Upper Bounds for Deletion Correcting Codes

BACHELOR THESIS

J.D.H. Ladd (5090350)

==

Thesis Committee: dr.ir. J.H. Weber (supervisor)
dr. J.A.M. de Groot

Delft
U e t University of
Technology

Department of Applied Mathematics
Delft University of Technology
Delft, The Netherlands
July 2, 2023

Abstract

The world can’t keep up with its own data and therefore needs new ways to store it. Research is being done
into new types of experimental data storage like DNA sampling or racetrack memory, which could completely
revolutionize the way storage works. However, such storage media are prone to certain type of errors like
deletion errors where information is lost. Consequently, there has been a surge in interest in developing deletion
correcting codes to address this challenge. We are interested in the maximal size of a code correcting up to a
certain number of deletions. Nevertheless, constructing these codes can be quite intricate and therefore we are
often limited to working with bounds.

In this thesis, we will study and evaluate upper bounds for these codes. We will compare bounds that were
derived analytically to bounds that have been computed with the use of linear programs. We will compute upper
bounds for 1-, 2- and 3-deletion correcting codes. Moreover, we will show how to compute these bounds with
a linear program, by posing the problem of finding a largest deletion correcting code as finding the transversal
number on a hypergraph. It will become clear that the bounds computed through linear programming are much
stronger than any bound derived analytically.

Terms and Definitions

Term Meaning
Communication channel Particular type of media through which a message is sent and received.
Symbol Element in A,.
Alphabet Finite set of symbols, i.e., A,.
String A sequence of symbols.
Deletion Removal of a symbol in a string
Substring The sequence obtained after deletion(s) from a string.
Run Maximal contiguous sequence of a string with identical symbols.
Code Subset of A7.
Codeword Element of a code.

Deletion set

Deletion correcting code
Optimal

Graph

Hypergraph
Hyperedge
Matching
Transversal
Non-adjacent
Independent set

Set of substrings obtained by s deletions from a string in A7.

Subset of A7 with the property that the deletion sets are pairwise disjoint.
Largest size

A pair of sets (V, E) where V is non-empty and F is a subset

of the set {{u,v}:u,v € V,u # v}.

Generalization of a graph where an edge is any subset of the vertices.
Edge of a hypergraph, i.e. a subset of vertices.

Set of pairwise disjoint hyperedges.

Subset of the vertices such that every hyperedge is intersected.

If uv ¢ E for two vertices u,v in a graph G = (V, E).

Set of pairwise non-adjacent vertices in a graph.

Notation

Meaning

N:=1{1,2,3,...}

q € N>
seN
neN

LP
NP-hard

The positive integers.

The alphabet size.

The number of deletions.

The length of a string.

The finite g-ary alphabet {0,1,...

Set of all g-ary strings of length n.

String in Aj.

The s-deletion set of a string x.

A g-ary code with strings of length n capable of correcting s deletions.

A s-deletion correcting code of maximal size with g-ary alphabet and string length n.

The cardinality of Cj , .

The Varshamov-Tenengolts code

Repetition code, i.e, {00---0,11---1,--- (¢—1)(¢g—1)--- (¢ — 1}
n n

Hypergraph with vertices V and hyperedges E.

Cardinality of a matching of maximum size among all matchings.

Minimum cardinality of a transversal.

Largest size of an independent set.

Integer linear program.

Linear program.

n

Complexity class such that the problems in this class cannot be solved in polynomial time.

Contents

1 Introduction

1.1 Definitions and Introducing Methodology L oL
1.2 Goal of the Thesis
1.3 Organisation of the Thesis
2 Classification of Bounds
2.1 Some Code Constructions ot e e
2.2 Analytical Bounds e
2.3 LP-Bounds e e
3 Methodology
3.1 Numerical Analysis of (2.2)
3.2 A linear programming approach
3.2.1 Introduction e e
3.2.2 Linear Programming Formulation L 0o oL
3.2.3 A Worked Out Example
4 Results
4.1 Solutions to the Fractional Transversal Numbers
4.2 Comparing the Bounds e

5 Discussion

A Matlab Code for Computing a Fractional Transversal Number

10
10
10
11

14
14
15

18

19

Chapter 1

Introduction

The digital era offers us many things: technology like artificial intelligence, blockchain, 5G and the cloud. One
of the perks that the digital era brings is that it allows for a globalized world. Never before has the world been
so connected and there are over 8000 data centres spread around the globe [11]. Sending, storing and retrieving
data has never been easier. However, communication channels and digital data storage aren’t without errors
[28]. These errors can happen while sending information or while retrieving stored information. The result is
then a partial loss of information or in some cases, the information is altered. Take for example the Qantas
flight 72 in 2008. An alteration of the Angle of Attack! information caused a near plane crash, injuring over a
hundred people [3]. Another example of data being altered is the so called bit flip in a Belgium election in 2003.
Here, a cosmic ray caused a 0 in a string to turn to a 1, attributing over 4000 votes to a certain candidate [27].
These types of errors are called substitution errors and are well researched.

In this thesis, we will focus only on a specific type of error called a deletion error. This is a type of error
where a deletion takes place, i.e., a symbol gets deleted from a string. This can look like:

110100 — 11000 or 110100 — 010,

where a single deletion and three deletions occur respectively. Deletion errors have been far less studied and
this is due to two reasons. The first one is that in communication channels they occur far less often than
substitution errors and the second reason is that a synchronization method was used, if they did occur. For this
method, there often is a built in ’check’-sequence in a codeword, like 0101. An example is that a sender sends a
codeword with 0101 as the synchronization pattern. This is a useful way of checking if an error occurred when
the receiver doesn’t know the length of the message. If a deletion occurs, i.e.,

1100/0010/0101 |0110- - - — 1100|0100| 1010|110 - - ,

sync error

we can use the synchronization pattern to check if a deletion has occurred. The symbol in red gets deleted and
because of that all the other symbols move one spot to the left. Now the synchronization pattern doesn’t read
0101 but 1010 and therefore the receiver of the information knows an error has taken place and can ask the
sender to resend the information.

Recently however, experimental data storage have caused a surge in popularity for deletion correcting codes
due to the breakthroughs in this field. One of these new data storages is the use of DNA sampling [12],[30] and
stores information as a DNA sequence. This can be done by encoding data, synthesizing it into a DNA sequence
and then storing it in a cool and regulated environment and can be decoded at any given time to retrieve the
stored data. What makes DNA data storage attractive is that it has a very high storage density: it can store
215 million GB in a single gram of DNA.

Another example is racetrack memory storage [7] and stores data as a magnetic pattern and promises to
be a very inexpensive and efficient way of storing data as it is estimated that racetrack memory only needs 10
nanoseconds to read or write a bit, compared to 10,000,000 nanoseconds needed for a traditional hard drive.

The problem with these types of data storage, is that they are susceptible to errors like deletion errors. With
the DNA-storage channel, the data is sampled as a set of sequences but the retrieved set is often corrupted due
to sequence loss and symbol deletion. In racetrack memory, researchers often can’t fully control the magnetic
patterns and this in turn effects the reliability of reading and writing data. The high possibility of deletion

1The angle between the reference line on an airplane and the oncoming air.

errors is the reason why deletion corrected codes have attracted so much attention.

In practice, it is often quite difficult to construct deletion correcting codes and therefore we are often limited
to working with bounds. Constructing lower and upper bounds for deletion correcting codes gives us information
on the sizes of these codes for certain parameters and therefore brings us a step closer to the construction of such
codes. So studying deletion correcting codes will bring us also a step closer to implementing these experimental
types of data storage into our society and thereby transform the digital world.

Since the the publishing of A Mathematical Theory of Communication in 1948, by Claude Shannon [28] and
therefore the creation of Information Theory, there have been multiple constructions of s-deletion correcting
codes and resulting problems.

Let us first start with some published work on binary codes correcting up to a certain number of deletions.
In [29], Sloane gives a detailed insight on the binary single-deletion channel and specifically focuses on the
Varshamov-Tenengolts codes. Sloane also gives a conjecture that the VT, (n) codes are optimal for all n. These
VT,(n) codes were proven to be able to correct a single deletion by Levenshtein in 1965 [22].

Besides the VT, (n) codes, there have been many papers on how to construct other codes capable of cor-
rection deletions. One of these constructions was by Helberg and Ferreira in [13| with the so called Helberg
code and has a number theoretic construction. This was done by looking at the weight spectra and Hamming
distance properties of single-deletion correcting codes and then extending these to codes that can correct mul-
tiple deletions. In [2], Abdel-Ghaffer et al. proved that this code construction indeed corrects multiple deletions.

For g-ary alphabets, bounds for s-deletion correcting codes were derived analytically by Levenshtein in [21]
and [20] with the help of combinatorial arguments.

More recently, in [24] algebraic theory is used by Liu and Xing to construct deletion correcting codes and
also construct bounds for these codes.

A more recent discipline of constructing g-ary s-deletion correcting codes and finding bounds is via graph
theory and linear programming. In [6], Butenko et al. construct binary s-deletion correcting codes by translating
this problem to a maximum independent set problem a(G) and then using a branch and bound algorithm.

In [10], Cullina et al. find upper bounds by translating this problem to a colouring of a graph and also give
a code construction for the 2-deletion case.

In [17] Kulkarni and Kiyavash translate the problem of finding the largest s-deletion correcting code to
finding a matching number on a hypergraph and then use duality theorems to find upper bounds (this is also
the method we will use in this thesis).

In [8], Cullina and Kiyavash use packing arguments and represent a communication channel as a bipartite
graph, where channel input corresponds to left vertices and channel output corresponds to right vertices. An
edge connects an input to an output that can be produced from it, i.e., a string will have edges to all elements
in its deletion set. With this they provide a bound that is better than Levenshtein’s asymptotic bound from
[19] whenever the number of deletions to be corrected is greater than the alphabet size q.

In [9], Cullina and Kiyavash use a bipartite graph presentation and then convert their sphere-packing argu-
ments to linear programs.

One of the resulting problems when studying deletion correcting codes is the size of the deletion set Dg().
The sizes of these sets are important for constructing bounds for deletion correcting codes and Mercier et al.
present some nice theorems about the sizes of these sets [26]. A few years later, in [23] Liron and Langberg
give improved bounds on the sizes of the deletion sets for arbitrary numbers of deletions. Stronger bounds for
deletion sets can contribute to new bounds for deletion correcting codes, as can be seen in [20].

In this thesis, we will look at the problem of computing upper bounds for s-deletion correcting codes via
the use of linear programming. In the remainder of the introduction, we will mathematically define a deletion
correcting code and introduce some definitions for our methods. Finally we will present the goal of this thesis
and explain the layout.

Before we go any further, we must acquaint ourselves with some useful definitions that will be relied heavily
upon in this thesis.

1.1 Definitions and Introducing Methodology

Suppose Adam and Eve are in a hypothetical communication channel that incurs deletions, meaning Adam and
Eve send each other messages but the received messages are subject to partial loss of information due to any
number of deletions. Suppose they write their messages from the binary alphabet of length 2, i.e., {00,01,10,11}
with the following meanings:

00 — No!

01 — Don’t eat it!
10 — Eat it!

11 — Yes!

Adam sees Eve picking up an apple and sends Eve the message 01 to tell her not to eat it. Since this commu-
nication channel allows for deletions to take place, Eve unfortunately receives the message 1. Since 1 is not of
length 2, Eve knows an error took place and tries to figure out which message was sent by adding a 0 or a 1 to
the left or right side of the received message. Eve figures out that the received message could have come from
the following three codewords: 01,10 and 11. There is now a high probability that Eve will choose the wrong
codeword, i.e., 10, telling her to eat the apple or 11, which can also be interpreted as an encouraging sign to
eat the apple. With miscommunications like these, a banishment from Paradise does not seem unlikely...

Suppose they had used only words in the binary repetition code of length 2, i.e., R3 = {00,11}. Now it
doesn’t matter if Eve receives a 0 or a 1, as these each descended only from one possibility. We say that R3 can
correct a single deletion, but this is no coincidence and will become clear after we introduce two definitions.

First let us denote A, = {0,1,...,q — 1} as the g-ary alphabet and let A7 be the set of all g-ary strings of
length n. A substring of x is formed by taking a subset of the symbols of x without altering their order. A run
ofz=uz;...2, € A} is a maximal contiguous substring with identical symbols.

Definition 1 The s-deletion set Ds(x) of x is the set of substrings of x obtained by deletion of s symbols from
T.

Ezample 1: if z = 0112 € A3, then D;(0112) = {112,012,011}.
Ezample 2: if © = 11111 € A3, then D3(11111) = {11}.

Definition 2 A s-deletion correcting code for Ay is a set C C Ay with the property that the s-deletion sets
of the codewords are pairwise disjoint. Such a code of maximal size is denoted as C} The cardinality of a

asn°
largest s-deletion correcting code is denoted as |C; , |-

By looking at the codewords in R3, we see that the deletion sets for s = 1 are disjoint (D1(00) = 0, D;(11) =1
and 0 N1 =) and therefore R% is a single-deletion correcting code.

Furthermore, in this thesis we will make use of the following definitions taken from [4] and [5] for our
methodology. As we will see in Chapter 3, we will pose the problem of finding an upper bound on |C;,S’n| as a
minimum transversal. But we need knowledge of hypergraphs and matchings in order to do so.

Definition 3 A hypergraph H denoted by H = (V; E = (e;i)icr) on a finite set V is a family (e;);cr of subsets
of V called hyperedges. I ={1,...,m}, where m is the number of hyperedges.

Definition 4 A matching is a set of pairwise disjoint hyperedges of H. A maximum matching is a matching
of mazimum size among all matchings. The matching number v(H) of H is the cardinality of a maximum
matching.

Definition 5 Let V(e) be the set of vertices covered by a hyperedge e. A set B CV is a transversal if it meets
every hyperedge, i.e., Ve € E : BNV (e) # 0. The minimum cardinality of a transversal is the transversal
number, denoted by T(H).

1.2 Goal of the Thesis

In this thesis, we aim to study and evaluate upper bounds for s-deletion correcting codes. We will look at
existing bounds and also compute bounds via linear programming. By the end of the thesis, we will have a
comprehensive understanding of different bounds for |C; .|, how to compute these values and know what the
advantages and disadvantages are for certain bounds.

1.3 Organisation of the Thesis

This thesis is organized as follows. In Chapter 2 we will highlight some upper bounds for |C; ; ,,| and talk about
how these were derived. In Chapter 3 we will first look at different numerical values for one of the bounds from
the previous chapter and then work out how we can use linear programming to compute bounds for |C; ;[In
Chapter 4 we will show the results of the linear programs and compare these to the bounds that we have seen in
Chapter 2. Finally, in Chapter 5 we will make our conclusions and discuss possible directions for future work.

Chapter 2

Classification of Bounds

Now that we have a better understanding of the research that has been done, we want to highlight a few bounds
from some of the published papers and use these to compare them with the results from the linear programs in
the next chapter. We can split these bounds into two groups: bounds that have been derived analytically and
bounds that have been derived with the help of linear programs. In general, the analytic bounds are older and
the so called LP-bounds are more recent.

But first, we will show a few code constructions that we will use as a lower bound for the cardinalities of

|C;,s,n

2.1 Some Code Constructions

For the binary single-deletion case, the VT, (n) codes are the largest known codes up to date. These codes have
the following property: if = (z1...z,) is a codeword, then it must satisfy

n
Zixiza mod n + 1.

=1

The sizes of the codebooks depend on the value of a, as can be seen in Table 2.1 below.

Table 2.1: The cardinalities of VT, (n) for different values of a and n.

n a=0|a=1|a=2|a=3|a=4|a=5|a=6|a=7|a=8|a=9]|a=10
1 1 1

2 2 1 1

3 2 2 2 2

4 4 3 3 3 3

5 6 5 5 6 5) 5

6 10 9 9 9 9 9 9

7 16 16 16 16 16 16 16 16

8 30 28 28 29 28 28 29 28 28

9 52 51 51 51 51 52 51 51 51 51

10 94 93 93 93 93 93 93 93 93 93 93

As we can see, the codes with a = 0 have the largest cardinality. To see why this is true, one can have a
look at Theorem 2.2 from [29]. This states that

VTu(n)| = 5 > o) ey
a — a7/, 1\ d 9
2(n+1) d|n+1,d odd & (d,a))

where ¢(+) is Euler’s totient function, p(-) is the Mobius function and (d, a) is ged(d, a). If a = 0, we get

EN|

So
VLM< S (@2 = VT

| <
2(n+1) dln+1,d odd

As mentioned before, in 1965, Levenshtein gave a clever decoding algorithm to prove that the Varshamov-
Tenengolts codes VT, (n) [31] are single-deletion correcting codes [22]. We can now use these codes as a lower
bound on the size of a largest binary single-deletion correcting code. This is because we know what the cardi-
nality is of this code, so there must be at least as many codewords in |C3 ; ,|.

For 2 deletions in the binary alphabet, we will use code sizes from [16] to compare with the other bounds.
These codes have been found by posing the problem of finding a largest 2-deletion correcting code as a maximum
independent set problem.

For larger alphabets in the 2 deletion case we will use the code sizes from [18] as a comparison. These were
found by generalizing Helberg’s construction of binary 2-deletion correcting codes to non-binary alphabets.

2.2 Analytical Bounds

We will now give two nonasymptotic upper bounds provided by Levenshtein. The first nonasymptotic upper
bound is derived from a combinatorial argument

"'+ (n=-2)q"""+q
n

ICq

(2.1)

nl =
and was found in 1992 [21]. This bound was found by constructing a subset of C; s, where the codewords in
this subset have certain properties and applying combinatorics to bound the cardinality of this subset.

The second nonasymptotic upper bound is

Cianl S s eeny O(T - +q2(D=y (2.2

[

and was provided in 2002 [20]. Here r is an integer satisfying 1 < s <r+1 < n where r is chosen such that the
right hand side of (2.2) is minimized. The proof of (2.2) uses the same method as in [19]. If z is a codeword in

Cy s, and [|z[| is the number of runs of x, then Levenshtein splits C; . ,, into

q,8,m n

{relosnllellZr+ 1} +{z ey, [zl <r}.

Levensthein then bounds both of these sets as in [19] but takes a new and improved lower bound on the cardi-
nality of a deletion set of into account that was proven by Hirschberg in [14] to obtain the result.

2.3 LP-Bounds

Numerical Bounds are a relatively new discipline of deletion correcting codes and often make use of graph
theory and optimization. Even though in this thesis we are mainly interested in the numerical bounds, Kulkarni
and Kiyavash have also derived a closed form expression as an upper bound [Theorem 3.1] in [17] by giving an
analytical solution to a fractional transversal. The upper bound is

n

qa —q

ICyanl < G—Dm-1) (2.3)

This expression was found by giving a solution to the fractional transversal and then calculating the weight of
this solution. In the next chapter we will compare (2.3) to the other bounds.

Chapter 3

Methodology

In this chapter, we will discuss the methods used in this thesis and analyse the results. As could be seen in
the previous section, there exist multiple bounds for the sizes of deletion correcting codes. Also, we have seen
that there are multiple approaches to arriving at said bounds. As mentioned before, the goal of this thesis is to
understand and numerically study existing bounds.

3.1 Numerical Analysis of (2.2)

Let’s have a closer look at the analytical bound found by Levenshtein in 2002 [20]. Namely,

IC,.

< sl s+1)+q2() " (3.1)

i

where 1 < s < r+1 <n. Since this is not a closed form expression, it is not clear for which r the upper bound
is the strongest. In [17], it is heuristically argued that r =~ % is asymptotically optimal for the binary single
deletion case (¢ = 2, s = 1). Below is a table with the numerical values of the bound when plugging in different

values of r and n.

Table 3.1: The rounded down values U of the upper bound given by (3.1), for different values of n and r.

n=4 n=>5 n==~6 n="7 n=23_ n=9 | n=10 | n=11 n=12 n=13
r U |r U lr Ul r U | r U r U r U | r U |r U |r U
1 61 101 18 |1 34 |1 66 |1 130 |1 258 | 1 514 |1 1026 | 1 2050
2 102 15|12 22|12 35|12 58|12 103|2 190| 2 363 | 2 706 | 2 1391
3 16|13 26|13 40|13 603 90 |3 138 |3 220 3 368 | 3 646 |3 1182
4 33 |4 584 96|4 153 |4 237 |4 362 |4 556 |4 873 |4 1417
5 67 |5 124 |5 219 |5 368 |5 597 | 5 942 |5 1465 | 5 2270
6 135 |6 258 |6 474 | 6 837 | 6 1422 | 6 2340 | 6 3757
7 270 |7 526 | 7 996 | 7 1824 | 7 3228 | 7 5532

When looking at the table, we notice that for 4 <n < 7, r = 1 gives the tightest upper bound. Only for n > 8,
the value of r that gives the tightest upper bound becomes higher, although it only moves up one position to
r =2 and to r = 3 for n > 12. For small n these results make sense since the second term on the right hand
side of (3.1) is relatively contributing heavier to a higher (and therefore weaker) value for the upper bound.
Only when plugging in large values for n, is the value of 7 that gives the smallest upper bound getting close to
ra 2.

Ir21 Table 3.2, the values of are given that minimize the upper bound given in equation (3.1). We see that
as n increases, that the value of r slowly grows to r ~ 5. We have only computed this bound for n up to 1000

Table 3.2: The values of r such that equation (3.1) is minimized for the binary single-deletion case, for large n.

n || 250 | 500 | 1000
r 96 | 205 | 432

since this approaches the limit of a value that Matlab will return before returning the value Inf (This happens
roughly when n = 1024, since in Matlab, 21924 yields Inf).

3.2 A linear programming approach

3.2.1 Introduction

For a communication channel where for example we start with an element from one set A7 and end with an
element from another set A7~* by only removing s symbols, we talk of a deletion channel. Unfortunately, with
deletion channels, we often are unable to produce neat sphere-packing arguments to find bounds, like we can
do with substitution errors and Hamming codes. Instead, we must get our hands dirty and make use of linear
programs to produce bounds.

We will translate the problem of finding a largest s-deletion correcting codes to finding a matching number
and transversal number and these lie naturally in linear programming. The actual solution to these problems
are NP-hard [15]. So in order to compute bounds, we use relaxations for our linear programs: here, the feasible
regions can be computed in polynomial time. Even though the feasible regions can be computed in polynomial
time, deletion errors still act on an exponentially large input space. This exponential input space will become
clear later on.

3.2.2 Linear Programming Formulation

We will make use of hypergraphs (H = (V, E)) to formulate the problem of finding a largest s-deletion correcting
code. In Chapter 1 we have seen the mathematical definition of a hypergraph, but in other words this is just a
is a generalization of a graph in which an edge is an arbitrary subset of the vertices and thus called a hyperedge.
We will work with the following hypergraph, just like in [17]:

Hesn = (A ADs(2)]z € AP}). (3.2)
Here, the vertices correspond to strings in Ay ~° and the hyperedges correspond to all the substrings one can
create by deleting s symbols from a string in A7. As we have seen before, for a s-deletion correcting code,
we have that the deletion sets D,(x) must be pairwise disjoint for z € Aj. Thus a s-deletion correcting code
has disjoint hyperedges in 7-[,(237,” hence it corresponds to a matching in HP Clearly, the size of a largest
s-deletion correcting code, |C} , |, corresponds to a maximum matching v(H[,) in our hypergraph.

q,8,mn°

It is generally known that the dual of a matching V(H{;D,s,n) is a transversal 7'(7-[5 s.n), but for a quick proof
one can have a look at [17]. Because of this, the matching and transversal problems now satisfy weak duality,
which states that the value of the maximization problem cannot be greater than the value of the minimization
problem [1], i.e.,

V(Hgom) < T(H o n)- (3.3)

This formulation is great for finding upper bounds, since any solution to the transversal number acts as an
upper bound on the matching number and thus is an upper bound for |C; ;. |.

Now that we have established this relationship, we will for now focus on the finding the transversal number

7(7—[(?, s.n) - We can formulate the matching number as an integer linear program [25], hence we can also formulate
the transversal as an integer linear program [1| and get the following:
T(Hﬁs’n) = min Z w(z) (3.4)
€A™ ®
st Y w(z)>1 Yy € A2 (3.5)
€D (y)
w(z) € {0,1} Voe Ay~ (3.6)

The variables are w(x),r € A} ~°, where w(z) is a binary variable such that

w(z) =

1 if x is included in the transversal
0 otherwise.

10

Also, for a transversal number we are looking for the smallest subset B C A7~ that intersects every hyperedge
in {Ds(v)|r € A7 }. Hence we minimize the objective function. For a hyperedge e; € {Ds(x)|x € A7}, the sum
w(z) over all the vertices x that are covered by e; must be at least 1 which explains the constraint.

To see why a transversal number acts as an upper bound on the cardinality of a deletion correcting code,
we can take another look at the linear program formulated in (3.4)-(3.6). The transversal number seeks to
minimize the number of vertices that are needed to cover every hyperedge. In other words, it seeks to minimize
the number of z in A7~ such that every deletion set created by a string in Ay has has at least one of these
z in it. If this number is 7, then this means that there can be at most 7 disjoint deletion sets, i.e., at most 7
codewords a s-deletion correcting code.

But if one has any knowledge of linear programming, the thought will come to mind that there is a way
to find a better bound on I/(H(? <.n), namely, working with LP-relaxations. For an ILP, the feasible points are
also feasible points of the LP-relaxation. To see this, suppose that F' is the feasible region of the LP-relaxation.
Then the feasible region of the ILP is precisely Z™ N F. Because of this, the transversal number is no less than
the fractional transversal number, denoted as 7* (’H{f s.n)- We get the following inequality:

T (Hylom) S THY - (3.7)

and since 7* (7{587”) is an LP-relaxation, it satisfies strong duality and therefore is equal to the LP-relaxation

of the maximum matching [1]. Combining this knowledge with (3.3) and (3.7), we get
v(HP,) <v*(HP,,) =17 (HP,,) <7HP

q,5,m q,8,m q,5,1 %5»")'

(3.8)

Another benefit of the linear program relaxation is that it can be computed in polynomial time and there-
fore we can compute the fractional transversal number to attain an upper bound for |C; ;.| Even though
in this thesis we will use the fractional transversal number, in (3.8) we see that we also could have computed
a fractional matching number to obtain an upper bound on the cardinality of a largest s-deletion correcting code.

As was mentioned above, we will focus only on the fractional transversal problem to avoid dealing with a
NP-hard problem. The main reason for this is that a matching uses the insertion sets of a string = [17], i.e.,
all the strings that can be created by inserting s symbols in = and we have not defined this in our thesis. This
has one big benefit: transversals have ¢""~° variables in the objective function, whereas a matching will have
q" variables in the objective function and this allows for much compacter programs. We can write a fractional
transversal as follows.

T (HL,.,) = min Z w(zx) (3.9)
z€AG™®

st Y w(z) >1 Vy € A2 (3.10)
Q:EDS(y)

w(z) >0 Vo € A7 (3.11)

Notice that no minimizing w(z) will be greater than 1, so the fractional transversal problem is equivalent
to the integer transversal problem. The only difference is that the fractional transversal problem allows the
variable w(z) to take any value between 0 and 1, since we got rid of the constraint that w(x) must be either 0 or 1.

3.2.3 A Worked Out Example

In order to better understand how T*(Hﬁ s,n) 18 computed, we have worked out an example below. To avoid
any intricateness, we pick ¢ = 2, s = 1 and n = 3. So we will be working in A3, i.e. the binary codes of length
3 for the single-deletion case. Let’s first write down all possible strings.

A3 = {000, 101, A3t = {00, 01,
001, 110, 01, 11}.
010, 011,
100, 111},

11

The next step is to compute the deletion sets D1 (x), for x € A3.

1: Dy1(000) = {00},

2 : D;(001) = {00, 01},

3: D;(010) = {00, 01, 10},
4: Dy(100) = {00, 10},

5: Dy(101) = {01, 10, 11},
6: D;(110) = {10, 11},
7:D;(011) = {01, 11},

8: Dy(111) = {11}

Recall that for the hypergraph HE, 5 = (A3 {D;(x)|x € A3}), the vertices correspond to the strings in
Agfl and we conclude that there must be 4 vertices. The hyperedges correspond to strings in A3 so we see that
there are 8 hyperedges. A quick visualisation of H%, 5 yields:

Figure 3.1: A visualisation of the graph 7—[5? 1,3- The edges are numbered and match the corresponding deletion
sets above.

We can now write out the objective function and the constraints using the 8 deletion sets. We get:

minimize z =w(00) + w(01) + w(10) + w(11)
s.t. w(00)
w(00) + w(01)
(00) + w(01) 4+ w(10)
w(01) + w(10) 4+ w(11
w(10) + w(11
w(01) + w(l

w(
w(

w

—
—
N~— ~— ~—

VIV IV IV IV IV IV IV
S e S G

w(00), w(01), w(10),

Since this linear program is small enough, we can now use an ordinary LP-solver and fill in the constraints
manually. This will then return an objective function value:

—_
—_
~—

z=2, w(00) =1, w(01) =0, w(10) =0, w(ll) = 1.

We now know that a binary single-deletion correcting code with words of length n = 3 has a cardinality of at
most 2. This knowledge can then be used to construct such a codebook, perhaps with the knowledge of a known
lower bound (note that the optimal codebook for this case has indeed cardinality 2 [29]). O