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Benchmarking checkpointing algorithms in Stream Processing Engines

by Gianni WIEMERS

The use of data streams has increased a lot over the last two decades or so. and
With this increase comes the need for fast and consistent fault recovery. Rollback
recovery mechanisms from traditional distributed systems have been adapted suc-
cessfully for stream engines. These mechanisms can be categorized into one of three
different categories; uncoordinated, coordinated and communication induced pro-
tocols. While most well-known stream engines implement a variant of the coordi-
nated Chandy-Lamport algorithm, there is no practical comparison available that
actually confirms whether this is the optimal solution for data streams specifically.
Compared to traditional distributed processing solutions, stream processing has a
higher need for low latencies due to the continuously generated input. This paper
aims to create more insight into the advantages and disadvantages of these solu-
tions by implementing a checkpointing algorithm for each of these categories. These
are then benchmarked using various workloads and evaluated using a number of
metrics such as latency, throughput, recovery times and network overhead. From
these results, it can be concluded that a coordinated approach indeed outperforms
uncoordinated solutions across all of these metrics, most likely due to the need for
message logging in both the uncoordinated and communication induced scenarios.
Additionally the benchmarks indicate that the overhead of the communication in-
duced approach does not outweigh its benefits, due to the rarity of the occurrence of
the so-called domino effect.
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Chapter 1

Introduction

Distributed computations have been used for a while now and a lot of research has
been done on these types of systems. One important aspect of these systems, de-
pending on the application, is fault recovery. Whenever a failure occurs in the sys-
tem it can be quite time consuming, and thus inefficient, to completely start over
from the beginning. To mediate this issue there are multiple possible solutions, such
as replication or checkpointing. This paper focuses specifically on the latter. Check-
pointing algorithms can be divided into three different categories; uncoordinated
checkpointing, communication induced checkpointing and coordinated checkpoint-
ing. Fault recovery using any of these checkpointing techniques poses another quite
interesting challenge which has to do with the consistency of the system. For ex-
ample, in a transactional system it would be quite problematic if some of the trans-
actions were lost or executed twice, since this could lead to huge financial losses.
Therefore exactly once processing has to be guaranteed, to make sure this fault re-
covery is done in a correct way.

Over the past two or so decades the usage of distributed stream processing has
increased tremendously and, while some of the checkpointing protocols from the
distributed computations literature have been adapted effectively by stream engines
such as Flink[6], IBM Streams[22], Hazelcast Jet[23] and Risingwave[12], there still
is a lack of practical comparisons between the different checkpointing techniques
within streaming systems specifically. Additionally, the protocol that forms the basis
for most of the checkpointing methods used in those streaming systems, the Chandy
Lamport algorithm, does not support any dataflows containing cycles. Due to the
marker based checkpointing this protocol uses, it will deadlock if any cycles are
present. Furthermore the choice of checkpointing algorithm can have a substantial
effect on factors such as network usage, storage and throughput. To hopefully fill
this research gap, for this paper one checkpointing algorithm for each of the three
different types discussed in the previous paragraph has been implemented in a basic
in-house stream processing engine. By benchmarking these algorithms under differ-
ent workloads, the goal is to create a more conclusive practical comparison between
these algorithms.

As explained, this thesis paper presents a practical evaluation of three different
types of checkpointing algorithms in an in-house stream processing engine. The
paper is structured as follows; first, related work will be discussed in chapter 2
to give a better impression of the current state regarding checkpointing in stream
processing engines and the benchmarking thereof. In chapter 3 some theory and
background knowledge necessary for understanding the algorithms and how fault
recovery works will be presented. Afterwards, the specific implementation details
will be discussed more in-depth in chapter 4. Lastly in chapter 5 and 6 an extensive
explanation of the benchmarking setup can be found, followed by the results and a
discussion thereof.
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Chapter 2

Related Work

With the use of distributed computations comes the need for fault recovery. This
subject has been researched extensively over the years [13][35][3]. The two most
commonly used fault recovery techniques are replication [32] and rollback recovery
using checkpoints (also referred to as snapshots) [26][7]. Originally, these protocols
were designed for systems that execute a certain task on a set dataset using a set
amount of machines for the entire execution. However, due to changes in the ap-
plications of distributed computations, such as mobile computing systems, scalable
systems and data streams, new challenges were introduced.

Mobile Computing Systems – Various papers discuss why the limited band-
width and long latencies of mobile computing systems often cause traditionally
used protocols to be ineffective in this setting [24][1]. As stated by [1], the often
used Chandy-Lamport algorithm [9] only works if FIFO channels are guaranteed
between the workers, which is something that may not naturally occur between the
mobile hosts. One solution would be to enforce FIFO messaging, however that could
dramatically reduce system performance. To mediate this negative effect on sys-
tem performance, the authors propose a alternative solution. By enforcing the FIFO
property only between marker and application messages, the performance won’t be
impacted as much compared to when FIFO is enforced between any two messages.
This guarantee is enough to enable support for algorithms such as Chandy-Lamport.

Scalable Systems – To ensure high performance in scalable systems, various im-
provements for existing protocols have been proposed. One paper tries to achieve
this by reducing the checkpoint size [10]. For this purpose three commonly used
methods are discussed. First of all, live variable analysis is applied to avoid storage
of unused (dead) variables. Secondly, incremental checkpoints can be used in com-
bination with full checkpoints. Incremental checkpoints only contain the changes
compared to the full checkpoint in this case, instead of the entire state. Lastly data
compression is used to get rid of any redundant information. Another paper pro-
posed three different algorithms (grid-based, tree-based and centralized) to reduce
both the amount of messages necessary to execute the snapshot protocol, as well as
the amount of space that is necessary for these messages [16].

Streaming Systems – Long checkpointing and recovery times can become quite
problematic when processing continuously generated data. Not every stream pro-
cessor needs very strict recovery protocols however, since loss of information can
be tolerated in some cases. One paper specifically defined and analyzed three dif-
ferent recovery guarantees with corresponding recovery protocols to compare their
runtime overhead and recovery times [16], showing that each approach covers a
complementary part of the solution space. The most challenging consistency guar-
antee to achieve is exactly-once processing, which therefore also yields the highest
runtime overhead. Various performance improvements for streaming systems with-
out compromising consistency, similar to the ones for scalable systems, have been
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proposed. Most of them relying on some variation of incremental checkpointing or
a reduction in the blocking behaviour of the checkpointing approach [33][25].

Benchmarking Stream Processors – Distributed stream processing, although
similar to traditional distributed computing, might require some different perfor-
mance guarantees. Quick recovery times, as well as low latency, are often of bigger
importance, due to the never ending generation of data. This has sparked research
about how to properly test the performance of these types of systems. A well-
known, though relatively old benchmark is NEXMark[36]. NEXMark is an adap-
tion of a benchmark used to measure performance of XML repositories (XMark).
NEXMark now contains a total of 12 different queries that each try to test a differ-
ent kind of behavior. Quite a lot of different benchmarking approaches have been
proposed over the years [15][5][34][28], some focusing specifically on the streaming
workloads, while others tend to focus more on the type of metrics that are being col-
lected. Especially when dealing with a system with strong consistency guarantees,
metrics that incorporate fault recovery behavior are of higher importance.
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Chapter 3

Checkpointing algorithms &
Guarantees

Fault recovery for distributed computations using checkpoints requires not only the
checkpointing algorithms themselves but, depending on the algorithm choice, also
some additional protocols, for example message logging or finding a consistent re-
covery line. This chapter provides an in-depth overview of the seminal checkpoint-
ing algorithms found in literature and of all the necessary additional concepts re-
quired.

To explain certain scenarios that can occur within the system, at various points
in this chapter, a visual representation of a streaming system will be used. Figure 3.1
illustrates such a representation of a streaming system. Each process is represented
by a timeline, denoted as a horizontal arrow (i.e. P1). The arrows between the pro-
cesses represent messages and the nodes on the processes represent the checkpoints
(i.e. C1,1). The interval between two checkpoints of the same process is referred to
as the checkpointing interval (i.e. I1,2).

P1

P2

P3

C1,1 C1,2

C2,1 C2,2

C3,1 C3,2 C3,3

I1,2

FIGURE 3.1: A basic distributed streaming system.

3.1 Fault recovery

When working with distributed computations, there is a lot that can go wrong and
there are also a lot of different ways to deal with these issues when they happen. This
section will briefly go over the different types of failures and the most commonly
used recovery strategies.
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3.1.1 Types of failures

There are three common types of failures that need to be considered when working
with distributes systems. Software crashes can happen for all sorts of reasons. In
most cases simply restarting a worker can resolve these issues. It is in this case
important however that all the information necessary for a successful recovery is
stored on persistent storage. Hardware failures do often not have an easy fix, the
quickest way is to let another machine take over. Due to this reason, data should be
replicated to prevent it from being lost. Network failures can consist of simple lost
messages that need to be replayed or completely disconnected workers. In case of
the latter, simply spinning up a new worker to replace the disconnected one is often
the fastest solution.

3.1.2 Fault recovery strategies

In general, fault recovery can be divided into four different types [27];
Retry – Failures are handled by restarting the job from scratch. All state is dis-

carded and the restarted job has to start by processing the data from the beginning.
This can be quite time-consuming when the job a)employs heavy computations,
b)runs for long periods of time (e.g., hours or days), and/or c)failures happen regu-
larly. This recovery strategy requires that all data is stored and available until the job
has finished. In reality, since streaming applications are usually long-running jobs,
storing all data for the lifetime of the job is infeasible, and restarting processing from
scratch leads to serious duplication of data and computations, as well as outdated
replayed output.

Replicate – The entire worker state is replicated multiple times. Whenever a
failure occurs one of these replicas can take over, while the failed worker recovers.
Although in most cases very effective, this strategy has two major downsides. First
of all a protocol needs to be in place that decides which replica takes over in case of
a failure and how the recovery of the failed worker is handled. The second down-
side comes from the fact that every replica needs to be in exactly the same state at
all times to prevent inconsistencies when a failure occurs. This means that not just
one worker, but also every replica, needs to be updated before execution can con-
tinue, having quite an effect on throughput. This last point can become especially
problematic when you need a high-throughput streaming system.

Checkpoints – The entire system state is stored as a checkpoint on stable storage.
Whenever a failure occurs, the state of the system can be reset to the last available
checkpoint and computations can continue from that point onward. This eliminates
the need to start from scratch. There is some overhead however when the workers
have to recover to older worker states and when these checkpoints need to be taken.
Protocols also need to be in place to coordinate the creation of this global state and
these protocols block execution in the system to guarantee consistency. Additionally
a lot of storage might be needed when dealing with big worker states.

Message logs – Messages within the system are logged to a stable storage. In
case of a failure these messages can be replayed in the same order to arrive at the
same worker state as before the failure. This can be used in combination with check-
points to achieve a consistent state, meaning that the checkpoint coordination for a
consistent global state is no longer necessary. The trade off in this case is between
a protocol that blocks execution to capture a global state and the logging of every
message in the system.
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In this work specifically checkpoints and message logs will be considered, since
these are the methods used by most stream engines and this strategy offers a good
balance between recovery times and the effect on the throughput. In the next section
the different consistency guarantees will be elaborated on, after which message logs
and checkpoints will be discussed further.

3.1.3 Consistency guarantees

One important thing to take into account when working with fault recovery is the
consistency guarantees that are required. In general a distinction can be made be-
tween three different types of consistency; at least once, at most once and exactly
once processing [14]. At least once processing means that messages might be pro-
cessed multiple times. At most once, on the other hand, means that some messages
might be lost in the process. When exactly once processing is guaranteed, no mes-
sages will be lost or duplicated. Important to note is that there are two ways to
interpret exactly once processing [14]. Either the state or output could be consid-
ered for this purpose. To illustrate the importance of these consistency guarantees,
consider a transactional system. Whenever at least once processing is guaranteed in
such a system, money could be generated out of thin air, since whenever person A
sends money to person B, person B might receive it multiple times. With an at most
once guarantee on the other hand, there might be a chance that person B receives
nothing at all, while person A did send the money. In this example both scenarios
are extremely problematic, which shows why such a strong exactly once processing
guarantee is necessary in some cases. To achieve this, a combination of log based
and checkpoint based recovery can be used.

3.1.4 Log based recovery

Log based recovery, as mentioned shortly before, describes the process of logging
messages when they are sent and replaying those from a certain point onward when
a failure occurs. When combining log based recovery with checkpoints, the neces-
sity of these logs depends on the protocol. For example, when a blocking version
of the coordinated checkpointing approach is used, the checkpoints will be taken in
such a way that no messages are in transit. Therefore there is no need for message
logs. However, when checkpoints are taken in an uncoordinated manner, there is no
way to guarantee that there are no messages in transit. To prevent those messages
from being lost, logs are necessary. It is, however, not as simple as just replaying
all the message logs from a certain point after recovery. To illustrate this, imagine
the scenario as given in figure 3.2 where message m2 follows as a result of process-
ing message m1 (scenario a). When both of these messages are logged and replayed
upon failure (scenario b) message m2 will now be processed twice, due to the fact
that it is replayed from the logs and naturally follows after processing of the re-
played message m1. To prevent this from happening, it is important to somehow
keep track of these causal messages. There are multiple ways to ensure that mes-
sages are only sent, and thus processed, once. How this is done in the proposed
solution is discussed in section 4.3.

3.2 Checkpoint based recovery

Checkpoints can be described as intermediate results. They are written to stable
storage, such that if a failure occurs a worker can continue from that intermediate
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P1

P2

C1,1

C2,1

(m1) (m2)

P1

P2

C1,1

C2,1

(m1)

(m2)(m2)

(a)

(b)

FIGURE 3.2: A scenario in which all logged messages are replayed on
failure.

result onward instead of starting over from the beginning. There are quite a lot
of checkpoint based recovery protocols, which can be divided into three different
categories; uncoordinated, coordinated and communication induced protocols. The
workings of these algorithms, their flaws and necessary additional protocols, will be
discussed in this section.

3.2.1 Coordinated checkpointing

In case of the coordinated checkpointing approach workers explicitly communicate
about the checkpoints and coordinate their creation. The most well-known and
widely adapted coordinated algorithm is the Chandy-Lamport algorithm [9]. The
algorithm consists of checkpointing rounds that each capture a consistent global
state. In literature both a non-blocking, as well as a blocking variant of this algo-
rithm can be found, each having their own advantages and disadvantages [11]. For
the proposed solution a blocking variant [31] has been implemented, since it uses no
messages logs. The rounds of this specific algorithm work as follows; one or more
of the workers initiate the checkpointing round. Once they have finished creating
their checkpoints, markers will be sent over all their outgoing channels. Whenever
a worker has received a marker over all of the incoming channels, it will, again, take
a checkpoint and propagate the marker to its own outgoing channels. The round
is done once all of the workers have taken a checkpoint. Whenever a marker is re-
ceived, all incoming messages on that channel will be buffered, until all markers
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have been received and a checkpoint has been taken, after which execution contin-
ues.

Important to note is that this algorithm, due to its blocking nature, only works in
acyclic execution graphs [8]. Cyclic dataflows would cause this algorithm to dead-
lock, since at least one of the incoming channels for one of the workers would de-
pend on at least one of its outgoing channels. This would mean that a marker could
never be received on this incoming channel, causing the worker to block execution
forever.

Once a round of this algorithm has been completed, this set of checkpoints con-
tains a consistent global state, without any need for message logs.

3.2.2 Uncoordinated checkpointing

On the other end of the spectrum there are uncoordinated checkpointing protocols,
which can be seen as the simplest of the three protocols. Workers determine by
themselves when checkpoints should be taken. This can be done in a variety of
ways, most common is a periodic algorithm that takes a checkpoint on a set time
interval, but it could also be done every certain number of operations, for example.
One important thing to note is that there is no communication between the workers
about the checkpoints whatsoever, in contrary to coordinated checkpointing.

Orphan messages

One way inconsistencies can be introduced upon recovery, when using an uncoordi-
nated approach, is through orphan messages. Orphan messages are messages that, if
the system was to be restored from a certain set of checkpoints, have been processed,
but haven’t yet been sent at the point of recovery. An example of such a scenario can
be found in figure 3.3, if the system was restored from the latest possible checkpoints
(C1,2 and C2,1). In this case, the message would be replayed, meaning that it would
be processed twice, causing the consistency guarantee to loosen to at least once pro-
cessing. Therefore it is important that these types of messages are detected, such
that a set of checkpoints can be used that would maintain a consistent state (in case
of the example; checkpoints C1,1 and C2,1).

P1

P2

C1,1

C2,1

C1,2

FIGURE 3.3: An orphan message from process P2 to P1.
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Recovery graph and line

Finding a set of checkpoints that maintains a consistent state after recovery can be
done through finding a recovery line within a recovery graph. Checkpoints that
introduce orphan messages cause inconsistencies and can therefore never be part
of a recovery line. These checkpoints are also referred to as useless checkpoints
(checkpoint C1,2 in figure 3.3). There are two different ways to build a recovery
graph in which a recovery line can be found [13]. The first one is based on the
rollback-dependency graph [4]. This graph can be built as follows:

• Let each checkpoint be represented by a node in the graph

• Draw an edge from Ci,x to Cj,y, if i ̸= j and a message m is sent from Ii,x and
received in Ij,y

• Or draw an edge from Ci,x to Cj,y, if i ̸= j and y = x + 1

An example of the rollback dependency graph can be seen in figure 3.4 (b). The
name of the graph stems from the fact that if an edge is present between nodes Ci,x
and Cj,y and Ii,x has to be rolled back, Ij,y should also be rolled back. The recovery line
can easily be found by applying a reachability analysis on the resulting graph from
the points of failure, marking all nodes encountered along the way. The recovery
line then consists of the last unmarked nodes for every worker within the graph.

Another option would be the checkpoint graph [38], this graph is built in a
slightly different way (note the small difference in the second step):

• Let each checkpoint be represented by a node in the graph

• Draw an edge from Ci,x-1 to Cj,y, if i ̸= j and a message m is sent from Ii,x and
received in Ij,y

• Or draw an edge from Ci,x to Cj,y, if i ̸= j and y = x + 1

An example of the checkpoint graph, built using the same execution graph as
used for the rollback dependency graph, can be found in figure 3.4 (c). For this
graph the rollback propagation algorithm [38] should be used to find the recovery
line. Note that both approaches are equivalent and will yield the same recovery line.
This checkpoint graph is the recovery graph used in the proposed solution.

Domino effect

The domino effect [30] can be described as a chain of orphan messages that cause
multiple consecutive checkpoints to become useless. An example of this effect can be
seen in figure 3.5. The initial recovery line consists of the last available checkpoints
for every process (C1,2 and C2,2). However, there is an orphan message present in this
recovery line, meaning that checkpoint C1,2 becomes useless. This shifts the recovery
line to checkpoints C1,1 and C2,2, causing a similar situation. Therefore checkpoint
C2,2 now becomes useless as well. This continues all the way until the start of the
processes. In this extreme case all of the checkpoints taken during the computation
have become useless, which clearly illustrates why the domino effect can be quite
problematic.



3.2. Checkpoint based recovery 11

P1

P2

P3

C1,1 C1,2

C2,1 C2,2

C3,1 C3,2 C3,3

C1,3

C1,1 C1,2 C1,3

C2,1 C2,2

C3,1 C3,2 C3,3

C1,0

C2,0

C3,0

C1,0

C2,0

C3,0

C1,1 C1,2 C1,3

C2,1 C2,2

C3,1 C3,2 C3,3

C1,0

C2,0

C3,0

(a)

(b) (c)

FIGURE 3.4: a) execution graph, b) rollback dependency graph, c)
checkpoint graph.

3.2.3 Communication induced checkpointing (CIC)

Communication induced checkpointing approaches are used to prevent domino ef-
fects from occurring. Various implementations of the CIC approach can be found
in the literature [37][21][18], however they all rely on the detection and prevention
of Z-cycles [29] by taking forced checkpoints[17]. Z-paths, short for zigzag paths,
are special sequences of messages that connect checkpoints. An example of such
a path can be found in figure 3.6, where messages {m3, m4} and {m2, m4} connect
checkpoints C1,1 and C3,3. Note that only messages originating from the same check-
pointing interval as the previous one arrived in, may be considered to create this
sequence. Z-cycles are defined as Z-paths that connects a checkpoint to itself, an
example of this can be found in figure 3.7, for checkpoint C2,1, where the Z-path
consists of messages {m2, m1}. These Z-cycles in particular are very interesting for
the CIC approach, since it has been proven that checkpoints can only be part of the
recovery line if, and only if, they do not lie on such a cycle [29]. Therefore detect-
ing and preventing these cycles can reduce the amount of useless checkpoints, and
thereby prevent the domino effect.

Whenever a cycle is detected on reception of a message, a checkpoint is forced
before processing that message. It is important to note that there is, in this case, a
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P1

P2
C2,1

C1,1

C2,2

C1,2

FIGURE 3.5: The domino effect.

P1

P2

P3

C1,1 C1,2

C2,1 C2,2

C3,1 C3,2 C3,3

m2 m3

m1
m4

FIGURE 3.6: Execution graph containing multiple Z-paths.

clear distinction between the reception of a message and the so-called delivery of a
message. The checkpointing happens in between of these two stages. An example
can be found in figure 3.8.

Traditionally, CIC algorithms were categorized as either index-based or model-
based protocols [13], which have been proven to be fundamentally equivalent [20].
Index-based protocols do however tend to create less forced checkpoints [2], which
will yield better performance.
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FIGURE 3.7: Execution graph containing a Z-cycle.
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FIGURE 3.8: Whenever a cycle is detected on the reception of a mes-
sage, a checkpoint will be taken first, before the message is processed.
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Chapter 4

Implementation

To benchmark the checkpointing algorithms in a standardized way a basic streaming
system without any checkpointing implementation should be used as a base. For
this purpose an in-house streaming system developed by one of the PhD candidates
had been provided to build on top off. This chapter will describe the working of this
in-house system, as well as the implementation details of the proposed solution.

4.1 In-house streaming system

The in-house system provided by one of the PhD candidates was an early version of
a transactional streaming system developed in Python. It contained only two basic
operators; a filter and a map. Additional operators (join and aggregate), as well as
windows (tumbling), had to be implemented for the benchmarking purposes. The
system divides the operator workload into multiple partitions, which are distributed
over the different workers in a round-robin fashion. For example, if there are 4 parti-
tion for a map operator on two different workers, worker one is assigned map 1 and
3, and worker two is assigned map 2 and 4. There is a coordinator that handles this
workload distribution and this same coordinator is later also used for the fault recov-
ery coordination, as well as finding recovery lines, and any additional protocols that
need coordination. The workers start query execution by reading from a Kafka topic
and the result of the query is written to a Kafka topic. Communication in the system
is done through TCP and Minio buckets are used for checkpoint storage. Message
logging is also done through Kafka, where each communication channel has its own
topic partition.

4.2 Coordinated checkpointing

For the coordinated checkpointing a blocking marker-based Chandy-Lamport al-
gorithm has been implemented [9]. This checkpointing mechanism makes use of
rounds which are initiated by the coordinator. Whenever the workers receive a mes-
sage from the coordinator that the round started, they will create a checkpoint of
the source operator in the execution graph. To be able to know which operator is
the source operator and where to pass or expect markers, the execution graph is de-
fined manually before the execution starts. The workers use this execution graph to
build a mapping of all incoming and outgoing channels and define the source and
sink operators. Once the source operators have been checkpointed, a marker will
be sent over all the outgoing channels to the next operator(s). Whenever a marker
has been received the channel will be blocked, and when this is the case for every
incoming channel (which is tracked by a boolean array), the worker will checkpoint
that operator and again send markers on its corresponding outgoing channels. Any
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messages received on a blocked channel will be buffered and processed directly after
the checkpoint has been taken, before new incoming messages are processed. Once
the sink operator has been checkpointed a message will be sent to the coordinator.
The coordinator also keeps track of every worker status through a boolean array
and once it received a message from every worker, the round is considered done.
Now, whenever a failure is detected, the coordinator will simply send the last com-
pleted round number to every worker. Workers will then recover to the matching
checkpoint. Note that in this case no message logs are necessary and therefore no
messages are replayed on recovery either, making the recovery protocol a lot simpler
then for the uncoordinated and CIC approach.

4.3 Uncoordinated Checkpointing

The uncoordinated checkpointing approach itself is relatively simple, since the work-
ers only need to create a snapshot every set time interval. However, there is quite
some information that needs to be stored within those snapshots, besides the actual
worker state, to enable for consistent recovery. To achieve exactly once processing,
the recovery protocol works as follows; The workers log their messages to a Kafka
topic, partitioned per channel. The corresponding Kafka offsets are stored for both
the incoming and outgoing channels (indicating the last offset processed and sent,
respectively). Additionally, workers keep track of the last Kafka offset that they pro-
cessed from the source (tasks assigned by the generators). Using this information,
it can be determined which messages were sent but not yet received at the point of
recovery. By simply replaying those messages and resetting the Kafka offset for the
source to the last ones processed as stored in the checkpoints, exactly once process-
ing can be guaranteed.

The workers, in this case, only store these offsets and log their messages. When-
ever they are done checkpointing, this information is sent to the coordinator. The
coordinator uses this information to build the checkpoint graph, as discussed in
chapter 3. First, the new checkpoint is simply added as a node to the graph and an
edge from the previous checkpoint on the same process is added to the new node.
The offsets are stored and used to add the edges between the processes whenever a
failure is detected. An implementation where these offset are processed immediately
upon arrival could be faster, however it is a lot less trivial to implement, and since
checking these overlaps is a relatively short task it should not affect performance
a lot. These edges represent orphan messages, which can be found by looking at
the interval overlap. Once all edges are added, nodes are marked using the roll-
back propagation algorithm [38] (which comes down to a reachability analysis). The
set of every last node for every worker will be considered as the root set. If any of
the nodes in the root set get marked through the reachability analysis, it is replaced
with an preceding node and the analysis is redone. When no nodes get marked af-
ter the reachability analysis, the recovery line has been found. The coordinator then
sends messages to all the workers, containing which checkpoint they should recover
from and the offsets per channel that they should replay. Lastly the coordinator does
some garbage collection, where the recovery line becomes the new recovery graph
and all offsets are cleared. The recovery protocol for the workers restores the val-
ues as stored in the checkpoint, replays the offset intervals per channel as specified
by the coordinator, and resets the Kafka offset from the source corresponding to the
checkpoint.
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4.4 Communication Induced Checkpointing

The Communication induced approach builds on top of the uncoordinated approach.
A protocol for the Z-cycle detection and forced checkpointing were added and some
information was piggybacked to the already existing messages between workers.
Specifically the HMNR protocol [19] was chosen since it uses relatively small data
structures and tries to minimize the amount of forced checkpoints. For this protocol
to work some additional data structures are required. These include three different
boolean arrays, a logical clock and a vector clock. Whenever a message is sent, the
logical clock, vector clock and two of the boolean arrays are piggybacked. This in-
formation is used on message reception to do the cycle detection as described in the
paper [19]. Whenever a potential cycle is detected a checkpoint will be forced and
the values will be adjusted accordingly.

One thing to note is that, for the communication induced approach to work prop-
erly, there should not be a perfect overlap between checkpointing intervals, other-
wise no cycles can be formed. When taking checkpoints every x amount of seconds,
even though the workers aren’t in sync, checkpoints might still be taken too close
to each other to find any cycles. To create some more room for these cycles (and
orphan messages) to occur, some randomness has been added to the uncoordinated
(and CIC) intervals.

4.5 Metric collection

To be able to benchmark the proposed solution some implementations were neces-
sary to collect certain metrics. Why these metrics were chosen specifically and what
they aim to capture is explained in the benchmarking chapter. This section will dis-
cuss how these metrics were collected within the system.

Latency – The latency is measured in an end-to-end fashion, using the times-
tamps of the ingestion Kafka topic, as well as the Kafka output topic. These times-
tamps will be matched based on their corresponding keys, such that the difference in
these timestamps represents the latency for the item with that key. This implemen-
tation however differs a bit depending on the query. When a join or an aggregate is
used, there is a mapping from multiple inputs to one output. In this case the latest
timestamp of all the contributing inputs is compared with the output timestamp.
For the cyclic query one input can lead to multiple outputs, because of this all the
different input/output matches are considered for the latency measurement.

Throughput – The throughput of the system is measured by the input rate spec-
ified in the generators. The highest sustainable rate is found manually by changing
the rates based on the systems performance.

Checkpoint time – How to measure the checkpoint time differs per protocol. For
the uncoordinated and CIC approach the time at the beginning and the end of the
checkpoint can simply be compared, from which the average time can be derived.
For the coordinated protocol this is a bit less straightforward. Ideally the effect of the
channel blocking should also be captured in this measurement. Therefore the time
is measured from the coordinator, with the starting timestamp being the beginning
of the checkpointing round and the end timestamp being the moment when every
worker confirmed that they are done with the round. By dividing this time over the
total amount of checkpoints in a round, an average checkpointing time that includes
the channel blocking can be calculated.
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Recovery time – Recovery time is measured in the same way for every proto-
col. A timestamp of failure detection and a timestamp of confirmation of successful
recovery for every worker are used to determine this time.

Rollback distance – The rollback distance is simply captured by the number of
useless checkpoints. This number can be found by counting the amount of marked
nodes during the recovery line algorithm. This does not give the actual time that was
lost, however, since the checkpointing interval is known, it does give a worst-case
estimate.

Network usage – The network usage is measured in the total amount of bytes
sent through the network. This is done by simply accumulating all the sizes in bytes
for every message that is sent out. Protocol specific message sizes are also counted
separately to determine their relative effect on the total network usage.

Not all of these metrics can be collected outside of the execution, meaning that
they could have an effect on the performance of the system, especially the network
usage collected during the runs. Therefore, for every experiment, a run with and
without network usage calculations is done.

4.6 Assumptions

In the interest of time some assumptions were made about the underlying streaming
system, as well as the technologies used for the implementation of the algorithms.
Although the performance and consistency strongly depend on correct performance
of these factors, their fault free implementation lies outside of the scope of this re-
search. This section will discuss these assumptions and simplifications.

First of all, it is assumed that all of the messaging in the system happens correctly.
No messages are lost and they arrive in the correct order. This goes for the TCP
channels, as well as all messages sent to Kafka, which includes the message logs and
final results. The same assumption is made for the storage of the checkpoints in the
Minio bucket.

Another challenge was that the in-house system did not come with any im-
plementation that monitors heartbeats that can detect worker failures or discon-
nects. Therefore it was decided to implement some relatively simple artificial fail-
ures. These are messages from a worker to the coordinator, mentioning that it failed.
The coordinator will then start all the necessary protocols as if it detected the failure
itself and instruct the workers to recover. This means that workers do not actually
fail, but this does not have an effect on the fault recovery.

For the coordinated approach, shuffling between operator partitions could have
some effect on its performance, since this directly affects the amount of markers that
each process should wait for. For the proposed solution it has been assumed that,
if the amount of partitions differ per operator with a direct channel between them,
markers simply need to be broadcasted to every partition of the downstream opera-
tor. This indirectly also means that the downstream operator expects a marker from
every upstream operator partition as well. Additionally, for the coordinated ap-
proach, it is assumed that the execution tree is known beforehand, since it is passed
to the workers to manage the marker passing.
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4.7 Testing

Manual testing using system logs has been done for each of the three algorithms to
specifically check their fault free execution, as well as consistency. To do this a sim-
ple execution graph was used, in which one of the operators simply incremented a
count in the worker state. Upon correct fault recovery and message replaying, the
sum of these counts should exactly equal the amount of queries created by the gener-
ator. If this count is too low it would indicate an at most once consistency guarantee,
whereas if it was too high, it would indicate an at least once consistency guaran-
tee. The implemented solutions also contain some more abstract logic that could be
quite difficult to actually test through a manual method. Therefore some unit test
have been created to confirm correct workings of these methods. This was done for
some of the coordinator logic, such as building the recovery graph and finding the
correct recovery line, as well as some of the CIC logic. An overview of the test meth-
ods and the specific behavior that each test tries to capture can be found in table
4.1. The methods that have been tested have been created with the tests in mind.
By distributing the logic in the coordinator over smaller methods, a simple dummy
coordinator object could be created for the testing purposes. In this dummy object
only the necessary parameters had to be set to test each specific functionality. The
CIC logic has also been decoupled from the messaging, such that method outputs
could simply be passed as other method inputs, so no actual messaging was neces-
sary for the unit tests. The coordinated and uncoordinated algorithms were simple
enough to be able to test them through manual methods.

Method name Protocol/algorithm Behavior
test_find_reachable_nodes_empty Finding reachable nodes in recovery graph Checks if an empty set is returned if there are no reachable nodes in the graph
test_find_reachable_nodes_non_empty Finding reachable nodes in recovery graph Checks if a non-empty set is returned if there are reachable nodes in the graph
test_find_reachable_nodes_recursion Finding reachable nodes in recovery graph Check if all the reachable nodes are found recursively
test_find_recovery_line Finding the recovery line Check if the expected recovery line is found. given a simple graph with an orphan message
test_find_recovery_line_no_orphan Finding the recovery line Check if the expected recovery line is found when no orphan messages are present in the root set
test_find_recovery_line_domino Finding the recovery line Check if the expected recovery line is found when there is a domino effect in the graph
test_simple_edges Adding edges to the recovery graph Check is edges are added as expected given some overlapping offsets
test_same_interval_ends Adding edges to the recovery graph Check if edges are added correctly when offset intervals have the same value
test_clear_checkpoint_details Clearing checkpoint information Check if all the redundant information is cleared correctly (used after recovery)
test_find_channels_to_replay Finding correct channels to replay Checks if the correct subset of messages is found to replay for the workers, given a simple graph

test_cycle_detection Detecting cycles
Check if no cycle is detected in a simple case where there is no cycle
(note that in more complex scenarios this might not hold, due to it being a prediction)

test_cycle_detection Detecting cycles Check if a simple cycle is detected as it should be

TABLE 4.1: Testing methods and their behaviour.
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Chapter 5

Benchmarking Setup

To extensively benchmark the proposed solution there are several factors that come
into play. First of all different kinds of workloads and message patterns should be
tested. Additionally there are several parameters that can be tweaked, such as the
the amount of failures or the parallelism of the system. Lastly the evaluation metrics
should be defined. This chapter will discuss the experimental design.

5.1 Queries

To ensure that the benchmarks cover different types of message patterns, a variety
of queries should be used. Since the in-house system that the proposed solution is
based on did not yet have support for all types of operators, these had to be im-
plemented first, before meaningful benchmarks could be run. As discussed in the
previous chapter, some basic operators such as a hash-join and an aggregate have
been implemented, together with tumbling windows to enable for the benchmark-
ing. With these additions to the in-house system, some queries based on the work-
ings of the NEXMark queries[36] were implemented. NEXMark is a well-known
benchmark for data streams. It has a total of 12 different queries that each aim to test
a different type of behaviour. These queries will simply be referred to as NEXMark
queries in this chapter, or simply a numbered query (e.g. query 1 when discussing
the query based on NEXMark query 1). Workload generators for these queries from
another thesis project were adapted to work with the in-house system. Between
operators, shuffling can occur, meaning that messages from the same operator parti-
tion can be send to various receiving partitions. This has an effect on the amount of
markers that have to be passed for the coordinated approach. Additionally, since the
CIC algorithm relies on cyclic dataflows to force checkpoints, a custom cyclic query
has been created to test the effect of this algorithm. A detailed description of each of
these queries, along with some visual representations, can be found below.

5.1.1 NEXMark query 1

NEXMark query 1 (figure 5.1) represents a very simple currency conversion. It has
only three operators, the first one converts the arguments to a Bid object, the sec-
ond one converts the bid price from dollars to euro’s and the last one outputs the
results. There is no shuffling between the operators and no state is used. This query
represents a workload with only a simple map.

5.1.2 NEXMark query 3

NEXMark query 3 (figure 5.2) creates some local item suggestions. The person
source and auction source operators create the corresponding objects. The filter then
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FIGURE 5.1: Execution graph of query 1.

filters the persons based on specific states. A flatmap is used to join this filtered re-
sult with the auction objects, which is then returned as output by the sink operator.
This query tests stateful join and filter behavior, with some shuffling between the
join and its input.
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FIGURE 5.2: Execution graph of query 3.

5.1.3 NEXMark query 8

NEXMark query 8 (figure 5.3) makes use of a tumbling windows to monitor new
users. It uses the items in this tumbling window to do a stateless join, of which the
results are returned again as an output by the sink. Query 8, similarly as query 3,
has the person and auction sources, and has shuffling between the inputs for the
window (instead of the join in case of query 3). This query has window behaviour,
as well as a stateless join.

5.1.4 NEXMark query 12

NEXMark query 12 (figure 5.4) is the last NEXMark based query, added to the aug-
mented NEXMark suite. It basically counts the amount of bids a person makes
within a fixed processing time window. Input for this window is again shuffled and
the output is sent to an aggregate that counts the occurrences per person. The result
of this is again sent to a sink that outputs the count. This query tests windowed
aggregate behavior.
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5.1.5 N-hop approximation (cyclic)

For the purpose of testing the CIC workings, a relatively simple N-hop implemen-
tation has been chosen, which uses two operations. The execution graph for this
query can be found in figure 5.5. The first operator simply receives two nodes and a
count. This can either represent a directional edge with count 1 from the generator,
or a route (constructed of multiple edges) with the hop count from its downstream
operator (this is where the cyclic dataflow comes from). When the input is an edge it
will be stored in a map in its local state. It will then (in any case) look for any edges
starting from the second node (the end of the route or edge) in this map. Finally the
operator forwards the edge/route received, along with all outgoing edges/routes
and their counts, to the downstream operator. This second operator then simply
adds the edges to the original edge/route, checks the new hop count, and stores
this new route in memory if it is a new shortest route between two nodes. During
this hop count check any of the following things can happen; The route between the
nodes is longer than the specified n, in which case the route will be discarded. The
route is exactly n, meaning it will be given as a valid output. Lastly, when the route
is shorter than n hops, the new route will be sent back to the upstream operator, to
find possible additional edges to add to the route. It is important to note here that
this query will only work to test the uncoordinated and CIC approaches, since the
coordinated approach will deadlock in this scenario. To improve the performance
during the experiments, a time to live for the worker states of 5 seconds was cho-
sen, meaning that the state would be cleared after that time. Additionally N was
set to 3, to limit the amount of recursion such that a reasonable input rate could be
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FIGURE 5.5: Execution graph of the n-hop approximation query.

5.2 Evaluation metrics

There are several metrics that will be used to evaluate the performance of the system.
First of all, to test the general performance, the throughput and the latency of the
system will be measured.

Latency – Latency is measured in an end to end manner, meaning that the output
time is compared to the ingestion time. However, due to the differences between the
queries, there are some small differences in how this measurement is taken. For
query 1, both the output, as well as the input timestamps can be used for the same
key. Query 3 and 8 contain a join, meaning that the input timestamp of the last item
contributing to the join is compared to the output timestamp. Query 12 works in a
similar way, where the timestamp of the last item that contributed to the aggregate
(instead of the join) is used. For the cyclic query, all combinations of matching input
and output will be considered for the latency calculation.

Throughput – For the throughput a sustainable generator rate will be searched
for. A sustainable rate in this case indicates the highest possible rate that the system
(and generators) can handle. This will be done in a manual fashion.

Due to the differences in the checkpointing approaches, there are also several
other metrics that might yield some interesting results. The metrics considered in
this case are the recovery time, checkpointing time, network usage, and recovery distance.

Recovery time – The recovery times can be measured by the coordinator, starting
from the failure detection up until confirmation of successful recovery for all the
workers. Since there is quite a difference in recovery protocols for the uncoordinated
and CIC approaches compared to the coordinated approach, it is expected that there
is quite some difference in terms of recovery time. However this also has to do with
the fact that the checkpoints are taken in a different manner, meaning that a reverse
effect is most likely to be found when looking at the checkpointing times.

Checkpointing times – This metric is a bit a less straightforward to measure.
Since no rounds are used in the uncoordinated and CIC approaches, the time that it
takes to create a checkpoint can simply be measured individually. However, for the
coordinated approach only the time of a round can be used, since its channel block-
ing behavior should also be captured in this measurement. Although one round
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does include multiple checkpoints, due to the system design, it can be determined
how many checkpoint are exactly present. Therefore an average time per checkpoint
can be determined using this round time, that includes this blocking behavior.

Network Usage – Network usage might also be an interesting metric to consider.
Although the amount of messages for the CIC and uncoordinated approach should
be similar, the amount of data for the CIC should be higher due to the piggybacked
information. The coordinated approach on the other hand should see a lot more
messages being passed within the system. To measure the effect on the network,
both the size of all the messages in the system, as well as the protocol specific mes-
sages are captured. By doing this the effect per protocol on the network usage can
be represented as a percentage increase.

Recovery Distance – Lastly the recovery distance should be measured for the
uncoordinated and CIC approach. To do so the amount of useless checkpoints can
be counted when searching for the recovery line. It would be expected that the CIC
approach has, on average, a lower amount of useless checkpoints. Even thought
this does not exactly capture the rollback distance in time, a worst case time indi-
cation can be provided by multiplying the amount of useless checkpoints with the
checkpoint interval length.

5.3 Parameters

To highlight the strengths and weaknesses of each of the algorithms, various param-
eter configurations should be ran during the benchmarking process. The parameters
considered for the this purpose are; amount of workers (parallelism), amount of fail-
ures and workload.

Amount of workers – With the increase of the amount of workers, the amount
of channels increases as well. This has an effect on both the message logging in the
uncoordinated and CIC approaches, as well as the marker passing in the coordinated
approach.

Amount of failures – The amount of failures can be used to make the effects
of fault recovery on the overall performance a lot more clear, especially if the per-
formance differences turn out to be relatively small. In this case an effect on the
throughput or latency might be difficult to capture if only a single failure would be
used. Runs without failures should also be performed to see the effect of the recov-
ery.

Workload – The workload can be changed to see in which scenarios the check-
pointing overhead might be worth it and whether there is a big difference in terms of
the performance between the approaches when presented with varying workloads.
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Results and Discussion

To test each of the three protocols, every query has been ran once per protocol using
four different configurations. These configurations only differed in parallelism (ei-
ther 10 or 50 workers) and the amount of failures (1 or 0). Sustainable data rates for
each of these configurations were searched for manually. Each configuration ran for
90 seconds, with checkpoints being taken every 5 seconds and the failure occurring
after approximately 45 seconds. For the latency calculation the first 30 seconds were
not used, to get rid of any higher latencies possibly caused by starting up. The re-
sults can be found in tables 6.1, 6.2 and 6.3. Please note that, due to the deadlock of
the coordinated protocol when running a cyclic query, no metrics could be collected.
Similarly, recovery related metrics are left out when no failure occurs during the run,
or when no checkpointing protocol is used.

Config No protocol UNC CIC COR
(query, partitions) Total Total Checkpointing % Total Checkpointing % Total Checkpointing %
cyclic, p=10 97015421 95157016 82727 0,087 304380672 161225326 52,968 - - -
cyclic, p=50 254881793 265575479 431011 0,162 2940937744 1599080441 54,373 - - -
q1, p=10 576077875 581356019 122106 0,021 1671293911 876097998 52,420 579919823 63410 0,011
q1, p=50 2902863073 2909714974 607967 0,021 20360422336 12311421935 60,467 2893992110 317050 0,011
q3, p=10 903667741 910604090 802227 0,088 1935558744 870568994 44,978 905918547 410720 0,045
q3, p=50 3242220725 3324658797 35246899 1,060 19756258121 12090431984 61,198 3247878508 9057600 0,279
q8, p=10 1284685527 1289378584 1022570 0,079 2620113580 1114767525 42,547 1288544779 429590 0,033
q8, p=50 3904617241 3954408898 35251838 0,891 21683591386 12958178468 59,760 3916145642 9525950 0,243
q12, p=10 1462574856 1470178743 246524 0,017 2204160934 970152943 44,015 1465412692 239530 0,016
q12, p=50 4983564781 4995561581 3663748 0,073 16236451943 11946757207 73,580 4990270718 4767650 0,096

TABLE 6.1: Network usage in bytes.

config No Protocol UNC CIC COR
partitions, rate, failures 50th percentile 99th percentile 50th percentile 99th percentile 50th percentile 99th percentile 50th percentile 99th percentile

cyclic

p=10, 4k, no failures 693 1193 770 1637 807 1843 - -
p=10, 4k, 1 failure - - 801 11178 815 3394 - -
p=50, 15k, no failures 117 289 151 489 168 564 - -
p=50, 15k, 1 failure - - 161 5804 193 5129 - -

q1

p=10, 7k, no failures 33 48 69 103 73 110 33 48
p=10, 7k, 1 failure - - 72 5282 21838 31614 34 2677
p=50, 35k, no failures 30 45 73 139 78 4340 31 46
p=50, 35k, 1 failure - - 1369 7662 26358 44037 37 2861

q3

p=10, 7k, no failures 23 31 58 210 64 196 24 98
p=10, 7k, 1 failure - - 62 9716 71 11732 24 3137
p=50, 25k, no failures 21 37 87 1852 2628 9492 21 131
p=50, 25k, 1 failure - - 8403 27645 17329 41120 22 3488

q8

p=10, 5k, no failures 27 36 62 105 69 133 27 37
p=10, 5k, 1 failure - - 72 10582 81 10467 28 2482
p=50, 15k, no failures 28 44 90 1776 743 3209 24 40
p=50, 15k, 1 failure - - 89 21521 9318 25370 24 2594

q12

p=10, 5k, no failures 24 37 68 114 74 148 32 44
p=10, 5k, 1 failure - - 701 11426 2966 10644 33 2969
p=50, 15k, no failures 29 43 93 977 434 3683 30 43
p=50, 15k, 1 failure - - 1042 16351 12674 22295 31 2737

TABLE 6.2: Latency percentiles in ms.

Though maybe not as surprising, since most of the well-known stream engines
use some version of the coordinated Chandy-Lamport algorithm, these results clearly
show that the coordinated approach performs not only more consistently, but also
more efficient for several reasons. The network overhead (table 6.1) in terms of size
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config UNC CIC COR
partitions, rate, failures ACT ART Useless CP’s ACT ART Useless CP’s ACT ART
p=10, 4k, no failures 71,54 - - 107,82 - - - -
p=10, 4k, 1 failure 92,15 212 0 117,80 123 0 - -
p=50, 15k, no failures 8,68 - - 40,95 - - - -

cyclic

p=50, 15k, 1 failure 27,41 149 0 81,51 98 0 - -
p=10, 7k, no failures 4,39 - - 14,68 - - 9,25 -
p=10, 7k, 1 failure 27,88 12 0 84,55 24 0 9 13
p=50, 35k, no failures 9,94 - - 5609,91 - - 15,50 -

q1

p=50, 35k, 1 failure 222,42 376 0 4369,04 1887 0 30,13 18
p=10, 7k, no failures 3,66 - - 27,08 - - 15,75 -
p=10, 7k, 1 failure 28,54 1359 16 247,07 1331 12 58,5 274
p=50, 25k, no failures 24,74 - - 1670,82 - - 90,81 -

q3

p=50, 25k, 1 failure 303,49 21079 98 1989,87 7661 105 92,63 869
p=10, 5k, no failures 4,94 - - 29,92 - - 17,5 -
p=10, 5k, 1 failure 66,84 799 9 491,86 432 10 19,56 27
p=50, 15k, no failures 41,96 - - 657,07 - - 50,44 -

q8

p=50, 15k, 1 failure 143,20 5943 50 2436,09 6461 58 46,06 74
p=10, 5k, no failures 6,50 - - 66,59 - - 17,75 -
p=10, 5k, 1 failure 190,63 333 9 1381,89 345 0 22,44 20
p=50, 15k, no failures 59,31 - - 747,65 - - 27,35 -

q12

p=50, 15k, 1 failure 202,05 4974 49 2672,06 5210 54 33,88 46

TABLE 6.3: Checkpointing metrics (average checkpointing and recov-
ery times in ms and amount of useless checkpoints).

for the coordinated protocol is way lower than for the uncoordinated or communi-
cation induced approaches (a maximum of 0,3% compared to 1,1% and 73,6% re-
spectively). In terms of latency (table 6.2) the 50th percentile (average) never ex-
ceeded 40ms for the coordinated approach, whereas the uncoordinated approach
could reach up to roughly 8400ms and the CIC approach roughly 26400ms. When
there are no failures the 99th percentile for the coordinated approach also stays a
lot more stable with only some, still relatively low outliers around the times check-
points are taken. The other two protocols do show way higher latencies, especially
the CIC (figures 6.1, 6.2, 6.3). Taking checkpoints also seems to have a longer last-
ing effect on the latencies for the uncoordinated approach. The CIC approach does
not show any huge outliers in this case, but the latencies are extremely high already.
When failures do occur, naturally more latency is introduced due to recovery. This
clearly shows in the 99th percentiles for every configuration (table 6.2 and figures
6.4, 6.5, 6.6). Again, the coordinated approach performs by far the best in this sce-
nario as well. From figures 6.4 and 6.5 it becomes clear that the uncoordinated and
CIC protocol cannot catch up quickly enough after a failure recovery, resulting in
a slowly decreasing, yet extremely high latency. The coordinated approach on the
other hand quickly returns to its behavior before the failure occurred (figure 6.6).
Lastly when looking at the checkpoint specific metrics (table 6.3), it shows that the
coordinated approach stays pretty consistent when it comes to checkpointing and
recovery times, with small increases depending on the workload.

Since the coordinated approach has no need to transfer any information about
its checkpoints, it logically follows that the network usage in bytes is quite a lot
lower than for the other protocols. Additionally, the CIC needs to include several
datastructures on every execution message to be able to perform the cycle detec-
tion, which is why its relative effect on the network is way higher than even the
uncoordinated approach. The main difference in performance for these algorithms
is most likely caused by the message logging necessary for both the uncoordinated
and CIC approaches however. When checkpoints are taken, workers need to wait
for their message logging buffers to be committed to ensure consistency. This has
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FIGURE 6.1: Uncoordinated approach, query 3, 50 workers, no fail-
ure.

an effect on the average checkpointing times, and therefore also the latency. Re-
covery times are also effected by this, since messages usually need to be replayed
upon recovery, which isn’t the case for the coordinated approach. Finding a recov-
ery line also contributed to the higher recovery times of the uncoordinated and CIC
approaches, since the coordinated approach can simply keep track of the last com-
pleted checkpointing round instead of having to build a graph and find a consistent
global checkpoint.

A bit more unexpected is the performance of the CIC algorithm compared to
the uncoordinated one. In terms of latency and checkpointing metrics the uncoor-
dinated approach, in most cases, outperforms the CIC by a lot. An important thing
to note here is that the cycle prediction is not perfectly accurate, meaning that some-
times cycles are predicted when there are none, even in non-cyclic queries. This
increases the amount of checkpoints taken and, especially if checkpointing times are
relatively long, can increase latency a lot. The cyclic query created specifically to
generate cycles did not have as many orphan messages or domino effects as hoped,
therefore yielding similar results for the CIC and uncoordinated approach. Their
latencies also showed a very similar behaviour, both with and without failures (fig-
ure 6.7, 6.8, 6.9 and 6.10). Queries 3, 8 and 12 on the other hand did have quite
some useless checkpoints (table 6.3). Since these queries do not contain any cyclic
dataflows, these are caused by orphan messages and cannot be prevented accurately
with the use of cycle detection. These orphan messages are more likely to occur the
higher the amount of operators and the more shuffling occurs between them. Judg-
ing from these results, the occurance, and thus prevention by the CIC approach, of
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FIGURE 6.2: CIC approach, query 1, 50 workers, no failure.

the domino effect seems rare enough to not outweigh the negative effect on the per-
formance. Which might be an interesting future direction to take this research in,
since a blocking coordinated approach is not an option when dealing with cyclic
dataflows.
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FIGURE 6.3: Coordinated approach, query 3, 50 workers, no failure.

FIGURE 6.4: Uncoordinated approach, query 1, 50 workers, 1 failure.
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FIGURE 6.5: CIC approach, query 3, 50 workers, 1 failure.

FIGURE 6.6: Coordinated approach, query 3, 50 workers, 1 failure.
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FIGURE 6.7: Uncoordinated approach, cyclic query, 50 workers, no
failure.
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FIGURE 6.8: Uncoordinated approach, cyclic query, 50 workers, 1 fail-
ure.
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FIGURE 6.9: CIC approach, cyclic query, 10 workers, no failure.

FIGURE 6.10: CIC approach, cyclic query, 10 workers, 1 failure.
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Chapter 7

Conclusion

This paper compared and implemented the three different types of checkpointing
algorithms (uncoordinated, communication induced and coordinated) in a basic
streaming system. By analysing the results of various benchmarks on the network,
latency and checkpointing metrics of these three approaches, it has become clear
that the widely used coordinated blocking Chandy-Lamport solution indeed out-
performs the other options. Additionally it has been shown that, due to the rare
occurrence of (long) domino effects, the potential benefits of the communication in-
duced approach do not outweigh its negative effects on the performance of the sys-
tem. Based on this practical evaluation it is indeed highly recommended to go for
a coordinated approach that omits the need for message logs. However, since these
types of algorithms do not support cyclic dataflows due to their blocking nature, a
different solution is necessary for these specific scenarios. The results presented in
this paper suggest that an uncoordinated approach might actually be preferred in
that case, however this is based on one very simple cyclic dataflow. Continuing this
research by creating a more in-depth comparison of the uncoordinated and CIC ap-
proach, along with perhaps a non-blocking coordinated protocol, specifically for the
purpose of running cyclic queries, might yield interesting results.
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