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ABSTRACT 
 
Via computational modeling, we investigate the mechanism of strain recovery in dual 
cross-linked polymer grafted nanoparticle (PGN) networks. The individual 
nanoparticles are composed of a rigid spherical core and a corona of grafted 
polymers that encompass reactive end groups. With the overlap of the coronas on 
adjacent particles, the reactive end groups form permanent or labile bonds, and thus 
form a “dual cross-linked” network. We consider the strain recovery of the material 
after it is allowed to relax from the application of a tensile force. Notably, the existing 
labile bonds can break and new bonds can form in the course of deformation.  
Hence, a damaged material could be “rejuvenated” both in terms of the recovery of 
strain and the number of bonds, if the relaxation occurs over a sufficiently longtime. 
We show that this rejuvenation depends on the fraction of permanent bonds and 
strength of labile bonds. Specifically, we show that while an increase in the labile 
bond energy leads to formation of a tough material, it also leads to delayed strain 
recovery. Further, we show that an increase in the fraction of permanent bonds yields 
improved recovery even after multiple stretch-relaxation cycles. 
 
1. INTRODUCTION 
 
The functionalization of nanoparticles with polymeric chains permits these particles to 
be cross-linked into extensive networks that can exhibit remarkable mechanical 
properties [1]. “Dual cross-links”, which combine both “permanent” and labile bonds, 
are known to significantly improve the mechanical properties of polymer gel networks 
[2]. Here, we use a computational model to study how the dual cross-links affect the 
elastic and inelastic behavior of polymer grafted nanoparticle (PGN) hybrid materials 
that are stretched and relaxed (by gradually decreasing the applied force). Simulating 
the response of these networked PGNs to the application and gradual removal of an 
applied force is challenging because all the relevant length and time scales should be 
captured in one specific model. Namely, the model must span a range of architectural 
features and temporal events. Our recently developed approach [3] encompasses the 
following components: 1) the essential structural features of the polymer grafted 
nanoparticles, 2) the interactions between the coated particles, 3) the kinetics of 
bond formation and rupture between the reactive groups on the polymer chains that 
form the coating, and 4) the resulting global response of a macroscopic sample to an 
applied tensile force.  
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Building on this multi-component model, we now formulate a procedure for applying a 
strain-controlled tensile deformation to the material and then a force-controlled 
release of that deformation. Via this protocol, we specifically determine how the 
energies of the labile bonds, and the amount of “permanent” bonds in the network 
affect the recovery of the materials properties and self-healing of the sample after 
loading and unloading. We also determine how the material behaves after multiple 
cycles of this strain-controlled deformation and stress-controlled relaxation. Below, 
we first detail our hybrid, multi-component model. 

 
2. METHODOLOGY 
 
Our system consists of a swollen network of cross-linked polymer-grafted spherical 
nanoparticles (PGNs), which are cross-linked by a combination of “permanent” and 
labile bonds to form an extended network (see Fig. 1). The center-to-center 
separation between these coated particles is R . The interaction between two such 
PGNs is modeled through a sum of interaction potentials, which is given by 
  



Uint Urep Ucoh Ulink. The first term characterizes the repulsive interactions between 
the coated nanoparticles and is given by [3,4]: 
 



Urep(R)

kBT

5

8
f 3 / 2 

ln(R /) (1 f 1/ 2 /2)1 , R 

(1 f 1/ 2 /2)1( /R)exp[ f 1/ 2(R ) /2] , R 





   (1) 

 
Here, 



f  is the number of arms, and 



  2(1q)(12 f 1/2)1 is the range of the 
potential, which is related to the diameter of the last blob in the Daoud-Cotton (DC) 
model [5,6]. The second term in the potential describes the attractive cohesive 
interaction between the coated particles and is chosen to have the form:  
 



Ucoh R  C{1exp[(R  A) /B]}
1       (2) 

 
where, C is an energy scale, and A and B are length scales [7]. 
 

Figure 1: Multiscale interactions in a network of dual cross-linked PGNs. 
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The final term in the potential, 



Ulink, describes the attractive interaction between 
particles that are linked by the bonded polymer arms. The attractive force acting 
between the two bonded particles is given by the following equation [3]: 
 



Flink(r) Nb(r) r          (3) 
 
where, 



Nb  is the number of bonds formed between the given pair of particles, and 



(r)  is the spring constant, which increases progressively with the chain end-to-end 
distance 



r R2 [3]. The stiffening of the chain is described by the following 
equation obtained for a worm-like chain [8]: 
 



(r) 0{12[1 r
2(2L)2]2}       (4) 

 
In the above equation, 



2L  is the contour length of the chain formed by bonding two 
corona arms of length



L . 
 
The number of polymer cross-links, 



Nb , formed between two PGNs by the bonding of 
the polymer arms depends on the extent of overlap between the coronas of the 
nanoparticles, and on the kinetics of bond formation and rupture [3]. The set of 
bonded arms are referred to as a link; in other words, each link in the network 
corresponds to multiple re-formable bonds. At the individual bond level, we use the 
Bell model [9] to describe the rupture and re-formation of bonds due to thermal 
fluctuations. The rupture rate,



kr , increases exponentially with the applied force 



kr  k0r exp 0F , where 



k0r exp U0 kBT  is the rupture rate in the zero force limit. 
The formation rate,



k0 f , is assumed to be a constant. We note that it is only the labile 
bonds that can reform after breaking; the permanent bonds can only break. The 
evolution equation for the number of bonds can be written as [3]:

   

  



dNb

dt
 kr(R)Nb Pc(R)k0 f [Nmax(R) Nb ]

2      (5)
 
 

 
where   



Nmax(R)  is the maximum number of chain ends that could be found in the 
overlap volume and 



Pc(R)  is the probability of contact of two chain ends [3].  
 
The dynamics of the system is assumed to be in the overdamped regime; hence, the 
motion of each particle described by the equation 



dx /dt  Ftot, where 



  is the 
mobility and 



Ftot is the total force on the polymer grafted particle. The total force 
acting on a particle can be written as   



Ftot  Uint /x Fext , where 



Fext  is the external 
force acting on the edge particles of the particle array (see Fig 1). This equation is 
solved numerically in two steps since the polymer spring force (within the expression 
for 



Ftot ) in the dynamic equation depends on the number of bonds between particles 
and consequently, on the evolution of the chemical kinetics given by eq. (5). In the 
first step, we determine the number of bonds at any given time,



Nb(t), by evolving 
numerically the unsteady state kinetics, eq. (5), through an explicit Euler scheme with 
a time step of 



102T0, where 



T0  is the unit of time in the simulation. Note that the 
numerical evolution of eq. (5) yields a real number, whereas the number of bonds 



Nb(t) should take discrete integer values. In order to determine the integer value, we 
compare the fractional part of the numerical result, 



{Nb (t)}, with a random number 



 
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distributed uniformly between 0 and 1. If 



{Nb (t)}  , then we truncate the result; 
otherwise, we increment the integer part of the result by 1. In the second step, we 
use this value for the number of bonds to calculate the spring force (see eq. (3)) in 
the dynamic equation and integrate numerically the resulting equation using a fourth-
order Runge-Kutta algorithm with a time step of



102T0.  
 
Each sample considered here is composed of 



NPGN 180  particles, which are initially 
arranged in 12 rows, with 15 particles in each row (see Fig. 1). To quantify the 
mechanical properties and strain recovery, eight independent runs are performed on 
samples at each set of model parameters. The strain   is calculated as the ratio of 
the extension of the sample to its length in the undeformed state. Via our computer 
simulations, we employed a three-step procedure to study the strain recovery of the 
material (see Fig 2a). In the first step, the sample is subjected to a strain-controlled 
tensile deformation by pulling the left edge of the sample at a constant velocity of 



v 0.001, which corresponds to roughly 3.55 nm/s, until the desired maximal value of 
strain, 



max , is reached. The values of 



max  are chosen to not exceed the strain at 
break. The external tensile force 



F  acting on the left edge of the sample is recorded 
as a function of   during the first step. In the second step, the force 



F  is relaxed to 
zero at a constant rate over 



104T0 time steps, and the strain   is recorded (force-
controlled strain relaxation). The inelastic component of the deformation is 
characterized by the residual strain, 



0, which is recorded at the moment of time 
when 



F  0. Finally, in the third step of the procedure, the relaxation of the residual 
strain at zero external force is tracked over some period of time. To elucidate the 
mechanism of strain recovery, the samples are subjected to either single or multiple 
cycles of the stretching and relaxation procedure. 

 
3. RESULTS AND DISCUSSION 
 
Using the model described above, we determine how the key parameters of the 
system affect the strain recovery in dual cross-linked networks of PGNs, which are 
subjected to tensile loading and unloading. We begin by analyzing the effects of 
varying the energy of the labile bonds, 



U0
(l ), on the mechanical response of the 

material; here, the average number of permanent bonds between a pair of 
neighboring PGNs was initially set to 



P 1 (i.e., during the initial generation of the 
sample).  
 
A. Effect of varying the bond energy of the labile bonds 
 
To obtain insight into the role that the bond energy of the labile bonds plays in the 
strain recovery process, we consider the deformation of samples with 



U0
(l )= 33, 37 

and 39



kBT . As indicated in Figure 2a, at 



0  t  2.5 104T0, the samples were 
stretched at a constant strain rate until the strain reaches the maximal value 



max  0.53. Then, at 



t  2.5 104T0, the force 



F  was released at a constant release 
rate such that 



F  0 at 



t  3.5 104T0 . We use the term “recovery” for the relaxation 

processes that occur after 



F  0 is reached. From these simulations, we obtain the 
set of plots in Figure 2, which shows the strain 



  (Fig 2a) and number of labile bonds 
per particle 



Nb
(l ) /NPGN  (Fig 2b) as a function of time 



t . 
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Figure 2 clearly shows that the behavior of the dual cross-linked PGNs depends 
strongly on the strength of the labile bonds. In particular, Figure 2a indicates that 
some part of this deformation is inelastic since the samples exhibit residual strain 
upon release of the external load; the residual strain is considerably lower in the 
sample having the weaker labile bonds than in the other two samples (compare curve 
1 with curves 2 and 3 in Figure 2a). Additionally, Figure 2a shows that the recovery of 
the residual strain in the unloaded samples at 



t  3.5 104T0  becomes remarkably 
slow as the energy of labile bonds increases from 



U0
(l )  33kBT  (curve 1) to 



37 and 



39kBT  (curves 2 and 3, respectively).  
 
During the course of the deformation, the rupture of stressed labile bonds occurs 
simultaneously with the formation of new bonds within the overlapped coronas. 
Figure 2b shows that 



Nb
(l ) /NPGN  drops during the initial stretching of a sample, and 

this decrease slows down even though the stretching continues. The latter behavior 
indicates that the rupture of stressed bonds is balanced by bond formation. Further, 
Figure 2b shows that owing to the bond formation, the labile bonds are restored in 
the samples during the release of force (



Nb
(l ) /NPGN  increases at 



2.5 104T0  t  3.5 10
4T0), thus, clearly indicating that the material is capable of self-

healing. Figure 2b indicates that during the strain controlled stretching there is 
greater number of the labile bonds in the samples with higher 



U0
(l ). 

Figure 2: Response of the network to tensile strain applied at a constant velocity and a 
subsequent controlled, linear decrease of the force. After 



F  0, the sample continues 
to undergo recovery. (a) Strain (



 ) versus time (



t ). (b) Number of labile bonds per 
particle (



Nb
l  NPGN ) versus time (



t ). (c) ( )-(



t ) curves. (d) (



Nb
l  NPGN )-(



t ) curves 
during release and recovery. The plots are from a single simulation run. 
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The relaxation of strain and of the labile bonds continues in the system after the 
tensile force is released and the system reaches the



F  0 state. To highlight this 
behavior, we specifically focus on the time frame around 



F  0 in Figures 2c and 2d. 
Note that Figure 2c and 2d shows the behavior of the system during the release of 
force and recovery (



t  2.5 104T0), as well as the dynamics of recovery at longer 
times (up to 



5 105T0). From the latter plots, we clearly see that the rate and extent of 
recovery depend on the energy of the labile bonds. In the system having the weaker 
labile bonds (



U0
(l )  33kBT ), the recovery occurs during 



~1104T0 (see Figure 2c). The 
residual strain, however, is not recovered completely and remains about 4% in this 
case. Additionally, the number of labile bonds is lower than its initial value (as can be 
seen by comparing curve 1 at 



t  0 in Figure 2b and late times in Figure 2d). In 
contrast, at the labile bond energies of 



U0
(l )  37and 



39kBT , the recovery is markedly 
slower than in the case of weaker bonds and takes about 



1105T0 and 



5 105T0, 
respectively (see Figure 2c). Furthermore, in these cases, the strain and the number 
of labile bonds exhibit a complete recovery that occurs in two distinct stages, as can 
be seen from curves 2 and 3 in Figures 2c and 2d, respectively. At the first stage the 
number of labile bonds relax close to the initial one (i.e., to the one before 
deformation) while in the second stage strain recovery happens around a constant 
value of 



Nb
(l ) /NPGN . 

 
Recovery of the residual strain and the labile bonds at 



F  0 and beyond occurs 
through local rearrangements of the PGNs. The motion of these nanoparticles 
relative to each other is limited by the rate of breakage of the labile bonds. Note that 
the labile bonds break less often as the bond energy is increased. Therefore, the rate 
of recovery decreases with an increase in 



U0
(l ). Notably, 



U0
(l ) also controls the 

degradation of the cross-linked system in the course of deformation [3]. An increase 
in the energy of labile bonds from 33 to 



37kBT  and higher prevents the formation of 
large voids, which cannot be healed during recovery. Hence, complete strain 
recovery is observed at 



U0
(l )  37 and 



39kBT . 
 

B. Effect of varying the fraction of permanent bonds 
 
Permanent bonds form an elastic skeleton in the dual cross-linked nanoparticle 
network; the presence of these bonds can lead to notable improvements in the 
toughness of the material [3]. We anticipate that the permanent bonds between the 
PGNs will also play an important role in the strain recovery within the sample. To test 
this hypothesis, we vary the average number of permanent bonds between two 
particles over the range



1P 2, while fixing the labile bond energy at 



U0
(l )  37kBT .  

 
As in the previous section, we examine the behavior of dual cross-linked PGNs that 
were strained to the maximum extension of



max  0.53, and then subjected to the 
force-controlled relaxation during the period of time



104T0, followed by the recovery 
process. We can obtain insight into the effect of permanent bonds by examining 
snapshots from simulations of samples in the process of recovery, i.e., after the force 
in the sample is released. Figures 3a and 3b show the nanoparticles and the labile 
bonds in the samples at 



P 1 and



P  2, respectively, at 



t 1.5 104T0 
and



7.5 104T0. Figure 3a reveals that at 



P 1, there are a number of voids of various 
sizes distributed throughout the sample during recovery. In contrast, Figure 3b shows 
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that upon unloading all the voids are healed by 



t  7.5 104T0 due to the increase in 
the number of permanent bonds from 



P 1 to



P  2. 

 
C. Effect of applying multiple cycles of stretching and relaxation 
 
In the above studies, we showed that the structure of the sample could be recovered 
(rejuvenated) after the forces were released, and that the extent of healing depends 
on the fraction of the permanent bonds in the network. We now examine the recovery 
process for systems subjected to multiple cycles of strain and relaxation. 
 
We quantify the influence of 



P  on the properties of materials undergoing multiple 
deformations by calculating the hysteresis



W , which is defined as the area confined 
within a force-strain loop. Figure 4 shows the material properties of samples that are 
subjected to repeated deformations where the maximal strain, 



max , is increased 
incrementally with each subsequent cycle. Namely, 



max = 0.1 in the first cycle and 



max = 0.53 in the fifth cycle. As above, the consecutive cycles of strain-controlled 
tensile deformation are followed by the force-controlled relaxation during 



104T0 and 
the samples are allowed to recover during the time 



5 104T0  before the next cycle. 
Figure 4a shows the force-strain curves for five consecutive cycles at the fraction of 
permanent bonds of 



P  2. The curves correspond to a single simulation run at 



U0
(l )  37kBT . While the residual strain increases with an increase in 



max , the healing 
of the sample is complete; that is, the strain eventually goes back to 



  0. However, 
the recovery is incomplete in the 



P 1 sample for strain values 



max  0.31 and results 
in modified behavior during the consecutive cycle (see Figure 3a and Figure 4b). In 
contrast, the sample having more permanent bonds (at 



P  2) recovers completely 
after each cycle (Figure 4a).  

Figure 3: Snap shots of the sample during recovery (a) 



P 1  (b) 



P  2 
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Figure 4b shows that the average hysteresis 



W (obtained from 8 simulations) 
increases with an increase in the maximal strain for all samples at 



max  0.42 . 
Furthermore, while the hysteresis of the samples at 



P  2 is slightly lower than that at 



P 1 at 



max  0.42  and continues to increase for increasing strains, the hysteresis for 
the 



P 1 samples levels off at 



max  0.31. The results indicate that there is higher 
energy loss with increasing extents of maximum strain due to, in particular, the 
increase in the residual strain. In addition, at 



max  0.31, the energy loss is higher at 



P 1 than that at 



P  2. Beyond the latter strain, the deterioration of the sample that 
occurs at 



P 1 leads to a reduction in 



W  (see curve 1 in Figure 4b). Thus, an 
increase in the fraction of permanent bonds is seen to improve recovery.  

 
4. CONCLUSION 
 
We examined the strain recovery and healing characteristics of dual cross-linked 
PGN networks via a hybrid computational model that integrates the kinetics of 
individual bond rupture/formation with the nano- and meso-scopic structure of the 
system. Our findings showed that an increase in the energy of the labile bonds led to 
a decrease in the residual strain within the material. The increase in 



U0
(l ) did, 

however, also lead to an increase in the time scale needed for recovery; this is due to 
the decrease in the rate of bond breakage with increasing 



U0
(l ). These results 

highlight a competition between the extent and rate of recovery with increasing 
energies for the labile bonds. For, the studies considered here, the value 



U0
(l )  37kBT  

led to an optimal compromise, with the relaxed sample returning to 



  0 on times 
scales that lay between the 



U0
(l )  33kBT  and 



U0
(l )  39kBT extremes. 

 
By examining snapshots from the simulations, we found that the 



P  2 networks 
displayed a more pronounced relaxation of voids within the samples and hence, 
greater healing than the 



P 1 materials. We also examined the extent of healing and 
recovery that occurs after the PGN networks were subjected to multiple cycles of 
stretching and relaxation. Using the hysteresis, 



W , as a measure of the extent of 
damage recovery, we found that the 



P 1 materials showed progressive 
deterioration with consecutive cycles of stretching and relaxation. In contrast, at a 
higher amount of permanent cross-links (



P  2), the networks recovered completely 

Figure 4: Effect of strain-relaxation cycles on recovery. (a) Force(



F )-strain( ) curves 
for repeated cycles at 



P 2.0. (b) Hysteresis, 



W , as a function of number of cycles 
at 



P 1 and 2. Open circles indicate conditions when one of the samples fracture. 
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after consecutive cycles of stretching and relaxation. Thus, introduction of additional 
permanent cross-links to the dual cross-linked PGN networks can prevent the effects 
of pre-stressing by healing defects that were created during deformation unlike filled 
rubber and thermoplastic elastomers [10]. 
 
In summary, these results indicate that the dual cross-linking strategy provides an 
effective means of designing self-healing PGN networks. The results of these 
computer simulations reveal how choices in the materials parameters, such as the 
energy of the labile bonds and fraction of permanent bonds, affect the final 
mechanical performance of the material.  
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