppose that 

Assumption  4.2(i) is satisfied for 𝛾0 = 1. The stochastic process (𝑍𝑁 (𝑡 ∣ 𝑡0, 𝝃))𝑡∈[𝑡0 ,∞) from (4.20) has the 𝑁-ple Chapman–Kolmogorov 
property, i.e., for all 𝑡0 ≤ 𝑠 ≤ 𝑡 we have 

𝐙𝑁 (𝑡 ∣ 𝑡0, 𝝃) = 𝐙𝑁 (𝑡 ∣ 𝑠,𝐙𝑁 (𝑠 ∣ 𝑡0, 𝝃)), P-a.s. (4.22)

4.4.2. Integer case; proofs
As indicated in Section 4.4.1 above, the statements and proofs of Proposition  4.9 and Theorem  4.10 rely on Proposition  4.11, 

which we prove first.

Proof of Proposition  4.11.  We first make some general remarks regarding the operators 𝛤 (𝑛, 𝑡𝐴) from (4.16). Under Assumption 
4.2(ii), estimate (4.3) implies that the set {𝑡𝑗𝐴𝑗𝑆(𝑡) ∶ 𝑡 ∈ (0,∞)} ⊆ L (𝑈 ) is uniformly bounded. It follows that 𝑡 ↦ 𝛤 (𝑛, 𝑡𝐴) is a 
strongly continuous function from [0,∞) to L (𝑈 ) for any 𝑛 ∈ N, which at 𝑡 ∈ (0,∞) admits a classical derivative satisfying

( d
d𝑡 + 𝐴

)

𝛤 (𝑛, 𝑡𝐴) =

{

0, 𝑛 = 1;
𝐴𝛤 (𝑛 − 1, 𝑡𝐴), 𝑛 ∈ {2, 3,…}.

To prove the proposition, we may assume 𝑡0 = 0, so fix 𝑡 ∈ (0,∞). For arbitrary 𝑀 ∈ N, 𝑗 ∈ N0 and 𝜼 ∈ 𝐿2(𝛺;𝑈𝑀 ), we define 
𝜁𝑀,𝑗 (𝑡)𝜼 ∶= 𝐴𝑗𝜁𝑀 (𝑡 ∣ 0)𝜼. Combining the product rule in the form ( d

d𝑡 +𝐴)(𝑢𝑣) = 𝑢′𝑣 + 𝑢[( d
d𝑡 +𝐴)𝑣] with the above recurrence relation 

yields for 𝑀 ∈ N

( d
d𝑡 + 𝐴

)

𝜁𝑀,𝑗 (𝑡)𝜼 =
𝑀−1
∑

𝑘=1

𝑡𝑘−1

(𝑘 − 1)!
𝐴𝑗𝛤 (𝑀 − 𝑘, 𝑡𝐴)𝜂𝑘 +

𝑀−2
∑

𝑘=0

𝑡𝑘

𝑘!
𝐴𝑗+1𝛤 (𝑀 − 1 − 𝑘, 𝑡𝐴)𝜂𝑘

= 𝜁(𝑀−1),𝑗 (𝑡)(𝜂𝑘+1)𝑀−1
𝑘=0 + 𝜁(𝑀−1),(𝑗+1)(𝑡)(𝜂𝑘)𝑀−1

𝑘=0 . (4.23)

This shows in particular that (4.21) holds for integers 𝑁 ≥ 2 and 𝑛 = 0, by applying (4.23) with 𝑀 = 𝑁 , 𝜼 = 𝝃 and 𝑗 = 0. Moreover,
( d
d𝑡 + 𝐴

)

𝜁1,𝑗 (𝑡) 𝜂 =
( d
d𝑡 + 𝐴

)

𝐴𝑗𝑆(𝑡) 𝜂 = 0.

Iteratively applying (4.23) and the latter identity then yields that 𝜁𝑀,𝑗𝜼 is 𝑀 − 1 times (mean-square) differentiable with an 𝑛th 
derivative of the form 

𝜁 (𝑛)𝑀,𝑗 (𝑡)𝜼 =
𝑛
∑

𝓁=0

𝓁
∑

𝑚=0
𝐶𝓁,𝑚𝜁(𝑀−𝓁),(𝑗+𝑛−𝑚)(𝑡)𝐵𝓁,𝑚𝜼, (4.24)

where 𝐶𝓁,𝑚 ∈ R, 𝐵𝓁,𝑚 ∈ L (𝑈𝑀 ;𝑈𝑀−𝓁) and 𝜁(𝑀−𝓁),(𝑗+𝑛−𝑚) ∶= 0 if 𝑀 − 𝓁 < 1. In particular, 𝜁𝑁 ( ⋅ ∣ 𝑡0)𝝃 is 𝑁 − 1 times (mean-square) 
differentiable as claimed. In order to deduce that (4.21) also holds for 𝑛 ∈ {1,… , 𝑁 −2}, we need to justify taking the 𝑛th derivative 
on both sides and commuting it with 𝐴. Since 𝐴 is closed, it suffices to verify that 𝜁 ′𝑁 ( ⋅ ∣ 𝑡0)𝝃, 𝐴𝑗𝜁𝑁 ( ⋅ ∣ 𝑡0)𝝃, 𝜁𝑁−1( ⋅ ∣ 𝑡0)(𝜉𝑗+1)𝑁−1

𝑗=0
and 𝐴𝑗𝜁𝑁−1( ⋅ ∣ 𝑡0)(𝜉𝑗 )𝑁−1

𝑗=0  admit 𝑛th derivatives for 𝑗 ∈ {0, 1}. Indeed, these assertions follow from (4.24). □

We can now prove Propositions  4.9 and 4.14. For the proof of the latter we may use Corollary  4.12, since it only combines 
Propositions  4.6, 4.9 and 4.11.

Proof of Proposition  4.9.  We use induction on 𝑁 ∈ N. For 𝑁 = 1, 𝑡 ∈ (𝑡0,∞),

𝑍1(𝑡 ∣ 𝑡0) = 𝑆(𝑡 − 𝑡0)
𝑡0
𝑆(𝑡0 − 𝑠) d𝑊 𝑄(𝑠) = 𝜁1(𝑡 ∣ 𝑡0)𝑍1(𝑡0), P-a.s.
∫−∞

13 
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Now suppose that the statement is true for a given 𝑁 ∈ N. By Proposition  4.6 and the discussion below (4.15), 𝑍𝑁+1 and 𝑍𝑁+1( ⋅ ∣ 𝑡0)
have 𝑁 mean-square derivatives which satisfy ( d

d𝑡 +𝐴
)

𝑍𝑁+1(𝑡 ∣ 𝑡0) = 𝑍𝑁 (𝑡 ∣ 𝑡0) and 
( d
d𝑡 +𝐴

)

𝑍(𝑘)
𝑁+1(𝑡) = 𝑍(𝑘)

𝑁 (𝑡) for all 𝑘 ∈ {0,… , 𝑁 −1}
and 𝑡 ∈ (𝑡0,∞). Combined with Proposition  4.11 and the induction hypothesis, we find

( d
d𝑡 + 𝐴

)

𝜁𝑁+1(𝑡 ∣ 𝑡0)𝐙𝑁+1(𝑡0) = 𝜁𝑁 (𝑡 ∣ 𝑡0)
[( d

d𝑡 + 𝐴
)

𝑍(𝑘)
𝑁+1(𝑡0)

]𝑁−1
𝑘=0 = 𝜁𝑁 (𝑡 ∣ 𝑡0)𝐙𝑁 (𝑡0) = 𝑍𝑁 (𝑡 ∣ 𝑡0) =

( d
d𝑡 + 𝐴

)

𝑍𝑁+1(𝑡 ∣ 𝑡0).

Since 𝑍𝑁+1(𝑡0 ∣ 𝑡0) = 𝑍𝑁+1(𝑡0) = 𝜁𝑁+1(𝑡0 ∣ 𝑡0)𝐙𝑁+1(𝑡0), we find that (4.17) with 𝑁 + 1 holds on [𝑡0,∞) by the uniqueness of solutions 
to 𝐿2(𝛺, ,P;𝑈 )-valued abstract Cauchy problems, see [34, Chapter 4, Theorem 1.3]. □

Proof of Proposition  4.14.  Let 𝑡0 ≤ 𝑠 ≤ 𝑡. We use induction on 𝑁 ∈ N. For the base case 𝑁 = 1 we have

𝑍1(𝑡 ∣ 𝑠,𝑍1(𝑠 ∣ 𝑡0, 𝜉)) = 𝑆(𝑡 − 𝑠)𝑍1(𝑠 ∣ 𝑡0, 𝜉) + ∫

𝑡

𝑠
𝑆(𝑡 − 𝑟) d𝑊 𝑄(𝑟)

= 𝑆(𝑡 − 𝑠)𝑆(𝑠 − 𝑡0)𝜉 + 𝑆(𝑡 − 𝑠)∫

𝑠

𝑡0
𝑆(𝑠 − 𝑟) d𝑊 𝑄(𝑟) + ∫

𝑡

𝑠
𝑆(𝑡 − 𝑟) d𝑊 𝑄(𝑟)

= 𝑆(𝑡 − 𝑡0)𝜉 + ∫

𝑠

𝑡0
𝑆(𝑡 − 𝑟) d𝑊 𝑄(𝑟) + ∫

𝑡

𝑠
𝑆(𝑡 − 𝑟) d𝑊 𝑄(𝑟) = 𝑍1(𝑡 ∣ 𝑡0, 𝜉), P-a.s.,

for 𝜉 ∈ 𝐿2(𝛺,𝑡0 ,P;𝖣(𝐴)). Now suppose that the result holds for 𝑁 ∈ N and let 𝝃 ∈ 𝐿2(𝛺,𝑡0 ,P;𝖣(𝐴)
𝑁 ). Then, for any 𝑡 ∈ (𝑠,∞),

( d
d𝑡 + 𝐴

)

𝑍𝑁+1(𝑡 ∣ 𝑠,𝐙𝑁+1(𝑠 ∣ 𝑡0, 𝝃)) = 𝑍𝑁
(

𝑡 ∣ 𝑠,
[( d

d𝑡 + 𝐴
)

𝑍(𝑘)
𝑁+1(𝑠 ∣ 𝑡0, 𝝃)

]𝑁−1
𝑘=0

)

= 𝑍𝑁
(

𝑡 ∣ 𝑠,𝐙𝑁 (𝑠 ∣ 𝑡0, [𝜉𝑘+1 + 𝐴𝜉𝑘]𝑁−1
𝑘=0 )

)

= 𝑍𝑁 (𝑡 ∣ 𝑡0, [𝜉𝑘+1 + 𝐴𝜉𝑘]𝑁−1
𝑘=0 ) =

( d
d𝑡 + 𝐴

)

𝑍𝑁+1(𝑡 ∣ 𝑡0, 𝝃), P-a.s.,

where we applied Corollary  4.12 in every identity except the third, which uses the induction hypothesis. Moreover, the relation 
𝑍𝑁+1(𝑠 ∣ 𝑠,𝐙𝑁+1(𝑠 ∣ 𝑡0, 𝝃)) = 𝑍𝑁+1(𝑠 ∣ 𝑡0, 𝝃) is evident from the definitions. Together, these facts imply that the difference process 
𝑌 ∶= 𝑍𝑁+1( ⋅ ∣ 𝑠,𝐙𝑁+1(𝑠 ∣ 𝑡0, 𝝃)) −𝑍𝑁+1( ⋅ ∣ 𝑡0, 𝝃) solves

{
( d
d𝑡 +𝛺

)

𝑌 (𝑡) = 0 ∀𝑡 ∈ (𝑠,∞);

𝑌 (𝑠) = 0,

where 𝛺∶ 𝐿2(𝛺;𝖣(𝐴)) ⊆ 𝐿2(𝛺;𝑈 ) → 𝐿2(𝛺;𝑈 ) is as in (4.7). Since −𝛺 is the generator of a 𝐶0-semigroup on 𝐿2(𝛺;𝑈 ), 
see Lemma  B.2 in Appendix  B, the uniqueness result [34, Chapter 4, Theorem 1.3] shows that 𝑌 ≡ 0 on [𝑠,∞), meaning that 
𝑍𝑁+1(𝑡 ∣ 𝑡0, 𝝃) = 𝑍𝑁+1(𝑡 ∣ 𝑠,𝐙𝑁+1(𝑠 ∣ 𝑡0, 𝝃)) holds P-a.s. for all 𝑡 ∈ [𝑠,∞). Taking the 𝑛th mean-square derivative for 𝑛 ∈ {0,… , 𝑁} on 
both sides, which is justified by Corollary  4.12, we find (4.22). In order to establish this identity for general 𝝃 ∈ 𝐿2(𝛺,𝑡0 ,P;𝑈

𝑁 ), 
we use the density of 𝖣(𝐴) in 𝑈 [34, Chapter 1, Corollary 2.5], which implies the density of 𝐿2(𝛺;𝖣(𝐴)𝑁 ) in 𝐿2(𝛺;𝑈𝑁 ), hence it 
suffices to argue that 𝜼 ↦ 𝐙𝑁+1(𝑡 ∣ 𝑡0, 𝜼) is continuous on 𝐿2(𝛺;𝑈𝑁 ) for any fixed 𝑡 ∈ [𝑡0,∞). Continuity of 𝜼 ↦ 𝜁𝑁+1(𝑡 ∣ 𝑡0)𝜼 follows 
from the fact that 𝜂 ↦ 𝛤 (𝑁 + 1 − 𝑘, (𝑡 − 𝑡0))𝜂 is bounded on 𝐿2(𝛺;𝑈 ) for any 𝑘 ∈ {0,… , 𝑁}. The same holds for the derivatives of 
𝜁𝑁+1( ⋅ ∣ 𝑡0)𝜼 since they are of the same form by Proposition  4.11. Together, the conclusion follows. □

With these intermediate results in place, we are ready to prove the main theorem asserting the 𝑁-ple Markovianity of 𝑍𝑁 . Its 
proof is a generalization of [10, Theorem 9.14] and [35, Theorem 9.30], which concern the case 𝑁 = 1.

Proof of Theorem  4.10.  Step 1: Well-definedness of (𝑇𝑠,𝑡)𝑡0≤𝑠≤𝑡. We have to show that 𝑇𝑠,𝑡𝜑 = E[𝜑(𝐙𝑁 (𝑡 | 𝑠, ⋅ ))] is measurable for 
𝜑 ∈ 𝐵𝑏(𝑈𝑁 ). Let H  be the linear space of bounded 𝜑∶𝑈𝑁 → R such that E[𝜑(𝐙𝑁 (𝑡 ∣ 𝑠, ⋅ ))] is measurable. Arguing as in the proof 
of Proposition  4.14, we find that [𝐙𝑁 (𝑡 ∣ 𝑠, ⋅ )](𝜔) is continuous on 𝑈𝑁  for P-a.e. 𝜔 ∈ 𝛺. Then, for 𝜑 ∈ C ∶= 𝐶𝑏(𝑈𝑁 ), the dominated 
convergence theorem implies that E[𝜑(𝐙𝑁 (𝑡 ∣ 𝑠, ⋅ ))] is also continuous, hence Borel measurable, and thus C ⊆ H . Moreover, H
contains all constant functions and given (𝜑𝑛)𝑛∈N ⊆ H  such that 0 ≤ 𝜑𝑛 ↑ 𝜑 pointwise for some bounded limit function 𝜑, we find 
𝜑 ∈ H  by monotone convergence. Since C  is closed under pointwise multiplication, we find 𝐵𝑏(𝑈𝑁, 𝜎(C )) = 𝐵𝑏(𝑈𝑁 ) ⊆ H  by the 
monotone class theorem [37, Chapter 0, Theorem 2.2].

Step 2: 𝑁-ple Markovianity. For 𝑡0 ≤ 𝑠 ≤ 𝑡 and 𝜑 ∈ 𝐵𝑏
(

𝑈𝑁)

, we show
E[𝜑(𝐙𝑁 (𝑡 ∣ 𝑡0, 𝝃)) ∣ 𝑠] = 𝑇𝑠,𝑡𝜑(𝐙𝑁 (𝑠 ∣ 𝑡0, 𝝃)), P-a.s.,

for all 𝝃 ∈ 𝐿2(𝛺,𝑠,P;𝑈𝑁 ). By Proposition  4.14, it suffices to verify that E[𝜑(𝐙𝑁 (𝑡 ∣ 𝑠, 𝝃)) ∣ 𝑠] = 𝑇𝑠,𝑡𝜑(𝝃) holds P-a.s. By a monotone 
class argument similar to that of Step 1, it suffices to consider 𝜑 ∈ 𝐶𝑏(𝑈𝑁 ). As in [35, Theorem 9.30], one can first verify this identity 
directly for simple 𝝃 =

∑𝑛
𝑗=1 𝐱𝑗𝟏𝐴𝑗 , with 𝑛 ∈ N, {𝐱1,… , 𝐱𝑛} ⊆ 𝑈𝑁  and disjoint events {𝐴1,… , 𝐴𝑛} ⊆ 𝑠 covering 𝛺, and subsequently 

extend it to general 𝝃 ∈ 𝐿2(𝛺,𝑠,P;𝑈𝑁 ) by an approximation argument, using the continuity of the functions 𝐙𝑁 (𝑡 ∣ 𝑠, ⋅ ) and 𝜑. 
Finally, the statement regarding (𝑍𝑁 (𝑡))𝑡∈R follows from Proposition  4.9. □

4.4.3. Non-Markovianity in the fractional case
We conclude this section by showing how Theorem  3.7 can be used to deduce that 𝑍𝛾 is not weakly Markov (see Definition  3.4) 

if 𝛾 ∉ N. To this end, we determine the coloring operator of 𝑍𝛾 .

Proposition 4.15.  Let Assumption  4.1 hold and suppose that 𝛾 ∈ (1∕2,∞) is such that Assumption  4.2(i) holds for 𝛾0 = 𝛾. Then the 
coloring operator of 𝑍 , see (3.6), is given by −1 = I𝛾

1
2 ∈ L (𝐿2(R;𝑈 )), where I𝛾 is as in (4.5).
𝛾 𝛾 R
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Fig. 1. Graphs of the fractional parabolic derivative (𝜕𝑡 + 1)𝛾𝜙 with 𝜙 from (4.26) for certain values of 𝛾 ∈ [0, 2]. Note the different scales on the 𝑦-axes.

Table 2
Numerically approximated values of 𝐹𝛾 (𝜙,𝜓), see (4.25), with 𝜙 from (4.26) and 𝜓 ∶= 𝜙( ⋅ − 2 − 𝛿) for certain 
values of 𝛾 and 𝛿.

𝛿
𝛾 0.25 0.50 0.75 1 1.25 1.50 1.75 2 2.25 2.50 2.75 3

10−1 0.004 0.007 0.007 0 0.016 0.042 0.059 0 0.298 1.078 2.111 0
10−2 0.005 0.009 0.009 0 0.024 0.065 0.098 0 0.622 2.568 5.829 0
10−3 0.005 0.009 0.009 0 0.025 0.068 0.104 0 0.678 2.850 6.601 0

Proof.  Using the stochastic Fubini theorem as in the proof of [23, Proposition 3.11], we find that ⟨𝑍𝛾 , 𝑓 ⟩𝐿2(R;𝑈 ) = ∫R �̃�𝑓 (𝑠) d𝑊
𝑄(𝑠)

holds P-a.s. for every 𝑓 ∈ 𝐶∞
𝑐 (R;𝑈 ), where �̃�𝑓∶R → L (𝑈 ;R) is given by

�̃�𝑓 (𝑠)𝑢 ∶=
1

𝛤 (𝛾) ∫

∞

𝑠
⟨(𝑡 − 𝑠)𝛾−1𝑆(𝑡 − 𝑠)𝑢, 𝑓 (𝑡)⟩𝑈 d𝑡 = ⟨𝑢, I𝛾∗𝑓 (𝑠)⟩𝑈 , 𝑠 ∈ R, 𝑢 ∈ 𝑈,

and we recall equation (4.6) for the adjoint of I𝛾 . Hence, we have ‖⟨𝑍𝛾 , 𝑓 ⟩𝐿2(R;𝑈 )‖
2
𝐿2(𝛺)

= ∫R ‖�̃�𝑓 (𝑡)𝑄
1
2
‖

2
L2(𝑈 ;R) d𝑡 = ‖

1
2
RI

𝛾∗𝑓‖2
𝐿2(R;𝑈 )

by (2.1), and thus (3.6) with (−1
𝛾 )∗ = 

1
2
RI

𝛾∗ by the polarization identity. □

Example 4.16.  Let Assumptions  4.1 and 4.2(ii) be satisfied and suppose that 𝛾 ∈ (1∕2,∞) is such that Assumption  4.2(i) holds for 
𝛾0 = 𝛾. The latter implies that 𝜕𝑡 +R = , and we always have −𝛾 = I𝛾 , see Section 4.2. Thus,

∗
𝛾𝛾 =

(


− 1

2
R 𝛾

)∗
− 1

2
R 𝛾 = 𝛾∗−1

R 𝛾 = (𝜕𝑡 +R)𝛾∗−1
R (𝜕𝑡 +R)𝛾 .

Moreover, this assumption implies that 𝖣(𝐴𝑛) is dense in 𝑈 for all 𝑛 ∈ N by [34, Chapter 2, Theorem 6.8(c)]; choosing 𝑛 large 
enough, we also find that 𝐶∞

𝑐 (T;𝖣(𝐴𝑛)) is dense in 𝖣(𝛾 ), so we can take 𝐹 = 𝖣(𝐴𝑛) in Theorem  3.7.
Although 𝑄−1 may be a nonlocal spatial operator, −1

R  is always local in time. Thus for 𝛾 ∈ N, the precision operator is local as 
a composition of three local operators, in accordance with the Markovianity shown in Section 4.4.

For 𝛾 ∉ N, we will show that the precision operator is not local in general. Suppose that 𝐴 has an eigenvector 𝑣 ∈ 𝑈 with 
corresponding eigenvalue 𝜆 ∈ R. Such eigenpairs exists for example if 𝐴 = (𝜅2 − 𝛥)𝛽 with 𝜅, 𝛽 ∈ (0,∞) and 𝛥 the Dirichlet Laplacian 
on a bounded Euclidean domain  ⊊ R𝑑 . If we moreover assume that 𝑣 ∈ 𝖣(𝑄− 1

2 ), then we find − 1
2

R 𝛾 (𝜙⊗𝑣) = [(𝜕𝑡 +𝜆)𝛾𝜙]⊗𝑄− 1
2 𝑣

for 𝜙 ∈ 𝐶∞
𝑐 (R) since the spectral mapping theorem implies 𝑆(𝑡)𝑣 = 𝑒−𝜆𝑡𝑣 for all 𝑡 ∈ [0,∞). It thus suffices to consider the case 

𝐴 = 𝜆 ∈ R, i.e., we wish to find disjointly supported 𝜙,𝜓 ∈ 𝐶∞
𝑐 (R) such that 

𝐹𝛾 (𝜙,𝜓) ∶= |⟨(𝜕𝑡 + 𝜆)𝛾𝜙, (𝜕𝑡 + 𝜆)𝛾𝜓⟩𝐿2(R)| ≠ 0. (4.25)

We will discuss this by means of a numerical experiment for the case 𝜆 = 1, using the following smooth function 𝜙 ∈ 𝐶∞
𝑐 (R)

supported on [−1, 1]: 

𝜙(𝑡) ∶=

{

exp
(

− 1
1−𝑥2

)

, 𝑥 ∈ (−1, 1),
0, 𝑥 ∈ R ⧵ (−1, 1),

(4.26)

and taking 𝜓 ∶= 𝜙( ⋅ −2−𝛿) for some 𝛿 ∈ (0,∞). In Fig.  1, we see that the parabolic derivatives of 𝜙 consists of (positive or negative) 
peaks. For 𝛾 ∉ N, the support of the last of these peaks appears to include the whole of [1,∞), with its absolute value taking rapidly 
decaying yet nonzero values there. Therefore, the idea is to take 𝛿 small enough, making the right-hand side tail of 𝜙 overlap with 
the first peak of 𝜓 to obtain a non-zero 𝐿2(R)-inner product. Table  2 shows the approximate outcomes of this process for various 
values of 𝛾 and 𝛿, using symbolic differentiation and numerical integration.

Note the contrast with the merely spatial Matérn case, where the self-adjointness of the shifted Laplacian 𝜅2 − 𝛥 causes 
𝐿∗𝐿 = 𝜏2(𝜅2 − 𝛥)2𝛽 , thus we find a weak Markov property also for half-integer values of 𝛽 ∈ (0,∞). 
𝛽 𝛽
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5. Fractional 𝑸-Wiener process

In this final section, we further motivate our interest in solutions to (4.1) by relating them to fractional 𝑄-Wiener processes, 
which are 𝑈 -valued generalizations of the widely studied (real-valued) fractional Brownian motion. In Section 5.1 we show that, 
analogously to the real-valued case (see [29, Definition 2.1]), a fractional 𝑄-Wiener process can also be expressed as a Mandelbrot–
Van Ness type stochastic integral over R. Using this representation, we show that fractional 𝑄-Wiener processes are limiting cases 
of mild solutions to (4.1) as introduced in Definition  4.5. Finally, in Section 5.2 we comment on the Markov behavior of fractional 
𝑄-Wiener processes, and we propose possible directions in which to extend or complement the present results of Section 3 to establish 
necessary and sufficient conditions for (weak or 𝑁-ple) Markovianity.

The following definition was introduced in [13, Definition 2.1]. 

Definition 5.1.  Let 𝑄 ∈ L +
1 (𝑈 ). A 𝑈 -valued Gaussian process (𝑊 𝑄

𝐻 (𝑡))𝑡∈R is called a fractional 𝑄-Wiener process with Hurst parameter 
𝐻 ∈ (0, 1) if

(f-WP1) E[𝑊 𝑄
𝐻 (𝑡)] = 0 for all 𝑡 ∈ R; 

(f-WP2) 𝑄𝐻 (𝑠, 𝑡) = 1
2 (|𝑡|

2𝐻 + |𝑠|2𝐻 − |𝑡 − 𝑠|2𝐻 )𝑄 for all 𝑠, 𝑡 ∈ R; 
(f-WP3) 𝑊 𝑄

𝐻  has continuous sample paths. 
Here, (𝑄𝐻 (𝑠, 𝑡))𝑠,𝑡∈R ⊆ L +

1 (𝑈 ) are the covariance operators of 𝑊 𝑄
𝐻 , cf. (4.14).

Note that for 𝐻 = 1
2 , the above definition reduces to a characterization of a standard (non-fractional) 𝑄-Wiener process when 

restricted to [0,∞).

5.1. Integral representation and relation to 𝑍𝛾

Let 𝑄 ∈ L +
1 (𝑈 ) and let (𝑊 𝑄(𝑡))𝑡∈R be a two-sided 𝑄-Wiener process, see Section 2.2. For 𝐻 ∈ (0, 1), define (𝑊 𝑄

𝐻 (𝑡))𝑡∈R by 

𝑊 𝑄
𝐻 (𝑡) ∶= ∫R

𝐾𝐻 (𝑡, 𝑟) d𝑊 𝑄(𝑟), 𝑡 ∈ R, (5.1)

where the Mandelbrot–Van Ness [29] type kernel 𝐾𝐻∶R2 → R is given by 

𝐾𝐻 (𝑡, 𝑟) ∶= 1
𝐶𝐻

[

(𝑡 − 𝑟)
𝐻− 1

2
+ − (−𝑟)

𝐻− 1
2

+

]

, (𝑡, 𝑟) ∈ R2. (5.2)

The constant 𝐶𝐻 ∶= ∫R
|

|

|

(1− 𝑟)
𝐻− 1

2
+ −(−𝑟)

𝐻− 1
2

+
|

|

|

2
d𝑟 = 3−2𝐻

4𝐻 B(2 − 2𝐻,𝐻 + 1
2 ) (where B is the beta function) [36, Theorem B.1], ensures 

that �̂�𝐻 (1, 1) = 𝑄, where (�̂�𝐻 (𝑡, 𝑠))𝑡,𝑠∈R denote the covariance operators of 𝑊 𝑄
𝐻 . Then 𝑊

𝑄
𝐻  has a modification which is a fractional 

𝑄-Wiener process: 

Proposition 5.2.  For every 𝑡 ∈ R, (5.1) yields a well-defined random variable ̂𝑊 𝑄
𝐻 (𝑡) ∈ 𝐿2(𝛺,𝛿𝑊 𝑄

𝑡 ,P;𝑈 ), and there exists a modification 
of (𝑊 𝑄

𝐻 (𝑡))𝑡∈R which is a fractional 𝑄-Wiener process in the sense of Definition  5.1.

Proof.  To see that 𝑊 𝑄
𝐻 (𝑡) ∈ 𝐿2(𝛺;𝑈 ), note that E[‖𝑊 𝑄

𝐻 (𝑡)‖2𝑈 ] = ∫R ‖𝐾𝐻 (𝑡, 𝑟)𝑄
1
2
‖

2
L2(𝑈 ) d𝑟 = tr𝑄 ∫R |𝐾𝐻 (𝑡, 𝑟)|2 d𝑟 < ∞ by the Itô 

isometry (2.1). Since 𝐾𝐻  is a deterministic kernel integrated with respect to a mean-zero Gaussian process 𝑊 𝑄, it readily follows that 
𝑊 𝑄
𝐻  is also mean-zero Gaussian. For the covariance operators (�̂�𝐻 (𝑡, 𝑠))𝑡,𝑠∈R of 𝑊 𝑄

𝐻 , we can argue as in the proof of Proposition  4.8 
to find �̂�𝐻 (𝑡, 𝑠) = ∫R 𝐾𝐻 (𝑠, 𝑟)𝐾𝐻 (𝑡, 𝑟) d𝑟𝑄 = E[𝐵𝐻 (𝑡)𝐵𝐻 (𝑠)]𝑄 for all 𝑡, 𝑠 ∈ R, where 𝐵𝐻 = (𝐵𝐻 (𝑡))𝑡∈R denotes (real-valued) fractional 
Brownian motion. Hence (f-WP2) holds by the properties of 𝐵𝐻 . Lastly, the existence of a (Hölder) continuous modification of (5.1) 
can be established analogously to the real-valued case, by using that 𝑊 𝑄

𝐻  is self-similar with stationary increments and applying the 
Kolmogorov–Chentsov theorem [8, Corollary 3.10]. □

Now we consider the relation between the fractional 𝑄-Wiener process and the process 𝑍𝛾 considered in Section 4. For 𝜀 ∈ (0,∞), 
let 𝑍𝜀

𝛾  denote the mild solution to (4.1) with 𝐴 = 𝜀 Id𝑈  and define the process (𝑍 𝜀
𝛾 (𝑡)

)

𝑡∈R by 

𝑍
𝜀
𝛾 (𝑡) ∶= 𝐶−1

𝛾−1∕2𝛤 (𝛾)(𝑍
𝜀
𝛾 (𝑡) −𝑍

𝜀
𝛾 (0)), 𝑡 ∈ R. (5.3)

Note that 𝑊 𝑄
𝐻 (𝑡) can formally be written as the following ‘‘convergent difference of divergent integrals’’ (see [29, Footnote 3]): 

1
𝐶𝐻

[∫ 𝑡−∞(𝑡 − 𝑠)𝐻− 1
2 d𝑊 𝑄(𝑠) − ∫ 0

−∞(−𝑠)𝐻− 1
2 d𝑊 𝑄(𝑠)]. This expression would correspond to 𝜀 = 0 in (5.3), which is ill-defined as 

Assumption  4.2(i) cannot be satisfied. However, the next result shows that a fractional 𝑄-Wiener process can be seen as a limiting 
case of 𝑍𝜀

𝛾 as 𝜀 ↓ 0.

Proposition 5.3.  Let 𝑄 ∈ L +
1 (𝑈 ) and 𝛾 ∈ (1∕2, 3∕2). The family of stochastic processes (𝑍 𝜀

𝛾 )𝜀∈(0,∞) defined by (5.3) converges uniformly 
on compact subsets of R in mean-square sense to the fractional 𝑄-Wiener process 𝑊 𝑄

𝐻  in (5.1) with Hurst parameter 𝐻 = 𝛾 − 1
2  as 𝜀 ↓ 0:

∀ 𝑇 ∈ (0,∞) ∶ lim
𝜀↓0

sup
‖

‖

‖

𝑊 𝑄
𝛾−1∕2(𝑡) −𝑍

𝜀
𝛾 (𝑡)

‖

‖

‖ 2
= 0.
𝑡∈[−𝑇 ,𝑇 ] ‖ ‖𝐿 (𝛺;𝑈 )
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Proof.  For 𝑡 ∈ [0,∞), we can write

𝑊 𝑄
𝛾−1∕2(𝑡) −𝑍

𝜀
𝛾 (𝑡) =

1
𝐶𝛾−1∕2 ∫

𝑡

0
(𝑡 − 𝑠)𝛾−1

(

1 − 𝑒−𝜀(𝑡−𝑠)
)

d𝑊 𝑄(𝑠) + 1
𝐶𝛾−1∕2 ∫

0

−∞

[

(𝑡 − 𝑠)𝛾−1
(

1 − 𝑒−𝜀(𝑡−𝑠)
)

− (−𝑠)𝛾−1
(

1 − 𝑒𝜀𝑠
)]

d𝑊 𝑄(𝑠).

Applying the Itô isometry to each of these integrals and using the respective changes of variables 𝑠′ ∶= −𝑠 and 𝑠′ ∶= 𝑡 − 𝑠 yields 
‖

‖

‖

‖

𝑊 𝑄
𝛾−1∕2(𝑡) −𝑍

𝜀
𝛾 (𝑡)

‖

‖

‖

‖

2

𝐿2(𝛺;𝑈 )
=
𝐼1(𝑡) + 𝐼2(𝑡)
𝐶𝛾−1∕2

(tr𝑄)2, 𝐼1(𝑡) ∶= ∫

|𝑡|

0
𝑠2𝛾−2

(

1 − 𝑒−𝜀𝑠
)2 d𝑠,

𝐼2(𝑡) ∶= ∫

∞

0

|

|

|

(|𝑡| + 𝑠)𝛾−1
(

1 − 𝑒−𝜀(|𝑡|+𝑠)
)

− 𝑠𝛾−1
(

1 − 𝑒−𝜀𝑠
)

|

|

|

2
d𝑠.

(5.4)

For 𝑡 ∈ (−∞, 0) we find (5.4) by instead splitting into integrals over (−∞, 𝑡) and (𝑡, 0) and changing variables 𝑠′ ∶= 𝑡− 𝑠 and 𝑠′ ∶= −𝑠, 
respectively. For 𝑡 ∈ [−𝑇 , 𝑇 ], the elementary inequality 1 − 𝑒−𝑥 ≤ 𝑥 for 𝑥 ∈ [0,∞) yields 𝐼1(𝑡) ≤ 𝜀2 ∫ |𝑡|

0 𝑠2𝛾 d𝑠 = 𝜀2|𝑡|2𝛾+1

2𝛾+1 ≤ 𝜀2𝑇 2𝛾+1

2𝛾+1 .
For 𝐼2, applying the fundamental theorem of calculus to the function 𝑢 ↦ (𝑢 + 𝑠)𝛾−1(1 − 𝑒−𝜀(𝑢+𝑠)), followed by Minkowski’s integral 
inequality [41, Section A.1], yields

𝐼2(𝑡) = ∫

∞

0

|

|

|

|

∫

|𝑡|

0
[(𝛾 − 1)(𝑢 + 𝑠)𝛾−2(1 − 𝑒−𝜀(𝑢+𝑠)) + 𝜀(𝑢 + 𝑠)𝛾−1𝑒−𝜀(𝑢+𝑠)] d𝑢

|

|

|

|

2
d𝑠

≤
|

|

|

|

|

∫

𝑇

0

[

∫

∞

0

|

|

|

(𝛾 − 1)(𝑢 + 𝑠)𝛾−2(1 − 𝑒−𝜀(𝑢+𝑠)) + 𝜀(𝑢 + 𝑠)𝛾−1𝑒−𝜀(𝑢+𝑠)||
|

2
d𝑠
]
1
2
d𝑢
|

|

|

|

|

2

= 𝜀3−2𝛾
|

|

|

|

|

∫

𝑇

0

[

∫

∞

𝜀𝑢

|

|

|

(𝛾 − 1)𝑣𝛾−2(1 − 𝑒−𝑣) + 𝑣𝛾−1𝑒−𝑣||
|

2
d𝑣

]
1
2
d𝑢
|

|

|

|

|

2

≤ 𝜀3−2𝛾 𝑇 2
∫

∞

0

|

|

|

(𝛾 − 1)𝑣𝛾−2(1 − 𝑒−𝑣) + 𝑣𝛾−1𝑒−𝑣||
|

2
d𝑣,

where we performed the change of variables 𝑣(𝑠) ∶= 𝜀(𝑢 + 𝑠) on the third line.
The improper integral on the last line converges: As 𝑣 ↓ 0, the squares of both terms are of order (𝑣2𝛾−2), where we again 

use 1 − 𝑒−𝑣 ≤ 𝑣 for the first term, and we have 2𝛾 − 2 ∈ (−1, 1); the square of the first term is of order (𝑣2𝛾−4) as 𝑣 → ∞, with 
2𝛾 − 4 ∈ (−3,−1), whereas the second term decays exponentially. The convergence thus follows by letting 𝜀 ↓ 0. □

5.2. Remarks on Markov behavior

Now we consider the Markov behavior of fractional 𝑄-Wiener processes with Hurst parameter 𝐻 ∈ (0, 1). Since the case 𝐻 = 1
2

corresponds to a standard 𝑄-Wiener process, we find that 𝑊 𝑄
1∕2 is simple Markov, whereas we can expect that 𝑊

𝑄
𝐻  is not weakly 

Markov for 𝐻 ≠ 1
2 .

In the real-valued case, the first published proof of non-Markovianity appears to be [19], which shows that 𝐵𝐻  is not simple 
Markov for 𝐻 ≠ 1

2  using a characterization in terms of its covariance function. This result can be improved by applying the 
theory of [18, Chapter V] for Gaussian 𝑁-ple Markov processes to the Mandelbrot–Van Ness representation of 𝐵𝐻 . Namely, by [18, 
Theorem 5.1], any real-valued process of the form (∫ 𝑡−∞ 𝐾(𝑡, 𝑠) d𝐵(𝑠))𝑡∈R is 𝑁-ple Markov for 𝑁 ∈ N only if there exist functions 
(𝑓𝑗 )𝑁𝑗=1, (𝑔𝑗 )

𝑁
𝑗=1 such that 𝐾(𝑠, 𝑡) =

∑𝑁
𝑗=1 𝑓𝑗 (𝑠)𝑔𝑗 (𝑡) for 𝑠, 𝑡 ∈ R. The real-valued kernel 𝐾𝐻  in (5.2) satisfies this condition only if 𝐻 = 1

2 .
The question arises if one can generalize this characterization of real-valued 𝑁-ple Markovianity to the case of Hilbert space 

valued Gaussian processes, such as 𝑊 𝑄
𝐻  and 𝑍𝛾 (see Definitions  5.1 and 4.5, respectively). However, it is not evident from the proof 

in the real-valued case what the analogous condition would be in the Hilbertian setting. For instance, the kernel 𝐾(𝑡, 𝑠) = 𝑆(𝑡 − 𝑠)
of the simple Markov process 𝑍1 factorizes as 𝐾(𝑡, 𝑠) = 𝑆(𝑡)𝑆(−𝑠) provided that (𝑆(𝑡))𝑡≥0 extends to a 𝐶0-group (𝑆(𝑡))𝑡∈R. Otherwise 
it is not guaranteed that such a factorization exists, and it is not clear either whether this condition remains necessary for simple 
Markovianity in the Hilbert space case.

In order to establish that 𝑊 𝑄
𝐻  (or 𝐵𝐻 ) does not have the weak Markov property for 𝐻 ≠ 1

2 , one could also attempt to associate 
a nonlocal precision operator to the process and apply the necessary condition from Theorem  3.7. Formally, its coloring operator 
−1
𝐻  acts on 𝑓∶R → 𝑈 as −1

𝐻 𝑓 (𝑡) = 1
𝐶𝐻

∫R 𝐾𝐻 (𝑡, 𝑠)𝑓 (𝑠) d𝑠 for all 𝑡 ∈ R. For certain ranges of 𝐻 , see for instance [36, Equation (31)], 
an explicit formula of its inverse 𝐻  can also be determined. The operator −1

𝐻  is bounded on some weighted Hölder space by [36, 
Theorem 6], but there is no reason to expect that it is bounded on a Hilbert space such as 𝐿2(R;𝑈 ). Therefore, Theorem  3.7 is not 
directly applicable, as it would need to be extended to the Banach space setting, which is beyond the scope of this work.
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Appendix A. Auxiliary results

This Appendix collects auxiliary results which are needed in the main text but have been postponed for the sake of readability.

A.1. Conditional independence

Let 1,,2 ⊆  be 𝜎-algebras on (𝛺, ,P). We recall a characterization of conditional independence, see [20, Theorem 8.9], 
from which we derive a lemma which is useful for establishing relations between various (equivalent formulations of) Markov 
properties defined in Section 3.

Theorem A.1 (Doob Conditional Independence Property). We have 1 ⟂⟂ 2 if and only if P(𝐺2 ∣ 1 ∨) = P(𝐺2 ∣ ) holds P-a.s., for 
all 𝐺2 ∈ 2.

Lemma A.2.  If 1 ⟂⟂ 2, then
(a) 1 ∨ ⟂⟂ 2; 
(b) 1 ⟂⟂′ 2 for any 𝜎-algebra ′ ⊇  such that ′ ⊆ 1; 
(c) 1 ⟂⟂′ 2 for any 𝜎-algebra ′ ⊇  of the form ′ = ′

1 ∨ ′
2, where ′

1,
′
2 are 𝜎-algebras satisfying ′

1 ⊆ 1 ∨  and 
′

2 ⊆ 2 ∨. 

Proof.  Part (a) is [20, Corollary 8.11(i)]; combining it with 1 = 1 ∨ ′ and ′ =  ∨′ yields (b). To prove (c), first 
note that 1 ∨  ⟂⟂∨′

1
2 ∨  by parts (a) and (b). Applying (a) again, we find 1 ∨  ∨ ′

1 ⟂⟂∨′
1

2 ∨  ∨ ′
1. Since 

 ∨′
1 ⊆  ∨′ = ′ = ′

2 ∨′
1 ⊆ 2 ∨ ∨′

1, part (b) yields 1 ∨ ∨′
1 ⟂⟂′ 2 ∨ ∨′

1, which proves (c) since 1 ⊆ 1 ∨ ∨′
1

and 2 ⊆ 2 ∨ ∨′
1. □

A.2. Results related to Assumption  4.2(i)

Lemma A.3.  Let Assumption  4.1 be satisfied, i.e., suppose the linear operator −𝐴∶𝖣(𝐴) ⊆ 𝑈 → 𝑈 on the separable real Hilbert space 
𝑈 generates an exponentially stable 𝐶0-semigroup (𝑆(𝑡))𝑡≥0 of bounded linear operators on 𝑈 . If 𝑄 ∈ L +(𝑈 ) and 𝛾0 ∈ (−∞, 1∕2], then 
∫ ∞
0 ‖𝑡𝛾0−1𝑆(𝑡)𝑄

1
2
‖

2
L2(𝑈 ) d𝑡 = ∞, that is, Assumption  4.2(i) cannot hold for 𝛾0 ∈ (−∞, 1∕2].

Proof.  Fix some 𝑥 ∈ 𝑈 with ‖𝑥‖𝑈 = 1. Then ‖𝑆(𝑡)𝑄 1
2
‖L2(𝑈 ) ≥ ‖𝑆(𝑡)𝑄

1
2 𝑥‖𝑈  for all 𝑡 ∈ [0,∞). Since 𝑡 ↦ 𝑆(𝑡)𝑄

1
2 𝑥 is continuous at 

zero and 𝑆(0)𝑄 1
2 𝑥 = 𝑄

1
2 𝑥, we can choose 𝛿 ∈ (0,∞) so small that ‖𝑆(𝑡)𝑄 1

2 𝑥‖𝑈 ≥ 1
2‖𝑄

1
2 𝑥‖𝑈  for all 𝑡 ∈ [0, 𝛿]. If 𝛾0 ∈ (−∞, 1∕2], we 

then obtain

∫

∞

0
‖𝑡𝛾0−1𝑆(𝑡)𝑄

1
2
‖

2
L2(𝑈 ) d𝑡 ≥

1
2
‖𝑄

1
2 𝑥‖2𝑈 ∫

𝛿

0
𝑡2(𝛾0−1) d𝑡 = ∞. □

Lemma A.4.  Let Assumption  4.1 be satisfied. If Assumption  4.2(i) holds for some 𝛾0 ∈ (1∕2,∞), then it also holds for all 𝛾 ′ ∈ [𝛾0,∞).

Proof.  The change of variables 𝜏 ∶= 𝑡∕2, the semigroup property and (4.2) yield

∫

∞

0
‖𝑡𝛾

′−1𝑆(𝑡)𝑄
1
2
‖

2
L2(𝑈 ) d𝑡 ≤ 22𝛾

′−1𝑀2
0 ∫

∞

0
𝑒−2𝑤𝜏‖𝜏𝛾

′−1𝑆(𝜏)𝑄
1
2
‖

2
L2(𝑈 ) d𝜏.

For the latter integral, we split up the domain of integration and estimate each of the resulting integrands to find

∫

∞

0
𝑒−2𝑤𝜏‖𝜏𝛾

′−1𝑆(𝜏)𝑄
1
2
‖

2
L2(𝑈 ) d𝜏 =

∞
∑

𝑘=1
∫

𝑘

𝑘−1
𝑒−2𝑤𝜏‖𝜏𝛾

′−1𝑆(𝜏)𝑄
1
2
‖

2
L2(𝑈 ) d𝜏

≤
∞
∑

𝑘=1
𝑒−2𝑤(𝑘−1)𝑘2(𝛾

′−𝛾0)
∫

∞

0
‖𝜏𝛾0−1𝑆(𝜏)𝑄

1
2
‖

2
L2(𝑈 ) d𝜏 < ∞,

where the series converges since |𝑒−2𝑤𝑘𝑘2(𝛾′−𝛾0)|
1
𝑘 → 𝑒−2𝑤 < 1 as 𝑘 → ∞. □
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A.3. Filtrations indexed by the real line

Proposition A.5.  A process (𝑊 𝑄(𝑡))𝑡∈R satisfying (WP1) cannot be a martingale with respect to any filtration (𝑡)𝑡∈R.

Proof.  Suppose that (𝑊 𝑄(𝑡))𝑡∈R is a martingale with respect to some filtration ( )𝑡∈R. Then the same holds for the real-valued 
process 𝑊 𝑄

ℎ (𝑡) ∶= ⟨𝑊 𝑄(𝑡), ℎ⟩𝑈 , where we choose ℎ ∈ 𝑈 such that ⟨𝑄ℎ, ℎ⟩2𝑈 > 0 to ensure that (𝑊 𝑄
ℎ (𝑡))𝑡∈R has nontrivial increments. 

In particular, (𝑊 𝑄
ℎ (−𝑛))𝑛∈N is a backward martingale with respect to (−𝑛)𝑛∈N, implying that it converges P-a.s. and in 𝐿1(𝛺) as 𝑛→ ∞

by the backward martingale convergence theorem [16, Section 12.7, Theorem 4]. But this contradicts (WP1), since (𝑊 𝑄
ℎ (−𝑛))𝑛∈N

cannot be a Cauchy sequence in 𝐿1(𝛺) as it has (non-trivial) stationary increments. □

A.4. Mean-square differentiability of stochastic convolutions

The following lemma concerning mean-square continuity and differentiation under the integral sign is a straightforward 
generalization of [23, Propositions 3.18 and 3.21] to stochastic convolutions with respect to a two-sided Wiener process. Its proof 
is therefore omitted.

Lemma A.6.  Let 𝑡0 ∈ [−∞,∞) be such that 𝛹 ( ⋅ )𝑄 1
2 ∈ 𝐿2(0,∞;L2(𝑈 )) and set T ∶= [𝑡0,∞) if 𝑡0 ∈ R or T ∶= R if 𝑡0 = −∞. Then the 

stochastic convolution (∫ 𝑡𝑡0 𝛹 (𝑡 − 𝑠) d𝑊
𝑄(𝑠))𝑡∈T is mean-square continuous.

If 𝛹 ( ⋅ )𝑄 1
2 ∈ 𝐻1

0 (0,∞;L2(𝑈 )), then the process (∫ 𝑡𝑡0 𝛹 (𝑡 − 𝑠) d𝑊 𝑄(𝑠))𝑡∈T is mean-square differentiable on T and, for all 𝑡 ∈ T, the 
identity d

d𝑡 ∫
𝑡
𝑡0
𝛹 (𝑡 − 𝑠) d𝑊 𝑄(𝑠) = ∫ 𝑡𝑡0 𝜕𝑡𝛹 (𝑡 − 𝑠) d𝑊

𝑄(𝑠) holds P-a.s.

Appendix B. Fractional powers of the parabolic operator

Let 𝐴∶𝖣(𝐴) ⊆ 𝑈 → 𝑈 be a linear operator on a real Hilbert space 𝑈 .

Definition B.1.  Let Assumption  4.1 be satisfied. We define the negative fractional power operator 𝐴−𝛼 of order 𝛼 ∈ (0,∞) as the 
L (𝑈 )-valued Bochner integral 𝐴−𝛼 ∶= 1

𝛤 (𝛼) ∫
∞
0 𝑡𝛼−1𝑆(𝑡) d𝑡. Then 𝐴−𝛼 is injective and we define 𝐴𝛼𝑥 ∶= (𝐴−𝛼)−1𝑥 for 𝑥 ∈ 𝖣(𝐴𝛼). For 

𝛼 = 0 we set 𝐴0 ∶= Id𝑈 .

See [34, Section 2.6] for more details on this definition of fractional powers. The proof of the following lemma is analogous to 
that of [23, Proposition A.3] and is therefore omitted.

Lemma B.2.  Let (𝑆,A , 𝜇) be a measure space such that 𝐿2(𝑆;R) is nontrivial and consider the linear operator 𝑆 on 𝐿2(𝑆;𝑈 ) defined 
by (4.7). If −𝐴 generates a 𝐶0-semigroup (𝑇 (𝑡))𝑡≥0 on 𝑈 , then −𝑆 generates the 𝐶0-semigroup (𝑆 (𝑡))𝑡≥0 on 𝐿2(𝑆;𝑈 ).

The next results are respectively analogous to [23, Propositions A.5 and 3.2].

Proposition B.3.  For 𝑡 ∈ R, define the shift operator  (𝑡) ∈ L (𝐿2(R;𝑈 )) by  (𝑡)𝑓 ∶= 𝑓 ( ⋅ − 𝑡) for 𝑓 ∈ 𝐿2(R;𝑈 ). The family ( (𝑡))𝑡∈R
is a 𝐶0-group whose infinitesimal generator is given by −𝜕𝑡, where 𝜕𝑡 is the Bochner–Sobolev weak derivative on 𝖣(𝜕𝑡) = 𝐻1(R;𝑈 ).

Proposition B.4.  Suppose that Assumption  4.1 holds. The closure  of the sum operator 𝜕𝑡+R exists and − generates the 𝐶0-semigroup 
(R(𝑡) (𝑡))𝑡≥0 on 𝐿2(R;𝑈 ) satisfying ‖R(𝑡) (𝑡)‖𝐿2(R;𝑈 ) = ‖ (𝑡)R(𝑡)‖𝐿2(R;𝑈 ) = ‖𝑆(𝑡)‖L (𝑈 ) for all 𝑡 ∈ R, where (R(𝑡))𝑡≥0 and ( (𝑡))𝑡≥0
are as in (4.7) and Proposition  B.3, respectively.

It follows that (R(𝑡) (𝑡))𝑡≥0 inherits the exponential stability of (𝑆(𝑡))𝑡≥0, so that fractional powers of  can be defined using 
Definition  B.1. Therefore, under Assumption  4.1, Definition  B.1 implies

−𝛾𝑓 (𝑡) = 1
𝛤 (𝛾) ∫

∞

0
𝑟𝛾−1R(𝑟) (𝑟)𝑓 (𝑡) d𝑟 = 1

𝛤 (𝛾) ∫

∞

0
𝑟𝛾−1𝑆(𝑟)𝑓 (𝑡 − 𝑟) d𝑟

for 𝛾 ∈ (0,∞), 𝑓 ∈ 𝐿2(R;𝑈 ) and almost all 𝑡 ∈ R. We conclude that −𝛾 = I𝛾 for all 𝛾 ∈ [0,∞), where the latter is defined by (4.5).
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