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Abstract

Electricity grids worldwide are experiencing increased peak demands and decreasing simul-
taneity due to higher shares of Renewable Energy Sources (RES). It is expected that many
grids will soon reach their limits. One solution to mitigate these issues is exploiting flexibility
in e.g. electric vehicles. In this work, a shrinking horizon model predictive controller is con-
structed to optimally charge and discharge EVs with respect to the day ahead electricity price
or grid carbon intensity. The model takes into account that users with a dual rate electricity
plan only want to charge during their off-peak hours. A feature to implement a household
PV setup in the optimization is included. The possible consequences in terms of associated
carbon emissions, utility costs and user costs are analysed using a simulation based on data
from 4279 charging sessions that took place between June 23, 2021 and June 23, 2022. The
sessions are split in 2855 weekday sessions (duration between 4 and 24 hours) and 1424 week-
end sessions (duration between 4 and 60 hours). It is found that using current circumstances,
minimizing the carbon emissions using bidirectional charging results in a higher price (5.5 %)
for the utility than using the current state of the art, unidirectional charging minimizing the
wholesale electricity cost. Bidirectional charging minimizing the wholesale electricity cost
results in higher emissions compared to unidirectional charging (2.8 %), and even compared
to uncontrolled charging (0.9 – 3.6 %). The reason for this seems to be a negative correlation
between carbon intensity and wholesale price during the times that vehicles are typically
connected although this needs further investigation to be confirmed.
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“We are the first generation to feel the impact of climate change and the last
generation that can do something about it”
— Barack Obama





Chapter 1

Introduction

1-1 Flexibility and its importance

Our societies biggest challenge today is indubitably climate change. One of the key pillars in
tackling climate change is electrification of almost every aspect in our lives in combination
with renewable electricity production. From heating buildings to cooking, from transport to
industry. At the same time, a shift needs to take place from fossil-based electricity generation
to renewable electricity generation. This gives rise to a new challenge; how to deal with vastly
increasing electricity demand and with more volatile electricity supply, due to less predictable
and intermittent electricity sources such as solar and wind? Until now, grids were designed
to have enough capacity to provide electricity to connected parties, even during the highest
peaks. But with increasing peaks and decreasing simultaneity (the synchronization of supply
and demand) on the grid, the current system will soon reach its limit if the way of using it
remains the same. One option would be to drastically increase grid capacity, but this would
require investments in the order of €90 billion for The Netherlands alone [4]. But there is
another, much smarter solution at hand: using flexibility, or in short flex.

Flexibility is found in many electrical appliances, such as heat pumps, boilers, tumble dryers
and electric vehicles. This is easily explained using the example of a boiler. By default a
boiler tries to keep the water temperature constant, so as soon as hot tap water is used,
the boiler switches on and brings the temperature back to the set temperature as quickly
as possible, and then switches off again. However, the same level of comfort can be reached
while also exploiting the flexibility. Using forecasting methods, the next moment of hot water
consumption can be predicted with reasonable accuracy. The only requirement is then that
the boiler temperature is sufficiently high at the moment of tap water consumption. Note
that it may also be higher, thus storing the excess energy in the form of heat for later use.
This way the boilers electricity consumption can be steered in a way that is beneficial for
one or preferably multiple stakeholders. For example, the consumer pays less and the peak
load in the grid decreases, bringing value to both the end consumer and the grid operator.
Similar strategies can be exploited with heat pumps, such as explored by Hong et al. [5].
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2 Introduction

Time shifts of up to 6 hours were achievable after adding rigorous thermal buffering to the
heating system, providing a great deal of flexibility.

Another example of a flexible load, is an Electric Vehicle (EV). EVs are often plugged in to
the charging station for approximately 14 consecutive hours, while they only need around 4
hours to obtain the required state of charge [6]. This means that there is freedom to choose
when to charge the vehicle. By default, an EV will start charging immediately upon plugging
in. Because users often plug in upon coming home from work, this is often the time that
people also start cooking, washing and heating the house, so-called peak time. To relieve
grid pressure, it is therefore beneficial to postpone charging to a later time when electricity
demand is less, so-called off-peak time. This measure also comes with a financial incentive
since energy prices are generally lower during the night. Moreover, with increasing amounts of
renewable energy sources, the imbalance on the grid increases too. EVs can play a significant
role in mitigating imbalance issues, as they can ramp up or down their charge speeds almost
instantaneously. But there is more. Electric vehicles are not only a flexible load, they are
potentially also storage batteries on wheels. They can not only postpone their charging to a
more beneficial time, but theoretically they can also store renewable energy during the day,
and use this energy later during the night to e.g. to power the washing machine or electric hob.
This way, the EV contributes not only to shaving the peak in electricity demand, but also to
increase the utilization of Renewable Energy Sources (RES). To this end, the International
Organization for Standardization (ISO) is developing the ISO15118-20 standard to enable
Vehicle-to-Grid (V2G), which is expected to be implemented in virtually all future EVs on
the market.

1-2 Large and small scale applications

1-2-1 Current practice

Today, the flexibility provided by electric vehicles is already being utilized by aggregators
such as Jedlix. Jedlix aggregates electric vehicles into different pools. A pool of vehicles is
called a Virtual Power Plant (VPP). The total consumption of these VPPs can be increased
or decreased based on steering signals from VPP owners. Using unidirectional smart charging
(erroneously called V1G in industry), either upward or downward flexibility can be provided.
Providing upward flexibility means in this application that the total charging power must be
turned down (analogous to ramping up a power plant, hence the name upward flexibility).
Downward flexibility thus means increasing the total charging power. A VPP can therefore
be configured to deliver either upward or downward flexibility.

In the scenario of an upward pool, vehicles in the pool start charging upon connection, and
pause charging when the VPP owner requests upward regulation. Charging stops as soon as
the desired state of charge is reached. In a downward pool, vehicles postpone charging until
either a downward regulation signal is received or they need to start charging in order to meet
their charging needs in time.

On a small, single household scale, people install so-called ’smart chargers’ at home, to make
sure their consumption never exceeds their contracted power. This means that the charger
will automatically reduce power when other household appliances draw too much current (e.g.
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1-2 Large and small scale applications 3

the washing machine is turned on). Furthermore, some smart chargers can be connected to
the owner’s Photo Voltaic (PV) installation, allowing for charging on PV production, if the
vehicle is connected and not fully charged at the time of solar electricity generation. This
way, a consumer exploits the flexibility of his EV by shifting the charging to the time of PV
production. Other household appliances can be used to optimize so-called self-consumption
too. An example of the effects can be seen in Figure 1-1, where the yellow line indicates the
solar energy production.

Figure 1-1: Example of exploiting flexibility on a small scale [1]

1-2-2 Future possibilities

Currently, many more methods with regard to smart charging are being developed. Some
examples are smart charging for energy autonomy [7], smart charging for micro grid opti-
mization [8] and smart charging for frequency regulation [9].
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1-3 Research outline

Following the literature research preceding this thesis and in collaboration with Jedlix, the
research gap was identified which forms the basis for this thesis.

Optimal steering of EV charging and discharging to ensure minimal carbon emis-
sions from both a single household and an aggregator’s perspective, using real user
data.

To develop this optimal steering method, three subtasks are identified:

• Build a Model Predictive Controller to control the charging of the vehicle

• Identify a suitable cost function that effectively minimizes the associated carbon emis-
sions

• Simulate a representative set of charging sessions and analyse performance of model

1-4 Approach

To successfully develop and implement the proposed method, the following approach was
used:

1. Data acquisition, to get a better understanding of the available data and steering pa-
rameters.

2. Strategy development, to identify viable optimization parameters

3. Cost function development, translating the strategy into a mathematical equation to be
minimized

4. Baseline and alternative strategies development, to benchmark the proposed methods
to

5. Data processing, combining several sources and modifying and filtering data to be used

6. Simulation, to generate results of all available strategies

B.A. Swens Master of Science Thesis



1-5 How to read this thesis 5

1-5 How to read this thesis

This section will briefly explain which topics are covered where to help the reader navigate
through this thesis.

Ch 2 covers a brief overview of the potential of Vehicle-to-Grid technology, how it can be
used, and how it is used in this thesis.

Ch 3 starts with a general explanation of Model Predictive Control, followed by a section on
Shrinking Horizon Control. Subsequently some existing applications of MPC in smart
charging are discussed. The chapter ends with an elaboration on the model used in this
thesis.

Ch 4 introduces the challenges of carbon minimization in EV charging, followed by the various
used cost functions and constraints. Next, the assumptions are laid out, and the working
principle of the used toolboxes is explained. Finally the used data, data processing and
results evaluation is discussed.

Ch 5 shows the working of the model and elaborately discusses the results.

Ch 6 gives a summary of the conclusions and some recommendations for future research and
policies.
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Chapter 2

V2G Potential

As mentioned in chapter 1, many parties are focusing on exploiting the possibilities associated
with Vehicle-to-Grid (V2G) technology. In this chapter, the potential of V2G technology will
be discussed and a framework for application of V2G within this paper will be set.

In 2021, Di Natale et al. [10] published a case study of the Swiss energy system, investigating
the potential impact of V2G operation on energy systems with a high share of renewable
energy production. It was then compared to using reservoirs and pumped-hydro storage
facilities in terms of ability to decrease amount of Greenhouse Gas (GHG) intensive electricity
imports from connected grids.

As stated before, controlled charging of EVs can shift their electricity demand to maximize
self-consumption of generated PV electricity during the day. With V2G operation, additional
surpluses can be captured in EV batteries and fed back to the grid at times of high demand
to reduce GHG-imports.

In a scenario with a high share of Renewable Energy Sources (RES), V2G shows the ability to
reduce the imported GHG emissions by around 35% in the year 2050, which is similar to the
potential of reservoirs and pumped hydro storage. By combining the storage technologies, a
reduction of 60% could be obtained.

2-1 Short-term storage

Vehicle-to-grid technology is very much suited for short-term storage. That is, storing small
amounts of excess electricity during times of high RES generation and low demand, to be
used during times of low RES generation and high demand. For this technology to become
interesting, EVs need to reach a significant aggregated capacity, and an increased share in the
production of renewable energy can further increase the impact.

The prognosis is that in 2030, 140-240 million electric vehicles will be on the road globally
[11]. Even in the most conservative scenario this will result in an aggregated capacity of
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8 V2G Potential

approximately 7 TWh. Looking at The Netherlands alone, the expectation is that 2.3 mil-
lion registered passenger cars will be fully electric by 2030, which accounts for 115 GWh of
aggregated storage capacity (this is still only 25% of all passenger cars in The Netherlands)
[4]. Comparing this to the (current) average daily electricity consumption of 298 GWh, this
is a significant amount.

2-2 Long-term storage

On the other hand, V2G will not be useful for seasonal storage for two main reasons. Firstly,
due to the fact that lithium-ion batteries lose their charge over time. This phenomenon is
called battery drain, and is not taken into account in this thesis. This is justified because the
battery drain during charging sessions is negligible, but during extended periods of several
weeks of idle time, the drain is not negligible anymore, and for seasonal storage this becomes
a real burden. This could potentially be solved with better battery technology in the future.
The second reason, which is harder to solve with new technology, is the fact that a lot of excess
storage capacity would be needed for seasonal storage. Not only is this extra storage very
expensive, but since the main function for EVs will still be transportation, all the extra weight
and volume of the extra capacity must be transported as well, resulting in much higher energy
consumption. To enable seasonal storage in EVs, there are three main aspects of batteries
that need to improve enormously, namely energy density (the battery capacity per unit mass),
the marginal costs of capacity (the price per unit energy), and the drain. Since these are very
unrealistic to happen within the near and even not-so-near future, it can be stated that EVs
will not be suitable for seasonal storage for the foreseeable future. Moreover, it is inherently
unsustainable to transport all this energy that doesn’t need to be transported. This view is
shared by Kempton and Tomić [12], who argue that V2G is well equipped for storage of up
to 4 days.

2-3 Grid balancing

Another interesting use case for V2G technology is grid balancing. This means exploiting
the storage capacity of EVs for mitigating the imbalance on the grid. Currently, this grid
balancing typically happens by means of gas plants that can be ramped up or down quickly
whenever grid imbalance occurs. EVs have the ability to ramp up charging or discharging to
full power within seconds, making them applicable in all stages of frequency regulation. An
added benefit of using it in this manner is that the volumes are limited, since the imbalances
are usually only for a short period of time. This results in limited battery degradation [13].
Moreover, since assets that can ramp up or down on such short notice are often very expensive,
the compensations from Transmission System Operator (TSO)s for providing these services
are generous. This is a very interesting use case to further explore, but it focuses mainly on
forecasting. To adequately bid on the frequency regulation market, an aggregator or Balance
Responsible Party (BRP) managing a fleet of vehicles, must accurately forecast the amount
of balancing power available during 4-hour consecutive blocks. This means that throughout
one 4-hour block, this capacity must be available on the instant. The proceedings of this use
case are investigated by Schuller and Rieger [9] for the German regulation energy markets.
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2-4 Cost-efficiency 9

Based on price data from 2011 and 2012, they concluded that a maximum profit of €730.31
per vehicle was possible.

2-4 Cost-efficiency

Utilizing Electric Vehicle (EV) batteries is by far the most cost-efficient form of energy storage,
since zero additional investments are necessary. The only costs that need to be taken into
account are the additional degradation costs. Since there is little empirical data available
with regards to V2G operation, it is hard to quantify this degradation. Nevertheless, if a
storage battery was to be bought specifically for storing excess renewable energy, degradation
would take place too, on top of the large initial investment.

When charging and discharging an electric vehicle, power losses occur in various places. Most
losses occur in the transformer. Interpolating the results of Apostolaki-Iosifidou et al. [14]
a charging efficiency of 90% and discharging efficiency of 85% is assumed. This results in a
round trip efficiency of 76.5%.

2-5 V2G application in this thesis

In this thesis, the possibilities for V2G operation will be explored for optimally charging EVs
with respect to day ahead price or carbon emissions. Using either of these metrics, will help
overcome the simultaneity issues, as an excess of renewable electricity is likely to result in
both low prices and low carbon emissions, as further explained in section 4-4. Moreover, a
controller will be developed that optimally uses V2G in combination with domestic solar Photo
Voltaic (PV) installations, to maximize the self-consumption of residential RES systems.
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Chapter 3

MPC Design

3-1 Model Predictive Control

To control the charging of the electric vehicle, a Model Predictive Controller (MPC) is de-
signed. A model predictive controller is a controller that uses a model of the system at hand,
in this case the charging/discharging of a vehicle battery, to predict its future output signal.
It then solves an online optimization problem to select the optimal control sequence. In other
words, using the model, a prediction can be made of the state evolution if any set of inputs
is given to the system. Typically, five important items are part of the design procedure:

1. Process model

2. Cost function (or performance index)

3. Constraints

4. Optimization

5. Receding horizon principle

There are several reasons to choose for Model Predictive Control over another type of con-
troller. First of all, MPC can handle constraints. In practice, all systems are subject to
constraints of various natures. This can be hardware constraints (for example the maximum
acceleration of a vehicle), regulatory constraints (for example the maximum noise of a wind
turbine), safety constraints (the maximum speed on a specific road), and so on. In more
traditional control methods such as PID control, the tuning parameters are used to keep the
signals within bounds, or more advanced setups are used to mitigate the negative results
such as integrator windup. Usually the optimal control strategy touches one or more of the
constraints. MPC uses a direct approach by modifying the unconstrained solution in such a
way that the constraints are respected.
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12 MPC Design

Two types of constraints can be identified. The inequality constraints, are typically bounds on
the control inputs or states of the system. The equality constraints can be user requirements
such as a specific state at the end of the prediction horizon, or a fixed constant control signal
after the control horizon.
Furthermore, MPC can handle Multi-input Multi-output (MIMO) systems, making it much
easier to use in systems where outputs are affected by multiple inputs, and it can incorporate
future reference information into the problem because it has so-called ’preview capability’ (it
essentially predicts its future states).
In this thesis, the system is MIMO, with charging and discharging power as inputs, and state
of charge and battery power as outputs. A cost function to-be-minimized is constructed,
indicating the performance of the system with respect to some future control sequence. This
cost function is discussed in chapter 4. Model predictive control is sometimes referred to as
Receding Horizon Control, due to its receding nature.

Figure 3-1: Basic working principle of MPC [2]

At each time step, an optimal control sequence is calculated that minimizes the cost function
over a predetermined control horizon while respecting the constraints. The first control action
of this calculated control sequence is then applied to the system, and the rest of the calculated
actions are discarded. The system then provides an output which is usually not exactly the
output predicted by the MPC beforehand. This is due to the fact that a model is by definition
a simplification of reality. Therefore in reality there are always external factors playing a
role. In the case of charging this could be a delay in the signal, or unforeseen losses due to
battery temperature regulation. This new measured output is used as initial state for the next
calculation of the optimal control sequence over the same horizon length. The first control
action of this new control sequence is implemented again, and the other actions are discarded.
In other words, the system keeps predicting the same number of steps into the future, hence
the name Receding Horizon Control. One iteration is shown in Figure 3-1.
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3-2 Cost function

The most common type of cost function is the linear quadratic cost function which has the
following form

J(x(0), u) = 1
2

N−1∑
k=0

xT (k)Qx(k) + uT (k)Ru(k) + 1
2

xT (N)Pf x(N) (3-1)

with Q, R and Pf being the tuning parameters. The Q-matrix defines the penalty on the
state and R defines the penalty on the inputs. Pf is the penalty on the final state. To
guarantee existence and uniqueness of the solution, Q and Pf must be chosen real, symmetric
and positive semidefinite, and R must be real, symmetric and positive definite. The reason
that R must be positive definite is that setting R to zero would imply a free pass for the input
to go to infinity. This exact function steers the input and the states to zero, but by replacing
for example x(k) by a − x(k) the states are steered towards a.

By varying the weight on the terms relative to each other, the controller can be set to steer
the system to its desired state quickly using large control actions, or more slowly using smaller
control actions. By a large Q relative to R, the states are contributing more towards the total
cost than the inputs. This means that it makes sense to use large inputs in order to push the
states towards the reference more quickly. Note that the contribution of Q, R and Pf depend
on their value relative to one another. Setting them all to 1000 × I results in a different cost,
but the exact same optimal input sequence u, compared to setting them all to 0.1 × I.

3-3 Horizons

In MPC, two horizons can be distinguished. The prediction horizon, Np and the control
horizon Nc. For this thesis, they are assumed to be the same and will therefore be referred to
as the horizon. This is, however, not necessarily the case. The prediction horizon determines
how many time steps in the future the state is predicted. The control horizon indicates how
many future control actions are computed. After the control horizon, it is assumed that the
control signal does not change anymore (it is kept constant at the last value, u(Nc)), and
with that assumption the total cost function (which is calculated over the prediction horizon)
is minimized.

3-4 Shrinking horizon control

A specific type of model predictive control is Shrinking Horizon Model Predictive Control
(SHMPC). SHMPC uses a prediction horizon that shrinks at each time step. For the use
case at hand, this is a very useful feature, because the leaving time is static, and does not
move forward every time step. SHMPC limits the number of time steps that the system
needs to predict the future and calculate future inputs for, to the leaving time of the vehicle.
This saves half of the computational load because the average horizon is exactly half of
the number of time steps between the start and the end of the session (since the horizon
decreases linearly from the initial horizon to 0). This is significant, especially if this system is
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14 MPC Design

to be implemented on a large scale, while being centrally computed. Moreover, if a receding
horizon is used, many control actions are calculated for after the set departure time. This is
a waste of computational power. Since model predictive control solves an online optimization
problem in each time step, it is important to be cautious about the computational load. This
computational intensity is also the largest drawback of MPC. In EV charging, the horizon is
not receding. The departure time stays the same and comes closer every time step. Therefore
a shrinking horizon control method makes sense in this case. Furthermore, since the goal is
not one reference value, but the lowest cost based on a varying curve, it does not make sense
to have a control horizon that is smaller than the prediction horizon. Therefore the control
horizon and prediction horizon are always equal to the amount of time steps left until the set
departure time.

3-5 MPC for smart EV Charging

Some research has already been done into MPC for EV charging. Yamaguchi et al. [15]
proposed a method using MPC with a MILP objective function to optimize EV charging in
a Home Energy Management System (HEMS). This paper focused on price optimization
with different purchasing and selling price. An AR model was used to predict the energy
consumption in future time steps. Later this research was appended with a particle swarm
optimization. By using Particle Swarm Optimization (PSO), Yoshimura et al. [16] enabled
the use of non-linear cost functions and non-linear constraints. The cost of charging at the
office is also incorporated. The simulated scenario only accounts for vehicles traveling about
5 km to work and back, and only a few driving profiles and only one vehicle type is used.
Therefore the results are not representative for the real world.

In 2017, Janjic et al. [17] proposed a predictive control approach to maximize profits from
secondary frequency control for a commercial fleet. This was an interesting approach as it no
longer puts the transportation function of EVs at the first place. The main objective is to
maximize the total revenue gerenated by the fleet. To do so, the connection times are fixed
and mandatory, taking away the freedom to use the vehicle at any time. Given the fixed
connection times, the fleet owner tries to minimize customer waiting time. This is a very
interesting and novel approach, but it is not applicable to personal vehicles which form the
majority of vehicles on the road.

3-6 The battery model

As explained above, model predictive control requires a model of the system to be controlled.
In this case, a model of the charging and discharging of a battery is needed. To this end, a
simple, second order, discrete time direct input-output model was created:

xk+1 =
[

Ek+1
Pk+1

]
=

[
1 dt
0 0

] [
Ek

Pk

]
+

[
0 0
1
60 − 1

60

] [
uc

k

ud
k

]
(3-2)

yk =
[

1 0
0 1

]
xk (3-3)
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3-6 The battery model 15

where E denotes the electric energy stored in the battery, and P is the charging power in
kWh per minute. uc and ud denote the charging and discharging power in kW respectively.
Subscript k indicates the time step.

It is easy to see that this system is controllable. The controllability matrix, defined for a
2-dimensional system by

C =
[

B AB
]

=
[

0 0 dt/60 −dt/60
1/60 −1/60 0 0

]
(3-4)

is clearly full row rank, hence the system is controllable.
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Chapter 4

Methodology

In this chapter, the cost function and the constraints will be explained. As some of the
constraints are soft, these will be incorporated in the cost function. The hard constraints are
mostly physical limitations of the system, such as the maximum charging power and the grid
connection capacity.

4-1 Minimizing carbon emissions

The first objective is singular and relatively straight-forward; minimize carbon emissions
related to a households total electricity consumption. This is achieved by making sure the
energy that needs to be drawn from the grid has an as low as possible carbon intensity. To
minimize the carbon emissions related to a households electricity usage, some background
knowledge is required.

Throughout every day, the energy mix of the grid electricity varies. On a sunny day around
noon, a large part of the electricity may be generated by solar panels, pushing down the
average carbon emissions for one kWh of electricity at that moment. During a windless
winter evening on the other hand, the electricity will mostly be generated by gas and coal
plants, resulting in high average carbon emissions per kWh. The real-time and historic carbon
intensity are modeled and monitored by a firm called electricityMap.org.

4-1-1 Efficiency losses

While charging an EV, electric energy is converted from alternating current (AC) from the
grid-side to direct current (DC), as the battery stores energy in DC. In this conversion, some
of the energy is dissipated as heat, resulting in energy losses. When discharging, the DC
electricity needs to be converted back to AC, which again induces some conversion losses.
Other components such as the components and cables of the charge post, circuit breakers and
the battery itself impose energy losses too, but the lion’s share of the energy losses is due to
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the AC/DC transformer. The efficiency of these processes are dependent on several factors
such as charging current, amount of phases used, state of charge of the battery and whether
the vehicle is charging or discharging [14].

During charging, a Kia e-Niro for example scores an efficiency of 79.58% for 10A on one phase
and 80.32% when the current is increased to 16A. Much larger differences are observed by
switching to three-phase charging, resulting in 86.98% efficiency at 10A and 87.21% at 16A.
The influence of charging current on the efficiency is minimal, meaning that PV-owners can
easily scale the charging current depending on the PV output without noticeable difference in
efficiency. Note that the low efficiency on single-phase charging is due to the fact that the on-
board charger (which is essentially an AC/DC converter) is designed for three phase charging
and is hence inefficient for single-phase charging [18]. For linearity purposes, it is assumed
in this thesis that there is one constant charging efficiency and one constant discharging
efficiency. For future studies it would be very interesting to investigate a method with a
minimum charge and discharge speed, to prevent (dis)charging at a very low rate, as this
often results in higher losses.

4-1-2 Battery degradation

There is one more factor that needs to be taken into account. Repeatedly charging and
discharging results in battery degradation. Lots of research has been done in battery degra-
dation and it depends on many factors. These factors can be split up in two categories;
cyclic ageing and calendric ageing. Cyclic ageing is the degradation of the battery due to
repeatedly charging and discharging the battery. Factors that play a role in cyclic ageing
are C-rate (charging/discharging power in kW as fraction of the total capacity in kWh) and
Depth of Discharge (DOD). Calendric ageing is the degradation of the battery due to time
passing. Important factors for calendric ageing besides time are temperature and State of
Charge (SOC) [19] [20]. Since most of the factors for calendric ageing are not influenced by
charging, this is mostly left out of the equation. Interestingly, according to Ahmadian et al.
[19], a (sustained) high SOC results in higher calendric ageing, and a low SOC (equivalent to
a high DOD) results in increased cyclic ageing. This means that a high DOD increases degra-
dation on a cycle basis, and high SOC increases degradation on a time basis. To limit the
cyclic ageing, the ISO15118-20 protocol will likely support discharging up to a rate of 3.7 kW,
which is usually less than 0.1C and for large batteries even less than 0.05C. As explained in
section 4-3, soft constraints will be imposed on the state of charge to limit both the calendric
ageing and cyclic ageing.

4-2 Single vehicle/HEMS model

The first use case explored in this thesis is the optimal charging using Vehicle-to-Grid (V2G)
of an Electric Vehicle (EV) in a Home Energy Management System (HEMS). For the case at
hand, the carbon intensity of the Dutch electricity grid will be used. It is assumed that the
carbon emissions of electricity generated by a household Photo Voltaic (PV) system are zero,
neglecting the emissions associated with the production of the PV system and the end-of-life
related emissions. Therefore, the total carbon emissions related to the household electricity
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4-2 Single vehicle/HEMS model 19

consumption is the volume drawn from the grid during each time step multiplied by the
carbon intensity at that time step.

Since this model assumes a single household, it is assumed that the contribution on the
grid carbon intensity of feeding electricity back to the grid is negligible. Consequently, it is
undesirable to feed electricity back to the grid. This is an acceptable strategy since the Dutch
government announced that the net-metering rule is being phased out, rendering feeding
electricity back into the grid significantly less attractive, compared to directly consuming
or storing this electricity within the household. For this method we will assume that perfect
forecasts for electricity production, grid carbon intensity and household demand are available.
The cost function then becomes

VN (u) =
N∑

k=1
e+

k (uk)ck (4-1)

where u =
[

u1 · · · uN

]
=

[
uc

1 · · · uc
N

ud
1 · · · ud

N

]
denotes the vector of the decision variables,

charging speed and discharging speed respectively, at each time step. N is the amount of
time steps before departure, and is therefore also the horizon. ck denotes the grid carbon
intensity at time step k, in gr CO2eq/kWh. e+

k denotes max(ek, 0) with ek the energy taken
from/delivered to the grid, defined as

ek(uk) = ed,k + eb,k(uk) − ep,k (4-2)

where ed,k denotes the domestic electricity demand at time step k, excluding the vehicle
demand. eb,k is the electric energy delivered to the vehicle at time step k, and ep,k represents
the energy production by a domestic solar PV or wind turbine. Note that eg,k and eb,k can
also take negative values, indicating that energy is fed back into the grid or into the home
respectively.

The most interesting part, and the only part we can influence, is the battery energy eb,k(uk).
The input uk is defined as the effective electric power going into and out of the battery in
kW. This means the power that is left after conversion for charging, and before conversion
for discharging. This way, the battery model can stay simple, as discussed in chapter 3:

xk+1 =
[

Ek+1
Pk+1

]
=

[
1 dt
0 0

] [
Ek

Pk

]
+

[
0 0
1
60 − 1

60

] [
uc

k

ud
k

]
(4-3)

The battery energy is defined as follows:

eb,k(uk) =
[

dt
60 − dt

60

] [
uc

k
1
ηc

ud
k ηd

]
(4-4)

where ηc and ηd denote the charging and discharging efficiencies respectively. Different from
the method used by Yamaguchi et al. [15], using this method, no auxiliary variables are needed
and the problem is linear as is. Due to the efficiency losses, it will never be optimal to charge
and discharge at the same time.
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4-2-1 Constraints

Furthermore, we need several intuitive constraints to ensure satisfactory state of charge at
departure time, a specific minimum state of charge throughout to conserve battery health
and for emergency trips, and a specific maximum state of charge. Note that the minimum
SOC is to limit the depth of discharge, which increases the cyclic ageing, while the maximum
SOC is to limit the calendric ageing, which increases at high SOC.

The full objective function can now be rewritten as

VN (u) =
N∑

k=1
max

ed,k +
[

dt
60ηc

− dt
60ηd

] [
uc

k

ud
k

]
︸ ︷︷ ︸

eb,k(uk)

−ep,k, 0

 ck (4-5)

s.t. uc
k, ud

k ≥ 0 (4-6)
uc

k ≤ ecs (4-7)
ud

k ≤ eds (4-8)
Ek ≥ minSOC ∗ B (4-9)
Ek ≤ maxSOC ∗ B (4-10)
EN ≥ dSOC ∗ B (4-11)

where E denotes the first state from Equation 4-3, representing the battery energy, ecs and eds
denote the estimated (max) charge and discharge speed respecitvely. minSOC and maxSOC
denote the state of charge boundaries set by user preferences for battery health conservation
and emergency trip reserves. B denotes the battery capacity of the EV, ans dSOC denotes
the desired state of charge.

4-3 Soft SOC boundaries

The cost function as described above has one major drawback: when a vehicle has a SOC
that is lower than the minimum SOC or higher than the maximum SOC at the moment
of connection, the problem becomes infeasible and the program stops. This is solved by
implementing constraints 4-9 and 4-10 in the cost function as soft constraints by adding two
terms to the cost function:

Cl max
(minSOC

100
∗ B − Ek, 0

)
(4-12)

Cu max
(

Ek − maxSOC
100

∗ B, 0
)

(4-13)

where Cl and Cu denote weights for violating the lower bound and upper bound respectively.
This way the SOC is allowed to violate the bounds at a cost. A high value for Cl and Cu

will result in direct charging/discharging until the SOC is within bounds, regardless of the
current carbon intensity. A low value on the other hand, will result in a slight preference to
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4-3 Soft SOC boundaries 21

Figure 4-1: Penalty for a being at an SOC below minSOC or above maxSOC

stay within bounds, but if a high profit in terms of emissions can be made, these bounds can
be violated. A big violation will always result in a higher penalty than a small violation. An
example of these expressions is shown in Figure 4-1. In this example minSOC and maxSOC
are taken to be 20% and 80% respectively, and Cl and Cu are both equal to 1. Moreover, if
the dSOC is higher than the maxSOC, the charging above maxSOC will happen only at the
very end of the charging session, regardless of the carbon intensity at that time. This is due
to the fact that a penalty is observed for every time step that the SOC is above the maxSOC.
The model will violate this maxSOC for a minimal number of time steps, hence this only
happens at the very end of the session. This is a fair policy since sustaining a high SOC for
extended periods of time increases the calendric battery degradation heavily [19]. If a user
wants a SOC of 100% at the end of his session, for example because the user has a road trip
planned, it is wise to fill up the SOC only just before leaving. This is in line the advise that
OEMs give to their customers buying their first EV. Since the trade-off between violating the
maxSOC for a longer period of time and having to charge at the end of the session regardless
of the carbon intensity is a personal choice, it could be considered to make these weights user
inputs. Users typically won’t have a great understanding of the meaning of these weights, so
they could be advised by the supplier of the controller. Another option would be to further
research the cost of degradation, and base the weights on this cost. This would, however,
result in a dynamic weight which could significantly increase the complexity of the model.
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The total cost function now becomes

VN (u) =
N∑

k=1
max

ed,k +
[

dt
60ηc

− dt
60ηd

] [
uc

k

ud
k

]
︸ ︷︷ ︸

eb,k(uk)

−ep,k, 0

 ck

+ Cl max
(minSOC

100
∗ B − Ek, 0

)
+ Cu max

(
Ek − maxSOC

100
∗ B, 0

)
(4-14)

s.t. uc
k, ud

k ≥ 0 (4-15)
uc

k ≤ ecs (4-16)
ud

k ≤ eds (4-17)
EN ≥ dSOC ∗ B (4-18)

4-4 Carbon versus price optimization

As can be seen in chapter 5, using only carbon optimization oftentimes results in no discharg-
ing, as the volatility of the carbon intensity is not high enough to make it worth discharging
and incurring the associated conversion losses. However, if the price is chosen as optimization
parameter, discharging is very often desirable. Moreover, the business model with carbon op-
timization is unfortunately quite weak as it often results in more expensive charging compared
to unidirectional, price optimized charging, which is the current state of the art. Ultimately
most consumers want to minimize their electricity bill. This could, also from an environmental
perspective, still be a reasonable approach.

In the current energy market, the cheapest sources are always put into operation first. The
cheapest sources are always renewable, since they have no marginal operation costs and are
therefore considered free, whereas gas and coal have a price tag since they consume resources
and require labourers to produce electricity. This means that consuming more electricity can,
and at certain volumes surely will, result in making use of a more expensive and therefore often
dirtier energy source. This way, when electricity is cheap this usually means it is relatively
clean too, and choosing to charge at this point often results in more renewable or nuclear
power to be put into operation. This principle is shown in Figure 4-2. Note that this regards
the wholesale energy prices, which is often not what consumers pay. However, for this case
it is assumed that the user is on a dynamic rate, which represents the day-ahead hourly
wholesale price.

The negative side of this approach is that currently, the marginal price of electricity from a
coal plant is lower than electricity from a gas plant. This means that optimizing over price
will sometimes prefer staying at the coal plant electricity rather than moving up to gas plant
electricity, while moving up may decrease the average carbon intensity.

To do this, a very small alteration to the cost function was made by replacing the carbon
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Figure 4-2: Merit order dispatch in electricity markets [3]

intensity for the day-ahead price, resulting in the following:

VN (u) =
N∑

k=1
max

ed,k +
[

dt
60ηc

− dt
60ηd

] [
uc

k

ud
k

]
︸ ︷︷ ︸

eb,k(uk)

−ep,k, 0

 pk

+ Cl max
(minSOC

100
∗ B − Ek, 0

)
+ Cu max

(
Ek − maxSOC

100
∗ B, 0

)
(4-19)

s.t. uc
k, ud

k ≥ 0 (4-20)
uc

k ≤ ecs (4-21)
ud

k ≤ eds (4-22)
Ek ≥ minSOC ∗ B (4-23)
Ek ≤ maxSOC ∗ B (4-24)
EN ≥ dSOC ∗ B (4-25)

where pk denotes the day-ahead electricity price per kWh at time step k.
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4-4-1 Penalty on changing charge speed

As can be seen in chapter 5, the cost function optimizing over electricity price resulted in
some undesirable behaviour, since this price is constant for a full hour. Clearly, the model
will use the cheapest hours possible for charging. Since it is very unlikely (and theoretically
impossible) that the most expensive hour needed, is needed for the full hour, it will only need
a part of this hour, giving some flexibility in when to charge during this hour. Without any
incentive to charge in a specific way during this hour, it could switch on and off infinitely
many times without the total cost changing. Therefore a very small penalty was added to
the derivative of the charge speed as follows:

VN (u) =
N∑

k=1
max

ed,k +
[

dt
60ηc

− dt
60ηd

] [
uc

k

ud
k

]
︸ ︷︷ ︸

eb,k(uk)

−ep,k, 0

 pk

+ Cl max
(minSOC

100
∗ B − Ek, 0

)
+ Cu max

(
Ek − maxSOC

100
∗ B, 0

)
+ ε |∆uk|

(4-26)

s.t. uc
k, ud

k ≥ 0 (4-27)
uc

k ≤ ecs (4-28)
ud

k ≤ eds (4-29)
Ek ≥ minSOC ∗ B (4-30)
Ek ≤ maxSOC ∗ B (4-31)
EN ≥ dSOC ∗ B (4-32)

where ε denotes an arbitrary small number.

4-5 Multi-vehicle scenario

To create a method that is more feasible to be implemented on a large scale, a multi-vehicle
optimization model was built in a way that an aggregator such as Jedlix is able to monetize
the flex provided by users. For the business model to hold, the main focus in this model is
optimization on price, although carbon optimization is explored too. Moreover, the results in
terms of carbon of both models are extensively analysed in chapter 5.

For an aggregator it is infeasible to incorporate household demand into the equation, hence
this is not taken into account. Moreover, with a view on the future of net-metering, it is very
much possible that the price received for feeding back electricity will be simply the day-ahead
price or the imbalance price. This is one of the scenarios that is assessed for the multi-vehicle
models.
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To this end, a new cost-function was constructed, not only summing over the time steps but
also over the vehicles. The household consumption and production are not taken into account,
because especially household consumption is almost impossible to predict and generally not in
the scope of an aggregator. Solar production will be taken into account later in subsection 4-
5-1. The new cost function then becomes:

VN,W (u) =
N∑

k=1

W∑
m=1

[
dt

60ηc
m

− dt
60ηd

m

] [
uc

k,m

ud
k,m

]
︸ ︷︷ ︸

ek,m(uk,m)

pk

+ Cl max(minSOCm/100 ∗ Bm − Ek,m, 0)
+ Cu max(Ek,m − maxSOCm/100 ∗ Bm, 0)
+ ε |∆uk,m|

(4-33)

s.t. uc
k,m, ud

k,m ≥ 0 (4-34)
uc

k,m ≤ ecsm (4-35)
ud

k,m ≤ edsm (4-36)
uc

k,m = ud
k,m = 0 if k > Nm (4-37)

ENm ≥ dSOCm ∗ Bm (4-38)

where W denotes the total number of active sessions and m is the session/vehicle index. k = 1
for the current time step, and k = N for the time step where the last vehicle disconnects.
Nm is the final time step for session m, and N = maxm(Nm). Note that this cost function is
optimized again at every time step, where N and W are updated to include all the sessions
active at that very time step. This means that both N and W are time-varying. This was
not indicated in the equation for brevity.

This model does not take in to account that most EV users don’t pay the day-ahead price
for their electricity. In stead, in The Netherlands, about 80% of people still have a dual tariff
energy plan. This means that during the day (usually between 07:00 and 23:00), users pay a
peak rate for their electricity, and during the night (23:00 to 07:00) they pay a lower off-peak
rate. Current practice is that users will always charge during their off-peak rate as much as
possible, a so-called ’user-first’ strategy. This means that if a vehicle can fulfill its charging
needs during off-peak hours, this must happen. If a vehicle needs all the available off-peak
hours, and additionally needs for example 5 kWh of peak hour charging, the system must
ensure that no more than 5 kWh is charged during peak hours, and the vehicle is charging
throughout the available off-peak hours. This way it is ensured that the user always pays the
lowest possible price for charging the EV.

This feature is implemented in the model too, by adding a large penalty for charging during
a users peak hours. For each session, the corresponding type of contract is examined and an
array is created with zero’s during off-peak hours and high values during peak hours. If the
user is on a dynamic rate or on single tariff, the array contains only zero’s. This array is
multiplied with the charging power per time step resulting in the following cost function:
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VN,W (u) =
N∑

k=1

W∑
m=1

[
dt

60ηc
m

− dt
60ηd

m

] [
uc

k,m

ud
k,m

]
︸ ︷︷ ︸

ek,m(uk,m)

pk

+ Cl max(minSOCm/100 ∗ Bm − Ek,m, 0)
+ Cu max(Ek,m − maxSOCm/100 ∗ Bm, 0)
+ ε |∆uk,m|

+ TPk,m
dt

60ηc
m

uc
k,m

(4-39)

s.t. uc
k,m, ud

k,m ≥ 0 (4-40)
uc

k,m ≤ ecsm (4-41)
ud

k,m ≤ edsm (4-42)
uc

k,m = ud
k,m = 0 if k > Nm (4-43)

ENm ≥ dSOCm ∗ Bm (4-44)

where TPk,m denotes the tariff penalty for session m at time step k, which - as stated above
- will be a high number if the respective user is in peak-rate at k.

The way of handling user tariff differences as implemented, is the way Jedlix currently tackles
this situation. As stated before, the most important objective is to keep the user cost for
charging at a minimum. This limits the possibilities for the aggregator severely. Especially
in summer during daytime, low-carbon and cheap electricity is often available during the day,
but the aggregator is not allowed to charge most of the vehicles because users are in peak
rates during these hours. A possible solution to this problem could be to overrule the user
preferences, and compensate the user for any excess electricity charged during peak hours.
With increasingly volatile energy prices, it may very well be beneficial for an aggregator to
overrule the user’s tariffs and charge during user peak hours, and compensate the user for the
more expensive session. Clearly this compensation is necessary since otherwise users would
simply stop using the service since it does not provide the cheapest possible charging. This is
a small step from the current model, as the only thing that needs to change is the magnitude
of the penalty for charging at peak hours. In stead of an arbitrary high number, this can
be changed into the price difference between a users peak and off-peak rate. This represents
exactly the amount that an aggregator would need to compensate the user for. If the high
number in TPm is replaced by (gpeak

m − goff-peak
m ), where gpeak

m and goff-peak
m denote the user’s

peak and off-peak tariff respectively, this is problem is solved. This way, charging during user
peak hours only happens if it is profitable for Jedlix to do so, taking into account that the
user needs to be compensated. An example of this tariff penalty is shown in Figure 4-3

What is not yet taken into account here, is that energy is lost when providing V2G services.
As explained in subsection 4-1-1, charging and discharging an electric vehicle comes with
efficiency losses. Taking 10 kWh from a battery is good for feeding 10 ηd ≈ 8.5 kWh back into
the grid. To then fill up the battery to the initial SOC, 10/ηc ≈ 11.11 kWh is needed from the
grid. Assuming that the two happen during the same rate period, this means that the user
is paying for 2.61 kWh more than if no V2G operation would have taken place. This damage
could be limited if the discharging happens at a price that is not only cheaper for the utility
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4-5 Multi-vehicle scenario 27

Figure 4-3: Example of tariff compensation penalty

or aggregator but also for the user. Either way, the user needs to be compensated for any
additional loss, if a business case needs to be built. This could be incorporated in the cost
function by an extra term

(
dt

60ηc
m

− dt
60ηd

m

)
ud

kgpeak
m . This way the user is compensated at the

users peak tariff for the extra electricity that is consumed. Due to time restrictions this is
considered outside of the scope of this research. Therefore the "V1G" smart charging model
was used to compute the lowest possible session price for the user, and this was compared to
the cost of the V2G optimized charging policy.

4-5-1 Solar implementation

As mentioned before, net metering will be phased out over the upcoming years. Assuming
once again that grid feedback will only yield the day-ahead price in the future, it becomes
much more interesting to make sure generated electricity is consumed within the household.
Therefore, an effort was made to incorporate PV production in the equation. By providing
details on the location, azimuth, tilt and capacity of a PV set-up, the Solcast platform is able
to accurately predict the PV production.

The expression for ek,m(uk,m) is transformed to include solar production, and the tariff penalty
is now imposed whenever the sum of PV production and charging power results in grid power
consumption. The reason that household usage is not taken into account in this optimization
is that it is, especially from an aggregators perspective, unrealistic to assume this information
is available.

Household usage predictions would be inaccurate. This results in undesired feeding back solar
electricity whenever the household consumes less than predicted, or undesired grid consump-
tion whenever the household consumes more than predicted. In the last case, flexibility is
lost, since solar electricity could have been used for the household, leaving more flexibility
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in the battery charging. The unwanted feedback of generated solar is assumed to be more
expensive than the loss of flexibility. For the solar model, price-optimization is used. The
cost function then becomes:

VN,W (u) =
N∑

k=1

W∑
m=1


[

dt
60ηc

m
− dt

60ηd
m

] [
uc

k,m

ud
k,m

]
− dt

60 ep,k,m︸ ︷︷ ︸
ek,m(uk,m)

 pk

+ Cl max(minSOCm/100 ∗ Bm − Ek,m, 0)
+ Cu max(Ek,m − maxSOCm/100 ∗ Bm, 0)
+ ε |∆uk,m|
+ TPk,m max (ek,m, 0)

(4-45)

s.t. uc
k,m, ud

k,m ≥ 0 (4-46)
uc

k,m ≤ ecsm (4-47)
ud

k,m ≤ edsm (4-48)
uc

k,m = ud
k,m = 0 if k > Nm (4-49)

ENm ≥ dSOCm ∗ Bm (4-50)

Note that the tariff penalty is now imposed on any electricity consumed from the grid, not on
electricity charged to the vehicle. This is pivotal for the system to work, because otherwise
charging during peak tariff would be penalized, while solar generation exclusively happens
during peak tariff. Therefore, self-consumption by means of EV charging would be penalized,
which is counterproductive. Note that generated solar may very well still be fed back to the
grid, if the grid price is attractive. As can be seen in chapter 5, currently the solar charging
feature often results in a higher price for the consumer. This is due to the fact that many
consumers are on a tariff plan that is cheaper than the cheapest moments on the day-ahead
market. Using the possible future scenario, where electricity feedback yields the day-ahead
price, and electricity consumption is subject to the user tariff, it will always make sense to
sell as much as possible, since it can always be bought back for less.

Therefore, the scenario where everyone uses tariffs as they were offered on august 12, 2022,
was also investigated. At this day, prices as obtained from Dutch utility Oxxio were as follows:

• Dual rate: Peak: €0.75162/kWh, Off-peak: €0.58214/kWh

• Single rate: €0.66541/kWh

4-6 Assumptions

In this section, an overview is presented of all the assumptions that are made in the models.
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4-6-1 Single Vehicle/HEMS scenario

• There are no disturbances in the system

• Feeding back electricity to the grid yields no benefit in terms of carbon

• Perfect information is available on future household demand and production

• No delays are apparent in the communication between controller and EV

• The charge speed and discharge speed can be precisely controlled between -3.7 and 11
kW

• The vehicle has a 50 kWh battery

• The startSOC is 40 % and the dSOC is 80 %, resulting in a session of 20 kWh

4-6-2 Multi-vehicle scenario

• There are no disturbances in the system

• Feeding back electricity to the grid yields either negative carbon emissions at the inten-
sity of that moment or the day-ahead price, depending on the optimization curve

• The charge speed and discharge speed can be precisely controlled between -3.7 and 11
kW

• The minSOC and maxSOC are fixed at 20 % and 90 % respectively

• Peak rate hours are 07:00 - 23:00

• Accurate information is available regarding the current SOC of the vehicle

• Solar electricity is assumed to be free in terms of both money and emissions

• Household usage is assumed to be unpredictable and is left out of the equation

4-7 Optimization

For implementing the MPC, the YALMIP toolbox was used. If no specific solver is assigned,
YALMIP automatically chooses a suitable solver. All cost functions have been formulated
in a way that the matlab solver ’linprog’ can solve them efficiently. This way, YALMIP
automatically chooses linprog as solver. However, it can be seen that a non-linear term is
present in Equation 4-5 and 4-45:

max
(
ed,k + eb,k(uk) − ep,k, 0

)
and max

(
ek,m, 0

)
(4-51)

Luckily, the solver recognizes this and automatically translates this non-linear term into
linear terms by introducing an auxiliary variable. If this variable is called α, Equation 4-51
is replaced by α and the constraints ed,k + eb,k(uk) − ep,k ≤ α and 0 ≤ α are added. Now
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the problem is linear. Linprog only solves the solver-based optimization problem ( see here
) By default, the linprog function uses the dual simplex algorithm. If this algorithm fails,
linprog can be forced to use the interior point algorithm. As the dual simplex performed
well, I will only explain this option. For further information please refer to the Matlab
documentation [21]. Regardless of the chosen algorithm, linprog will first preprocess the
problem in an attempt to simplify it. This is done by the following steps [21]:

• Check if there are variables with the same upper and lower bound. If so, fix and remove
the variable

• Check if any linear constraint involves only one variable. If so, change constraint to
bound (in case of an inequality constraint) or fix and remove the variable (in case of an
equality constraint)

• Check if bounds and linear constraints are consistent

• Check if all variables are bounded by constraints. If not, check for boundedness and fix
variables at their bound.

• Convert linear inequalities to equalities using slack variables

4-7-1 Dual simplex algorithm

The linprog dual simplex algorithm performs a simplex algorithm on the dual problem. By
preprocessing as described above, the original problem is reduced to the primal problem in
the form

min
x

fT x

s.t.
{

A · x = b

0 ≤ x ≤ u.

(4-52)

where A and b are the constraint matrices.

These are subsequently translated into the dual problem:

max bT y − uT w

s.t.
{

AT · y − w + z = f

z ≥ 0, w ≥ 0.

(4-53)

where y and w denote the vectors of Lagrange multipliers associated with the equality and
inequality constraints respectively, and z denotes a slack variable vector.

Now that the dual problem is constructed, the dual simplex algorithm starts the first phase.
In phase 1, the algorithm looks for an initial feasible solution by solving an auxiliary problem,
with the objective function being the linear penalty function

P =
∑

j

Pj(xj)
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where Pj(xj) takes a positive value whenever one of the bounds of the original problem is
violated. That is:

Pj (xj) =


xj − uj if xj > uj

0 if lj ≤ xj ≤ uj

lj − xj if lj > xj

(4-54)

with lj and uj the lower and upper bounds of variable xj respectively. This way, at any point
where the value of P equals zero, the original problem has a feasible point.

This feasible point is then used as initial point for phase 2. In phase 2, the simplex algorithm
is applied, starting at the initial point obtained in phase 1. To explain what happens during
phase 2, a definition of basic and nonbasic variables is needed. Assuming the problem is
given in the standard form of Equation 4-52, and A is an m-by-n matrix of rank m < n,
then the basic variables are the m variables of which the column is contained in the basis for
the column space of A. The complement of these basic variables, the variables that are not
contained in the basis for the column space of A, are called the nonbasic variables.

The vector of basic variables is denoted as xB, and the vector of nonbasic variables is denoted
as xN . At each iteration, the algorithm checks the solution for optimality according to the
optimality conditions defined as:

F (x, y, z, s, w) =


A · x − b
x + s − u

AT · y − w + z − f
xizi

siwi

 = 0,

x ≥ 0, z ≥ 0, s ≥ 0, w ≥ 0

(4-55)

if the solution is not optimal, the algorithm continues with the following steps:

1. Pick one variable, the entering variable, from xN , and add corresponding column of the
nonbasis to the basis

2. Pick one variable, the leaving variable, from xB and add corresponding column of the
basis to the nonbasis (removing it from the basis)

3. Update solution and objective value

4. Check optimality conditions

5. If optimal: terminate, if not optimal: start from 1.

This way, the algorithm checks all the vertices for optimality until it finds the optimal one.

4-8 Data processing

For the single vehicle scenario, household consumption and production data was obtained
from the UCI Machine Learning Repository [22], and was recorded at a house in Sceaux (7
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km south of Paris). As very little specific household data was available, only one households
data was used to show the working of the model. In this data set the average power was
transformed to energy per time step and interpolated to fit the 5 minute step size. Carbon
intensity data was a courtesy of Electricitymap.org and day-ahead prices were obtained from
the publicly available Entsoe transparency platform. The day-ahead prices were retimed to
5 minute intervals and forward filled. The carbon intensity data was linearly interpolated to
5 minute intervals. No statistically significant results could be obtained due to the lack of
representative data.

For the simulations of the multi-vehicle scenario, in addition to carbon data from Electric-
itymap.org and day-ahead prices from Entsoe, data provided by Jedlix was used. Jedlix
provided access to their database, making it possible to combine several tables to obtain
comprehensive session data, consisting of i.a.:

• start time

• stop time

• start SOC

• desired SOC

• battery capacity

• tariff type

• tariffs

The set was then filtered, to delete all faulty or very short sessions. As the user tariffs are
manually entered by the users, there is uncertainty regarding the reliability of these tariffs.
For example, some users put their tariffs in euro cents per kWh in stead of euro per kWh. The
system then thinks that the user pays about €25/kWh, in stead of €0.25/kWh. Therefore,
all sessions with single tariffs higher than €0.75/kWh and all sessions with peak tariffs higher
than €1.00/kWh were removed from the set.

Furthermore, the start times were rounded up to the following 5-minute interval and the stop
times were rounded down to the previous 5-minute interval. This does cost a tiny bit of
flexibility but ensures that every session is optimized synchronously.

The user price for users with dynamic rates is calculated according to the taxation as in place
in august 2022. This means that on top of the day-ahead price the energy tax (€0.04010/kWh)
and ODE (surcharge for sustainable energy- and climate transition, €0.03325/kWh) are added,
and subsequently 9% VAT is added to the gross sum.

Now a set was created for weekday sessions and another set for weekend sessions. Weekday
sessions start and end on a weekday, and have a duration of between 4 and 24 hours. Weekend
sessions start on friday, saturday or sunday and are between 4 and 60 hours. The complete
data sets consist of 2855 weekday sessions and 1424 weekend sessions summing to a total of
4279 sessions that took place between June 23, 2021 and June 23, 2022.
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4-8-1 Solar

For the solar feature, a different set of sessions was used. This is due to the availability of
the solar data. This feature was added later in the process of this thesis, and the source
for solar data, Solcast, only allows for historic data queries up to one week ago. Therefore,
the data was captured for a period of 3 weeks, between July 21, 2022 and August 11, 2022.
Clearly, this is summer data and the results are therefore by no means representative for
yearly numbers, but they do show the workings of the model. In total, 314 sessions of users
with a solar PV set-up were simulated. The PV generation data was generated by Solcast,
and the carbon intensity, day-ahead prices and session details were used from Elecricitymap,
Entsoe and Jedlix respectively.

4-9 Comparison

Results of the main models are compared with a baseline strategy where no smart charging
happens. The vehicle starts charging immediately at its maximum charging speed, and stops
when it reaches the desired state of charge. Another strategy is also created, in which a uni-
directional algorithm decides the optimal times to charge, without utilizing V2G capabilities.
This strategy is called ’V1G’. Basically, the only change that needs to be made is that the
discharging speed is fixed to 0. Moreover, the minimization of carbon emissions is compared
to the minimization of electricity costs, in terms of average carbon intensity, as it is expected
that these will show a certain correlation.
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Chapter 5

Numerical results

5-1 Single-vehicle/HEMS scenario

For the single vehicle scenario, it is assumed that the user has a dynamic rate electricity plan,
as this is the scenario in which the steering of EV charging is most lucrative for the user,
and therefore most demand for a system like this will come from consumers with this type
of plan. In a dynamic rate plan, the user has a different kWh price each hour, based on the
day-ahead price. As very little specific household data was available, only one households
data was used to show the working of the model. Therefore no statistically significant results
could be obtained at this time. The first scenario that was analysed assumes that the EV
arrives at 18:30 on a Tuesday and leaves the next morning at 07:00.

In Figure 5-1 can be seen that the carbon optimization results in no discharging at all.
This can be explained by the fact that the grid carbon intensity fluctuates between 383 and
319 gr/kWh. This is not enough to justify charging and discharging, where the round-trip
efficiency is 76.5% percent. In order to justify V2G operation while optimizing on total
carbon emissions in the shown scenario, the moments of charging must be less than 76.5%
of the moments of discharging. It is important to note that the least carbon intensive times
of a session can not be used for V2G as they will be used regardless to fulfill the charging
demand.

The day-ahead price, on the other hand, fluctuates between €219.09/MWh and €108.91/MWh.
Since less than two hours is needed to fulfill the charging demand, it is possible to charge
extra during the second cheapest hour and the third cheapest hour, at €111.52/MWh and
€112.88/MWh. This is significantly less than 76.5% of €219.09/MWh, making it profitable
to discharge at the beginning as shown in Figure 5-2.
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Tuesday in february - V2G - carbon opt - (
c
 = 0.9, 

d
 = 0.85)

Total carbon emissions =  14447 gr CO2

Total electricity consumption = 42.720000 kWh

Average carbon intensity = 338 gr CO2/kWh

Figure 5-1: First scenario - V2G Carbon optimized

Tuesday in february - V2G - price opt - (
c
 = 0.9, 

d
 = 0.85)

Total carbon emissions =  15001 gr CO2

Total electricity consumption = 45.340000 kWh

Average carbon intensity = 331 gr CO2/kWh

Figure 5-2: First scenario - V2G Price optimized
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The second scenario shown assumes that the EV arrives at 18:00 on a Friday in April, and
leaves the next evening at 18:00 on Saturday.

The first baseline strategy shown in Figure 5-3, named ’Direct charging’, simulates a baseline
strategy using uncontrolled charging. This means that the vehicle starts charging at its
maximum charge speed upon connection, and stops when the desired SOC is reached. The
associated bought electricity had total associated emissions of 15654 grams of CO2, averaging
at 403 gr/kWh.

Weekend day in april - direct charging - (
c
 = 0.9)

Total carbon emissions =  15654 gr CO2

Total electricity consumption = 38.830000 kWh

Average carbon intensity = 403 gr CO2/kWh

Figure 5-3: Second scenario - Direct Charging

The second baseline strategy shown in Figure 5-4, named ’V1G charging’, simulates a baseline
strategy representing the current state of the art of smart charging, including solar optimiza-
tion. Optimizing unidirectional smart charging based on day-ahead price. A price benefit
of 25% (€1.78) is obtained, while saving 32% (almost 5 kg) on CO2 emissions, averaging at
366 gr/kWh. It is important to note that significantly less electricity (29.86 vs 38.83 kWh) is
drawn from the grid, since all the produced solar is self-consumed in stead of fed back into the
grid, which is considered to be wasted in terms of emissions in this analysis. The electricity
flowing through the grid connection is shown by the yellow line in the middle graph of each
figure. Whenever this line is below zero, electricity is fed back into the grid.

The strategy representing the main objective of minimizing the emissions of carbon dioxide
associated with a households total electricity usage is shown in Figure 5-5. With 10018 gr
CO2, another 8.3% carbon emission savings are achieved compared to the unidirectional smart
charging. On the other hand the session is 8.9% more expensive.
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Weekend day in april - V1G charging - (
c
 = 0.9)

Total carbon emissions =  10920 gr CO2

Total electricity consumption = 29.860000 kWh

Average carbon intensity = 366 gr CO2/kWh

Figure 5-4: Second scenario - V1G Price optimized

Weekend day in april - V2G - carbon opt - (
c
 = 0.9, 

d
 = 0.85)

Total carbon emissions =  10018 gr CO2

Total electricity consumption = 32.450000 kWh

Average carbon intensity = 309 gr CO2/kWh

Figure 5-5: Second scenario - V2G CO2 optimized
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As explained in section 4-4, a potentially good alternative to overcome the fact that the
session discussed above is significantly more expensive is to optimize over price, while using
vehicle-to-grid technology. This strategy is shown in Figure 5-6 and results in both lower
emissions and a (slightly) lower price compared to the baseline unidirectional smart charging
optimization. The consumed electricity is about 2 kWh extra due to the conversion losses
associated with discharging the vehicle.

Weekend day in april - V2G - price opt - (
c
 = 0.9, 

d
 = 0.85)

Total carbon emissions =  10504 gr CO2

Total electricity consumption = 31.820000 kWh

Average carbon intensity = 330 gr CO2/kWh

Figure 5-6: Second scenario - V2G Price optimized

Once again, these values are based on a single optimization and are therefore by no means
representative of large scale benefits, but it does give a good understanding of the factors
influencing the system.
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5-2 Aggregated vehicle scenario

To simulate the aggregated vehicle scenario models, a larger set of 4279 sessions in total was
used. Details on this set can be found in section 4-8. To analyse the performance of the
models, a number of metrics was used:

Table 5-1: Metrics overview

Carbon
emissions

The average carbon emissions per session, where feeding back can
be seen as negative emissions, since the carbon emitted during
charging is already accounted for, and carbon is saved during
discharging since another asset is now using low carbon electricity
in stead of high carbon electricity

Utility
cost

The cost of the sessions for the utility, i.e. the cost based on day-
ahead prices for both providing and taking electricity to/from the
grid

User cost
net

The cost of the sessions for the users, based on the current net
metering principle, where kWh’s taken from and delivered to the
grid in the same rate period are canceled out

User cost
day-ahead

The cost of the sessions for the users, based on the plausible future
scenario, where delivering electricity back to the grid yields the
day-ahead price, while taking electricity from the grid is based on
consumer rates (single or dual tariff)

As mentioned before, various models were assessed to compare performance of the proposed
models:
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Table 5-2: Model overview

Direct Charging starts at max power from the moment the vehicle is
connected until the desired SOC is reached

V1G Unidirectional smart charging, optimizing over day-ahead price
for maximum utility profits while respecting users peak/off-peak
rates

V2G Pen Bidirectional smart charging, optimizing over day-ahead price
for maximum utility profits while respecting users peak/off-peak
rates

V2G
Comp

Bidirectional smart charging, optimizing over day-ahead price for
maximum utility profits while compensating for any additional
peak hours charging

CO2 V1G Unidirectional smart charging, optimizing over carbon intensity
for minimum emissions while respecting users peak/off-peak rates

CO2 V2G Bidirectional smart charging, optimizing over carbon intensity for
minimum emissions while respecting users peak/off-peak rates

V2G No
Pen

Bidirectional smart charging, optimizing over day-ahead price for
maximum utility profits, assuming every user is on a dynamic rate
(note that many users are in fact on old plans with rates that are
lower than the actual costs, and are therefore often cheaper off)

5-2-1 Weekdays

The session results are split up in weekend sessions and weekday sessions. In this section
the results for the weekday sessions are discussed. The results are shown in Table 5-3 and
Figure 5-7. In Figure 5-7, the data labels indicate the percentage-difference compared to the
uncontrolled charging baseline. As can be seen in the figure, the differences between the used
models in price for the utility are significant.

Table 5-3: Results weekdays - mean costs and emissions

Direct V1G V2G Pen V2G Comp CO2 V1G CO2 V2G

Utility [€] 5.1225 4.1704 3.8389 3.8388 4.5342 4.3971
User Net [€] 6.1739 5.5758 5.4705 5.4562 5.7083 5.5023
User DA [€] 6.1739 5.5758 5.4505 5.4285 5.7038 5.5000
Emissions [kg CO2] 9.6929 9.7669 10.0426 9.9401 9.3787 9.1015
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Figure 5-7: Weekdays - mean price and emissions per session - %-difference vs. Direct charging

Optimizing the associated carbon emissions results in 6.1% less emissions compared to the
direct charging base line, while also saving 14.2% in costs for the utility and 10.9% in costs
for the end user. This sounds very promising, however, comparing to the current state of the
art - unidirectional, price optimized smart charging - an increase in utility cost of 5.4% is
observed.

Unfortunately, the emissions are higher than the direct charging baseline model in every
scenario where CO2 minimization is not the main objective. This means that using V2G
optimizing over day-ahead price is on average worse in terms of carbon dioxide emissions
than not using smart charging at all. One hypothesis is that this happens because many
users are still on a dual rate plan. This forces the program to only charge during off-peak
hours, which is between 23:00 and 07:00. As there is little to no solar generation between
these hours, the carbon intensity is typically higher during the night.

However, two extra simulations were run where the tariff penalty was left out of the cost
function, one using price optimization and one using carbon optimization. This results in
complete freedom to choose when to charge, as if every user was on a dynamic rate plan. To
this end, all user tariffs were also overwritten to represent a dynamic rate plan. To prevent a
distorted image of the user costs, for the direct charging baseline scenario it was also assumed
that every user has a dynamic rate plan. Although in the price optimization the emissions
decreased slightly (by 1.5%) compared to the scenario with tariff penalty, the associated
emissions are still higher than in the uncontrolled charging scenario.

Another hypothesis is that the higher emissions are due to the fact that the maxSOC is fixed
at 90% while about 30% of all sessions have a dSOC above 90%. All these sessions will fulfill
the last few percentage points at the very end of the session, regardless of the carbon intensity
at that moment, to minimize the penalty for having a high SOC. This hypothesis was tested
by filtering out all sessions where this was the case. This resulted in 1901 weekday sessions.
Even now, the associated emissions using direct charging were lower compared to the V2G
scenario without tariff penalties. The results of both tests are shown in Table 5-4, where
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Price price optimization, and Carbon indicates carbon optimization, both using V2G and
without the tariff penalty. As all users are assumed to be on a dynamic rate plan, there is
no difference between a scenario with and without net metering, hence only one user cost is
shown.

Table 5-4: Weekdays - Hypothesis testing - No penalty on peak tariff

All sessions Sessions with dSOC ≤ 0.9
Direct Price Carbon Direct Price Carbon

Utility [€] 5.1225 3.7632 4.4376 4.7604 3.3156 4.0835
User [€] 7.4939 6.0122 6.7473 6.9732 5.0726 6.2353
Emissions [kg CO2] 9.6929 9.8961 8.7265 9.1408 9.3552 8.2027

A third hypothesis is that the correlation between day-ahead price and grid carbon intensity,
during the times where users typically charge, is less than anticipated. Unfortunately there
was not enough time to thoroughly test this hypothesis. A start at testing this hypothesis
was made and can be found in Appendix A.

The impact of the compensation strategy compared to the strategy with a high penalty on
peak-tariff charging was small, but beneficial for all parties. The biggest benefit was in the
emissions, saving about 1% on average.

5-2-2 Weekends

The weekend simulations, consisting of 1424 sessions, show slightly different results. In Ta-
ble 5-5 and Figure 5-8 can be seen that the emissions of the models optimizing over day-ahead
price are much closer to the uncontrolled, direct charging baseline than during weekdays.
The unidirectional price-optimized strategy even shows slightly less emissions, and the bidi-
rectional, price optimized strategies both have less than 1% extra emissions. The CO2 V2G
strategy shows 13.4% less emissions compared to the direct charging scenario, while showing
the lowest user costs according to current tariff structures. For the utility it is 5.5% more
expensive than unidirectional, price optimized smart charging. Another result that is perhaps
not very surprising, yet important to realize, is that the weekend sessions are significantly less
carbon intense and cheaper than weekday sessions, regardless of the strategy. Specifically for
the emissions this is shown in the bottom row of Table 5-5.

Table 5-5: Results weekends - mean costs and emissions

Direct V1G V2G Pen V2G Comp CO2 V1G CO2 V2G

Utility [€] 4.7388 3.5536 3.0795 3.0770 3.9463 3.7475
User Net [€] 5.9309 5.5783 5.5819 5.5845 5.655 5.5248
User DA [€] 5.9309 5.5783 5.6848 5.6865 5.655 5.6007
Emissions [kg CO2] 9.1235 8.9602 9.2083 9.1750 8.3948 7.9016

Emissions vs weekday −5.9% −8.3% −8.3% −7.7% −10.5% −13.2%
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Figure 5-8: Weekends - mean price and emissions per session - %-difference vs. Direct charging

5-2-3 Solar implementation

The model with PV production included is compared to the model without solar included.
Both models use price optimization with V2G. Again the possible future scenario where elec-
tricity consumption is subject to the user tariffs, and electricity feedback is subject to the
day-ahead price is used. Moreover, a tariff penalty is active, forcing the system to consume
only during off-peak hours if possible. Similar to the other models in the multi-vehicle op-
timization, feeding back electricity accounts for negative carbon emissions corresponding to
the grid carbon intensity at that time. This is reasonable since another user will now con-
sume the user’s solar power in stead of the (more carbon intense) grid power. Solar power is
here assumed to have zero carbon intensity, neglecting the production and end-of-life related
emissions.
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Charging optimization - Solar vs No Solar - Old user tariff

Figure 5-9: V2G price optimization including solar generation

As can be seen in Figure 5-9, the model is working as intended. Solar generated while the
day-ahead price is low is self-consumed, while solar generated while the day-ahead price is
high is fed back to the grid. As shown in Table 5-6 on average, the profit for the utility is
11 cents per session, which is fairly good as this feature is mainly aimed at the consumer.
Moreover, on average 186 grams of carbon is saved per session, by just using the produced
electricity smarter. However, the average profit for the user is less than 1 cent per session,
and in some scenario’s, such as the one shown in Figure 5-9, the optimization including the
solar production is more expensive for the user.

In this specific scenario the user tariffs per kWh are €0.2314 at peak hours and €0.2024 at off-
peak hours. Without solar optimization, the net cost of his session (including the profits from
feeding back the produced electricity) is €0.7414, while the net cost with solar optimization is
€0.9127. The reason for this is that the user rate for consuming electricity is lower than the
day-ahead price (which the user receives for feeding back) throughout the day. Therefore, at
the moment of production, theoretically the user could sell the electricity and directly buy the
same electricity back and make a profit. If the user only buys back the electricity later during
off-peak hours, which happens in the default strategy, the profit is even bigger. Therefore,
the default strategy of postponing charging until the cheapest moment during off-peak tariff
and directly selling all generated electricity is more profitable for the user than self-consuming
solar electricity.

Clearly these tariffs are not sustainable, since the utility is making huge losses on these
customers. Therefore the same simulations are done assuming tariffs that are offered currently,
as explained in subsection 4-5-1. To make the difference between the two clearer, the simulated
sessions are split up in sessions that are subject to dynamic rates and sessions that are subject
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to fixed rates (single or dual). Using the new rates, the business case is much more attractive,
and the results are shown in Table 5-6 in the rows indicating ’new rates’.

Table 5-6: Results solar addition

All (341) Dynamic (29) Non-Dynamic (285)
Session kWh Session kWh Session kWh

User price No solar - old rates 2.2389 0.10163 7.4235 0.27812 1.7113 0.07939
[€] Solar - old rates 2.2303 0.10124 7.4235 0.27812 1.7019 0.07895

No solar - new rates 12.3040 0.55851 7.4235 0.27812 12.8006 0.59384
Solar - new rates 11.9846 0.54401 7.4235 0.27812 12.4487 0.57751

Utility price No solar 3.6101 0.16387 4.8527 0.18180 3.4837 0.16161
[€] Solar 3.4969 0.15873 4.8527 0.18180 3.3590 0.15583

Emissions No solar 7.8836 0.35786 8.3474 0.31273 7.8364 0.36354
[kg CO2] Solar 7.6971 0.34939 8.3474 0.31273 7.6309 0.35401

It can be seen that, using dynamic rates, there is no difference between incorporating the solar
production and neglecting the solar production. This is due to the fact that on a dynamic rate
plan, buying and selling electricity always happens at the same price. Therefore, high prices
result in discharging and low prices result in charging regardless of the origin of the electricity.
For example, when prices are low, it is desirable to self-consume solar since feeding it back
doesn’t do much. At the same time, it is desirable to charge the vehicle since it is cheap at
that time, regardless of whether solar electricity is produced at the same time. The other
way round, if prices are high while solar electricity is produced, it is desirable to feed that
energy back to the grid, while it is equally desirable to discharge the vehicle if possible. Using
the new rates, users can save on average 205 grams of emissions (2.6 %) per session, while
at the same time saving €0.45 (2.8 %) per session, or 1.7 cents per kWh. The utility profits
too, with average savings of 12.5 cents (3.6 %) per session. Do note that these numbers are
based on a small set of sessions, concentrated in three weeks in July and August. Therefore
no conclusions can be drawn based on these numbers.
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Chapter 6

Conclusions and recommendations

6-1 Conclusions

The goal of this research was to create a controller to optimally charge and discharge EVs
with minimum carbon emissions.

First, a method to control a single vehicle was constructed. As mentioned in chapter 4, it
is assumed that perfect forecasts for grid carbon intensity, household (PV) production and
household demand are available. For the grid carbon intensity and the household production
this is a reasonable assumption since they are well predictable. The household demand is
difficult to predict with reasonable accuracy. This could be tackled by implementing smart
household appliances, home batteries, or other measures. This way, the household demand
can somewhat be steered and therefore more easily predicted.

The single vehicle model could still very well be used without the household demand and is
easy to implement. It can reduce carbon emissions and make better use of produced solar
electricity. Financially, the greatest benefit lies with users on a dynamic rate, because they are
exposed to the largest and most frequent price fluctuations. The model can be implemented
by a somewhat skilled hobbyist but it requires a microcomputer with internet access, an API
connection to the vehicle and access to a solar production forecast for the households PV
setup, the electricity prices until the end of the session (either known day-ahead prices or a
forecast) and a grid carbon intensity forecast. These forecasts can either be built by the user
or taken from other platforms such as Solcast, Entsoe and electricityMap.org through their
APIs. However, these are typically not free.

More meaningful results were obtained by the multi-vehicle model, where an aggregated fleet
of vehicles can be steered by a central party such as an aggregator.

To make the scenario realistic, there are many factors that need to be taken into account,
such as the price for the utility, the price for the user and battery degradation. A model was
built to minimize carbon emissions while taking all these factors into account.
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To examine the impact of price optimization on emissions, a price optimizing model was
developed as well, using both unidirectional and bidirectional charging. One important take-
away is that the current structure of dual tariffs works counterproductive in terms of carbon
emissions, as the lowest carbon intensity is usually observed during the day, but a typical
off-peak tariff is only active during the night.
Optimizing over carbon emissions is obviously beneficial in terms of carbon emissions. Com-
pared to uncontrolled charging, it is also cheaper for both the user and the utility. However,
for the utility it is still more expensive than unidirectional price-optimized charging, which is
available today.
The main conclusion that can be drawn from this thesis is the following: At this moment,
V2G optimization to minimize carbon emissions is 5.5 % more expensive for the utility than
the current state of the art; unidirectional, price optimized smart charging. Moreover, V2G
optimization to minimize the cost for the utility results in 2.8 % higher emissions than the
current state of the art and even 0.9–3.6 % higher emissions than using uncontrolled charging.
To find the reason for these higher emissions, the tariff penalty was taken out of the cost
function that optimizes over price, allowing the model to charge at any time regardless of the
user tariff at that moment. Although this resulted in even lower costs for the utility and lower
emissions than with the tariff penalty in place, they remained higher than with the direct
charging strategy.
In a preliminary investigation, to be found in Appendix A, the correlation between day ahead
price and carbon intensity on a smaller timescale and around the times that users typically
start their sessions is lower than anticipated. This correlation seems to be negative, which
would indeed explain why postponing the charging is beneficial in terms of price but results
in higher emissions.
Lastly, a feature was built to implement user solar production in the optimization. Based on
summer time simulations, this seems to be beneficial in terms of emissions (2.6 %) and price,
both for the user (2.8 %) and the utility (3.6 %). As these results are based on a small set of
sessions in summer time, they are by no means representative for yearly results.

6-2 Recommendations for future research and policy

For future research, it is recommended to look into compensation for the conversion losses
incurred by the consumer, due to V2G operation on behalf of the utility. To better account
for and minimize battery degradation, this subject should also be further researched.
Another interesting direction would be to optimize over carbon emissions, with a constraint
forcing the utility cost to be less than or equal to the cost under unidirectional price opti-
mization. This way, the benefits of V2G operation can be granted to carbon emissions, while
maintaining the price benefits of current-day price optimization.
More fundamentally, a study to combine the associated CO2 emissions and the day ahead
price in the cost function would be logical. By putting a price on emissions, an optimal
balance between price and emissions can be determined.
On a policy level, it has become clear that the dual tariff structure is hurting the environment,
the utilities and the users. As most users are on a dual tariff, they are incentivised to consume
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electricity during the night, when the carbon intensity is generally higher than during most
of the day. Large-scale adoption of dynamic rates would certainly help in optimizing EV
charging, as it enables more flexibility. Another option would be to activate off-peak rates
during the middle of the day, for example between 10:00 and 15:00. Lastly, an emissions-
based energy tax would push low-carbon energy prices down further. This way, the cost and
emissions objectives would be artificially aligned.

The fact that optimization on carbon intensity is slightly more expensive for the utility
compared to the current unidirectional is not necessarily a problem. At this moment, about
90% of EV drivers use uncontrolled charging, so on a large scale even V2G carbon optimization
results in a significant price benefit over the current practice. As many companies are investing
in becoming net zero, it is not unthinkable that utilities and aggregators will sacrifice a portion
of their possible smart charging benefits in favor of significant carbon savings. Additionally,
with consumers being increasingly environmentally conscious, a strong marketing campaign
could very well draw new customers to the utility if they ensure smart charging for minimal
emissions, compensating for the sacrificed benefits per session.
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Appendix A

Hypothesis - negative correlation
carbon intensity and price

It is often assumed that there is a strong correlation between the grid carbon intensity and
the wholesale market price, due to the merit order as explained in section 4-4 [? ]. However,
it seems that this does not hold for the specific times where users are plugged in. Often, on
windy and sunny days, both the average energy price and the average carbon intensity are
low, however, within this day there might be a negative correlation.

After looking into the average hourly price and carbon intensity over the course of the same
time period as the sessions data set (June 23, 2021 until June 23, 2022) the hypothesis seems
to be confirmed, as shown in Figure A-1
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52 Hypothesis - negative correlation carbon intensity and price

Figure A-1: Histogram of session start times with overlay of day ahead prices and carbon
intensities

It can be seen that between 17:00 and 18:00 the price has reached its peak, while the carbon
intensity is still relatively low. After 17:00, the average carbon intensity stays at a higher
point until roughly 07:00 in the morning. Therefore, from a price perspective it makes sense to
postpone charging to after the evening peak, during the night. From a emissions perspective,
on the other hand, it is desirable to start charging straight away.
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Glossary

List of Acronyms

BRP Balance Responsible Party
EV Electric Vehicle
PSO Particle Swarm Optimization
DOD Depth of Discharge
GHG Greenhouse Gas
HEMS Home Energy Management System
ISO International Organization for Standardization
MIMO Multi-input Multi-output
MPC Model Predictive Controller
PV Photo Voltaic
RES Renewable Energy Sources
SHMPC Shrinking Horizon Model Predictive Control
SOC State of Charge
TSO Transmission System Operator
V2G Vehicle-to-Grid
VPP Virtual Power Plant

List of Symbols

ηc Charging efficiency
ηd Discharging efficiency
ε Arbitrary small number
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u [ u1 · · · uN

]
=

[
uc

1 · · · uc
N

ud
1 · · · ud

N

]
ecs Max charge speed
eds Max discharge speed
maxSOC Maximum state of charge
minSOC Minimum state of charge
B Battery capacity of EV
ck Grid carbon intensity at time step k [gr CO2eq/kWh]
Cl Weight on lower SOC bound
Cu Weight on upper SOC bound
E Electric energy stored in battery [kWh]
ek ek(uk) = ed,k + eb,k(uk) − ep,k

e+
k max(ek, 0)

eb,k Electric energy delivered to the vehicle at time step k

ed,k Domestic electricity demand at time step k

ep,k Domestic electricity production at time step k

goff-peak
m Off-peak tariff for user m

gpeak
m Peak tariff for user m

P Charging power [kWh/min]
pk Day-ahead electricity price at time step k [€/kWh]
uc Charging power [kW]
ud Discharging power [kW]
dSOC Desired state of charge

k Time index
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