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Abstract

The world can’t keep up with its own data and therefore needs new ways to store it. Research is being done
into new types of experimental data storage like DNA sampling or racetrack memory, which could completely
revolutionize the way storage works. However, such storage media are prone to certain type of errors like
deletion errors where information is lost. Consequently, there has been a surge in interest in developing deletion
correcting codes to address this challenge. We are interested in the maximal size of a code correcting up to a
certain number of deletions. Nevertheless, constructing these codes can be quite intricate and therefore we are
often limited to working with bounds.

In this thesis, we will study and evaluate upper bounds for these codes. We will compare bounds that were
derived analytically to bounds that have been computed with the use of linear programs. We will compute upper
bounds for 1-, 2- and 3-deletion correcting codes. Moreover, we will show how to compute these bounds with
a linear program, by posing the problem of finding a largest deletion correcting code as finding the transversal
number on a hypergraph. It will become clear that the bounds computed through linear programming are much
stronger than any bound derived analytically.



Terms and Definitions

Term Meaning
Communication channel Particular type of media through which a message is sent and received.

Symbol Element in Aq.
Alphabet Finite set of symbols, i.e., Aq.

String A sequence of symbols.
Deletion Removal of a symbol in a string

Substring The sequence obtained after deletion(s) from a string.
Run Maximal contiguous sequence of a string with identical symbols.

Code Subset of An
q .

Codeword Element of a code.
Deletion set Set of substrings obtained by s deletions from a string in An

q .
Deletion correcting code Subset of An

q with the property that the deletion sets are pairwise disjoint.
Optimal Largest size

Graph A pair of sets (V,E) where V is non-empty and E is a subset
of the set {{u, v} : u, v ∈ V, u ̸= v}.

Hypergraph Generalization of a graph where an edge is any subset of the vertices.
Hyperedge Edge of a hypergraph, i.e. a subset of vertices.
Matching Set of pairwise disjoint hyperedges.

Transversal Subset of the vertices such that every hyperedge is intersected.
Non-adjacent If uv /∈ E for two vertices u, v in a graph G = (V,E).

Independent set Set of pairwise non-adjacent vertices in a graph.

Notation Meaning
N := {1, 2, 3, . . .} The positive integers.

q ∈ N≥2 The alphabet size.
s ∈ N The number of deletions.
n ∈ N The length of a string.

Aq The finite q-ary alphabet {0, 1, . . . , q − 1}.
An

q Set of all q-ary strings of length n.
x String in An

q .
Ds(x) The s-deletion set of a string x.
Cq,s,n A q-ary code with strings of length n capable of correcting s deletions.
C∗
q,s,n A s-deletion correcting code of maximal size with q-ary alphabet and string length n.

|C∗
q,s,n| The cardinality of C∗

q,s,n.
V Ta(n) The Varshamov-Tenengolts code

Rn
q Repetition code, i.e, {00 · · · 0︸ ︷︷ ︸

n

, 11 · · · 1︸ ︷︷ ︸
n

, · · · , (q − 1)(q − 1) · · · (q − 1)︸ ︷︷ ︸
n

}.

H := (V,E) Hypergraph with vertices V and hyperedges E.
ν(H) Cardinality of a matching of maximum size among all matchings.
τ(H) Minimum cardinality of a transversal.
α(G) Largest size of an independent set.
ILP Integer linear program.
LP Linear program.

NP-hard Complexity class such that the problems in this class cannot be solved in polynomial time.
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Chapter 1

Introduction

The digital era offers us many things: technology like artificial intelligence, blockchain, 5G and the cloud. One
of the perks that the digital era brings is that it allows for a globalized world. Never before has the world been
so connected and there are over 8000 data centres spread around the globe [11]. Sending, storing and retrieving
data has never been easier. However, communication channels and digital data storage aren’t without errors
[28]. These errors can happen while sending information or while retrieving stored information. The result is
then a partial loss of information or in some cases, the information is altered. Take for example the Qantas
flight 72 in 2008. An alteration of the Angle of Attack1 information caused a near plane crash, injuring over a
hundred people [3]. Another example of data being altered is the so called bit flip in a Belgium election in 2003.
Here, a cosmic ray caused a 0 in a string to turn to a 1, attributing over 4000 votes to a certain candidate [27].
These types of errors are called substitution errors and are well researched.

In this thesis, we will focus only on a specific type of error called a deletion error. This is a type of error
where a deletion takes place, i.e., a symbol gets deleted from a string. This can look like:

110100 → 11000 or 110100 → 010,

where a single deletion and three deletions occur respectively. Deletion errors have been far less studied and
this is due to two reasons. The first one is that in communication channels they occur far less often than
substitution errors and the second reason is that a synchronization method was used, if they did occur. For this
method, there often is a built in ’check’-sequence in a codeword, like 0101. An example is that a sender sends a
codeword with 0101 as the synchronization pattern. This is a useful way of checking if an error occurred when
the receiver doesn’t know the length of the message. If a deletion occurs, i.e.,

1100|0010| 0101︸︷︷︸
sync

|0110 · · · → 1100|0100| 1010︸︷︷︸
error

|110 · · · ,

we can use the synchronization pattern to check if a deletion has occurred. The symbol in red gets deleted and
because of that all the other symbols move one spot to the left. Now the synchronization pattern doesn’t read
0101 but 1010 and therefore the receiver of the information knows an error has taken place and can ask the
sender to resend the information.

Recently however, experimental data storage have caused a surge in popularity for deletion correcting codes
due to the breakthroughs in this field. One of these new data storages is the use of DNA sampling [12],[30] and
stores information as a DNA sequence. This can be done by encoding data, synthesizing it into a DNA sequence
and then storing it in a cool and regulated environment and can be decoded at any given time to retrieve the
stored data. What makes DNA data storage attractive is that it has a very high storage density: it can store
215 million GB in a single gram of DNA.

Another example is racetrack memory storage [7] and stores data as a magnetic pattern and promises to
be a very inexpensive and efficient way of storing data as it is estimated that racetrack memory only needs 10
nanoseconds to read or write a bit, compared to 10,000,000 nanoseconds needed for a traditional hard drive.

The problem with these types of data storage, is that they are susceptible to errors like deletion errors. With
the DNA-storage channel, the data is sampled as a set of sequences but the retrieved set is often corrupted due
to sequence loss and symbol deletion. In racetrack memory, researchers often can’t fully control the magnetic
patterns and this in turn effects the reliability of reading and writing data. The high possibility of deletion

1The angle between the reference line on an airplane and the oncoming air.
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errors is the reason why deletion corrected codes have attracted so much attention.

In practice, it is often quite difficult to construct deletion correcting codes and therefore we are often limited
to working with bounds. Constructing lower and upper bounds for deletion correcting codes gives us information
on the sizes of these codes for certain parameters and therefore brings us a step closer to the construction of such
codes. So studying deletion correcting codes will bring us also a step closer to implementing these experimental
types of data storage into our society and thereby transform the digital world.

Since the the publishing of A Mathematical Theory of Communication in 1948, by Claude Shannon [28] and
therefore the creation of Information Theory, there have been multiple constructions of s-deletion correcting
codes and resulting problems.

Let us first start with some published work on binary codes correcting up to a certain number of deletions.
In [29], Sloane gives a detailed insight on the binary single-deletion channel and specifically focuses on the
Varshamov-Tenengolts codes. Sloane also gives a conjecture that the V Ta(n) codes are optimal for all n. These
V Ta(n) codes were proven to be able to correct a single deletion by Levenshtein in 1965 [22].

Besides the V Ta(n) codes, there have been many papers on how to construct other codes capable of cor-
rection deletions. One of these constructions was by Helberg and Ferreira in [13] with the so called Helberg
code and has a number theoretic construction. This was done by looking at the weight spectra and Hamming
distance properties of single-deletion correcting codes and then extending these to codes that can correct mul-
tiple deletions. In [2], Abdel-Ghaffer et al. proved that this code construction indeed corrects multiple deletions.

For q-ary alphabets, bounds for s-deletion correcting codes were derived analytically by Levenshtein in [21]
and [20] with the help of combinatorial arguments.

More recently, in [24] algebraic theory is used by Liu and Xing to construct deletion correcting codes and
also construct bounds for these codes.

A more recent discipline of constructing q-ary s-deletion correcting codes and finding bounds is via graph
theory and linear programming. In [6], Butenko et al. construct binary s-deletion correcting codes by translating
this problem to a maximum independent set problem α(G) and then using a branch and bound algorithm.

In [10], Cullina et al. find upper bounds by translating this problem to a colouring of a graph and also give
a code construction for the 2-deletion case.

In [17] Kulkarni and Kiyavash translate the problem of finding the largest s-deletion correcting code to
finding a matching number on a hypergraph and then use duality theorems to find upper bounds (this is also
the method we will use in this thesis).

In [8], Cullina and Kiyavash use packing arguments and represent a communication channel as a bipartite
graph, where channel input corresponds to left vertices and channel output corresponds to right vertices. An
edge connects an input to an output that can be produced from it, i.e., a string will have edges to all elements
in its deletion set. With this they provide a bound that is better than Levenshtein’s asymptotic bound from
[19] whenever the number of deletions to be corrected is greater than the alphabet size q.

In [9], Cullina and Kiyavash use a bipartite graph presentation and then convert their sphere-packing argu-
ments to linear programs.

One of the resulting problems when studying deletion correcting codes is the size of the deletion set Ds(·).
The sizes of these sets are important for constructing bounds for deletion correcting codes and Mercier et al.
present some nice theorems about the sizes of these sets [26]. A few years later, in [23] Liron and Langberg
give improved bounds on the sizes of the deletion sets for arbitrary numbers of deletions. Stronger bounds for
deletion sets can contribute to new bounds for deletion correcting codes, as can be seen in [20].

In this thesis, we will look at the problem of computing upper bounds for s-deletion correcting codes via
the use of linear programming. In the remainder of the introduction, we will mathematically define a deletion
correcting code and introduce some definitions for our methods. Finally we will present the goal of this thesis
and explain the layout.

Before we go any further, we must acquaint ourselves with some useful definitions that will be relied heavily
upon in this thesis.
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1.1 Definitions and Introducing Methodology
Suppose Adam and Eve are in a hypothetical communication channel that incurs deletions, meaning Adam and
Eve send each other messages but the received messages are subject to partial loss of information due to any
number of deletions. Suppose they write their messages from the binary alphabet of length 2, i.e., {00, 01, 10, 11}
with the following meanings:

00 → No!
01 → Don’t eat it!
10 → Eat it!
11 → Yes!

Adam sees Eve picking up an apple and sends Eve the message 01 to tell her not to eat it. Since this commu-
nication channel allows for deletions to take place, Eve unfortunately receives the message 1. Since 1 is not of
length 2, Eve knows an error took place and tries to figure out which message was sent by adding a 0 or a 1 to
the left or right side of the received message. Eve figures out that the received message could have come from
the following three codewords: 01, 10 and 11. There is now a high probability that Eve will choose the wrong
codeword, i.e., 10, telling her to eat the apple or 11, which can also be interpreted as an encouraging sign to
eat the apple. With miscommunications like these, a banishment from Paradise does not seem unlikely...

Suppose they had used only words in the binary repetition code of length 2, i.e., R2
2 = {00, 11}. Now it

doesn’t matter if Eve receives a 0 or a 1, as these each descended only from one possibility. We say that R2
2 can

correct a single deletion, but this is no coincidence and will become clear after we introduce two definitions.

First let us denote Aq = {0, 1, . . . , q − 1} as the q-ary alphabet and let An
q be the set of all q-ary strings of

length n. A substring of x is formed by taking a subset of the symbols of x without altering their order. A run
of x = x1 . . . xn ∈ An

q is a maximal contiguous substring with identical symbols.

Definition 1 The s-deletion set Ds(x) of x is the set of substrings of x obtained by deletion of s symbols from
x.

Example 1: if x = 0112 ∈ A4
3, then D1(0112) = {112, 012, 011}.

Example 2: if x = 11111 ∈ A5
2, then D3(11111) = {11}.

Definition 2 A s-deletion correcting code for An
q is a set C ⊆ An

q with the property that the s-deletion sets
of the codewords are pairwise disjoint. Such a code of maximal size is denoted as C∗

q,s,n. The cardinality of a
largest s-deletion correcting code is denoted as |C∗

q,s,n|.

By looking at the codewords in R2
2, we see that the deletion sets for s = 1 are disjoint ( D1(00) = 0, D1(11) = 1

and 0 ∩ 1 = ∅) and therefore R2
2 is a single-deletion correcting code.

Furthermore, in this thesis we will make use of the following definitions taken from [4] and [5] for our
methodology. As we will see in Chapter 3, we will pose the problem of finding an upper bound on |C∗

q,s,n| as a
minimum transversal. But we need knowledge of hypergraphs and matchings in order to do so.

Definition 3 A hypergraph H denoted by H = (V ;E = (ei)i∈I) on a finite set V is a family (ei)i∈I of subsets
of V called hyperedges. I = {1, . . . ,m}, where m is the number of hyperedges.

Definition 4 A matching is a set of pairwise disjoint hyperedges of H. A maximum matching is a matching
of maximum size among all matchings. The matching number ν(H) of H is the cardinality of a maximum
matching.

Definition 5 Let V (e) be the set of vertices covered by a hyperedge e. A set B ⊆ V is a transversal if it meets
every hyperedge, i.e., ∀e ∈ E : B ∩ V (e) ̸= ∅. The minimum cardinality of a transversal is the transversal
number, denoted by τ(H).

1.2 Goal of the Thesis
In this thesis, we aim to study and evaluate upper bounds for s-deletion correcting codes. We will look at
existing bounds and also compute bounds via linear programming. By the end of the thesis, we will have a
comprehensive understanding of different bounds for |C∗

q,s,n|, how to compute these values and know what the
advantages and disadvantages are for certain bounds.
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1.3 Organisation of the Thesis
This thesis is organized as follows. In Chapter 2 we will highlight some upper bounds for |C∗

q,s,n| and talk about
how these were derived. In Chapter 3 we will first look at different numerical values for one of the bounds from
the previous chapter and then work out how we can use linear programming to compute bounds for |C∗

q,s,n|. In
Chapter 4 we will show the results of the linear programs and compare these to the bounds that we have seen in
Chapter 2. Finally, in Chapter 5 we will make our conclusions and discuss possible directions for future work.
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Chapter 2

Classification of Bounds

Now that we have a better understanding of the research that has been done, we want to highlight a few bounds
from some of the published papers and use these to compare them with the results from the linear programs in
the next chapter. We can split these bounds into two groups: bounds that have been derived analytically and
bounds that have been derived with the help of linear programs. In general, the analytic bounds are older and
the so called LP-bounds are more recent.

But first, we will show a few code constructions that we will use as a lower bound for the cardinalities of
|C∗

q,s,n|.

2.1 Some Code Constructions
For the binary single-deletion case, the V Ta(n) codes are the largest known codes up to date. These codes have
the following property: if x = (x1 . . . xn) is a codeword, then it must satisfy

n∑
i=1

ixi ≡ a mod n+ 1.

The sizes of the codebooks depend on the value of a, as can be seen in Table 2.1 below.

Table 2.1: The cardinalities of V Ta(n) for different values of a and n.

n a = 0 a = 1 a = 2 a = 3 a = 4 a = 5 a = 6 a = 7 a = 8 a = 9 a = 10
1 1 1
2 2 1 1
3 2 2 2 2
4 4 3 3 3 3
5 6 5 5 6 5 5
6 10 9 9 9 9 9 9
7 16 16 16 16 16 16 16 16
8 30 28 28 29 28 28 29 28 28
9 52 51 51 51 51 52 51 51 51 51
10 94 93 93 93 93 93 93 93 93 93 93

As we can see, the codes with a = 0 have the largest cardinality. To see why this is true, one can have a
look at Theorem 2.2 from [29]. This states that

|V Ta(n)| =
1

2(n+ 1)

∑
d|n+1,d odd

ϕ(d)
µ( d

(d,a) )

ϕ( d
(d,a) )

2(n+1)/d,

where ϕ(·) is Euler’s totient function, µ(·) is the Möbius function and (d, a) is gcd(d, a). If a = 0, we get

µ(
d

(d, a)
) ≤ 1 = µ(1) = µ(

d

(d, 0)
),

ϕ(
d

(d, a)
) ≥ 1 = ϕ(1) = ϕ(

d

(d, 0)
).
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So
|V Ta(n)| ≤

1

2(n+ 1)

∑
d|n+1,d odd

ϕ(d)2(n+1)/d = |V T0(n)|.

As mentioned before, in 1965, Levenshtein gave a clever decoding algorithm to prove that the Varshamov-
Tenengolts codes V Ta(n) [31] are single-deletion correcting codes [22]. We can now use these codes as a lower
bound on the size of a largest binary single-deletion correcting code. This is because we know what the cardi-
nality is of this code, so there must be at least as many codewords in |C∗

2,1,n|.

For 2 deletions in the binary alphabet, we will use code sizes from [16] to compare with the other bounds.
These codes have been found by posing the problem of finding a largest 2-deletion correcting code as a maximum
independent set problem.

For larger alphabets in the 2 deletion case we will use the code sizes from [18] as a comparison. These were
found by generalizing Helberg’s construction of binary 2-deletion correcting codes to non-binary alphabets.

2.2 Analytical Bounds
We will now give two nonasymptotic upper bounds provided by Levenshtein. The first nonasymptotic upper
bound is derived from a combinatorial argument

|C∗
q,1,n| ≤

qn−1 + (n− 2)qn−2 + q

n
(2.1)

and was found in 1992 [21]. This bound was found by constructing a subset of Cq,s,n where the codewords in
this subset have certain properties and applying combinatorics to bound the cardinality of this subset.

The second nonasymptotic upper bound is

|C∗
q,s,n| ≤

qn−s∑s
i=0

(
r−s+1

i

) + q

r−1∑
i=0

(
n− 1

i

)
(q − 1)i (2.2)

and was provided in 2002 [20]. Here r is an integer satisfying 1 ≤ s ≤ r+1 ≤ n where r is chosen such that the
right hand side of (2.2) is minimized. The proof of (2.2) uses the same method as in [19]. If x is a codeword in
C∗
q,s,n and ||x|| is the number of runs of x, then Levenshtein splits C∗

q,s,n into

{x ∈ C∗
q,s,n : ||x|| ≥ r + 1}+ {x ∈ C∗

q,s,n : ||x|| ≤ r}.

Levensthein then bounds both of these sets as in [19] but takes a new and improved lower bound on the cardi-
nality of a deletion set of x into account that was proven by Hirschberg in [14] to obtain the result.

2.3 LP-Bounds
Numerical Bounds are a relatively new discipline of deletion correcting codes and often make use of graph
theory and optimization. Even though in this thesis we are mainly interested in the numerical bounds, Kulkarni
and Kiyavash have also derived a closed form expression as an upper bound [Theorem 3.1] in [17] by giving an
analytical solution to a fractional transversal. The upper bound is

|C∗
q,1,n| ≤

qn − q

(q − 1)(n− 1)
. (2.3)

This expression was found by giving a solution to the fractional transversal and then calculating the weight of
this solution. In the next chapter we will compare (2.3) to the other bounds.
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Chapter 3

Methodology

In this chapter, we will discuss the methods used in this thesis and analyse the results. As could be seen in
the previous section, there exist multiple bounds for the sizes of deletion correcting codes. Also, we have seen
that there are multiple approaches to arriving at said bounds. As mentioned before, the goal of this thesis is to
understand and numerically study existing bounds.

3.1 Numerical Analysis of (2.2)
Let’s have a closer look at the analytical bound found by Levenshtein in 2002 [20]. Namely,

|C∗
q,s,n| ≤

qn−s∑s
i=0

(
r−s+1

i

) + q

r−1∑
i=0

(
n− 1

i

)
(q − 1)i, (3.1)

where 1 ≤ s ≤ r+ 1 ≤ n. Since this is not a closed form expression, it is not clear for which r the upper bound
is the strongest. In [17], it is heuristically argued that r ≈ n

2 is asymptotically optimal for the binary single
deletion case (q = 2, s = 1). Below is a table with the numerical values of the bound when plugging in different
values of r and n.

Table 3.1: The rounded down values U of the upper bound given by (3.1), for different values of n and r.

n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12 n = 13
r U r U r U r U r U r U r U r U r U r U
1 6 1 10 1 18 1 34 1 66 1 130 1 258 1 514 1 1026 1 2050
2 10 2 15 2 22 2 35 2 58 2 103 2 190 2 363 2 706 2 1391
3 16 3 26 3 40 3 60 3 90 3 138 3 220 3 368 3 646 3 1182

4 33 4 58 4 96 4 153 4 237 4 362 4 556 4 873 4 1417
5 67 5 124 5 219 5 368 5 597 5 942 5 1465 5 2270

6 135 6 258 6 474 6 837 6 1422 6 2340 6 3757
7 270 7 526 7 996 7 1824 7 3228 7 5532

When looking at the table, we notice that for 4 ≤ n ≤ 7, r = 1 gives the tightest upper bound. Only for n ≥ 8,
the value of r that gives the tightest upper bound becomes higher, although it only moves up one position to
r = 2 and to r = 3 for n ≥ 12. For small n these results make sense since the second term on the right hand
side of (3.1) is relatively contributing heavier to a higher (and therefore weaker) value for the upper bound.
Only when plugging in large values for n, is the value of r that gives the smallest upper bound getting close to
r ≈ n

2 .
In Table 3.2, the values of r are given that minimize the upper bound given in equation (3.1). We see that

as n increases, that the value of r slowly grows to r ≈ n
2 . We have only computed this bound for n up to 1000

Table 3.2: The values of r such that equation (3.1) is minimized for the binary single-deletion case, for large n.

n 250 500 1000
r 96 205 432
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since this approaches the limit of a value that Matlab will return before returning the value Inf (This happens
roughly when n = 1024, since in Matlab, 21024 yields Inf).

3.2 A linear programming approach

3.2.1 Introduction
For a communication channel where for example we start with an element from one set An

q and end with an
element from another set An−s

q by only removing s symbols, we talk of a deletion channel. Unfortunately, with
deletion channels, we often are unable to produce neat sphere-packing arguments to find bounds, like we can
do with substitution errors and Hamming codes. Instead, we must get our hands dirty and make use of linear
programs to produce bounds.

We will translate the problem of finding a largest s-deletion correcting codes to finding a matching number
and transversal number and these lie naturally in linear programming. The actual solution to these problems
are NP-hard [15]. So in order to compute bounds, we use relaxations for our linear programs: here, the feasible
regions can be computed in polynomial time. Even though the feasible regions can be computed in polynomial
time, deletion errors still act on an exponentially large input space. This exponential input space will become
clear later on.

3.2.2 Linear Programming Formulation
We will make use of hypergraphs (H = (V,E)) to formulate the problem of finding a largest s-deletion correcting
code. In Chapter 1 we have seen the mathematical definition of a hypergraph, but in other words this is just a
is a generalization of a graph in which an edge is an arbitrary subset of the vertices and thus called a hyperedge.

We will work with the following hypergraph, just like in [17]:

HD
q,s,n = (An−s

q , {Ds(x)|x ∈ An
q }). (3.2)

Here, the vertices correspond to strings in An−s
q and the hyperedges correspond to all the substrings one can

create by deleting s symbols from a string in An
q . As we have seen before, for a s-deletion correcting code,

we have that the deletion sets Ds(x) must be pairwise disjoint for x ∈ An
q . Thus a s-deletion correcting code

has disjoint hyperedges in HD
q,s,n, hence it corresponds to a matching in HD

q,s,n. Clearly, the size of a largest
s-deletion correcting code, |C∗

q,s,n|, corresponds to a maximum matching ν(HD
q,s,n) in our hypergraph.

It is generally known that the dual of a matching ν(HD
q,s,n) is a transversal τ(HD

q,s,n), but for a quick proof
one can have a look at [17]. Because of this, the matching and transversal problems now satisfy weak duality,
which states that the value of the maximization problem cannot be greater than the value of the minimization
problem [1], i.e.,

ν(HD
q,s,n) ≤ τ(HD

q,s,n). (3.3)

This formulation is great for finding upper bounds, since any solution to the transversal number acts as an
upper bound on the matching number and thus is an upper bound for |C∗

q,s,n|.
Now that we have established this relationship, we will for now focus on the finding the transversal number

τ(HD
q,s,n) . We can formulate the matching number as an integer linear program [25], hence we can also formulate

the transversal as an integer linear program [1] and get the following:

τ(HD
q,s,n) = min

∑
x∈An−s

q

w(x) (3.4)

s.t.
∑

x∈Ds(y)

w(x) ≥ 1 ∀y ∈ An
q (3.5)

w(x) ∈ {0, 1} ∀x ∈ An−s
q . (3.6)

The variables are w(x), x ∈ An−s
q , where w(x) is a binary variable such that

w(x) =

{
1 if x is included in the transversal
0 otherwise.
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Also, for a transversal number we are looking for the smallest subset B ⊂ An−s
q that intersects every hyperedge

in {Ds(x)|x ∈ An
q }. Hence we minimize the objective function. For a hyperedge ei ∈ {Ds(x)|x ∈ An

q }, the sum
w(x) over all the vertices x that are covered by ei must be at least 1 which explains the constraint.

To see why a transversal number acts as an upper bound on the cardinality of a deletion correcting code,
we can take another look at the linear program formulated in (3.4)-(3.6). The transversal number seeks to
minimize the number of vertices that are needed to cover every hyperedge. In other words, it seeks to minimize
the number of x in An−s

q such that every deletion set created by a string in An
q has has at least one of these

x in it. If this number is τ , then this means that there can be at most τ disjoint deletion sets, i.e., at most τ
codewords a s-deletion correcting code.

But if one has any knowledge of linear programming, the thought will come to mind that there is a way
to find a better bound on ν(HD

q,s,n), namely, working with LP-relaxations. For an ILP, the feasible points are
also feasible points of the LP-relaxation. To see this, suppose that F is the feasible region of the LP-relaxation.
Then the feasible region of the ILP is precisely Zn ∩ F . Because of this, the transversal number is no less than
the fractional transversal number, denoted as τ∗(HD

q,s,n). We get the following inequality:

τ∗(HD
q,s,n) ≤ τ (HD

q,s,n). (3.7)

and since τ∗(HD
q,s,n) is an LP-relaxation, it satisfies strong duality and therefore is equal to the LP-relaxation

of the maximum matching [1]. Combining this knowledge with (3.3) and (3.7), we get

ν(HD
q,s,n) ≤ ν∗(HD

q,s,n) = τ∗(HD
q,s,n) ≤ τ (HD

q,s,n). (3.8)

Another benefit of the linear program relaxation is that it can be computed in polynomial time and there-
fore we can compute the fractional transversal number to attain an upper bound for |C∗

q,s,n|. Even though
in this thesis we will use the fractional transversal number, in (3.8) we see that we also could have computed
a fractional matching number to obtain an upper bound on the cardinality of a largest s-deletion correcting code.

As was mentioned above, we will focus only on the fractional transversal problem to avoid dealing with a
NP-hard problem. The main reason for this is that a matching uses the insertion sets of a string x [17], i.e.,
all the strings that can be created by inserting s symbols in x and we have not defined this in our thesis. This
has one big benefit: transversals have qn−s variables in the objective function, whereas a matching will have
qn variables in the objective function and this allows for much compacter programs. We can write a fractional
transversal as follows.

τ∗(HD
q,s,n) = min

∑
x∈An−s

q

w(x) (3.9)

s.t.
∑

x∈Ds(y)

w(x) ≥ 1 ∀y ∈ An
q (3.10)

w(x) ≥ 0 ∀x ∈ An−s
q . (3.11)

Notice that no minimizing w(x) will be greater than 1, so the fractional transversal problem is equivalent
to the integer transversal problem. The only difference is that the fractional transversal problem allows the
variable w(x) to take any value between 0 and 1, since we got rid of the constraint that w(x) must be either 0 or 1.

3.2.3 A Worked Out Example
In order to better understand how τ∗(HD

q,s,n) is computed, we have worked out an example below. To avoid
any intricateness, we pick q = 2, s = 1 and n = 3. So we will be working in A3

2, i.e. the binary codes of length
3 for the single-deletion case. Let’s first write down all possible strings.

A3
2 = {000, 101, A3−1

2 = {00, 01,

001, 110, 01, 11}.
010, 011,

100, 111},

11



The next step is to compute the deletion sets D1(x), for x ∈ A3
2.

1 : D1(000) = {00},
2 : D1(001) = {00, 01},
3 : D1(010) = {00, 01, 10},
4 : D1(100) = {00, 10},
5 : D1(101) = {01, 10, 11},
6 : D1(110) = {10, 11},
7 : D1(011) = {01, 11},
8 : D1(111) = {11}.

Recall that for the hypergraph HD
2,1,3 = (A3−1

2 , {D1(x)|x ∈ A3
2}), the vertices correspond to the strings in

A3−1
2 and we conclude that there must be 4 vertices. The hyperedges correspond to strings in A3

2 so we see that
there are 8 hyperedges. A quick visualisation of HD

2,1,3 yields:

Figure 3.1: A visualisation of the graph HD
2,1,3. The edges are numbered and match the corresponding deletion

sets above.

We can now write out the objective function and the constraints using the 8 deletion sets. We get:

minimize z =w(00) + w(01) + w(10) + w(11)

s.t. w(00) ≥ 1

w(00) + w(01) ≥ 1

w(00) + w(01) + w(10) ≥ 1

w(01) + w(10) + w(11) ≥ 1

w(10) + w(11) ≥ 1

w(01) + w(11) ≥ 1

w(11) ≥ 1

w(00), w(01), w(10), w(11) ≥ 0.

Since this linear program is small enough, we can now use an ordinary LP-solver and fill in the constraints
manually. This will then return an objective function value:

z = 2, w(00) = 1, w(01) = 0, w(10) = 0, w(11) = 1.

We now know that a binary single-deletion correcting code with words of length n = 3 has a cardinality of at
most 2. This knowledge can then be used to construct such a codebook, perhaps with the knowledge of a known
lower bound (note that the optimal codebook for this case has indeed cardinality 2 [29]). On a side note, the

12



correctness of the objective function value can be easily checked by looking at Figure 3.1 since we want to find
the minimum number of vertices that intersect every hyperedge. After checking, we see that the vertices 00
and 11 satisfy this.

Another way to interpret why this transversal number acts as an upper bound on |C∗
2,1,3| is the following: the

linear program has now minimized the number of vertices such that every hyperedge has one of these vertices
in it. In other words, it has given the minimum number of substrings in A3−1

2 needed to cover every deletion
set made from the strings in A3

2. Since this number is 2, intuitively there are at most 2 disjoint deletion sets,
meaning there are at most two strings of length n = 3 in a single-deletion correcting code.

13



Chapter 4

Results

In the previous example, we worked with parameters q = 2 and n = 3. This lead to 23 = 8 constraints
and 23−1 = 4 variables in the objective function. For the single-deletion case if we look at the corresponding
hypergraph HD

q,s,n = (An−s
q , {Ds(x)|x ∈ An

q }), we see that we must have qn−1 vertices and qn hyperedges in
general. This leads to qn−1 variables in our linear program and qn constraints. When using software to solve
this linear program, the input is a qn x qn−1 matrix and it becomes clear that we have an exponentially large
input space. In general we get an input of qn x qn−s for s deletions.

4.1 Solutions to the Fractional Transversal Numbers
On the next page we show Tables 4.1a, 4.1b and 4.1c with the values for τ∗(HD

q,1,n), τ∗(HD
q,2,n) and τ∗(HD

q,3,n)
respectively. As one can see, the tables look a little empty. This is due to the ’limited’ computing capacity of
the laptop used in this thesis.1 On a side note, this will come back in the discussion. Still we we can show some
new results, namely the columns for q = 6 and q = 7. The Matlab code used to find these results can be found
in the Appendix, and this can be adapted to any q−ary alphabet and any number of deletions.

When we compare the Tables 4.1a, 4.1b and 4.1c, we expect to see the values of the fractional transversals
decrease as the number of deletions increase. This is because there will be less codewords that we can put in a
2-deletion codebook since there will be less strings that will be able to satisfy the property of disjoint deletion
sets and even less strings for three deletions. Another explanation for this is that the sizes of the deletion sets
are now at most the binomial

(
n
2

)
for the 2-deletion case and at most

(
n
3

)
for the 3-deletion case. This is because

there are
(
n
2

)
ways to delete two symbols from a string of length n and

(
n
3

)
ways to delete three symbols from a

string of length n. Since the deletion sets are larger, we can automatically expect less disjoint deletion sets for
the same set An

q .

The next thing to comment on is the horizontal trend in each table: when comparing the upper bounds for
different q, it makes sense that the values of the fractional transversal are larger for higher q and the same n.
This is because the alphabets are larger and therefore there are more words to ’choose’ from.

Also, we have left out the values of the upper bounds for n ≤ 2 for Tables 4.1a and 4.1b and n ≤ 3 in Table
4.1c, as we consider these trivial. If n = 1, then a deletion correcting code can only allow one codeword to be
in it, since we retrieve an empty set after any number of deletions. If n = 2, then for the 2-deletion case we
again retrieve an empty set and therefore can only have one codeword by the same reasoning as before.

In general, if n = s, C∗
q,s,n can only have one codeword in it.

If n = 2 for the binary 1-deletion case, note that there are only two strings in A2−1
2 so there are at most two

disjoint deletion sets (0 and 1), hence there can be at most two words in a single-deletion code with codewords
of length 2.

If n = 3 for the 2-deletion case, there are only q strings in A3−2
q and by the same reasoning as above there

can be at most q codewords in a 2-deletion correcting code.
If n = 4 for the 3-deletion case, we again get at most q different codewords in a 3-deletion correcting code.
In general we get the rule: if s = n− 1, then |C∗

q,s,n| = q.

1HP ZBook 15 G5 i7 (8th gen).
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Table 4.1: The fractional transversal numbers τ∗(HD
q,s,n) for different values of q and n and s = 1, s = 2 and

s = 3 respectively.

(a) single-deletion

n q = 2 q = 3 q = 4 q = 5 q = 6 q = 7
3 2 5 8 11 16 21
4 4 12 25 45 73 112
5 6 24 69 158 314
6 10 62 231
7 17 153
8 30
9 53
10 96
11 175
12 321

(b) two deletions
n q = 2 q = 3 q = 4 q = 5 q = 6 q = 7
3 2 3 4 5 6 7
4 2 3 6 8 10 14
5 2 6 13 22 34
6 4 13 33
7 5 26
8 7
9 12
10 20

(c) three deletions
n q = 2 q = 3 q = 4 q = 5 q = 6 q = 7
4 2 3 4 5 6 7
5 2 3 4 7 9
6 2 5 9
7 2 8
8 4
9 5

4.2 Comparing the Bounds
Now that we have computed some upper bounds via the linear program of a transversal number, we can see
how these compare to the analytical bounds in Chapter 2. For the single-deletion case, Table 4.2, We can
think of the Varshamov-Tenengolts codes as a lower bound on the maximum cardinality of a single-deletion
correcting code. This is because we know how many codewords are in a V T0(n) code and we know that this is
a single-deletion code so we know there must be at least as many codewords in a largest single-deletion code.

In Table 4.2 we see that when n increases, all values of the different upper bounds also increase. This is
due to the longer strings so there are more combinations of symbols which leads to more strings in An

q when n
increases. We also see that for the LP column, the bound is tight for some values of n and always presents the
strongest upper bound. The KK column, which is the bound in closed form expression found by Kulkarni and
Kyiavash in [17] and equation (2.3) in this thesis, was derived from a linear program and has reasonably strong
upper bounds, even as n increases. The two analytical bounds found by Levenshtein are clearly the weakest
and they both grow much faster as n becomes larger. So even the strongest bounds in Table 3.1 are weaker
than both bounds related to linear programs. There is a horizontal trend that suggests the following: the older
the bound, the weaker the bound.

For the single-deletion case, we have chosen to only compare the upper bounds for binary codes. This
motivation is twofold. Firstly, there are more bounds for the binary single-deletion case so we can compare the
results of the linear program to more values. Secondly, there are many other comparisons in literature for q-ary
alphabets when s = 1, like in [17]. In Table 4.3, we will look at larger alphabets.
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Table 4.2: Upper bounds for the maximum cardinality of a single-deletion correcting code. From left to right:
V T0(n), the sizes of the largest known single-deletion correcting codes. These values can be interpreted as a
lower bound on |C∗

2,1,n|. LP shows the values of the fractional transversal number τ∗(HD
2,1,n). KK shows the

values of the closed form expression found by Kulkarni and Kiyavash, eq. (2.3). LEV-2 corresponds with the
lowest values of each n for eq. (2.2), which can be found in Table 3.1 and LEV-1 corresponds with the values
from eq. (2.1). All values have been rounded down.

q = 2

n V T0(n) LP KK LEV-2 LEV-1
3 2 2 3 4 2
4 4 4 4 6 4
5 6 6 7 10 8
6 10 10 12 18 16
7 16 17 21 34 32
8 30 30 36 58 64
9 52 53 63 103 128
10 94 96 113 190 256
11 172 175 204 363 512
12 316 321 372 646 1024

Also, to the best of the author’s knowledge, there are no good codes correcting three deletions so there are
no good comparisons to be made.

In Table 4.3, we show the results of the bounds obtained via the linear program and compare these to a
bound found by Levenshtein. Also, we have given the code sizes of the best known codes capable of correcting
2 deletions. For the binary case, we have taken the code constructed by Butenko et al. in [6], where it can
be seen in [16] that this code construction is indeed the largest for q = 2. For the 3-ary and 4-ary alphabets,
we have taken a generalized Helberg 2-deletion correcting code construction from [18] to compare with the LP
bounds. To the best of the author’s knowledge, there are no good 5-ary codes correcting two deletions.

The first thing that catches our eye when looking at Table 4.3, is that we have only have 2 columns next
to n and the column with known code sizes. This is because there are very few bounds for 2-deletion codes (or
s-deletion codes for s ≥ 2 for that matter) because this seems to be far less studied than the single-deletion
case. For example, the first Levenshtein bound (2.1) only holds for a single deletion and the same is true for
the bound found by Kulkarni and Kiyavash (2.3).

In each sub-table of Table 4.3, the values of the LP column were taken from Table 4.1b, where the fractional
transversal number was computed for a 2-deletion correcting code and LEV-2 gives us the strongest bounds
obtained from (2.2). We see the same vertical and horizontal trends as in table 4.2 even though there are less
values here. As n increases, the values of the upper bounds increase as well. We also see that for each sub-table,
the Levenshtein bound is far weaker in relation to the the fractional transversal number for the two deletion
case than for the single deletion case.

In Table 4.3a we can compare the LP bound with the largest known sizes of binary codes capable of
correcting 2 deletions and we see that for n ≤ 8, the LP-bound is tight. In Tables 4.3b and 4.3c, we can’t make
any conclusions about the tightness of the LP bound by looking at the GH column. However for Table 4.3b, we
can construct a repetition code to see that the LP bound is tight for n = 3 and n = 4. Namely a 3-ary repetition
code of length n = 3, R3

3 = {000, 111, 222} is a 2-deletion correcting code since one can check that the deletion
sets of the codewords in R3

3 are pairwise disjoint. If n = 4, then the repetition code R4
3 = {0000, 1111, 2222} is

also a 2-deletion correcting code by the same reasoning.
For Table 4.3c, R3

4 acts as a 2-deletion correcting code with q = 4 and n = 3, so the LP bound is also tight.
In Table 4.3d, we can again use a repetition code to see that the bound is tight for n = 3. This time we

take R3
5 = {000, 111, 222, 333, 444}.
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Table 4.3: Upper bounds for the maximum cardinality of a 2-deletion correcting code. LP shows the values of
the fractional transversal number τ∗(HD

q,2,n). In Table 4.3a, Butenko gives the sizes of the largest known binary
2-deletion code taken from [16] and LEV-2 shows the lowest values values of eq. (2.2). In Tables 4.3b and 4.3c,
GH gives the sizes of a generalized 2-deletion Helberg code as presented in [18]. Again, all values have been
rounded down.

(a) q = 2.

n Butenko LP LEV-2
3 2 2 4
4 2 2 6
5 2 2 10
6 4 4 18
7 5 5 34
8 7 7 66
9 11 12 106
10 16 20 156

(b) q = 3.
n GH LP LEV-2
3 2 3 6
4 2 3 12
5 3 6 30
6 4 13 84
7 4 26 246

(c) q = 4.
n GH LP LEV-2
3 2 4 8
4 2 6 20
5 3 13 68
6 4 33 260

(d) q = 5.
n LP LEV-2
3 5 10
4 8 30
5 22 130
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Chapter 5

Discussion

The goal of this thesis was to study and evaluate upper bounds for deletion correcting codes. We have looked
at how to obtain upper bounds for q-ary alphabets for 1- , 2- and 3-deletion correcting codes using linear
programming and have compared the fractional transversal solutions for the single and 2 deletion case to other
upper bounds that were derived analytically. The main conclusion is presented below. Furthermore, we will
discuss the shortcomings of the methods used and we will give possible avenues for future work.

We conclude the following about the results that we have presented in this thesis. We have seen that the
fractional transversal numbers produce the strongest bounds and that the so called ’LP-bounds’ as defined in
Chapter 2 are better bounds than their analytical counterparts. But in every case, the bounds computed by
the fractional transversal outperformed all the other bounds and were also tight up to certain values of n. Also,
a fractional transversal approach seems to be more amenable than other approaches since it has a compact
representation.

Even though the upper bounds contrived from the fractional transversal number were superior to the other
bounds, this method still has its limitations. Take for example the produced tables in the previous chapter. We
were only able to show values of bounds for n ≤ 12 for the binary single-deletion case and even less for other
parameters. This is due to the exponentially large input size of the linear programs and therefore requires a
lot of computing time. If one wanted to know that the fractional transversal number was for a single-deletion
correcting code with codewords of length 17, one would need a supercomputer to even come close to getting a
result.

Also, since computing time plays a big role in the fractional transversal method, it may be worth looking
into better solvers like JuMP or having a look at Neos, instead of leaning towards personal preference.

For future work, a trivial direction is that one could try compute upper bounds for a higher number of
deletions. Also, one could try to gain access to a supercomputer and therefore compute even more values with
the code for the linear program in the Appendix.

Another direction is to compute lower bounds on |C∗
q,s,n| via linear programming, where one could translate

the problem of finding a lower bound for |C∗
q,s,n| as finding the maximum independent set number α(G) and

using theorems derived from graph theory to obtain a lower bound on α(G).
Also, maybe with the help of the previous direction, one could write out a linear program of a fractional

matching and use the values of the fractional decision variables to construct a deletion correcting code for
different parameters.
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Appendix A

Matlab Code for Computing a Fractional
Transversal Number

%parameters
n = 4;
q = 3;
s = 2;
m = n-s;

clear floor;

% Generate F_q
indices = cell(1, n);
[indices {:}] = ndgrid (0:(q-1));
% Create q-ary codebook of length n
codebook = zeros(q^n, n);
for i = 1:n

codebook(:, i) = indices{i}(:);
end

T = table ();

% Generate substrings
substrings = [];
for row = 1:size(codebook , 1)

current_row = codebook(row , :);
combinations = nchoosek (1:n, s); % Generate all combinations of s

symbols to delete

% Delete s symbols and generate substrings
for combo = 1:size(combinations , 1)

modified_row = current_row;
modified_row(combinations(combo , :)) = []; % Delete symbols

% Generate substrings
row_substrings = cellstr(num2str(modified_row ', '%d')); % Convert

row to cell array of strings
row_substrings = strcat(row_substrings {:}); % Concatenate all

strings in the cell array
T(row , combo) = {row_substrings };

end
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end
T;

% generate F^{q-s}
indices = cell(1,m);
[indices {:}] = ndgrid (0:(q-1));
codebook2 = zeros(q^m, m);
for i = 1:m

codebook2(:,i) = indices{i}(:);
end

% create objective function for LP
obj = "";
for j = 1:q^m

delj = codebook2(j, [1:m]);
o = sprintf('%d', delj);
obj(j) = o;

end
obj;
% create matrix M with the rows as the hyperedges
M = zeros(q^n, q^m);
for i = 1:q^n

for j = 1:q^m
for k = 1:size(combinations , 1)

if T{i,k} == obj(j)
M(i,j) = 1;

end
end

end
end

M;
% M in the form of Ax \geq b
A = -M;
f = ones(1, q^m);
b = ones(1, q^n);
b = -b;
[x, fval] = linprog(f,A,b);
upperbound = floor(fval);
Table = table(q, n,s, upperbound)
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