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Caroli–de Gennes–Matricon (CdGM) states are localized states with a discrete energy spectrum bound to
the core of vortices in superconductors. In topological superconductors, CdGM states are predicted to coexist
with zero energy, chargeless states widely known as Majorana zero modes (MZMs). Due to their energy
difference, current experiments rely on scanning tunneling spectroscopy methods to distinguish between them.
This work shows that electrostatic inhomogeneities can push trivial CdGM states arbitrarily close to zero energy
in nontopological systems where no MZM is present. Furthermore, the BCS charge of CdGM states is suppressed
under the same mechanism. Through exploration of the impurity parameter space, we establish that these two
phenomena generally happen in consonance. Our results show that energy and charge shifts in CdGM may be
enough to imitate the spectroscopic signatures of MZMs even in cases where the estimated CdGM level spacing
(in the absence of impurities) is much larger than the typical experimental level broadening.

DOI: 10.1103/PhysRevB.107.184509

I. INTRODUCTION

Andreev bound states are a class of low-energy quasipar-
ticle excitations that appear in metallic regions confined by
a superconducting gap. A particular type of Andreev bound
state excitations exists on zero-dimensional defects in topo-
logical superconductors. These zero energy excitations are
known as Majorana zero modes (MZMs) [1–5]. Since these
quasiparticles are topologically protected non-Abelian anyons
[6–8], they can be used to build fault-tolerant qubits [9]. The
interest in building robust quantum computers led to intense
efforts to search for and identify MZMs.

The first generation of experiments to identify Majorana
modes relied on measuring zero-bias peaks with tunneling
probes. These peaks indicate the existence of zero energy
excitations. However, to interpret these zero-bias peaks as
Majorana zero modes, one must rule out the existence of
other (trivial) excitations. Due to this ambiguity, together with
theoretical progress showing that zero energy trivial states are
possible, a new generation of experiments combining local
and nonlocal probes was recently developed in nanodevice
platforms [10–18].

In bulk topological superconductor candidates, an alterna-
tive procedure to detect Majorana zero modes is by piercing
the superconductor with a magnetic field. With an applied
field, superconducting vortices are formed. At sufficiently low
electron density, these vortices should host Majorana zero
modes isolated from other in-gap states. Thus, one can again
probe the MZMs by scanning tunneling spectroscopy. Again,
one of the fundamental challenges in verifying the presence of
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MZMs in vortices of topological superconductor candidates is
establishing a clear distinction from other trivial states.

In superconducting vortices, nontopological quasiparti-
cle excitations are known as Caroli–de Gennes–Matricon
(CdGM) states [19]. They appear in low-density supercon-
ducting materials, where vortices act as “quantum wells for
quasiparticles” [20]. In trivial superconductors, vortices con-
tain bound states with a low-energy spectrum given by [21]
[see Figs. 1(a) and 1(b)]

Em = m�0

kF ξ
, (1)

where m = (n + 1/2), n is an integer number, kF is the Fermi
momentum, ξ the bulk coherence length, and �0 is the bulk
superconducting pairing potential. The predicted spectrum of
CdGM states in trivial superconductors lacks a zero energy
level. These features establish the difference between CdGM
and MZMs spectra and underlie the interpretation of experi-
mental observations of zero-bias peaks inside vortices [5,22–
30]. From Eq. (1), it is clear that an energy resolution better
than �0/kF ξ is required to detect isolated excited levels. Since
this resolution is accessible in state-of-the-art experiments,
tunneling spectroscopy measurements of vortices on topo-
logical superconductors are expected to distinguish Majorana
from trivial states [31–33].

Recent experiments on candidate topological superconduc-
tor materials revealed that many zero-bias peaks, associated
with the presence of MZM modes, were not present in all
vortices [26,30]. Furthermore, some of the detected peaks
often appeared to be stabilized by nearby magnetic [28] or
scalar [23] impurities. Although it is well known that zero-
bias peaks can emerge in superconductors without topological
properties when magnetic impurities are present, it is still an
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FIG. 1. Energy states inside the vortex for (a) a clean s-wave
superconductor and (b) an s-wave system with screened charge im-
purity. The blue line shows the position-dependent superconducting
order parameter, and the dashed lines schematically show the energy
of in-gap CdGM states. In (b), the black dashed lines indicate the
CdGM spectrum without a charged impurity, whereas the red dashed
lines indicate the spectrum with the impurity. The black arrow high-
lights the energy shift caused by the impurity potential. (c),(d) The
density of states; (e),(f) the BCS spectral charge for the s-wave
system without and with impurity, respectively.

open question whether scalar impurities may produce similar
effects [34].

Motivated by this scenario, we study the effect of scalar
impurities in the in-gap spectrum of a two-dimensional triv-
ial s-wave superconductor. We revisit this system because
(i) an s-wave superconductor is a simple example of a trivial
superconductor, and (ii) the Hamiltonian does not contain ad-
ditional terms that could lead to corrections from Eq. (1). As a
result, the spectra and corresponding charge distributions can
be traced back unequivocally to the presence of the impurity
potential.

Moreover, influenced by the new generation of experi-
ments in nanowires, nonlocal measurements with scanning
tunneling microscope measurements were suggested as a way
to extract the Bardeen-Cooper-Schrieffer (BCS) charge of

in-gap vortex excitations [31]. Because trivial states have
nonzero BCS charge whereas MZMs are strictly chargeless
[7], information on the BCS charge, in principle, helps to
distinguish CdGM states and MZMs.

Our main results are illustrated in Fig. 1, which compares
the density of states and BCS charge for a trivial s-wave
superconductor with and without an impurity potential. The
calculations reveal that trivial CdGM states mimic MZM’s
signatures in two ways. First, electrostatic inhomogeneities
shift the lowest CdGM state energy arbitrarily close to zero, as
schematically shown in Figs. 1(a) and 1(b). Second, as the en-
ergy separation of these states become smaller than the exper-
imental resolution—mainly limited by thermal broadening—
the spectral BCS charge is also suppressed, as shown in
Figs. 1(e) and 1(f). As a consequence, electrostatic inho-
mogeneities can make CdGM indistinguishable from MZMs
when probed by scanning tunneling microscopy (STM) exper-
iments, given the current experimental resolutions.

II. MODEL

We consider a trivial superconductor modeled as a
two-dimensional electron gas with s-wave superconducting
pairing. The corresponding tight-binding model on a square
lattice (with lattice constant a) has a normal state Hamiltonian,

H0 = (4t − μ)
∑

i

∑
σ

c†
iσ ciσ − t

∑
〈i, j〉

∑
σ

c†
iσ c jσ , (2)

where μ is the on-site energy, t is the hopping constant,
c†

iσ (ciσ ) creates (destroys) an electron of spin σ at site i, and
〈i, j〉 denotes a sum performed over nearest neighbors. The
superconducting term in the Hamiltonian is

Hs-wave =
∑

i

�s
i c

†
i↑c†

i↓ + H.c.,

�s
i = �0eiφi tanh

(
ri

ξ

)
, (3)

where �0 is the amplitude of the bulk order parameter, ri

is the distance from r = 0 (the vortex center) to the atomic
position i, ξ is the vortex radius, and φi = arg(ri ) is the order
parameter phase, as shown in Figs. 2(a) and 2(b). Note that
we treat ξ and �0 as independent parameters since we do not
solve the Ginzburg-Landau equations. To match the typical
ratios for μ/�0 reported in experiments, we set μ = 0.05t and
�0 = 0.02t . We also set ξ = 10a, unless stated otherwise, to
ensure that the vortex size is negligible compared to the sys-
tem size (200a × 200a). We treat spin as a trivial degeneracy
and perform all tight-binding calculations with KWANT [35].

Figure 2(c) show the spectrum and the respective integrated
BCS charge expectation values, i.e., Q ≡ ∑

i Q(ri ) where
Q(ri ) := 〈�|c†

i ci − cic
†
i |�〉 is the local charge for a given

eigenstate, of in-gap vortex states for this system as a function
of the vortex radius ξ . Finite energy levels approach zero as ξ

increases, as expected for quantum-confined levels.

III. EFFECTS OF AN IMPURITY POTENTIAL

An inspection of Eq. (1) suggests that local changes in
the electrostatic potential can shift the energy of CdGM
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FIG. 2. (a) Magnitude and (b) phase of the superconducting or-
der parameter [as defined in Eq. (3)]. The BCS charge-resolved
spectrum of in-gap vortex states is shown for an s-wave supercon-
ductor (c) without and (d) with a screened charge impurity with
δμ = 0.06t and η = 5a.

states arbitrarily close to zero energy. In this situation, the
lowest-energy trivial states may have energy smaller than the
experimental resolution, resulting in a near-zero-bias con-
ductance peak, similar to the one produced by MZMs. To
demonstrate this phenomenon, we consider the effects of an
isolated screened charge impurity close to the vortex core.
This choice is inspired by recent experiments in iron-based
superconductors [23,26,30] showing that scalar impurities fa-
vor the presence of zero-bias peaks inside vortices.

We model the presence of a screened charged impurity on
the s-wave Hamiltonian by incorporating an on-site modula-
tion term as follows [36,37]:

Himp = δμ
∑
i,σ

e−r2
i /2η2

c†
iσ ciσ , (4)

where δμ is the potential strength of the impurity and η is the
screening length. Next, we calculate the energy spectra and
the integrated charge Q ≡ ∑

i Q(ri ) of the Andreev quasipar-
ticles.

Figure 3 shows the resulting low-energy spectra as a func-
tion of η and δμ, revealing a resemblance to the spectra
of a topological superconductor with a vortex. Furthermore,
both charge and energy of the lowest-energy state approach
zero, while the shifts of energy and charges of higher-energy

FIG. 3. BCS charge for an s-wave system with impurity. In
(a) and (b), the spectrum evolves as a function of (a) impurity size
η (δμ = 0.025t) and (b) impurity strength δμ (η = 5a). (c) BCS
charge (black) and BCS charge spectral density (red) for the lowest-
energy state for a system without (dashed line) and with (solid line)
an impurity with η = 5a and δμ = 0.05t .

states are exponentially suppressed (see the Appendix for a
quantitative discussion).

The local BCS charges Q(r) for the lowest-energy in-
vortex state with and without the impurity are shown in
Fig. 3(c). We verified that although the total charge is sup-
pressed [Figs. 3(a) and 3(b)], the local charge is weakly
affected by the impurity. Thus, one should be able to distin-
guish CdGM and Majorana states with an arbitrarily small
resolution since MZMs have zero BCS charge everywhere.
However, as we show in the next section, the energy shift
together with level broadening of the lowest-energy CdGM
states results in a vanishing spectral BCS charge.

The effects of the vortex size and impurity screening length
on the energy and charge of the lowest-energy state [E1/2,
as defined in Eq. (1)] are shown in Fig. 4. The data clearly
show a suppression of E1/2 and Q on large regions of the
{η, δμ} parameter space, indicating that the above results
hold beyond the highly localized impurity regime, η � ξ .
This also suggests that smooth fluctuations in the underlying
electrostatic potential can mimic Majorana signatures. Finally,
let us note that due to particle-hole symmetry, E1/2 and Q tend
to be correlated.

IV. EXPERIMENTAL RELEVANCE

In this section, we aim to establish the relevance of our
results for the interpretation of current experimental data from
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FIG. 4. Dependence of (a),(c) lowest-energy state E1/2 and
(b),(d) BCS charge on (a),(b) η and ξ and (c),(d) η and δμ. In (a),(b),
we choose δμ = 0.06t , and in (c),(d), we choose ξ = 5a.

scanning tunneling spectroscopy (STS) and scanning tunnel-
ing microscopy (STM) experiments [26,29,30].

Thus far, we have discussed the changes in the global
properties of the CdGM state due to the the presence of scalar
impurities at the vortex site. Since vortices tend to be pinned
by defects and impurities [38], this picture can be favored in
samples in which some degree of surface disorder is present,
as seems to be the case in Fe(Se,Te) surfaces [26].

Moreover, experimental estimates of E1/2 [as defined in
Eq. (1)] are commonly used as a proxy for the position of the
first CdGM state. As such, STS conductance peaks at energies
below this estimate are usually “ruled out” as CdGM states
[26,29]. As we have shown, such a heuristic picture is not
accurate in the presence of impurities: the results shown in
Figs. 2 and 3 show that the energy of the first CdGM state can
be significantly lower than the value of E1/2 estimated from
bulk parameters and serve as a cautionary tale against ruling
out these near zero states as CdGM states.

Another important point of attention when comparing the
raw CdGM spectra with the peaks appearing in STS measure-
ments is the role of the thermal effects of the STS peaks,
which effectively sets an energy resolution. To illustrate the
limitations introduced by such energy resolution, we defined
the spatially resolved spectral density A(ω, r), and the spectral
BCS charge C(ω, r) at energy ω and position r,

G(ω) = [ω − H + iγ ]−1, (5)

G(ω, r) ≡ 〈r|G(ω)|r〉, (6)

FIG. 5. Density of states A(ω) ≡ (−1/π )Im Tr G(ω) of an η-
wave superconductor as a function of level broadening γ (η = 5a).
In (a), one can observe that the two trivial states are distinguishable in
the absence of an impurity (δμ = 0) up to γ ∼ E1/2. As the impurity
strength increases, as shown in (b)–(d), the trivial states are shifted
to smaller energies ω and therefore one cannot distinguish them even
with a much smaller level broadening γ .

A(ω, r) ≡ − 1

π
ImTr[G(ω, r)], (7)

C(ω, r) = − 1

π
ImTr[G(ω, r)Q(r)], (8)

where γ is a positive small parameter that sets the level broad-
ening.

Typical experimental broadenings are of the order of γ ∼
0.1 �0 (mostly arising from thermal effects), whereas the
energy spacing estimated without impurities is E1/2 ∼ 0.5�0

[29]. Thus, for clean systems, scanning tunneling transport
experiments should indeed be able to resolve the energies
of MZMs and CdGM states. However, electrostatic inho-
mogeneities that make E1/2 ∼ γ impede a clear distinction
between trivial and nontrivial states due to the constraint im-
posed by particle-hole symmetry that implies the shifting of
positive and negative energy states towards zero energy.

We illustrate the effects of level broadening in Figs. 1 and
5. Figure 1 shows contour plots of A(ω, r) [Figs. 1(c) and
1(d)] and C(ω, r) [Figs. 1(e) and 1(f)] for energies within
the gap and positions inside the vortex. In the absence of
impurities [Figs. 1(c) and 1(e)], one obtains peaks in A(ω ≈
±E1/2, r ≈ 0) originating from the first CdGM state, as ex-
pected. Some smaller peaks for excited CdGM states (with
nodes at r ≈ 0) are also seen. The BCS charge for these states
oscillates in position along the vortex, changing sign.

184509-4
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A different picture is observed in the presence of impurities
and a modest thermal broadening (γ /E1/2 ≈ 0.27). There is
a single peak in the spectra charge density near zero energy
A(ω ≈ 0, r ≈ 0), and the BCS charge at these energies is very
close to zero. In Fig. 5, we illustrate how much the level
broadening affects our results. In the absence of impurities
[Fig. 5(a)], the energies of CdGM states are determined by
the bulk parameters. Therefore, the two lowest-energy peaks
are distinguishable up to γ /E1/2 ∼ 1. As the energy levels
shift towards zero, the two lowest-energy peaks cannot be
resolved for γ /E1/2 � 0.5 [Fig. 5(b)]. In some cases, these
peaks cannot be resolved even for relatively “small” broad-
ening values of γ /E1/2 ∼ 0.1 or lower [Figs. 5(c) and 5(d)].
In a similar manner, since particle-hole symmetry ensures
that Qm=1(r) = −Qm=−1(r), the BCS charge also becomes
negligible, as shown in Fig. 1(f).

Notice that the combined effect of the shifting of the energy
levels toward zero and a moderate broadening can effectively
“disguise” the lowest CdGM state as a “zero-bias peak” [see,
e.g., Figs. 5(c) and 5(d)] in experiments. Interestingly, some
STS experimental data show vortex bound states as peaks near
but not at zero bias in the tunneling spectra [30], a result which
is consistent with this picture.

These observations suggest that recent experiments claim-
ing impurity-assisted formation of MZMs [23] should be
interpreted carefully. At the same time that local changes
in the chemical potential could lead to a topological phase
transition, trivial CdGM states can also be shifted arbitrarily
close to zero energy. Thus, zero-bias peaks in the vicinity of
scalar impurities are ambiguous signatures and cannot fully
distinguish MZM and CdGM states.

V. CONCLUDING REMARKS

Our main results can be summarized as follows: the pres-
ence of scalar impurities in vortices can modify the CdGM
spectrum, leading to similar spectral properties to MZMs. We
illustrate this fact in the extreme limiting case of a nontopo-
logical (s-wave) superconductor showing zero energy states
and a vanishing global BCS charge.

This is, in fact, a very general result: local scalar perturba-
tions in the vicinity of the vortex center lower the energy of
CdGM states and suppress their total BCS charge. In partic-
ular, the energy and charge of CdGM modes can be shifted
arbitrarily close to zero for a broad range of values in the
parameter space of the proposed model, as shown in Fig. 4. As
a consequence, such impurity-driven zero energy states cannot
be set apart from topological MZMs using only local spectro-
scopic techniques. Furthermore, due to extrinsic broadening
of the particle-hole symmetric levels, near zero energy states
will render vanishing nonlocal transport signals, therefore re-
sulting in the apparent vanishing of the BCS charge. These
considerations are particularly relevant to experimental works
that often rely on the fact that CdGM states have finite energy.

One possible route to complement the current local STS
setups could be provided by nonlocal probes. As argued in
Ref. [31], nonlocal transport measurements could, in prin-
ciple, map the changes in the BCS charge at a local level
provided that the experimental resolution allows for a distinc-
tion between MZM and CdGM states. Thus, it is important

to provide a description of the spectroscopic properties as
they will be affected by the presence of electrostatic inhomo-
geneities.

All the scripts and resulting data used to prepare this
manuscript are freely available on Zenodo [39].
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APPENDIX: PERTURBATIVE CORRECTIONS DUE
TO THE IMPURITY POTENTIAL

From Fig. 3(b), it is evident that lower-energy states have
larger shifts than higher-energy ones. This quantitative dif-
ference can be traced back to the nature of the confined
wave functions and is obtained using perturbation theory ar-
guments.

For an η-wave superconductor, the eigenstates are written
as [40]

�m(r) =
(

um(r)
vm(r)

)
∝ e−K (r)

(
Jm(kF r)

Jm+1(kF r)

)
, (A1)

with Jm(kF r) being the order-n Bessel function of the first kind
and

K (r) = 1

h̄vF

∫ r

0
dr′ �(r′), (A2)

where vF is the Fermi velocity in the normal state. For
low-energy in-gap states En � �0, we expand the supercon-
ducting pairing as �(r) ≈ �0

ξ
r. Therefore,

K (r) ≈ �0

2h̄vF ξ
r2 =:

r2

2ξ̃
. (A3)

The first-order corrections to the energy levels are given by

δEm = 〈�m|Himp|�m〉. (A4)

Assuming that there are not many states inside the vortex
and particularly considering the low-energy ones, the Bessel
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functions can be approximated by their asymptotic form with
kF r � 1.

In this regime, the energy correction follows a power law
in k2

F /α, given by

δEm = πδμ

m!α

(
k2

F

4α

)m

, α := 1

2η2
+ 1

2ξ̃ 2
. (A5)

By carrying out first-order corrections on the eigenstates,
we can understand the perturbative effects of the impurity on
the charge. We find

δQm = 2
∑
n �=m

βmn(δμ, η)βmn(1,∞)

Em − En
, (A6)

with

βmn(δμ, η) := 〈ψm|δH |ψn〉

≈ πδμ

m − n

[
1

m!n!

(
k2

F

4α

) m+n
2

]
�[(m + n + 2)/2]

α
.

Taking the lowest-order term in Eq. (A6), we find

δQm =
⎧⎨
⎩

π2μδμ

2α2�2
0

( k4
F ξ̃ 2

2α

) 3
2 �(5/2), m = 1

π2μδμ

2α2�2
0(m−1)3

[
1

m!2

( k4
F ξ̃ 2

2α

) m+1
2

]
�

(
m+3

2

)
, m �= 1.

(A7)

Therefore, we obtain a polynomial dependence on k4
F ξ̃ 2/2α.

The results lead to the conclusion that the higher-energy states
have smaller corrections in both energy and charge.
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