
Flow-based Networking and
Quality of Service

Flow-based Networking and
Quality of Service

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof. dr. ir. J. T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op donderdag 7 mei 2009 om 10.00 uur

door

Teunis Johannis KLEIBERG

elektrotechnisch ingenieur
geboren te Dordrecht.

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. ir. P. F. A. Van Mieghem

Samenstelling promotiecommissie:

Rector Magnificus, Voorzitter
Prof. dr. ir. P. F. A. Van Mieghem, Technische Universiteit Delft, promotor
Prof. dr. ir. N. H. G. Baken, Technische Universiteit Delft
Prof. dr. ir. H. W. J. Russchenberg, Technische Universiteit Delft
Prof. dr. J. L. van den Berg, Universiteit Twente
Prof. dr. C. Blondia, Universiteit Antwerpen
Prof. Ing. G. Ventre, Università di Napoli Federico II
Dr. G. Hooghiemstra, Technische Universiteit Delft
Dr. H. A. J. R. Uijterwaal, RIPE Network Coordination Centre

ISBN 90-407-2523-3

Keywords: QoS, flows, network performance

This research has been funded by Technology Foundation STW, project Network Dy-
namics and QoS (DTC.6421).

Copyright c© 2009 by T. J. Kleiberg

All rights reserved. No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical, including photocopying, recording
or by any information storage and retrieval system, without the prior permission of the author.

Printed in The Netherlands by Wöhrmann Print Service.

Cover art: a sample network consisting of routers (squares) carrying flows between hosts (circles).

aan mijn ouders,
voor hun onvoorwaardelijke steun

en vertrouwen

iv

Thesis summary

Flow-based Networking and Quality of Service
During the past two decades the Internet has been widely deployed and integrated into
the society, radically altering the way people communicate and exchange information.
Through cheap, fast and reliable information transfer, the Internet interconnects billions
of users covering practically the entire (developed) world. Although the Internet was
intended as a research network between few a institutions in the United States, it has
grown to take a central role in day-to-day communications and is by now considered
indispensable. The last decade we have seen a migration of the classic telecommunica-
tion services, telephony, radio and television, to the Internet and the emergence of new
services, such as online gaming and e-government. Hence, the Internet is replacing the
existing, dedicated telecommunication networks and embodies a single medium for all
(wired) communications. However, since these dedicated networks are tailored for one
type of service, the migration to the Internet, which design goals are primarily scalability
and reliability, creates a field of tension. The low latencies and losses for which the ded-
icated networks were optimized, cannot be guaranteed by the Internet, which philosophy
relies on best-effort routing. Packets in the Internet can literally travel across the entire
network, making it very hard to predict where the packets may travel, yielding tremen-
dous uncertainties regarding packet-delays and loss. Consequently, in order to provide
guarantees regarding the quality of a service, new techniques need to be implemented,
which are commonly denoted by “Quality of Service” (QoS). Various implementations
have been proposed in literature that aim at providing QoS in the Internet. One of these
implementation relies on flow-based communication between end-hosts. In flow-based
communications, the packets from a source to a destination that belong the same stream
are forced along the same path, offering a better control over the packets and an improved
quality control.

In this thesis we study the performance of networks using flow-based communica-
tion and we show by means of measurements that the current Internet can yield highly
unpredictable behavior in packet delivery. We will discuss measurements performed on
the Internet that serve as a motivation for the flow-level approach that is used throughout
the thesis. Based on traceroute measurements we show that the best-effort environment
of the Internet can lead to highly unpredictable behavior of packets. The measurements
indicate that the routes that the packets in the Internet follow are very changeable due

v

vi Thesis summary

to dynamics in the routing plane. The lifetime of a route, i.e. the time between the first
and last consecutive occasion that the particular route is used, appears to follow a power-
law distribution. This unpredictable behavior may hamper the performance of real-time
applications and serves as a motivation for the flow-based networking used in this thesis.

We introduce a new model that describes the network performance by using an anal-
ogy with queueing theory. The analysis of network performance is complicated by the
many dependencies between the properties of a network. The objective is to express the
network performance in terms of these properties and reveal the root of the problem.
The model facilitates to express the emergent performance characteristics, such as the
blocking rate of traffic flows and the maximum throughput of the network, in terms of
network parameters that are given by design, such as the number of nodes. The model
considers the network as a black box and minimizes the degrees of freedom in order to
reduce the dependencies and improve the comprehensibility of the model. Due to the
small number of parameters, we are able to discern the influence of these parameters on
the performance. In addition, we address the difficulties of studying network dynamics,
which can be traced back to the dependencies between the links and the importance of
traffic fluctuations in the network on the overall performance.

In a more static scenario where flows are assumed to have an infinite duration, we
study the maximum throughput of a network. Now, the network performance is measured
in terms of the average number of flows that can be allocated in a network before rejection
occurs. Through the use of the Erdös-Renyí random graph model [17] we can accurately
compute the ratio of the available links as a function of the number of allocated flows in
the full-mesh and we present an upper-bound on the maximum number of flows that can
be allocated in the full-mesh.

For real networks, the performance analysis of network dynamics is often too com-
plex to model. The heterogeneity of these networks and the complexity of the network
protocols, including Quality-of-Service mechanisms, may prohibit the use of mathemat-
ical models, such that simulation seems the only viable option. We introduce DeSiNe, a
flow-level network simulator with a special focus on Quality-of-Service, which can study
and compare the performance of various Quality-of-Service implementations at a system
level. In this thesis we detail the architectural and functional design and illustrate the
use of DeSiNe by means of several examples. In particular, DeSiNe supports constraint-
based routing and dynamic Quality-of-Service routing. The strength of DeSiNe lies in its
ability to simulate classes of networks in an automated fashion. This is particularly useful
when studying the performance of e.g. a new routing protocol and compare it between
different classes of networks.

Tom Kleiberg

Thesis samenvatting

Flow-based Networking and Quality of Service
Gedurende de laatste twintig jaar is het Internet op grote schaal uitgerold en geïntegreerd
in de maatschappij, resulterend in verregaande veranderingen in de manier waarop men-
sen communiceren en informatie uitwisselen. Door goedkope, snelle en betrouwbare
gegevensoverdracht verbindt het Internet miljarden mensen verspreid over praktisch de
gehele (ontwikkelde) wereld. Hoewel het Internet oorspronkelijk was voorbestemd als
een onderzoeksnetwerk tussen een aantal onderzoeksinstituten in de Verenigde Staten,
heeft het vandaag de dag een centrale rol aangenomen in ons dagelijkse communicatie
en wordt het inmiddels als onmisbaar beschouwd. Gedurende de laatste tien jaar is er een
migratie gaande van de klassieke telecommunicatiediensten, telefonie, radio en televisie,
naar het Internet en zijn er daarnaast nieuwe diensten ontstaan, zoals online computer-
spellen en online overheidsdiensten. De bestaande telecommunicatienetwerken worden
derhalve door het Internet vervangen en ontstaat er één enkel medium voor alle (bedrade)
communicatie. Maar aangezien deze telecommunicatienetwerken zijn toegespitst op le-
veren van één specifieke dienst, veroorzaakt de migratie naar het Internet, waar betrouw-
baarheid en schaalbaarheid de voornaamste ontwerpcriteria zijn, echter enige spanning.
De lage vertragingen en kleine verliezen waarvoor de telecommunicatienetwerken geop-
timaliseerd zijn, kunnen niet gegarandeerd worden door het Internet, waarvan de filosofie
leunt op het “best-effort” routeren. De pakketjes in het Internet kunnen daardoor letterlijk
door het hele netwerk stromen, waardoor het uitermate lastig wordt om de route van de
pakketjes te voorspellen en er grote onzekerheid ontstaat omtrent vertragingen en verlie-
zen. Om alsnog garanties te kunnen afgeven omtrent de kwaliteit van een dienst, dienen
er derhalve nieuwe technieken te worden geïmplementeerd, welke vallen onder de noe-
mer “Quality of Service” (QoS). In de literatuur zijn diverse implementaties voorgesteld
die als doel hebben om QoS te bieden in het Internet. Eén van deze implementaties is
gebaseerd op communiceren via “flows”. In deze flow-gebaseerde communicatie worden
de pakketjes van een bron naar een bestemming, via dezelfde route gestuurd, waardoor
de stroom pakketjes, en dus de overdracht, beter te controleren is.

In deze thesis bekijken we de prestatie van netwerken waarbij de overdracht plaats-
vindt met behulp van flows en tonen we aan dat het huidige Internet sterk onvoorspelbaar
gedrag vertoont in het bezorgen van pakketjes. Aan de hand van analyses van metingen
aan het Internet motiveren we het gebruik van de flow-gebaseerde communicatie zoals

vii

viii Thesis samenvatting

deze in de thesis gebruikt wordt. Uit “traceroute” metingen komt naar voren dat de routes
die de pakketjes volgen, uitermate veranderlijk zijn tengevolge van dynamische proces-
sen in de routeerlaag. De levensduur van een route, zijnde de tijd tussen de eerste en de
laatste opeenvolgende waarneming van de route, lijkt een “power-law” verdeling te heb-
ben. Dit onvoorspelbaar gedrag kan de prestatie van de real-time diensten belemmeren
en dient zodoende als motivatie voor de flow-gebaseerde communicatie zoals gebruikt in
deze thesis.

We introduceren een nieuw model welke de netwerkprestatie beschrijft met behulp
van een analogie met de wachtrijtheorie. De analyse van de netwerkprestatie wordt ge-
compliceerd door de vele afhankelijkheden tussen de netwerkeigenschappen. Het doel is
om de netwerkprestatie te beschrijven als functie van deze eigenschappen en de kern
van de complicatie te achterhalen. Het model maakt het mogelijk om de prestatie-
eigenschappen van het netwerk, zoals de blokkeringskans of de maximale doorstroming,
uit te drukken in termen van de netwerkparameters, zoals het aantal knooppunten. Het
model beschouwt het netwerk als een zwarte doos en minimaliseert het aantal vrijheids-
graden om zodoende het aantal afhankelijkheden te beperken en de doorzichtelijkheid
van het model te bevorderen. Het kleine aantal parameters stelt ons in staat om de invloed
van deze parameters op de algehele prestatie te isoleren. Tevens stellen we de problemen
van netwerkdynamica aan de orde, welke te herleiden zijn tot afhankelijkheden tussen de
verbindingen en de invloed van verkeersfluctuaties op de algehele prestatie.

In een meer statisch scenario, waarbij aangenomen wordt dat flows een oneindige
levensduur hebben, bestuderen we de maximale doorstroming in het netwerk. Hier wordt
de prestatie gemeten aan de hand van het gemiddeld aantal flows dat gealloceerd kan
worden in het netwerk totdat de eerste flow afgewezen wordt. Met gebruik van het Erdös-
Renyí graaf model [17] kunnen we zeer nauwkeurig de ratio van het aantal beschikbare
verbindingen als functie van het aantal gealloceerde flows berekenen en geven we een
bovengrens voor het maximum aantal flows dat gealloceerd kan worden in de volledige
graaf.

Voor echte netwerken is de prestatieanalyse van netwerkdynamica vaak te complex
om te kunnen modelleren. De heterogeniteit van deze netwerken en de complexiteit van
de protocollen, inclusief de QoS mechanismen, zullen het gebruik van mathematische
modellen verhinderen, zodat simulatie vaak de enig overgebleven optie is. Wij introdu-
ceren hier DeSiNe, een netwerksimulator welke gebruik maakt van flows en welke een
speciale focus op heeft op QoS, waarmee de prestatie van diverse QoS implementaties
op systeemniveau bestudeerd en vergeleken kan worden. In deze thesis beschrijven we
de architectuur en het functionele ontwerp van DeSiNe en illustreren het gebruik aan de
hand van enkele voorbeelden. DeSiNe ondersteunt in het bijzonder “constraint-based”
routeren en dynamisch QoS routeren. De sterkste kant van DeSiNe ligt in de mogelijk-
heid om via een geautomatiseerde methode klassen van netwerken te simuleren. Dit is
met name geschikt bij het bestuderen van de prestatie bijvoorbeeld een nieuw routerings-
protocol en deze vergelijken voor verschillende klassen van netwerken.

Tom Kleiberg

Contents

1 Introduction 1
1.1 A brief history . 1
1.2 Routing in the Internet . 2
1.3 Assuring the quality of Internet services 3
1.4 Network dynamics . 4
1.5 Structure of the thesis . 8

2 The unpredictable behavior of Internet paths 11
2.1 Introduction . 11
2.2 Self-Organized Criticality . 12
2.3 Measurements . 14
2.4 Observations . 18
2.5 Discussion . 24
2.6 Internet measurement projects . 26
2.7 Chapter summary . 28

3 A queueing system to model network dynamics 29
3.1 Introduction . 29
3.2 Network model . 30
3.3 A queueing model of our network model 32
3.4 The fully connected graph . 38
3.5 The Erdös-Renyí random graph . 46
3.6 The complete graph with multiple channels per link 50
3.7 The two-dimensional lattice . 53
3.8 Traffic dependency . 56
3.9 Chapter summary . 59

4 An upper-bound on the maximum number of flows 63
4.1 Introduction . 63
4.2 The fully connected graph . 63
4.3 Densely connected networks . 70
4.4 The fully connected graph with multiple channels per link 70

ix

x Contents

4.5 Rejection rate and disconnectedness 73
4.6 Chapter summary . 76

5 DeSiNe: A flow-level simulator with QoS extensions 79
5.1 Introduction . 79
5.2 Flow-level simulation versus packet-level simulation 79
5.3 Quality-of-Service . 81
5.4 DeSiNe . 83
5.5 Applications of DeSiNe . 89
5.6 Chapter summary . 93

6 Conclusions 95
6.1 Measurement . 96
6.2 Modeling . 96
6.3 Simulation . 99

A Snapshots of a 10-node network 101

B Appendix: Degree Distribution of Ĝ j(N) 105

C The degree distribution in KN after removing links 107

D An approximate birth-and-death analysis 113
D.1 Lower bound . 113
D.2 An upper bound . 114

E Abbreviations 117

F Acknowledgements 119

G Curriculum Vitae 121

Bibliography 123

Chapter 1

Introduction

1.1 A brief history

The first developments, that lead to the Internet and data-networking in general, date
back to the 1960’s with the deployment of the ARPANET. The ARPANET was initiated
by the United States Department of Defense and its main goal was to develop a robust
communication network that could survive the failures of some of the links and nodes.
The ARPANET provided a nationwide network that connected universities and research
organizations in the United States to exchange information and share resources. Many
other organizations recognized the potential of the ARPANET and connected to it, such
that a large network evolved that later became known as the Internet. One of the driving
factors that lead to the success of the early Internet is the development of the electronic
mail service (e-mail) in 1972, which provided a fast, reliable and cheap means on com-
munication between the research communities. With the introduction of the World Wide
Web in 1989, the Internet evolved to a virtually inexhaustible source of information and
online services that would mean the breakthrough of the Internet to the common public.
Nowadays, the Internet has taken a central role in the modern society and many sectors
depend on the Internet. However, the design principles of the ARPANET, that are still
prevalent in the Internet philosophy, today, are unable to provide a solid foundation for
the services that have emerged over the last decade. A prominent problem that we envis-
age is the lack of support for real-time applications, such as Voice-over-IP (VoIP), online
gaming and video streaming. The increasing popularity of these real-time applications
have fueled the research on new methods to increase the reliability of end-to-end com-
munications and provide mechanisms to guarantee service levels. Without such methods,
the development of these real-time applications on Internet may be hampered and the In-
ternet may be unable to sustain the growing demand in the future.

1

2 Chapter 1. Introduction

1.2 Routing in the Internet

The protocol that is used in the Internet for communication is the Internet Protocol (IP).
The IP protocol has the task of delivering the data from the source to the destination
solely based on the addresses. For this purpose, the IP protocol provides addressing
schemes and methods to encapsulate the data into packets. Each packet is marked with
its destination address. When a node receives a packet, it reads the destination address
and determines where to send the packet next. This path selection process is called rout-
ing. The routing process is based on the routing tables maintained by each node, which
holds a record of the routes to various network destinations. When a packet enters a
node, the destination address of the packet is compared with the network destinations in
the routing table. The packet is then send towards the destination that provided the best
match with the packet’s final destination. The IP protocol is a connection-less protocol,
which means that the packets can be sent from source to destination without prior ar-
rangement. The device that transmits the packets does not know if the destination can
be reached and the path towards the destination is not known in advance. If the network
conditions change, successive packets between end-hosts may follow different paths in
the network. The major advantages of connection-less communication are scalability and
robustness to failures. Scalability is achieved since nodes do not require to maintain the
state of all the active connections. Each packet is examined individually and forwarded
based on the information in the routing tables. Hence, the routing tables scale with the
number of destinations and not the number of connections. Robustness is accomplished
by the distributed path computation process. Each node acts autonomously and deter-
mines where to send a packet based on the information in the routing table. When a node
fails, the routing tables of the neighboring nodes are updated and the packet is routed
along a different path.

The counterpart of connection-less networking is connection-oriented networking. In
connection-oriented networking, a connection is arranged prior to sending the messages.
The sending node requests a communication session between itself and the destination
node. Upon receiving the request, the network attempts to find a suitable path between
the source and the destination. When a path is found, the session is established and all
the packets from this session travel along this path. Each session receives a unique iden-
tifier, which is used by the forwarding nodes to determine how to forward the packets.
The major advantage of connection-oriented networking is the improved control over
the packets and communication sessions in comparison to connection-less networking.
Each communication session can be identified and managed individually, providing a
fine-grained control over the packets in the network and consequently the network per-
formance. The disadvantage of connection-oriented networking is the cost, in terms
of time and overhead, to establish the connection, introducing extra delays prior to the
transmission. Furthermore, in case of failures, the connection-oriented sessions require
complex recovery schemes to redirect the traffic and minimize loss and delay.

1.3. Assuring the quality of Internet services 3

1.3 Assuring the quality of Internet services
Today, e-mail is still widely used and can be considered indispensable in modern com-
munications, but the Internet has exceeded its original purpose and acts now as a medium
that globally interconnects billions of users. The low cost and global connectivity boosted
the development of new services and applications in the Internet. Multimedia services
and interactive real-time applications prelude to a new generation of services in the In-
ternet that sets special demands on the Internet performance. Characteristic to this new
generation of services is the connection-oriented nature: they require a communication
session to ensure that the packets arrive on-time and in a correct order. While the tradi-
tional Internet services, as e-mail, FTP (File Transfer Protocol) and the World Wide Web,
are very robust and tolerant to delay, these next generation services are time-critical and
highly susceptible to the network performance. Packet delay and loss generally have a
detrimental effect on the quality of these services. Hence, even though the architectural
design principles of the Internet have essentially remained the same the last 30 years, its
use has radically altered. The increasing widespread popularity of multimedia and inter-
active services in the Internet has created a field of tension between the connection-less
nature of IP and the connection-oriented nature of these services. Internet’s traditional
best-effort service model cannot provide guarantees required by the quality sensitive ap-
plications. The delivery and performance has thus far largely been assured by over-
provisioning the core and access networks. Over-provisioning is commonly used to pro-
tect the network against traffic fluctuations and reduce the possibility of congested links.
Over-provisoning involves dimensioning links so that their capacity exceeds the expected
amount of traffic by a certain margin, which is selected to ensure that the link can absorb
the expected and unexpected traffic fluctuations. Over-provisioning has proven to be a
simple and effective, yet costly, method to cope with the traffic increase and surges in
the Internet; the utilization of the backbone links currently seldom reaches 60 percent.
However, in the nearby future, when Fiber-to-the-Home will be a fact, the wide deploy-
ment of bulky services that we envisage, will place high capacity demands on the core
and access networks. Over-provisioning may not suffice anymore and network providers
may be forced to use alternate measures to meet the high performance requirements of
the next generation Internet services. Moreover, traffic fluctuations in over-provisioned
networks may still lead to unacceptable delay variations, e.g. in the case of VoIP.

The limitations of the best-effort paradigm in the Internet to support services sensitive
to network performance has lead to the introduction of the Quality-of-Service (QoS) con-
cept. Several definitions of Quality-of-Service are being used, for example in the ITU1

standard E.800 [27] QoS is defined as, “The collective effect of service performances
which determine the degree of satisfaction of a user of the service.” Another definition
used by the ITU, standard X.902, is “A set of quality requirements on the collective be-
havior of one or more objects.” Finally, the QoS Forum uses the following definition:
“Quality of Service is the ability of a network element to have some level of assurance
that its traffic and service requirements can be satisfied.” The primary goal of QoS is to

1International Telecommunication Union

4 Chapter 1. Introduction

provide a better end-to-end service to selected network traffic over various technologies.
Quality-of-Service involves differentiation and prioritization of users and traffic in order
to guarantee a certain level of performance of a data flow. The level of performance is
generally measured in terms of required bit rate, packet delay, delay variations and packet
loss. To provide a satisfactory service, these measures need to stay within the bounds that
are relevant for the service. For example, video streaming can tolerate a large delay, as
long as the delay variations are kept small, because the traffic flows primarily from the
sender to the recipient. In the case of telephony, the traffic flows in both directions and
the requirements on the end-to-end delay are more strict.

The QoS Framework offers several solutions that collectively provide a better con-
trol over the network traffic. These solutions include real-time link-state-based rout-
ing, multi-constrained routing, resource reservation, connection-oriented communication
and differentiation between traffic classes. Real-time link-state routing involves routing
where the actual state of the links is taken into account in the path computation process.
This is especially useful to circumvent congested links and divert the traffic to less oc-
cupied parts of the network. In multi-constrained routing, the path must satisfy a set
of constraints instead of e.g. simply minimizing the distance. An example of a multi-
constrained path is a path that has a delay of less than 300 ms and a packet loss rate
less than 10−5. Resource reservation refers to allocation of capacity on the links ded-
icated to selected traffic, e.g. the allocation of 3 Mbit/s on a link dedicated to a video
conference call. When the resources are allocated, the dedicated traffic is not interfered
by the other traffic on the link. Resource reservation is often used in combination with
connection-oriented transmissions, e.g. MPLS (Multi-Protocol Label Switching) in com-
bination with RSVP (Resource reSerVation Protocol). MPLS marks different data flows
with unique labels, such that each data flow is easily identified. Prior to the transmission
of data, the path is routed between the end-hosts and each intermediate node maintains a
table with information with the active sessions. When a packet enters the node, the label
is inspected and the packet is forwarded on the appropriate port. Consequently, all the
packets belonging to the same flow travel along the same path. The connection-oriented
communication facilitates the use of resource reservation on individual flows. Differ-
entiation between traffic classes is readily implemented in most routers in the form of
Differentiated Services (DiffServ). DiffServ involves an architecture where packets are
inspected at ingress routers and receive a special treatment, depending on their priority.
Packets belonging to voice calls and other time-critical applications, will be forwarded
with higher priority than the regular best-effort traffic, such as web traffic. As a result,
the prioritized traffic suffers less from queuing latencies, improving its performance.

1.4 Network dynamics
Insight into the network behavior and properties is of vital importance to facilitate any
form of QoS. Many QoS mechanisms require up-to-date information on the network per-
formance in order to make sound decisions during routing or traffic management. Ob-
taining this information is often difficult, owing to the large scale and anonymous nature

1.4. Network dynamics 5

of the Internet. The Internet consists of a constantly evolving complex hierarchical ar-
chitecture where routers are grouped into Autonomous Systems (AS) that interconnect to
provide global connectivity. Insights into the the Internet’s characteristics are difficult to
obtain, since ASes are privately managed and today’s Internet lacks a central monitoring
or regulating authority. Measuring the network performance is often not possible beyond
the boundary of an AS. To facilitate QoS beyond AS boundaries, the involved ASes will
need to establish agreements, so-called Service Level Agreements (SLA), where both
parties agree on service level guarantees of selected network traffic. Within each AS, the
routing protocol has the task of gathering and disseminating the state of the network and
its resources throughout the network. Based on this information, the routing algorithm
determines the best path.

The main research challenge lies in how to take the dynamic changes in communica-
tion networks into account to provide end-to-end QoS for individual flows. Monitoring
any change in the network is simply not possible and even not desirable, because not all
changes are important. Hence, insight into the dynamic properties of the network is in-
dispensable. The term that is generally used to capture the dynamic properties of network
is network dynamics. Network dynamics captures the patterns or processes of change or
activity acting on the network.

To narrow the definition of network dynamics down, we classify network dynam-
ics into four categories that correspond to the four layers in the TCP/IP model [42, pp.
18] [64]. The TCP/IP model is derived from the well-known Open Systems Interconnec-
tion (OSI) model [28]. The OSI model divides the network architecture into seven layers,
where each layer is a collection of conceptually similar functions that provides services
to the layer above it and receives service from the layer below it. The TCP/IP model is a
simplification of the OSI model, as it reduces the number of layers from seven to four by
combining functionally similar layers and omitting layers that in practice proved redun-
dant. Figure 1.1 compares the OSI model with the TCP/IP model. Network dynamics
takes place at each of the layers in the TCP/IP model, however the origin of the dynamics
is often fundamentally different per layer.

The host-to-network layer represents the combined physical and data link layer in the
OSI layering stack. The physical layer forms the actual medium, which is responsible
for transforming the digital information into electromagnetic signals and transmitting it to
the receiver. The data link layer in the OSI model is concerned with packet transmission,
error detection and correction. The packets are converted into separate bits and then
delivered to the physical layer. A well-known example of a data link layer protocol is
the Ethernet standard. Combined, the host-to-network layer functionality is represented
by the network topology. The topology forms the network infrastructure and is modeled
by a graph. The vertices in the graph are formed by the hosts and routers, while the
edges correspond to the physical links. Network dynamics on the level of the topology
is often referred to as topology dynamics. Dynamics in the host-to-network layer are
primarily related to changes on the hardware level or in the network structure. The time-
scale of these changes is often very large compared to the fluctuations of the network
traffic. Research in the field of topology dynamics is abundant and is often concerned
with understanding the evolution of the Internet and what factors in the evolution have

6 Chapter 1. Introduction

Figure 1.1: The OSI reference model versus the TCP/IP layering model.

lead to the topological properties the Internet possesses, today. Key mechanisms in this
evolution are exponential growth, competition for resources and adaptation to cope with
the evolving environment and maintain functionality in a demand and supply balance. A
poorly designed network topology can have dramatic effect on the network performance
as a whole. Insight in the topology dynamics is important to cope with the changing
environment and prevent network failures.

The Internet layer implements the routing function in the protocol stack, i.e. deliv-
ering the packets from source to destination. Moreover, the Internet layer provides an
addressing scheme, such that each host is identified by a unique identifier. Dynamics
on the Internet layer correspond to changes in the routing plane and are often referred
to as routing dynamics. Routing dynamics occur when the route towards a destination
changes, due to a change in the topology or configuration. The change is noticed by
the routing protocol and distributed throughout the network, causing network wide route
changes. In the meanwhile, until the changes have fully propagated through the network,
the routing plane resides in a transient state, possible causing packet delivery failures and
increased latencies.

The Transport layer provides the connection-oriented session between services at the
Application layer on top of the (possibly) connection-less Internet layer. The Transport
layer hides the networking details from the Application layer and assures that the data
from the Internet layer is passed to the correct application. The Transport layer breaks
the data it receives from the Application level into datagrams and arranges a reliable
transmission. Through flow-control and retransmission, the Transport layer takes care
of lost packets, prevents network congestion and rearranges out-of-order packets. After
the original datagram has been reassembled, it is passed on to the Application layer.
Dynamics at the Transport layer are related to the behavior of the retransmission and
flow control schemes in the Transport layer protocol. The dynamic properties of the
Transport layer are critical to real-time applications, such as Voice-over-IP and online
gaming. Since retransmission of lost packets or waiting for out-of-order packets can
introduce prohibitively long delays, several Transport layer protocols are implemented

1.4. Network dynamics 7

(a)

(b)

Figure 1.2: (a) Host to host networking, where A sends a message to B. The messages
traverse two intermediate routers before they finally reach B. (b) The TCP/IP model stack
of the host to host connection in (a). At the Application layer, a peer-to-peer session is es-
tablished between the hosts A and B. In the routers, the packets are examined and forwarded
at the Internet layer.

providing stateless, unreliable communication. The Transport layer then assumes that
error control is not necessary or performed by the Application layer.

The Application layer implements the high-level services that directly communicate
with the applications operated by the end users. The communicating partners in the Ap-
plication layer are called peers. The Application layer is oblivious of the lower layers
and assumes the lower layers arrange the delivery of the data provided by the Application
layer. Network dynamics at the Application layer can be associated with the dynamics of
the data streams. User applications may generate highly fluctuating traffic, for example
in the case of video streaming or online gaming. Figure 1.2 presents a schematic repre-
sentation of a session between end users. At the network level, the session is established
from host A to host B, traversing two intermediate routers, see Figure 1.2a. Figure 1.2b
depicts how the information passes through the TCP/IP layers of each of the hosts and
routers, until it finally reaches the Application layer at host B.

In summary, the overall network performance is the result of many processes act-
ing on the network. The complexity of network performance analysis is rooted in the
multitude of variables and their cross-correlated nature. The interaction of the individual
processes and local components of the Internet gives rise to system global behavior that
cannot be traced back to the individual parts. These system properties that derive from
the collective behavior are generally referred to as emergent properties. They are global
features and capabilities which are not specified by network design parameters and are
hard to predict from the knowledge of its constituents. Examples are the hopcount, the
diameter and the centrality measures, such as the node and link betweenness [43, Sect.

8 Chapter 1. Introduction

6]. Computation of such measures is sometimes possible for networks in equilibrium if
they can be modeled by simple mathematical model, such as the Erdös-Renyí random
graph. But little is known about these measures when the load varies and the network is
in a transient state.

1.5 Structure of the thesis
The thesis can be divided into three parts, namely measurement, modeling and simu-
lation, that are all positioned around a central theme, which is evaluating the network
performance where traffic is modeled at the flow level. The goal of the thesis is to pro-
vide insight into the difficulties of analyzing the network performance and propose a
model that expresses the network performance in terms of the network parameters, that
are given by design. As pointed out earlier, the performance analysis is troubled by the
many dependencies inside the dynamic network environment. In general, it is not pos-
sible to gather the global network behavior from the parameters, such as the number of
nodes or links. However, through the use of a simplified model with a small number
of parameters, we isolate the effects of several parameters and study their effect on the
global network performance. Figure 1.3 depicts the three parts and how they are incor-
porated in the thesis.

Figure 1.3: Structure of the thesis.

Chapter 2 motivates the flow-based approach that is used throughout the thesis and
exposes the highly dynamic behavior of the routing plane in the Internet. Through the
analysis of measurements on Internet paths we find that the way that packets are routed
in the Internet can be highly unpredictable. These uncertainties may cause unexpected
delays and out-of-order delivery of packets yielding impairments in the performance of
time-critical services. Hence, it is generally expected that for the accomplishment of
Quality-of-Service in the Internet, the traffic belonging to time-critical services must be
routed in the Internet using a flow-based approach. When flows are used, the packets are
forced along the same path, which largely eliminates the dynamics in the routing plane
for the particular flow and provides a better control over the packets. The routing dynam-
ics observed in Chapter 2 are linked with Self-Organized Critical behavior (SOC), which
explains the heavy tail in the path duration and the 1/ f -noise spectrum. SOC is char-
acterized by the presence of “avalanches”, where a single event can cause an avalanche
of other events. In this case, the change of a single route can cause a great number of
changes of other routes which are directly or indirectly dependent on this route. The
remainder of the thesis is centered around flow-level models of communication.

1.5. Structure of the thesis 9

Chapter 3 introduces a new model that describes the network performance by using
an analogy with queueing theory. The model facilitates to express emergent performance
characteristics, such as the blocking rate of traffic flows and the maximum throughput of
the network, in terms of network parameters that are given by design, without making use
of simulations or difficult computations. The model considers the network as a black box
and minimizes the degrees of freedom in order to reduce the dependencies and improve
the comprehensibility of the model. In Chapter 3 we also address the difficulties of
studying network dynamics, which can be traced back to the dependencies between the
links and the importance of traffic fluctuations in the network on the overall performance.

In Chapter 4 we study the maximum throughput of a network in a more static scenario
where flows are assumed to have an infinite duration. Now, the network performance is
measured in terms of the average number of connections, or flows, that can be allocated
in a network before rejection occurs. Through the use of the Erdös-Renyí random graph
model [17] we can accurately compute the ratio of the available links as a function of
the number of allocated flows in the full-mesh and we present an upper-bound on the
maximum number of flows that can be allocated in the full-mesh.

As shown in Chapters 3 and 4, the performance analysis of dynamic networks is often
very complex. The heterogeneity of real networks and complexity of network protocols,
including Quality-of-Service mechanisms, may prohibit the use of mathematical models,
such that simulations seem the only viable option. In Chapter 5 we introduce DeSiNe, a
flow-level network simulator with a special focus on Quality-of-Service. Chapter 5 de-
tails the architectural and functional design and presents several examples that illustrate
the use of DeSiNe. The purpose of DeSiNe is to study and compare the performance
of various Quality-of-Service implementations at a system level. In particular, DeSiNe
supports constraint-based routing and dynamic Quality-of-Service routing. The strength
of DeSiNe lies in its ability to simulate classes of networks in an automated fashion. This
is particularly useful when studying the performance of e.g. a new routing protocol and
compare it between different networks. Finally, we present the conclusions in Chapter 6.

A large part of the thesis consists of unpublished work. In particular the modeling
part, which forms the main body of the thesis, deserves explanation on why it has not
been published, yet. The modeling work was initiated by the simple question: “Can we
find a simple model that computes the average number of flows in a network?” Chapters 3
and 4 will demonstrate that no simple answer to this simple question exists, unless we
make strong assumptions about the network traffic and topology. Even in the simple case,
where we have managed to empirically find a model that describes the network behavior,
we have not succeeded to establish a mathematical proof to sustain our findings. Our
efforts to mathematically model the network behavior stranded due to the complexity
that is introduced by the dependencies between the links. Chapter 4 and Appendix B
illustrate the effect of ignoring these dependencies. The submissions of this work were
indeed rejected primarily due to the lack of such a proof. However, we feel that the work
presents an attractive approach and solution to a very complex model and may serve as
an input for future work on the topic.

10 Chapter 1. Introduction

Chapter 2

The unpredictable behavior of
Internet paths

2.1 Introduction
Interactive services in the Internet place strict bounds on the performance of end-to-end
paths. Packet delay, delay variations and packet-loss have a severe impact on the qual-
ity of the Internet service and therefore it is important that end-to-end communication is
reliable and predictable. The ability to control the end-to-end performance is seriously
complicated by the connectionless nature of the Internet Protocol and the lack of any
widely deployed Quality-of-Service implementation. As a consequence, the packets in
the Internet are exposed to erratic network performance due to traffic fluctuations and
routing dynamics. Traffic fluctuations can lead to temporary congestion of the router
buffers, causing delay variations between the packets and packet-loss. Although conges-
tion occurs very frequent in the Internet, measurements indicate that the traffic fluctua-
tions are highly transient and the impact on the service performance often remains within
bounds [69]. Routing dynamics correspond to the process where routing messages are
propagated between sets of routers to advertise a route change. When a network event,
for example a link or node failure, causes a route change, the network temporarily resides
in a transient state while the routing tables of other routers are being updated. Routing
dynamics contribute to most prolonged path disruptions and can last as long as 10 min-
utes, leading to serious degradation of Internet services [52, 55, 69, 70, 78].

In this chapter we study the dynamics of Internet paths with the use of an extensive
dataset of traceroute measurements. In particular, we analyze how many routes are used
between two end-hosts and how long a route remains operational. We regard the Internet
as a “black box” and consider the path dynamics as the result of a collective behavior
that organizes the thousands of autonomous nodes into a single complex system. Route
changes correspond to perturbations in the Internet and we find that the statistical prop-
erties of the measured perturbations hint towards self-organized critical behavior in the

11

12 Chapter 2. The unpredictable behavior of Internet paths

Internet. Self-organized critical systems are often found in nature and other complex
systems and by comparing the characteristic features of SOC systems we argue that the
Internet also exhibits self-organized criticality. The presence of the SOC mechanism in
the Internet indicates that routing in the Internet is unpredictable in the sense that routes
can change unexpectedly. The inter-event time between two routing events has no typ-
ical value and is widely varying. Packets associated with the same stream may follow
entirely different routes, introducing a wide spread between the delivered packets and
large delay variations. For the increasing number of real-time applications, such as in-
teractive gaming, IP telephony, video and others, these variations can lead to dramatic
degradation of the experienced quality. From the observations in this chapter, we argue
that it is recommended to control the path, e.g. by means of MPLS, to assure the quality
of service of these interactive services.

Furthermore, we find that permanent changes in the Internet cause the breakdown of
existing end-to-end routes and the discovery of new ones. On average, the number of
discovered routes increases linearly in time at a fixed rate.

This chapter is organized as follows: in Section 2.2 we briefly introduce self-organized
criticality and present some features that are typical for SOC systems. Next, the measure-
ments are described in Section 2.3. Section 2.4 contains the observations, followed by a
discussion in Section 2.5. Section 2.6 presents an overview of related Internet measure-
ment projects. Finally, Section 2.7 presents a summary of the chapter.

2.2 Self-Organized Criticality
A definition for self-organization used by De Wolf and Holvoet [72] is, “Self-Organization
is a dynamical and adaptive process where systems acquire and maintain structure them-
selves, without external control.” One of the key features of self-organizing systems is
the adaptability or robustness with respect to changes. The system should be able to cope
with external influences and maintain its organization autonomously. Self-organized crit-
icality was introduced by Bak et al. [10] as a property of a system that, through a self-
organized process, always evolves to a critical state, regardless of the initial state of the
system. A common feature observed in SOC systems is the power-law temporal or spatial
correlations that can extend over several decades. SOC systems organize into clusters,
with a scale-free spatial distribution, with minimally stable, “critical”, states. A pertur-
bation in that system can propagate through the system at any length scale from a local
change to an avalanche by upsetting the minimally stable clusters. The magnitude of the
perturbations is only limited by the size of the system. The lack of a characteristic length
leads directly to the lack of a characteristic time for the resulting fluctuations. Hence, a
power-law distribution arises for the lifetime distribution of the fluctuations in the sys-
tem. From the inter-event time of the fluctuations a time signal can be constructed, where
the perturbations are modeled as a series of Dirac pulses [33],

I (t) = ∑
k

δ(t− tk) (2.1)

2.2. Self-Organized Criticality 13

where tk corresponds to the time of the k-th event. The time signal can now be trans-
formed into the frequency domain and the power-spectrum of (2.1) is found as,

S (f) = lim
T→∞

2
T

〈∣∣∣∣∣

kmax

∑
k=kmin

e− j2π f tk

∣∣∣∣∣

2〉
(2.2)

where T denotes the whole observation time and kmin and kmax are the minimal and
maximal values of the index k in the interval of observation. The brackets 〈. . .〉 denote the
averaging over different realizations of the process. One realization can correspond to the
measurements or observations of the system at one particular time or from one particular
perspective. By averaging the measurements or observations of the same system taken
from different perspectives or at different times, we can acquire the average behavior of
the system 1. The averaging is necessary since we are only interested in the process that
leads to the power-spectrum and not a realization of the process. From (2.2) it follows
that the estimation of the spectrum improves as the observation time increases. It can be
shown that a power-law distribution in the inter-event time leads to a power-law spectral
density [32],

S (f) ∝ 1/ f ϕ (2.3)

where ϕ is typically close to 1. The power-law spectrum in (2.3) is referred to as 1/ f
noise and is widely found in nature. The 1/ f noise can be seen as a measure of the
complexity of the system. The 1/ f noise phenomenon is often observed in large systems
that act together in some connected way. The 1/ f noise can arise as the result of the
coherence between events, the so-called long-range-dependence. It is also seen as a
naturally emergent phenomenon of the SOC mechanism [10, 15, 74].

The examples of SOC systems in nature are abundant. The sandpile and forest fire
models are probably the most well-known [9]. Several works have related the SOC mech-
anism and 1/ f -noise to the Internet. The self-similarity and long-range dependence of
traffic patterns often reported in the Internet are considered related to the 1/ f noise phe-
nomenon [18, 71]. Csabai [16] measured the round trip times of packets and showed
that the correlation between the round-trip times produces 1/ f noise in the power spec-
trum. Ohira et al. [50] and Solé et al. [61] demonstrated that computer networks with
self-organizing behavior show the maximum information transfer and efficiency at the
critical state. In addition, Solé et al. demonstrate that near criticality, the network per-
formance shows the highest variability in terms of packet latency. In this work we study
the inter-event times of route changes in the Internet and argue that unpredictability and
instability of Internet routes may be related to SOC.

1Here we assume that the average behavior of the system is stationary and does not change during the
observation intervals.

14 Chapter 2. The unpredictable behavior of Internet paths

Route result probes % probes routes % routes
Successful delivery 30986955 98.90 13496 43.19
Persistent forwarding loop 24732 0.07 1422 4.55
Transient routing loop 411 0.00 231 0.73
Infrastructure failure, destination not reached 36240 0.12 2561 8.20
Packet delivered at non-listed IP address 3995 0.01 619 1.98
Anonymous reply, destination reached 278066 0.88 12920 41.34

Table 2.1: Statistical overview of the pathologic routes and probes in D .

2.3 Measurements

2.3.1 Methodology
The measurement apparatus consists of a set of testboxes that are deployed by RIPE as
part of the Test Traffic Measurements service (TTM) project2. A testbox measures the
Internet paths towards a set of pre-determined destinations by repeatedly probing the
router-level path from source to destination. The path is measured by the traceroute tool,
which sends probes to the destination host and infers the forwarding path by analyzing
the response from the intermediate hosts. The traceroute messages are transmitted at
exponentially distributed random intervals, with on average of 10 messages per hour
from one source to one destination. Beside the IP path, the AS path is obtained by
inspection of BGP3 data and matching each address in the IP path with an AS prefix4.
In the translation from the IP route to the AS path, the duplicate AS entries are removed,
which result from the multiple IP hops in one AS. Hence, the AS path consists of a list
of ASes that the route traverses, where each AS number can only appear once.

Each source maintains its own list of destinations, which is a subset of the other test-
boxes deployed by RIPE. The testboxes are placed at customers’ sites, typically ISPs
residing in various countries, just behind their border routers. Since the enrollment of
the TTM project in 1999, the number of testboxes has increased from approximately 30
up to around 150, today. Between the roughly 160 testboxes that exist, or have existed,
around 10,000 source-destination pairs have been registered, where pair (A,B) is different
from (B,A). Hence, the data that is available from 1999 does not include all the testboxes
available today. In addition, testboxes can be temporarily offline for managerial or other
purposes and several testboxes have disappeared completely, indicating the termination
of the TTM service at the customer’s site. The configuration and (geo)location of the
testboxes is very stable. The IP address of a testbox seldom changes and only few test-
boxes are indeed discontinued. The stability of the testboxes facilitates the measurement

2A detailed technical description of the design and features of the TTM testboxes can be found in [21] and
on the TTM website, http://www.ripe.net/projects/ttm/.

3BGP (Border Gateway Protocol) is the routing protocol that is used to route packets between different
ASes. By comparing the IP address of the packet with the BGP prefixes of the destination, the destination AS
can be extracted.

4The AS path information has not been recorded in the initial phase of the project and is available only from
the beginning of 2003.

2.3. Measurements 15

trustworthiness in the sense that the observations indeed reflect the network state and not
so much the measurement setup. The high fidelity of the measurements and the extend
of the observation time make the TTM measurements an excellent set to study long-
term Internet path dynamics. In fact, it is the only publicly available dataset containing
router-level information for this time span with such high accuracy.

2.3.2 Dataset
Section 2.2 emphasizes the importence that the observation time is long with respect to
the interval times between subsequent events. On the other hand, increasing the observa-
tion time reduces the number of usable source–destination pairs, because less testboxes
were available in the early stage of the project. Furthermore, we must also consider
that measurements between source–destination pairs can be inoperative: the list of des-
tinations of each testbox can change over time and testboxes can be temporarily offline.
To decrease the influence of these dynamics in the analysis, the set of usable source–
destination pairs is restricted by the maximum time a source–destination pair was inac-
tive. Increasing the stringency on the outage restrictions will reduce the number of usable
source–destination pairs. Hence, a trade-off must be made between the number of usable
source–destination pairs versus the observation time and outage restrictions. The result-
ing dataset consists of the traceroutes between all the source-destination pairs that were
active the entire period from January 1, 2003 until January 1, 2008, where any outage be-
tween a source–destination pair is restricted to maximally 28 days. Source–destinations
pairs of which both source and destination belong to the same AS are excluded from the
dataset. The dataset, that we will denote by D , contains 64 source-destination pairs out
of a set of 10 testboxes located within 8 different European countries.

2.3.3 Measurement artifacts
The anonymous and dynamic nature of the Internet inherently adds noise to the mea-
surements which consequently incurs errors in the analysis. These measurement artifacts
include persistent forwarding loops, transient routing loops, infrastructure failures and
anonymous replies by the intermediate routers. Persistent forwarding loops are generally
related to mis-configured routers, while transient forwarding loops are often a manifes-
tation of routing dynamics. Infrastructure failures lead to pre-mature termination of the
traceroute probe. Anonymous replies are due to unresponsive routers or rejected probes.
For a detailed discussion on these pathologies we refer to [52, 53]. We have also found
several cases where the packet was not delivered at the correct destination address. This
may be the result of erroneous routing or a configuration problem in the measurement
setup such that the packet is delivered at an unknown IP address. Finally, we would like
to mention the presence of “third-party” addresses as a source of noise in the traceroute
measurements [24]. But since such occurrences are rare [24] we disregard them in our
analysis. The classic traceroute tool developed by Van Jacobson [29] and used in the
TTM project is unable to detect such pathologies and different modifications have been
developed to address short-comings of the classic traceroute tool [7,20,67]. These recent

16 Chapter 2. The unpredictable behavior of Internet paths

changes were not available in 1999 and are therefore not included in the TTM project.
Routes which exhibit the above mentioned artifacts have been filtered from the dataset
before processing. Table I presents an overview of the frequency of the measurement arti-
facts. From Table I, we can deduce that the pathologies contribute to slightly more than 1
percent of the measured probes. Hence, we argue that the influence of the pathologies on
the accuracy of the measurements is sufficiently small to ignore.

2.3.4 Route fluttering
Between the successful routes, there is also a significant fraction of aliasing routes. Route
aliasing can be a manifestation of load-balancing, where a group of packets that are
traveling between the same source and destination traverse different routes. The packets
are separated based on their packet header or simply in a round-robin fashion. As a
result, the samples of the IP path in the presence of load-balancing routers will consist of
rapidly alternating routes, so called fluttering routes [52]. Load-balancing is the result of
a decision process inside one router, it does not involve the advertisement of any routing
updates to neighboring routers and does not affect the state of the routing tables5. Hence,
load balancing does not contribute to the routing dynamics and we will handle fluttering
routes as a single route, i.e. as if the packets were sent along one route.

To cope with fluttering routes, we will adopt the heuristics presented by Paxson [52]
to classify fluttering routes: two routes are considered the same when the paths have
an equal length and differ at maximally one consecutive hop. When routes are consid-
ered the same route, the samples of all the routes are aggregated as if they were samples
from one route. E.g., if route R1 is observed 1000 times and route R2 is observed 500
times, then the aggregated route has 1500 observations. Figure 2.1a provides an example;
routes R1 and R2 differ only at the third hop. According to the heuristics, the addresses
corresponding to nodes C and F are considered the same, such that eventually routes R1
and R2 are considered the same route. More advanced situations have been found, how-
ever, which we also address here. Figures 2.1 and 2.2 sketch examples of real data. In
Figure 2.1a we can distinguish three routes, R1, R2 and R3. The routes R2 and R3 differ at
two consecutive hops and would count as different routes. However, due to the presence
of route R1, the nodes B and E are considered to belong to the same router, such that
eventually all three routes are combined to a single route. Another example is given in
Figure 2.2, where the there are 4 different routes. The routes R1 and R4 are different at
two consecutive hops, and would not classify as identical route. The routes R2 and R3
make that the nodes B and E in Figure 2.2a are treated as the same node BE, yielding the
situation depicted in Figure 2.2b. Eventually, the formation of the new node BE makes
routes R1 and R4 to be the same.

A matter that arises when studying routes at large time scales is how routes based on
the IP path information would classify as fluttering, but in fact do not coexist in time.
Figure 2.1b illustrates the situation by means of the example in Figure 2.1a. Between t0

5Here we assume that the routing tables are not affected by the actual traffic due to some form of traffic
engineering.

2.3. Measurements 17

(a)

(b)

Figure 2.1: (a) Schematic representation of the three routes R1,R2 and R3 that cross nodes
A,B,C,D,E and F , where a node corresponds to one IP address in the IP path. Route R1
differs one hop from R2 and one hop with R3, but route R2 and R3 differ at two consecutive
hops. Although R2 and R3 differ at two hops, they are considered the same route due to
the presence of R1. (b) Example of transient behavior of R1,R2 and R3. Route R1 is first
observed at t0 and last at t3. Route R2 is last observed at t1 and R3 is first observed at t2.

and t1 both the routes R1 and R2 are being observed, while between t2 and t3 both the
routes R1 and R3 are coexistent. However, t1 < t2 and routes R2 and R3 are never observed
simultaneously. The issue here is how to act if the routes do not overlap in time, i.e.
when t1 < t0 or t3 < t2. Although the IP path information would suggest route fluttering,
the transient analysis disagrees. In this work, oscillating routes are considered the same
if both the IP path requirement and the requirement of overlapping observation periods
hold.

Prior to filtering the fluttering routes, the dataset D contained 13496 routes. After-
wards 8612 routes remained.

2.3.5 Metrics
The routing dynamics in the Internet can be measured by means of the length and co-
herence of the time intervals between subsequent route events. A route event can affect
one or more routers on the route between a source–destination pair, such that the route
is changed. Hence, the time-interval between two route events corresponds to the time
that a route is operational, which we will denote by the route duration. In the RIPE mea-
surement setup, the path between a source–destination pair is sampled at independent,
exponentially distributed random intervals with an average of 360 seconds. The exact
time of the traceroute call is rounded to seconds and recorded in the database. When the
same path is sampled multiple, consecutive, times, only the time of the first and last call
are recorded. Hence, there is no accurate information of the exact time of each call, only
the number of calls and the start and end time of the sequence of calls. The number of

18 Chapter 2. The unpredictable behavior of Internet paths

(a)

(b)

Figure 2.2: Schematic representation of four different routes, R1,R2,R3 and R4. Each node
corresponds to a different IP address in the IP path. In (a) the routes R1 and R4 differ at
two consecutive hops and are initially considered different routes. Due to the presence of
routes R2 and R3, the IP addresses of the nodes B and E are considered to belong to the
same router and treated as a single node, BE, as shown in (b). Routes R1 and R4 eventually
classify as identical routes.

calls qualifies as an alternative measure for the duration of the path, hence the route du-
ration is defined as the number of successive occurrences once it is selected. Due to the
Poisson measurement times the PASTA property applies and the sampled time averages
indeed reflect the real time averages [52]. The sampling rate prevents us from detecting
the typically highly transient failures at the data plane due to congestion, which are typ-
ically in the order of seconds. Yet, the average inter-arrival time is sufficiently small to
detect the slow route dynamics, which can last many minutes.

2.4 Observations
The RIPE TTM measurement setup is well suited for both short-term and long-term anal-
ysis of Internet routes. It allows the study of Internet paths at widely varying timescales,
ranging from minutes and hours up to years. Figure 2.3 shows the IP routes between a
typical source–destination pair, considered over a long period of five years. Only the 40

2.4. Observations 19

40

30

20

10

0

Ro
ut
e

1/1/03 1/1/04 1/1/05 1/1/06 1/1/07 1/1/08
Time

(a) Before filtering the route oscillations.

40

30

20

10

0

Ro
ut
e

1/1/03 1/1/04 1/1/05 1/1/06 1/1/07 1/1/08
Time

(b) After filtering the route oscillations.

30

20

10

0

 R
ou

te

1/1/04 3/1/04 5/1/04 7/1/04 9/1/04 11/1/04 1/1/05
 Time

(c) Detail of 2004 after filtering the route os-
cillations.

Figure 2.3: Example of a set of observed routes between one source–destination pair,
specifically from a testbox in Amsterdam, The Netherlands, to a testbox in Geneva, Switzer-
land. The horizontal axis represents the time axis, ranging from January 1, 2003 to January
1, 2008. The vertical axis indicates the routes between the source–destination pair. Only
the 40 most prevalent routes have been shown out of a total of 213 routes for (a) and 158 for
(b). The routes are sorted from bottom to top in order of their first appearance. The marked
areas indicate when a particular route is operational. In (a) the raw routes are shown, before
filtering the oscillations, where at several times multiple routes are operational simultane-
ously. In (b) the oscillating routes have been merged and are then considered as one. This
reduces the number of unique routes and changes the prevalence of the existing routes.
Hence, the routes presented in (a) and (b) may be different, e.g. route 10 in (a) is a different
route than route 10 in (b). (c) shows all the observed routes for the year 2004 after filtering.

most dominant routes are displayed. Figure 2.3 depicts when routes are operational and
demonstrates the presence of several phenomena in the Internet, which we will discuss
here.

First, Figure 2.3 exemplifies that route fluttering is a common artifact in the Internet
and it is important to consider these oscillations in the analysis. Figure 2.3a shows several
cases of route fluttering, e.g. at the end of 2006 equivalent routes appear that overlap in
time. After resolving the equivalent IP paths, the fluttering routes have been merged,
as illustrated in Figure 2.3b. The routes presented in Figure 2.3b are considered unique
routes and a route change indeed corresponds to a change in the routing table and not to
load-balancing.

Second, Figure 2.3 illustrates that route events occur frequently and at all time scales.

20 Chapter 2. The unpredictable behavior of Internet paths

Most of the time a single route prevails between a source–destination pair. For example,
Figure 2.3b demonstrates that for the first six months of 2004 only two routes are used
predominantly. However, the dominant route is sometimes interrupted, where the inter-
ruption can be very brief or sometimes last for days. The inset in Figure 2.3b shows all
the routes between this source–destination pair for the whole 2004. From the inset we
can gather that many routes are observed only occasionally and briefly. These routes can
be the result of temporal route failures or routing dynamics.

Finally, we can conclude from Figure 2.3 that the routes have a limited lifetime. Be-
tween a route’s first and last appearance many other routes can be operational, however,
in all cases the route eventually disappears and is never seen again. The time between
a route’s first and last appearance varies widely per route: several routes are seen for
months while other routes, although not displayed in Figure 2.3, are seen once. The re-
striction on these lifetimes is a consequence of the evolution taking place in the Internet.
The Internet is constantly evolving and the actors in the Internet are continuously try-
ing to optimize their position to increase their revenues and/or performance. Frequent
changes in the peering relations between ASes result in the birth of new AS paths and
the death of existing ones. At the intranet level, ASes need to manage and improve their
networks to accommodate for the increasing demand on network resources [51]. This
includes addition of routers and reconfiguration of their intranet. The router-level path
changes, but the AS path remains the same. Consequently, multiple IP routes can be
observed for a single AS path.

Figure 2.4 presents the measurements on the number of unique routes learned since
January 1, 2003 till January 1 2008, on both the AS- and IP-level, averaged over the
source–destination pairs. We consider an IP route unique when there exists no other route
with the same sequence of IP addresses. Similarly, we consider an AS path unique when
there exists no other AS path with the same sequence of AS numbers. The measurements
in Figure 2.4 exhibit a remarkable linear behavior on both the AS and IP level, which
is in agreement with the findings in [51]. If R(t) represents the number of routes that
are learned as a function of the time t, then according to Figure 2.4 we can write R(t) =
αt−g(t), where g(t) = o(t) for large t. Hence, limt→∞ R(t)/t = α− limt→∞ g(t)/t = α,
which corresponds to the “rate” at which new routes are discovered. Figure 2.4 shows
that the discovery rate remains fairly constant for the entire observation period. A new
IP route is learned approximately every 14 to 15 days, on average. The first few months
of 2003 the discovery rate is slightly higher due to a learning phase. At the AS-level, a
new route is discovered every 38 to 39 days, on average.

Figure 2.5 shows the complementary cumulative distribution function (CCDF) of the
duration of a route at the IP-level. The duration is measured as the number of successive
occurrences of the same route until a new route becomes operational or the routing fails
and an error message is received. We have selected five source–destination pairs that do
not have any end-points in common and for which the routes show typical behavior. For
each pair we have computed the route duration and plotted the CCDFs in Figure 2.5a.
Figure 2.5a demonstrates that the shape of the distributions is very similar. The fact that
the source–destination pairs do not have any node in common argues that the behavior
that we observe in Figure 2.5a is a true feature of the Internet and not an artifact of the

2.4. Observations 21

120

100

80

60

40

20

av
g.

 ro
ut

es
 p

er
 sd

 p
ai

r

1/1/04 1/1/06 1/1/08

Time

 IP-level
 AS-level

Figure 2.4: The average number of discovered routes between the source–destination pairs
at both the AS- and IP-level, counting from January 1, 2003. The measurements have been
fitted with a line. The fit at the IP-level resulted in a discovery rate of 14.6 days per route,
while at the AS-level the fit provided 38.4 days per route.

dataset. The aggregate result of the entire dataset, which is obtained by accumulating the
results for all the source–destination pairs, is presented by the solid line in Figure 2.5a.
The aggregate distribution strongly resembles that of the individual pairs, which indicates
that the mean reflects a real property and can be considered as the average behavior of
any source–destination pair in D .

Figure 2.5a illustrates that the duration relatively closely follows a power-law dis-
tribution for the first three decades. At approximately t = 103 the distribution is cutoff
followed by a steep decline. The CCDF of the aggregate result has been fitted with a
power-law and is presented in Figure 2.5b. The power-law exponent of the fit is γ≈ 1.46.
Power-law distributions with an exponent γ < 2 exhibit extreme behavior and have a di-
vergent mean [48]. When sampling a power-law with extreme behavior, the mean is
determined by the sample with the highest value, which will go to infinity when the
number of samples becomes large. In real-world systems the mean is finite: the distri-
bution is cut off in the tail because the system has a limited size. The measurements on
the route durations are restricted by the limited sample space of the Internet (we cannot
sample the entire Internet) and possibly the limitations of the measurement architecture
(e.g. the limited uptime of testboxes due to managerial purposes, etc.)

Figure 2.5b provides insight into the duration of the routes once they are established,
but does not reveal whether the established route appears often or if the route is domi-
nant. A route is considered dominant, when it is preferred above the other routes. The
dominance of a route is computed as the number of route occurrences of that route with
respect to the total occurrences of all the routes within some time interval. Figure 2.6
correlates the duration of a route with its dominance. Figure 2.6 shows the probability
that when a route is observed, the observation lies within an interval where the route is
observed d successive times and has a dominance δ. Figure 2.6 reveals that a large frac-
tion of the observations fall within d ≤ 2, which is also shown in Figure 2.5b. However,

22 Chapter 2. The unpredictable behavior of Internet paths

0.001

2

4
6

0.01

2

4
6

0.1

2

4
6

1

Pr
[D

IP
 >

 d
]

100 101 102 103 104

Duration d (measured in successive probes)
(a)

0.001

2

4
6

0.01

2

4
6

0.1

2

4
6

1

Pr
[D

IP
 >

 d
]

100 101 102 103 104

Duration d (measured in successive probes)
(b)

Figure 2.5: The complementary cumulative distribution function of the duration of the IP
routes on log-log scale. The duration is measured as the number of successive occurrences
the same IP route is measured. In (a) the solid line indicates the aggregated result, which
combines the measurements from all source–destination pairs into a single distribution. The
markers represent the individual distributions for five source–destination pairs with typical
behavior. The measurements suggest that the duration closely follows a power-law distri-
bution. In (b) the aggregated measurements have been fitted with F(d) = C d−γ+1. The fit
result is presented as the straight line, the power-law coefficient is found as γ = 1.46.

2.4. Observations 23

Figure 2.6: Each route observation is measured at the IP level and the route duration is cor-
related with the route dominance. On the x-axis the route duration is plotted against the route
dominance on the y-axis. The size and opacity of the dots designate Pr [DIP = d,∆IP = δ],
which is the probability that an observation of a route has some duration d and dominance δ.
As the dots are larger and less opaque, more traceroutes are measured with the correspond-
ing duration and dominance. Note that the axis and the dots are presented on log-scale.
For example, the point A in the figure represents the probability that a route observation
corresponds to a route with dominance δ≈ 0.3 ·10−6 and to a route duration d = 2.

Figure 2.6 also shows that from the short-lived routes, the majority has a small domi-
nance meaning that they are seen seldom or only once. Hence, these routes are due to the
highly transient nature of the Internet and a typical manifestation of routing dynamics.
Furthermore, we can recognize a line in Figure 2.6 that forms the lower bound on the
dominance w.r.t. the route duration. Since the dominance is measured as the sum of the
observations, the increase in duration implies an increase in the dominance. A signifi-
cant fraction of the observations are situated around this lower bound. They correspond
to observations of routes that are only seen once, but have a prolonged duration.

Figure 2.7 presents the CCDF of the route durations at the AS-level. Similar to
Figure 2.5a we have plotted the aggregate distribution together with the individual distri-
butions of the same five source–destination pairs as in Figure 2.5. The distribution at the
AS-level resembles the shape of the IP-level distribution. For the first three decades the
CCDF follows a power-law, followed by a steep cutoff. The distribution has been fitted
with a power-law distribution, presented in Figure 2.7b. The power-law exponent was
found as γ = 1.17. Compared to the IP routes, the power-law exponent at the AS-level is
smaller, yielding a fatter tail. At the AS-level there are more long-lasting routes, which

24 Chapter 2. The unpredictable behavior of Internet paths

can be explained by considering that a route change at the IP level does not necessarily
lead to a different AS path. This observation agrees with our finding from Figure 2.4.
The discovery rate of AS paths is smaller than that of the IP routes, implying that multi-
ple IP routes exists per AS path. The average duration of an AS path must therefore be
greater than that of the IP routes.

Now we will compute the spectral density of the routing dynamics and examine the
existence of 1/ f noise. The time signal (2.1) requires the time of occurrence of the
routing events, which can be constructed from the route duration measurements by,

tk =
k−1

∑
j=0

D j (2.4)

where D j is the duration of the route after j route changes. We have computed IIP(t)
separately for all the source–destination pairs at the IP-level. The power-spectrum SIP(f)
is then computed by averaging the transformed signal between the source–destination
pairs. The result is presented in Figure 2.8. The power spectrum shows a steep decline
in the first three decades. The spectrum has been fitted with (2.3), where the value for ϕ
was found as ϕ = 0.85. The fit demonstrates the presence of 1/ f noise.

2.5 Discussion
The extreme power-law behavior observed in Figures 2.5 and 2.7 is often seen in real
world systems [48]. When a distribution possesses such a heavy tail, the expected value
and the variance tend to infinity. In practice this implies that the observed measure is
highly unpredictable. In our case it means that the route is unpredictable and packets as-
sociated with the same stream may follow (many) different routes. Figure 2.6 underlines
the presence of highly transient routes, likely due to routing dynamics. At first glance,
the unpredictable nature of the routes seems remarkable. The packets in the Internet are
routed by the connectionless Internet Protocol, where each packet is routed individually
without establishing a connection prior to the transmission. However, most of the lower
layers, the datalink and physical layer, use connection-oriented technologies, such that
the route towards the destination is known in advance. The changes of the topology are
relatively sparse and slow, because it is often manually managed. Hence, one would ex-
pect more stable paths. Yet, the measurements indicate that route changes occur at all
time scales. Such frequent changes can have negative impact on streaming services that
rely on packets arriving on time and in the correct order [66, 70]. At the same time, the
high variability demonstrates that the Internet is resilient and fastly adapts to changes.

The power-law spectral density and power-law behavior of the inter-event time can
be seen as a manifestation of self-organized criticality. Bak et al. [9, 10] argue that SOC
naturally arises in interactive dynamical systems with many degrees of freedom. The
Internet is clearly a dynamical system with self-organizing behavior. The notion of SOC
is a plausible explanation of the observed dynamics.

2.5. Discussion 25

0.001

2

4
6

0.01

2

4
6

0.1

2

4
6

1
Pr

[D
AS

 >
 d

]

100 101 102 103 104

Duration d (measured in successive probes)
(a)

0.001

2

4
6

0.01

2

4
6

0.1

2

4
6

1

Pr
[D

AS
 >

 d
]

100 101 102 103 104

Duration d (measured in successive probes)
(b)

Figure 2.7: The complementary cumulative distribution function of the duration of the
routes at the AS-level printed on log-log scale. The duration is measured as the number
of successive occurrences of the same AS path. In (a) the solid line indicates the aggre-
gated result, which combines the measurements from all source–destination pairs into a
single distribution. The markers represent the individual distributions for the same five
source–destination pairs as in Figure 2.5a. The measurements suggest that the duration
closely follows a power-law distribution. In (b) the aggregated measurements have been
fitted with F(d) = C d−γ+1. The fit result is presented as the straight line, the power-law
coefficient is found as γ = 1.17.

26 Chapter 2. The unpredictable behavior of Internet paths

5
6

0.01

2

3

4
5
6

0.1

2

3

4
5
6

1

2

3

S IP
(f

)

10-4 10-3 10-2 10-1

Frequency f

Figure 2.8: Power specrum SIP(f) of the inter-event time-signal IIP(t) printed on log-log
scale. The observations are fitted with (2.3), where the exponent of the fit is found as ϕ =
0.85.

2.6 Internet measurement projects
There has been considerable work devoted to Internet path measurement in several projects,
such as Skitter6, PlanetLab7 and Rocketfuel8. To our knowledge, the database from
RIPE is the only database that actually has IP-level measurements for a prolonged period
(more than 9 years) at a relatively high sample rate between relatively fixed and stable
testboxes. The Skitter project, which also measures IP path information, was initiated
around the same time as the RIPE TTM project, however its goals are different as well as
the measurement architecture. The PlanetLab architecture was established to provide a
measurement infrastructure to a large community, where each party can design and con-
duct its own measurements. Measurements on PlanetLab are criticized since the Planet-
Lab nodes are typically placed at well connected sites, such as universities, providing a
skewed view of the Internet’s connectivity and performance [12]. The Rocketfuel project
combines BGP data with traceroute measurements to infer the ISP topologies [62]. RIPE
controls roughly 150 testboxes that send measurement packets between each other, while
the Skitter project controls a set of approximately 20 source nodes that query a huge list
of approximately 400,000 destinations. The RIPE testboxes are designed for measure-
ment purposes and its location is very stable, making them very suitable for long-term
analysis. The selection criterion for destinations in the Skitter project is to achieve a
representative coverage of the routed IPv4 address space. The destinations are not con-
trolled by the Skitter project and the list is updated every few months. The goal of the
RIPE TTM project is to study path properties (traceroute, end-to-end one-way delay and
packet-loss), that resulted in frequent sampling of the end-to-end path between testboxes.
The Skitter project’s main focus is Internet tomography and the sample rate is, with ap-

6http://www.caida.org/tools/measurement/skitter/
7http://www.planet-lab.org
8http://www.cs.washington.edu/research/networking/rocketfuel/

2.6. Internet measurement projects 27

Figure 2.9: Schematic overview of the RIPE TTM measurement architecture. RIPE test-
boxes are placed at customer’s sites, typically just behind their firewall. The clock of the
testboxes is synchronized by means of GPS signals. Each testbox send test packets to a
selection of the other testboxes and performs traceroute measurements as a complementary
service to measure the path towards the destinations. The data is collected and distributed at
RIPE.

proximately several queries per destination per day, considerably lower. Thus, we believe
that the RIPE database is the most suitable at hand for long-term analysis of Internet paths
between fixed end-points. Figure 2.9 presents a schematic overview of the RIPE TTM
measurement architecture.

Several works have examined routing dynamics in the Internet, but none of them have
examined the long-term correlations between routing events. Early work by Paxson [52]
studies the stability of Internet paths through traceroute measurements performed during
several months. Labovitz et al. [37] studies the path stability by combining IP and AS
information. Iannaccone et al. [25] and Markopoulou et al. [40] study the path properties
by monitoring the route update-messages within an AS and conclude that a small fraction
of the links contributes to a large fraction of the route updates. Pucha et al. [55] and
Wang et al. [70] study the impact of route changes on the path performance w.r.t. packet
delay and jitter. Our work differs from the previous works in that the dataset that we use
extends over a period of five years, which exposes long-term effects. Furthermore, we
associate the routing dynamics with self-organized criticality and argue that routing is
unpredictable leading to large variations in the path performance.

28 Chapter 2. The unpredictable behavior of Internet paths

2.7 Chapter summary
The Internet consists of a constantly evolving complex hierarchical architecture where
routers are grouped into autonomous systems (ASes) that interconnect to provide global
connectivity. Routing is generally performed in a decentralized fashion, where each
router determines the route to the destination based on the information gathered from
neighboring routers. Consequently, the impact of a route update broadcasted by one
router may affect many other routers, causing an avalanche of update messages broad-
casted throughout the network. The RIPE TTM project provides measurements between
a set of testboxes located primarily at ISP and well-connected sites. Through analysis of
traceroute measurements we have studied the lifetime of routes and the route dynamics.
Based on the observation from our dataset we find that routing in the Internet is highly
dynamic and results in unpredictable route durations. The extreme power-law behavior
suggests that the Internet exhibits self-organized criticality. The power spectrum obtained
from the inter-event time of route changes confirms our conjectures. The variability in the
Internet paths demonstrates the resilience against failures and attacks. For time-critical
services, the unpredictability introduced by SOC may lead to quality degradation.

Chapter 3

A queueing system to model
network dynamics

3.1 Introduction

When modeling the performance of a complex system, it is generally desired that the
multitude of variables that describe the system can be expressed as independent factors.
In most cases these performance measures are emergent properties, that arise from the
complex interaction between the many individual parts of the system. With respect to
networks, the individual parts are represented by the nodes, which interact through the
complex infrastructure represented by the topology. In this chapter we present a net-
work model described by a very small set of parameters and measure the performance
under the influence of these parameters. Using a small parameter set reduces the model
complexity and facilitates to isolate the effect of the each parameter on the network per-
formance. When the network performance can be expressed in terms of simple network
parameters, then this would overcome the need of doing difficult computations or lengthy
simulations. Furthermore, it is possible to benchmark other networks based on the per-
formance measures. The term “network dynamics” is here broadly understood as the set
of network properties such as the blocking and loss rate, the number of allocated paths,
the hopcount of these paths, etc. that change over time when loading the network with
traffic. In Section 3.2 we detail the network model that is used throughout this chapter.
Section 3.3 presents a queueing analogue for the network model that facilitates a conve-
nient way to measure the network performance. The remainder of the chapter studies the
various network classes and traffic patterns and discusses the results.

29

30 Chapter 3. A queueing system to model network dynamics

3.2 Network model
The loading of a network with traffic needs to be detailed. In general, traffic is injected
into the network and leaves the network elsewhere. First, we assume that traffic is only
injected in one node, the source, and that it leaves the network at one other node, the
destination. In other words, we confine to unicast. The network is considered a fixed
topology, without emerging, vanishing or mobile nodes or links, that consists of N nodes
and L links. The source-destination pair is assumed to be uniformly chosen over all N
nodes of the network. This assumption for the Internet is quite realistic as argued in [43,
pp. 340]. A slightly more realistic setting is to take the density population of users on
earth and measurements of traffic matrices into account, at the expense of a considerably
more complex model.

Second, since modeling the network at packet-level will render the analysis highly
complicated, we confine to flows. A flow can be regarded as a connection set-up be-
tween a source and a destination node in the network. The ensemble of all packets of that
flow follow the same path from a source to destination during the life-time of that flow. A
flow can be a regarded as a connection with minimal-capacity requirements, e.g. a Label
Switched Path (LSP) with Quality-of-Service constraints associated with multimedia and
interactive streaming applications and services. In addition, a flow can be an accumula-
tion of connections from source to destination, e.g. packets originated at various sources
entering and leaving the backbone at the same ingress and egress routers.

Since only flows are observed in our setting, the details of the packet level such as
packet inter-arrival times and packet correlations can be omitted, but only the flow arrival
rate plays a role. We assume a Poisson arrival process with average rate λ. The Poisson
assumption for flows is commonly regarded as realistic: it is very precise for telephony,
and, on the aggregate level, also for the Internet. The flow duration is determined by
the servicing process, which is detailed in Section 3.3. The flows are serviced at a mean
rate µ, such that the load in the network becomes ρ = λ/µ. Figure 3.1 depicts the network
model with the arrival process. Flow arrivals occur at an average rate λ and are routed
and allocated in the network. The flows expire at an average rate µ.

Next, we need to specify the capacity consumption of a flow. The capacity con-
sumption of a flow is considered fixed at one unit for all flows and is independent of the
already present flows on a link. The link capacity C is divided into a discrete number of
channels, where each channel can accommodate precisely one flow-unit. All links have
the same capacity, which must be at least one channel. Furthermore, the links are consid-
ered unweighed and bidirectional. We exclude the existence of self-loops and multiple
links between nodes. Thus, the network is homogeneous. Each flow is initiated with a
flow set-up request. The flow request consists of the source-destination pair and the re-
quired capacity. Upon the arrival of a flow set-up request, the routing algorithm inspects
the network and disregards the links with insufficient capacity during the path computa-
tion. Then a minimum-hop path is computed between the source-destination pair using
Dijkstra’s shortest path algorithm. Hence, we do not restrict to static routes between
source-destination pairs, but the flow is dynamically routed based on the availability of
the network resources. If a feasible path is found, the request is honored and the connec-

3.2. Network model 31

Figure 3.1: Example of a network model with 6 nodes and 7 links. In this example, each
link consists of 3 channels, as shown by the detail. On the left-hand-side of the network
model, the arrival process is depicted, where each square indicates the event of a flow arrival.
Arrivals occur at random intervals at a rate λ and the requests are routed in the network. Each
flow consumes one channel of the links along its path. In this example, the unused channels
are identified by the solid, gray coloring. Channels that are marked with the same line-style
correspond to the same flow, e.g. flow A−B−D−F . Flows between the same in- and egress
nodes may follow different routes, e.g. compare flows A−B−D−F and A−C−E−F .

tion is established by allocating one unit capacity on the links along this path. If multiple
shortest paths are found, one of these paths is chosen randomly. In case of insufficient
resources, the flow is rejected by the network and the request is rejected. When the full
capacity of a link is occupied by the flows, the allocated link remains unavailable for
future requests until at least one unit capacity is released.

Although the network model may seem overly simplified with respect to reality – a
fact that we do not deny –, this comment should be placed in some perspective. The
major reason for choosing such an extreme scenario was inspired by the question: “How
many flows (light paths) can be set-up in a network?” The maximal possible number of
flows that can be set-up in our setting appears in the complete graph because any other
graph is a subgraph of the complete graph. Hence, we first focus on the complete graph.
The simpler model of a lattice in which each flow just consists of one link already leads to
a difficult percolation problem [22]. Indeed, when removing random links in a lattice, the
lattice is disconnected with high probability if the link density p = L

L0
→ 1

2 for large N,
where L is the number of links in the percolated lattice and L0 is the number of links in
the full lattice. When considering the complete graph instead of the lattice, the complete
graph is disconnected by removing random links when p < pc and the threshold link
density is pc ≈ lnN

N for large N. This is a key result in the theory of the Erdös-Rényi or
classical random graph Gp(N), see e.g. [30]. In the first stages of loading the network
– equivalent to removing paths, a set of correlated links –, our network model shows
resemblance with the random graph Gp(N). However, the fact that paths and not random
links are removed, is shown to considerably complicate the understanding of our results.

32 Chapter 3. A queueing system to model network dynamics

3.3 A queueing model of our network model
We regard the network as a single system at which flows arrive and depart at random
times. We assume that the network functionalities such as routing, signalling and admission-
control, are not visible outside the network. Hence, the network can be viewed as a black
box of which we evaluate its performance by means of external measures, such as re-
jection rate and average throughput. Figure 3.2 illustrates our model, the network is
illustrated as a cloud at the top of Figure 3.2. We compare the network model with a
single-server queue with finite buffer size K at which jobs (flow requests) arrive and de-
part, as visualized at the bottom in Figure 3.2. The correspondence between the network
model and its queueing analogue requires that the network and the queue experience a
same in- and output. The arrival of a flow at the network coincides with adding a new job
to the queue’s buffer. The analogue of the life time of a flow is the sojourn time of a job
at the queue, where each job consists of (i) selecting an arbitrary source-destination pair,
(ii) performing a shortest path computation, and (iii) setting-up of the path/connection
or, if not possible, announcing an error/rejection message. The completion of a job at
the server coincides with the release of a flow from the network. Hence, the average
service rate at the queue is equal to the average release or termination rate of a flow in
the network.

An important difference between the network model and the regular queue is the
service order. The regular queue services the jobs in the order of arrival, hence in First-
In-First-Out (FIFO) order. The flows in the network are terminated arbitrarily: at a fixed
average rate µ one of the flows present in the network is chosen uniformly and terminated,
irrespective of the time the flow already resides in the network. Consequently, the service
discipline in the queueing system should be random, in the sense that the server selects
a uniformly chosen job in the buffer. Our network modeling assumptions have been
taken in such a way that the corresponding queue arrival process is a Poisson process
with rate λ and the service process is exponentially distributed with mean service rate µ.
Hence, the analogue of the network model is of the M/M/1 queuing family. The sequel
of this section is devoted to further discuss and motivate the analogy.

The M/M/1 queue is one of the few queueing systems for which a time-dependent
analysis is available. The mean system size NS(t), i.e. the number of jobs present in the
buffer plus server, of the M/M/1 queue as a function of time is given for ρ < 1 by [63],

E
[
NSM/M/1

]
=

ρ
1−ρ

(3.1)

E
[
NSM/M/1(t)|NSM/M/1(0) = 0

]
=

ρ
1−ρ

− 2
π

πZ

0

e−γ(y)µt sin2 y
γ(y)2 dy (3.2)

where (3.1) corresponds to the average system size in steady state and where γ(y) =
1 + ρ− 2

√ρcosy. Abate and Whitt [1] and Sharma et al. [58, 59] provide alternate ex-
pressions for the mean system size. The simple M/M/1 queue has infinite buffer capacity
and the average number of jobs is entirely determined by the load. Hence, all jobs are
accepted by the system. In the network model analogue, the system size corresponds to

3.3. A queueing model of our network model 33

Figure 3.2: The network is represented by a graph and modeled by a single queue. The
cloud illustrates that the network is regarded as a black box. The flow arrivals at the network
correspond to arriving jobs at the queue. The jobs in the queue are scheduled and processed
in FIFO order, while the flows in the network are processed in arbitrary order.

the network throughput: the number of flows. The network capacity is finite and deter-
mined by the network parameters, such as the number of links and the topology. When
the network lacks resources to accommodate a new flow request, the request is rejected.
The rejection rate is equal to the loss probability for each new flow request and is defined
as,

r =
E

[
Rreject

]

Rtotal
(3.3)

where Rreject and Rtotal represent the sum of rejected requests and the total number of
requests, respectively. The rejection rate is a good measure to evaluate the network per-
formance, because it indicates the probability of a successful transmission.

In our queueing model, we can translate the finite network resources into a finite-
sized buffer. The size of the buffer then relates to the maximum number of concurrent
flows in the network. If we assume an M/M/1/K model as analogy for the network, then K
corresponds to the maximum number of flows that the network can accommodate. In the
network perspective, we will refer to K as the “”network capacity”. The network capacity
is an emergent property of the network and can not immediately be determined based on
the network parameters. Analytic solutions for the M/M/1/K queue in both the transient
and stationary domain are found by Tarabia [65]. Equations (3.4)–(3.6) give the first and
second order moments of the system size in steady state and the first order moment in the

34 Chapter 3. A queueing system to model network dynamics

transient domain,

E
[
NSM/M/1/K

]
=

{
ρ

1−ρ −
(K+1)ρK+1

1−ρK+1 , if ρ)= 1
K
2 , if ρ = 1

(3.4)

E
[
N2

SM/M/1/K

]
=

ρC(ρ)
(1−ρ)2(1−ρK+1) , if ρ)= 1
1
6 K + 1

3 K2, if ρ = 1
(3.5)

E
[
NSM/M/1/K (t)

]
= E

[
NSM/M/1/K

]
− 1

K +1

K

∑
j=1

A(ρ,ν)e−(λ+µ)t+2t
√ρcosν, if ρ)= 1

(3.6)

with ν = π j
K+1 and where

A(ρ,ν) =
2ρ

(
sinν+ρ K+1

2 sinKν
)

sinν
(
1+ρ−2

√ρcosν
)2 +ρ

K+2
2 (2+4K +ρ(2K−1))sinKν

C(ρ) = 1+ρ− (K +1)2 ρK +
(
2K2 +2K−1

)
ρK+1−K2ρK+2

The steady state rejection rate for the M/M/1/K queue is found as the probability that the
system contains K items,

rM/M/1/K = Pr
[
NSM/M/1/K = K

]
=

{
(1−ρ)ρK

1−ρK+1 , if ρ)= 1
1

K+1 , if ρ = 1
(3.7)

In this work we do not consider scenarios where the load exceeds 1. From equation (3.7)
it can be shown that for ρ > 1. the rejection rate rM/M/1/K * 1− 1/ρ. The system will
always stay in a “stressed” state with excessive losses. This behavior is neither desirable
nor typical for networks and therefore we disregard these scenarios from our analysis.

The average system time, the time each jobs spends in the system, can be obtained
by applying Little’s Law [43, Sect. 13.6]. Little’s Law requires that the arrivals are not
affected by the service discipline. An important difference between the classical M/M/1
queue and the network model is the service order: the classical M/M/1 queue governs
a FIFO order, whereas the network releases flows arbitrarily. Since we are interested
in average quantities to first order, Little’s law is not affected by the service discipline.
Little’s Law also assumes a work-conserving system where all offered load is serviced.
Due to the finite capacity of the system, the arrival rate is affected by the rejections in
the network. Consequently, Little’s Law must be applied with use of the effective arrival
rate. The average system time can be written as,

E
[
TSM/M/1/K

]
=

E
[
NSM/M/1/K

]

λ(1− r)
=

1−ρK+1

λ(1−ρK)
E

[
NSM/M/1/K

]

3.3. A queueing model of our network model 35

MAIN-PROGRAM
1 INITIALIZE(KN)
2 queue Q f lows ←∅
3 tarrivals ← tdepartures ← 0
4 tint.departure ← RANDOM-EXPONENTIAL(1

µ)
5 for j ← 1 to jmax
6 do tarrivals ← tarrivals+ RANDOM-EXPONENTIAL(1

λ)
7 while Q f lows)= ∅ and tdepartures + tint.departure ≤ tarrivals
8 do tdepartures ← tdepartures + tint.departure
9 RELEASE-FLOW(KN ,Q f lows)

10 tint.departure ← RANDOM-EXPONENTIAL(1
µ)

11 if Q f lows = ∅
12 then tdepartures ← tarrivals
13 flow f ← GENERATE-FLOW(KN)
14 if length[f] > 0
15 then ALLOCATE-FLOW(KN ,Q f lows, f)

Figure 3.3: Meta-code for the MAIN-PROGRAM. The MAIN-PROGRAM forms the basic
flow of the network simulation.

A non-trivial issue is the determination of K. In the M/M/1/K queueing model, K is
simply a parameter that is fixed. In the network perspective, K is a random variable
that, in a complicated manner, emerges from the topology and traffic parameters. The
objective is to identify and explore the relation between these parameters and the network
capacity K. We use simulation to measure the network performance in several scenarios
with different parameter settings and then compare the performance of the network with
that of the M/M/1/K queueing system.

The meta-code for the simulation of the network is presented in Figures 3.3 to 3.6.
The simulation uses a queue to store the flows that are active in the network. The flows
are stored in the order of arrival, however, the flows are dequeued at random with equal
probability. The simulation maintains two timelines, corresponding to the two processes
in the system, namely the arrival process and the departure process. When a flow ar-
rives, the arrival timeline is advanced with the inter-arrival time of the forthcoming flow.
Similarly, when a flow departs, the departure timeline is advanced. When the queue is
empty, the timelines are synchronized. The simulation is driven by the events of the flow-
arrivals. Just before a new flow arrives at the network, the active flows are examined and
the flows with a departure time prior to the forthcoming arrival are terminated. Hence, the
network performance, such as the number of flows momentarily in the network, is only
evaluated at the time of a flow arrival. This simplification is justified because the primary
performance measures of interest, being the number of flows, hopcount and rejection
rate, are measured at the event of an arrival.

Figure 3.3 presents the meta-code for the main program of the simulation. The net-
work is initialized in line 1 as the complete graph KN with unweighed, bi-directional links

36 Chapter 3. A queueing system to model network dynamics

GENERATE-FLOW(KN)
1 flow f ←∅
2 node u← v← RANDOM-NODE(KN)
3 while u = v
4 do v← RANDOM-NODE(KN)
5 f ← DIJKSTRA(KN ,u,v)
6 return f

Figure 3.4: Meta-code for GENERATE-FLOW subroutine. The GENERATE-FLOW sub-
routine choses two random nodes from the network and computes the shortest path between
these nodes using DIJKSTRA, Dijkstra’s shortest-path algorithm.

with equal capacity. The network is empty and unloaded. In line 2 the queue Q f lows,
which stores the active flows in the networks, is initialized. Line 3 initializes the vari-
ables tarrivals and tdepartures that correspond to the flow-arrival and -departure timelines,
respectively. In line 4 the inter-departure time is drawn from an exponential distribution
with mean 1/µ. This is the inter-departure time for the next flow that will leave the net-
work. The simulation starts in line 5, where it enters a loop that is executed for each
flow-arrival. The number of repetitions, which equals the number of flow arrivals jmax,
determines the length of the entire simulation. The time of the next flow arrival is de-
termined in line 6 and the corresponding variable tarrivals is advanced. Next, the active
flows that have expired before tarrivals need to be terminated. This is done in lines 7-10.
In line 7, a conditional loop is started that is repeated for each flow departure. During
the loop, the departure timeline is advanced (line 8), the flow is terminated (line 9) and
the inter-departure time is determined for the next flow (line 10). The loop ends when
the queue Q f lows is empty, or when the time of the next flow departure tdepartures exceeds
tarrivals. If Q f lows is empty after the flow departures, the two timelines need to be syn-
chronized, this is done in lines 11 and 12.1 In line 13 the actual flow is generated and
stored in the variable f . Finally, in lines 14 and 15, the length of the flow is tested and
if it is greater than zero, meaning that a path has been found, the flow is allocated in the
network.

The meta-code for the generation of a flow is detailed in Figure 3.4. The subroutine
takes a single argument, the network KN , which is needed to select the source-destination
pair and compute the path. First, an empty flow f is initialized in line 1. Next, two
(different) nodes are chosen randomly from KN in lines 2-4. In line 5 the shortest path
between u and v is computed using Dijkstra’s shortest path algorithm and inserted into f .
If two paths are found with equal length, one path is chosen uniformly. If the path does
not exist, an empty path is inserted into f . Line 6 returns the resulting flow.

In Figure 3.5 the meta-code is presented for the allocation of a flow. The subroutine
takes three arguments, the network KN , the queue Q f lows and the flow f that must be
allocated. The subroutine traverses the path stored in f and allocates the links between

1If the two timelines were not synchronized, the departure time of the next flow would be based on the
previous departure time, which could be prior to its own arrival.

3.3. A queueing model of our network model 37

ALLOCATE-FLOW(KN ,Q f lows, f)
1 for i← 1 to length[f]−1
2 do node u← f [i]
3 node v← f [i+1]
4 ALLOCATE-LINK(KN ,u,v)
5 ENQUEUE(Q f lows, f)

Figure 3.5: Meta-code for ALLOCATE-FLOW subroutine. The ALLOCATE-FLOW sub-
routine allocates the links along the path of a flow.

RELEASE-FLOW(KN ,Q f lows)
1 flow f ← DEQUEUE-RANDOM(Q f lows)
2 for i← 1 to length[f]−1
3 do node u← f [i]
4 node v← f [i+1]
5 RELEASE-LINK(KN ,u,v)

Figure 3.6: Meta-code for RELEASE-FLOW subroutine. The RELEASE-FLOW subrou-
tine releases the links along the path of a flow, such that they become available again for
future flow requests.

along the path (lines 1-4). The ALLOCATE-LINK procedure in line 4 allocates one of
the available channels on the link between the nodes u and v. Note that if the link would
not have a free channel, the link would not be part of the path. In line 5, the flow is added
to the queue Q f lows. Figure 3.6 details the release of a flow. The RELEASE-FLOW
subroutine only takes two arguments, the network KN and the queue Q f lows. The flow
that will be released is selected uniformly from the set Q f lows. The flow is stored in f
and then removed from Q f lows (line 1). Next, the links are released along the path in f
(lines 2-5). The release of a link involves freeing an occupied channel of the link and
making it available again for future flows.

The performance measures obtained through the simulations are applied to the queue-
ing model and the network capacity is obtained through fitting. A novel point in our anal-
ysis is the relation (3.8) between K and the network capacity, at least for the complete
graph KN , where β≈ 0.42,

K = βL0 (3.8)

where β is the fit-parameter and L0 is the number of links in the complete graph,

L0 =
(

N
2

)
(3.9)

Writing the network capacity as a function of the number of links, is motivated by the
notion that in our model the links carry the actual traffic. The nodes can be regarded
as an adhesive between the links, but do not contribute to the real capacity themselves.

38 Chapter 3. A queueing system to model network dynamics

Reviewing relation (3.8) in the light of the queueing model, we can regard β as an upper-
bound on the fraction of links that is used simultaneously. After all, in our queueing
model, K forms a hard upper-bound on the maximum number of jobs in the system.
Hence, a high value for β implies that a large fraction of the links is used simultaneously.
In other words, β can be viewed as the efficiency of the network usage. We assess the
quality of the proposed relation (3.8) and study β for a range of networks with various
parameters. By tuning a single parameter in each scenario, we can concentrate on the
effect of this parameter on the network performance.

First, we study the case of the complete graph KN and explore the dependency be-
tween the network capacity and the network size. Next, we investigate the effect of
decreasing the link density p by removing random links from the complete graph. For
this class of graphs, the Erdös-Renyí random graphs, we are interested in the relation
between the link density and the network capacity. Third, the complete graph is recon-
sidered, but now a link may hold multiple flows at the same time. Fourth, we will focus on
the two-dimensional lattice with one channel per link. Finally, we will test relation (3.8)
in the case of a different service model. In each simulation, we have generated 10 net-
work realizations and issued 1,100,000 flow requests per realization. At the start of each
simulation, the network is empty. In the assessment of the steady-state behavior, the
initial 100,000 flows of each realization are ignored in our analysis to account for the
warm-up phase. The arrival rate is chosen as λ = 0.99 while the service rate is µ = 1.00.
Hence, the load equals the arrival rate ρ = λ = 0.99.

3.4 The fully connected graph
In our initial set-up we will examine the complete graph with a single channel per link.
The complete graph has only a single parameter, namely the number of nodes, and is
therefore the most suitable model to start our analysis with. We use simulations to study
the network performance. To begin with, we are interested how the average number
of flows in steady state is a function of the number of nodes N. Furthermore, we will
examine the average hopcount and the rejection rate related to N.

At the start of the simulation, the network resides in a temporal warm-up phase,
where the average amount of incoming traffic exceeds the average amount of traffic being
served. The load gradually increases until a steady state is reached where the average
number of flows entering and leaving the network are in balance. The pace at which the
system is loading, can be measured by means of the relaxation time. The relaxation time
is a common performance measure in queueing theory and it reflects the convergence rate
to the stationary regime. For the M/M/1 queue, the relaxation time is given by [43, pp.
217],

τr =
1

µ
(
1−√ρ

)2 (3.10)

The speed of convergence to the steady state is compared for different network sizes. We
have simulated 10 network realizations and issued 1,100,000 flow requests per realiza-

3.4. The fully connected graph 39

100

80

60

40

20

0

E[
N

S(
t)]

2.01.51.00.50.0

t/τr

ρ = 0.99 E[NSM / M / 1
(t)]

N=10

N=20

N=30

N=40

N=50

Figure 3.7: Simulations of the average number of flows for networks of various sizes and
the average number of jobs in the M/M/1 queue as a function of time. The time-axis is
normalized with respect to the relaxation time (τr ≈ 39800). Computations of (3.2) are
added for reference. The simulation results presented in this figure are obtained by averaging
over 1000 network realizations and 100,000 flows per realization.

tion. In the analysis of the steady-state behavior, the first 100,000 flows are ignored. The
arrival and service rate are chosen as λ = 0.99 and µ = 1, respectively.

3.4.1 Number of flows in the network
The throughput of the network can be measured in terms of the number of concurrent
flows in the network. Figure 3.7 presents the average number of flows as a function of
time for networks of various sizes. Computations of mean system size of the M/M/1
queue (3.2) have been added to Figure 3.7 for reference. With ρ = λ/µ = 0.99, the mean
steady state system size of the M/M/1 queue is E

[
NSM/M/1

]
= 99. Since the M/M/1

queue does not induce rejections, E
[
NSM/M/1

]
can be seen as an upper-bound for the

average number of flows in the network; which is also evident from (3.4). The aver-
age number of flows in the stationary regime, the so-called steady state, depends on the
network size. Small networks lack resources to accommodate each request, resulting in
early rejections. As the network size increases, the average number of flows tends to-
wards the computations of (3.2), implying that only few of the flow request are being
rejected. For N = 50 the average number of flows in Figure 3.7 closely follows equa-
tion (3.2). Networks of more than 50 nodes have therefore not been considered with this
load. Choosing ρ closer to 1 will increase the variance of the average throughput and
will lead to large fluctuations in the flow arrivals. Moreover, an extremely high load may
result in numerical instability. The fluctuations around the average number of flows in
the steady state increase as the network size grows, which agrees with (3.4) and (3.5). To

40 Chapter 3. A queueing system to model network dynamics

200

150

100

50

0

E[
N S

] +_
 √

VA
R[

N S
]

5004003002001000

K

Figure 3.8: Computations of equation (3.4), the mean system size of the M/M/1/K queue
as a function of K and ρ = 0.99. The mean has been plotted with the square root of the
variance, cf. equation 3.5. At this high load, the standard deviation exceeds the mean.

get an impression of the magnitude of the variance as compared to the mean number of
flows in the M/M/1/K queue, the average system size as a function of K has been plot-
ted in Figure 3.8 with error bars (± one standard deviation). Due to the high load, the
standard deviation nearly equals the average system size and the coefficient of variation
is very close to one, Cv =

√
Var [NS]/E [NS]≈ 1 (see [43, pp. 273]).

To find a relation between the network size N and buffer size K, we have computed
the sample mean of the number of flows in the steady state from Figure 3.7 over an
interval of 1,000,000 arrivals. The mean has been plotted against the number of nodes
in Figure 3.9. The sample mean E [NS] as a function of the number of nodes has been
fitted with (3.4) where K = β

(N
2
)
. Figure 3.9 demonstrates that (3.4) agrees remarkably

well with the simulations. The spread of the samples that occurs for larger N is due to the
high variance, as mentioned previously. The result K = β

(N
2
)

is remarkable, as it implies
that there is a linearity between the network capacity and the number of links in KN .
The best value for β = 0.42 (see the legend of Figure 3.9). The number of links that
effectively contributes to the capacity appears constant at some 42 percent of the total
number of links, independent of the network size. Figure 3.10 compares the simulations
with computations of (3.6) with K = β

(N
2
)

for various N. The correspondence of the
simulations with (3.6) is very good; both the steady state behavior as well as the transient
warmup phase are closely approximated by (3.6).

3.4.2 Rejection rate
When the network lacks resources (capacity) to accommodate a new flow, the flow re-
quest is rejected. With respect to the M/M/1/K model, this is analogous to the situation
where the buffer is full. An important difference with the M/M/1/K is that the flow re-

3.4. The fully connected graph 41

100

80

60

40

20

E[
N S

]

5040302010

N

Figure 3.9: The average number of flows in steady state as a function of the number of
nodes N (see also Figure 3.7). The simulations (dots) have been fitted with computations
of (3.4) (line).

100

80

60

40

20

0

E[
N

S(
t)]

2.01.51.00.50.0

t/τr

ρ = 0.99 E[NSM / M / 1 / K
(t)]

N=40 K=324

N=20 K=79

N=30 K=181

N=10 K=19

Figure 3.10: The average number of flows in the network as a function of time, compared
with computations of (3.6). The simulation results presented here are the same as in Fig-
ure 3.7.

42 Chapter 3. A queueing system to model network dynamics

6

10-4

2

3
4
5
6

10-3

2

3
4
5
6

10-2

2

3
4

r

5040302010

N

Figure 3.11: Simulation results of the average rejection rate in steady state as a function of
the network size (dots). Computations of (3.7) have been added, where K = β

(N
2
)

and β =
0.42 (line).

quest may be rejected in cases where there is still sufficient capacity available in the
network, but the routing fails because it is not possible to construct a path from source
to destination with the available links. Figure 3.27 presents the simulation results for
average rejection rate r in the steady state. Figure 3.11 also shows computations of (3.7)
with ρ = 0.99, K = β

(N
2
)

and β = 0.42. Figure 3.11 demonstrates that rejections in the
network are well approximated by the M/M/1/K queueing system, even in cases where
the rejection rate is very small. The fluctuations in the tail of Figure 3.11 are an artifact of
the limited size of the sample set. Running longer simulations will increase the number
of samples and reduce the statistical inaccuracy. The good match again underlines the
importance of the relationship K = β

(N
2
)

between the network capacity and the number
of links in the network, as explained in the previous section.

3.4.3 Hopcount
The hopcount is the number of links (hops) a flow must traverse to reach a destina-
tion from a given source. It is a random variable that depends on many variables in the
network, e.g. the number of nodes, the link density and the topological structure. The av-
erage hopcount indicates how many links are allocated per flow on average. Figure 3.12
presents the average hopcount of the shortest path for flows entering the network as a
function of time. The time-axis has been normalized with respect to the relaxation time.
At the start of the simulation, the average hopcount is precisely one, namely correspond-
ing to the direct link between the source-destination pair. The average hopcount increases
as more flows are allocated due to the depletion of resources. After some time, the av-
erage hopcount reaches a stationary regime, corresponding to the steady state. In the
steady state, the average hopcount of the arriving flows is the same as for the departing

3.4. The fully connected graph 43

1.35

1.30

1.25

1.20

1.15

1.10

1.05

1.00

E[
H

N
(t)

]

1.51.00.50.0

t/τr

ρ=0.99

 N=10

N=20

N=30

N=40

N=50

Figure 3.12: Average hopcount of the allocated flows as a function of time. The time axis
has been normalized with respect to the relaxation time.

flows. Figure 3.12 demonstrates that the steady state value at which the average hopcount
stabilizes becomes smaller when the network size increases. In addition, the variance of
the hopcount also decreases when N increases. The explanation is that, when N grows,
the number of potential routes between a particular source and destination pair increases.
In particular, the number of short paths, e.g. the 2-hop paths, increases rapidly with N,
resulting in a higher probability of finding a shorter route (lower mean) and more routes
of the same size (lower variance). In addition, the number of source-destination pairs
increases quadratically with N, hence the probability of choosing a source-destination
pair of which the direct link is already consumed, is smaller.

In our model, the allocation of a link consumes the full capacity of that link which is
analogous to the (temporal) removal of that link. The links remain unavailable for future
requests until they are released again. The number of allocated links at some time t equals
the sum of the length (in hops) of all the flows in the network at that time,

Lallocated (t) =
NS(t)

∑
j=1

Hj

where Hj equals the number of hops of flow j. After taking the expectation of both sides,
invoking Wald’s identity [43, pp. 34] and assuming that each Hj is i.i.d. as HN and
that NS(t) is independent from Hj, we obtain

E [Lallocated(t)] = E [NS(t)] E [HN]

The number of allocated links relates to the number of available links as L(t) = L0−
Lallocated(t), where L0 is the initial number of links in the network. The link density
is defined as the ratio of available links with respect to the maximum number of links,

44 Chapter 3. A queueing system to model network dynamics

1.30

1.25

1.20

1.15

1.10

E[
H N
]

0.850.800.750.70

p

Figure 3.13: Simulation results of the average hopcount as a function of the link density p
during steady state (dots). The simulation results have been fitted with a line (solid line).
The dotted line corresponds to E [HN] = 2− p.

which for the steady state converts to p = E [L]/L0 = 1−E [Lallocated]/L0. Hence, in the
steady state, the link density can be written as a function of the average number of flows
and the average hopcount as,

p = 1− E [NS]E [HN]
L0

(3.11)

We have computed the average hopcount in the steady state and plotted the result
in Figure 3.13 as a function of the link density. The average hopcount in the steady
state appears to drop linearly with the link density. The linear behavior can be explained
when we consider the allocation of the flows. Provided that the average path length (in
hops) mostly spans a single link and seldom more than two, which appears to be the
case according to Figure 3.13, the process of allocating flows is quite well modeled by
the construction of the Erdös-Renyí random graph, where links are removed from KN
independently and at random with probability (1− p). As a result, the topology that
originates after allocating the flows can be compared with the Erdös-Renyí random graph.
The average hopcount for the Erdös-Renyí random graph is, for large N, approximated
by [43, pp. 346],

E [HN]≈ 2− p+(1− p)(1− p2)N−2 (3.12)
≈ 2− p for N → ∞ (3.13)

where we have used that Pr [HN = 3] ≈ Pr [HN > 2]. The linear behavior visible in Fig-
ure 3.13 then follows from (3.13). We have added computations of (3.13) to Figure 3.13.
Equation (3.13) underestimates the simulation results, in particular for lower link den-
sities. The difference stems from the fact that for lower link densities, the hopcount is

3.4. The fully connected graph 45

1.0

0.8

0.6

0.4

0.2

0.0

p

5040302010

N

Figure 3.14: The link density in steady state. The simulations (dots) are compared with
computations (solid line) of (3.14) using E[NS] results from Figure 3.9. The link density
threshold pc for the Erdös-Renyí random graph has been added to the figure (dotted line).
Below pc the graph is a.s. disconnected.

larger and dependencies between links become more pronounced. Using the average
hopcount (3.13), the steady state link density (3.11) converts to

p≈ 2− L0

L0−E [NS]
(3.14)

Figure 3.14 shows the link density as a function of the number of nodes in steady
state. Computations of (3.14) have been added using E[NS] from (3.4) where K = βL0.
Figure 3.14 illustrates that the first order estimate (3.14) agrees well. Equation (3.14)
slightly overestimates the simulations for small N, which is caused by disregarding
the probability of paths longer than 2 hops and the assumption that Hj is indepen-
dent of NS(t). For larger networks, the probability of longer paths decreases and equa-
tion (3.14) better matches the simulations.

The link density is important as it inherently determines the blocking probability
in the network. If the link density reaches beyond a critical value, the graph is almost
surely disconnected and virtually each flow is blocked. Comparing the network with the
Erdös-Renyí random graph, facilitates to express the critical link density pc as a function
of the network size N: pc(N) ≈ 1

N lnN. Computations of the critical link density have
been added to Figure 3.14. Although the average link density is well above the critical
threshold, the network still experiences blocking. Figure 3.15 explains this phenomenon.
For a single sample path, i.e. a single network realization, the link density is plotted on
the left axis and the number of rejected requests on the right axis as a function of time.
Figure 3.15 shows that the average link density is well above the random graph’s crit-
ical density. When the link density stays above the critical value, all flow requests are
accepted. However, rejections still take place due to the high variations in the traffic.

46 Chapter 3. A queueing system to model network dynamics

1.0

0.8

0.6

0.4

0.2

0.0

(
)

p(
t)

2.52.01.51.00.50.0

t/τr

80

60

40

20

0

(
) R

reject (t)

pc

E[p(t)]

+σ

-σ

Figure 3.15: The link density and number of rejected requests as a function of time, for
a single sample path, where N = 25 and ρ = 0.99. The upper dashed lines indicate the
sampled mean E [p(t)]±σ (one standard deviation). The lower dashed line illustrates pc for
the Erdös-Renyí random graph with N = 25.

A few short bursts of strongly increased arrivals contribute most to the rejections by the
network. At such moments, e.g. see Figure 3.15 at t/τr ≈ 0.7, the link density reaches far
beyond the critical density pc. Below the critical density, the network is a.s. disconnected
and the probability that a flow is accepted is small. We have simulated a 10-node network
and studied the allocation and release process by inspecting the topology. Figure A.1 in
Appendix A presents the flow arrivals and departures for the 10-node network just be-
fore and after rejections are taking place. The first event shown in Figure A.1 is the 80th

flow arrival. After the arrival of flow 81, the network becomes disconnected (node 5).
Then 3 more flows are allocated before the first rejection occurs (flow 86). After the
arrival of flow 91 the network connectivity reaches beyond the critical value and multiple
disconnected nodes and clusters emerge. A remarkable observation is that in this phase
the network still manages to allocate several flows. Due to the low connectivity, the hop-
count of these flows is very large compared to the average case, see e.g. flow arrival 105.
These observations imply that, beside the mean, also the tail probabilities are crucial.

3.5 The Erdös-Renyí random graph
In the previous section we have studied the network capacity for the complete graph with
a single channel per link. The complete graph is entirely determined by the number of
nodes and we have found relation (3.8) that describes the average number of flows as
a function of the number of nodes in the graph. In this section we extend the results
from the previous section by studying the class of Erdös-Renyí [17] random graphs. In
the Erdös-Renyí random graph, the number of links is stochastic and determined by the

3.5. The Erdös-Renyí random graph 47

probability of having a link between each pair of nodes. The Erdös-Renyí random graph
is annotated as Gp(N), where N denotes the number of nodes and p is the link probabil-
ity. All links are considered independent. The average number of links is E [L] = pL0.
Hence, the Erdös-Renyí random graph is described by the parameters N and p. In this
section we investigate if the M/M/1/K approximation still holds and if we can write the
network capacity K as a function of N and p. We examine how the link density, defined
as p = E [L]/L0 affects the average throughput in the network. For KN , the link density is
always 1. For Gp(N) the average link density equals p. We have performed simulations
for link probability p ranging from 0.3 to 1.0 and N ranging from 10 to 50. The service
rate µ = 1.00, such that the load equals the arrival rate ρ = λ = 0.99. The link capacity
is set at C = 1; each link only accommodates a single channel. For each combination
of N and p we have simulated 10 randomized network realizations and issued 1,100,000
flow requests per realization. At the start of each simulation, the network is empty. Since
we are only focussing on the steady-state behavior, the initial 100,000 flows of each
realization are ignored in our analysis to account for the warmup phase.

3.5.1 Number of flows in the network

Since the Erdös-Renyí random graph is a subgraph of the complete graph, the average
number of flows in the Erdös-Renyí random graph will never be greater than that of the
complete graph. Hence, similar to the previous section, the average number of flows
is bounded by E [NS] = E

[
NSM/M/1

]
= 99. Figure 3.16a presents the average number of

flows in the steady state as a function of N and p. The results have been obtained via
simulation and are fitted with (3.4), where K is taken as (3.8) and β is the fit parameter.
The goodness of the fits illustrates that the model also applies to the Erdös-Renyí random
graph and that β is independent of N. However, the network capacity K is proportional
to the number of links, hence K will be a function of the link probability p. Figure 3.16b
presents the fit results for β as a function of p. The results for β in Figure 3.16b have
been fitted with β(p) = β0 +A pγ. The constant term β0 is taken zero, since for p = 0 the
capacity must be zero. The scaling term A must be equal to β(1)≈ 0.42, hence we only
need to find the power-exponent γ. The resulting value for γ is found as γ≈ 1.34≈ 4

3 ,

β(p)≈ 0.42 p
4
3 (3.15)

Equation (3.15) indicates that β, and thus the network capacity, decreases rapidly
with p. In the case of the fully connected network, the network capacity is approxi-
mately 42 percent of the number of links. In the case of the Erdös-Renyí random graphs,
on average 42 p1/3 percent of the links contribute to the network capacity. The decrease is
a result of two combined phenomena. First, due to the smaller link probability, there are
less resources available to carry the load, yielding a lower throughput. Second, since the
link probability is smaller, the average hopcount is larger. Hence, each flow consumes,
on average, more resources leading to a faster depletion of resources.

48 Chapter 3. A queueing system to model network dynamics

100

80

60

40

20

E[
N S

]

5040302010

N

 p = 0.3

 p = 0.4

 p = 0.5

 p = 0.6

 p = 0.7

 p = 0.8

 p = 0.9

 p = 1.0

(a)

0.40

0.35

0.30

0.25

0.20

0.15

0.10

β

1.00.90.80.70.60.50.40.3

p

(b)

Figure 3.16: Simulation results for the Erdös-Renyí random graph. The number of nodes
ranges from N = 10 to N = 50, the load ρ = 0.99 and link probability p is between p = 0.3
and p = 1.0. In (a) the average number of flows is shown in the steady-state as a function
of N. The simulation results (dots) have been fitted with (3.4) (lines). The fit results for β are
presented in (b). The simulation results (dots) have been fitted with β(p) = β(1)pγ (lines).
The fit result is β(1) ≈ 0.42 and γ ≈ 1.34. As reference we have added the dashed line
corresponding to γ = 1.

3.5.2 Hopcount
Figure 3.17 presents the average hopcount during steady-state. The average hopcount is
computed as the sampled mean of the hopcount of the successfully routed flows. For N
sufficiently large and the link probability well above the critical probability, the average
hopcount in the Erdös-Renyí random graph is closely approximated by (3.13). From
Figure 3.17 we can observe that the average path length often exceeds two. In particu-
lar for smaller networks, the link probability approaches the critical probability, yield-
ing an increase in the average hopcount. Consequently, the Erdös-Renyí random graph
model is inappropriate and we can no longer approximate the expected hopcount via
equation (3.13). Figure 3.18 presents the link density in the steady state. At small link
probabilities, the link density in the steady state appears to be the same for any value
of N. For the Erdös-Renyí random graph, the link density in the steady state from equa-
tion (3.11) converts to,

p = p0−
E [NS]E [HN]

L0

3.5.3 Rejection rate
Rejections in the network are caused by the lack of resources. In our queueing model,
this is analogous to the situation where the buffer is full and all K positions are occupied.
Hence, the rejection ratio in the network can be approximated by using (3.7), where K
is then the network capacity as defined by (3.8) with β given in (3.15). The rejection

3.5. The Erdös-Renyí random graph 49

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

E[
H N

]

5040302010

N

 p = 0.3 p = 0.7

 p = 0.4 p = 0.8

 p = 0.5 p = 0.9

 p = 0.6 p = 1.0

Figure 3.17: The average hopcount in the steady state as a function of N for the Erdös-Renyí
random graph, where the number of nodes ranges from N = 10 to N = 50, load ρ = 0.99
and link probability p = 0.3,0.4, . . . ,1.0.

1.0

0.8

0.6

0.4

0.2

p

5040302010

N

 p = 0.3 p = 0.7

 p = 0.4 p = 0.8

 p = 0.5 p = 0.9

 p = 0.6 p = 1.0

Figure 3.18: The average link density in the steady-state as a function of N for the ER
random graph, where the number of nodes ranges from N = 10 to N = 50, load ρ = 0.99
and link probability p = 0.3,0.4, . . . ,1.0.

50 Chapter 3. A queueing system to model network dynamics

0.0001

0.001

0.01

0.1

r

5040302010

N

 p = 0.3

 p = 0.4

 p = 0.5

 p = 0.6

 p = 0.7

 p = 0.8

 p = 0.9

 p = 1.0

Figure 3.19: The rejection rate in steady-state as a function of L0 for the Erdös-Renyí
random graph, where the number of nodes ranges from N = 10 to N = 50, load ρ = 0.99
and link probability p = 0.3,0.4, . . . ,1.0. The simulation results (dots) have been fitted
with (3.7) (lines), with K = βL0 and β the fit parameter. The fit results for β were within
four percent difference of the results from Section 3.5.1.

ratio has been measured during the simulations by counting the flow requests that are
rejected divided by the total requests. The steady-state rejection ratio has been plotted
in Figure 3.19 and the simulation results have been fitted with (3.7). The resulting β of
these fits has been compared to the results from Section 3.5.1. As shown in Figure 3.19,
the fit is good. The small differences are likely due to the fitting process and sampling
accuracy.

3.6 The complete graph with multiple channels per link
In this section we study the effect of increasing the number of channels per link on the
network capacity. Increasing the number of channels makes the model more realistic if
we compare it with optical networks, where a fiber is split into a number of wavelengths.
Blocking now only occurs if all channels in the fiber are allocated. Increasing the number
of channels makes the network less susceptible for disconnectedness and consequently
exhibits less extreme behavior in the sense that one flow immediately blocks all the other
traffic. With respect to the topology, we shall confine ourselves to the complete graph KN
such that we can isolate the effect of the number of channels on the network capacity.
Note that the resulting network is deterministic since the number of links and number of
channels per link is deterministic. The service and arrival rate are taken as in Section 3.5,
such that ρ = 0.99. The link capacity C is ranging from 1 to 8 channels per link. We
have simulated 10 network realizations with 1,100,000 flow requests per realization. The
steady-state values are obtained by sampling the last 1,000,000 flows.

3.6. The complete graph with multiple channels per link 51

100

80

60

40

20

E[
N S

]

5040302010

N

 C = 1 C = 5

 C = 2 C = 6

 C = 3 C = 7

 C = 4 C = 8

(a)

5

4

3

2

1

β(
C
)

87654321

C

(b)

Figure 3.20: (a) The average number of flows in the steady state as a function of the number
of nodes. The number of nodes ranges from N = 10 to N = 50, the load equals ρ = 0.99 and
the link capacity ranges from C = 1 to C = 8. The simulation results are fitted with (3.4),
the fit parameter K = βL0. The dots represent the simulations while the lines are the curve
fits. (b) β as a function of C. The simulation results (dots) have been fitted with β = β(1)Cγ.
The dotted line corresponds to the linear function β = β(1)C.

3.6.1 Number of flows in the network
The average number of flows in the steady-state is plotted in Figure 3.20a. As in Sec-
tion 3.5, the average is upper-bounded by (3.1) at 99. The simulation results have been
fitted with (3.4). The fit result is presented in Figure 3.20a as a line connecting the dots.
The good fit illustrates that the average number of flows in the system in the steady state
can be well approximated by the M/M1/K queueing model. The resulting values for β are
displayed in Figure 3.20b as a function of C. We have fitted β(C) with y = β(1)Cγ, where
β(1)≈ 0.42. The result is displayed as a line in Figure 3.20b. The fit result γ≈ 1.20≈ 6

5 ,
such that

β(C)≈ 0.42C
6
5 (3.16)

The fit result demonstrates that the network capacity grows more than linear with C. The
non-linear capacity gain that is achieved when using multiple channels per link is com-
parable to the performance gain achieved in optical networks with wavelength changers.
In optical networks without wavelength changers, a lightpath from source to destina-
tion must obey the “continuity constraint”, meaning that from source to destination, the
wavelength of the optical path must be same on each link. An optical network without
wavelength changers and with C wavelengths per fiber can then be considered as a aggre-
gation of C independent networks. The performance of such a network, e.g. measured
in throughput, is then a multiple of the performance of a single network. If wavelength
changers are added to the network, the wavelength of the optical path can changed at the
nodes, such that the routing process has more freedom in choosing the path. Hence, more
paths are available yielding a better performance. The variance of the number of flows

52 Chapter 3. A queueing system to model network dynamics

1.30

1.25

1.20

1.15

1.10

1.05

1.00

E[
H N

]

5040302010

N

 C = 1 C = 5

 C = 2 C = 6

 C = 3 C = 7

 C = 4 C = 8

Figure 3.21: The average hopcount in the steady-state for the complete graph with multiple
channels per link as a function of N. The number of nodes ranges from N = 10 to N = 50,
the load equals ρ = 0.99 and the number of channels ranges from C = 1 to C = 8. For clarity,
the results for networks with the same link capacity are connected with a dashed line.

also increases with both N and C, resulting in the intensified fluctuations for large N
and C in Figure 3.20a.

3.6.2 Hopcount
Increasing the number of channels per link reduces the probability that the shortest path
between a source-destination pair is blocked, hence it improves the resilience of the
link against congestion. The average hopcount will decrease when increasing C. Fig-
ure 3.21 presents the average hopcount during steady-state. The average hopcount is
monotonously decreasing for increasing N and C. When N increases, the number of
links grows accordingly, leading to an increase of alternate routes between node-pairs.
In addition, the number of source-destination pairs increases such that the direct link
from source to destination is often still available. Increasing the number of channels per
link quickly reduces the average hopcount to one, which implies that a direct link from
source to destination is available in most cases.

3.6.3 Rejection rate
The simulation results for the rejection ratio are displayed in Figure 3.22. The results
are compared with computations of (3.7), with K as in (3.16). Figure 3.22 illustrates
that the simulation results are in agreement with the computations. Besides the average
number of flows, we are also able to model the rejection rate of this network by the
M/M/1/K queueing analogy. For larger values of C, the fluctuations increase, which is in
agreement with the observations on the average number of flows. This effect is already

3.7. The two-dimensional lattice 53

10-5

10-4

10-3

10-2

10-1

r

5040302010

N

 C = 1 C = 5

 C = 2 C = 6

 C = 3 C = 7

 C = 4 C = 8

Figure 3.22: The rejection ratio in the steady-state for the complete graph with multiple
channels per link as a function of N. The number of nodes ranges from N = 10 to N = 50,
the load equals ρ = 0.99 and the number of channels C = 1,2,3,4. The simulation results
(dots) have been fitted with (3.7) (lines), with K = βL0 and β being the fit parameter.

visible in Figure 3.22 for small values of C, but intensifies as the number of channels
increases.

3.7 The two-dimensional lattice
In this chapter we will study two-dimensional lattice networks, where the nodes are
placed on a rectangular grid and, apart from the border nodes, all nodes are linked with
four neighbors. The link capacity is fixed for all links at one channel per link. Networks
with a lattice topology are quite common, e.g. in grid computing. Another application is
in silicon on chips where point connections are made on a grid layout. We have simulated
two-dimensional square lattice topologies with Z nodes in each dimension, having a total
of N = Z2 nodes. In the simulations, Z ranges from Z = 4 to Z = 50 and each link contains
a single channel, C = 1. Note that for Z = 50, the network contains N = Z2 = 2500 nodes
and L0 = 2Z (Z−1) = 4900 links. The load is fixed at ρ = 0.99. We have simulated 10
network realizations and issued 1,100,000 flows per realization. The first 100,000 flow
requests are disregarded in the steady state analysis.

3.7.1 Number of flows in the network
The average number of flows in the steady state is plotted in Figure 3.23 against the size
of the lattice Z. The average number of flows is significantly smaller than in the networks
described in previous sections. The lower throughput stems from the, on average, long
paths between source and destination. In the case of the lattice graph, the nodes are

54 Chapter 3. A queueing system to model network dynamics

12

10

8

6

4

E[
N S

]

5040302010

Z

Figure 3.23: The average number of flows in steady-state for a two-dimensional square
lattice with one channel per link. The dimensions of the lattice are Z×Z, with Z ∈ [4,50].

placed in a grid, yielding a maximum of four neighbors. The fixed structure of the lattice
enforces long paths, such that the available resource are rapidly exhausted. In the case of
random graphs, each node has a fairly equal chance of being selected as a hop, unlike the
lattice graph, where the next hop can only be selected from maximally two neighbors,
as the other two neighbors will only increase the path length. Moreover, since we are
dealing with paths between uniformly chosen nodes, the likeliness that the path crosses
the center of the lattice is high. If we compute the betweenness centrality2 [19] of each
node, then the nodes in the center exhibit the highest betweenness. Hence, the center
rapidly becomes congested, which then becomes a critical and heavily loaded area. This
effect decreases the chance of a successful route attempt for future flows, since these are
also likely to cross the center section. In addition, most nodes have a degree of 4. In the
general, and worst, case, the node serves as an intermediate hop along a path and as a
result, the node becomes “congested” after the allocation of two flows. We have tested the
network model on the lattice and fitted the simulation results from Figure 3.23 with (3.4).
The simulations did not fit with the M/M/1/K queue, meaning that for the lattice we have
not found an expression for the network capacity. Hence, the fixed structure of the lattice
prohibits the application of the queueing model on the network.

2The betweenness centrality measure counts the number of shortest paths through a node or link w.r.t. the
total number of node pairs.

3.7. The two-dimensional lattice 55

30

25

20

15

10

5

E[
H N

]

5040302010

Z

Figure 3.24: The average hopcount in steady-state for a two-dimensional lattice. The solid
markers represent the simulation results. The solid line represents computations of (3.17).

3.7.2 Hopcount
The mean hopcount for the two-dimensional square lattice is given by eq. (3.17), see [43,
pp. 513],

E [HN] =
2

3Z
(
Z2−1

)
(3.17)

Eq. 3.17 expresses the minimal distance between two nodes in a square lattice averaged
over all the possible nodepairs. Hence, (3.17) is a lower-bound on the average hopcount
in the steady-state, loaded network. Figure 3.24 presents the average hopcount for the
two-dimensional lattice network in steady state. The markers correspond to the average
hopcount obtained through simulation. The solid line represents calculations of (3.17).
Figure 3.24 illustrates that, as expected from (3.17), the average hopcount for lattice
networks follows an almost linear increase with Z. The simulation results for the square
lattice slightly underestimate (3.17), which is caused by the traffic in the network: due to
the existing connections, longer paths must be utilized to reach the destination.

3.7.3 Rejection rate
Figure 3.25 shows the rejection ratio for the two-dimensional square lattice. The rejection
ratio seems to exhibit a power-law behavior with respect to Z and contrasts the exponen-
tially decaying rejection ratio in M/M/1 queues. Increasing the network size only leads to
a marginal decrease of the rejection rate. Increasing the network size implies an increase
of the average hopcount, such that each flow consumes more resources. The bottleneck is
formed by the center of the lattice, which still suffers from rapid exhaustion of resources.
We did not succeed in finding an explanation for the power-law relation with respect

56 Chapter 3. A queueing system to model network dynamics

4

5

6

7

8

9

0.1

2

r

4 5 6 7 8 9
10

2 3 4 5

Z

Figure 3.25: The rejection ratio in steady-state, for the two-dimensional square lattice with
dimensions Z×Z, as a function of Z. The simulation results (dots) have been fitted with a
power-law (line), the fit result is r = 0.57Z−0.74.

to Z. We believe that a rigorous proof will be very complex, when we realize that the
uncorrelated percolation process [22] is already very complex.

3.8 Traffic dependency
In the previous sections we have studied the change in network capacity for networks
with different topological characteristics. This section is devoted to the dependency of
the network capacity on the traffic conditions. We conduct our analysis with the basic
network scenario, which is the fully connected network with a single channel per link.
First, we study the network model where the load is variant. Second, we choose another
traffic model, where the service times are deterministic instead of stochastic.

3.8.1 Varying the load
The load on the network corresponds here to the intensity of the offered traffic, i.e. the ra-
tio of the average service time and average inter-arrival time of the flows, ρ = E[Ts]/E[Ta] =
λ/µ. The average inter-arrival time is fixed at E[Ta] = 1, the load then equals the average
service time. In the previous sections the load was fixed at ρ = 0.99. In this section
the load ranges from ρ = 0.85 to ρ = 1.00. The number of nodes ranges from N = 10
to N = 40. For each combination of N and ρ we have simulated 10 network realizations
and 1,100,000 flow requests have been issued per realization. The first 100,000 flow re-
quests have been omitted from the steady state analysis to account for the warmup phase.
Figure 3.26 presents the simulation results of the average number of flows in the steady
state. The simulation results are compared with computations of (3.4), where the same

3.8. Traffic dependency 57

160

140

120

100

80

60

40

20

E[
N S

]

1.000.980.960.940.920.900.880.86

ρ

 N = 10
 N = 15
 N = 20
 N = 30
 N = 40

Figure 3.26: The average number of flows in steady state as a function of the traffic load
for networks of various sizes. The simulation results (dots) are compared with computations
of (3.4) (lines) using K = 0.42

(N
2
)
.

value for the network capacity is used as in Section 3.4. Figure 3.26 illustrates that the
simulation results closely follow the computations. When the load is varied between 0.85
and 1.00, the average number of flows in the network is still accurately described by (3.4).
Moreover, the network size appears to play no effect on the closeness of (3.4) when the
load is varied. The agreement indicates that the network capacity is not dependent on the
load, i.e. β and consequently K are not dependent on the traffic intensity ρ. The same
behavior is observed when the rejection rate is studied. Figure 3.27 presents the average
rejection rate in the steady state as a function of the traffic load ρ. The simulation results
in Figure 3.27 are in close agreement with the computations of (3.7). For N = 10, the
computations slightly overestimate the simulation results, which may be due to the small
size of the network. However, the difference appears to be the same for all the values
of ρ. These findings confirm our previous conjecture that the network capacity is deter-
mined by the topology and is independent of the traffic characteristics. In the following
section we will study the influence of the service process on the network capacity.

3.8.2 Deterministic service times
In this section we verify equation (3.8) in the case where the service times are determin-
istic. If equation (3.8) still holds in the case of deterministic service times, then the claim
that the network capacity is indeed determined by the topology alone becomes stronger.
In comparison to the previous sections, the service process then loses the Poisson prop-
erty and the agreement of the network with the M/M/1/K queue no longer applies. When
the network has deterministic service times, the service time is fixed such that we need
to consider the M/D/1/K queue as an analogue for the network model. The analytic ex-
pressions for the average number of flows or the rejection rate in the steady state are

58 Chapter 3. A queueing system to model network dynamics

50x10-3

40

30

20

10

0

r

1.000.980.960.940.920.900.880.86

ρ

 N = 10
 N = 15
 N = 20
 N = 30
 N = 40

Figure 3.27: The average rejection rate in the steady state as a function of the traffic load
for networks of various sizes. The simulation results (dots) are compared with computations
of (3.7) (lines) using K = 0.42

(N
2
)
.

significantly more complex with respect to the case of a Poisson service process. Ana-
lytic solutions for the average system size of the M/D/1/K queueing system in the steady
state are found by Brun and Garcia [14],

E
[
NSM/D/1/K

]
= K− ∑K−1

n=0 bn

1+ρbK−1
(3.18)

with

bn =
n

∑
k=0

(−1)k

k!
(n− k)k e(n−k)ρk

The rejection probability is now given by,

rM/D/1/K = 1− bK−1

1+ρbK−1
(3.19)

We have performed simulations on the complete graph with a single channel per link and
the number of nodes ranging from N = 10 to N = 50. The traffic intensity equals ρ =
0.99. For each network realization, we have issued 1,100,000 flow requests. The
first 100,000 flows are ignored during the steady state analysis to compensate for the
warmup phase. Figure 3.28 presents the average number of flows in the steady state.
The simulation results are compared with computations of (3.18), where K = 0.42

(N
2
)
.

The correspondence of the simulation results with the computations is again very good.
The average number of flows is accurately described by the M/D/1/K queueing anal-
ogy. In addition we have measured the rejection rate in the steady state and the results
are presented in Figure 3.29. The computations of the rejection rate for the M/D/1/K

3.9. Chapter summary 59

50

40

30

20

10

E[
N S

]

5040302010

N

Figure 3.28: The average number of flows in the steady state for the network with determin-
istic service times. The simulation results (dots) are compared with computations of (3.18)
(lines). The load is chosen as ρ = 0.99, the network capacity is computed as K = 0.42

(N
2
)
.

queue (3.19) are very close to the simulation results. Hence, both the average number of
flows as the rejection rate are accurately described by the M/D/1/K queueing analogy.

3.9 Chapter summary
This chapter investigates the traffic dynamics in networks at the flow level. The relation
between the network and traffic characteristics is modeled using a queueing approach.
We found that for the case of several networks, the average number of flows and the
rejection rate can be modeled quite well by a finite-sized queue. In this approach, the
network is regarded as a black box, where flows arrive at stochastic intervals and are
being served, similar to a queueing system. In analogy with the buffer size in queueing
systems, we define the “network capacity” as the maximum number of flows the network
can sustain. In contrast to the buffer size in queueing systems, the network capacity is an
emergent stochastic quantity that is not determined by definition but by the outcome of
various network properties and the interaction of processes during the network operation,
e.g. the routing process, the selection of source and destination nodes and of course
topological properties.

In this chapter, we have applied the model on several network classes, including the
fully connected graph with a single channel per link, the Erdös-Renyí random graph, the
fully connected graph having multiple channels per link and the two-dimensional lattice
with a single channel per link. In the case of the fully connected network with a single
channel per link, we can view the network as a regular M/M/1/K queue and the (tran-
sient) solutions for the M/M/1/K queue can be applied to describe network behavior and
provide insight into the loading of the network as well as blocking. A new finding is

60 Chapter 3. A queueing system to model network dynamics

10-5

10-4

10-3

10-2

r

5040302010

N

Figure 3.29: The average rejection rate in the steady state for the network with determin-
istic service times. The simulation results (dots) are compared with computations of (3.19)
(lines). The load is chosen as ρ = 0.99, the network capacity is computed as K = 0.42

(N
2
)
.

Class β
Fully connected graph with single channel per link β0
Erdös-Renyí random graph with single channel per link β0 p4/3

Fully connected graph with multiple channels per link β0 C6/5

Two-dimensional lattice with single channel per link n.a.

Table 3.1: Summary of the results for the scaling factor β for different classes of networks,
where β0 = 0.42. In the case of the two-dimensional lattice, the queueing model can not by
applied, hence there is no value for β.

the linear relation K = β
(N

2
)

between the number of links in the network and the buffer
capacity K. The origin of the scaling factor β and the sensitivity to network scaling, e.g.
increasing the number of channels per link so that more flows are allowed per link, is
investigated in Sections 3.5 and 3.6. In Section 3.7 we have studied the applicability of
the model to the lattice graph. Table 3.1 presents a summary of the results on the network
capacity. The capacity of the network appears dependent on the link density in case of
the Erdös-Renyí random graph, where the scaling factor β decreases with the link prob-
ability p. This effect can be ascribed to the fact that sparser graphs are less robust since
fewer alternate routes exist. The successive allocation of flows exhausts the resources
more quickly and the network becomes more prune to disconnectedness. Additionally,
the average hopcount increases for lower link probabilities, such that on average more
links are used per flow and consequently less flows can be allocated. We also found that
the scaling factor β increases with the number of channels per link. As each link has more
channels, the average hopcount decreases and the probability of finding a direct link be-

3.9. Chapter summary 61

tween source and destination increases. The network is more robust, as more alternate
routes are available.

The meaning of β can be explained as the “efficiency” with which the links are allo-
cated. By allocating links, parts of the network become mutually unreachable, compro-
mising the maximum number of sustainable flows. Table 3.1 illustrates that the network
is maximally loaded up to some 42 percent of its actual resources. A closer inspection
of the transient behavior of the network revealed that most of the rejections occur due to
the traffic fluctuations in the network. At moments of heavy bursty traffic, the network
becomes congested leading to a surge of rejections. In the case of the lattice network,
the queueing model is not applicable. We conjecture that the main reason lies in its geo-
metric nature: the average hopcount is much higher than for Erdös-Renyí random graphs
and consequently, blocking is more likely to occur. Moreover, the paths between the
uniformly chosen nodes cross the center-section of the network, dividing the network
into mutually unreachable clusters. The effect of correlation between the links becomes
more clear when the rejection ratio is compared with a percolated lattice network. The
rejection ratio is significantly higher than when there is no correlation and exhibits a
power-law in the size of the network.

Section 3.8 demonstrates that the network capacity (and therefore β) is not deter-
mined by the traffic load. The network capacity seems embedded in the topological
properties and is not determined by the traffic intensity or by the service process.

62 Chapter 3. A queueing system to model network dynamics

Chapter 4

An upper-bound on the
maximum number of flows

4.1 Introduction
In Chapter 3 we have studied the capacity of a network with continuously arriving and
departing flows. In this section, the average number of flows that can be allocated in a
network before disconnectedness occurs, is addressed. The network is considered dis-
connected when at least one node is unreachable for any other node. Additionally, we
are interested in the effect of removing paths in the graph. More precise, we analyze the
evolution of the connectivity and the rejection rate as flows are allocated in the network.

4.2 The fully connected graph
The network model that is used throughout the chapter is the following. The network
consists of N homogeneous nodes, which are interconnected by L identical, undirected
links. We start our analysis with the complete graph with unit link weights. We choose
two nodes uniformly and compute the shortest path using Dijkstra’s shortest path algo-
rithm. The paths are then fully occupied for an infinite duration, which is equivalent
to removing the path’s links from the graph. We repeat the process of choosing nodes
and removing links whilst the graph remains connected. The process ends immediately
after the first flow is allocated that disconnects the graph. The graph with N nodes, after
removal of j paths is denoted by Ĝ(j,N). Figure 4.1 presents the meta-code of the sub-
sequent steps to construct Ĝ(j,N). Initially, the graph Ĝ(j,N) equals the full mesh and
between every node pair there exists a link. When j is small, the average length of the
allocated paths equals one with high probability and single links are removed indepen-
dently from each other. Hence, the resulting graph Ĝ(j,N) corresponds precisely with
the Erdös-Renyí random graph Gp(N). The correspondence with Gp(N) allows us to ap-

63

64 Chapter 4. An upper-bound on the maximum number of flows

ply some of the well-known results for Gp(N) to Ĝ(j,N) The probability that the graph is
connected after the allocation of j flows, is directly related to the link density in the graph.
An exact computation of the link density p [j] of Ĝ(j,N) is hardly possible since, as will
be shown, it assumes that we know the hopcount distribution Pr [H = k] in the Erdös-
Renyí graph, which is at present still an open problem. Assuming that Pr [H > 2] = ε and
sufficiently small to ignore, we have that [43, p. 346],

E [H(p)]≥ 2− p+(1− p)(1− p2)N−2 (4.1)
≥ 2− p+ ε (4.2)

where ε is the correction for ignoring paths of more than 2 hops. By definition of the link
density p [j], the average number of links in Ĝ(j,N) as a function of j is E [L[j]] = L0 p[j],
where L0 is the number of links in the initial situation. The initial conditions for p [j] are
p [0] = 1 and p [1] = 1− 1

L0
. Using (4.2) with ε = 0, the average number of links at

stage j +1 can be written as

E [L[j +1]] = L0 p [j]−E [H (p [j])] (4.3)
≤ L0 p [j]− (2− p [j])

This difference equation converts to

p[j +1] =
(

1+
1
L0

)
p[j]− 2

L0

Solving (4.3) yields

p [j]≤ 2−
(

1+
1
L0

) j

(4.4)

Relation (4.4) forms a tight upper-bound for the true link density, because it follows
from (4.2) that ε ≥ 0 and consequently from (4.3) it follows that p[j] is maximum
when ε = 0,∀ j.

An upper-bound on the maximum number of flows is now obtained by consider-
ing the critical link density pc of Gp(N). In the extreme case, where each flow has

GENERATE Ĝ(j,N)
1 INITIALIZE(KN)
2 while Ĝ(j,N) is connected
3 do node v← RANDOM-NODE(Ĝ(j,N))
4 node u← RANDOM-NODE(Ĝ(j,N))
5 path P← DIJKSTRA(Ĝ(j,N),v,u)
6 remove P from Ĝ

Figure 4.1: Meta-code of GENERATE for the construction of Ĝ(j,N).

4.2. The fully connected graph 65

1.0

0.8

0.6

0.4

0.2

0.0

E[
 p

[j]
]

0.70.60.50.40.30.20.10.0

j / L0

 N = 25
 N = 50
 N = 100
 Computations of p[j]

Figure 4.2: The link density in Ĝ(j,N) for N = 25, N = 50 and N = 100 after allocating j
paths. Simulations (lines) are compared with computations of (4.4) (markers). The number
of paths on the x-axis is normalized with respect to the number of links in the network.

a unique source-destination pair, the graph Ĝ(j,N) is precisely Gp(N) and the graph
is a.s. connected if p [j] ≥ pc ≈ lnN

N . In any other case, the probability that the di-
rect link exists between source and destination decreases as more flows are allocated.
Consequently, the average path length increases more than linear with j and Pr [H > 2]
becomes non-negligible for large j. Moreover, the critical link density of Ĝ(j,N) is af-
fected by the correlation between the links such that pcĜ

≥ pc, which we will show later.
Hence, for Ĝ(j,N), an estimate for the maximum number of flows is obtained from (4.4)
when p [jmax]≥ pc. Thus,

jmax ≤
ln(2− pc− ε)
ln(1+1/L0)

≈ L0 ln
(

2− ε− lnN
N

)
→ 0.69L0 (4.5)

Relation (4.5) presents an upper-bound on the number of flows that can be allocated in
any network where each link can support a single flow. The upper-bound improves as the
number of nodes increases and ε→ 0.

4.2.1 Distribution of the maximum flows

For several N ranging from 25 to 100 we have simulated 100,000 realizations of Ĝ(j,N).
The simulation results for the link density are presented in Figure 4.2, together with
computations of relation (4.4). The simulation results are nearly indistinguishable from
the computations, except when j becomes large and N is small. The strong agreement
supports our conjecture that Ĝ(j,N) closely resembles Gp(N). The expected hopcount

66 Chapter 4. An upper-bound on the maximum number of flows

4.0

3.5

3.0

2.5

2.0

1.5

1.0

E[
 H

[j]
]

0.70.60.50.40.30.20.10.0

j / L0

 N = 25
 N = 50
 N = 100

 H[j] = (1+1/L)j

Figure 4.3: The average hopcount of Ĝ(j,N) for N = 25, N = 50 and N = 100 as function
of j compared with computations of (4.6). The number of paths on the x-axis is normalized
with respect to the number of links in the network.

in Ĝ(j,N) follows from (4.4)

E [H [j]]≈
(

1+
1
L0

) j

(4.6)

Figure 4.3 presents the average hopcount measured during the simulations. The results
show that (4.6) initially predicts the expected hopcount very well, but increasingly devi-
ates as more flows are allocated. The dispersion in the tails in Figure 4.3 stems from the
stochastic nature of the simulations. The number of samples that is available to compute
the mean hopcount is determined by jmax. Because jmax is a stochastic variable, less
samples are available at the tail, yielding a higher variance.

The reason for the strong agreement of the simulation results with (4.4) lies in the
ability to establish the difference equation (4.3). The difference equation describes the
“state” of the network in terms of the link density. When a flow is allocated the state is
changed by decreasing the link density proportional to the hopcount. For the full mesh
network, this is possible since the expected hopcount can be fully expressed in terms of
the link density. For other classes of networks, such as lattice networks, the expected
hopcount is different from (4.6) and (4.4). An exception is the class of Erdös-Renyí
random graphs, as will be shown in Section 4.3.

The maximum number of paths, jmax, that can be removed from Ĝ(j,N) before be-
coming disconnected, is a stochastic variable and may differ for each realization of Ĝ(j,N).
Each realization of Ĝ(j,N) is independent and identical to the other realizations. The
randomness is introduced by the node-selection process and the routing (when multiple
paths are found with the same length, one path is chosen arbitrarily). We have plot-
ted Pr [jmax = j] in Figure 4.4 and fitted the result with the Gumbel distribution density

4.2. The fully connected graph 67

100x10-3

80

60

40

20

0

Pr
[j

m
ax

 =
 j

]

0.70.60.50.40.30.2

j / L0

 N = 25
N = 50
N = 100
fit result

Figure 4.4: The probability distribution function of the maximum number allocated
paths Pr [jmax = j] in Ĝ(j,N). The simulations (dots) have been fitted with the Gumbel
distribution from equation (4.7) (lines). The number of paths on the x-axis is normalized
with respect to the number of links in the network. The results of the fits for N = 25
are a ≈ 11,b ≈ 172, for N = 50 we obtained a ≈ 28,b ≈ 744 and finally for N = 100 we
have a≈ 66 and b≈ 3148.

function [43, pp. 54],

Pr [jmax = j] =
1
a

e
j−b
a e−e

j−b
a (4.7)

The mean equals E [jmax] = b+γa, where γ* 0.5772 is Euler’s constant, and the variance
follows as Var [jmax] = 1

6 (aπ)2. Figure 4.4 demonstrates that the Gumbel distribution fits
the simulations very well. The result of the fits is contained in the caption. The Gum-
bel distribution is an extreme value distribution, which arise as a limiting distribution for
maximums or minimums of a sample of independent, identically distributed random vari-
ables. Although mathematically we cannot account for the Gumbel distribution entirely,
the fit is very good and intuitively correct as jmax is also an “extreme value” that measures
the maximum number of allocated paths. For N = 25, the fitted mean E [jmax]≈ 178, in
comparison with relation (4.5), jmax ≈ 187. The standard deviation is very small com-
pared to the mean and, therefore, the mean E [jmax] sufficiently describes the random
variable jmax. Additionally, Figure 4.4 confirms that (4.5) improves as the network size
increases. While for N = 25 nodes the deviation is still quite large, the approximation
for N = 100 nodes is already fairly accurate.

4.2.2 Connectivity of Ĝ(j,N)
In this section, we study the connectivity of Ĝ(j,N) and compare it with Gp(N). We use
the distribution of jmax from relation (4.7), and formulate an expression for Pr [p [jmax]≤ p[j]].

68 Chapter 4. An upper-bound on the maximum number of flows

Then, we explain the cause of the discrepancy between Gp(N) and Ĝ(j,N) by means
of the degree distribution. The value jmax corresponds to the largest value of j for
which Ĝ(j,N) is precisely connected. Hence, we can write,

Pr
[
Ĝ(j,N) is connected

]
≈ Pr [j ≤ jmax]
≈ 1−Pr [jmax ≤ j]

≈ e−e
j−b
a (4.8)

To obtain an expression for Pr [p [jmax]≤ p[j]], substitute the inverse of (4.4) into (4.8).
The link density threshold p [jmax] corresponds to the smallest link density at which Ĝ(jmax,N)
is precisely disconnected. Hence, p [jmax] in Ĝ(jmax,N) can be regarded as the equivalent
of pc in Gp(N). Thus,

Pr
[
Ĝ(j,N) is connected

]
≈ Pr [p [jmax]≤ p[j]]

≈ Pr
[

jmax ≤
ln(2− p[j])
ln(1+1/L0)

]

≈ e
−

(
2−p[j]

(1+1/L0)b

)−a ln(1+1/L0)

(4.9)

Relation (4.9) corresponds to a shifted Weibull distribution [43, pp. 55] with mean E [p [jmax]] =
2− (1+1/L0)b Γ(1+a ln(1+1/L0)), where Γ(x) represents the Gamma function. In
comparison, the connectivity of Gp(N) is obtained from [43, pp. 334–337],

Pr [Gp(N) is connected]≈
(

1− (1− p)N−1
)N

(4.10)

≈ e−N e−(N−1)p
, for small p

Relation (4.10) also approximates an extreme value distribution, yet it does not obey
the Weibull distribution from (4.9). Figure 4.5 compares computations of (4.9), taken
from the simulation results, with computations of (4.10). The distribution in (4.9) ex-
hibits a wider transition region and a larger mean as compared to (4.10), which yields
that p [jmax]≥ pc. The cause of the different behavior becomes apparent when the nodal
degree distribution is considered.

The nodal degree is measured by sampling one uniformly chosen node after each flow
allocation. Figure 4.6 presents the degree distribution for Ĝ(j,N) with N = 50 nodes and
several values of j. For comparison, the degree distribution of Gp(N) has been computed
with the same mean and added to Figure 4.6. The degree distribution of Ĝ(j,N) deviates
from the binomial distribution of Gp(N) because the links in Ĝ(j,N) are not independent.
The dependencies emerge when paths are removed that span multiple links. The links
that belong to a path are correlated, because they must be connected to form the path. In
Appendix C the effect of the dependencies on the degree distribution is further explained
and computed. The degree distribution of Ĝ(j,N) exhibits a larger variance w.r.t. the
binomial distribution corresponding to Gp(N). The larger variance then explains the
wider transition region in the connectivity functions displayed in Figure 4.5.

4.2. The fully connected graph 69

1.0

0.8

0.6

0.4

0.2

0.0

Pr
[p

[j m
ax

] <_
 p

]

0.50.40.30.20.1

p

 N = 25
 N = 50
 N = 100

Figure 4.5: Connectivity of Ĝ(j,N) (solid lines) and Gp(N) (dotted lines) as a function of p,
for N = 25,50 and 100. The probability Pr

[
Ĝ(j,N) is connected

]
is computed with (4.9),

where the coefficients are obtained through fitting the results from Figure 4.4. The connec-
tivity of the random graph Pr

[
Gp(N) is connected

]
is computed via (4.10).

0.25

0.20

0.15

0.10

0.05

0.00

Pr
[D

[j]
=k

]

50403020100

k

j=100

j=200

j=300
j=400

j=500j=600

j=700

N = 50

Figure 4.6: Degree distribution of Ĝ(j,N) for N = 50 and various j. The simula-
tion results (dotted lines) are compared with the binomial degree distribution of Gp(N)
with p = E [L [j]]/L0 (plain lines).

70 Chapter 4. An upper-bound on the maximum number of flows

4.3 Densely connected networks
In Section 4.2, we have obtained an upper-bound on the number of flows for the case of
the fully connected network. Because each graph is a subgraph of the complete graph,
the upper-bound applies to all networks. In this section, we demonstrate that we can
also apply (4.4) to other densely connected networks and show that the network does not
necessarily have to be a full mesh. Dense networks sometimes exhibit a nodal degree
distribution which, by approximation, approaches a binomial distribution. In that case,
the network may resemble a graph of the class of Erdös-Renyí random graphs and we
can apply (4.4) with slight modifications to compute jmax. The important differences
between the densely connected network and the full mesh are the initial conditions. For
the densely connected network, the initial link density is smaller than one, which will
yield a smaller jmax. We will denote the densely connected network with initial link
density p0 by Ĝp0 (j,N). We obtain the link density for Ĝp0 (j,N) as,

p [j]≤ 2− (2− p0)
(

1+
1
L0

) j

(4.11)

Similarly, the upper-bound on the number of flows can now be obtained via,

jmax ≤
ln(2− pc + ε)− ln(2− p0)

ln
(

1+ 1
L0

) ≈ L0 ln

(
2− ε− lnN

N
2− p0

)
(4.12)

We have performed simulations for N = 25,50 and N = 100 and p0 = 0.4,0.5, . . . ,1.0.
Figure 4.7 compares the link density from the simulation results with (4.12). Again, the
simulation results agree well with the computations.

In Figure 4.8 we have plotted E [jmax]/L0 against p0. The case where N → ∞ is
added to Figure 4.8 and forms the asymptotic upper-bound on the number of flows in the
network.

4.4 The fully connected graph with multiple channels per
link

In this section we study networks that store multiple flows per link. The capacity is
equal for each link and can store up to C0 flows. This implies that a link is available
for allocation if at least one channel is free. If we denote the probability that a link is
available by p and assume a weak dependence in the channel usage per link, then we can
express p [j] in terms of the “channel density” q [j] as,

p [j] = 1− (1−q [j])C0 (4.13)

and we may approximate the expected hopcount, similarly to (4.2), as

E [H (p [j])]≥ 2− p [j]

≥ 1+(1−q [j])C0 (4.14)

4.4. The fully connected graph with multiple channels per link 71

1.0

0.8

0.6

0.4

0.2

0.0

E[
 p

[j]
]

0.70.60.50.40.30.20.10.0

j / L0

 N = 25
 N = 50
 N = 100
 Computations of p[j]

Figure 4.7: The link density in Ĝp0(j,N) for N = 50 and N = 100 with p0 = 0.4,0.5, . . . ,1.0
after allocating j paths. The simulations (lines) are compared with (4.11) (markers). The
number of paths on the x-axis is normalized with respect to the number of links in the full-
mesh network of corresponding size.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

E[
 j m

ax
]

/ L
0

1.00.90.80.70.60.50.4

p0

 N = 25
 N = 50
 N = 100
 N = inf

Figure 4.8: The average number of maximally allocatable flows in an Erdos-Renyi graph
with N = 25,50,100 and p0 = 0.4,0.5, . . .1.0. The x-axis shows p0, while the y-axis shows
the average number of flows that can be allocated before disconnection occurs. The lines
with markers show the simulation results, while the solid line shows the asymptotic result
of (4.12) for N → ∞.

72 Chapter 4. An upper-bound on the maximum number of flows

1.0

0.8

0.6

0.4

0.2

0.0

E[
p[

j]]

1.00.80.60.40.20.0

j / C0 L0

 N = 25
 N = 50

C0 = 2 C0 = 6

Figure 4.9: Average “link density” in a network where multiple flows can be allocated per
link. Networks of N = 25 and N = 50 nodes are compared, both with C0 = 2 and C0 = 6
channels. The lines with the markers are simulation results, while the plain curves represent
computations of (4.15). The number of paths on the x-axis is normalized with respect to the
number of channels in the full-mesh network of corresponding size.

The “channel density” now corresponds to the average number of available “channels” C [j]
in the network,

q [j] = E [C [j]]/C0 L0

= 1−∑
j

E [H [j]]/C0 L0

The difference equation (4.3) is expressed in the available channels after j allocations,

E [C[j +1]] = C0 L0 q [j]−E [H (p [j])]

≤C0 L0 q [j]−
(

1+(1−q [j])C0
)

(4.15)

Difference equation (4.15) is non-linear and an analytic solution is hard to obtain. We
have performed simulations to examine the upper-bound for these classes of networks
and understand the differences with the single-channel case. Figure 4.9 shows the “link
density” as a function of the number of flows.

Figure 4.9 shows the simulation results for networks with N = 25 and N = 50 and
capacities C0 = 2 and C0 = 6. An interesting observation from Figure 4.9 is that when
a link can carry multiple flows, the curves for the different network sizes still overlap
like for C0 = 2. Another observation is that the computations of (4.15) increasingly
deviate from the simulations as j increases. The differences are more pronounced for
large C0. One cause is the accuracy of expected hopcount in (4.15). The approxima-
tion for the average hopcount in relation (4.14) ignores the dependencies between the

4.5. Rejection rate and disconnectedness 73

2.5

2.0

1.5

1.0

E[
H[

j]]

1.00.80.60.40.20.0

j / C0 L0

 N = 25
 N = 50
 computations

C0 = 6

C0 = 2

Figure 4.10: Average hopcount in a network where multiple flows can be allocated per link.
Networks of N = 25 and N = 50 nodes are compared, both with C0 = 2 and C0 = 6 channels.
The number of paths on the x-axis is normalized with respect to the number of channels
in the full-mesh network of corresponding size. The simulations (lines with markers) are
compared with computations of the hopcount, where the simulation results from Figure 4.9
have been used for p[j].

channels of a link and assumes that all channels are occupied with same probability. Fig-
ure 4.10 shows the simulation results on the average hopcount and compares them with
computations of (4.14), where we have used the link density from the simulation results
to evaluate (4.14). The computations increasingly underestimate the simulation results
with increasing j and C0. This implies that the probability that the link is not available is
higher than (4.13) suggests.

4.5 Rejection rate and disconnectedness
Section 4.2 has focused on connectivity of Ĝ(j,N) and its relation with the nodal degree.
In this section we study the blocking probability of Ĝ(j,N) in more detail. The block-
ing probability, or rejection ratio, is closely related to the connectivity of a network, but
they are not the same. The difference is that when the network is disconnected, two
nodes may still be able to reach each other as long as they belong to the same cluster.
The graph Ĝ(j,N) is defined as the graph that evolves after j random, minimum-hop
paths have been removed from the complete graph KN . In addition to Ĝ(j,N), we de-
fine Ĝ(p[j],N) as the graph that evolves after an arbitrary number of random, minimum-
hop paths have been removed, such that the final link density is, approximately, p. Fig-
ure 4.11 presents the meta-code for the construction of Ĝ(p[j],N). The difference be-
tween Ĝ(j,N) and Ĝ(p[j],N) is that the latter does not require connectedness.

When a graph is disconnected, it is fragmented into groups of nodes, which are re-

74 Chapter 4. An upper-bound on the maximum number of flows

ferred to as “clusters”. Clustering in the Erdös-Renyí random graph has been studied in
detail by Janson et al. [30]. The transition from a group of solitary nodes to a connected
cluster is very steep for increasing link density. The majority of the nodes belongs to
a single cluster, which is called the “giant component” (GC). The remaining nodes are
clustered in groups of size O(logN). The size of GC (SGC) in the Erdös-Renyí random
graph, is given by, (see [45]),

SGC(DGp(N)) = 1− e−DGp(N)
∞

∑
n=0

(n+1)n

(n+1)!
(DGp(N)e

−DGp(N))n (4.16)

where DGp(N) = p(N − 1) is the mean nodal degree of Gp(N). For two nodes to be
connected in any graph, they must belong to the same cluster. If the nodes are uniformly
chosen from a set of N nodes, then the probability that one node belongs to a cluster with
size N′, equals

Pr[A node belongs to a cluster of N′ nodes] = S =
N′

N
(4.17)

The probability that both nodes belong to the same cluster, is then S2. For N sufficiently
large, we can assume that two random nodes in the network are connected if they belong
to the GC. The rejection rate then follows as the probability that a source and destination
node are not a part of the same cluster,

r = 1−Pr[Source node in GC]Pr[Destination node in GC]− ε
= 1−S2

GC− ε (4.18)

where ε≥ 0 is the correction for the probability that the source and destination nodes lie
in the same cluster other than the giant component.

4.5.1 Simulations
We have computed the blocking probability for Gp(N) and Ĝ(p[j],N) for N = 25 and N =
50 by simulation. For each combination of N and p we have generated 1,000,000 dif-
ferent realizations of Gp(N) and Ĝ(p[j],N). After realization of Gp(N) and Ĝ(p[j],N),

GENERATE Ĝ(p[j],N)
1 INITIALIZE(KN)
2 while linkdensity[Ĝ(p[j],N)] > p
3 do node v← RANDOM-NODE(Ĝ(p[j],N))
4 node u← RANDOM-NODE(Ĝ(p[j],N))
5 path P← DIJKSTRA(Ĝ(p[j],N),v,u)
6 if length[P] > 0
7 remove path P from Ĝ(p[j],N)

Figure 4.11: Meta-code of GENERATE for the construction of Ĝ(p[j],N).

4.5. Rejection rate and disconnectedness 75

1.0

0.8

0.6

0.4

0.2

0.0

r (
re

je
ct

io
n

ra
te

)

5 6 7 8 9
0.01

2 3 4 5 6 7 8 9
0.1

2 3 4 5

p (probability)

 N=25, graph pruned by paths
 N=25, ER random graph
 N=50, graph pruned by paths
 N=50, ER random graph
 theoretical rejection rate
 based on eq. (4.18)

pc, 50

pc, 25

Figure 4.12: Average blocking probability compared with computations of (4.18). The
dashed lines are results for the Erdös-Renyí random graph, while the solid lines show the
simulation results for Ĝ(p[j],N). In addition, computations of (4.18) and the density thresh-
old values for the E.-R. random graph have been added.

a pair of nodes is chosen uniformly and an attempt is made to route a path between the
two nodes. The ratio of average failed attempts by the total number of attempts gives us
the rejection rate,

r =
E [∑ failed attempts]

∑ total attempts

The rejection rate of Gp(N) and Ĝ(p[j],N) is presented and compared in Figure 4.12. In
addition, computations of (4.18) have been added, where SGC is computed via (4.16).

Figure 4.12 demonstrates that the rejection rate of Ĝ(p[j],N) is higher than that
of Gp(N) for equal values of p. This implies that the probability that two nodes belong
to the same cluster is smaller and, therefore, the average cluster size should be smaller.
A decrease in average cluster size is established by (i) an increase in the average size of
the clusters that separate from the GC, or, (ii) an increased probability of disconnected-
ness. Especially, the latter observation is in agreement with our findings from Section 4.
The computations on the size of the GC with (4.18) are very accurate for Gp(N), except
when the link density becomes too small and the GC vanishes. To study the GC and the
average cluster size, we have recorded the cluster size distribution for Ĝ(p[j],N) during
the simulations. The results are shown in Figure 4.13. Figure 4.13 illustrates how the
size of clusters is affected by the link density. Each curve shows the portion of nodes
that belong to a cluster of size s. Several lines have been omitted for clarity. Note that
the curve s = 25 actually corresponds to the probability that Ĝ(p[j],N) is connected, see
Figure 4.5, while the curve s = 1 corresponds to the probability that a node is isolated.
We can observe that the breakdown of the GC is initiated by the emergence of an isolated
node, around p ≈ 0.3. Further decreasing the link density results in the emergence of

76 Chapter 4. An upper-bound on the maximum number of flows

1.0

0.8

0.6

0.4

0.2

0.0

Pr
[n

od
e

is
a

clu
st

er
 o

f s
ize

 S
]

0.50.40.30.20.10.0

p[j]

s = 25

s = 24

s = 23

s = 22

s = 1

s = 2

s = 3

Figure 4.13: The probability that a node belongs to a cluster of size s is plotted against the
link density for Ĝ(p[j],N), where N = 25. Several traces for different s have been omitted
from the figure to enhance the readability.

more isolated nodes, until small clusters arise consisting of several nodes, indicating the
breakdown of the giant component. Summarizing, Figure 4.13 indicates that the network
becomes disconnected because solitary nodes separate from the GC. It appears unlikely
that the network actually splits up into a set of clusters of comparable size. Even more,
the co-existence of small clusters seems unlikely in the presence of the GC. Hence, we
argue that the difference between the rejection rates between Ĝ(j,N) and Gp(N) can be
primarily associated with the increased probability of disconnectedness of Ĝ(j,N).

4.6 Chapter summary
We have studied the number of flows that can be allocated in a network and found the
upper bound, given by (4.5), on the number of flows before the network becomes dis-
connected. In comparison to Chapter 3.1, where we have introduced the term “network
capacity” as the number of flows the network can sustain, this chapter only considered the
static case where flows are allocated for an infinite duration. The allocation of paths can
be considered as a sequence of i.i.d. random variables, such that the maximum number of
flows follows a Gumbel distribution [43, pp. 107]. with a mean of approximately 0.7L0.
Furthermore, relation (4.4) accurately approximates the link density in the network dur-
ing the allocation process. We have also studied the connectivity of the network as flows
are allocated and found that the probability that the network is connected follows the
cumulative distribution function of a shifted Weibull distribution. In the case of densely
connected networks, where the degree distribution approximates a binomial distribution,
the link density and maximum number of flows are found as (4.11) and (4.12), respec-
tively. For other classes of networks, e.g. lattice, Barabási-Albert [13] or power-law

4.6. Chapter summary 77

graphs, the calculation of the maximum number of flows is limited by the construction of
the difference equation (4.3). In particular, we have examined the multiple-channel graph
and showed that when links contain more than one channel, dependencies are introduced
that result in a non-linear difference equation. However, when the link capacities are
increased to carry multiple flows, the multiplexing gain that is obtained by the increased
capacity is independent of the network size.

Finally, we have studied the connectivity of Ĝ(j,N) and compared it with the Erdös-
Renyí random graph. The removal of paths from the network results in a wider degree
distribution as compared the Erdös-Renyí random graph. The difference is introduced
by the correlation that exists between the links of each path. The degree of intermediate
nodes in a path, is decreased by two, while the degree of the endpoints is only decreased
by one. The nodes are treated differently from each other and the degree distribution
increasingly deviates from the binomial distribution of the Erdös-Renyí random graph.
The increased variance in the degree distribution manifests itself when considering the
rejection rate and connectivity: the transition from no rejection (full connectivity) to full
rejection (no connectivity) as a function of the link density is less steep for G(p[j],N) as
compared to Gp(N).

78 Chapter 4. An upper-bound on the maximum number of flows

Chapter 5

DeSiNe: A flow-level simulator
with QoS extensions

5.1 Introduction

The growth in both complexity and size of data communication networks makes the tasks
of testing and measuring very complex. Testing networks through realistic test-beds re-
quires many nodes, which is rather costly and involves many practical limitations with
respect to e.g. network size, and configuration. Measuring is difficult, since typically one
cannot arbitrarily sample the topology or the traffic in large networks like the Internet [4].
Moreover, the “repeatability”, or trustworthiness, of test scenarios in real networks is dif-
ficult to guarantee. The most accessible method to study network performance and to test
new protocols and algorithms is via simulation. In this chapter we present a network sim-
ulator that was developed within the Network Architectures and Services group at the TU
Delft and is tailored for studying Quality-of-Service in networks at the flow-level. Sim-
ulating networks at the flow-level presents several important advantages as compared to
the traditional packet-level simulation. Section 5.2 elaborates on the differences be-
tween the packet- and flow-level simulation methods. Section 5.3 discusses the notion
of Quality-of-Service and the various components of the Quality-of-Service framework
that have been implemented in the simulator. The remainder of the chapter presents the
functional and architectural design of DeSiNe, followed by several examples.

5.2 Flow-level simulation versus packet-level simulation

Based on the abstraction level at which the traffic is modeled, simulators can be roughly
categorized as packet-level and flow-level simulators. A third category, hybrid simula-
tors, combines packets and flows. Packet-level simulation has gained most attention in

79

80 Chapter 5. DeSiNe: A flow-level simulator with QoS extensions

the past with tools such as the popular open-source ns-21 and the SSFNet2 simulators. In
packet-level discrete event simulators, the arrival and departure of each packet triggers an
event in the simulator. These simulators aim at an accurate computation with high level
of detail and high fidelity. However, this high level of detail comes at the expense of high
computation time and memory usage. Packet-level simulators are mainly applicable to
small networks and are often used for studies where a high level of detail is required, e.g.
when monitoring signaling messages of a new protocol, or the effect of a new buffer man-
agement scheme in a router. The major advantage of this approach is that the protocol
model does not differ largely from the real protocol implementation. At the same time,
this accuracy comes at a cost. The main limitation of packet-level simulators is their lack
of abstraction as considerable amounts of computer resources are needed to maintain the
complete state of network protocols, especially for large network simulations.

There are two main causes to the lack of scalability of packet-level simulators. Firstly,
packet-level simulators rely on discrete-event simulation (DES). The principle of DES
consists in keeping all the network protocol events ordered according to their time of
occurrence, using a priority queue. Typical events in this context are the transmission of
a data unit by a protocol or the expiration of a protocol timer. Additionally, intermediate
events might also be created in order to model the CPU workload or queueing delays
at various levels of the protocol stack. Traditional DES implementations relied for their
operation on priority queues which have a time complexity of O(log(n)) to insert new
events. The advent of calendar queues in modern schedulers has reduced this complexity
to O(1) on average.

Secondly, packet-level simulators lack a level of abstraction in the protocol stack.
Each protocol model is extremely accurate, often including the complete protocol fi-
nite state machine. This requires significant time and space to hold on the computer.
Moreover, heavy traffic conditions increase the computational cost of packet-level simu-
lations. Indeed, each packet-flow is composed of several thousands of packets that must
go through the network stack of several nodes, generating a lot of events and increasing
the running time of the simulation. One can say that for a single flow, the running time
increases linearly with the number of packets in the flow. To circumvent these fundamen-
tal problems of packet-level simulation, various approaches have been proposed. Several
methods rely on exact solvable models instead of simulation. For example, Anick et
al. [5] proposed an exact solvable queuing model that describes the queuing behavior at
the queue level in their seminal paper. Although their system allows for high accuracy,
their hypothesis of independent, continuous on-off sources is too restrictive. The ma-
jority of proposed solutions however seek to enhance the scalability and performance of
network simulators by lowering the granularity of the simulation or raising the level of
abstraction, specifically the level of traffic abstraction.

One approach is to consider the traffic at the level of flows. We regard a flow as a con-
nection established between a source and a destination node in a network. All the packets
of that flow follow the same path from the source to the destination during the life-time

1http://www.isi.edu/nsnam/ns/
2http://www.ssfnet.org/

5.3. Quality-of-Service 81

of that flow. For example, Flowsim [3] uses DES, but coarsens the granularity of the net-
work traffic by aggregating individual packets into packet-trains. The total ensemble of
packets then only generates a single event, namely the flow. Hence, the number of events
is reduced at the expense of the accuracy of the simulation. Consequently, flow-level
simulations are more suitable for scenarios with larger networks and a large number of
flows. Moreover, in the context of QoS routing [42, 44], resources should be reserved,
i.e. flows set-up, in order to guarantee QoS. Understanding the behavior of flows in a
network is invaluable in designing QoS-aware networks.

A second approach, known as the fluid-flow model [35,46], consists in keeping track
of the sending rate of sources. This is in contrast with DES which keeps track of any
single packet transmission. The fluid-flow model is particularly suitable for studying the
impact of congestion on the traffic sending rate, as is the case with TCP. Under light
or moderate traffic conditions, the number of events raised in flow-level simulators is
typically much less compared to packet-level simulators. However, it has been shown that
under heavy traffic conditions and when several flows share the same available resources,
one change in the sending rate of a single flow may influence the sending rate of many
other flows. This can cause an avalanche of sending rate updates with a dramatic impact
on the running time of the simulation. This effect is known as the “ripple effect” [35,39],
and may lead to drastic performance degradation, such that packet-level simulation will
outperform flow-level simulation.

Another scalability improvement can be obtained by switching from a packet-level
event-driven simulation to a packet-level time-stepped simulation. In a time-driven fluid
simulation, the continuous traffic flow is discretized into time intervals. The time-driven
nature relieves the problem of the ripple effect, since the network is only sampled at fixed
intervals. This is the approach exposed in [34, 73]. By using coarser time scales it is
possible to further speed up packet-level time-stepped simulators. Hybrid packet/fluid-
flow simulators use packets for foreground traffic, but model the background traffic at
fluid-level. Examples of hybrid simulators have been proposed by Nicol et al. [49] and
Yung et al. [75]. The Hybrid Discrete-Continuous Flow Network Simulator (HDCF-
NS) [41] is another example, but little information is given about the actual model and
how flows and packets interact. The IP-TN simulator [36] defines hybrid nodes that are
capable of mixing both traffic models. The hybrid nodes estimate the aggregate input
rate of the packets and the capacity is shared with the flows proportional to the combined
input rates.

5.3 Quality-of-Service
Quality-of-Service comprises advanced packet handling that facilitates performance guar-
antees on an end-to-end connection. QoS-aware routing algorithms do not only consider
“static” topology information during path computation, such as the distance in hops, but
route the traffic based on the actual traffic conditions, such as the link utilization. Accu-
rate knowledge about the actual state of the network is a crucial factor in QoS and traffic
engineering. Each router in the network maintains a table with link-state information

82 Chapter 5. DeSiNe: A flow-level simulator with QoS extensions

advertised by the other routers. Routing algorithms with traffic engineering extensions
rely on trustworthy information on the actual available network resources in the path
computation process, which is of vital importance to guarantee the QoS requirements of
each flow. The link-state information consists of a set of metrics that describe the (tran-
sient) state of the link. To keep the link-state information up to date, routers advertise
link state updates by flooding messages across the network. Stale link-state information
may compromise the dynamic routing process and increase the likeliness of finding a
suboptimal route. The acquisition and distribution of network information is a task of the
link-state update policy (LSUP). As real-time link-state monitoring and link-state adver-
tisements are costly in terms of network resources, a trade-off must be made between the
accuracy and overhead associated with the link-state updates. The update policies can
be classified into three categories [6, 38]: time-based, trigger-based and window-based.
With time-based policies updates on the link-state information are triggered by the ac-
tual time. The time-based update policy implemented in DeSiNe is the periodic update
policy, where updates are sent at fixed time intervals.

Trigger-based policies monitor the real link-state information and send updates when
some conditions are met. Two trigger-based policies are implemented: threshold-based
and class-based. With threshold-based policies, updates are triggered when the relative
difference between the current link state and the advertised link state exceeds a certain
threshold. A class-based policy divides the link capacity into a set of classes. When a
class boundary is crossed, an update is triggered.

Finally, the window-based policies are used in combination with trigger-based poli-
cies and circumvent the problem when the link utilization oscillates around a class bound-
ary or when the traffic is very bursty (threshold-based). Two window-based policies are
currently available: hold-down timer and moving-average. The hold-down timer is used
to set a minimal spacing between two successive updates. The moving-average takes
the average link utilization over a fixed-size time-window and based on this average an
update event may be triggered.

The routing algorithm utilizes the link-state information provided by the link-state
update policy to find the optimal path. The best path is computed according to an opti-
mality criterion. In QoS-aware networks, the path must obey a set of QoS requirements
and can thereby include or exclude a certain objective function. QoS routing algorithms
solve the Multi-constrained Path Problem (MCP) [44]:

Given a network G(N,L) in which each link u−→ v∈ L is specified by a link
weight vector with as components m additive QoS link weights wi(u −→
v) ≥ 0 for all 1 ≤ i ≤ m. Given m constraints Li, where 1 ≤ i ≤ m, the
problem is to find a path P from a source node A to a destination node B
such that, for all 1≤ i≤ m, wi(P) de f= ∑(u−→v)∈P wi(u−→ v)≤ Li.

The MCP problem consists of finding a path that satisfies m constraints. When the path
meets all the constraints, it is said to be feasible. The problem of finding the shortest
length path, given a definition of path length, among the feasible ones is known as the
Multi-constrained Optimal Path Problem (MCOP). Traffic Engineering algorithms can be

5.4. DeSiNe 83

considered a sub-class of QoS routing algorithms, without multiple constraints. In traffic
engineering, the paths assigned to flows try to optimize a local or global objective, i.e.
prevent congestion on links or minimize the blocking of future flows. We refer to [42,44]
for a detailed discussion on QoS routing and to [11,31,68] for on-line traffic engineering
algorithms.

5.4 DeSiNe
In the remainder of this chapter we present DeSiNe. DeSiNe stands for Delft Simulator of
Networks and is a scalable flow-level QoS simulator. DeSiNe incorporates QoS routing
and traffic engineering algorithms. The purpose of DeSiNe is to study and compare
the performance of various QoS routing and traffic engineering implementations at the
network level. In particular, DeSiNe supports constraint-based routing and dynamic QoS
routing, as well as several on-line traffic engineering algorithms. The good scalability
permits the simulation of large networks and heavy-traffic scenarios. DeSiNe models the
traffic streams as flows and assumes fixed flow rates and independence between flows,
i.e. the arrival or departure of a flow has no effect on the already existing flows. The
motivation for taking fixed flow rates is two-fold. Firstly, one of the purposes of DeSiNe
is to investigate QoS technology, which implies resource reservations. When the required
resources are reserved for a particular flow, they remain unchanged during its lifetime.
Secondly, fixed flow rates prevent from running into the scalability problems encountered
from variable flow rates arising from feedback-based protocols like TCP.

Additionally, the homogeneity and high level of abstraction make DeSiNe easy to
use and configure, and suitable for simulation of large networks with many flows. The
processing and memory requirements of DeSiNe scale linearly with the number of flows.
Figures 5.1a and 5.1b show the CPU time required for simulations with a given number
of nodes and flows, respectively. Several types of topologies have been used (Barabási-
Albert [13], Erdös–Renyí random graphs [17], and lattices), with varying numbers of
nodes, up to 1000. We also vary the number of flows, up to 100,000. We observe that the
simulation time scales linearly with the number of flows. The scaling of the simulation
time as a function of nodes is not linear because of different link densities of the topolo-
gies, as well as different computation times for the Dijkstra algorithm on different types
of topologies. Note that unit weights are used on the links.

Moreover, DeSiNe is useful when examining “classes” of networks with specific
properties, e.g. Erdös–Renyí random graphs, lattices and scale-free graphs. Such studies
require automated generation of many randomized graph realizations. Implementation
and incorporation of additional routing protocols, topology generators and link-state up-
date policies is easy and straightforward.

Most simulation studies on QoS routing have created a simulation environment ded-
icated to the evaluation of their proposed QoS algorithm or policy. When we consider
the field of QoS routing algorithms, often only the algorithm is implemented and run
on several static networks, without considering traffic and flow dynamics. Several QoS
simulators have been published and we will briefly mention them, here. Zhang et al. [76]

84 Chapter 5. DeSiNe: A flow-level simulator with QoS extensions

40

30

20

10

0

Ti
m

e
(m

in
ut

es
)

1000800600400200

Number of nodes

25x103

20

15

10

5

0

Nu
m

be
r o

f l
in

ks

1000800600400200

Number of nodes

 BA
 ER
 lattice

(a)

6

5

4

3

2

1

0

Ti
m

e
(m

in
ut

es
)

1.0x1060.80.60.40.20.0

Number of flows

 BA
 ER
 lattice

(b)

Figure 5.1: Scalability of DeSiNe. (a) Scalability with respect to the network size. (b)
Scalability with respect to the number of flows.

have developed the packet-level QoS Routing Simulator (QRS), which was later extended
to EQRS [77] to capture DiffServ MPLS networks. A. Shaikh [56] has developed a flow-
level event-driven QoS simulator called routesim, which focusses on the evaluation of
link-state update policies. Sivasankar et al. [60] developed a flow-level simulator, called
MuSDyR. DeSiNe differs from the previous simulators, because it contains all, instead
of only some, of the following features: (a) dedicated to evaluate all aspects of QoS rout-
ing, including traffic engineering, (b) flow-level abstraction, for scalability, but also as a
natural consequence of QoS routing, (c) many built-in QoS mechanisms, and (d) modular
design, such that it can easily be extended with new QoS mechanisms.

The multi-constrained routing algorithms that have been implemented in DeSiNe
are: SAMCRA, the self-adaptive multiple constraints routing algorithm [44] and TE-
DB [11]. SAMCRA is proposed by Van Mieghem et al. [44] and exactly solves the
MCOP problem. Banjeree et al. [11] proposed the TE-DB algorithm which uses TAM-
CRA [47], a predecessor of SAMCRA, and the max-flow concept used in MIRA. Var-

5.4. DeSiNe 85

ious traffic engineering (TE) algorithms have been implemented in DeSiNe: several
variations of MIRA [31], New MIRA [68], and SMIRA, the simple minimum interfer-
ence routing algorithm [26]. MIRA takes into account the information of ingress-egress
pairs (Si,Di) and weights them by their importance αi. To minimize the interference
between source-destination pairs, these algorithms maximize the sum of the residual
weighted max-flows3 between all ingress-egress pairs. Upon the arrival of a connection
request from Si to Di, the algorithms compute the sets of critical links L j for all other
pairs (S j,D j)(j)= i). A link l is called critical for an ingress-egress pair (S,D), if the
reduction in l’s capacity leads to the reduction in (S,D)’s max-flow. Then link costs are
set according to the link criticality, and the shortest path is applied on this “properly”
weighted topology. Different weighting methods lead to variations of MIRA. The result-
ing path is called the minimum interference path. For further details about MIRA we refer
to [31]. The New MIRA and SMIRA algorithms seek to improve MIRA in computation
complexity or weighting methods. For further details about New MIRA and SMIRA, we
refer to [68] and [26] respectively. The above routing algorithms have all been evaluated
in [8].

5.4.1 Network model
A network is modeled as a graph G(N,L), where N denotes the number of nodes and L
the number of links connecting the nodes. A subset of the nodes can serve as source
or destination nodes, while other nodes only act as internal nodes or intermediate hops.
Each link is assigned a positive value: the maximum capacity, which expresses the max-
imum amount of traffic the link can carry. The actual utilization of the link is maintained
by two values. The first value always contains the true available capacity of the link.
The second value is the reservable capacity that is advertised by the routers and used
in the routing process. The link-state update policy synchronizes these values. In case
the available and reservable capacity are not synchronized, the link-state information is
inaccurate or stale.

Each link is also associated with a number of QoS weights related to additive QoS
measures (e.g., delay and jitter). Additive measures are such that their value along a path
is the sum of the values associated with each constituting link [42, Chap. 12]. Multi-
plicative QoS measures such as the probability of packet loss can be dealt with by taking
the logarithm. The QoS link weights are used by QoS routing algorithms to compute
feasible paths, as described in Section 5.4. We allow for static and dynamic link weights.
In case of dynamic link weights, the weight can be a function of the throughput of the
link. All links are either directed, allowing traffic in a single direction, or undirected, in
which case the traffic flows in both directions.

The traffic in the network is modeled by flows. A flow f represents a packet-stream
flowing from one source to one destination. To each flow, a set of QoS requirements can
be assigned that must be met and guaranteed by the network during the life-time of the

3The max-flow for an ingress-egress pair (S,D) is the maximum amount of traffic that can be pushed be-
tween this pair. Multiple link-disjoint paths may be used.

86 Chapter 5. DeSiNe: A flow-level simulator with QoS extensions

fy

fj-x

tj-1 tjsj-x TnTn-1

time

capacity

fj-1

available
reservable

Cmax

Figure 5.2: Example of the link state, showing the evolution of the available and reservable
capacity subject to flow-arrivals and departures. Each colored block corresponds to one
flow. First, the advertised link-state value is updated at Tn−1. Subsequently, flow f j−1
arrives at t j−1. Next, flow f j−x expires at time s j−x. Then, the next periodical update takes
place at Tn. Finally, flow f j arrives at t j. Before flow f j is processed, the departure at s j−x
and the link-state update at Tn are processed.

flow. The QoS requirements may consist of a single metric, e.g. capacity, or a set of
metrics, e.g. delay, jitter, packet loss, etc. When the flow is set up, the required capacity
along the path is reserved exclusively to the flow. The resources remain reserved during
the full life-time of the flow to guarantee the QoS requirements.

5.4.2 Event triggering
DeSiNe is triggered by the arrival of a flow. When a flow f j arrives at the network
at time t j, all events in the network that have occurred after the arrival of flow f j−1
and prior to t j are evaluated and processed at the epoch of the new arrival. Figure 5.2
schematically illustrates the arrival of flow f j at time t j. The last arrival was at t j−1.
All events between t j−1 and t j, such as flow departures and link-state updates, must be
processed before flow f j is routed and allocated in the network. Figure 5.2, provides an
example where the link state is displayed schematically from time t j−1 to t j. Between
t j−1 and t j one flow departs at time s j−x and the value of the reservable capacity, i.e. the
capacity that is advertised by the routers, is updated at Tn.

Figure 5.3 depicts the flowchart diagram of DeSiNe. The simulation begins with
the initialization of the network. The network topology can be generated, e.g. random
graph, or read from a file. After the network is created, the simulation enters a loop
that is repeated for each flow arrival, until the last flow has been generated. The loop
begins in step 1 with the generation of a flow. The distribution of each property, such
as the flow duration or inter-arrival time, is configured at the start of the simulation.
The source and destination nodes are chosen uniformly from the set of valid endpoints.
In step 2 the network is scanned for expired flows and time-based (see Section 5.3) link-
state updates. If a time-based link-state update policy is used, then the reservable capacity
is updated with the available capacity value, as illustrated in Figure 5.2. Next, the flow
is routed in step 3. If no link-state update policy is used, and all link-state values are

5.4. DeSiNe 87

1. generate flow

2. update network

3. route flow

4. allocate flow

5. add flow to network

7. last flow ?

end

route failure

set-up failure

set-up succesful

routing succesful

yes

no

0. Initialise network

6. update network

Figure 5.3: Functional view of the DeSine.

updated instantaneously, the reservable capacity equals the actual capacity. The links
with insufficient capacity are pruned from the topology. The routing algorithms described
hereafter may assign a cost to each link and select the shortest length path, the length of
a path being the sum of the costs of the constituting links. Link costs may be specified
as a function of the capacity and of the QoS weights. Several different functions are pre-
defined in DeSiNe. If the routing is successful and a feasible path is found, the resources
are reserved along the path (step 4). In case the routing fails, or when the routing is
successful, but the reservation fails, the flow is rejected by the network and discarded.
The reservation may fail due to stale link-state information, such that the advertised link
capacity is more than the actual available capacity. If the reservation is successful, the
flow is allocated in the network in step 5. The advertised link weights are consequently
updated in step 6. Finally, in step 7, the program returns to step 2 for the next flow arrival.
If no new arrivals are queued, the simulation ends.

88 Chapter 5. DeSiNe: A flow-level simulator with QoS extensions

5.4.3 Architecture

To enhance the extensibility of DeSiNe, a modular approach has been used. The modules
are grouped based on their function and new modules can be added and removed inde-
pendently of each other. The modules can be classified according to Figure 5.4, where
we have omitted a few utility modules. The module Main controls the program flow and
performs the data collection, which is written to disk with use of the IO (Input/Output)
module. Based on the parameters, the Network is initialized, holding the actual topol-
ogy with the traffic information. If the topology is stored on disk, the IO module is
used to read the corresponding file. The built-in topology generator in Network produces
(randomized) topologies on demand. Based on a topology class and a matching set of
parameters, custom randomized topologies are constructed. In addition to the topological
structure, the topology generator sets the link properties based on a specified distribution.
The topology representation is implemented as an adjacency list. The Network module
provides complete control over the network, including functionality to browse the topol-
ogy and access and manage the individual elements. Since the network traffic is modeled
at the flow level, we do not consider nodal properties as queueing or processing delay.
Therefore, all nodes are identical and considered propertyless. The properties of the
links, e.g. the capacity and QoS-metrics, are determined at generation time and remain
constant during the lifetime of the link. The Network module uses the LinkStateUpdate
and LinkCostFunction to perform link-state advertisements and compute actual link cost,
respectively. A single link-state update policy can be used at a time in the network. In ab-
sence of a link-state update policy, the reservable capacity equals the available capacity.
The LinkCostFunction module computes the weight of a link through a custom function.
In general, the weight is a function of the reservable bandwidth. However, some func-
tions may use other measures, such as delay or hopcount. The weight is computed on
demand during the routing process. A single link cost function can be active at a time in
the network. If the link cost function is not set, the hopcount is used, such that all links
have unit weight.

The Network module maintains a list containing the active flows, sorted on their
departure time. When a flow is requested, a random source and destination node are
requested from the topology. Then the arrival time and departure time are determined,
based on the inter-arrival time distribution and flow-duration distribution, respectively.
Finally, the requested capacity and QoS-constraints are determined. After successful
routing, the flow is allocated in the network. The Network component is unaware of
the concept of flows: it only sees a reduction in capacity as flows are allocated. If the
allocation is successful, the flow is inserted into the list. When an update takes place, the
“expired” flows are released from the network and removed from the list.

The routing is performed by the Algorithms module. DeSiNe uses source routing,
for which a full view of the topology is required. The routing algorithms do not check
whether the path is feasible: if the link-state information is stale and the path that was
found by the routing process is not feasible, then a setup error will occur during the
allocation of the flow.

The module Random implements random-number generator including several well-

5.5. Applications of DeSiNe 89

Figure 5.4: The modular design of DeSine. For each module, its core functionality and
features are summarized.

known distributions. The underlying pseudo-random number generator is based on the
ran4 generator [54]. The Random module is used in generating random topologies and
in the generation of flows.

5.5 Applications of DeSiNe
DeSiNe is able to simulate the performance of various routing algorithms and link-state
update policies under different network and traffic scenarios. It can be used to evaluate
new routing algorithms or link-state update policies by comparing them with the existing
ones under the same network and traffic conditions. Due to its modular design, custom
routing algorithms and link-state update policies can be easily added to the simulator and
evaluated thereafter. Network and traffic, under which routing algorithms or link-state
update policies will be evaluated, can be configured in flexible ways. Users can define
their own performance metrics, e.g. the maximum link utilization, the sum of max-flows,
etc., and set them as output.

In this section, we illustrate the use of the simulator on different kinds of scenarios
with selected routing algorithms, link-state update policies, network and traffic scenarios,
and performance metrics, to show some of the features of DeSiNe. In Section 5.5.1, we
compare the performance of different link-state update policies and routing algorithms,
where the flows come and leave according to certain processes. We use a number of
flows to reach a steady state, and then take statistical results. In Section 5.5.2, we show

90 Chapter 5. DeSiNe: A flow-level simulator with QoS extensions

the performance of different traffic engineering algorithms. Moreover, we study the per-
formance of classes of networks by using randomized samples of such a class. The re-
sults are presented in Section 5.5.3, where we study the Erdös-Renyí and Barabási-Albert
classes of networks.

5.5.1 Link state updates

We compare, for a given topology, the performance of different link-state update poli-
cies and routing algorithms. We use the MCI topology. The MCI topology consists
of 19 nodes, out of which 11 nodes are edge nodes and the remaining 8 are core nodes,
connected by 33 links. Each link is bidirectional and assigned 600MB/s capacity. A
bidirectional link acts as two unidirectional links both with the assigned capacity. The
setting of the scenario is the same as in [57].

The arrival process of the incoming traffic flows is modeled as a Poisson process
with rate λ flows per second. Source-destination pairs are uniformly selected among the
set of edge nodes. The service time of flows, i.e. the flow duration, is described by an
exponentially distributed random variable d with mean 10 seconds. We denote by Cr the
capacity requirement of each flow, which is uniformly distributed within [15,45] MB/s.
Following [57], the network load is defined as:

ρ = λE [D]E [Cr]E [H]/L,

where E[D] is the mean flow duration, E[Cr] is the mean capacity requirement, E [H] is the
mean hop count of the shortest paths between all pairs of source and destination nodes,
and L is the number of links in the network.

The comparison of several LSUPs and routing algorithms is given in Figures 5.5a
and 5.5b. Dijkstra’s shortest path and widest shortest path [23,42] routing algorithms are
selected both with the Min-Hop link weight function. For each LSUP, we choose one set
of parameters for the simulations. For example, for the threshold based moving average
LSUP, we set the threshold to be 0.2 and the window size to be 5. Figure 5.5a shows how
each combination of LSUP and routing algorithm behaves as a function of the network
load. Most of the evaluated LSUPs give a better behavior under the widest shortest
path routing algorithm than under the shortest path routing algorithm. Widest shortest
path is known to be better in load-balancing traffic across the network than shortest-path
routing. The updates per flow shown in Figure 5.5b estimate the protocol overhead. The
moving average LSUPs adapts to the traffic density. As the network load increases, the
update rate for the moving average LSUPs increases as well. The time sensitive LSUPs
set limitations on the period between two updates. As we only tune λ in order to get
different network loads, the higher the network load, the smaller the flow arrival interval.
The periodical LSUP generates less updates with a higher network load, because under
a higher network load there are more flows in a period. The other time sensitive LSUPs
take both the time and trigger conditions into account, and give smooth curves for the
update rate.

5.5. Applications of DeSiNe 91

0.5

0.4

0.3

0.2

0.1

0.0

Bl
oc

kin
g

ra
tio

0.70.60.50.40.30.20.1

Network load

WSP SP
 TMA TMA
 CMA CMA
 THD THD
 CHD CHD
 PER PER

(a) Performance measured as the ratio of blocked
flow requests with respect to the total requests.

2.5

2.0

1.5

1.0

0.5

0.0

Up
da

te
s

pe
r f

lo
w

0.70.60.50.40.30.20.1

Network load

WSP SP
 TMA TMA
 CMA CMA
 THD THD
 CHD CHD
 PER PER

(b) The average number link updates due to the
arrival and departure of one flow.

Figure 5.5: Simulation results for the MCI topology under varying network load, where the
shortest-path (SP) and widest-shortest-path (WSP) routing algorithms are used in conjunc-
tion with the threshold-based moving average (TMA), class-based moving average (CMA),
threshold-based hold-down timer (THD), class-based hold-down timer (CHD) and periodi-
cal (PER) link-state update policies.

5.5.2 Routing with traffic engineering extensions

The scenario in this section illustrates the performance of different routing algorithms
with traffic engineering extensions. We implemented the scenario of [31]. The network
consists of 15 nodes and 28 bidirectional links. The capacity of the core links is 4800
units, and that of the other links 1200 units. Traffic transits between 4 pairs of ingress-
egress nodes. Flows with their capacity requirements following the same uniform distri-
bution between 1 unit and 3 units, arrive in a Poissonian manner with the same mean rate
for all these 4 pairs. Once a flow is routed and setup successfully in the network, it will
never leave the network. We computed after each request the residual max-flow of each

92 Chapter 5. DeSiNe: A flow-level simulator with QoS extensions

1.0

0.8

0.6

0.4

0.2

M
ax

-fl
ow

1.00.80.60.40.20.0

Amount of traffic

 SSP
 DSP-Inv
 WSP
 MIRA-TM
 MIRA-TM-Cap

Figure 5.6: Residual max-flow for pair (S1,D1)

ingress-egress pair. Figure 5.6 shows the results of 1 of the 4 ingress-egress pairs used
in [31], (S1,D1) in their topology. We have selected the following routing algorithms in
Figure 5.6: static shortest path (SSP), widest shortest path (WSP), dynamic shortest path
with link weights being the inverse of residual link capacity (DSP-Inv), and two vari-
ants of MIRA (MIRA-TM and MIRA-TM-Cap). MIRA-TM considers in its weighting
the traffic between ingress-egress pairs. As all the ingress-egress pairs have the same
amount of traffic, MIRA-TM in this scenario is identical to SMIRA used in [31]. MIRA-
TM-Cap takes into account not only the traffic between ingress-egress pairs, but also the
residual capacity of the critical links.

The x-axis of Figure 5.6 gives the sum of the connection requests that have been suc-
cessfully routed in the network so far (total traffic accepted). We scaled this sum to quan-
tify the traffic demands. The y-axis gives the normalized residual max-flow for (S1,D1).
We observe on Figure 5.6 that the two MIRA variants perform better than the other rout-
ing algorithms, because MIRA aims at maximizing the residual max-flow between any
pair of source-destination pairs. SSP and WSP perform as badly. DSP-Inv that computes
dynamic shortest paths depending on the inverse of the residual capacity performs better
than both SSP and WSP. The two MIRA variants perform best as they are designed to
maximize the residual max-flow on all source-destination pairs. We also observe that
the two MIRA variants lead to identical residual max-flow, as in this case the min-cut
of this pair does not allow to load-balance traffic for pair (S1,D1) without impeding on
the max-flow of other source-destination pairs. The ability of traffic engineering traffic
differs among the source-destination pairs. Sometimes, alternate paths that do not inter-
fere with other pairs do not exist in the network. Then, traffic engineering cannot help
much in load-balancing traffic between specific source-destination pairs since it will im-
pede on other source-destination pairs in the network. Note that the results we obtain are
consistent with those from [31].

5.6. Chapter summary 93

5.5.3 Random networks
Online generation of random networks is useful when comparing the performance of a
particular routing algorithm or link-state update strategy between different classes of net-
works. Measures of interest here can be the average hopcount, flow blocking or number
of updates. DeSiNe features several built-in topology generators (see Figure 5.4). Ta-
bles 5.1 and 5.2 show the results of several example scenarios using Erdös–Renyí and
Barabási-Albert graphs. Table 5.1 presents the results when using periodic link-state up-
dates. As expected, the number of updates grows with the network size. Furthermore, Ta-
ble 5.1 shows that Barabási-Albert graphs cannot sustain as much traffic as Erdös–Renyí
graphs, for a comparable link density. Blocked flows are those that cannot be routed
due to a lack of resources in the network. The rejected flows are the flows for which
routing is successful, but the setup fails due to stale link-state information. In Table 5.2
the same networks are used, but now the time-based moving average link-state update
policy is used. Clearly, the number of updates is drastically decreased while throughput
is improved at the same time.

N E [H] E [Facc] E [Fbl] E [Fre j] E [u]/Ftot

ER

100 3.77 391621 551 7828 120
200 4.16 396352 189 3459 240
300 4.37 397917 86 1996 363
400 4.55 398554 64 1381 482
500 4.68 398942 38 1019 601

BA

100 3.61 391164 51 8784 117
200 3.89 395601 5 4393 237
300 4.04 397035 1 2963 357
400 4.16 397795 0 2204 478
500 4.23 398188 0 1811 498

Table 5.1: Simulation results for Erdös-Renyí (ER) and Barabási-Albert (BA) random
graphs with varying N nodes, and comparable link densities; for BA m = m0 = 3 and for
ER p = 2m

N . The results are the averages computed over 100 random graph realizations and
Ftot = 400.000 flow arrivals. The widest-shortest path routing algorithm with periodic LSUP
has been used with window size w = 50. In the table, H is the hopcount, Facc,Fbl ,Fre j the ac-
cepted, blocked and rejected number of flows, respectively, and u is the number of link-state
updates.

5.6 Chapter summary
This chapter discusses several aspects of network simulation. In particular we have fo-
cussed on the traffic granularity, i.e. packet- versus flow-level simulation, and on the
Quality-of-Service framework, specifically multi-constrained routing and traffic engi-
neering. Furthermore, we have presented DeSiNe, a modular flow-level network simu-

94 Chapter 5. DeSiNe: A flow-level simulator with QoS extensions

N E [H] E [Facc] E [Fbl] E [Fre j] E [u]/Ftot

ER

100 3.76 399438 369 192 9.7
200 4.16 399837 98 65 10.6
300 4.39 399915 47 36 11.1
400 4.54 399946 30 23 11.4
500 4.67 399963 20 16 11.7

BA

100 3.11 399972 11 17 6.85
200 3.36 399992 2 6 7.43
300 3.49 399996 0 4 7.80
400 3.58 399997 0 3 8.06
500 3.65 399997 0 3 8.28

Table 5.2: Simulation results for Erdös-Renyí (ER) and Barabási-Albert (BA) random
graphs with varying N nodes, and comparable link densities; for BA m = m0 = 3 and for
ER p = 2m

N . The results are the averages computed over 100 random graph realizations and
Ftot = 400.000 flow arrivals. The widest-shortest path routing algorithm has been used with
time-based moving average LSUP with window size w = 50 and threshold 0.1. The symbols
correspond to those of Table 5.1.

lator. DeSiNe is aimed at performance analysis and benchmarking of QoS routing al-
gorithms and traffic engineering extensions. Compared to existing simulators, DeSiNe
incorporates in a unique fashion Quality-of-Service routing, traffic engineering and scala-
bility. It provides an end-to-end solution from topology generation to simulation and data
collection. This makes DeSiNe well-suited for the performance analysis at system-level
of new QoS routing and traffic engineering algorithms in any network topology. DeSiNe
has been written in C++ and is modularly built, with extensibility as a major design goal.
New algorithms, protocols or other techniques can easily be incorporated into the ex-
isting simulator. Moreover, DeSiNe is not built on top of any simulation framework or
libraries, which minimizes undefined behavior and dependency issues. The source code
is publicly available at the Networking, Architectures and Services group website4 under
the section Research.

4http://www.nas.ewi.tudelft.nl/

Chapter 6

Conclusions

The Internet has evolved from a simple research network between a handful of hosts to-
wards a vast, worldwide network serving and connecting billions of users. The Internet
has become indispensable in modern societies and an increasing number of markets and
sectors of society rely on the well-functioning of the Internet. The Internet has altered
the art of communication, providing a cheap, fast and global connectivity. It serves as an
unlimited source of information and is rapidly taking over the classic telecommunication
services of telephony and television. In addition, the Internet offers tremendous oppor-
tunities for new markets and services that were not possible or existent before, such as
online gaming, telemedicine and e-government. However, the nature of these services
often conflicts with the art at which the Internet transports the messages. These services
demand stringent requirements on the performance of the network, such that latencies,
loss or insufficient capacity can severely deteriorate the quality of the service. Where
the conventional telephony system was able to provide service guarantees towards cus-
tomers, the Internet can only offer a best-effort guarantee. Quality-of-Service provides a
framework and a set of solutions to establish service guarantees and reliable communi-
cations.

In this thesis we have focussed on flow-based communications. because we believe
that when Quality-of-Service will be implemented, the solution will be based on a flow-
based approach. In a connection-less environment, the packets can literally travel across
the entire Internet. As a consequence, it is very hard to predict where the packets may
travel, yielding tremendous uncertainties regarding packet-delays and loss. When pack-
ets belonging to the same stream are forced to travel along the same path, the connection
is easier to monitor and control, yielding less unpredictable behavior and possibly a better
performance.

95

96 Chapter 6. Conclusions

6.1 Measurement
In Chapter 2 we have studied an extensive data set with traceroute measurements for a
period of five years. In particular, we have focussed on the lifetime of routes between a
fixed set of source-destination pairs and on the diversity of the different routes between
these pairs as time progresses. The measurements indicate that

the average number of unique routes that is discovered over time grows
constant in time and a new IP route is found approximately every 15 days.

Another important finding in Chapter 2 is the power-law behavior that is found for
the lifetime distribution of routes. The lifetime is the time between the first observation
of a particular route and the last observation of that route, without seeing another route in
between. The power-law exponent indicates that the lifetime distribution has no first or
higher order moments, which implies that the lifetime of the route is highly unpredictable
and has no expected value. In other words, once a route is established, it can change
at any moment in time. A closer inspection of the lifetime distribution revealed that
a possible explanation for the unpredictable behavior can be Self-Organizing Critical
(SOC, see Section 2.2) behavior in the routing plane of the Internet. SOC is characterized
by power-law distributions and 1/ f noise, both of which are found for the route lifetime.
Based on our empirical findings, we argue that the routing dynamics are the source of
this behavior. In particular, at the Intra-domain level, where BGP is the de facto routing
protocol, routing dynamics are often found and well documented in literature. Route
updates can cause long-term dynamic effects, lasting up to many minutes and affecting
many systems.

The distribution of the lifetime of Internet paths appears to follow a power-
law, yielding unpredictable behavior. This behavior can be a manifestation
of self-organized criticality in the routing plane.

Based on the measurements presented in Chapter 2, we argue that the best-effort,
connection-less environment that the Internet offers, may hamper the development of
real-time applications. The uncertainties in the routing plane can cause dispersion of
packets and introduce intolerable latencies and possibly loss. The results serve as a
strong motivation for connection-oriented communication for real-time applications and
provide a justification to continue research in the field of Quality-of-Service.

6.2 Modeling
In Chapter 3 we have studied the performance of networks where traffic is modeled at
the flow level and we defined the network capacity K as the number of flows that the
network can sustain. A flow represents a connection between a source and destination
that consumes one unit capacity of the links along the path. The path is considered fixed
during the lifetime of the flow and in the simplest case, each link has one unit capacity,

6.2. Modeling 97

such that the allocation one flow consumes the full capacity of the link. The network
performance is modeled using an analogy with queueing theory, where the network ca-
pacity can be considered as the equivalent of the buffer size of a queue. Unlike queueing
systems, where the buffer size is a given parameter, the capacity is an emergent property
that is the outcome of many network properties and the interaction of processes during
the network operation, e.g. the routing process, the selection of source–destination pairs
and of course topological properties. In Chapter 3 we have computed the network capac-
ity for several classes of networks and we have found a remarkable relation between the
network capacity and the number of links in the network.

The network capacity K scales linearly with the number of links L for sev-
eral classes of networks, with a maximum of 42 percent in the case of the
fully connected graph:

K = βL ,β≤ 0.42

The scaling factor can be regarded as the efficiency at which the network is used; it
presents an upper-bound on the network usage under the model’s assumptions. The un-
derlying principle that causes the linear relation and magnitude of the scaling factor is
at present an open problem. The primary obstacles are the dependencies that are intro-
duced by the allocation of flows instead of links: since each flow may span multiple links,
and links must be connected to form a path. The allocation of a flow adds dependency
between the links. These dependencies make the analysis prohibitively complex.

A rigorous explanation for the dynamic network behavior is still an open issue, how-
ever we have found tractable models that give an upper- and a lower-bound on the net-
work capacity. The lower bound is found by assuming that flows cannot span more than
one link. Hence the arrival of a flow consists of the allocation of a random link from
the network. Blocking occurs when the new arrival tries to allocate an already occupied
link. Due to the fixed length of the paths, the estimated capacity is significantly lower,
because, if the direct link is not available there may still exist another path of two or more
hops. Hence, blocking occurs more often in this model, yielding a lower network capac-
ity. In the case of the the upper-bound, the model assumes an empty network as the initial
condition and infinite flow durations. The average hopcount computed over all the flows
allocated in the network is significantly lower than in the case of a dynamic network,
where flows arrive and depart, because the first allocated flows find the network nearly
empty. We have studied the dependency between the scaling factor and the number of
channels per link and the link density. In the cases of the class of Erdös-Renyí random
graphs and the full-mesh graphs with multiple channels per link, the network capacity
can be written as presented in Table 3.1.

We have found that the network capacity is independent of the traffic inten-
sity and demonstrated that when the service process is changed from expo-
nentially distributed service times to deterministic servicing, the capacity
remains unchanged.

98 Chapter 6. Conclusions

800

600

400

200

0

 N
et

wo
rk

 c
ap

ac
ity

1.00.80.60.40.2

p0

 N = 25
N = 50

Figure 6.1: Comparison of the network capacity in the dynamic case (Chapter 3, solid lines)
and the static case (Chapter 4, dotted lines). The network capacity is computed for the case
of the random graph with N = 25 and N = 50 nodes, the link probability p0 is presented on
the x-axis.

Figure 3.15 illustrates the presence of strong fluctuations, which underlines the notion
that dynamics play an important role and the “average” behavior does not sufficiently
describe the system.

In Chapter 4 we have investigated an alternate definition for network capacity. Here,
we start from the empty network and measure the number of flows the network can
support until the network becomes disconnected. We have found an expression that ac-
curately describes the state of the network in terms of available resources as a function of
the number of allocated flows at that time. We find that the network capacity is approx-
imately 70 percent of the number of links. The difference between the network capacity
from Chapter 3 and Chapter 4 is illustrated in Figure 6.1.

In the static case where flows are allocated for infinite duration, which can
be considered as an upper-bound on the dynamic case, the network capacity
is approximately 70 percent of the links.

The difference between the two scenarios can be explained as follows. In Chapter 3 we
consider a dynamic environment where flows arrive and depart from the network, while
in Chapter 4 the flows are static and do not leave the network. The scenarios also have a
common element, which is that the warm-up phase of the dynamic network scenario is
precisely the same as the static scenario. The difference arises as soon as the first flow
leaves the network in the dynamic case. The first flows in the dynamic network will see
a practically empty network and the hopcount of these flows will be very close to 1, as
is discussed in Chapter 4. As these flows leave the network, they release only a single
link. The flows that arrive at that time, will find the network occupied and the direct
link between the source and destination is likely to be allocated by a previous flow. As a

6.3. Simulation 99

result, the new flow will exhibit an increased hopcount as compared to the earlier flows,
which eventually will decrease the network capacity. Hence, the results on the network
capacity in the static case can be considered as an upper-bound on the dynamic network
scenario.

6.3 Simulation
Chapter 5 presents a new simulation tool, called DeSiNe, that uses flows to model net-
work traffic. DeSiNe features various QoS mechanisms that allow simulation of next
generation networks and asses the effect of the difference QoS mechanisms on the net-
work performance. The flow-level approach significantly reduces the computation times,
enabling the simulation of large networks and heavy traffic conditions. DeSiNe com-
prises several built-in functions, such as a topology generation, random number gener-
ator and a selection of the well-known (QoS) routing algorithms and update strategies.
DeSiNe is particularly suited to test algorithms and protocols on randomized networks
of different classes, such that insight can be obtained in the general performance of the
algorithm or protocol and not just for one particular network. To illustrate the use of
DeSiNe, we have studied several scenarios where we have compared the performance of
two network classes using similar routing and update strategies.

100 Chapter 6. Conclusions

Appendix A

Snapshots of a 10-node network

0
1

3

46

9

28

7

5

arrival 80

0
1

46

9

2

3

8

7

5

arrival 81

0
1

46

9

2

3

8

7

5

arrival 82

0
1

46

2

3

9

8

7

5

arrival 83

0
1

46

2

9

3

8

7

5

arrival 84

0
1

46

2

3

8

7

9

5

arrival 85

0
1

46

2

3

8

9

5

7

arrival 86

0
1

46

2

3

8

9

5

7

departure flow
47

Figure A.1: The arrivals and departures of flows in a 10-node network with a single channel
per link. Each diagram depicts a single arrival or departure. The diagrams are printed in
chronological order, starting from the 80th flow arrival. For the flow arrivals, the source and
destination nodes are colored black. The links corresponding to the path of each flow arrival
are highlighted in bold. In the case of rejection, none of the links are highlighted. When a
flow is released, the released links are highlighted but not the nodes. — Figure continues
on next page.

101

102 Appendix A. Snapshots of a 10-node network

0
1

4
5

6

2

3

8

9

7

departure flow
62

0
1

4
5

6

2

3

8

9

7

arrival 87

0

4
5

6

1

2

3

8

9

7

arrival 88

0

4
5

6

1

2

3

8

9

7

departure flow
61

0

4
5

6

1

2

3

8

9

7

arrival 89

0

4
5

6

1

2

3

8

9

7

departure flow
72

0

4
5

6

1

2

37

8

9

arrival 90

0

4
5

6

1

2

37

8

9

arrival 91

0

5

1

6

2

37

4

8

9

departure flow
68

0

5

1

6

2

37

4

8

9

departure flow
88

0

5

1

6

2

37

4

8

9

arrival 92

0

5

1

2

3

4

7

6

8

9

arrival 93

0

5

1

2

3

4

7

6

8

9

departure flow
84

0

5

1

2

3

9

4

7

6

8

arrival 94

0

5

1

2

3

9

6 4

7

8

departure flow
92

0

5

1

6

2

3

9

7

4

8

arrival 95

0

5

1

6

2

3

9

7

4

8

departure flow
95

0

5

1

6

2

3

9

7

4

8

arrival 96

0

5

9 1

6

2

37

4

8

departure flow
82

0

5

9 1

6

2

37

4

8

departure flow
60

Figure A.1: – continued –

Appendix A. Snapshots of a 10-node network 103

0

5

9 1

6

2

37

4

8

arrival 97

0

5

9 1

6

2

37

4

8

arrival 98

0

5

9 1

2

37

46

8

arrival 99

0

5

9 1

2

37

46

8

arrival 100

0

5

9 1

2

37

46

8

arrival 101

0
1

2

37

4
5

6

8

9

departure flow
87

0
19

2

37

4
5

6

8

departure flow
101

0
1

5

9

2

37

46

8

arrival 102

0
9 1

2

37

4
5

6

8

departure flow
97

0
9 1

2

37

4
5

6

8

departure flow
77

0
9 1

2

37

4
5

6

8

departure flow
80

0

3

9 1

2

7

4
5

6

8

departure flow
65

0

37

9 1

2

4
5

6

8

arrival 103

0

37

9 1

2

4
5

6

8

arrival 104

0

3

9 1

2

7

4
5

6

8

arrival 105

0

8

1

2

5

37

46

9

departure flow
63

0

8

1

2

5

37

46

9

arrival 106

0

8

1

2

37

4
5

6

9

departure flow
79

0

6

8

1

2

7 3

4
5

9

departure flow
91

0

46

8

1

2

7 3

5

9

arrival 107

Figure A.1: – continued –

104 Appendix A. Snapshots of a 10-node network

0

46

8

9 1

2

7 3

5

departure flow
105

0

3

46

8

9 1

2

7

5

arrival 108

0

3

46

8

9 1

2

7

5

departure flow
70

0

3

46

7

8

9 1

2

5

departure flow
104

0

3

46

7

8

9 1

2

5

arrival 109

0

3

46

7

8

9 1

2

5

departure flow
38

0

2

3

46

7

8

9 1

5

arrival 110

0

2

3

46

7

8

9 1

5

departure flow
52

0

2

3

46

7

8

9 1

5

arrival 111

0

2

3

46

8

9 1

7

5

departure flow
111

0

2

3

46

7

8

9 1

5

arrival 112

0

2

3

46

7

8

9 1

5

departure flow
59

0

2

3

46

7

8

9 1

5

departure flow
78

0

2

3

46

7

8

9 1

5

arrival 113

0

2

3

46

7

8

9 1

5

departure flow
108

0

2

3

46

7

8

9 1

5

arrival 114

Figure A.1: – continued –

Appendix B

Appendix: Degree Distribution
of Ĝ j(N)

0.25

0.20

0.15

0.10

0.05

0.00

Pr
[D

[j]
=k

]

2520151050

k

j=100j=150

j=50
N = 25

(a) N = 25

0.12

0.10

0.08

0.06

0.04

0.02

0.00

Pr
[D

[j]
=k

]

100806040200

k

j=1200j=1800j=2400 j=600j=3000

N = 100

(b) N = 100

Figure B.1: Degree distribution of Ĝ(j,N) for various N and j. As a reference, the degree
distribution for the random graph has been added for each result with mean identical to the
simulation. The dotted lines are simulation results, the normal lines are computations of the
Erdös-Renyí random graph degree distribution.

105

106 Appendix B. Appendix: Degree Distribution of Ĝ j(N)

Appendix C

The degree distribution in KN
after removing links

In this section we examine the effect of removing correlated links on the nodal degree
distribution. To understand why a small deviation of the Erdös-Renyí model may lead to
large differences observed in Section 4, we assume that any path between two random
nodes consists of two links. We consider the process where, at each stage j, precisely
two links of an arbitrary node in the complete graph KN are removed. We compute the
degree D [j] of an arbitrary node at stage j in the thinned complete graph KN . From that
process, we derive a recursion relation

D [j] = D [j−1]1no link removed +(D [j−1]−1)11 link removed +(D [j−1]−2)12 links removed
(C.1)

and D [0] = N−1. Ignoring the boundary restrictions1 when D[j] = 1 and D[j] = 0, the
probability density function of D [j] obeys the equation

Pr [D [j] = k] = Pr [D [j−1] = k]Pr [no link removed]+
+Pr [D [j−1] = k +1]Pr [1 link removed]+
+Pr [D [j−1] = k +2]Pr [2 links removed]

with p1 = Pr [1 link removed] = 2
N , p2 = Pr [2 links removed] = 1

N and Pr [no link removed] =
1− 3

N . The corresponding probability generating function

ϕD[j] (z) =
N−1

∑
k=0

Pr [D [j] = k]zk

1These seriously complicate the analysis and prevent the derivation of analytic expressions

107

108 Appendix C. The degree distribution in KN after removing links

obeys the functional equation

ϕD[j] (z) =
(

1− 3
N

)
ϕD[j−1] (z)+

2
N

N−1

∑
k=0

Pr [D [j−1] = k +1]zk +
1
N

N−1

∑
k=0

Pr [D [j−1] = k +2]zk

After simplification, we obtain

ϕD[j] (z) =
((

1− 3
N

)
+

2
Nz

+
1

Nz2

)
ϕD[j−1] (z)−

(
2

Nz
+

1
Nz2

)
ϕD[j−1] (0)− Pr [D [j−1] = 1]

Nz2

Since ϕD[j] (1)= 1, it follows that both Pr [D [j−1] = 1] = ϕ′D[j−1] (0)= 0 and Pr [D [j−1] = 0] =
ϕD[j−1] (0) = 0. The functional equation reduces to

ϕD[j] (z) =
(N−3)z2 +2z+1

Nz2 ϕD[j−1] (z)

With the initial condition ϕD[0] (z) = E
[
zD[0]

]
= zN−1, the solution is

ϕD[j] (z) =
(

(N−3)z2 +2z+1
Nz2

) j

zN−1 (C.2)

The mean and the variance of D [j] are most efficiently computed from LD[j] (z)= logϕD[j] (z)
as (see [43])

E [D [j]] = L′D[j] (1) = N−1− 4 j
N

Var [D [j]] = L′′D[j] (1)+L′D[j] (1) =
2 j (3N−8)

N2

The mean E [D [j]] follows from the general law for the degree

N

∑
n=1

dn [j] = 2L [j] = 2
((

N
2

)
−2 j

)
(C.3)

and the definition of the mean E [D [j]] = 1
N ∑N

n=1 dn [j] resulting again in E [D [j]] = N−
1− 4 j

N . However, the requirement that ϕ′D[j−1] (0) = 0 and ϕD[j−1] (0) = 0 implies that
N− 2− 2 j > 0 or that N−2

2 > j. The major reason for this artifact is the neglect of the
boundary equations.

By expanding the probability generating function in a Taylor series around z = 0, the
probability density function Pr [D [j] = k] can be obtained. In general, the power series
of

(
z2 +bz+ c

)n with n ∈ N is derived as,

(
z2 +bz+ c

)n =
n

∑
j=0

(
n
j

)
cn− j (z2 +bz

) j =
n

∑
j=0

(
n
j

)
cn− j

j

∑
k=0

(
j
k

)
b j−kzk+ j

Appendix C. The degree distribution in KN after removing links 109

1 INITIALIZE(KN)
2 while KN is connected
3 do node v← RANDOM-NODE(KN)
4 link l1 ← RANDOM-LINK(v)
5 remove l1 from KN
6 if degree[v] > 0
7 then link l2 ← RANDOM-LINK(v)
8 remove l2 from KN

Figure C.1: Meta-code for simulating effect of path removal on graph properties.

Let m = k + j, then 0 ≤ m ≤ 2n and, from 0 ≤ j = m− k ≤ n, it follows that k ≤ m.
Hence,

(
z2 +bz+ c

)n =
2n

∑
m=0

m

∑
k=0

(
n

m− k

)(
m− k

k

)
cn−m+kbm−2kzm (C.4)

Using (C.4) with b = 2
N−3 , c = 1

N−3 and n = j leads to

ϕD[j] (z) =
(

N−3
N

) j (
z2 +

2
N−3

z+
1

N−3

) j

zN−1−2 j

=
1

N j

2 j

∑
m=0

(
2m

m

∑
l=0

(
j

m− l

)(
m− l

l

)(
N−3

4

)l
)

zm+N−1−2 j

=
1

N j

N−1

∑
m=N−1−2 j

(
2m−N+1+2 j

m−N+1+2 j

∑
l=0

(
j

m−N +1+2 j− l

)
×

×
(

m−N +1+2 j− l
l

)(
N−3

4

)l
)

zm

from which it follows that

Pr [D [j] = k] =
2k−N+1+2 j

N j

k−N+1+2 j

∑
l=0

(
j

k−N +1+2 j− l

)(
k−N +1+2 j− l

l

)(
N−3

4

)l

(C.5)

Unfortunately, we cannot evaluate the above sum. We have performed simulations to test
the validity of (C.5).

Figure C.1 presents the meta-code of the simulation. First the complete graph KN is
initialized. While KN remains connected, a random node is chosen uniformly and two of
its links are removed from the graph. The simulation results for N = 50 are presented in
Figure C.2, which illustrates that deviations appear for increasing k due to the fact that
the analysis above only applies for small j < N−2

2 . Figure C.2 is “similar” to Figure 4.6.

110 Appendix C. The degree distribution in KN after removing links

0.20

0.15

0.10

0.05

0.00

Pr
[D

[j]
 =

 k
]

50403020100

k

N = 50

j = 30

j = 40

j = 50

j = 100

j = 200
j = 300j = 400

j = 500

Figure C.2: The probability density function of D [j] for N = 50 and various j. The line
that connects dots are simulations, the solid lines are computations of (C.5) and the dashed
lines correspond to computations of (C.9).

Since (C.5) is awkward and provides little insight, we now approximate Pr [D [j] = k].
Let q denote the probability that a node belongs to a path between a uniformly chosen
source-destination pair. Each path spans exactly two hops and we assume that a path can
always be formed between the source-destination pair, which is a reasonable assumption
when the graph is densely connected. Then, we can write,

q≈ 3
N

(C.6)

The next step is to differentiate between the nodes based on the number of times they
belonged to a path. The degree of a node is proportional to the number of paths through
it. The average degree of the nodes containing m paths can be approximated by,

E [D[m]] = k ≈ N−1− 2
3
·m− 1

3
·2 ·m

≈ N−1− 4
3

m (C.7)

Relation (C.7) provides a direct relation between the number of paths through a node
and the expectation of the degree. The degree distribution of the entire network is found
by considering each allocation as an i.i.d. event. The probability that a node belongs
to m of the j total allocated paths is then independent and can be considered binomially
distributed,

Pr [A node belongs to m paths] =
(

j
m

)
qm (1−q) j−m (C.8)

Appendix C. The degree distribution in KN after removing links 111

The probability that a node belongs to m paths is written as a function of the node’s
expected degree by substitution of the inverse of (C.7) for m in (C.8),

Pr [A node belongs to m paths]≈ Pr
[

A node belongs to
3
4

(N−1− k) paths
]
·
∣∣∣∣
dm
dk

∣∣∣∣

and

Pr [D[j] = k]≈ Pr [A node belongs to m paths]

so that,

Pr [D[j] = k]≈
(

3
4

)(
n

3
4 (N−1− k)

)
q

3
4 (N−1−k) (1−q)n− 3

4 (N−1−k) (C.9)

Figure C.2 shows the goodness of both approximations (C.5) and the simpler (C.9). Both
approximations are significantly different from the simulated results, which underlines
the importance of the dependencies between the links. Hence, the correlation between
the links has been shown to be a very hard problem.

112 Appendix C. The degree distribution in KN after removing links

Appendix D

An approximate birth-and-death
analysis

We present an approximate analysis of the network model of Chapter 3 using a birth-
and-death steady-state analysis to compute the number of flows in the complete graph
KN .

D.1 Lower bound
We first assume that a flow between a source-destination pair consists of precisely one
link in KN . This analysis will give a lower bound for the average number of flows E [NS]
because, if the direct link between a source-destination pair is unavailable, there may still
exist a path (with more than one hop). Hence, blocking occurs more often, which equiv-
alently means that the network capacity to allocate flows is lower than in the network
model of Chapter 3. The arrival rate of a flow is λ, while the departure rate of a flow
is µ (irrespective of how many flows there are in the network). The state j denotes the
number of flows in the network.

Since the allocation of a flow in the simplified analysis is equivalent to the removal
of a random link, the probability that the chosen random link is already unavailable in
state j equals j

L , where L =
(N

2
)
, the total number of links in KN . Hence, the effective

arrival rate is λ
(

1− j
L

)
. Applying the birth-dead steady-state equations [43, p. 209]

with effective arrival rate λ
(

1− j
L

)
gives, for j ≥ 1,

π j = π0

j−1

∏
m=0

λm

µm+1
= π0

j−1

∏
m=0

λ
(
1− m

L
)

µ
= π0ρ j

j−1

∏
m=0

(
L−m

L

)

= π0

(ρ
L

) j L!
(L− j)!

113

114 Appendix D. An approximate birth-and-death analysis

where ρ = λ
µ and

π0 =
1

1+∑∞
j=1 ∏ j−1

m=0
λm

µm+1

=
1

1+L!∑L
j=1

(ρ
L) j

(L− j)!

=
1

L!∑L
k=0

(ρ
L)L−k

k!

=
1

L!
(ρ

L
)L ∑L

k=0

(
L
ρ

)k

k!

The average number of flows is

E [NS] =
L

∑
j=0

jπ j = L!π0

L

∑
j=0

j
(ρ

L
) j

(L− j)!

= L!π0

(ρ
L

)L L

∑
k=0

(L− k)
(

L
ρ

)k

k!
= L−L!π0

(ρ
L

)L−1 L−1

∑
k=0

(
L
ρ

)k

k!

Hence,

E [NS] = L−
L
ρ ∑L−1

k=0

(
L
ρ

)k

k!

∑L
k=0

(
L
ρ

)k

k!

= L
(

1− 1
ρ

)
+

L
ρ

(
L
ρ

)L

L!∑L
k=0

(
L
ρ

)k

k!

Using ∑L
k=0

(L
ρ)k

k!
eL/ρ/2

→ 1 for L → ∞ and Stirling’s formula [2, 6.1.38], L! *
√

2πLLLe−L,
results in

E [NS]∼ L
(

1− 1
ρ

)
+

L
ρL+1 2e

L
ρ

LL

L!
∼ L

(
1− 1

ρ

)
+

√
2
π

√
L

ρL+1 eL
(

1− 1
ρ

)

If ρ → 1, then E [NS] ∼ 0.797
√

L, while simulations in Figure 3.26 show a different
behavior, limρ→1 E [NS] = K

2 = βL
2 .

D.2 An upper bound
Rejection does not occur as long as there is a path between the source node and the
destination node. A necessary condition to have a path is that the source and des-
tination node belong to a same connected cluster. Since the cluster sizes in Gp (N)
are small compared to the giant component GC, and the source and destination nodes
are randomly and independently chosen, we may approximate the path condition as
Pr [{source ∈ GC}∩{destination ∈ GC}] = (Pr [any node ∈ GC])2 = S2

GC, where SGC ∈
[0,1] is derived in [43, p. 339] and SGC obeys the functional equation1

SGC = 1− (1− pSGC)N−1

1Rewriting the functional equation as p(SGC) = 1
SGC

(
1− (1−SGC)

1
N−1

)
gives the extreme values for the

link density p(0) = 1
N−1 and p(1) = 1.

D.2. An upper bound 115

that reduces for large N and constant average degree D = p(N−1) to

SGC = 1− e−DavSGC

Hence, given that j flows are allocated, the probability of blocking is

r j = 1−S2
GC (j)

where the dependence on j is via the average degree D = p [j] (N−1). A Lagrange
expansion of SGC as a function of D is given in [43, p. 339, eq. (15.21)]. Similarly as in
Section D.1, the effective rate is λ(1− r j) = λS2

GC (j) and

π j = π0

j−1

∏
m=0

λm

µm+1
= π0

j−1

∏
m=0

λS2
GC (m)

µ
= π0 ρ j

j−1

∏
m=0

S2
GC (m)

From Section 4.2 we have that

p[j]≤ 2−
(

1+
1
L

) j

Finally, we arrive at the upper bound

E [NS]≤
L

∑
j=0

jπ j =
∑L

j=1 jρ j ∏ j−1
m=0 S2

GC (m)

1+∑L
j=1 ρ j ∏ j−1

m=0 S2
GC (m)

Numerical simulations show that limρ→1 E [Nf] = K
2 = 0.34L or, that β* 0.68, which in-

deed upper bounds βsim* 0.42. The analysis also shows that improving the computations
will be quite difficult.

116 Appendix D. An approximate birth-and-death analysis

Appendix E

Abbreviations

AS Autonomous System
BGP Border Gateway Protocol
CBR Call Blocking Rate
CCDF Complementary Cummulative Distribution Function
DES Discrete Event Simulation
DiffServ Differentiated Services
FIFO First In First Out
FTP File Transfer Protocol
FttH Fiber to the Home
GC Giant Component
GPS Global Positioning System
IP Internet Protocol
ISP Internet Service Provider
ITU International Telecommunication Union
LSA link state Advertisment
LSP Label Switched Path
LSU link state Update
LSUP Link State Update Policy
MCOP Multi-Constrained Optimal Path
MCP Multi-Constrained Path
MIRA Minimum Interference Routing Algorithm
MPLS Multi-Protocol Label Switching
OSI Open Systems Interconnection
OSPF Open Shortest Path First
QoS Quality of Service
RIPE Réseaux IP Européens
RSVP Resource Reservation Protocol

117

118 Appendix E. Abbreviations

SAMCRA Self-Adaptive Multiple Constraints Routing Algorithm
SLA Service Level Agreement
SOC Self-Organized Criticality
SP Shortest Path
SSP Static Shortest Path
TAMCRA Tunable Accuracy Multiple Constraints Routing Algorithm
TCP Transmission Control Protocol
TE Traffic Engineering
TTM Test Traffic Measurement
VoIP Voice over IP
WSP Widest-Shortest Path

Appendix F

Acknowledgements

This thesis contains the work that I have performed during the past five years at the
Network Architectures and Services group at the Electrical Engineering, Mathematics
and Science faculty at Delft University of Technology. If I would ever write my memoirs,
which I deem unlikely at this moment considering the energy it has taken me to write this
thesis, then my stay at the 19th floor will be remembered as very pleasant and educative.
Here I would like to thank the people that helped in creating this valuable and inspiring
environment.

My sincere gratitude goes to my advisor, promotor and, occasionally, mental coach
Prof. Piet Van Mieghem, for his guidance, patience and confidence. I am very thankful
for being given the opportunity to achieve “de hoogsthaalbare academische graad” and
for sharing the knowledge and insights. The enjoyment of working at the 19th floor would
not have been possible without my colleagues and friends Bingjie, Santpal, Fernando,
Huijuan, Jasmina, Anteneh, Javier, Christian, Yue, Siyu, Steve, Almerima, Xiaoming,
Milena, Antonio, Rob, Edgar, Eguzki and all the others. I would like to thank Marjon,
Wendy, Laura and Rowena for their assistance during these years. Special thanks go to
Jos Weber for the inspirational tennismatches we had the past five years.

I am indebted to the committee members for their comments, suggestions, time and
effort to serve in the defense committee. In particular I would like to thank Gerard
Hooghiemstra for the pleasant cooperation and his efforts on the queueing model. A
special thanks go to Stefano Avallone from Naples university for his assistance and co-
operation in setting up the network testbed. Furthermore, I would like to thank STW
and in particular Wouter Segeth and the user committee members for their advise and
useful suggestions during the project meetings. I wish to acknowledge my brother Ern-
stjan Kleiberg for assisting me in designing the cover of this thesis and helping me out
whenever I needed help.

Finally, I would like to thank my friends for their support and friendship. Last, but
not least, I want to thank my parents Ad en Cocky and my girlfriend Coby for their
unconditional love and confidence. Without your support this achievement would not
have been possible.

119

120 Appendix F. Acknowledgements

Appendix G

Curriculum Vitae

Teunis Johannis (Tom) Kleiberg was born in Dordrecht
(the Netherlands) at April 2, 1977. He graduated from
the Faculty of Electrical Engineering at Delft University
of Technology in 2000. His Master of Science gradua-
tion project was in the Network Architectures and Services
group headed by the then recently appointed professor Piet
Van Mieghem. His graduation project consisted in the de-
velopment of software to visualize graphs and analyze their
properties. After his graduation, he joined Ericsson Euro-
Lab Netherlands in Rijen, where he worked on the devel-
opment of a management system for Interactive Messaging
Systems. In 2002, the difficult times in the telecommuni-

cations industry forced him to leave Ericsson, after which he made a trip of one year
through Australia, New-Zealand and Indonesia. Upon his return to the Netherlands in
2003, he rejoined the group of prof. Piet Van Mieghem, but now as a PhD student work-
ing on network dynamics and quality-of-service. He represented the finalist of the TU
Delft for the dutch KIvI telecommunication contest held between the three technical uni-
versities in the Netherlands in 2007. He is now active as a post-doc researcher within the
Network Architectures and Services group, where he is working on implementation of
networking testbed and on robustness of complex networks.

Publications

1. J. M. Hernandez, T. Kleiberg, H. Wang and P. Van Mieghem,“A Qualitative Com-
parison of Power Law Generator”, Proc. of International Symposium on Perfor-
mance Evaluation of Computer and Telecommunication Systems (SPECTS 2007),
July 16-18, San Diego, California, USA.

121

122 Appendix G. Curriculum Vitae

2. T. Kleiberg, B. Fu, F. Kuipers, P. Van Mieghem, S. Avallone, B. Quoitin, “DeSiNe:
a flow-level QoS Simulator of Networks”, First International Conference on Sim-
ulation Tools and Techniques for Communications, Networks and Systems, 2007,
Marseille, France

3. D. K. Agrawal, T. Kleiberg, S. Papp, R. E. Kooij and P. Van Mieghem,“Quantifying
the Quality of Service of Streaming Media in Differentiated Services Network”,
2007 International Conference on Software, Telecommunications and Computer
Networks (IEEE SoftCom 2007), September 27-29, Split-Dubrovnik, Croatia.

Bibliography

[1] J. Abate and W. Whitt. Calculating time-dependent performance measures for the
M/M/1 queue. IEEE/ACM Transactions on Communications, 37(10):1102–1104,
Oct 1989.

[2] M. Abramowitz and J. A. Stegun. Handbook of Mathematical Functions. Dover
Publications Inc., New York, 1968.

[3] J. S. Ahn and P. B. Danzig. Packet network simulation: Speedup and accuracy
versus timing granularity. IEEE/ACM Transactions on Networking, 4(5):743–757,
1996.

[4] D. Alderson, H. Chang, M. Roughan, S. Uhlig, and W. Willinger. The many facets
of Internet topology and traffic. Networks and Heterogenous Media, 1(4):569–600,
2006.

[5] D. Anick, D. Mitra, and M. M. Sondhi. Stochastic theory of a data-handling system
and multiple sources. The Bell System Technical Journal, 61(8):1871–1894, 1982.

[6] G. Apostolopoulos, R. Guerin, S. Kamat, and S. K. Tripathi. Quality of service
based routing: A performance perspective. In Proceedings of the ACM SIGCOMM
’98 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, pages 17–28, Vancouver, BC, Canada, September 1998.
ACM.

[7] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Latapy, C. Mag-
nien, and R. Teixeira. Avoiding traceroute anomalies with Paris traceroute. In J. M.
Almeida, V. A. F. Almeida, and P. Barford, editors, Internet Measurement Confer-
ence (IMC), pages 153–158, Rio de Janeriro, Brazil, October 2006. ACM.

[8] S. Avallone, F.A. Kuipers, G. Ventre, and P. Van Mieghem. Dynamic routing in
QoS-Traffic Engineered networks. In EUNICE IFIP WG 6.6, WG 6.4 and WG 6.9
Workshop, pages 222–228, Colmenarejo, Spain, Jul 2005.

[9] P. Bak. How Nature Works. Copernicus, Springer-Verlag New York Inc., New York,
NY, USA, 1996.

123

124 Bibliography

[10] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality: An explanation of
the 1/ f noise. Physical Review Letters, 59(4):381–384, July 1987.

[11] G. Banerjee and D. Sidhu. Comparative analysis of path computation techniques
for MPLS traffic engineering. Computer Networks, 40(1):149–165, 2002.

[12] S. Banerjee, T. G. Griffin, and M. Pias. The interdomain connectivity of PlanetLab
nodes. In Proceedings of the Passive and Active Network Measurement, Interna-
tional Workshop, PAM, Antibes Juan-les-Pins, France, April 2004. Springer.

[13] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science,
286:509–512, October 1999.

[14] O. Brun and J.-M. Garcia. Analytical solution of finite capacity M/D/1 queues.
Journal of Applied Probability, 37(4):1092–1098, December 2000.

[15] K. Christensen, Z. Olami, and P. Bak. Deterministic 1/ f noise in nonconserative
models of self-organized criticality. Physical Review Letters, 68(16):2417–2420,
April 1992.

[16] I. Csabai. 1/ f noise in computer network traffic. Journal of Physics A: Mathemat-
ical and General, 27(12):L417–L421, 1994.

[17] P. Erdös and A. Rényi. On random graphs. Publicationes Mathematicae, 6:290–
297, 1959.

[18] A. J. Field, U. Harder, and P. G. Harrison. Measurement and modelling of
self-similar traffic in computer networks. IEE Proceedings Communications,
151(4):355–363, August 2004.

[19] L. C. Freeman. A set of measures of centrality based on betweenness. Sociometry,
40(1):35–41, 1977.

[20] E. Gavron. NANOG traceroute, 1995. for latest version, see ftp://ftp.login.com/
pub/software/traceroute/.

[21] F. Georgatos, F. Gruber, D. Karrenberg, M. Santcroos, A. Susanj, H. Uijterwaal, and
R. Wilhelm. Providing active measurements as a regular service for ISPs. In Pro-
ceedings of the Passive and Active Network Measurement, International Workshop,
PAM, Amsterdam, Netherlands, April 2001. Springer.

[22] G. Grimmett. Percolation. Springer-Verlag, New York, NY, USA, 1989.

[23] R. A. Guerin, A. Orda, and D. Williams. QoS routing mechanisms and OSPF ex-
tensions. In Proceedings of the Global Communications Conference GLOBECOM
’97, Phoenix, AZ, USA, November 1997. IEEE.

[24] Y. Hyun, A. Broido, and kc Claffy. On third-party addresses in traceroute paths. In
Passive and Active Measurement Workshop, La Jolla, CA, USA, April 2003.

Bibliography 125

[25] G. Iannaccone, C.-N. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot. Analysis
of link failures in an IP backbone. In Internet Measurement Conference (IMC),
pages 237–242, Marseille, France, November 2002. ACM.

[26] I. Iliadis and D. Bauer. A new class of online minimum-interference routing algo-
rithms. In NETWORKING ’02: Proceedings of the Second International IFIP-TC6
Networking Conference on Networking Technologies, Services, and Protocols; Per-
formance of Computer and Communication Networks; and Mobile and Wireless
Communications, volume 2345 of Lecture Notes in Computer Science, pages 959–
971, London, UK, May 2002. Springer-Verlag.

[27] ITU-T. Recommendation E.800: Terms and definitions related to quality of service
and network performance including dependability, August 1994.

[28] ITU-T. Recommendation X.200: Open systems interconnection - basic reference
model, July 1994.

[29] V. Jacobson. traceroute, 1989. see ftp://ftp.ee.lbl.gov/traceroute.tar.gz.

[30] S. Janson, D. E. Knuth, T. Luczak, and B. Pittel. The birth of the giant component.
Random Structures Algorithms 4, 3:231–358, 1993.

[31] K. Kar, M. Kodialam, and T. V. Lakshman. Minimum interference routing of band-
width guaranteed tunnels with MPLS traffic engineering applications. IEEE/ACM
Journal of Selected Areas in Communications, 18:2566–2579, December 2000.

[32] B. Kaulakys, V. Gontis, and M. Alaburda. Point process model of 1/ f noise vs a
sum of Lorentzians. Physical Review E, 71(5):051105, 2005.

[33] B. Kaulakys and T. Meškauskas. Modeling 1/ f noise. Physical Review E,
58(6):7013–7019, December 1998.

[34] A. Kavimandan, W. Lee, M. Thottan, A. Gokhale, and R. Viswanathan. Network
simulation via hybrid system modeling: A time-stepped approach. In 14th Inter-
national Conference on Computer Communications And Networks (ICCCN), San
Diego, CA, 2005.

[35] G. Kesidis, A. Singh, D. Cheung, and W. Kwok. Feasibility of fluid event-driven
simulation for ATM networks. In IEEE Globecom, London, 1996.

[36] C. Kiddle, R. Simmonds, C. L. Williamson, and B. Unger. Hybrid packet/fluid flow
network simulation. In 17th Workshop on Parallel and Distributed Simulation,
PADS, pages 143–152, San Diego, CA, USA, 2003. ACM.

[37] C. Labovitz, A. Ahuja, and F. Jahanian. Experimental study of Internet stability
and backbone failures. In FCTS, pages 278–285, Madison, Wisconsin, USA, June
1999. IEEE Computer Society.

126 Bibliography

[38] B. Lekovic and P. Van Mieghem. Link state update policies for quality of service
routing. In IEEE 8th Symposium on Communications and Vehicular Technology in
the Benelux (SCVT), pages 123–128, Delft, The Netherlands, October 2001.

[39] B. Liu, Y. Guo, J. F. Kurose, D. F. Towsley, and W. Gong. Fluid simulation of large
scale networks: Issues and tradeoffs. In International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA), pages 2136–2142,
Las Vegas, Nevada, USA, 1999. CSREA Press.

[40] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and C. Diot.
Characterization of failures in an IP backbone network. In INFOCOM, Hong Kong,
China, March 2004. IEEE.

[41] B. Melamed, S. Pan, and Y. Wardi. Hybrid discrete-continuous fluid-flow simu-
lation. In SPIE International Symposium on Information Technologies and Com-
munications (ITCOM 01), Scalability and Traffic Control in IP Networks, pages
263–270, Denver, CO, 2001.

[42] P. Van Mieghem. Data Communications Networking. Techne Press, Amsterdam,
The Netherlands, 2006.

[43] P. Van Mieghem. Performance Analysis of Communications Networks and Systems.
Cambridge University Press, 2006.

[44] P. Van Mieghem and F. A. Kuipers. Concepts of exact QoS routing algorithms.
IEEE/ACM Transactions on Networking, 12(5):851–864, October 2004.

[45] P. Van Mieghem and S. van Langen. Influence of the link weight structure on the
shortest path. Physical Review E, 71(5):056113, May 2005.

[46] V. Misra, W.-B. Gong, and D. F. Towsley. Fluid-based analysis of a network of
AQM routers supporting TCP flows with an application to RED. In SIGCOMM,
pages 151–160, 2000.

[47] H. De Neve and P. Van Mieghem. TAMCRA: A tunable accuracy multiple con-
straints routing algorithm. Computer Communications, 23:667–679, 2000.

[48] M. E. J. Newman. Power laws, Pareto distributions and Zipf’s law. Contemporary
Physics, 46(5):323–351, September 2005.

[49] D. M. Nicol, J. Liu, M. Liljenstam, and G. Yan. Simulation of large scale networks
i: Simulation of large-scale networks using SSF. In Winter Simulation Conference,
pages 650–657, 2003.

[50] T. Ohira and R. Sawatari. Phase transition in computer network traffic model. Phys-
ical Review E, 58(1):193–195, 1998.

Bibliography 127

[51] R. V. Oliveira, B. Zhang, and L. Zhang. Observing the evolution of Internet AS
topology. In J. Murai and K. Cho, editors, Proceedings of the ACM SIGCOMM
2007 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, pages 313–324, Kyoto, Japan, August 2007. ACM.

[52] V. Paxson. End-to-end routing behavior in the Internet. IEEE/ACM Transactions
on Networking, 5(5):601–615, October 1997.

[53] V. Paxson. Measurements and Analysis of End-to-End Internet Dynamics. PhD dis-
sertation, University of California, Lawrence Berkeley National Laboratory, April
1997.

[54] W. H. Press, S. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes
in C: The Art of Scientific Computing. Cambridge University Press, 2nd edition,
1992.

[55] H. Pucha, Y. Zhang, Z. Morley Mao, and Y. Charlie Hu. Understanding network
delay changes caused by routing events. In L. Golubchik, M. H. Ammar, and
M. Harchol-Balter, editors, SIGMETRICS, San Diego, California, USA, June 2007.
ACM.

[56] A. Shaikh. Management of Routing Protocols in IP Networks. PhD thesis, Univer-
sity of California, Santa Cruz (UCSC), December 2003.

[57] A. Shaikh, J. Redford, and K. G. Shin. Evaluating the impact of stale link state on
quality-of-service routing. IEEE/ACM Transactions on Networking, 06(02):162–
176, April 2001.

[58] O. P. Sharma. Markovian Queues. Series in Mathematics and its Applications. Ellis
Horwood, 1990.

[59] O. P. Sharma and A. M. K. Tarabia. A simple transient analysis of an M/M/1/N
queue. Sankhyā: The Indian Journal of Statistics, 62(A, Pt. 2):273–281, 2000.

[60] R. J. Sivasankar, S. Ramam, S. P. Subrahmaniam, T. Srinivasa Rao, and D. Medhi.
Some studies on the impact of dynamic traffic in QoS-based dynamic routing envi-
ronment. In Proceedings of the 2000 IEEE Internation Conference of Communica-
tions (ICC), pages 959–963, New Orleans, LA, USA, June 2000. IEEE.

[61] R. V. Solé and S. Valverde. Information transfer and phase transitions in a model
of Internet traffic. Physica A, 289(3):595–605, January 2001.

[62] N. T. Spring, R. Mahajan, D. Wetherall, and T. E. Anderson. Measuring ISP topolo-
gies with Rocketfuel. IEEE/ACM Transactions on Networking, 12(1):2–16, Febru-
ary 2004.

[63] L. Takács. Introduction to the Theory of Queues. Oxford University Press, New
York, 1962.

128 Bibliography

[64] A. Tanenbaum. Computer Networks. Prentice Hall Professional Technical Refer-
ence, 2002.

[65] A. M. K. Tarabia. Transient analysis of an M/M/1/N queue - an alternative ap-
proach. Tamkang Journal of Science and Engineering, 3(4):263–266, 2000.

[66] R. Teixeira and J. Rexford. Managing routing disruptions in Internet service
provider networks. IEEE Communications Magazine, 44(3):160–165, March 2006.

[67] M. Toren. Tcptraceroute, 2001. for latest version, see http://michael.toren.net/code/
tcptraceroute/.

[68] B. Wang, X. Su, and C. L. P. Chen. A new bandwidth guaranteed routing algorithm
for MPLS traffic engineering. In Proceedings of the 2002 IEEE Internation Con-
ference of Communications (ICC), New York City, NY, USA, April 2002. IEEE.

[69] F. Wang, N. Feamster, and L. Gao. Measuring the contributions of routing dy-
namics to prolonged end-to-end Internet path failures. In Proceedings of the
Global Telecommunications Conference GLOBECOM ’07, Washington, DC, USA,
November 2007. IEEE.

[70] F. Wang, Z. M. Mao, J. Wang, L. Gao, and R. Bush. A measurement study on
the impact of routing events on end-to-end Internet path performance. In L. Rizzo,
T. E. Anderson, and N. McKeown, editors, Proceedings of the ACM SIGCOMM
2006 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, pages 375–386, Pisa, Italy, September 2006. ACM.

[71] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson. Self-similarity through
high-variability: Statistical analysis of Ethernet LAN traffic at the source level.
IEEE/ACM Transactions on Networking, 5(1):71–86, February 1997.

[72] T. De Wolf and T. Holvoet. Emergence versus self-organisation: Different con-
cepts but promising when combined. In Engineering Self-Organising Systems:
Methodologies and Applications, volume 3464 of Lecture Notes in Computer Sci-
ence, pages 1–15. Springer Verlag, 2005.

[73] A. Yan and W.-B. Gong. Time-driven fluid simulation for high-speed networks.
IEEE Transactions on Information Theory, 45(5):1588–1599, 1999.

[74] J. Yuan, Y. Ren, and X. Shan. Self-organized criticality in a computer network
model. Physical Review E, 61(2):1067–1071, February 2000.

[75] T. Yung, J. Martin, M. Takai, and R. Bagrodia. Integration of fluid-based analytical
model with packet-level simulation for analysis of computer networks. In R. D.
van der Mei and F. Huebner-Szabo de Bucs, editors, SPIE, volume 4523 of Internet
Performance and Control of Network Systems II, pages 130–143, 2001.

Bibliography 129

[76] P. Zhang, R. Kantola, and Z. Ma. Design and implementation of a new routing
simulator. In Proceedings of the 2000 SCS Symposium on Performance Evalua-
tion of Computer and Telecommunication Systems (SPECTS), July 16-20, 2000 -
Vancouver, BC, Canada, Vancouver, BC, Canada, July 2000. SCS.

[77] P. Zhang, Z. Ma, and R. Kantola. Designing a new routing simulator for DiffServ
MPLS networks. In Proceedings of the 2001 SCS Symposium on Performance
Evaluation of Computer and Telecommunication Systems (SPECTS), July 15-19,
2000 - Orlando, Florida, USA, Orlando, Florida, USA, July 2000. SCS.

[78] Y. Zhang, V. Paxson, and S. Shenker. The stationarity of Internet path properties:
Routing, loss, and throughput. ACIRI technical report, AT&T Centre for Internet
Research at ICSI, 2000.

