
Combinatorial Optimisation Methods
For Wind Farm Installation Scheduling
Optimisation in crane actions and installation
ship routing

Tom van der Beek

D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no
lo
gy

Combinatorial Optimisation Methods For Wind Farm
Installation Scheduling

Optimisation in crane actions and installation ship routing
Master Thesis

Offshore and Dredging Engineering
Delft University of Technology
Graduation Date 15 June 2018

By

Tom Van Der Beek
4104145

Thesis Commission and supervision
Dr. ir. S.A. Miedema Delft University of Technology
Dr. ir. J.T. Van Essen Delft University of Technology

Thesis Commission
Dr. ir. J.F.J Pruijn Delft University of Technology

Supervision
Prof. dr. ir. Karen Aardal Delft University of Technology
Ir. Thijs Damsma Van Oord
Dr. ir. Fedor Baart Deltares

An electronic version of this thesis is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Acknowledgements
This thesis was a collaboration of two departments at TU Delft, namely Offshore And Dredg-
ing Engineering and the Optimization group of Applied mathematics. For me, my thesis
period started almost a year before my real thesis, when i decided to explore different fields
of interest. In this period i had numerous talks with different people at TU Delft about my
wish to do a combined thesis. I am thankful for everyone who made time, and every talk
helped me in making a better decision.

Furthermore, I would like to thank Dion Gijswijt and Ton van den Boom for sharing their
views on my thesis. I would also like to thank Martina Fischetti, who I never met but was
happy to generate an optimised wind farm layout for me. I also hadmultiple support meetings
with Jeroen Pruijn, which were very valuable and I highly appreciated his effort and time.

I am happy i could do my thesis at Van Oord, and would like to thank Thijs Damsma from
van Oord and Fedor Baart from Deltares for providing supervision. Before my thesis started,
i already spoke a few times with Sape Miedema about my wishes. I would like to thank him,
not only for supervision during my thesis, but also for understanding that doing something
you enjoy is important.

Furthermore, i would especially like to thank my main supervisor from the Optimization
department Theresia van Essen. When i decided that i wanted to learn more about optimi-
sation, Theresia first help me with additional study in this field, then helped me to find an
assignment and during that assignment provided me with great supervision. Without this,
none of what i did in the last year would be possible.

When Theresia had to leave due to pregnancy, Karen Aardal substituted for her. Due to
her, this absence had no impact on my thesis and I am thankful for all meetings and help.

Finally, i would like to thankmy girlfriend Anastasiia. You were very supportive, especially
during the final days when i was basically living behind my computer.

I was pleasantly surprised to see how many people, of most who i had never met before,
made time and put in effort to help me. I conclude my thesis knowing that i found something
which i truly enjoy doing, and in which i can develop my career. I think this is something
very valuable, and once again i want to thank everyone who helped me with this.

iii

Abstract
The offshore wind industry is rapidly growing, and so is the competition in this market.
Normally, offshore installation companies receive a subsidy for building offshore wind farms,
but due to multiple companies bidding to install for lower and lower subsidies, the point
where wind farms are installed without subsidy has been reached. Therefore, companies
have to install wind farms as efficient as possible. Since logistics are a major contributor
to costs during the installation of an offshore wind farm, Van Oord and Deltares are doing
research methods to solve logistic and scheduling problems. In this thesis, research is done
in algorithms to solve two typical planning problems which arise during the installation of
offshore wind farms: The Component Relocation Problem (CRP) and the Ship Installation
Routing Problem (SIRP).

In the CRP, the storage andmovement of turbine components in the harbour is considered.
The crane operator manages the storage yard to fulfil a schedule of arriving and departing
components. Since access of a storage location by crane can be hindered due to surrounding
components, placement and relocation of components such that the requested component is
accessible at the requested time, is a challenge. This challenge is solved in the component
relocation problem, while minimizing the amount of relocations carried out by the crane.

A Mixed Integer Linear Programming (MILP) model is developed for this problem, along
with an improved formulation to increase the solver performance and solve small instances to
optimality. For practical use during offshore installation projects, a rolling horizon heuristic
algorithm is developed.

In the SIRP, an installation schedule with corresponding ship routes is created. To install
a turbine, multiple components have to be transported to the required locations, where they
will be installed by multiple ships. While creating an installation schedule, it is desired to
both minim the travelling time for ships, as the time ships are waiting on other ships and
objects. An MILP for this scheduling problem is given, which models this problem as a Vehicle
Routing Problem, with extensions to account for installation by multiple vehicles and time
synchronization. Furthermore, to solve larger problems, an Adaptive Iterative Simulated
Annealing (AISA) algorithm is developed.

The heuristic methods were validated against the exact methods and for small instances
the heuristic methods were able to replicate the optimal solutions. The heuristic algorithms
provided decisions in less than 12 hours, a relatively short time in comparison to installation
times for offshore wind turbines. The AISA was able to create a schedule which drastically
decreased the synchronization conflicts in a real world installation project. Although the sail-
ing distance increased in comparison with the original planning, it was improved compared
to the executed route. Furthermore, for the same project, the crane routing optimisation led
to a reduction of 55% based on non-essential crane actions.

v

Contents

Abstract v

1 Introduction 1

2 Logistics during wind farm installation 3
2.1 Offshore wind farm installation. 3
2.2 Walney Project description . 4

2.2.1 Material . 5
2.2.2 Turbine foundation Installation . 5

2.3 Onshore Component Relocation. 6
2.3.1 Field . 6
2.3.2 Relocation constraints . 6
2.3.3 Phases . 7

2.4 Offshore optimisation challenges . 8
2.4.1 Installation methods . 8
2.4.2 Ship routing . 8
2.4.3 Buoyancy Plugs . 8
2.4.4 Component availability . 9

2.5 Problem definition . 9

3 Analysis of Walney project 11
3.1 Planning. 11
3.2 Installation choices . 11
3.3 Intrafield sailing . 11
3.4 Waiting time. 12
3.5 Crane actions . 13
3.6 Discussion . 13
3.7 Conclusion . 13

4 Combinatorial optimisation 15
4.1 Introduction . 15
4.2 Formulation . 15

4.2.1 Linear Programming . 15
4.2.2 Duality. 16
4.2.3 Mixed Integer Linear Programming . 16

4.3 Problems . 18
4.3.1 Travelling Salesman Problem . 18
4.3.2 Vehicle Routing Problem . 19
4.3.3 Flow Shop Problem . 19

4.4 Problem Complexity . 20
4.5 Finding Solutions . 21

4.5.1 Exact . 21
4.5.2 Heuristics . 26

4.6 Conclusion . 31

5 Literature review 33
5.1 Introduction . 33
5.2 Offshore scheduling . 33
5.3 Vehicle routing Problem . 34

5.3.1 Solution Methods . 34
5.3.2 Generalizations . 38

vii

viii Contents

5.3.3 Heterogeneous Vehicles . 38
5.3.4 Synchronization. 39
5.3.5 Multitrip . 41
5.3.6 Multiple Installation options . 43

5.4 Component Relocation . 43
5.4.1 Container relocation . 43
5.4.2 Train shunting problems . 44
5.4.3 Factory item relocation . 45

5.5 Conclusion . 45

6 Component Relocation Model 47
6.1 One Dimensional loading . 48
6.2 Two dimensional relocation constraints . 51
6.3 Batches . 55
6.4 Discussion . 57
6.5 Conclusion . 57

7 Crane optimisation exact 59
7.1 Variables . 59
7.2 Cutting Planes . 60

8 Rolling Horizon Algorithm 63
8.1 Algorithm . 63
8.2 Choice heuristics . 64
8.3 Subproblem MILP . 64

8.3.1 Partial unloading . 65
8.3.2 Layout quality . 66

8.4 Warm start . 70
8.4.1 Warm start algorithm . 70
8.4.2 Direct unloading algorithm . 71

8.5 Discussion . 74
8.6 Conclusion . 75

9 Ship Installation Routing Model 77
9.1 Installation routing . 77
9.2 Installation methods and precedence relations . 80
9.3 Synchronization of plugs and component availability . 82
9.4 Discussion . 83
9.5 Conclusion . 84

10 Optimization method for ship routing model 85
10.1 Total time cutting planes . 85
10.2 Trip Symmetry . 85
10.3 Field trips . 86
10.4 Waiting variables . 86
10.5 Flow cuts . 87
10.6 Branch and Cut . 88
10.7 Discussion . 91

11 Adaptive Iterative Simulated Annealing algorithm 93
11.1 Algorithm . 93
11.2 Choice of algorithm. 94
11.3 GRASP Algorithm . 96
11.4 Moves . 97
11.5 Move selection . 99
11.6 Simulated annealing temperature .100
11.7 Cost evaluation .100
11.8 Discussion .101
11.9 Conclusion .101

Contents ix

12 Results 103
12.1 Computational Results Component Relocation Problem103

12.1.1 Problem configurations. .104
12.1.2 Cut Performance .104
12.1.3 Heuristic performance .106

12.2 Operational results crane optimisation .106
12.3 Computational results Ship Installation Routing Problem107

12.3.1 Problem configurations. .107
12.3.2 Exact performance .107
12.3.3 Heuristic performance .111

12.4 Operation results Routing optimisation .111
12.5 Discussion .112
12.6 Conclusion .112

13 Recommendations, Discussion and Conclusion 115
13.1 Recommendations .115
13.2 Discussion .117
13.3 Conclusion .117

Nomenclature 119

Bibliography 123

Appendices 131

A Analysis Walney project 133
A.1 Routes .133

A.1.1 Aeolus travel durations .137
A.1.2 Svanen travel durations .137

A.2 Waiting .138
A.3 Costs .139

B Offshore scheduling by Flowshop approach 141

C Relocation constraints Monopiles 143

D Test results 145
D.1 Crane tests .145

D.1.1 Exact crane optimisation tests .145
D.1.2 Heuristic CRP test results .149
D.1.3 Component relocation result Walney .151

D.2 Routing tests .156
D.2.1 Fields .157
D.2.2 Routing exact tests without cutting planes .158
D.2.3 Routing exact tests with cutting planes .159
D.2.4 Routing exact tests with standard .164
D.2.5 Routing Branch Cut .167
D.2.6 Routing Heuristic .170
D.2.7 Optimised Schedule with arrival .174
D.2.8 Optimised Schedule without arrival .179

1
Introduction

One of the mayor current world challenges is to find a clean and sustainable form of energy. It
is well known that generating power by burning fossil fuel impacts the environment negatively
and depletes a finite resource. To meet the growing global energy demand, clean solutions
are needed. IEA [2017] predicts that two-thirds of global investments in power plants to 2040
consists of investments in renewable energy. This percentage is even higher in the European
Union: 80% of the new power-capacity will be green, with wind energy becoming the leading
source of electricity after 2030.

By placing wind turbines at sea, offshore wind energy makes use of the generally more
powerful wind at sea. Mostly located in Europe, offshore wind farms are a rapidly rising
source of renewable energy. Currently, the existing wind farms still rely on subsidy to be
profitable. These farms were awarded to companies which demanded a subsidy from the
government in their bids. However, due to the competitive market, these subsidies declined
and in 2017 the first project without subsidy was tendered.

This shows the growth of the industry, but is also highlights its competitiveness. It is
crucial for offshore installation companies to match these zero-subsidy bids and thus install
wind-farms as cost-efficient as possible. This thesis was done in cooperation with Van Oord
and Deltares, who both have been exploring data and algorithmic based decision making.
Van Oord is a global maritime contractor with its roots in dredging, although they expanded
to offshore wind, oil and gas. Deltares is an institute for applied research in the field of water
and subsurface, focusing on smart solutions and innovations.

Ait-Alla et al. [2013] stated that logistics account for 15% of the total costs during the
installation of an offshore wind farm. This means that the optimisation of logistical processes
plays a vital role in competing in the offshore wind farm installation market. However, this
optimisation is currently done manually. This is a time-consuming process which might
result in suboptimal schedules. Furthermore, work has to be redone when circumstances
change, with usually very little time available.

In this thesis, optimisation methods are explored for scheduling problems in offshore
wind farm installation. The problems encountered during scheduling will be analysed and
abstracted. Subsequently, algorithmic methods will be developed to solve these problems.
This includes modelling a problem, developing a scheduling method, validating this method
and then applying it on the original problem. In order to do this, the field of mathematical
optimisation is explored for similar problems and corresponding solution approaches.

These solution approaches usually consist of either, or both, a heuristic approach and an
exact approach. All scheduling methods fall in either one of these two categories, and it is
important to understand the difference between both. An exact optimisation method finds
an optimal solution to a given model. When this solution is found, a certificate of optimality
is included with it, meaning that one has the guarantee that for a given model no better
solution exists. Unfortunately, for multiple problems, the time needed to find this solution

1

2 1. Introduction

grows exponentially with the size of the problem. This is partly due to the enormous amount
of potential solutions.

An example can be given for sailing between wind turbines. If a single ship has to visit all
turbines in a field with 87 wind turbines, this results in 87! ≈ 2.1 ⋅ 10ኻኽኼ possible routes. To
put this number in perspective, the approximate age of the universe is 4.35 ⋅ 10ኻ዁ seconds.

For this reason, optimisation methods have been created which use more efficient ways
than simply evaluating all possible solutions. These methods decrease the time needed sig-
nificantly, but unfortunately there are still many problems for which even these methods take
too long. If this is the case, heuristic methods are used. These methods do not always find
an optimal solution, and even if they do, there is no way of knowing if it is optimal. However,
they find solutions within reasonable time and therefore have a practical use.

These optimisation methods are explored for two problems. First, for the component
relocation problem (CRP). During an installation project, a harbour near the installation site
is used for storage. Different material is stored here, and in the CRP the storage of turbine
components is evaluated. These turbine components are parts of the turbines and will be
installed later.

When these components arrive in the harbour, they are stored until requested by the
installation ships. To efficiently use the limited storage space, the crane operator has to
manage the storage area to make sure the correct components can be retrieved when needed
for installation. This managing includes relocating the components, and since these are
usually over 25m high, this is no trivial task. Considerable costs are associated with each
relocation, both due to working hours and risk. The CRP tries to find a solution for managing
the storage area by crane, while minimizing the amount of moves.

Furthermore, the Ship Installation Routing Problem (SIRP) is introduced. This problem
considers an offshore wind turbine installation project with a given amount of ships and
turbine components. These components have to be transported to the installation site, where
they are installed with the use of multiple ships and/or other objects. The ship installation
routing problem consists of defining the ship routes in the installation field, together with
the order and method of installation.

Ship rental is very expensive, which is why it is important to make good scheduling deci-
sions to minimise the rental times needed. Furthermore, it is expected [Lütjen and Karimi,
2012] that installation ships will become the bottleneck during installation projects. This
means that extra time needed for these ships also delay other activities.

In this thesis, algorithms are developed with the goal of minimizing the costs due to both
of these problems. For each problem, a heuristic method is given for practical use, and this
heuristic method is validated by comparing it against an exact method. The structure of
this thesis is as following: First, the problem will be described in Chapter 2. This includes a
description of an offshore installation project and a more detailed evaluation of the challenges
encountered.

After this, a real-world project is analysed in Chapter 3. This is done to explore the
significance of the discussed problems.

Since this thesis is aimed at both the field of mathematics and offshore engineering, an
introduction to combinatorial optimisation is given in Chapter 4. Combinatorial optimisation
consists out of finding an optimal object from a finite set of objects. Both the crane as routing
problems can be categorised under this. Chapter 4 is aimed at readers with no or limited
knowledge in the field of combinatorial optimisation. After this, the literature review is given
in Chapter 5. Here it is explored what is done both in offshore scheduling optimisation and
in other fields of interest.

Next, the model for the component relocation problem is given in Chapter 6, along with
an exact optimisation method in Chapter 7 and a heuristic in Chapter 8.

The same structure is used for the ship installation routing problem. The model is given
in Chapter 9, the exact optimisation method in Chapter 10 and the heuristic in Chapter 11.

Finally, the methods are tested on both virtual test instances as real-world data. This is
done in Chapter 12. Finally, this thesis is concluded with a discussion, recommendations
and a conclusion.

2
Logistics during wind farm installation

2.1. Offshore wind farm installation
The installation of an offshore wind farm is a challenging operation. First, a design is made.
This design includes, amongst others, the locations and specifications of each wind turbine.
A wind turbine exists of multiple components. A ground-based turbine exists of a foundation,
a transition piece and the turbine itself. The foundation is placed on the seabed, and rises to
near the surface. Examples of different types of foundations are monopiles, jackets or tripods
as shown in Figure 2.1.

Figure 2.1: Wind turbine foundations

A transition piece is placed on top of this
foundation. Transition pieces provide op-
erational functionalities such as boat land-
ings, ladders and platforms for access to
the turbine. It also provides the connec-
tion between foundation and turbine. The
turbine is installed on top of the transition
piece which results in a complete turbine as
shown in Figure 2.3.

The design of the wind farm includes,
amongst others, the locations of the turbines
and the components used at each location.
Due to environmental differences like wa-
ter depth or soil properties, each component
is unique. When all design specifications
are decided upon, a production schedule is
made in cooperation with the manufactur-
ers. These manufacturers are usually lo-
cated in different countries. Therefore, the
components are shipped from the manufac-
turers to a harbour near the installation field.

Upon arrival, a crane is used to unload the components from the transportation ship to the
loadout positions. Since there is limited unloading space, components have to be relocated
from the loadout side, further into the storage yard. This is shown in Figure 2.2. When
the components are requested for installation, they are relocated from the loadout side to
the transportation ship and subsequently transported to the installation site for installation.
As storage space is usually limited, the installation of turbines starts as soon as the first
components arrive. The flow of components is shown in Figure 2.4.

Transportation to the installation site can be done either by an installation ship or by a
separate transportation ship, depending on the project. Upon arrival, the components are
installed. It is possible to first install a foundation and later return to install the transition

3

4 2. Logistics during wind farm installation

Figure 2.2: Flow of components from factories to
the installation site

Figure 2.3: Wind turbine with foundation

piece, but it also happens that the same ship installs both directly after each other. The
exact order of installation combined with the ship tasks for installation and transportation
are defined in the ship routing schedule.

This describes the general logistics during the installation of an offshore wind farm. To
analyse the real challenges, a more detailed description is needed. For this reason, a real wind
farm installation project will be described in the next section. This allows for more insight in
the challenges during the planning of logistics of an offshore wind farm installation project.

Figure 2.4: Flow of components from factories to the installation site

2.2. Walney Project description

Figure 2.5: Svanen

The Walney offshore wind farm is located 14 km west
of Walney Island in the Irish sea and consisted ini-
tially out of 102 turbines. In 2017, construction be-
gan on the Walney extension, where an additional 87
turbines were installed. Van Oord was responsible
for installing the turbine foundations and transition
pieces during this extension.

In the Walney project, the foundations consisted
of monopiles. A monopile (MP) is a relatively simple
design consisting of a cylindrical steel tube. This tube
is hammered partly into the seabed. On top of these
monopiles, the transition pieces are installed to form
the connection between the monopile and the wind
turbine. The goal of the Walney project for Van Oord
is thus to install all MPs and TPs, which can be seen in Section 2.2, at the specified locations.

2.2. Walney Project description 5

Figure 2.6: Monopiles (left) and Transition Pieces (right)

2.2.1. Material

Figure 2.7: Aeolus

Two large installation ships are used during the Wal-
ney Project: The Svanen and the Aeolus, as shown
respectively in Figure 2.5 and Figure 2.7. The Aeo-
lus is a multi-purpose ship, which can both install
and transport transition pieces and monopiles. It is
even capable of doing this in one trip, meaning that it
can install a complete turbine foundation without the
need of other ships. The other installation ship, the
Svanen, is less versatile. It can be described as a float-
ing crane, being capable of only installation tasks.

In addition to these installation ships, tugboats
can also be used to transport monopiles. For this to
be possible, the monopiles have to be buoyant. This is done by using buoyancy plugs. Buoy-
ancy plugs, in the rest of this thesis referred to as simply plugs, are large sealing disks,
placed on both ends of the monopile, trapping the air inside. This causes the monopiles to
stay afloat while being transported by tugboats.

2.2.2. Turbine foundation Installation
By using the Svanen and the Aeolus, two installation methods were available during the
Walney Project. First there is the Aeolus-only method. In this method the Aeolus transports
and installs a complete foundation independently. Secondly, there is the combined method,
where the Svanen, Aeolus and a set of tugboats are needed for transportation and installation
of a turbine.

When installing according to the Aeolus-only method, two monopiles and two transition
pieces are picked up by the Aeolus in the harbour. These are subsequently transported to the
field, where both will be installed by using the jack-up capabilities of the Aeolus. During jack

6 2. Logistics during wind farm installation

up, the vessel lowers four legs to the seabed to elevate itself, in order to increase stability.
Although this allows the Aeolus to install complete foundations, it can only be used as long
as the water depth is less than the length of the legs. For this reason, the Aeolus-only method
is not possible for all turbine locations.

The other method uses tugboats to transport the monopiles to the installation field. Here,
the tugboat will meet the Svanen at the turbine installation location. The monopile is trans-
ferred there to the Svanen and the buoyancy plugs are removed. After this, the tugboat is
not needed anymore and can return to the harbour. The Svanen installs the monopile. Since
the Svanen is an installation-only vessel, it does not leave the installation field and moves
only between installation locations. The buoyancy plugs will be picked up by tugboats.

The second part of the combined method exists of the Aeolus transporting up to 5 tran-
sition pieces per trip, sailing to the field, and installing these on top of the earlier installed
monopiles. This can be done without jack-up, thus the combined method can be used in
all water depths. Installing without jack-up by the Aeolus is called floating installation. To
switch between jack-up and floating installation, some modifications have to be done on the
Aeolus. This takes around 10 days. It is important to finish installing all Aeolus-only turbines
before starting with the Aeolus part of the combined method to avoid multiple modification
periods.

2.3. Onshore Component Relocation
The Walney project is a good example of a complicated scheduling project. This term is used
because it involves multiple interconnected logistical and scheduling problems. To create an
optimal schedule, first the different challenges have to be evaluated. The onshore optimi-
sation challenges are described in this section. These are related to the following question:
How should the crane relocate components, in order to handle loading and unloading in the
harbour efficiently?

After arriving at the harbour near the installation field, components will be stored, relo-
cated and loaded onto the installation vessels by a crane. The movement of this crane can
be limited by the stored components. Due to the large sizes involved, a relocation takes a
considerable amount of working hours and includes the risk of damaging one or more com-
ponents. If this would happen, the result would not only be costs of damaging the material,
but also possible delay in the installation. It is therefore desired to manage the components
with as few relocations as possible. In this thesis, the relocation of the transition pieces is
considered. These are stored vertically on a grid of concrete foundation places.

2.3.1. Field
As stated before, the relocation of transition pieces is considered in this thesis. However,
the goal is to find a solution method which is applicable to other objects as well. Therefore,
the characteristics of a storage and relocation problem will be given and instead of transition
pieces, components in general are discussed.

A typical storage area is shown in Figure 2.8. The locations can be divided into two
categories, the loadout locations and the storage-only locations. Both parts consist of a grid
where the components can be stored. Physically, the loadout area is located directly next to
the water. Ships arrive here for loading and unloading, and the crane will then transfer TPs
between the vessel and the loadout area.

From this loadout area, components can be relocated to the storage-only area. Here is
more space available, but it is not possible to transfer directly between the storage field and
the vessel. Moving a component to the storage-only field is optional: As long as there is
enough space available, it is allowed for objects to stay in the loadout field.

2.3.2. Relocation constraints
The relocation constraints define whether relocation from or to a certain location is possible,
depending on the layout of the storage area. These constraints are imposed due to physical

2.3. Onshore Component Relocation 7

Storage-only

Crane

Loadout

Figure 2.8: Storage field for TPs with the loadout area in orange and the storage-only area in green

properties of the storage field, crane and components. The CRP would be trivial without these
constraints.

Because these constraints are results of physical properties, they are different per com-
ponent. In this thesis, the relocation constraints are handled for transition pieces. These are
relocated by a crane, which only can move over the crane track, as shown in Figure 2.8. A
position is called blocked if a relocation from or to here not possible. There are two require-
ments for a position to be not blocked. First, there must be no component between the crane
track and the position. In Figure 2.9, it can be seen that positions (2,3) and (2,6) are blocked
due to this.

1 2 3 4 5 6

2

1

Figure 2.9: Relocation constraints

Besides this, there also should be an empty
space left or right of the location. It can be seen
that positions (2,2) and (2,4) are blocked because
of this reason. If the location is not at the row
directly next to the crane track, the position in
front of the empty side neighbours must also be
free. Position (2,5) has an empty side neighbour
(2,6), but this side neighbour does not have an
empty space between itself and the crane due to
the TP at (1,6). For this reason, the TP at (2,5) is
blocked.

These relocations constraints have been visu-
alised in Figure 2.9 by the red crane. Although
this does not even remotely resemble the real
crane, this illustration can be used to quickly un-

derstand the relocation constraints. When the red part, or the horizontally mirrored version
of this, is able to extract from the crane track to wrap around the desired location, that lo-
cation can be seen as unblocked. These same constraints hold for the loadout area. The
position of the loadout area relative to the crane track can be seen in Figure 2.8.

2.3.3. Phases
The crane operations can be divided in three phases: Unloading, pre-marshalling and load-
ing. When components are delivered, the first phase is naturally unloading the components
from the delivery ship to the loadout area. Due to the relocation constraints, it is important
to place the TPs at this phase, based on where they will be stored later.

Between the loading and unloading phase, there is the pre-marshalling phase. The goal
of this phase is to relocate the TPs such that during the loading and unloading phases, they
can be transferred directly between loadout and ship. A pre-marshalling phase before an
unloading phase will therefore include freeing enough space in the loadout area. A pre-

8 2. Logistics during wind farm installation

marshalling phase before a loading phase will place the correct TPs in the loadout area.
Besides these relocations, the pre-marshalling phase might also contain general storage

management. It might very well be possible that before placing some TPs from or to the
loadout area, other relocations can be done to minimise crane activities later in the project.
This type of moves is also allowed in the pre-marshalling phase.

Finally, the loading phase consists of transferring the components from the loadout area
onto the ship, after which they are transported to the installation field. This is a simple
phase, because the order of loading for one shipload does not matter and the required TPs
are already places on the loadout area during the pre-marshalling phase.

2.4. Offshore optimisation challenges
After storage in the harbour, the components are transported to the installation field, where
they are installed. This creates different scheduling challenges as well, and in this section
these challenges will be presented.

2.4.1. Installation methods
First, there is the choice of an installation method per turbine. As discussed above, some
turbines can be installed only by the combined method and some can be installed by both
methods. This is a hard constraint while deciding the installation method per turbine. How-
ever, this is not the only thing to consider. For the turbines which are compatible with both
methods, a choice still needs to be made. The amount of turbines installed per method in-
fluences the duration of ship rental periods and deciding the specific method per turbine will
affect ship availability and routing.

2.4.2. Ship routing
The methods and order in which the turbines will be installed have a direct effect on the
sailing distance. The travelling time can be divided into two groups: Intrafield and outer-
field travelling. The former refers to travelling between turbines in the installation field, and
the latter refers to travelling between the installation field and the harbour. For the Aeolus,
travelling between harbour and field is by far the largest contributor to sailing time. Un-
fortunately, there is not much optimisation possible by scheduling in this aspect. The only
choice which impacts this is the amount of turbines installed by each method, since for the
Aeolus-only method more trips are needed due to the lower transportation capacity.

However, even though sailing from and to the harbour takes up the most time for the
Aeolus, intrafield traveling is not negligible. Savings in intrafield traveling will still be directly
translated to savings in ship rental time. The opposite holds of course for an increase in
intrafield travelling time. It is therefore important to consider sailing time while solving the
other scheduling problems.

The opposite holds for the Svanen. Since it stays continuously in the installation field,
intrafield travelling is the largest contributor to sailing distance for the Svanen. Exceptions
are when the ship is relocating at the begin and end of the project, and when it should be
relocated during bad weather.

Another aspect to consider is that for the combined installation method both the Svanen
and the Aeolus are needed to install the turbine foundation. Of course the monopile has to be
installed before the transition piece, so an important consideration during ship scheduling
is making sure that the Aeolus only installs the TP after the Svanen installs the MP.

2.4.3. Buoyancy Plugs
Buoyancy plugs are used for transportation of the monopiles. These are fitted on both ends
of the MP, thus sealing air inside. Since the monopiles can vary in size, a single plug can only
fit on a subset of all monopiles. For each monopile, it is defined which plugs fit at the bottom
and which plugs fit at the top. During the preparation of monopiles, installing the plug takes
about 7 hours. After this, the plugs and MP will be inspected and tested for leakages, which
takes another three hours. When reusing the plug, this results in a time gap of at least ten
hours between arrival and departure.

2.5. Problem definition 9

These two conditions create another scheduling problem. If the installation of monopiles
are scheduled in the wrong order, it might result in all plugs of a certain size being in the
field or in preparation. If at this moment another plug is required of the same size, the
transportation of a certain monopile to the installation field has to be delayed until the plug
becomes available. Because of this, it is important to schedule the installation order such
that waiting on plugs does not occur. This often influences sailing time.

2.4.4. Component availability
Turbine components are very large. Monopiles in the Walney project can have diameters up
to 8m and lengths of 80m. Transition pieces have a height of 35m and weight up to 400000 kg.
These components are usually fabricated across multiple countries. For the Walney project,
the components were fabricated in Germany and Denmark.

From here, they are transported to the installation harbour where they are stored until
they are requested for installation. The cost of this storage area depends both on storage size
as duration. For this reason, it is cost-effective to start installing when the first components
arrive, since this minimises both the required rental duration of the storage area and the
maximum amount of components stored simultaneously. This means that while the project
is carried out, components will arrive in batches at certain time intervals.

This restricts the freedom in the installation order. Before starting the project, it is possible
to discuss with the manufacturer the installation order. Subsequently, a schedule will be
made for the arrival of components. If changes are to be made to the schedule after this, it
has to be according to the delivery order.

Although there is a fixed production schedule for the components, it is quite possible that
a deviation occurs from this. Components might take longer to fabricate, or they might not
pass the inspection and will have to be repaired. When this happens, a different component
is shipped to allow the installation project to continue and to utilise all space available in the
transportation ship.

Component availability thus has a large effect on the scheduling decisions. Firstly, it cre-
ates an obligation to broadly commit to the original schedule, since this schedule defines the
schedule of the manufacturer. Secondly, it is possible that during the execution of the project
deviations occur in the manufacturers schedule, which force deviations in the installation
schedule.

2.5. Problem definition
In the current chapter, two scheduling problems were presented, the SIRP and the CRP. While
finding a schedule for the SIRP, the main points to consider are time synchronization between
ships and/or objects, intrafield travelling of ships and the choice of installation methods. For
the CRP, the goal is to find a schedule for crane actions taking in to account the blocking
constraints due to physical properties of the crane, storage area and components.

The scope of this thesis is defined as the decisions between arrival of the wind turbine
components in the harbour up to the installation. The components arrive following a fixed
schedule. After this, the following steps are decided by the optimisation: The movement of
the component in the storage field, the way and time of transportation to the installation
field, and the method of installation.

Before creating the solution methods, a model has to be created to define the problems
exactly. The solution method for these problems has the goal of finding an optimal solution
for the given model within the time available during the planning phase and within available
time during the execution of the project. It will be shown later that no method has been
found which does both, and therefore two algorithms are required per problem: One which
will find the optimal solution for the given model, and one which gives a good solution within
the available time.

The storage field consists of a grid based structure of locations where components can
be stored. Relocations between these locations are done accordingly to the required in- and
outflow of components and the spatial relocation constraints. These constraints define when

10 2. Logistics during wind farm installation

components can be moved, based on neighbouring components of both the source as the
target location of a relocation move. The amount of crane movements is minimised in order
to reduce costs.

From the storage area, the components are transported to the installation location. For
each ship, it is defined if it can transport a certain component, and if so, how many per trip.
It might also be possible that objects like buoyancy plugs are required during transportation.
Therefore, decisions have to be made when to transport a certain component and in which
way.

Upon arrival of components at the installation location, they have to be installed by a
set of ships. One or more installation methods are defined for each turbine. Installation
methods consist of a set of instructions which have to be carried out in order. Per instruction,
it is defined which component is needed and which ship. When and by which ship these
instructions are carried out is decided by the scheduling method.

To summarise, the scheduling method will define an order of crane movements and an
order of ship tasks which include loading, travelling and installing. These schedules are then
varied to minimise the cost of the project. Costs taken into consideration are ship rental costs
and estimated costs per crane action. Based on this, the following research questions now
can be defined:

1. Ship Installation Routing Problem

(i) Given a fixed set of ships, components, available actions and installation require-
ments, how can the global minimum project costs based on ship and harbour rental
costs be reached by determining the ship routes and actions?

(ii) What algorithm can be used to find a, possibly non-optimal, solution for this prob-
lem within the time available during both pre-project planning and during project
execution?

2. Component Movement Problem

(i) Given an arrival and departure schedule of components, the geometry of the storage
location and the rules regarding allowed relocations based on neighbouring com-
ponents, how can the crane movement schedule be found that results in a global
minimum of crane movements?

(ii) What algorithm can be used to find a, possibly non-optimal, solution for this prob-
lem within the time available during both pre-project planning and during project
execution?

In the next chapter, an analysis of the Walney project is given. Although the goal of
this thesis is to find a method applicable to multiple projects, analysing a single one can
give insights in the significance of certain choices, and to find out where there is room for
improvement.

3
Analysis of Walney project

3.1. Planning
To analyse optimisation opportunities, the existing schedule of theWalney Installation project
was evaluated. Two separate schedules were considered. First, the installation routing
schedule consists of the routes and installation tasks for each ship. This thus defines when
each component is transported to the installation field and by which method it is installed.
Secondly, the crane schedule contains all required crane movements to manage the storage
area.

The crane movement planning contains almost enough information to know exactly which
component is placed where. Only in a very few cases, where the choice will not affect the
outcome, some relocations were not documented. However, the installation routing schedule
has more gaps. First of all, it is assumed that synchronization time, where ships have to wait
on components or vice versa, does not occur. Furthermore, all intrafield travelling time is set
to a constant time to relocate the ships between any two turbines. It is important to know
what the effect is of these assumptions. Therefore, the routing schedule will be compared to
the executed installation.

3.2. Installation choices
It was mentioned earlier that the choice of turbines per installation method is the most defin-
ing factor for the rental periods per ship. In Table 3.1, it can be seen that in both the sched-
uled as the executed planning, the majority of turbines are installed by the combined instal-
lation method.

Scheduled Executed

Combined 53 56
Aeolus-only 34 31

Table 3.1: Turbines installed per installation method

The number of choices per installation method
in the executed planning are quite similar to the
scheduled planning. In the end, only three tur-
bine installation methods deviate from the origi-
nal planning, all of which were scheduled by the
Aeolus-only method and are switched to the com-
bined installation method.

3.3. Intrafield sailing
While analysing the intrafield routes, two things are inspected. Firstly, the sailing distances
and times are evaluated. This is interesting since it gives an indication of the significance
of intrafield routing. Secondly, it is investigated how much the executed routing deviates
from the original one. This is done to understand the required flexibility in planning and to
evaluate the original planning’s robustness.

The sailing distances and times are shown in Table 3.2. The total scheduled sailing time
is calculated based on the average sailing speed in the execution. Two things stand out

11

12 3. Analysis of Walney project

Average (km) Total (km) Time total (Hours)

Scheduled 1.8 246 87
Executed 2.8 323 120
Increase 56 % 32 % 38 %

Table 3.2: Intrafield sailing

when looking at Table 3.2: Firstly, the time and distance of intrafield sailing has increased
significantly during the execution. Secondly, both ships combined spend in total 5 days on
intrafield traveling. In Appendix A.3, it is estimated that the cost of these 5 days is around
€530.000.

To get an estimate of the similarity in routes between planning and execution, the follow-
ing simple metric has been created: For each ship visit to a turbine 𝑖 in the planning, the
neighbours are defined as the turbines which have been visited on the same trip, directly
before or after turbine 𝑖. The score for this visit to turbine 𝑖 is then the fraction of similar
neighbours in the execution. The total similarity is then defined as the average over all visits.
This can be expressed as shown in equation (3.1). For identical schedules, it would hold that
𝑠፤ = 1.

Variable Description

𝑠፤ Similarity metric for ship 𝑘
𝑇፤ All turbines visited by ship 𝑘
𝑁፤።፬ Neighbours of visit to turbine 𝑖 by ship 𝑘 in planning
𝑁፤።፞ Neighbours of visit to turbine 𝑖 by ship 𝑘 in execution

Table 3.3: Variables for Equation (3.1)

𝑠፤ =
1
|𝑇፤|

∑
።∈ፓ፤

|𝑁፤።፬ ∩ 𝑁፤።፞|
|𝑁፤።፬|

(3.1)

This similarity metric is calculated for both ships and has a value of 0.66 and 0.37 for the
Svanen and the Aeolus, respectively. This shows that there is a large difference between the
planned and executed routing. This difference is the largest for the Aeolus. It can therefore
be concluded that the real routes sailed deviate a lot from the routes in the original planning,
and unfortunately, this deviation causes a very significant increase in sailing distance.

3.4. Waiting time
In the original planning, the assumption was made that as soon as the Svanen reaches its
location, the monopile is already waiting there and can be installed directly. This assumption
turns out to be invalid when looking at the executed project. In total, the Svanen has spent
96 hours, thus 4 days, waiting on location for the monopile to arrive. A quick calculation,
included in Appendix A.3, estimates the cost of waiting at €301.000. It is also observed that
waiting on monopiles happens quite regularly over the duration of the project. There is no
clear recognizable downwards trend.

As explained earlier, monopiles can only be transported when plugs of the correct sizes are
available in the harbour. Due to the limited amount of plugs it can occur that the requested
plugs are not yet available and the transportation of the monopile is delayed. As shown, this
has created a significant amount of delay during the execution of the Walney project.

3.5. Crane actions 13

3.5. Crane actions
The planned schedule for crane movements was evaluated as well. The storage plan uses the
scheduled installation order and defines each TP relocation done. Three types of movements
have been identified: (Un)loading, loadout preparation and reshuffling. (Un)loading moves
are defined as the transfer between a vessel and the loadout area. Loadout preparation moves
are moves where a component is positioned from the loadout area to the storage field after
being unloaded, or vice versa before being loaded. Reshuffling contains all other moves.

Each TP has two loading moves, on which no optimisation is possible unless the harbour
loading is dismissed entirely. Additionally, there are either two or zero loadout preparation
moves. In most cases it will be two, but sometimes it might possible for a component to
remain in the loadout place and not move to the storage area. Reshuffling can be seen
as storage field management. There is no straightforward upper or lower bound for these
moves.

In the planned movement schedule, it is obvious that the 87 TPs amount to 174 loading
moves. As stated before, there is no apparent room for improvement here. The amount of
loadout preparation is more interesting. Here, 158 moves are done. This means that 8 TPs
resided solely in the loadout area, while the rest used the storage-only area. The amount of
reshuffling moves is 31. This puts an upper bound for the moves to be reduced at 189. An
estimate per location move was put on €1000 per crane move, so minimizing crane actions
during projects might reduce costs significantly.

3.6. Discussion
During the analysis of this project, some assumptions have been made. Travel velocities were
taken constant, based on distances divided by travel durations. This overestimates the times
somewhat on larger distances since vessels will reach higher velocities here. Anchoring time
was reported separately, which made it possible to exclude this time before calculating the
velocities.

It also must be noted that although the data was analysed with care, the Walney project
lacked a uniform, automated way of documenting. Excel files with nearly 5000 entries com-
bined were created and evaluated manually, which gives room for small errors to slip in.

Additionally, there is an issue with the comparison of the schedule and execution. The
sailing route of the Svanen was assumed continuous in both. In reality, there were certain
breaks due to weather during the execution of the project. During these breaks the Svanen
had to move away from the installation field to wait for better weather. To be able to com-
pare the execution with the schedule, these breaks were not taken into account and it was
assumed that the Svanen sailed directly between turbines. In reality, there is no reason that
the turbine before and after the break should be near each other, however, in the comparison
it would still be viewed as a bad solution if they are not.

3.7. Conclusion
Multiple conclusions can be drawn from this analysis of the Walney. First, it can be seen that
both intrafield travelling as components relocations by crane account for significant costs
during the installation of the Walney Wind Farm. Furthermore, the comparison between
planning and execution reveals the deviation in the latter one. This deviation causes an
increase in the travelling time. A possible explanation is that there is a lot of time available
for the initial planning, but during the execution, decisions have to be made in a much
shorter time period. This might result in changes needed to the initial schedule that are not
optimal.

Additionally, it was shown in the analysis that the Svanen spends a large amount of time
waiting on monopiles. This waiting time was not documented in the initial planning. This
waiting also persisted during the whole project, suggesting that no effective actions were
taken to mitigate this waiting time.

For the crane movements, only the planned schedule was evaluated. Due to the nature
of this problem, it is difficult to see if there is room for improvement, but an analysis of the

14 3. Analysis of Walney project

planned crane movements made it clear that there is a significant cost caused by moving the
TPs between locations in the harbour, and that it is worthwhile investigating if this can be
improved.

Because of these reasons, it can be concluded that improving the planning methodology
based on intrafield travelling and crane movements might result in significant reduction in
project costs. This new methodology needs to fulfil the following requirements: First, it has
to take interconnected problems into consideration. In the original planning the travelled
distance was done quite efficiently, but plug preparation was not considered enough and
therefore delay occurred. Secondly, the planning needs to handle the dynamic nature of
offshore projects. Before starting the project there is abundant time to plan and schedule, but
as soon as the project start circumstances will change and the planning has to be adjusted. At
that moment, there is much less time available. An improved planning methodology should
be able to handle these changes with scarce planning time.

A method of creating a planning can be put into the form of a finite series of instructions.
Such a series is called an algorithm. When an algorithm is implemented in a programming
language it is called a computer program. In this thesis, it will be explored how to create an
algorithm to solve both scheduling problems presented in this chapter.

Creating an optimal schedule can be abstracted as finding an optimal object, the schedule,
from a finite set of objects, namely all possible schedules. The research field which consists
of techniques of solving this problem is called combinatorial optimisation.

In the next chapter, a basic introduction to this field is given.

4
Combinatorial optimisation

4.1. Introduction
Both the CRP and the SIRP can be seen as problems in combinatorial optimisation, which is a
field in mathematical optimisation. It studies optimisation problems with discrete solutions.
In this chapter, an introduction to this topic is given. The goal of this is to provide a general
overview of combinatorial optimisation, and a more detailed description of theory relevant
to this thesis. First, some information is given on the technique of modelling problems.
After this, some problems of relevance to this project along with some problem-theory will
be presented. The final part of this chapter discusses some techniques for solving problems.
Here, general techniques are included as well as some very problem-specific methods, if
relevant to this thesis.

4.2. Formulation
To solve an optimisation problem, first a mathematical model has to be formulated. This
includes the essential features of the real world problem. Like with most modelling, there is
a trade-off between the level of detail and performance. Adding more details will make the
model more similar to the real situation, but it will quite often also increase the difficulty of
solving it. It is therefore important to understand which features are significant and how the
solving procedure will change by adding them.

A general optimisation problem consists of a cost function 𝑓(𝑥) and a set of feasible solu-
tions ℱ. The goal is to find a solution from this set which minimises (or maximises) the cost
function 𝑓(𝑥). For a minimization problem, this can be notated as following:

Find �̂� ∈ ℱ, such that 𝑓(�̂�) ≤ 𝑓(𝑥)∀𝑥 ∈ ℱ.

or as:

(𝑃) = {min 𝑓(𝑥),
subject to 𝑥 ∈ ℱ, (4.1)

4.2.1. Linear Programming
An important property of these models is whether they are linear or not. In a linear model,
the set ℱ is defined by constraints, and both the constraints and cost function consist of
a linear combination of the decision variables. These problems can be solved with linear
programming (LP). A linear optimisation problem can be expressed in the canonical form:

𝑓(𝑥) = 𝑐ኻ𝑥ኻ + ... + 𝑐፧𝑥፧ = 𝑐ፓ𝑥 (4.2a)

subject to
𝐴𝑥 ≤ 𝑏 (4.2b)

15

16 4. Combinatorial optimisation

with

𝑥, 𝑐 ∈ ℝ፧ , 𝐴 ∈ ℝ፧×፝ , 𝑏 ∈ ℝ፝ (4.2c)

𝑥ኻ

𝑥ኼ

0 1 2 3 4 5
0

1

2

3

4

[ዅኻ
ዅኻ] ፱ ጾ ዅኽ

[ኼ
ዅኻ
] ፱
ጾ
኿

[ዅኻ
ኼ] ፱

ጾ ኽ

Figure 4.1: Polytope of ፀ፱ ጾ ፛

Here 𝑛 is the amount of decision variables and 𝑑 is
the amount of constraints. Equation (4.2c) specifies
that 𝑥 and 𝑐 are vectors of dimension 𝑛, 𝑏 a vector of
dimension 𝑑 and 𝐴 a matrix of dimension 𝑛 × 𝑑.

Every constraint in 𝐴𝑥 ≤ 𝑏 forms a hyperplane
which cuts the solution space. The resulting set of
solutions is a polyhedron in 𝑛-dimensional space. A
bounded polyhedron is called a polytope. This is il-
lustrated in Figure 4.1 for 𝑛 = 2. The corners of this
polytope are called vertices. An important property of
a linear optimisation program, is that if there is an
optimal solution, at least one of these is located on a
vertex of the polytope.

4.2.2. Duality
An important property of an LP is duality. Consider
the primal problem (𝑃):

(𝑃) = {
min 𝑐⊺𝑥
subject to 𝐴𝑥 ≥ 𝑏

𝑥 ≥ 0
(4.3)

A dual problem (𝐷) can then be defined as:

(𝐷) = {
max 𝑏⊺𝑦
subject to 𝐴⊺𝑥 ≤ 𝑐

𝑦 ≥ 0
(4.4)

The variables 𝑥 And 𝑦 are feasible solutions for (𝑃) and (𝐷) respectively. From duality
theory, it then follows that 𝑐⊺𝑥 ≥ 𝑏⊺𝑦. Let 𝑥∗ and 𝑦∗ be the optimal solutions for (𝑃) and (𝐷)
respectively, then the strong duality theorem [Cook et al., 1998] states that 𝑐⊺𝑥∗ = 𝑏⊺𝑦∗. These
properties are very useful, since they can be used to verify if a solution is optimal, or find an
optimal solution for one problem if it is known for the other. By using the duality theorem,
it is possible to gather information about the existence of optima based on the existence of
feasible solutions for the primal or dual problem.

4.2.3. Mixed Integer Linear Programming
A mixed integer linear programming (MILP) model is an LP model where certain variables
can only take on integer values. In practice, a lot of problems include binary variables rep-
resenting yes or no. This can be modelled by using variables which can take on 0 and 1.

An example can be given for the shortest path problem. This problem consists of a network
of nodes with paths between them as seen in Figure 4.2. The starting node is node S and
the ending node is node T. For each pair of nodes, the distance 𝑐።፣ is defined as the distance

4.2. Formulation 17

S

2

1

4

3

T

5

3

3

6
2

4

7

2
5

2

9

8

Figure 4.2: Example of shortest path network

between node 𝑖 and node 𝑗. The mathematical model then can be described as:

min ∑
(።,፣)∈ፀ

𝑐።፣𝑥።፣ (4.5a)

subject to

∑
{፣|(ፒ,፣)∈ፀ}

𝑥ፒ፣ = 1 (4.5b)

∑
{።|(።,ፓ)∈ፀ}

𝑥።ፓ = 1 (4.5c)

∑
{፣|(።,፣)∈ፀ}

𝑥።፣ − ∑
{፤|(፤,።)∈ፀ}

𝑥፤። = 0∀𝑖 ∈ 𝑉 ⧵ {𝑆, 𝑇} (4.5d)

𝑥።፣ ∈ {0, 1}∀(𝑖, 𝑗) ∈ 𝐴 (4.5e)
(4.5f)

Variable Description

𝑥።፣ If equal to 1, the path from node 𝑖 to 𝑗 is in the shortest path. If equal to 0, it is not.
𝐴 Set of all arcs (paths) in the network
𝑉 Set of all nodes in the network
𝑆 Starting node
𝑇 Ending node
𝑐።፣ Cost of going from node 𝑖 to 𝑗

Table 4.1: Variables for Equations 4.5

The cost function is defined in Equation (4.5a) as the sum of the cost per connection,
only if that connection is in the solution 𝑥. Equation (4.5b) counts all paths leaving from the
starting node and sets it to 1. This means that in the solution exactly one path is leaving
from the starting node. In Equation (4.5c), the same is done for the amount of connections
travelling to the ending node. Equation (4.5d) specifies the path. For each node, except the
ending and starting node, it sets the connections going in equal to that of the connections
going out. This means that if there is a path travelling to a node, there will also be a path
leaving that node for each node except the start and end nodes. Finally, Equation (4.5e)
defines that 𝑥 consists of binary variables.

18 4. Combinatorial optimisation

4.3. Problems
In optimisation theory there is often a similarity between multiple problems. By evaluating
a certain problem and looking with which problem it has similarities, solution methods can
be found. Quite often, a new problem is a variant or a combination of very well studied
problems. For this reason, some standard problems are discussed here.

4.3.1. Travelling Salesman Problem
A classic and one of the most studied problems in optimisation theory is the Travelling Sales-
man Problem (TSP). In this problem there is a network of roads and cities and a salesman
at a starting position. The goal is to find the shortest route possible, while visiting each city
and then returning to the starting position. An example of a solution to a real-world TSP can
be seen in Figure 4.3.

Figure 4.3: Solution to real world TSP

This basic problem has a large number of applications. These are in logistics, but for
example also in the manufacturing of microchips or routing of electricity cables. A mayor
difficulty in solving the TSP lays in preventing subtours. This can be seen in the MILP for-
mulation given in Equations 4.6. Here, 𝐴 is the set of all arcs in the network and 𝑁 the set
of all nodes. The decision variable 𝑥።፣ is one if arc (𝑖, 𝑗) is traversed in the solution, and zero
otherwise. To form a connected route, Equations (4.6b) and (4.6c) are introduced. These
define that for each node, there is exactly one incoming arc and one outgoing arc. It might
seem that these constraints define a connected tour, but unfortunately this is not the case.

Min ∑
(።,፣)∈ፀ

𝑐።፣𝑥።፣ (4.6a)

subject to

∑
።∈ፍ
𝑥።፣ = 1∀𝑗 ∈ 𝑁 (4.6b)

∑
፣∈ፍ

𝑥።፣ = 1∀𝑖 ∈ 𝑁 (4.6c)

∑
።∈ፒ,፣∈ፒ

𝑥።፣ ≤ |𝑆| − 1∀𝑆 ⊂ 𝑁, |𝑆| > 0 (4.6d)

𝑥።፣ ∈ {0, 1}∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 (4.6e)

The reason for this is illustrated in Figure 4.4. Here, two solutions to a 4-node TSP are
shown. On the left-side a correct solution is shown, while a wrong solution is shown on the

4.3. Problems 19

right-side. It is obvious that this solution is wrong, since it is not a single tour. However, this
solution does satisfy Equations (4.6b) and (4.6c), since each node has exactly one incoming
arc and one outgoing arc. This shows the main problem in solving the TSP: a solution with
multiple subtours also satisfies Equations (4.6b) and (4.6c).

1

2 3

4 1

2 3

4

Figure 4.4: Left: Correct solution. Right: Solution with subtours

To prevent these solutions with subtours, Equation (4.6d) is introduced. This constraint
adds one inequality for each subset of nodes 𝑆 ⊂ 𝑁. It specifies that two times the selected arcs
between nodes in 𝑆 is equal to the size of 𝑆 minus one. Since each node has two connected
arcs, and the sum of all arcs connected to nodes in 𝑆 is equal to two times the arcs between
nodes in 𝑆 plus all nodes from outside 𝑆 to 𝑆, Equation (4.7) holds. Combining this with
Equation (4.6d) gives Equation (4.8), which states that for each set of nodes 𝑆, except for
the empty set or for 𝑆 = 𝑁, there must be at least two arcs entering or leaving 𝑆. This
eliminates the subtours. However, the amount of subsets of 𝑁 is equal to 2|ፍ|. This means
that the amount of constraints grows exponentially, quickly resulting in an excessive amount
of constraints. Therefore, the MILP as shown in Equations 4.6 can usually not be entered
directly in an MILP solver. Later in this thesis, approaches will be presented to overcome this
problem.

2 ∑
።∈ፒ,፣∈ፒ

𝑥።፣ + 𝛿𝑆 = 2|𝑆|∀𝑆 ⊂ 𝑁, |𝑆| > 0 (4.7)

𝛿𝑆 ≥ 2∀𝑆 ⊂ 𝑁, |𝑆| > 0 (4.8)

4.3.2. Vehicle Routing Problem
The vehicle routing problem (VRP) is a generalization of the TSP, introduced by Dantzig and
Ramser [1959]. The problem was extended to support multiple travellers, now called vehicles.
Each of these vehicles has to make a route to visit a number of nodes and then return to the
starting position, and combined all nodes have to be visited.

In contrast to the TSP, in the original VRP each vehicle has a capacity and each node has
a demand. The total sum of the demand of all nodes visited by a single vehicle cannot exceed
its capacity. While satisfying this constraint, the VRP as formulated by Dantzig minimises
to total distance travelled.

Note that the above statements were made regarding to the original VRP. Since this for-
mulation was introduced, many variations were created. For example, time windows can be
introduced in which the node have to be visited, or the restriction is added that certain nodes
can only be visited by certain vehicles. The amount of variations is vast, and more research
on this will be presented in Chapter 5.

4.3.3. Flow Shop Problem
Another classic problem is the Flow Shop Problem (FSP). This is a special case of Job Shop
scheduling. Job Shop scheduling is an optimisation problem, where there is an amount of
jobs which has to be scheduled to machines for certain operations. For each job at any time
at most one operation is processed, and each machine at any time is also processing at most
one operation. An example solution can be seen in Figure 4.5.

The FSP is a Job Shop problem which includes is a given sequence for the operations per
job, meaning that for any job the operations have to be in a certain order. This can be seen
as a production process, for example. Each item needs to pass certain machines, but in a
set order. The FSP solver will then search for a schedule with the lowest total time.

20 4. Combinatorial optimisation

Figure 4.5: A solution to a job shop problem

4.4. Problem Complexity
When a solution method for a certain problem is found, it can be evaluated on efficiency.
Problems are classified by the amount of resources it takes to solve them and to verify a
solution. Algorithms are called efficient when they run in polynomial time in the input size
of the problem. This means that the time it takes to solve a problem scales by a polynomial
function of the problem size. This is notated as 𝑂(...). For example, an algorithm which
optimises the relocation of 𝑛 cars on 𝑟 roads, can have an order of 𝑂(𝑛ኼ𝑟). This means that
the time has a quadratic relationship with the amount of cars and a linear relationship with
the amount of roads.

Algorithms which scale faster than polynomial will quickly become very large. This can
be illustrated with an example. Let’s say, a computer is able to solve a certain problem for
𝑛 = 10.000. A new computer is bought, with twice the speed of the original one.

If the problem would scale with 𝑂(𝑛), the new computer can now solve problems for 𝑛 =
20.000, a large improvement. If the algorithm would be 𝑂(𝑛ኼ), the problem can now be solved
to 𝑛 = 14.142. This of course is still a large improvement. However, if the algorithm would
scale with 𝑂(2፧), the capacity would increase by 1, thus the new computer would be able to
solve problems up to 𝑛 = 10.001. If the algorithm would be 𝑂(𝑛!), the new computer should
be 10.001 times as fast as the old one, on order to have an increase of 𝑛 = 1. This shows
that for certain algorithms, increasing computational power has almost no effect.

Because of this distinction in scaling, problems will be classified in complexity-classes.
First, let us define what a problem is. There are two types of problems. The first type asks
you to find a certain object. For example, find a path from 𝑎 to 𝑏. The other type is a decision
problem: a problem which can be answered with yes or no. An example of this can be: Check
if path 𝑃 is a path between nodes 𝑎 and 𝑏.

Optimisation problems fall in the first category, since in these problems an object has to
be found with an optimal cost according to some cost function. Every optimisation problem
has a corresponding decision problem. This can be shown for the shortest path problem. The
optimisation problem is then: Find a shortest path between nodes 𝑎 and 𝑏. The corresponding
decision problem would be: Given a number 𝑟, does there exist a path between nodes 𝑎 and
𝑏 with length of at most 𝑟?

The class of problems which can be solved in polynomial time is called 𝒫. Problems in this
class will also be referred to as easy problems. As stated before, each optimisation problem
has a corresponding decision problem. If for every instance that this decision problem has
a positive answer, there exists a certificate for which the correctness can be verified in poly-
nomial time, the problem is in the class𝒩𝒫, which stands for non-deterministic polynomial.
This certificate proves the answer. For example, if the question would be: Is there a path
between nodes 𝑎 and 𝑏 with a lower cost than 20? Then a path between 𝑎 and 𝑏 with a cost
lower than 20 would be a certificate for that problem. It is not necessary that the certificate
can be found in polynomial time, only that it can be verified.

It follows that all problems in 𝒫 are also in 𝒩𝒫. If the reverse would be true, it would
mean that 𝒫 = 𝒩𝒫 and that an algorithm can be found to efficiently solve every problem in
𝒩𝒫. This is however not known, as it is one of the big open questions in computer science.

Another subclass of 𝒩𝒫 is the class 𝒩𝒫-complete. To explain this class, the term reduc-
tion is introduced. A reduction transforms one problem into another. When a problem 𝐿 can

4.5. Finding Solutions 21

be reduced efficiently to problem 𝐻, it means that an algorithm which solves 𝐻 efficiently can
also solve 𝐿, and therefore 𝐿 cannot be harder to solve than 𝐻. When every problem 𝐿 ∈ 𝒩𝒫
can be reduced to a problem 𝐻 in polynomial time, it means that 𝐻 is at least as hard to solve
as any problem in𝒩𝒫. Problem 𝐻 is then called𝒩𝒫-hard. When a problem is both𝒩𝒫-hard
and in the class 𝒩𝒫, it is called 𝒩𝒫-complete. It follows that if an efficient solution for a
problem 𝐻 ∈ 𝒩𝒫-complete would be found, an efficient solution for every problem 𝐿 ∈ 𝒩𝒫 is
found and that 𝒫 would equal 𝒩𝒫.

Problem complexity is an important part of combinatorial optimisation, since it shows
what can be expected as the performance of the exact solution, and if heuristics are needed.

4.5. Finding Solutions
When a problem is properly formulated in constraint equations and a cost function, a method
needs to be selected to solve this problem. An important property of a solution method is if it
can give a guaranteed optimal solution. This means that it will provide an optimal solution
and a guarantee that there is no other feasible solution with a better result. Due to the large
solution spaces of some problems, finding a guaranteed optimum might not be possible in a
reasonably amount of time. This holds especially for problems not shown to be in 𝒫. Note
that this does not mean that they are not in 𝒫 because it is not known if 𝒫 = 𝒩𝒫, but for
now it means that there is no efficient algorithm for these problems. For a lot of problems,
methods can be found to find good solutions within a much smaller time. First, methods
to find a guaranteed global optimum are discussed, followed by methods to find good but
possibly sub-optimal solutions in less time. These solution methods which do not guarantee
optimality are called heuristics.

4.5.1. Exact
Simplex
The simplex method is a method to quickly solve a linear optimisation problem. It was shown
earlier that the solution space of an LP-problem forms a polytope 𝑃, as shown in Figure 4.1.
If there is a solution, at least one optimal solution will be located at the corner points of 𝑃,
called vertices. It also holds that when a vertex 𝑥 is selected, there is a vertex reachable by
crossing an edge of the polytope which has a better solution, if and only if 𝑥 does not hold
the optimal solution.

Therefore, the simplex can select any vertex 𝑥, and calculate the values at the neighbouring
vertices. If none of these represent a better solution, 𝑥 represents the optimal solution. If
there is a better neighbouring solution 𝑥ᖣ, the algorithm will replace 𝑥 by 𝑥ᖣ and repeat the
process until it reaches the optimal solution.

Branch and Bound
The simplex method makes it possible to find a solution to an LP problem in a very small
amount of time. A problem arises when certain variables will change from continuous to
integer. The problem is now called an MILP problem. For these kinds of problems, the
simplex method is not usable anymore and the difficulty increases greatly. One method of
solving an MILP model is the Branch and Bound (BB) method.

This algorithm consists of a exploring tree consisting of nodes and branches. Each node
represents an LP-problem. The top node represents the initial MILP, without the integral
requirement. Removing the integral requirement is called integer relaxation. The simplex-
method is used to get an optimal solution 𝑥ᖣ for this problem. If 𝑥ᖣ is not integer for all
required integer variables, branching occurs. Branching divides the problem in two separate
problems by selecting a non-integer variable with value 𝑥ᖣ። , and creating two new problems
by adding the constraints 𝑥። ≤ ⌊𝑥ᖣ። ⌋ and 𝑥። ≥ ⌈𝑥ᖣ። ⌉. Since 𝑥። has to be integer, this move does
not remove any feasible solutions.

This branching creates two new nodes, each representing a new LP problem. At each
node, the optimal solution for the problem with integer relaxation represents a lower bound
for all solutions created by further branching, since adding new constraints will never result

22 4. Combinatorial optimisation

in a better optimum. This branching happens until a node is found with an integer solution.
This solution can then be used to prune nodes with a lower bound higher than this value.

1

2 3

4 5 67

𝑥 ≤ 3 𝑥 ≥ 4

𝑦 ≤ 2 𝑦 ≥ 3 𝑦 ≤ 5 𝑦 ≥ 6

Lb:12Lb:4

Sol:8

Figure 4.6: Branch and bound for two variables. Node 4 still has to be explored

An illustration of this algorithm is given in Figure 4.6. Here, the white nodes are the
explored nodes. It can be seen that when node 5 is explored, a solution with the value of 8 is
found. For node 3, the lower bound was found to be 12, so node 6 and 7 can never be better
than the found solution and can be pruned. Node 4 still has to be explored. This shows how
the algorithm can only explore a part of all solutions, but still can guarantee optimality. It
is also possible that the relaxed LP does not give a solution. If this is the case, it means that
none of the nodes in the rest of the branch will contain feasible solutions, and thus those
branches can also be pruned.

It is desired to have the lower bound as high as possible. This will result in more branches
being cut off, and therefore guaranteeing optimality without having to explore every node in
the tree. Another important method to decrease computational time is symmetry breaking.
Symmetry can be defined as different solutions which hold the same results. This can be
illustrated by considering a problem where a postman has to plan a route to deliver multiple
packages and then return home, in a symmetric network. In a symmetric network, each path
between two nodes has the same length as the reversed path. When an optimal solution is
found, a symmetric version of this solution is the same path, but reversed. This symmetric
solution represents nodes in the branch and bound tree and since it does not provide new
information, it might as well be made infeasible. If a constraint is added to remove these
solutions, less branches have to be explored which will result in less computational burden.

Branch and Cut
The Branch and Bound method is a great way to solve MILP problems when the constraints
and variables can be defined up front. We encounter however that sometimes there are too
many variables or constraints. When there are too many constraints, the Branch and Cut
(BC) algorithm is used. This algorithm generates cuts (constraints) during the execution. The
principle of BC is to select a subset of cuts which fully restrict the solution space. Figure 4.7
shows a flowchart of a BC algorithm.

It can be seen that most of the algorithm is similar to branch and bound. After solving
the linear relaxation, BB has three options. If the value of the solution is larger than the
best found integer solution, or no feasible solution is found, the node is pruned. If the value
is smaller, the node is either branched if the solution is not integer or saved as new best
solution when integer.

A BC algorithm starts with a subset of all constraints ℒ ⊂ ℒ፧. The LP is solved with this
limited set of constraints ℒ. When a feasible solution 𝑥 is found with a better value than
the best solution so far 𝑥∗ is found, a step is added in comparison with the BB algorithm.
The algorithms checks if there is a constraint 𝑒 in ℒ፧ and not in ℒ, which is violated by 𝑥. If
this constraint is found, it is added to ℒ and the linear relaxation of the current problem is

4.5. Finding Solutions 23

𝑆 = {𝑆ኺ}
ℒ ⊂ ℒ፧
𝑥∗ = ∞

𝑆 is
empty? Finished

Select
𝑃 ∈ 𝑆

solve
LP for
P to get
solution 𝑥

LP solved
and
𝑐(𝑥) <
𝑐(𝑥)∗?

Find 𝑒 ∈ ℒ
violated
by 𝑥

e found? ℒ = ℒ ∪ {𝑒}𝑥 is
integer?

Branch P
to create
𝑆፛፫ፚ፧፜፡,፩
𝑆 = 𝑆 ∪
𝑆፛፫ፚ፧፜፡,፩

set 𝑥∗ = 𝑥

no

yes

yes

no

yes
noyes

no

Figure 4.7: Branch and cut algorithm for a minimization problem

24 4. Combinatorial optimisation

solved again until there is no 𝑒 ∈ ℒ፧ ⧵ ℒ violated by 𝑥. After this, the BC algorithm continues
branching or saving the optimal solution like a BB algorithm. Let 𝐻 describe the polytope of
ℒ. The constraint 𝑒 then separates 𝑥 from 𝐻. This is the reason why the problem of finding
𝑒 is also called the separation problem.

Branch and Price
In other problems, the amount of variables might be too large to initialise before branching.
A Branch and Price (BP) algorithm is a variation on BB with variable generation. A variable
corresponds to a column of the 𝐴 matrix in equation (4.2b), so variable generation is also
called column generation. The main idea of column generation is to find a subset of all
variables, such that it can be guaranteed that adding other variables will not improve the
solution. In this way, the optimal solution can be found without including every variable.

A detailed explanation of a BP algorithm was given in Feillet [2010] and was used, together
with Desrochers et al. [1992] and Vance [1998] to derive the flowchart in Figure 4.8.

The Branch and Price algorithm works as following: The problem starts with an un-
branched problem 𝑆ኺ in the problem-pool 𝑆 and with an initial set of columns 𝑅ኻ. With
this, the restricted master problem 𝑀𝑃(𝑅ኻ) is created. This is the master problem with only
a subset of all possible columns. The integer relaxation is solved for this problem and the
algorithm checks if there are any possible columns which will improve the solution. These
are called columns with reduced cost. If these are found, they are added to 𝑅ኻ and 𝑀𝑃(𝑅ኻ)
is solved again until no columns with reduced cost exist. After this, the regular branching
procedures happens.

When the Restricted Master Problem is solved, it is compared to the dual of the complete
Master Problem for violated constraints. A violated dual constraint corresponds to a column
with reduced cost in themaster problem [Feillet, 2010]. This can be used to find new variables
which might improve the solution, and when no constraints are violated it guarantees that
no variables with reduced cost can be found.

Cutting Planes
Besides formulating the problem, constraints can also be used to improve solver efficiency.
This is called the cutting-plane method. Constraints will be added to decrease the solution
space, without removing the optimal solution from it. An example can be seen in Figure 4.9.
Here, the original constraints form the feasible region. The feasible solutions are the integer
values within this region. By adding the cutting-plane constraint, the feasible region becomes
smaller without removing any integer points, and therefore without removing the optimal
solution.

There are also cases where feasible points can be removed. In these cases, there has to
be a guarantee that the feasible points do not contain the only optimal solution. This can be
done by for example symmetry breaking, as introduced earlier.

Dynamic Programming
Another way of solving to optimality is by dividing the problem into smaller (overlapping) sub-
problems. Solutions for these subproblems are stored and will be used to compute solutions
for expanding problems. This is called dynamic programming.

This method is much more problem-specific than the branch and bound method. Take
for example the traveling salesman problem. This problem includes a salesman in a network
which has to visit multiple cities. For the subproblem of visiting 𝑛 cities, the solution can be
found be taking the solution for 𝑛 − 1 cities and adding the 𝑛th city at the right location. By
starting at a subset of just one city and each time adding one, the optimal solution can be
found.

Problem specific algorithms
For certain problems, specific algorithms have been created to solve them to optimality. If a
problem can be formulated as one of these problems, the same algorithm can be used. An

4.5. Finding Solutions 25

𝑆 = {𝑆ኺ}
𝑅ኻ ⊂ 𝑅
𝑐(𝑥∗) = ∞

𝑆 is
empty? Finished

Select
𝑀𝑃 ∈ 𝑆

solve LP
for 𝑀𝑃(𝑅ኻ)

to get
solution 𝑥

Find
columns
with

reduced
costs 𝑅፫

|𝑅፫| > 0?
𝑅ኻ =
𝑅ኻ ∪ 𝑅፫

𝑐(𝑥) <
𝑐(𝑥)∗?

𝑥 is
integer?

Branch P
to create
𝑆፛፫ፚ፧፜፡,፩:
𝑆 = 𝑆 ∪
𝑆፛፫ፚ፧፜፡,፩

set 𝑥∗ = 𝑥

no

yes

yes

no

no

yes

no

Figure 4.8: Branch and price algorithm

26 4. Combinatorial optimisation

Feasible region
Cutting plane
Feasible points

Figure 4.9: Cutting plane

example is the shortest path-problem, where a shortest path between two nodes has to be
found in a network. Multiple algorithms have been created to solve this, for example Dijkstra
[1959] or Hart et al. [1968].

For example, a problem with relocation containers can be modelled as a network by having
each possible configuration as a vertex and an arc between each two vertices if one component
can be moved from one configuration to the other. This is illustrated in Figure 4.10. It then
follows that if a shortest path is found in this graph, a minimum number of moves is found
to go from one configuration to another one. In the figure, the shortest path between two
configurations is shown.

Figure 4.10: Network representation of relocating containers

4.5.2. Heuristics
Finding an optimal solution might not always be possible within the available timespan. In
this case, heuristics are used. These are methods to find solutions which are not neces-
sarily at an optimum, but are a lot faster than methods like branch and bound or dynamic
programming.

Heuristics and optimal methods can help each other. Using a good heuristic can speed
up the branch and bound method, since everything which has a worse lower bound than
the heuristic solution can be cut off. On the other hand, optimal methods can be used to
validate heuristics.

4.5. Finding Solutions 27

Meta-heuristics
Meta-heuristics are problem-independent techniques to create heuristics. Although, in lit-
erature there is not always a clear distinction between meta-heuristics and heuristics, the
following definitions were found in Sörensen and Glover [2013] and will be used during this
thesis:

Ametaheuristic is a high-level problem-independent algorithmic framework that provides a
set of guidelines or strategies to develop heuristic optimisation algorithms. The term is also
used to refer to a problem-specific implementation of a heuristic optimisation algorithm
according to the guidelines expressed in such a framework

In general, for a given problem, a heuristic procedure is a collection of rules or steps that
guide one to a solution that may or may not be the best (optimal) solution.

Thus, a heuristic is problem-specific, and a meta-heuristic is a problem-independent
method. For a problem specific implementation of a meta-heuristic, both terms can be used.

Grasp
Many meta-heuristics are based on improving an existing solution. This means that before
starting the improvement algorithm, an initial solution has to be available. This is quite often
done with a deterministic algorithm, but this would mean that each time the algorithm is ran,
it will come to the same deterministic outcome. To explore a larger part of the solution space it
is useful to run the LS multiple times with different initial solutions. One way to create these
solutions is GRASP. GRASP stands for Greedy Randomised Adaptive Search Procedure and
is found to be used in articles in relevant literature, as will be shown later. It was introduced
by Feo and Resende [1995] and it is a heuristic procedure which iteratively creates a solution
and optimises this with a LS method. The best solution is stored and returned at the end of
the iteration.

Although introduced as a method for construction and further optimisation, GRASP’s
main contribution is the construction phase. In this phase, a feasible solution is iteratively
constructed, one element at the time. A greedy function is used to order all candidate items
at an iteration step. The function is a measure for the benefit of adding a certain item to the
solution. It is adaptive since this function is updated with each iteration. From the generated
list, an item is chosen randomly among the top candidates. This randomization step allows
different solutions to be constructed each time the construction phase is ran. Algorithm 1
shows the construction phase of grasp.

Algorithm 1 Construction phase of GRASP
Solution = {}
repeat

rcl = create_restricted_candidate_list()
s = select_random(rcl)
solution = solution ∪ s
adapt_greedy_function()

until Solution complete

Local Search
Local search is an algorithm which explores the solution space to improve a feasible solution.
The algorithm works as follows: It starts with an initial solution. One or more methods are
defined to transform this solution into another feasible solution. The set of other solutions
which can be found by applying on of these methods to the current solution is called the
neighbourhood. In the context of routing, the neighbourhood might be to swap two nodes in
the route. This is show in Figure 4.11. The neighbourhood of a solution then consists of all
possible routes which can be found by swapping two nodes.

28 4. Combinatorial optimisation

0

1 2

3 0

1 2

3

Figure 4.11: Example of swap move in local search for routing

Local search computes the solution in the neighbourhood and then moves to the best
one. This is repeated until no improvement can be found any more, or a certain time or
iteration limit is reached. An example is shown in Figure 4.12. Here the solution space is
illustrated as a set of nodes where each node is a feasible solution. An arrow between nodes
means that one solution can be reached from another node. The current solution is in black.
The neighbourhood, in gray, is then the set of nodes to which an arrow is connected. If the
neighbour with the best value has a better value than the current solution, that solution is
set as the current solution and the process is repeated. This is shown in Algorithm 2 [Oh
et al., 2014].

Algorithm 2 Local search algorithm
𝑠 = create_initial_solution()
repeat

𝑁፬ = get_neighbourhood_solutions(𝑠)
𝑠፧ = select_best(𝑁፬)
if 𝑓(𝑠፧) < 𝑓(𝑠) then ◃Compare values

𝑠 = 𝑠፧
else:

Break
end if

until stopping criterion met

Figure 4.12: Local Search solution
space. Each node is a feasible solution.

The current solution is black, the
neighbourhood of this solution is grey

Neighbourhoods are problem dependant and are critical to
the performance of a local search algorithm. But even with
a well chosen neighbourhood, there is no guarantee that a
global optimum will be found. A local optimum in a LS algo-
rithm occurs when each solution in the neighbourhood has a
worse value. At this moment, the algorithm terminates, but
there still might be solutions outside the neighbourhood with
better values. A lot of effort has been done in finding different
algorithms which can escape these local optima.

Tabu search
One way to avoid getting stuck in local optima is the tabu
search meta-heuristic. This is a LS variation introduced by
Glover [1989]. Unlike the LS, it also accept worsening moves
if no improving move is available. Although this prevents a
full stop, it might create a cycle. Figure 4.13 illustrates this.
When at position 2, it will move to the best neighbour: position 3. From there the best
neighbour is 2, which starts a cycle between 2 and 3.

To mitigate cycling, a tabu list is kept of characteristics of the last 𝑛 visited solutions.
The algorithm will then only consider neighbours not in the tabu list. If the tabu list is long
enough, it will prevent cycling long enough to escape local optima.

Simulated Annealing
Simulated annealing is a probabilistic local search, inspired by metallurgy [Kirkpatrick et al.,
1983]. A temperature is introduced, which starts high and slowly decreases during the exe-
cution of the algorithm. At each iteration, a random neighbour is selected. If this neighbour

4.5. Finding Solutions 29

1

2

3

4

5

Solution cost

Figure 4.13: Tabu search illustration: When starting at 1,2 or 3,minimizing will create a cycle between nodes 2 and 3

has a better objective function value, the algorithm moves to that neighbour. If not, it moves
to the neighbour with a probability based on the neighbour solution value and the tempera-
ture. When the temperature is high, it means that worsening solutions are easily accepted.
As the temperature drops, the probability of accepting worse solutions decreases to zero.

Genetic algorithm
Local search methods can be represented by a single explorer walking through the solution
space. Population based methods include multiple travellers. A genetic algorithm is a pop-
ulation based method inspired by evolution theory. Like evolution, it is based upon three
main principles: Selection, mutation and reproduction.

The algorithm starts with an initial population of different solutions. For each solution,
the cost is evaluated and a selection is made of individuals which will reproduce. For the
reproduction step, multiple solutions will be combined to create one or more new solutions.
Each solution, consisting of a combination of its parents, will also have a mutation. A mu-
tation is a small random change, for example by switching some visits in VRP context.

After this process, a new generation is created, hopefully with better solution values. This
process is then iterated until some stopping criterion is met.

Adaptive Large Neighbourhood Search
One technique which is used by authors of similar problems to the SIRP, as will be shown
later in the literature survey, is Adaptive Large Neighbourhood Search (ALNS). This is a mod-
ified version of Large Neighbourhood Search (LNS). LNS is a local search variation and is
based upon a process of continual relaxation and re-optimisation. Across literature, these
same moves are also named destroy and repair, since the relaxation move destroys a current
solution and the re-optimizing move repairs it. These two steps transform one solution to
another and define the neighbourhood of a solution.

This means that instead of calculating multiple neighbourhood solutions and selecting
the best one, a new solution is created and immediately validated. The destroy and repair
algorithms usually contain some randomization to provide different solutions when no im-
provement is found the first time. Another modification to the classic LS is that there is a
separate acceptance criterion to define if a solution should be accepted as the new initial so-
lution. The solution with the best value so far is stored separately. This is shown in algorithm
3.

The ALNS was introduced by Ropke and Pisinger [2006] and a more general form was
given in Pisinger and Ropke [2007]. The ALNS is an extension to the LNS which chooses
adaptively among a number of relaxation and re-optimisation techniques. Like the LNS, the
ALNS can be based on any local search method, e.g. tabu-search, simulated annealing or
others.

The ALNS has a set of destroy and repair neighbourhoods. These define the possible
methods of relaxing a solution and of re-optimizing the relaxed solutions. In each iteration,
a destroy neighbourhood and a repair neighbourhood are chosen by a roulette wheel selec-
tion with probabilities linear to the earlier obtained scores per neighbourhood. With these
neighbourhoods, a new solution will be created. The neighbourhood scores are then up-
dated, based on the quality of this new solution. Multiple criteria can be used for the scoring
process. Naturally, when a new best solution is found, a high score will be given, but it can

30 4. Combinatorial optimisation

Algorithm 3 Large Neighbourhood Search
𝑠፛፞፬፭ = 𝑠 ◃Initial solution
repeat

𝑠ᖣ = 𝑠
𝑠ᖣ = remove_part_of_solution(𝑠ᖣ)
𝑠ᖣ = repair_solution(𝑠ᖣ)
if 𝑓(𝑠ᖣ) < 𝑓(𝑠፛፞፬፭) then

𝑠፛፞፬፭ = 𝑠ᖣ
end if
if accept(𝑠ᖣ, 𝑠) then

𝑠 = 𝑠ᖣ
end if

until stopping criterion met

Algorithm 4 Adaptive Large Neighbourhood Search
𝑠፛፞፬፭ = 𝑠 ◃Initial solution
repeat

N = roulette_select(𝜋) ◃select Neighbourhood
𝑠ᖣ = remove_part_of_solution(𝑠ᖣ,N)
𝑠ᖣ = repair_solution(𝑠ᖣ,N)
𝜋 = update_scores(𝜋, 𝑠, 𝑠ᖣ,N, 𝑠፛፞፬፭)
if 𝑓(𝑠ᖣ) < 𝑓(𝑠፛፞፬፭) then

𝑠፛፞፬፭ = 𝑠ᖣ
end if
if accept(𝑠, 𝑠ᖣ,N) then

𝑠 = 𝑠ᖣ
end if

until stopping criterion met

4.6. Conclusion 31

also reward not previously visited solutions. This iteration is repeated until some stopping
criteria is met. This is shown in algorithm 4.

Iterated Local Search
The ILS was introduced by Lourenço et al. [2010]. The procedure starts with a initial solution
𝑠ኺ which will be locally optimised to 𝑠∗. For every iteration step, it makes a small change or
perturbation to the solution 𝑠∗ to receive solution 𝑠ᖣ. This solution is then improved by a local
search to generate the locally optimal solution 𝑠ᖣ∗. An acceptance criterion then defines if 𝑠ᖣ∗
should replace 𝑠∗. This process is repeated until a certain termination condition is met. The
authors define the basin of attraction as the set of solutions with the same local optimum.
The goal of the perturbation step is to jump between these basins of attractions, in order to
escape local optima.

Algorithm 5 Iterated Local Search
𝑠ኺ = GenerateInitialSolution
𝑠∗ = LocalSearch(𝑠ኺ)
repeat

𝑠ᖣ = Pertubation(s*,history)
𝑠∗ᖣ = LocalSearch(s’)
𝑠∗ = AcceptanceCriterion(s*,s*’,history)

until termination criterion met

General Variable Neighbourhood Search
The Variable Neighbourhood Search (VNS) is a local search method which uses multiple
neighbourhoods 𝑁፤ for k = 1,..,𝑘፦ፚ፱ [Mladenović and Hansen, 1997]. The algorithm works as
follows: For each iteration step, set 𝑘 = 1 and create a solution from the 𝑘፭፡ neighbourhood.
Then create 𝑥ᖥ by applying some local search method to 𝑥ᖣ. If 𝑥ᖥ is better than 𝑥ᖣ, continue
the search with 𝑁፤. If not, increment 𝑘 by one. Do this until 𝑘 = 𝑘፦ፚ፱, which means that all
neighbourhoods have been considered. This process is then repeated until some termination
criterion is met as shown in Algorithm 6.

Algorithm 6 General Variable Neighbourhood Search
repeat

𝑘 = 1
repeat

𝑥ᖣ = Shake(𝑥,𝑘)
𝑥ᖥ = VND(𝑥ᖣ,𝑘ᖣ፦ፚ፱)
𝑥, 𝑘 = neighbourhood_change(𝑥,𝑥ᖥ,𝑘)

until 𝑘 = 𝑘፦ፚ፱
until termination criterion met

A general implementation of the VNS is given in Hansen et al. [2008]. This uses a vari-
able neighbourhood descent. Variable neighbourhood descent is a fully deterministic VNS
as shown in algorithm 7. In the General Variable Neighbourhood Search (GVNS), the shake
function selects randomly a solution from the neighbourhood of 𝑥 and then performs a Vari-
able neighbourhood descent. The GVNS can therefore be seen as an ILS with multiple neigh-
bourhoods in each phase.

4.6. Conclusion
As stated before, combinatorial optimisation consists of finding an optimal object in a finite
set. Often, this finite set is the result of discreteness in problems. Routing, scheduling and
relocation problems usually have discrete elements and therefore fall under the category of
combinatoric optimisation problems. Although for most of these problems, exact solution
methods are available, these methods often scale much worse than polynomial.

32 4. Combinatorial optimisation

Algorithm 7 Variable Neighbourhood Descent
repeat

k = 1
repeat

𝑥ᖣ = select_best_neighbour(x)
𝑥, 𝑘 = neighbourhood_change(𝑥,𝑥ᖣ,𝑘)

until 𝑘 = 𝑘ᖣ፦ፚ፱
until No improvement obtained

This non-polynomial scaling causes computational times to grow extremely large with
increasing problem size. Finding the global optimum with optimality guarantee is therefore
often not possible for real-world problems, and even with increasing computational power this
will likely not be possible in the near future. Luckily, real-world problems don’t necessarily
need the exact optimum. Often a good-enough solution will do as well. Heuristic methods
are used to generate these good-enough solutions within a fraction of the time needed to
compute the exact optimum.

For both the exact and heuristic solution, a solution method often can be found by
analysing similar problems. For this reason, a selection of relevant problems and solution
methods were presented in this chapter. These however only give a global view of the tech-
niques used for different problems. In the next chapter, literature research will be done to
analyse more specific approaches for problems similar to both the SIRP and the CRP.

5
Literature review

5.1. Introduction
In the previous chapter, a general introduction to optimisation theory was given, with a more
detailed view in certain areas. The literature review in this chapter uses that theory. The
goal is to give an overview of the literature relevant to the SIRP. Initially, literature in the
context of offshore wind farm installation is explored. It turns out that this is not sufficient,
and therefore the scope is expanded to vehicle routing research in general.

The CRP will be reviewed after this. It turns out that this is a very unique problem and
no direct approaches have been found in literature, although inspiration can be found from
areas like container reshuffling or vehicle shunting.

5.2. Offshore scheduling
The literature review starts with looking into optimisation of offshore wind farm installa-
tion scheduling. Using a mathematical approach to optimise offshore wind farm installation
scheduling is a relatively new field. The first MILP found on this topic was given by Scholz-
Reiter et al. [2011].

Scholz-Reiter et al. [2011] considered scheduling in weather conditions with a single ves-
sel, which can install and transport the complete turbine. It solves a scheduling optimisation
problem to define the loading and installation choices, with regards to limited ship loading ca-
pacity and restricted actions by weather conditions. The problem is formulated as a job-shop
problem and solved to minimise the time needed to build the wind farm. Weather conditions
are discretised into good, medium and bad conditions and installation and loading actions
are restricted on these conditions. The MILP is solved directly by an LP solver for a short
time horizon between 1-3 days each time the vessel arrives at the harbour. The reason for
this is that weather forecasts are only accurate on short timespans.

A different study by Lütjen and Karimi [2012] includes port replenishment during the
installation of an offshore wind farm. A dynamic reactive schedule, as introduced by Mehta
[1999], is created. In dynamic reactive scheduling, no initial scheduling takes place, but
decisions are made at the moment of execution. At each loading moment, a simple heuristic
consisting out of two weighted cost functions is ran to determine the loading set and the
order of operations. This cost function takes into account the site status and the weather
forecast. A simulation is created to evaluate different rescheduling strategies.

Ait-Alla et al. [2013] presented an MILP model for a medium planning horizon of 2-18
months. The model incorporates chartering costs and weather operation constraints for
different vehicles. The planning horizon was split into time periods of one month and for each
month, the occurrence of different weather conditions was given. The model then determined
which operations should be planned in which month, while minimizing the total costs. The
model was solved by an MILP solver.

33

34 5. Literature review

Irawan et al. [2017] used the same weather conditions as Scholz-Reiter et al. [2011]. Based
on these conditions, feasible timeslots are generated for each vessel. Each timeslot defines
a set of consecutive days in which a certain action can be executed and is determined by
the weather and the weather installation criteria. The optimisation problem then is to assign
tasks to these timeslots. This is minimised for total installation costs with an MILP model.

A heuristic algorithm is used to optimise for both total cost and completion period. This
bi-objective optimisation calculates solutions for both objectives. A solution is then searched
where the sum of the distance to both objective-solutions is minimised. This is done both for
a VNS and SA algorithm where the VNS is shown to outperform the SA algorithm.

In the field of offshore wind farm installations, no literature was found to optimise the
routing process, nor anything that takes into account synchronization requirements while
using multiple ships for installation. For this reason, the literature research is expanded to
optimisation in offshore wind farm maintenance scheduling.

In this topic, a routing approach is used by Zhang [2014] who gives an MILP model which
minimises the travelling costs with a penalty for delayed maintenance. They use a modified
ACO algorithm where they use a group of ants per vessel and remark that it is a time consum-
ing technique, but that it has the benefit of allowing non-linear components. Furthermore,
they model the weather by setting a maximum amount of working hours per day for each
vessel.

Stålhane et al. [2015] presented research on optimal routing of maintenance while min-
imizing transportation, downtime and delay-penalty costs. They present two MILP models,
an arc-flow and a path flow model. In an arc-flow model for routing, each arc in the network
is a variable. In the path flow model, each vessel route is a variable. This reduces the search
space, since every solution in the path-flow model is a solution in the arc-flow model, but the
opposite is not true. Since the numbers of paths becomes very large (factorial with amount
of nodes) the paths have to be generated while doing the optimisation. This is done by using
a heuristic column generation approach in a BC algorithm. The main principle of column
generation was introduced in Section 4.5.1. A heuristic column generation uses a heuristic
algorithm to define which columns will be generated. The path-flow model gives near optimal
solutions at a significantly smaller computational time than the arc-flow model.

5.3. Vehicle routing Problem
Maintenance scheduling points us in the direction of the vehicle routing problem. This is a
classic optimisation problem and was introduced in Chapter 4. It was stated here that the
VRP shares the same difficulty of preventing subtours as the TSP. In the remainder of this
section, first the main solution methods for solving the VRP will be presented. These main
solution methods are aimed at the general VRP, while the SIRP has different characteristics.
Therefore, generalizations are studied after this. Generalizations modify the VRP problem to
also account for other aspects.

5.3.1. Solution Methods
The large variety in VRP extensions results in a lot of different solution methods. A classi-
fication of this is given in Ismail et al. [2017] and is used as a basis for figure 5.1. As in
every optimisation algorithm, there is a distinction between exact algorithms and heuristic
algorithms. Since the scope at this moment is the general VRP, we look at the most stud-
ied extensions of the VRP: the Capacitated Vehicle Routing Problem (CVRP) and the Vehicle
Routing with Time Windows VRPTW.

It can be seen in Figure 5.1 that there are three methods to find an exact solution. These
different approaches specify how to handle the prevention of subtours. These are: Branch
and But, Branch and Price and introducing extra variables. For the heuristic approach, a
distinction is made between classical heuristics and meta-heuristics, although in literature
this line might not always be very clear. As defined earlier, we see classical heuristics as
problem-specific. An example of this is the nearest neighbour algorithm, where a vehicle
always goes to its nearest unvisited neighbour. Metaheuristics are higher level heuristics

5.3. Vehicle routing Problem 35

Solution algorihms for VRP

Heuristics

Metaheuristics

Population basedLocal search based

Classical Heuristics

Exact

Branch and Cut
Branch and Price
Extra variables

Figure 5.1: Classification of solution procedures for VRP

which can be applied to different problems. An example is tabu-search or simulated anneal-
ing, both explained in Chapter 4.

Exact solution methods
A good overview of recent exact solution methods is given by Baldacci et al. [2012]. The
main solution method used in nearly all exact approaches for the VRP is solving an MILP
model. As in the TSP, the main problem for the VRP is the elimination of subtours. In the
VRP, the amount of subtour elimination constraints increases exponentially, and therefore
defining all constraints in the original MILP is not possible. Therefore, 3 different methods
were developed as shown in Figure 5.1.

Branch cut
As presented in Section 4.5.1, a BC algorithm adds constraints during the branching process.
It consists of a formulation and a solution to the separation problem. The separation problem
was described earlier in Section 4.5.1 and consists of finding an inequality which separates
the current infeasible solution from the solution space. This is repeated until the solution
lies within the feasible polytope. If this solution is not integer, branching occurs and the
process is repeated until an integer optimal solution is found.

The first BC-algorithm for adding subtour elimination constraints was not given for the
VRP, but instead for the TPS. Padberg and Rinaldi [1991] proposed a BC algorithm to solve
this. At the beginning of this paper, the ‘classical’ approach for solving the TSP is given. This
basically consists of solving the MILP for a subset of all inequalities, solving the separation
problem, adding these inequalities and restarting the algorithm. They note that this method
wastes resources by restarting the MILP solver multiple times and therefore apply a Branch
and Cut algorithm to the TSP.

Subsequently, Augerat et al. [1998] implemented a BC-algorithm for the symmetric VRP.
With this approach, a 135-customer instance was solved to optimality, at that time the largest
in literature.

The formulation of Augerat et al. [1998] consists of multiple types of subtour elimination
constraints. The first are the capacity constraints Equation (5.1), where 𝐷(𝑆) is the vehicle-
demand of 𝑆. This equation then says that for each subset 𝑆 of demand nodes (excluding
depot), the amount of arcs entering and leaving 𝑆 is at least the amount of vehicles needed
to service 𝑆 times two. When there is a subtour, there is at least one 𝑆 where this constraint
is violated. A lower bound for the vehicles to visit 𝑆, can be set as ⌈𝑑(𝑆)/𝐶⌉ where 𝑑 is the
demand for 𝑆 and 𝐶 the capacity per ship.

∑
።∈ፒ,፣∉ፒ

𝑥።፣ + 𝑥፣። ≥ 2𝐷(𝑆)∀𝑆 ⊆ 𝑉ኺ (5.1)

36 5. Literature review

Furthermore, Augerat et al. [1998] gives another heuristic for the capacity constraints
separation called the greedy shrinking algorithm, which expands an initial set 𝑆 by iteratively
adding the node 𝑣 which maximises 𝑥(𝑆 ∶ 𝑣)

Branch and Price
One method to overcome the exponential amount of sub-constraints is using a Branch and
Price algorithm. For the VRP, a Branch and Price algorithm uses set partitioning. Set parti-
tioning is the grouping of elements into subsets, such that each element appears in exactly
one of the subsets. A formulation of SP for the VRP was originally proposed by Balinski and
Quandt [1964]. The idea of this was the following: Let each possible route be a variable with
a corresponding cost. Then, the optimal solution can be found by selecting the minimum
costs subset-combination in which each node is included exactly once. This is shown in
Equation (5.2). Here, 𝑅 is the set of all routes and 𝑁 the set of all nodes, with 0 being the
depot node. 𝜃።፫ is a binary parameter which is 1 if node 𝑖 is in trip 𝑟 and zero otherwise. 𝑐፫
is the cost of trip 𝑟 and the variable 𝑥፫ defines whether trip 𝑟 is included in the solution.

min∑
፫∈ፑ

𝑐፫𝑥፫ (5.2a)

subject to

∑
፫∈ፑ

𝜃።፫𝑥፫ = 1∀𝑖 ∈ 𝑁 ⧵ {0} (5.2b)

𝑥፫ ∈ {0, 1}∀𝑟 ∈ 𝑅 (5.2c)

By taking only valid trips in 𝑅 without subtours, subtour elimination constraints are not
needed and the model will only consist of |𝑁⧵{0}| constraints. The trade-off is an exponential
number of variables. This means that the formulation in Equation (5.2) still cannot be solved
by a regular BB algorithm. To overcome this, a subproblem will be defined. This subproblem
describes the trips in 𝑅 which have the possibility of improving the solution.

Desrochers et al. [1992] proposed a BP algorithm to solve a set partitioning formulation
of the VRPTW. As show in chapter 4, the Branch and Price algorithm is a variation of a
Branch and Bound algorithm which creates variables during the branching process. The BP
algorithm has the best performance for VRPTW with tight time windows. For less constrained
problems, or even without time windows, the BP algorithm will perform much worse and will
quite often fail to find a solution for problems which would be solvable with smaller time
windows [Fukasawa et al., 2006].

This improvement in efficiency can be explained by the amount of candidate trips. A trip
is a candidate if it has reduced cost. Reduced cost means that adding a certain route might
decrease the total cost. Consider a vehicle at a certain node which has to select a node to
travel to. If the new node has a time window opening far in the future, it means that if the
vehicle travels there, it has to wait at that node. This increases the costs, and makes it less
likely that a route with this arc has reduced cost. If the time window is in the past, it is
not even possible to visit that node. This limits the amount of candidate routes for the BP
algorithm, and therefore increases the performance.

Without this improved performance, generating columns was not a very efficient approach
for the VRP without time windows. Fukasawa et al. [2006] overcame this problem by com-
bining BP and BC. This is then called Branch and Cut and Price (BCP). In this approach,
an arc-flow formulation 𝑃ኻ is created and a route-flow 𝑃ኼ which is linked to the arc flow by
defining the routes as sets of arcs. An algorithm then uses both column as row generation
to optimise the intersections of both problems.

Heuristics solution methods
It was shown earlier in Figure 5.1 that for heuristic methods a division was made between
classical heuristics and meta heuristics. Classical heuristics are problem specific and often

5.3. Vehicle routing Problem 37

use real-world characteristics. An example of these classical heuristic methods is the sweep
method, introduced by Gillett and Miller [1974]. This algorithm uses the polar coordinates
of the nodes in a plane with the depot at the origin, to divide the nodes in clusters. This
clustering is done by ordering the nodes by increasing angle, creating clusters as shown
in Figure 5.2. This algorithm thus uses the physical locations of nodes. This requires the
assumption that these physical locations are known and that the distance between two nodes
is representative for the cost of the arc between them. In more abstract networks, this might
not always be the case.

Depot

Cluster 1

Cluster 2

Cluster 3

Figure 5.2: Sweep algorithm clustering

There are multiple other classic heuris-
tic solution methods. However, since the
SIRP includes an abstract network where
arc costs include things like installation
time or preparation times, the physical dis-
tance between two nodes might not always
be representative for the arc cost between
two nodes. For this reason, further re-
search is aimed at metaheuristics instead
of classical heuristics

Metaheuristics can be classified into
two groups: Single agent heuristics and
population-based heuristics. Single agent
heuristics use a single agent which explores the solution space, like for example tabu-search
or simulated annealing. The single agent in these algorithms move between feasible solu-
tions. In a classical local search, the agent only moves to a new solution when that solution
is better than the current one. This means that there is no option in escaping local optima.
To overcome this limitation, simulated annealing and tabu search algorithms were developed.
These were presented in Section 4.5.2.

Both simulated annealing and tabu search are relatively old techniques. Tabu search
was introduced for the VRP by Glover [1977], and the earliest found simulated annealing
implementation for the VRP was that of Alfa et al. [1991]. Population based algorithms, often
inspired by nature, are more divers, but in general consist of multiple agents exploring the
search space simultaneously. The difference in population based algorithms usually lies in
how the different agents explore the search space and how they influence each other.

Although population based algorithms are also relatively old, the first genetic algorithm
for the VRP which could compete with the tabu-search was presented by Prins [2004]. A
genetic algorithm, as presented in Section 4.5.2, includes a population of feasible solutions.
As explained in Chapter 4, a GA uses the principles of selection, reproduction and mutation.
The novelty of Prins [2004] was found in the mutation step. Instead of just performing a
single mutation, a local search algorithm was used to optimise each child.

Multiple other population search methods have been explored. Bell and McMullen [2004]
implemented one of the first well-performing ant colony optimisation (ACO) algorithms for
the VRP. Here multiple ants are modelled. Each ant starts at the depot and selects a node
to travel to. The choice of which node to select is stochastically based on the amount of
pheromone on each arc from the current node. This process is repeat until all nodes are
visited. If the capacity of a tour is exceeded, a return trip to the depot is added before visiting
additional nodes. When all nodes are visited, pheromone is deposited on the selected arcs,
with more pheromone per arc on shorter arcs. This motivates other ants to also take these
arcs.

Many different solution techniques have been implemented for the vehicle routing prob-
lem. However, most modern literature is not aimed at finding the best algorithm for the
classical VRP. Instead, most authors study different generalizations. 327 Articles regarding
the VRP were studied by Braekers et al. [2016]. From these, only 16 articles considered
the VRP in its classical form. This variety of problems has resulted in a variety of solution
approaches. Therefore, different aspects of the SIRP will be evaluated in the next section,
along with relevant literature research. The question is not: what is the best algorithm for

38 5. Literature review

solving the VRP, but what are the best algorithms for VRPs with similar aspects to the ship
installation routing problem?

5.3.2. Generalizations
Although already quite useful in its original formulation, real life problems often require gen-
eralizations. A generalization is an extension to include other characteristics of the problem.

Many generalizations have been introduced. Braekers et al. [2016] give an excellent survey
on different extensions. Although already included in the original formulation, the Capac-
itated Vehicle Routing Problem specifically states the version of the VRP with capacitated
vehicles. This distinction is made, since other versions without capacitated vehicles exist.
However, the CVRP is by far the most studied version. It has been included in over 90% of all
articles considered in the survey. It is quite clear that this extension has great applicability
in real life routing problems, as it is quite common for vehicles to have a limited capacity.

The other main generalization is the introduction of time windows to create the VRPTW.
Next to these, there are several other characterizations which have received moderate at-
tention. These are backhauls or pickups, multiple depots and heterogeneous vehicles. An
extension interesting for our research is the introduction of precedence and coupling con-
straints. This means that certain vehicles have to visit a node before another vehicle, or that
they have to perform certain acts simultaneously.

5.3.3. Heterogeneous Vehicles
The classical VRP uses a set of homogeneous vehicles. However, in the SIRP, multiple ships
are used with different characteristics. The use of vehicles which differ in load capacity and
compatibility is referred to as the use of heterogeneous vehicles. This was first implemented
by Golden et al. [1984], who created an algorithm which first created a grand tour which
visited all customers before partitioning this into segments.

For exact formulations, an elaborate paper was published by Yaman [2006]. This paper
introduced 6 different formulations and various cutting planes. The first four formulations
where based on subtour constraints from Miller et al. [1960]. The first formulation uses a
single variable 𝑥።፣ if there is any vehicles traversing the arc (𝑖, 𝑗) and another variable 𝑎።፤
which links the ending nodes of a route to a specific vehicle.

The second formulation introduces a variable which links the other nodes in the route to
a specific vehicle. In the third formulation, 𝑦።፣፤ replaces 𝑥።፣ in the first formulation, being
equal to one if vehicle 𝑘 traverses arc (𝑖, 𝑗). This allows for different costs per vehicle. The
same substitution from the second formulation two results in the fourth formulation.

Furthermore, two flow formulations are given, where the capacity and subtour constraints
are expressed according to the model of Gouveia and Pires [1999]. This uses a variable 𝑓።፣ to
specify the flow on arc. The flow on an arc can be seen as the amount of supplies transported
along that arc (𝑖, 𝑗). Similar to the transition of 𝑥።፣ to 𝑦።፣፤, the last formulation is created by
transforming 𝑓።፣ to 𝑔።፣፤. In addition to these formulations, for each formulation multiple cuts
from the homogeneous Vehicle Routing Problem were adapted to the heterogeneous vehicle
routing problem.

According to Koç et al. [2016], most heuristic approaches in the heterogeneous vehicle
routing problem are tabu search algorithms. Euchi and Chabchoub [2010] use a tabu search
with two moves. An exchange move where two nodes are exchanged between routes and an
insert move where a single node is inserted into another route.

A similar approach is taken by Brandão [2011], who also uses a tabu search. Besides
the moves used by Euchi and Chabchoub [2010], it also uses a 2- and a 3-node insertion
move. A cycle based move selection mechanism is used to consider a move 𝑖 only at every 𝑛።
iterations, therefore reducing the computational needs.

Tarantilis et al. [2004] use a list based local search method. Here multiple solutions are
stored in a list and local search is implemented to improve these while gradually tightening
the acceptance criterion like in a simulated annealing algorithm. A quite different approach,

5.3. Vehicle routing Problem 39

although still local search based, is given by Naji-Azimi and Salari [2013]. Instead of the
traditional vehicle routing moves, they define the neighbourhood based on an MILP based
improvement procedure. Each iteration, a set of routes is removed, and replaced based on
the result of an MILP.

5.3.4. Synchronization
Although the CVRP and the VRPTW turn out to be good starting points, some modelling parts
in our problem are still missing in this. One of these parts is synchronization. This means
that certain visits are synchronised in space and time. This is necessary, because some-
times ships need to carry out an action simultaneously, or with a precedence relationship.
This happens for example during transportation of monopiles, or when making sure that the
transition piece is only installed after the monopile has been installed.

Drexl [2007] introduced the Vehicle Routing Problem with Trailers and Transshipments
(VRPTT). This is a generalization of the VRP which include autonomous (lorries) and non-
autonomous (trailers) vehicles. The non-autonomous vehicles can only travel on arcs if at-
tached to autonomous ones. There is no compatibility constraint between vehicles, i.e., any
trailer can be transported to any lorry. Next to the standard customer covering constraints
(all customers must be visited), three more synchronization constraints between vehicles are
implemented in this problem: Spatial, temporal and load synchronization. Spatial and tem-
poral synchronizationmean that vehicles have to be at the same time or location, respectively.
Load synchronization is the transfer of load between vehicles.

Complex networks are used for this problem. Where a classical VRP has nodes represent-
ing physical location and arcs representing travelling between these, the VRPTT and other
rich VRP might need networks where nodes represent combinations of space, time, vehicles,
operations etc. An example is the transshipment of load between two trailers. There will be a
vertex for the transfer-location at the beginning and one at the end of the load-transfer. The
arc between these two vertices corresponds to the loading time.

Drexl [2007] gives three MILP formulations for the VRPTT. The first formulation uses a
turn based graph. This is a graph which has, next to a set of vertices and arcs, also a set
𝑇 with turns. A turn is a set of two arcs which can be traversed directly after each other.
Drexl [2007] introduces turn penalties: costs of taking a certain turn. The concept of turn
penalties make it possible to put costs on traversing an arc based on the previous arc and
make certain sequences impossible by setting the turn penalty to infinity. The turn variables
𝑥፤፡።፣ are introduced, which are equal to one if vehicle 𝑘 traverses arc (𝑖, 𝑗) directly after (ℎ, 𝑖).
For edge synchronization, lorry-trailer variables 𝑥፤፤ᖣ።፣ are used which are equal to one if lorry
𝑘 pulls trailer 𝑘ᖣ over edge (𝑖, 𝑗).

The second formulation is an arc based one. It uses a time-space-operation-vehicle net-
work. To handle multiple time windows, a vertex is added per customer per time window.
Tasks and operations are bound to vertices, with some split into two vertices connected by
an arc. The routing part is then simply done by the variables 𝑥፤።፣ which are equal to one if
vehicle 𝑘 traverses arc (𝑖, 𝑗).

The same graph is used with the path-based formulation. A Branch and Price formula-
tion is suggested with a master problem and a subproblem. Each variable defines a possible
vehicle-route. These routes are generated in the subproblem. The master problem consists
of selecting a subset of these variables to include in the optimal solution. Drexl [2007] calls a
constraint coupling if it combines variables from multiple paths, and puts all coupling con-
straints in the master problem and all non-coupling constraints in the subproblem. These
coupling constraints are, besides node-covering constraints, timing and synchronization con-
straints.

The columns in a BP for the VRP are generated by a path-search algorithm [Feillet et al.,
2004]. This generates an elementary shortest path with resource constraints (ESPRC). Ele-
mentary means that each node is visited only once, and resource constrained means each arc
requires a set of resources, and a path is only feasible if the amount of resources required is
below a certain value. The resources used while traversing an arc are defined by the resource
extension function (REF). In Desrosiers [1998], two highly desired properties are listed for the
REF. First of all, every REF for an arc (𝑖, 𝑗) should only depend on the resource vector at 𝑖,

40 5. Literature review

secondly every REF should be non-decreasing. Drexl [2007] states that the required REFs for
the VRPTT problem do not have these properties. It is concluded that at the time of writing,
there was no valid Branch and Price approach available for the VRPTT. This statement is
repeated in Drexl [2012].

Bredström and Rönnqvist [2008] studied the combined vehicle routing and scheduling
problem with temporal precedence and synchronization constraints for home healthcare staff
scheduling and forest operations. While both applications have the same characteristics, it
is especially easy to see how forest operations resembles the offshore installation problem.
Trees are cut and processed by a harvester, after which they are picked up and transported
by a forwarder. Some transporters can load independently, some need to be accompanied by
a truck with a crane.

A network representation is given. Nodes represent physical locations and service times
are specified for nodes. An edge only represents traveling between locations. It is also stated
that when there are locations which can be served by specific vehicles, there will be vehicle
dependent networks. They formulate an MILP model with routing variables and scheduling
variables. The routing variables are based on a VRP problem with an arc-flow formulation.
They refer to the constraints for visits per node, synchronization and precedence relationships
as complicating constraints because they couple the otherwise independent variables. Most
vehicle routing only have the visits per node as complicating constraints and this shows the
increased difficulty for the SIRP.

The MILP model was solved to optimality in CPLEX for instances up to 20 nodes. For
larger test instances, a heuristic was developed. This heuristic includes a penalised dummy
variable for nodes not visited by any vehicle by adjusting certain constraints. The algorithm
then creates a restricted model by associating each node with a set of vehicles which are
allowed to visit it. This restricted problem is then solved by first solving the LP-relaxation,
removing all arcs not utilised in this solution, and then finding a feasible solution to the
restricted MILP problem. Subsequently, an iterated process is started. For each iteration,
the set of included arcs is slightly modified and the relaxation and feasible solution steps are
repeated. This is done until a certain time limit is exceeded.

Drexl publishes a survey on synchronised VRPs in Drexl [2012]. In this, among other
things, the algorithmic issues for heuristics are discussed while dealing with synchronization.
He states that LS based methods is the main heuristics for large-scale VRP problems. This
procedure exploit the fact that it is possible to independently change a very small set of routes.
This is true for the standard vehicle routing problem. When a route is considered, making
a small change (like swapping two nodes) results in a new feasible solution. However, Drexl
notes, this is not true for synchronised VRP. After a small modification it might be possible
that the synchronization constraints cannot be fulfilled anymore. This can be showed with
an example: Consider vehicles 𝐴 and 𝐵. If 𝐴 and 𝐵 have to visit each node simultaneously
and 𝐴 has route (0, 1, 2) and 𝐵 has route (0, 2, 1), 𝐴 will be waiting at node 1 until 𝐵 arrives
there, but 𝐵 will be waiting at node 2 until 𝐴 arrives there. Therefore, this route is infeasible.

Furthermore, even if the resulting route after a move is feasible, the unchanged routes
were optimised for the original route. Since this is not the case for the new route, there is
a large chance that the new solution has very long waiting times. This results in a large
probability for the local search algorithm to label the new solution and thus the move as
bad quality. However, this is largely influenced because the other routes were synchronised
with the original route, and not by the move itself. Therefore, due to the synchronization
constraints, a good move might be labelled as bad by the local search algorithm. Drexl
[2012] therefore concludes that most VRP algorithms are not suitable for the synchronised
VRP.

Drexl [2012] also provides a classification of synchronization constraints. The constraints
are classified in the categories task, operation, movement, load and resource synchroniza-
tion. Tasks are mandatory duties which have to be fulfilled by zero or more vehicles. In the
classical VRP, the task can be stated as all customers having to be visited by at least one
vehicle. An operation is something that must be performed by a vehicle at a vertex to allow
the completion of one or more tasks. This may induce dynamic time windows. Operation

5.3. Vehicle routing Problem 41

synchronization puts constraints on allowed time between operations. This means that it
might imply that certain operations have to be done simultaneously, or one after the other,
etc. The third synchronization mentioned was movement synchronization, which refers to
non-autonomous vehicles not being able to travel without assistance of autonomous vehicles.
Load synchronization includes the transfer of load between multiple vehicles and resource
synchronization models vehicles competing over a common scarce resource.

Operation synchronizations relevant to the SIRP are direct synchronization and synchro-
nization with precedence. For exact methods, multiple column generation approaches were
suggested by Grünert and Sebastian [2000] and Crainic et al. [2009], although these include
only a suggested direction and no implementation. The main heuristic method for prece-
dence synchronization, noted in Drexl [2012], was to explicitly determine leg sequences. A
leg can be seen as a part of the route without synchronization.

Lu and Dessouky [2006] uses an insert-based heuristic for a pickup and delivery problem
with time windows. An insert-based heuristic starts with an empty solution and inserts
nodes. This normally picks the best node for the best location based on smallest increased
costs. Lu also considered the change in slack time. This is the time between visiting a node,
and the nearest closing of the time window for that node. By using this as a criterion for
inserting it leaves more space in the time window for other insertions.

Salazar-Aguilar et al. [2013] introduce the synchronised arc and node routing problem.
The difference with previously given synchronised problems is that the requirement is now
that all arcs have to be visited, instead of all nodes. They implemented an application of this
problem to a road marking network. Here, they consider painting vehicles and replenish-
ment vehicles. Painting vehicles have to traverse all arcs in the network while replenishment
vehicles have to synchronise with the painting vehicles to make sure they do not run out of
paint. This problem was solved with an ALNS.

More research on the home-healthcare routing problem was done by Ait Haddadene et al.
[2016]. Nursing staff has to visit patients at their homes. Since there might be actions which
have to happen simultaneously, or actions which have to occur after others, synchroniza-
tion is important. The problem is formulated as a VRP with synchronization constraints and
solved by a two phase heuristic. The construction phase consists of creating an initial so-
lution with GRASP, and the second phase consists of optimizing this solution with an ILS
method. These methods were explained in Section 4.5.2. The basic idea of ILS is that af-
ter each move in the local search method, a new optimisation algorithm starts to repair the
synchronization constraints.

5.3.5. Multitrip
Another aspect on which the SIRP differs from the general VRP is that vehicles are allowed
to do multiple trips. We define a trip as the path of a vehicle between leaving from and
returning to the depot without any intermediate stop at a depot. A route is the complete path
of a vehicle, consisting of multiple trips.

An overview of mathematical notations for the multitrip vehicle routing problem can be
found in the survey paper Cattaruzza et al. [2016]. The most common formulation is a 4
index formulation 𝑥፤፫።፣ ∈ {0, 1} which is equal to 1 if and only if arc (𝑖, 𝑗) is in trip 𝑟 of vehicle
𝑘. A limitation of this notation is that the maximum number of trips has to be set and for
each possible trip per vehicle, 𝑖 ∗ 𝑗 variables are added. This will lead to a weak formulation
if there is no tight upper-bound on the number of trips.

A three-indices formulation was introduced by Aghezzaf et al. [2006]. The binary path
variable 𝑥፤።፣ is used to define if arc (𝑖, 𝑗) was used by vehicle 𝑘. The variable 𝑓፤።፣ was added
to include the capacity constraint. This variable is equal to the load of vehicle 𝑣 after point
𝑖 when moving to point 𝑗, or 0 when arc (𝑖, 𝑗) is not used by vehicle 𝑣. Thus, the load of a
vehicle decreases along the trip, and by constraining the load to be larger than zero for every
index-combination, the capacity requirements are enforced.

42 5. Literature review

The same 𝑥 variable was used by Buhrkal et al. [2012], with a variable for cumulative
demand instead of load. This is the inverse of a load variable. The load variable starts with
the total capacity at the depot, and is reduced by the node-demand for every node in the
trip. The cumulative demand variables starts at 0 at the depot and is increased with the
node demand at every node it visits. Buhrkal et al. [2012] study an optimisation problem to
collect waste and also include time windows in this. The problem is defined as semi-multitrip,
because each vehicle visits multiple waste-disposal sites. Like multiple other authors, they
include the timing variable 𝑡።፤ to define the time at which vehicle 𝑘 visits node 𝑖. This notation
requires the constraint that every node is visited only once per vehicle, since otherwise it is not
possible to define a single time for that node-vehicle combination. Therefore, the notation
used is only applicable to a semi-multitrip problem with multiple depots, but where each
depot is visited only once.

Two authors were found using a 3-index formulation without the vehicle index. But al-
though, since it is quite clear that this formulation will not be compatible in problems with
heterogeneous vehicles and vehicle synchronization constraints, this notation will not be dis-
cussed further. The articles in which this notation was found [Hernandez et al., 2014; Azi
et al., 2007] did not include synchronization constraints nor heterogeneous vehicles.

Two 2-index formulations have been found for the multitrip VRP. Although previously
stated that a vehicle index is desired, looking into these can provide insight in how to handle
other problems, specifically how to include trip times. The problem with trip times is that
most time formulations are 𝑡።፤ formulations, similar to Buhrkal et al. [2012]. This only allows
for a single visiting time per vehicle-node combination. This does not allow for multiple visits
to the depot, and thus not for multiple trips with a single depot.

A solution for the timing problem can be found in Koc and Karaoglan [2011] who use a
2-index formulation with only 𝑥።፣ ∈ {0, 1} equal to 1 if and only if arc (𝑖, 𝑗) is used by any
vehicle. They use a 𝑡።፤ variable for the visits time for all nodes except for the depot. The
variable 𝑤።፣ ∈ {0, 1} is introduced, which is equal to 1 if and only if the trip ending in node 𝑗
is followed by a trip starting at node 𝑖. The standard timing constraints based on 𝑥 are then
set for all nodes except the depot nodes. Furthermore, timing constraints are added based
on 𝑤።፣, setting the visiting time of 𝑗 later than the visiting time of 𝑖, plus the cost of travelling
from 𝑖 to the depot, and the cost of travelling from the depot to 𝑗. Thus, all times of the first
nodes in a trip are not set based on 𝑥, but based on 𝑤. This approach can be seen as not
specifying the depot times, but instead linking directly from the last visit in a trip to the first
visit in the subsequent trip.

Rivera et al. [2015] uses a formulation with two types of arcs: Standard arcs and replen-
ishment arcs. When a vehicle has no capacity left, a replenishment arc must be used after
which the capacity is reset again. These replenishment arcs represent returning to the depot.
This method is mathematically equivalent to Koc and Karaoglan [2011].

The earliest found heuristic approach for the multitrip VRP is given by Taillard et al.
[1996]. They use a two-phase algorithm which consists of firstly generating a list of trips and
secondly selecting trips to create a solution. The creation of the list of trips was done with
a tabu search algorithm presented in Taillard [1993]. The neighbourhood was defined as
moves of selecting two routes and swapping or inserting up to 2 nodes. The second phases
then constructs a solution by selecting several trips as a bin packing problem. In bin packing
problem, multiple objects have to be packed into a number of bins with a finite capacity. This
approach was expanded by Petch and Salhi [2003] by adding a third step. This step contains
an LS with a move that splits a trip in two and then move one of the two resulting partial trips
to another vehicle. Subsequently, another local search improves the solution by swapping
and inserting customers.

A Tabu Search algorithm for the multitrip vehicle routing problem was implemented by
Alonso et al. [2008]. The neighbourhood consists out of two moves. A traditional insertion
move where one customer is removed from a route and inserted at another, and additionally
a problem specific move based on accessibility restrictions per node.

Besides these single-agent local search methods, multiple population based heuristics

5.4. Component Relocation 43

were found. Salhi and Petch [2007] uses a genetic algorithm to divide customers into clusters.
A solution is then created by generating a single route per cluster, and this solution is further
optimised by a local search heuristic. Cattaruzza et al. [2014] also use a genetic algorithm
and introduce the term of combined local search. This is a repair procedure for solutions
with an increased cost based on the previous solution. By swapping routes, it can turn the
solution with an increased cost to a solution with a decreased cost. This is possible due to
the time restriction characteristics of their specific problem. .

5.3.6. Multiple Installation options
Multiple installation options add multiple extensions to the VRP. Ignoring the time con-
straints, an installation method can require multiple vehicles to visit the same node. Per
installation method, multiple sets of vehicles are defined, and one vehicle from each set has
to visit. With multiple installation method, each installation method is a set of set of ships
and it must hold that for one set of sets a single vehicle from each set must visit a node.
Unfortunately this has not been found in literature.

5.4. Component Relocation
The relevant literature for the crane optimisation is less abundant than for the ship routing
problem. To the authors best knowledge, no crane optimisation model exists for relocations
in a grid with spatial blocking constraints. However, relevant other problems were found. The
most studied problem which contains similarities with the CRP is the container relocation
problem in harbours. Other relevant research was found in the field of train shunting and
factory item relocations.

5.4.1. Container relocation
The container relocation problem consists of minimizing crane movements during the han-
dling of containers. It has quite some similarities with the turbine component relocation
problem, although the blocking constraints are simpler. Shipping containers are used for
transport on ships, trains and trucks worldwide. In between journeys, they are often stored
in container terminals. Cranes are used to relocate them based on arrival and departure
requirements, similar to the TP crane optimisation.

Figure 5.3: Container Relocation

Containers are placed in stacks and cranes are able to grab
containers from above, as seen in Figure 5.3. This eliminates
the spatial constraints based on neighbouring containers, but
due to the stacking, it adds the constraint that only contain-
ers at the top can be relocated. Lehnfeld and Knust [2014]
published a survey identifying the different types of container
optimisation problem. They categorise three types of prob-
lems. The first problem consists of choosing the storage lo-
cation during unloading from a ship to the storage location.
The second type is the pre-marshalling problem prepare con-
tainers for loading at a later time. The third type consists of
loading from storage location to the ship.

Furthermore, Lehnfeld and Knust [2014] note that most
research is done considering just one of these problems. The only author listed who pub-
lished research on a combined problem is Malucelli et al. [2008]. They present a dynamic
programming method, but only for a single stack of items. Also in similar surveys like Carlo
et al. [2014] and Vis and De Koster [2003], no optimisation is found which handles both
unloading, loading and pre-marshalling.

Wan et al. [2009] give an MILP formulation for emptying a set of container stacks. The
main variable used is 𝑥፭።፜፩, determining the position 𝑝 of container 𝑖 at timestep 𝑡 and column
𝑐. It thus defines if a container is at a certain space at a certain time. The other variables
used indicate if a container blocks another one, are in the same column, is reshuffled at a

44 5. Literature review

certain time and if it reshuffled at the same time with another container. The formulation
depends strongly on the 1-dimensional blocking constraints, caused by container stacking.

Additionally, they introduce multiple heuristic approaches. The best performing one is
a rolling horizon method which uses the MILP formulation to retrieve the first 𝑘 containers.
Subsequently, the moves for retrieving the first container are stored and the MILP formulation
is used to retrieve the first 𝑘 + 1 containers, and so on until all are received. They show that
this heuristic outperforms multiple other heuristics different authors.

A more versatile MILP formulation is given by Caserta et al. [2012], who studied the same
problem of retrieving a fixed set of stacks in a set order. Their version of the problem holds
the assumption that at retrieval of a container, only containers in the same column can
be relocated. They note that although this assumption reduces the search space, it might
cut away optimal solutions. The formulation given uses a binary variable which indicates
if a certain component moves between two positions at a certain time, and variables which
indicate if a container is retrieved or available. They also prove𝒩𝒫-hardness of this problem.

A stronger formulation was given by Petering and Hussein [2013], who used a variety of
decision variable. They combined moving variables (If a container does a certain move) and
location variables (if a container is at a certain location), and split up the moving variables
in decision variables for moving between stacks and inside the same stack. The variables for
movement in a stack are based on distance from the top, meaning that when a container is
placed on top of a stack, all containers below move one position away from the top. Further-
more, they give a heuristic algorithm. This algorithm handles the relocation in certain steps
by allowing and disallowing certain moves. They implement a blocking based approach,
which determines if a container blocks another one based on looking ahead to when they
should be retrieved. If a component 𝑖 is above a component 𝑗 and 𝑗 has to be removed before
component 𝑖, component 𝑖 is said to be blocking.

So far these all these consider a fixed retrieval order. Kim and Hong [2006] studied the
problem of departure in batches. Ordered groups of departures are given and within these
groups the order is free. A problem specific heuristic is given, but no MILP formulation. The
same holds for the research of Forster and Bortfeldt [2012].

5.4.2. Train shunting problems
Another relevant problem is found in train or tram shunting. This was studied by Winter
and Zimmermann [2000] for trams. Trams have a daily schedule, and arrive at the end of
the day to a storage yard of multiple parallel tracks with one dead-end. The trams stay here
overnight, and in the morning they leave again in a certain order. Since not all trams are
suited for the same route, and because there is limited space in the storage yard, it is im-
portant to position trams correctly such that on arrival they are not blocked by other trams.
Winter and Zimmermann [2000] introduces four dispatch problems. Firstly the minimum
shunting problem is introduced which minimises the amount of shunting done in the yard.
Shunting is matching separate tram or train units into complete trains. Secondly, the min-
imum type mismatch problem was formulated. In this problem, trams are allowed to fulfil
routes not originally assigned to them, and the amount of these mismatches is minimised.
For both problems, two similar problems are defined by just considering the departure. For
all problems MILPs are given and multiple heuristic approaches.

Haahr et al. [2017] studied the problem of parking trains unit on parallel tracks, with a
fixed arrival and departure schedule. The tracks have one dead end, thus trains arrive and
leave from the same direction. The goal is to assign each arriving train unit to a track such
that on departure, no train unit will block it. Reshuffling is not allowed. Haahr and Lusby
[2017] gives some feasibility checks to see if solving the problem is possible, and further-
more present three solution methods. The first one is based on constraint programming. In
constraint programming, logical relationships are defined between variables. For example, 𝑥
and 𝑦 cannot have the same value. A set of possible values is defined for each variable, and
the logical relationship prune these possibilities until a solution is found which requires all
relationships.

5.5. Conclusion 45

Additionally, a solution method is given which uses column generation. In this approach
each variable represents a matching pattern for a single track. This matching pattern holds
a feasible schedule for the trains arriving and departing for that track. A matching is feasible
if all arriving trains leave the track and the first in first out principle is satisfied. The master
problem is then solved to select a single matching pattern per track such that as many trains
as possible are included.

The third solution method is a randomised greedy construction heuristic. This heuristic
assigns the arriving trains to tracks based on the current occupation of trains. This simple
greedy algorithm does not always result in a solution, but since it takes a very small amount
of time so it can be run many times until the time limit is exceeded or a feasible solution is
reached. This method thus uses the principle of using a simple algorithm with a chance of
getting a feasible solution, and trying this many times.

5.4.3. Factory item relocation
In factories where handling of stacked objects occur, it might be possible that the order of
delivery and retrieval differ. This results in the need of reshuffling. For most purposes, this
amounts small instances which can be solved manually, but in some industries optimisation
is proven to be profitable. Mathematically, the problem of handling components in factories
is nearly identical with handling containers in a terminal.

Figure 5.4: Coil Stacking

Kamrad et al. [2012] study two types of item shuffling: plate shuffling and coil shuffling.
Plate shuffling consists of shuffling stacks of metal plates which are needed in the steel
production industry. The movement of these plates is identical to containers in a terminal.
An MILP is given for this problem based on location variables and variables which define if
a certain item is shuffled to a certain stack at time 𝑡. A similar model is given for the coil
stacking problem. This handles coils to be stacked as shown in Figure 5.4.

They produce an algorithm which generates a lower bound by looking at the reshuffles
needed per retrieval, but ignoring the effect of these reshuffles during later retrievals. Two
types of heuristics are developed, a tabu search and a rolling horizon method. It is noted
that the tabu search performs better when crane travelling distance is considered and the
rolling horizon performs better when crane travelling is disregarded.

Lu et al. [2016] optimise the plate storage problem. In this problem, plates will arrive in
a given sequence and they will have to be stored in stacks. A retrieval period is known, and
they have to be places as optimal as possible to minimise reshuffling moves during retrieval,
although this phase itself is not modelled. They define plates as blocking if there is at least
one plate below it which has to be retrieved earlier.

An MILP formulation is given which has the following binary decision variables which are
equal to one when: 𝑥።፬ if plate 𝑖 is piled on stack 𝑠, 𝑦።፣ if plate 𝑖 and 𝑗 are piled on the same
stacks and 𝑏። if plate 𝑖 is blocking. This is solved with an MILP solver. Multiple strategies are
discussed to speed up this process.

5.5. Conclusion
For the SIRP it has been showed that the literature directly from the area of offshore instal-
lation was limited in quantity and not applicable to the SIRP. Slightly more relevant research
was found in maintenance scheduling, although this still proved to be insufficient. For this
reason, the literature research was expanded to research about VRPs with common charac-
teristics as the SIRP.

46 5. Literature review

In the VRP capacity constraints on the vehicles are a very common requirement, available
in most VRP formulations. The most used exact solution approach was BP or BCP, where
each variable represents a route. For heuristics, nearly all algorithms used were variants of
local search, with a few exceptions like ant-colony algorithms. For single agent local search
based methods, tabu-search was used most often.

The most defining generalization in the SIRP are the time synchronization constraints.
Only one Branch and Cut approach for a simplified problem has been found. Nearly all
heuristic approaches for the VRP with time synchronization were single-agent local search
algorithms, with additional actions to account for the synchronization constraints. Two ap-
proaches can be identified. Firstly there is the move and reoptimise approach. In this ap-
proach a local search like move is done, and afterwards a new algorithm optimises the rest
of the routes for the synchronization constraints. Secondly, there is the destroy and rebuild
operation, where each move in the local search is defined of deleting a part of the solution
and rebuilding it.

A large missing gap are the installation options. Nearly all VRP problems use a single visit
per node, so even when considering one installation method very little literature was found.
This was found in the research of synchronization constraints. Here, some constraints were
found to model multiple visits per node, or the abstract models in the network consisted of
multiple abstract nodes per location, one for each vehicle visit.

For the CRP, it can be concluded that the relocation of transition pieces is a quite unique
problem as no optimisation has been found for two dimensional grid based locations. Multiple
relevant problems have been studied, although the characteristics are still quite different.

For container and factory component relocation problems most research was based on
either loading, unloading or pre-marshalling. No methods were discovered which integrated
these parts. It is also noted that no MILP formulation was found for a sequence of batches to
unload. All MILP models found considered a fixed sequence of departing items. Conversely,
in train shunting operations arrival and departure was included, but this did not allow for
reshuffling of objects and thus only considered assignment of storage locations.

When considering MILP formulation, most were strongly dependent on the stack based
characteristics of the problems. The approach of Caserta et al. [2012] was one which consid-
ered decision variables which allowed relocation between any two positions, while blocking
the disallowed locations by constraints. Therefore, it seems that the stacking characteristics
are easily changed in this formulation.

With regards to heuristics it can be noted that there was less uniformity than in the vehicle
routing problem, where most heuristics were a type of local search. A lot of heuristics where
very problem specific algorithms. For MILP based heuristic, the rolling horizon method was
used in multiple articles.

6
Component Relocation Model

The Component Relocation Problem handles the relocations of turbine components during
storage in the harbour. The key characteristic is the fact that they are stored in a grid with
spatial blocking constraints due to neighbouring items. The model assumes a fixed arrival
and departure schedule of components, which results in the following question: how can
this schedule be executed while minimizing the amount of component relocations?

A field consists of multiple storage locations, placed in a square grid. Some of these
locations are loadout locations. A loadout location is a place where transfer between vessel
and harbour is possible. Physically, this means that those places are located directly next to
the water. The other places are called storage-only locations. If a components is to be placed
from a vessel to a storage-only location or vice versa, it has to pass through a loadout place.

The crane actions can be divided into three categories. The first two categories consider
the relocations from the harbour to the vessel and vice versa. These are called the loading
and unloading phases respectively. The third category is called the pre-marshalling phase. In
this phase, components are relocated to prepare the field layout for the loading or unloading
phase.

To minimise the costs of ship rental times, project makespan has the priority. To take
this into consideration for storage management, it is desired to minimise the amount of
loading and unloading time for ships. This is achieved by requiring that both the loading
and unloading phase are completed with as few relocations as possible. Therefore, the rule
is added that during these phases there can be no other relocations besides direct loading
or unloading moves. An (un)loading phase is finished after all included components are
relocated to or from the vessel.

Based on approaches in literature, time is discretised in movements. This means that
there is no notation of real time in the model, but only an amount of moves. This mean that
crane movement distance is not considered and each relocation is assumed to take the same
amount of time.

Another assumption made, is that there is no limit on the pre-marshalling phase. In
reality, there is a limit on the moves in this phase, because this phase has to be finished
when the next ship arrives. However, since a trip to install transition pieces might take
multiple days, this limit is very high and it can be safe to assume that pre-marshalling will
always be finished before the next ship arrives.

The problem is divided into three parts. Initially, only loading into ships is considered from
a one dimensional storage area. This is a row where the blocking constraints are based on the
left and right neighbour. After a model for this problem is given, the problem is expanded by
considering a two dimensional grid instead of a one dimensional one. Subsequently, arrival
and departure in batches are added, in contrast to only considering departure in a fixed
sequence.

47

48 6. Component Relocation Model

6.1. One Dimensional loading
One dimensional unloading considers the following problem: components are located in a
one dimensional row, consisting of a fixed amount of storage locations. They need to be
transported in a certain sequence to a vessel, but due to physical limitations they can only be
moved if there is free space on either the left or the right side. This can be seen in Figure 6.1.
Here, a set of 3 components is to be unloaded in ascending order. Because component 1 has
no free side, component 3 is moved one location to the right. Subsequently, all component
can be loaded to vessel. Therefore, it takes 3 loading moves and 1 reshuffling move to load
these components.

t Storage Vessel

1

2

3

4

5

12 3

12 3

12 3

1 23

1 2 3

Figure 6.1: Loading of TPs to a vessel in a one dimensional row

Tomodel this problem, decision variables based on Caserta et al. [2012] are used. Storage-
only locations are not considered, and thus loading is allowed to take place from any location.
The following sets are used in this problem: 𝑁 contains all components. All storage locations
are contained in 𝑆፬ and the vessel is modelled as one location: 𝑠፝. All locations are stored in
𝑆, thus 𝑆 = {𝑠፝}∪𝑆፬. Additionally, the set 𝑃 contains all allowed paths. Path (𝑖, 𝑗) is an allowed
path, if a component in an empty field is allowed to move from 𝑖 to 𝑗. In the 1 dimensional
loading problem, there is an allowed path between each pair of storage locations and a path
from each storage location to 𝑠፝, but not from 𝑠፝ to any other location. Furthermore, 𝑡፞ is
defined as 𝑡፞ = |𝑇| + 1. This variable can be used to get the status after the last timestep.

The binary decision variable 𝑥፭፧።፣ is equal to 1, if at time 𝑡, component 𝑛 is moved from
location 𝑖 to 𝑗, and 0 otherwise. This is shown in Equations (6.3j) and (6.3k). To define these
𝑥 variables, the timeset 𝑇 is introduced which contains all possible times when a move can
be done. Consequently, the maximum amount of steps done is |𝑇|. For a shorter notation
the variable 𝑦፭፧። and 𝑦፭። are introduced. These variables represent a sum of 𝑥 variables. The
binary variable 𝑦፭፧። is equal to 1 if and only if component 𝑛 is positioned at location 𝑖 at the
beginning of time 𝑡, and 𝑦፭። is equal to 1 if and only if any component is positioned at location
𝑖 at the beginning of timestep 𝑡.

All variables are summarised in Table 6.1

Before introducing the model with cost function and constraints, variable 𝑦 is expressed
as a combination of 𝑥 in Equations (6.1) and (6.2). Note that for 𝑡 = 0, 𝑦፭፧። is a constant,
defined by the initial amount of components of type 𝑛 at location 𝑖. Equations (6.1) and (6.2)
can be interpreted as the sum of all components arriving at a certain position, minus the
departing components up to time 𝑡 − 1, plus the components at the start.

𝑦፭፧። =
፭ዅኻ

∑
፭ᖣ዆ኻ

∑
፣∈ፒ
𝑥፭ᖣ፧፣። −

፭ዅኻ

∑
፭ᖣ዆ኻ

∑
፣∈ፒ
𝑥፭ᖣ፧።፣ + 𝑦ኺ፧።∀𝑡 ∈ 𝑇 ∪ {𝑡፞} ⧵ {1}, 𝑛 ∈ 𝑁, 𝑖 ∈ 𝑆 (6.1)

6.1. One Dimensional loading 49

Variable Description

𝑥፭፧።፣ Binary decision variable 1 if and only if component 𝑛 moves from 𝑖 to 𝑗 at time 𝑡
𝑦፭፧። Binary helper variable: 1 if and only if component 𝑛 is located at position 𝑖 at the beginning

of timestep 𝑡.
𝑇 All timesteps
𝑁 Set of components
𝑃 Set of allowed paths.
𝑆 Set of All locations
𝑆፬ Set of storage locations
𝑠፝ vessel (loading) location

Table 6.1: Variables for 1 dimensional unloading

𝑦፭። = ∑
፧∈ፍ

፭ዅኻ

∑
፭ᖣ዆ኻ

∑
፣∈ፒ
𝑥፭ᖣ፧፣። − ∑

፧∈ፍ

፭ዅኻ

∑
፭ᖣ዆ኻ

∑
፣∈ፒ
𝑥፭ᖣ፧።፣ + 𝑦ኺ።∀𝑡 ∈ 𝑇 ∪ {𝑡፞} ⧵ {1}, 𝑖 ∈ 𝑆 (6.2)

The cost function is the amount of total moves, which is equal to the sum of all 𝑥 vari-
ables. Therefore, the cost function can be expressed as Equation (6.3a). Subsequently,
Equation (6.3b) imposes that only one component can be placed at a location. This equa-
tion is added for all locations except 𝑠፝, since here it is allowed to have multiple components
stored.

min∑
፭∈ፓ

∑
፧∈ፍ

∑
።∈ፒ
∑
፣∈ፒ
𝑥፭፧።፣ (6.3a)

𝑦፭። ≤ 1∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑆፬ (6.3b)

Next, the basic relocation characteristics are defined without the neighbour based block-
ing constraints. First, it has to be defined that a component 𝑛 can only be transferred from 𝑖
to 𝑗 if that component is located at 𝑖. This is done in Equation (6.3c). By imposing the moves
from 𝑖 to any location 𝑗 at time 𝑡 for position 𝑛 to be smaller than 𝑦፭፧።, this can only be 1 if
𝑦፭፧። = 1 and thus the component can move from 𝑖 to somewhere else, if initially located at 𝑖.

Similarly, a component can only be moved to a location 𝑗 if that location is unoccupied.
This is enforced by Equation (6.3d). By adding the sum of all moves to 𝑗 at time 𝑡 of component
𝑛 and the sum of all components at position 𝑗 at time 𝑡, only one of these can be equal to
one. Therefore, a move from 𝑖 to 𝑗 is only possible if no component is available at location
𝑗. Finally, to complete the basic relocation constraints, Equation (6.3e) is added. This limits
the maximum moves per timestep to one.

∑
፣∈ፒ
𝑥፭፧።፣ − 𝑦፭፧። ≤ 0∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁, 𝑖 ∈ 𝑆 (6.3c)

∑
።∈ፒ
𝑥፭፧።፣ + 𝑦፭፣ ≤ 1∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁, 𝑗 ∈ 𝑆 (6.3d)

Now that the characteristics of movements are given, the movement goals need to be
specified. Since there is no relocation possible from the vessel location to any storage location
due to the set of allowed paths 𝑃, the following two restrictions suffice to specify ordered
unloading: The components have to move to the vessel location in order and all components
have to be relocated to the vessel location. The latter one is shown in Equation (6.3f). Here,
the sum of all relocation moves from the storage area to the vessel location is set equal to the
amount of components.

50 6. Component Relocation Model

Ordering the components to be unloaded in ascending order can be done by requiring
the following: Any component 𝑛, except the first one, can only be loaded onto the vessel, if
component 𝑛 − 1 is already loaded onto the vessel. This is shown in Equation (6.3g).

∑
፭∈ፓ

∑
፧∈ፍ

∑
።∈ፒ፬

𝑥፭፧።፬፝ = |𝑁| (6.3f)

𝑦፭፧፬፝ − 𝑦፭(፧ዅኻ)፬፝ ≤ 0∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁 ⧵ {1} (6.3g)

Figure 6.2: Component
blocking itself

With these constraints, all components will be relocated in ascend-
ing order of 𝑁 to the vessel, without any physically impossible moves.
The only thing missing are the neighbour-based constraints. For a
move from 𝑖 to 𝑗, let’s first look at the source location 𝑖. It is noted
that the leftmost and rightmost locations are always accessible. For
the other locations there has to be at least one free neighbour. This
free neighbour requirement can be interpreted as following: A location
𝑖 is considered unblocked, if the sum of all neighbours is at most 1. In
Equation (6.3h), the sum of all neighbours, plus all moves from 𝑖, is set lesser or equal than
2. This results in an upper limit of 1 move in case of 1 or less neighbours, and an upper limit
of 0 moves in case of two neighbours. This equation is added for every location, except the
outer ones.

The same principle can be used to impose destination 𝑗 to have maximal one neighbour.
However, one thing has to be noted. When a component is repositioned to its direct neigh-
bouring location, the target location might seem blocked, while in reality it isn’t. This is
illustrated in Figure 6.2. Here, the middle component has two neighbours and therefore no
component can be placed here. In reality, the component will not block itself, thus the move
in Figure 6.2 would be possible. Therefore, moves from a direct neighbour are excluded
in Equation (6.3i). This principle is termed as the self-blocking principle, and will also be
considered in blocking constraints introduced later in this thesis.

∑
፧∈ፍ

∑
፣∈ፒ
𝑥፭፧።፣ + 𝑦፭(።ዅኻ) + 𝑦፭(።ዄኻ) ≤ 2∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑆 ⧵ {1, |𝑆|} (6.3h)

∑
፧∈ፍ

∑
።∈ፒ⧵{፣ዅኻ,፣ዄኻ}

𝑥፭፧።፣ + 𝑦፭(፣ዅኻ) + 𝑦፭(፣ዄኻ) ≤ 2∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝑆 ⧵ {1, |𝑆|} (6.3i)

The complete model is given in Equations 6.3 and is repeated below. Equations (6.3a)
to (6.3g) and Equations (6.3j) to (6.3k) give a model for ordered unloading from any geometry
of fixed positions to a target destination, where components can freely be swapped between
any two positions as long as there is an allowed path. Although the solution for this model
will always be trivial, it provides a good basis for more complicated models. By adding Equa-
tions (6.3h) and (6.3i), the neighbour-based relocation constraints are added. In the next
section, these will be replaced by two dimensional relocation constraints.

min∑
፭∈ፓ

∑
፧∈ፍ

∑
።∈ፒ
∑
፣∈ፒ
𝑥፭፧።፣ (6.3a)

subject to
𝑦፭። ≤ 1∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑆፬ (6.3b)

∑
፣∈ፒ
𝑥፭፧።፣ − 𝑦፭፧። ≤ 0∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁, 𝑖 ∈ 𝑆 (6.3c)

∑
።∈ፒ
𝑥፭፧።፣ + 𝑦፭፣ ≤ 1∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁, 𝑗 ∈ 𝑆 (6.3d)

6.2. Two dimensional relocation constraints 51

∑
፧∈ፍ

∑
።∈ፒ
∑
፣∈ፒ
𝑥፭፧።፣ ≤ 1∀𝑡 ∈ 𝑇 (6.3e)

∑
፭∈ፓ

∑
፧∈ፍ

∑
።∈ፒ፬

𝑥፭፧።፬፝ = |𝑁| (6.3f)

𝑦፭፧፬፝ − 𝑦፭(፧ዅኻ)፬፝ ≤ 0∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁 ⧵ {1} (6.3g)

∑
፧∈ፍ

∑
፣∈ፒ
𝑥፭፧።፣ + 𝑦፭(።ዅኻ) + 𝑦፭(።ዄኻ) ≤ 2∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑆 ⧵ {1, |𝑆|} (6.3h)

∑
፧∈ፍ

∑
።∈ፒ⧵{፣ዅኻ,፣ዄኻ}

𝑥፭፧።፣ + 𝑦፭(፣ዅኻ) + 𝑦፭(፣ዄኻ) ≤ 2∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝑆 ⧵ {1, |𝑆|} (6.3i)

𝑥፭፧።፣ ∈ {0, 1}∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁, (𝑖, 𝑗) ∈ 𝑃 (6.3j)
𝑥፭፧።፣ = 0∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁, (𝑖, 𝑗) ∉ 𝑃 (6.3k)

6.2. Two dimensional relocation constraints
The model is now expanded to contain two dimensional blocking constraints. As shown
earlier, the field consists of a grid of up to two layers with a crane on a rails next to it as
shown in Figure 2.9. In the remainder of this thesis, the field will always be described from
the position of the crane. The front row is the row which is closest to the crane, and behind
that is the back row. The back row is positioned at the bottom in every figure, and the front
row at the top.

Recall from Chapter 2 that a component is blocked if it has no free side or when there is a
component in front of it. Having a free side means, for the locations in the front row, that on
either the left or right side, there is a free space. The same holds for the locations in the back
row, but additionally there also must be a free space in front of this free side neighbour.

This results in different blocking constraints for different locations. For components in
the front row, only the left or right neighbour has to be unoccupied. For components in
the back row, all five surrounding components have to be considered. To implement this
in the model, the term relevant side neighbour is introduced. The relevant side neighbours
are the neighbours on both rows on both sides, which have to be considered in deciding the
blocked-state of a location. This is shown in Figure 6.3. Note that only side neighbours, thus
neighbours in the adjacent columns, are considered here. The reason for this is that the
blocking constraints due to components in front of other components are added separately.

Locations with side neighbours at only one side are never blocked by the side neighbour
based blocking constraints, since there is always a free side. The same holds for locations
at the front row with only one side neighbour in the same row. These locations therefore
have zero side neighbours to consider. Next to this, all other locations at the front row only
have the left and right side neighbours to consider, and therefore these positions have two
relevant side neighbours. Furthermore, ,it can be seen in Figure 6.3 that there are three back
row locations with one neighbour on one side and two on the other side, resulting in three
relevant side neighbours. The middle back component has all 4 relevant side neighbours to
take into consideration.

0 3 3 4 3

0 2 2 2 0

Figure 6.3: Relevant side neighbours per location

This information is stored in the sets 𝑀፬
ፚ

and 𝑅፬፛።. 𝑀፬
ፚ contains all locations with ex-

actly 𝑎 relevant side neighbours. 𝑅፬፛። with
𝑏 ∈ {1, 2} contains the two sets (left and
right) of relevant side neighbours of location
𝑖. In case of three relevant neighbours, 𝑅፬ኻ።
represents the neighbour-set with length 1,
and 𝑅፬ኼ። represents the set of two neigh-
bours. Similarly, the locations with a stor-
age location in front of it are contained in 𝑀፡, and for each of these locations 𝑅፡። defines the

52 6. Component Relocation Model

location above 𝑖. Besides these, the set of all relevant neighbours of location 𝑖 is defined
under 𝑅፬። . 𝑅፬፛።፦ denotes the 𝑚th element in 𝑅፬፛።. If there is more than 1 element in 𝑅፬፛።, then
𝑚 = 1 denotes the back row.

These sets are summarised in Table 6.2.

Set Description

𝑀፬
ፚ Set of locations with exactly 𝑎 relevant side neighbours

𝑀፡ Set of locations with one location in front it
𝑅፬ኻ። Smallest set of side neighbours (left or right) of location 𝑖
𝑅፬ኼ። largest set of side neighbours (left or right) of location 𝑖
𝑅፡። Defines the location above 𝑖.
𝑅፬። All relevant side neighbours of 𝑖
𝑅፬ፚ።፦ The 𝑚th location in 𝑅፬ፚ።, with the highest 𝑚 being the most front one

Table 6.2: Sets to describe neighbouring components

With these sets, the relocation constraints of the two-dimensional problem can be de-
fined. As stated before, the relocation constraints of side neighbour based blocking and
front-neighbour based blocking are added separately. This is done because there is an and-
relationship between these two: One side must be free and the top must be free. In linear
programming, and-relationships are simple and can be added by separate constraints. The
top-neighbour constraints are added first. These constraints are shown in Equations (6.7a)
and (6.7b). For a move from 𝑖 to 𝑗, 𝑖 is required to be unblocked in Equation (6.7a) and 𝑗
is required to be unblocked in Equation (6.7b). In these equations, either the total amount
of relocations to or from a location, or the total amount of components present at the front
position (second part), can be 1, but not both. In Equation (6.7b) relocations from the front
position to the back position are excluded due to the self-blocking principle.

∑
፧∈ፍ

∑
፣∈ፒ
𝑥፭፧።፣ + 𝑦፭ፑ፡። ≤ 1∀𝑖 ∈ 𝑀

፡ , 𝑡 ∈ 𝑇 (6.7a)

∑
፧∈ፍ

∑
።∈ፒ⧵{ፑ፡፣ }

𝑥፭፧።፣ + 𝑦፭ፑ፡፣ ≤ 1∀𝑗 ∈ 𝑀
፡ , 𝑡 ∈ 𝑇 (6.7b)

This remains the side neighbouring based constraints. There are three types here, those
with two, three and four relevant side neighbours. First, the locations with two relevant side
neighbours are added. These constraints are the same as in the one-dimensional problem
and are written based on the introduced sets in Equations (6.7c) and (6.7d).

∑
፧∈ፍ

∑
፣∈ፒ
𝑥፭፧።፣ + 𝑦፭ፑ፬ኻ።ኻ + 𝑦፭ፑ፬ኼ።ኻ ≤ 2∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑀

፬
ኼ (6.7c)

∑
፧∈ፍ

∑
።∈ፒ⧵ፑ፬።

𝑥፭፧።፣ + 𝑦፭ፑ፬ኻ።ኻ + 𝑦፭ፑ፬ኼ።ኻ ≤ 2∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝑀
፬
ኼ (6.7d)

For the back rows, the constraints are less simple. The locations with four relevant side
neighbours are discussed first. The side based constraints can be described as follows: A
location 𝑖 is unblocked based on side neighbours constraints, if either the front and back
row locations on the left, or the front and back row locations on the right, are unoccupied.
In Equations (6.7c) and (6.7d) the principle was used that out of two positions, at least one
has to be unoccupied. If this principle would be used for the four neighbour constraints,
thus requiring two out of four locations to be unoccupied, the back middle component in
Figure 6.5 would not be considered blocked.

Therefore, consider location 𝑖. The variables 𝐿፟,𝐿፛,𝑅፟ and 𝑅፛, respectively denote the left
front, left back, right front and right back locations as shown in Figure 6.4. According to

6.2. Two dimensional relocation constraints 53

𝐿፛

𝐿፟

𝑖 𝑅፛

𝑅፟

Figure 6.4: Notation during explanation of side
constraints

𝑖

Figure 6.5: Layout where ። would be considered
unblocked if a 2 out of 4 principle would be used

Lemma 6.2.1, relocation from 𝑖 can be blocked if there is not one free neighbour side, by
adding Equations (6.7e) and (6.7f).

2𝑦፭ፑ፬ኻ።ኻ + 𝑦፭ፑ፬ኼ።ኻ + 𝑦፭ፑ፬ኼ።ኼ + 2∑
፧∈ፍ

∑
፣∈ፒ
𝑥፭፧።፣ ≤ 4∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑀፬

ኾ (6.7e)

2𝑦፭፧ፑ፬ኻ።ኼ + 𝑦፭ፑ፬ኼ።ኻ + 𝑦፭ፑ፬ኼ።ኼ + 2∑
፧∈ፍ

∑
፣∈ፒ
𝑥፭፧።፣ ≤ 4∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑀ኾ፬ (6.7f)

Lemma 6.2.1. Let 𝑥ᖣ። be 1 if and only if a component is relocated from a location 𝑖 with 4 relevant
side neighbours, and let 𝐿፮,𝐿፝,𝑅፮ and 𝑅፝ denote the binaries equal to one if and only if respectively
the left upper, left bottom, right upper or right bottom location is occupied. Then Equation (6.4) and
Equation (6.5) block relocations from 𝑖 if and only if there is not one free side.

𝐿፛ + 𝐿፟ + 2𝑅፟ + 2𝑥ᖣ። ≤ 4 (6.4)

𝐿፛ + 𝐿፟ + 2𝑅፛ + 2𝑥ᖣ። ≤ 4 (6.5)

Proof. If at least one component is placed in the left column, either 𝐿፟, 𝐿፛, or both are equal to 1. Then
Equation (6.4) becomes either 2𝑅፟ + 2𝑥ᖣ። ≤ 3 or 2𝑅፟ + 2𝑥ᖣ። ≤ 2, and Equation (6.5) will become either
2𝑅፛ + 2𝑥ᖣ። ≤ 3 or 2𝑅፛ + 2𝑥ᖣ። ≤ 2. If also one component is placed in the right column, either 𝑅፟, 𝑅፛, or
both are equal to 1. If 𝑅፟ = 1, Equation (6.4) becomes 2𝑥ᖣ። ≤ 0 or 2𝑥ᖣ። ≤ 1. If 𝑅፛ = 1, Equation (6.5)
becomes 2𝑥ᖣ። ≤ 0 or 2𝑥ᖣ። ≤ 1.

Conversely, if the whole left column is unoccupied, Equation (6.4) and Equation (6.5) both become
2 ∗𝑅፟ +2𝑥ᖣ። ≤ 4 and 2 ∗𝑅፛ +2𝑥ᖣ። ≤ 4, respectively. Therefore, the constraints are never violated in this
case.

If the right column is unoccupied, both Equations (6.4) and (6.5) become 𝐿፛ + 𝐿፟ + 2𝑥ᖣ። ≤4, which
also can never be violated.

A similar approach can be used for relocations from a location, although the self-blocking
principle has to be taken into account. For this purpose, let’s consider constraints in the
form of Equation (6.5), with 𝑥ᖣ። denoting the moves to 𝑖 from location 𝑗 ∉ {𝐿፟ , 𝐿፛ , 𝑅፛}. Note that
relocations from 𝐿፛ and 𝑅፛ do not have to be considered, since components at these location
can always be moved to 𝑖 if there is no component in front of them and are always blocked
when there is. Therefore, blocking of these relocations are already imposed due to the front-
blocking constraints. Furthermore, by Lemma 6.2.2, the self blocking principle is taken care
of for the right upper position.

Therefore, adding a symmetrical equation for the left upper position, and an equation
in the form of Equation (6.5), completes the blocking constraints without violating the self-
blocking principle for all neighbouring components. This gives in Equations (6.7g) and (6.7h).

It remains to add blocking constraints for all non-neighbouring locations. Since an equa-
tion in the form of Equation (6.4) was already added, by Lemma 6.2.1, this can be completed
by adding an equation in the form Equation (6.5), where 𝑥ᖣ። denoting the moves to 𝑖 from any
non-neighbouring location. Therefore, Equation (6.7i) is added. .

2𝑦፭ፑ፬ኻ።ኻ + 𝑦፭ፑ፬ኼ።ኻ + 𝑦፭ፑ፬ኼ።ኼ + 2∑
፧∈ፍ

∑
።∈ፒᖣ

𝑥፭፧።፣ ≤ 4∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝑀፬
ኾ , 𝑆ᖣ = 𝑆 ⧵ {𝑅፬ኻ።ኻ, 𝑅፬ኼ።ኻ, 𝑅፬ኼ።ኼ} (6.7g)

54 6. Component Relocation Model

2𝑦፭፧ፑ፬ኻ።ኼ + 𝑦፭፧ፑ፬ኼ።ኻ + 𝑦፭፧ፑ፬ኼ።ኼ + 2∑
፧∈ፍ

∑
።∈ፒᖣ

𝑥፭፧።፣ ≤ 4∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝑀፬
ኾ , 𝑆ᖣ = 𝑆 ⧵ {𝑅፬ኻ።ኼ, 𝑅፬ኼ።ኻ, 𝑅፬ኼ።ኼ} (6.7h)

2𝑦፭ፑ፬ኼ።ኻ + 𝑦፭፧ፑ፬ኻ።ኻ + 𝑦፭ፑ፬ኻ።ኼ + 2∑
፧∈ፍ

∑
።∈ፒᖣ

𝑥፭፧።፣ ≤ 4∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝑀፬
ኾ , 𝑆ᖣ = 𝑆 ⧵ {𝑅፬ኼ።ኻ, 𝑅፬ኻ።ኻ, 𝑅፬ኻ።ኼ} (6.7i)

Lemma 6.2.2. Let 𝑥ᖣ። be 1 if and only if a component is placed to a location 𝑖 with 4 relevant side
neighbours from any non-neighbouring place or the right upper neighbour, and let 𝐿፟,𝐿፛,𝑅፟ and 𝑅፛
denote the binaries equal to one if and only if the left front, left back, right front and right back location is
occupied, respectively. Then Equation (6.5) blocks relocations from the right upper location to location
𝑖 if the left side is not completely unoccupied and the right bottom location is occupied

Proof. If the left side is not completely unoccupied and the right bottom side is occupied, Equation (6.5)
becomes {0, 1} + 2𝑥ᖣ። ≤ 1. Therefore, a move from the right top location to location 𝑖 is blocked.

For the three side neighbours, a single equation in the form of Equation (6.4) suffices for
defining the blocking constraints on relocation from a location 𝑖. This gives Equation (6.7j).
Furthermore, if Equation (6.7k) is added, blocking requirements for all relocations to location
𝑖 from any location except the side neighbours are added.

Furthermore, relocations from 𝑅፬ኻ።ኻ are always allowed, and relocations from the back row
in 𝑅፬ኼ። are allowed if and only if there is no component in front if it. Therefore, only the front
component of 𝑅፬ኼ። has to be considered. This component can be relocated to 𝑖 if and only if
𝑅፬ኻ።ኻ is not occupied, so by adding Equation (6.7l) this constraint is added.

2𝑦፭ፑ፬ኻ።ኻ + 𝑦፭ፑ፬ኼ።ኻ + 𝑦፭ፑ፬ኼ።ኼ + 2∑
፧∈ፍ

∑
፣∈ፒ
𝑥፭፧።፣ ≤ 4∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑀፬

ኽ (6.7j)

2𝑦፭ፑ፬ኻ፣ኻ + 𝑦፭ፑ፬ኼ፣ኻ + 𝑦፭ፑ፬ኼ፣ኼ + 2∑
፧∈ፍ

∑
።∈ፒ⧵ፑ፬፣

𝑥፭፧።፣ ≤ 4∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝑀፬
ኽ (6.7k)

𝑦፭ፑ፬ኻ፣ኻ + ∑
፧∈ፍ

𝑥፭፧ፑ፬ኼ፣ኼ፣ ≤ 1∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝑀
፬
ኽ (6.7l)

In the two-dimensional grid, loadout locations 𝑆፬፥ have been introduced. These are lo-
cations from which loading and unloading to the ship is possible. This can be done by re-
moving the paths from the storage-only locations 𝑆፬፭ to the vessel loading location, as shown
in Equation (6.6). With this, the two dimensional loading model can be defined by combin-
ing Equations 6.7, Equations (6.3a) to (6.3g), Equation (6.3j) and Equation (6.3k). The new
equations are displayed again in Equations 6.7

𝑃 = {(𝑖, 𝑗)|𝑖 ∈ 𝑆፬ , 𝑗 ∈ 𝑆፬} ∩ {(𝑖, 𝑗)|𝑖 ∈ 𝑆፥፬ , 𝑗 ∈ 𝑆፬} (6.6)

6.3. Batches 55

∑
፧∈ፍ

∑
፣∈ፒ
𝑥፭፧።፣ + 𝑦፭ፑ፡። ≤ 1∀𝑖 ∈ 𝑀

፡ , 𝑡 ∈ 𝑇 (6.7a)

∑
፧∈ፍ

∑
።∈ፒ⧵ፑ፡፣

𝑥፭፧።፣ + 𝑦፭ፑ፡፣ ≤ 1∀𝑗 ∈ 𝑀
፡ , 𝑡 ∈ 𝑇 (6.7b)

∑
፧∈ፍ

∑
።∈ፒ
𝑥፭፧።፣ + 𝑦፭ፑ፬ኻ።ኻ + 𝑦፭ፑ፬ኼ።ኻ ≤ 2∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑀

፬
ኼ (6.7c)

∑
፧∈ፍ

∑
።∈ፒ⧵ፑ፬።

𝑥፭፧።፣ + 𝑦፭ፑ፬ኻ።ኻ + 𝑦፭ፑ፬ኼ።ኻ ≤ 2∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝑀
፬
ኼ (6.7d)

2𝑦፭ፑ፬ኻ።ኻ + 𝑦፭ፑ፬ኼ።ኻ + 𝑦፭ፑ፬ኼ።ኼ + 2∑
፧∈ፍ

∑
፣∈ፒ
𝑥፭፧።፣ ≤ 4∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑀፬

ኾ (6.7e)

2𝑦፭፧ፑ፬ኻ።ኼ + 𝑦፭ፑ፬ኼ።ኻ + 𝑦፭ፑ፬ኼ።ኼ + 2∑
፧∈ፍ

∑
፣∈ፒ
𝑥፭፧።፣ ≤ 4∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑀፬

ኾ (6.7f)

2𝑦፭ፑ፬ኻ።ኻ + 𝑦፭ፑ፬ኼ።ኻ + 𝑦፭ፑ፬ኼ።ኼ + 2∑
፧∈ፍ

∑
።∈ፒᖣ

𝑥፭፧።፣ ≤ 4∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝑀፬
ኾ , 𝑆ᖣ = 𝑆 ⧵ {𝑅፬ኻ።ኻ, 𝑅፬ኼ።ኻ, 𝑅፬ኼ።ኼ} (6.7g)

2𝑦፭፧ፑ፬ኻ።ኼ + 𝑦፭፧ፑ፬ኼ።ኻ + 𝑦፭፧ፑ፬ኼ።ኼ + 2∑
፧∈ፍ

∑
።∈ፒᖣ

𝑥፭፧።፣ ≤ 4∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝑀፬
ኾ , 𝑆ᖣ = 𝑆 ⧵ {𝑅፬ኻ።ኼ, 𝑅፬ኼ።ኻ, 𝑅፬ኼ።ኼ} (6.7h)

2𝑦፭ፑ፬ኼ።ኻ + 𝑦፭፧ፑ፬ኻ።ኻ + 𝑦፭ፑ፬ኻ።ኼ + 2∑
፧∈ፍ

∑
።∈ፒᖣ

𝑥፭፧።፣ ≤ 4∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝑀፬
ኾ , 𝑆ᖣ = 𝑆 ⧵ {𝑅፬ኼ።ኻ, 𝑅፬ኻ።ኻ, 𝑅፬ኻ።ኼ} (6.7i)

2𝑦፭ፑ፬ኻ።ኻ + 𝑦፭ፑ፬ኼ።ኻ + 𝑦፭ፑ፬ኼ።ኼ + 2∑
፧∈ፍ

∑
፣∈ፒ
𝑥፭፧።፣ ≤ 4∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝑀፬

ኽ (6.7j)

2𝑦፭ፑ፬ኻ፣ኻ + 𝑦፭ፑ፬ኼ፣ኻ + 𝑦፭ፑ፬ኼ፣ኼ + 2∑
፧∈ፍ

∑
።∈ፒ⧵ፑ፬፣

𝑥፭፧።፣ ≤ 4∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝑀፬
ኽ (6.7k)

𝑦፭ፑ፬ኻ፣ኻ + ∑
፧∈ፍ

𝑥፭፧ፑ፬ኼ፣ኼ፣ ≤ 1∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝑀
፬
ኽ (6.7l)

6.3. Batches
So far, only loading in a certain order, with an initial field of components, was considered.
During an installation project, the components will arrive and depart in batches. For this
purpose, one more location is added: The arrival location, located at 𝑖 = 0. All components
start in this position. Paths are added from this location, to the loadout area. These are called
arrival paths, as shown in Equation (6.8). Together with the field paths (Equation (6.9)) and
departure paths (Equation (6.10)), the total set of paths is defined as Equation (6.11).

𝑃ፚ = {(0, 𝑗)|𝑗 ∈ 𝑆፬፥} (6.8)
𝑃፟ = {(𝑖, 𝑗)|𝑖 ∈ 𝑆፬ , 𝑗 ∈ 𝑆፬} (6.9)
𝑃፝ = {(𝑖, 𝑠፝)|𝑖 ∈ 𝑆፬፥} (6.10)
𝑃 = 𝑃ፚ ∪ 𝑃፟ ∪ 𝑃፝ (6.11)

Ships, referred to as batches, arrive in order of 𝐵 = {1, .., 𝑏፦ፚ፱}. Each batch 𝑏 has a type
𝑏𝑡፛(arriving or departing), and 𝑃፛፭፛ denote the corresponding paths (𝑃ፚ or 𝑃፝). Furthermore,
a batch 𝑏 includes components 𝑁ፁ፛ and is called completed if all components 𝑁ፁ፛ if all compo-
nents have crossed a path in 𝑃፛፭፛ . To fulfil the schedule of arriving and departing ships all
batches have to be completed in order.

56 6. Component Relocation Model

Variable Description

𝐵 Batches
𝑃ፚ Arrival paths
𝑃፝ Departure paths
𝑏𝑡፛ Type of batch 𝑏
𝑁ፁ፛ Components in batch 𝑏
𝑃፟ Field paths
𝑃፛𝑡፛ Paths corresponding to 𝑏𝑡፛

Table 6.3: Batch variables

To complete an arriving batch 𝑏, all components have to be moved to the loadout area.
This is expressed in Equation (6.12). This equation sets the sum of all components of batch
𝑏 which are relocated over the arrival paths 𝑃ፚ, equal to amount of components in batch 𝑏.
For completing a departing batch the same can be done but for paths 𝑃፝.

∑
፭∈ፓ

∑
፧∈ፍ፛

∑
(።,፣)∈ፏፚ

𝑥፭፧።፣ = |𝑁ፁ፛ | (6.12)

To require ordered completion of these batches, constraints are added for each pair of two
subsequent batches 𝑏 and 𝑑 (thus 𝑏 + 1 = 𝑑). The aim of these constraints is to disallow
any movement of a component in 𝑁ፁ፝ over 𝑃፛፭፝ , before all moves of components 𝑁ፁ፛ over 𝑃፛፭፛
are finished. This is done in Equation (6.13a). The first part of this equation exists of one
(un)loading move from 𝑏 + 1. If a move is done, the second part has to be equal to |𝑁ፁ፛ |. This
means that all (un)loading moves from batch 𝑏 have to be done.

Finally, it is required that during the loading or unloading operation no other moves are
done. If this is not included, other relocations might happen during (un)loading which might
cause delay for the ships. The constraint added for this is Equation (6.13b). This constraint
is added for each batch 𝑏, timestep 𝑡 except 𝑡፦ፚ፱ and each component 𝑛 in 𝑁፛. The terms in
this equation are from left to right: If 𝑛 is (un)loaded at time 𝑡, the total (un)loading flow at
𝑡 + 1 and the total amount of items of 𝑁፛ unloaded until 𝑡.

If the first term is zero, this equation is always valid. This means that the equation only
matters if 𝑛 is (un)loaded at time 𝑡, in which case the first term is equal to |𝑁ፁ፛ |. The second
term can take on either 0 or |𝑁ፁ፛ |. If it is zero, then the third term has to be equal to |𝑁ፁ፛ | to
satisfy the inequality. This means that if one item is (un)loaded from 𝑁ፁ፛ at time 𝑡, and in the
next timestep nothing is unloaded, then |𝑁ፁ፛ | items have to be (un)loaded at the end of time
𝑡. However, if the second term is equal to |𝑁ፁ፛ |, the inequality is always valid. This results in
the rule that if one component of the batch is (un)loaded, either it has to be the last of the
batch, or in the next timestep another item in batch 𝑏 has to be (un)loaded. This satisfies
the direct unloading requirement.

Therefore, the complete CRP model is defined in Equations 6.7, Equations (6.3a) to (6.3g),
Equation (6.3j), Equation (6.3k), Equation (6.13).

|𝑁ፁ፛ | ∑
(።,፣)∈ፏ፛፭፛ዄኻ

𝑥፭፧።፣ −
፭

∑
፭ᖣ዆ኻ

∑
፧ᖣ∈ፍ፛

∑
(።,፣)∈ፏ፛፭፛

𝑥፭ᖣ፧ᖣ።፣ ≤ 0∀𝑡 ∈ 𝑇, 𝑏 ∈ 𝐵 ⧵ {𝑏፦ፚ፱}, 𝑛 ∈ 𝑁ፁ፛ዄኻ

(6.13a)

|𝑁፛| ∑
(።,፣)∈ፏ፛፭፛

𝑥፭፧።፣ − |𝑁፛| ∑
፧ᖣ∈ፍ፛

∑
(።,፣)∈ፏ፛፭፛

𝑥(፭ዄኻ)፧ᖣ።፣ − ∑
፧ᖣ∈ፍ፛

፭

∑
፭ᖣ዆ኻ

∑
(።,፣)∈ፏ፛፭፛

𝑥፭ᖣ፧ᖣ።፣ ≤ 0∀𝑡 ∈ 𝑇 ⧵ {𝑡፦ፚ፱}, 𝑏 ∈ 𝐵, 𝑛 ∈ 𝑁ፁ፛

(6.13b)

6.4. Discussion 57

6.4. Discussion
Whenever a component transfers between the storage-only area and a vessel, it has to go
through the loadout area. This was done by defining the set of paths 𝑃. Although this
method is very convenient and adaptable, it does cause an extra step. Given a transfer of
a component between the vessel and the storage-only area, it is a trivial task to define the
intermediate loadout position as long as there is space available. To solve this trivial task two
extra steps are needed per component, thus increasing the amount of variables. Therefore,
it might be interesting to explore the possibilities of a direct path between the vessel and
storage-only area, with increased cost to account for the intermediate loadout step without
directly modelling it. This would need extra constraints however, which would define of these
virtual paths can be used, based on the current loadout occupation.

Furthermore, it is interesting, and important, to gain more knowledge what the possibili-
ties are of linear inequalities to model component blocking. This is very problem specific, and
although moderately complicated blocking constraints have been modelled here not much
can be said about what kind of constraints are impossible. During the Walney Installation
project themovement of monopiles also included blocking constraints. Although not included
in the scope of this thesis, it was shown in Appendix C how these blocking constraints could
be formulated by constraints compatible with the current crane optimisation model.

6.5. Conclusion
The basic model without the spatial relocation constraints gives a very general model for load-
ing and unloading problems. This can also be of use for other components during offshore
wind farm installations, or for relocation problems in general.

The path based approach makes this model suitable for other problem where flow between
locations is not always possible. This might for example be in a storage field existing of
different parts, where transfer between parts can only happen at certain locations. This can
easily be modelled by simple deleting or adding different paths.

The model supports both initial components in the field as arriving components. All
reshuffling will be executed in between (un)loading phases due to Equation (6.13b). The
relocation constraints have been added for the Walney transition pieces. For different geo-
metrical constraints, most of the current model can be used. Only the blocking constraints
have to be reformulated.

7
Crane optimisation exact

To find an optimal solution for the model introduced in Chapter 6, it was implemented in
the MILP solver of CPLEX Optimization Studio. To improve the performance of this solver,
cutting planes were introduced. Cutting planes are additional constraints, added with the
goal of improving the formulation, as discussed in Chapter 4. Besides this, some changes
in implementation have been made for the variables, to both reduce the memory needed to
store the problem, and to reduce the time needed for solving. These changes in variables are
discussed first, after which the cutting planes are presented.

7.1. Variables
Two changes have been made to the variables. First, the paths have been reduced, and
therefore the amount of 𝑥 variables. Secondly, the variable 𝑦 was introduced to decrease the
non-zeros in the constraint matrix. This had a positive effect on the solver efficiency and also
on the memory used.

Instead of a fixed set of paths, the paths were modified to be component and timestep
specific. The path indices were changed from (𝑖, 𝑗) to (𝑡, 𝑛, 𝑖, 𝑗). If a path does not exist,
the corresponding 𝑥 variable is fixed at zero. This makes it possible to reduce the amount
of variables in the problem. For each arriving batch 𝑏, the earliest possible arriving time
is defined as 𝑡𝑏፦።፧፛ . A lower bound on this is the amount of components in the preceding
batches. Similarly, 𝑡𝑏፦ፚ፱፛ denotes the latest possible departure time of a departing batch.
Furthermore, 𝑏፝፧ and 𝑏ፚ፧ are introduces as, respectively, the departing and arrival batches
containing component 𝑛.

Variable Description

𝑡𝑏፦።፧፛ Earliest arrival time for any arriving batch 𝑏
𝑡𝑏፦ፚ፱፛ Latest departure time for any departing batch 𝑏
𝑏ፚ፧ Arrival batch of component 𝑛
𝑏፝፧ Departing batch of component 𝑛

Table 7.1: Variables for path definition

The paths can now be defined. In Equation (7.1), all paths from the arrival location to
the loadout are defined. The latest time of these paths is subtracted by the length of the
departing batch, since they already need to be moved to the field at that time. The opposite
is done in Equation (7.2). Here, the paths only exist |𝑁፛ፚ፧ | timesteps after the earliest possible
arrival time. For the intrafield paths, 𝑃፟ this is combined, as shown in Equation (7.3)

𝑃ፚ = {(𝑡, 𝑛, 0, 𝑗)|𝑗 ∈ 𝑆፬፥ , 𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁, 𝑡 ≥ 𝑡𝑏፦።፧፛ፚ።
, 𝑡 ≤ 𝑡𝑏፦ፚ፱፛፝።

− |𝑁፛፝። |} (7.1)

59

60 7. Crane optimisation exact

𝑃፝ = {(𝑡, 𝑛, 𝑖, 𝑠፝)|𝑖 ∈ 𝑆፬፥ , 𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁, 𝑡 ≥ 𝑡𝑏፦።፧፛ፚ፧ + |𝑁፛ፚ፧ |, 𝑡 ≤ 𝑡𝑏፦ፚ፱፛፧፝
} (7.2)

𝑃፟ = {(𝑡, 𝑛, 𝑖, 𝑗)|𝑖 ∈ 𝑆፟ , 𝑗 ∈ 𝑆፟ , 𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁, 𝑡 ≥ 𝑡𝑏፦።፧፛ፚ፧ + |𝑁፛ፚ፧ |, 𝑡 ≤ 𝑡𝑏፦ፚ፱፛፧፝
− |𝑁፛፧፝ |} (7.3)

7.2. Cutting Planes
Cutting planes are additional equations which do not add new characteristics to the model,
but remove a part of the search space to improve solver performance. Three types of these
equations where added. First, a lower bound on the amount of moves is calculated. Secondly,
time symmetry is removed and thirdly, a type of move which is never included in an optimal
solution is forbidden.

Both lower bounds are based on a simulation of the arriving and departing batches, with-
out considering the blocking constraints. A lower bound 𝑙𝑏፱ is calculated based on the forced
moves from loadout. This algorithm can be described as following. For each batch, the length
of that batch is added to 𝑙𝑏፱. If it is an arriving batch and there is not enough space on the
loadout area, the extra space needed is also added to 𝑙𝑏፱. Simultaneously, a set of all possible
components on loadout 𝑁፥ is kept, by adding all arriving components per batch. When the
loadout area is completely replaced in one arrival batch, or cleared in a departing batch, 𝑁፥
is reset. When a departing component is not in 𝑁፥, it means that it must be in the storage
only-area. Therefore, if this component departs, 𝑙𝑏፱ is incremented by one to represent the
move from the storage-only location to the loadout location. This 𝑙𝑏፱ is than used as a lower
bound for 𝑥, as shown in Equation (7.4).

∑
፭∈ፓ

∑
፧∈ፍ

∑
።∈ፒ
∑
፣∈ፒ
𝑥፭፧።፣ ≥ 𝑙𝑏፱ (7.4)

This can be done similarly for the amount of moves, plus the moves left. This is applicable
when considering partial loadout, thus with an initial and/or a remaining amount of com-
ponents in the storage area. For this, no list of possible components at the loadout area is
needed. The lower bound is defined as 𝑙𝑏፱፲. This is initialised as the amount of components
in the storage-only area. For these components, it holds that either they have to be replaced,
causing 𝑥 to increase with one, or they will end at the storage-only area, causing 𝑦 to increase
by one. When a new batch 𝑏 arrives and extra space is needed at the loadout area, 𝑙𝑏፱፲ is
increased by 2∗|𝑁፛|. One for moving to the storage-only area, and one for either staying there
or moving away. This lower bound is then added as shown in Equation (7.5)

∑
፭∈ፓ

∑
፧∈ፍ

∑
።∈ፒ
∑
፣∈ፒ
𝑥፭፧።፣ + ∑

፧∈ፍ
∑
።∈ፒ፬

𝑦፭፞። ≥ 𝑙𝑏፱፲ (7.5)

The next cutting plane removes time-symmetry. Often, there are more timesteps then
moves needed. Give a sequence of moves, these moves can be fitted in 𝑇 in multiple ways.
For example, consider the moves sequence (𝑎,𝑏) with |𝑇| = 3 and let _ denote a timestep
without any movement. The solutions (𝑎,𝑏,_),(𝑎,_,𝑏) and (_,𝑎,𝑏) are then identical, but still
represent three different solutions in the solver. These solutions are called symmetrical. To
prevent exploring these symmetrical solutions, Equation (7.6) is added. The terms in this
equation represent the amount of moves on 𝑡 + 1 and 𝑡. By setting the difference smaller
than zero, it holds that if there is a move at 𝑡 + 1, there has to be a move at 𝑡. This pushes
all moves to the first part of 𝑇, therefore removing the symmetrical solutions.

∑
፧∈ፍ

∑
(።,፣)∈ፏ

𝑥(፭ዄኻ)፧።፣ − ∑
፧∈ፍ

∑
(።,፣)∈ፏ

𝑥፭፧።፣ ≤ 0∀𝑡 ∈ 𝑇 ⧵ {𝑡፦ፚ፱} (7.6)

Additionally, one other cutting plane is added. Consider the move 𝑖 to 𝑗 of component 𝑛
where 𝑗 is a storage-only location. If 𝑛 is then relocated again in the next timestep to location

7.2. Cutting Planes 61

𝑘, it holds that 𝑛 could also have been located directly from 𝑖 to 𝑘. Since the latter costs
one move less, the former combination of moves would never happen in an optimal solution.
This is added in Equation (7.7). Here the sum of both previously described moves is set to
maximal one. Therefore, only on of these moves can occur.

∑
፧∈ፍ

∑
።∈ፒ
𝑥፭፧።፣ + ∑

፧∈ፍ
∑
፤∈ፒ

𝑥(፭ዄኻ)፭፧፣፤ ≤ 1∀𝑡 ∈ 𝑇 ⧵ {𝑡፦ፚ፱}, 𝑖 ∈ 𝑆፬ (7.7)

By reducing the paths, the amount of variables was reduced significantly. The change of 𝑦
from an expression of 𝑥 to a separate variable increased the amount of constraints and vari-
ables, but reduced the total amount of non-zeros in the constraint matrix and this trade-off
turned out to be worth it by performing small tests. Furthermore, the cutting planes resulted
in a reduction of the searchspace and therefore an improvement of solver performance. How-
ever, not unexpected, the component relocation problem for Walney is too large to solve to
optimality. Therefore, a heuristic is developed, as will be discussed in Chapter 8.

8
Rolling Horizon Algorithm

The MILP model for the CRP gives an exact definition of the problem and can solve smaller
instances to optimality. For larger instances however, no solution will be found. For this
reason a heuristic method is developed.

This heuristic method is a rolling horizon heuristic, as used by Kamrad et al. [2012]. The
idea of this method is to divide the whole problems in subproblems. The first subproblem is
solved from the project starting time, up to a certain later time called the planning horizon.
The subsequent subproblem uses moves from the preceding one to define it’s initial compo-
nent layout, and thus slightly shifts the timewindow of the subproblem. By combining the
moves in all subproblems, a solution to the complete problem can be found.

For more clarification, the full algorithm will be given in the next section. Subsequently,
the reason for selecting this heuristic will be presented. After that, more implementation
details for the rolling horizon algorithm will be given. This includes modifying the MILP
model and creating an algorithm to solve the subproblem.

8.1. Algorithm
The rolling horizon algorithm is given in Algorithm 8. It is initialised with a batch-horizon, a
batch index set initially at 1 and an initial field. The algorithm then iteratively solves parts
of the complete problem until all batches in 𝐵 are processed.

Algorithm 8 Rolling horizon algorithm
𝐻 = Batch horizon
𝐵 = All batches
𝑏 = 1 ◃Batch index
𝑀 = {} ◃Stored moves
𝐹 = Initial Field
repeat

all_moves = solve(𝐹,𝑏,𝑏 + 𝐻)
move_subset = select_moves(all_moves)
𝑀 = 𝑀∪move_subset
𝐹 = update_field(𝐹,moves_subset)
𝑏 = 𝑏 + 1

until 𝑏 + 𝐻 = |𝐵|

The first step in the rolling horizon loop is solving the subproblem. The first subproblem
is defined as finding an optimal solution to complete the first 𝐻 batches. This will be done
by solving a modified MILP model, as will be introduced later. Solving the subproblem gives
all_moves. This is the optimal solution for (un)loading batches 𝑏 up to 𝑏 + 𝐻.

From these moves, only the (un)loading moves for the first batch will be selected. These
are, for example, the moves to place the components of the first batch to the loadout area,

63

64 8. Rolling Horizon Algorithm

in case of arriving components. These selected moves are then stored, becoming part of the
final solution. An exception for this rule is the final iteration, in which case all moves are
selected and stored.

Full solution

time

Subproblems

Figure 8.1: Rolling horizon illustration for three subproblems

Finally, the field is updated by executing
these selected moves and the batch index
is incremented by one. This loop is then
repeated, until the final batch is included
in the subproblem. A visualization of this
process is shown in Figure 8.1.

8.2. Choice heuristics
The choice for the rolling horizon is based
on literature research and problem char-
acteristics. First of all, good results were
found using this algorithm by Wan et al.
[2009], who compared the rolling horizon
algorithm against multiple other heuristics.
It was also used by Kamrad et al. [2012],
who showed its applicability on a slightly
different problem, namely coil stacking.

This diverse applicability is one of the most important reasons for using the rolling hori-
zon heuristic. Most container-relocation algorithms found in literature were problem specific
algorithms, with instructions based on the goal and structure of the problem. The rolling
horizon can be adapted to different problems by modifying the MILP model. Different geo-
metrical requirements can easily be added by modifying the relocation constraints. It is also
possible to relax constraints to get a lower bound. With this, it is for example possible to see
what the effect would be if only the component just above a location was required to be free,
instead of the side neighbours as well.

Besides this, it is also important to look at what is not done by previous authors. So far,
no authors considered both loading and unloading. The characteristics of the rolling horizon
seem to be favourable for adding this, because it divides the problem in smaller parts, with
the possibility of separating the loading and unloading part.

Another motivation for the rolling horizon is found in the nature of installation projects.
During the installation, circumstances will change and there is a need for an algorithm which
can be ran during the execution of the project, to process these changes and give a new
optimal schedule. For this, it might not be necessary to get the complete schedule. At the
moment of arrival of a ship with components, the crane operator is mostly interesting in
knowing where to place those components, and much less where the components arriving
two weeks later should be placed.

The rolling horizon divides the problem into smaller subproblems. Therefore, it is possible
to run the algorithm partly, for example just for the first subproblem. This would answer the
question what should be done with the current components without running the complete
algorithm.

In conclusion, the rolling horizon algorithm showed good results in the container reloca-
tion problem, is very adaptable and the algorithm seems promising to implement loading and
unloading. Additionally, it can give partial solutions which include the moves up to a certain
point in time, which is useful during installation projects. In the rest of this chapter, further
implementation of the algorithm will be presented.

8.3. Subproblem MILP
The subproblem, iteratively solved during the rolling horizon algorithm, is based on the ear-
lier given model of the crane optimisation model. This formulation already supported com-
ponents in an initial field, but was modelled to load all components. This is not requested

8.3. Subproblem MILP 65

in the subproblem, as only a subset of items (possibly zero) based on the selected batches
should loaded.

By only loading a subset of all components, the final configuration will therefore contain
the components left. When optimizing such a problem solely to crane movements, the final
state of components is not taken into account. This might create solutions where the selected
batches are (un)loaded with minimal movements, but due to the field layout at the end it
might force future steps to require more moves.

To minimise this risk, some evaluation will be needed to determine the quality of the layout
of components at the end of the subproblem. Three principles will be used for this: firstly
the blocking principle will be introduced, which determines if neighbours of a component
will need to be relocated in the future. Secondly, the principle of unusable space will be
described. This will take into account positioning of components causing unusable space.
Finally, a measure for clustering is added, which rewards components being placed close to
each other.

8.3.1. Partial unloading
First, partial unloading will be added. In a solution for the complete problem, the final
condition was that all components were loaded onto the ship. This is not the case in the
subproblem. Let the batches to be (un)loaded in the subproblem be defined as 𝐵ᖣ. Further-
more, let the batch after 𝐵ᖣ, if it exists, be defined as 𝑏ᖣ፟. If 𝑏ᖣ፟ is an arriving batch, the
ending condition is defined as follows: The subproblem is completed if all batches in 𝐵ᖣ are
completed and there is at least |𝑁ፁ፛ᖣ፟ | (amount of components in batch 𝑏ᖣ፟) unoccupied space
in the loadout area.

Additionally, if 𝑏ᖣ፟ is a departing batch, the final condition requires all components of
𝑁፛ᖣ፟ to be placed at the loadout area. If 𝑏ᖣ፟ does not exists, it means that the final batch is
included in the subproblem. If this is the case, the problem can simply require all component
to be unloaded.

In the subproblem, Equations (6.13a) and (6.13b) for uninterrupted loadout and ordered
loadout of batches, respectively, can be used by simple replacing 𝐵 by 𝐵ᖣ. However, Equa-
tion (6.3f) has to be modified. Instead of requiring all components to move to the departure
location 𝑠፝, only the components of the departing batches have to. Additionally, an equation
has to be added to force all arriving components to the loadout area. The sets 𝑁ᖣፚ and 𝑁ᖣ፝
are introduced to represent all arriving and all departing components, respectively, as given
in Equations (8.1) and (8.2).

𝑁ᖣፚ = {𝑛 ∶ 𝑛 ∈ 𝑁ፁ፛ , 𝑏 ∈ 𝐵ᖣ , 𝑐፛ = 1} (8.1)

𝑁ᖣ፝ = {𝑛 ∶ 𝑛 ∈ 𝑁ፁ፛ , 𝑏 ∈ 𝐵ᖣ , 𝑐፛ = 2} (8.2)

With these sets, the following constraints are introduced to the problem. Equation (8.3a)
requires all arriving components to be moved to the loadout area, in a similar fashion of
Equation (6.3f). Additionally, Equation (8.3b) requires all departing components to be loaded
onto the vessel. These two equations replace Equation (8.3b). Furthermore, an inequality
has to be added to prepare the loadout area for the next step 𝑏ᖣ፟. If 𝑏ᖣ፟ is an arriving batch,
it holds that at the final time of the subproblem, there must be enough space to unload all
the components of 𝑏ᖣ፟.

This is done in Equation (8.3c). Here, the total amount of components occupying a loadout
place at the end of the problem must be smaller than the total loadout space, minus the
amount of components in batch 𝑏ᖣ፟. In Equation (8.3d), the total amount of components
from 𝑏ᖣ፟ in the loadout space at the final time is set equal to the amount of components in
𝑏ᖣ፟, therefore requiring all components needed to be on the loadout area after finishing.

66 8. Rolling Horizon Algorithm

Variable Description

𝐵ᖣ All batches arriving and departing during subproblem
𝑏ᖣ፟ Batch after last batch of 𝐵ᖣ
𝑁ᖣፚ All components in arriving batches in subproblem
𝑁ᖣ፝ All components in departing batches in subproblem

Table 8.1: Variables used in Equations 8.3

12 34

Figure 8.2: Illustration of blocked components

∑
፭∈ፓ

∑
፧∈ፍᖣፚ

∑
፣∈ፒ፬

𝑥፭፧ኺ፣ = |𝑁ᖣፚ| (8.3a)

∑
፭∈ፓ

∑
፧∈ፍᖣ፝

∑
።∈ፒ፬

𝑥፭፧።፬፝ = |𝑁ᖣ፝| (8.3b)

∑
፧∈ፍ

∑
።∈ፒ፬፥

𝑦፭፞፧። ≤ |𝑆፥| − |𝑁፛ᖣ፟ | (8.3c)

∑
፧∈ፍ፛ᖣ፟

∑
።∈ፒ፬፥

𝑦፭፞፧። = |𝑁፛ᖣ፟ | (8.3d)

Therefore, the MILP for partial unloading of the subproblem is defined as Equations 6.7,
Equations (6.3a) to (6.3e), Equation (6.3g), Equation (6.3j), Equation (6.3k), Equation (6.13)
and Equations 8.3.

This approach means that all batches considered in the subproblem will be completed
and that the layout will be configured such that the next batch can be completed directly.
However, looking one step ahead is not enough to create good solutions. The final layout will
have to be evaluated an optimised on how promising it is for future batches. This will be
explained in the next section

8.3.2. Layout quality
In the rolling horizon two things need to be optimised: The amount of crane moves, and
the quality of the final layout. In this section, the latter is described. Three principles are
introduced to describe the quality of the layout: The components blocked on departure, the
amount of unavailable space and the amount of clustering. The components blocked on
departure principle will be discussed first.

The idea of blocked components was described earlier. Due to neighbouring components,
it might be illegal to retrieve certain components before moving other ones. This is the main
cause of the CRP not being trivial. In a given layout of components it is quick to see which
components are blocked. In Figure 8.2 a layout is shown where component 1 and 4 are
blocked. If these components are to be loaded onto the vessel in ascending order, relocations
will be needed to retrieve item one since it is blocked by component 2 and 4 which are to
be retrieved later. Therefore, component 1 is said to be blocked on departure. Component
4 is blocked as well, but all surrounding blocks will depart before this. Upon unloading
component 4, all surrounding components will already be removed. Component 4 is therefore
not blocked on departure.

As shown, a component is to be called blocked on departure if it is blocked directly by an
item which will depart at a later time than itself. Indirect blocking occurs when a component
further away than direct neighbours cause blocking, like shown in Figure 8.3. Here it can be

8.3. Subproblem MILP 67

1 234 5

Figure 8.3: Component 1 and 2 are blocked directly while component 3 is blocked indirectly

1 2 4

3

Figure 8.4: The minimum amount of components blocking on arrival is 1, namely component 3.

seen that relocations have to happen before component 3 can be removed, since component
4 and 5 block it. This however, is an indirect block.

In the two dimensional geometry, it is possible that one component blocks multiple other
components. Therefore, it is more interesting to consider the blocking components instead
of the blocked ones. The minimal amount of blocking components in a layout gives a lower-
bound for the reshuffling moves needed for departure. Therefore, the variable 𝑓። is introduced.
If a component at position 𝑖 is blocking another component on departure, it value is equal to
1, else to 0. This is then added for all relocation constraints.

Variable Description

𝑐 Decision variable: Clustering
𝑓 Decision variable: Blocking

𝑁፝ዄ፛ All components departing later than batch 𝑏
𝑝፮ penalty for unavailable space

Table 8.2: Variables used in Section 8.3.2

The values are set by defining the minimal values of 𝑓 in inequalities and by adding 𝑓
to the cost function. Two things are achieved by this. Firstly, 𝑓 is always set to a lower
bound of moves needed. This can be seen in Figure 8.4. For component 1 it is set that
component 3 is blocking. For component 2, either component 3 or component 4 would have
to be relocated. Therefore, in this configuration, component 3 and either component 3 or
component 4 or blocking. Minimizing the amount of blocking components means that only
component 3 is set as blocking. The lower bound for loading all components is than (ignoring
loadout restrictions) the amount of components plus the minimum of blocking components,
which equals to 5.

The cost function from Equation (6.3a) is modified to account for both the moves done
and the blocking components at the end, resulting in Equation (8.5a). Subsequently, the
constraints will be added to define 𝑓. Before adding these constraints, the component set
𝑁፝ዄ፛ is introduces as shown in Equation (8.4). This set contains all components which are
loaded after batch 𝑏 has been completed.

𝑁፝ዄ፛ = {𝑛|𝑏 ∈ 𝑁፛ᖣ , 𝑏ᖣ > 𝑏, 𝑐፛ᖣ = 1} (8.4)

First, 𝑓 is set for front neighbour blocking constraints. This is done in Equation (8.5b). This
equation implies that if there is a component at the back row and there is a component which
departs later above it, the 𝑓 value of this component has to be at least one.

Equation (8.5c) is added for all locations with 2 neighbours. Here, for each departing batch
𝑏 and location 𝑖 with 2 neighbours, the inequality is added to set the blocking variable 𝑓. The
first two terms are the occupation-terms for the neighbours, for all components departing
later than batch 𝑏. The third term is the occupation term for 𝑖 for all components in batch

68 8. Rolling Horizon Algorithm

𝑏. If all these three terms are 2, it follows that one 𝑓 of the neighbours has to be at least
one. By the same principle, this can be added for the other blocking constraints as well. In
Equations (8.5d) and (8.5e), this is added for the locations with 4 relevant side neighbours
and Equation (8.5f) contains the constraints for locations with 4 relevant side neighbours.

The concept explained above evaluates the placed components on quality for departure.
There is however another important mechanism in deciding the quality: The space available.
Consider the layout in Figure 8.5. Regardless of the loadout order, there are no blocked
components here. However, this is still a low quality configuration since all unoccupied
places are blocked by the two components. These blocked unoccupied spaces are called
unavailable spaces, and to improve the rolling horizon a cost is added for these unavailable
places.

Figure 8.5: Layout with all
empty spaces being unavailable

Since only unoccupied locations can be marked as unavailable,
the same variable 𝑓 can be used for this. The equations are similar
to those of the constraints for blocking. Since it might be desired
to put more priority onto either unavailable locations or blocking
components, the cost 𝑝፮ is introduced, representing the cost of an
unavailable location compared to the cost of a blocking component.

For the locations with one location in front of it, the constraints
for unavailable locations are shown in Equation (8.5g). The first
and second terms are 𝑝፮ times the occupation binary for the up
and down location respectively. This implies that if the location

above 𝑖 is occupied and 𝑖 is not, 𝑓። has to be at least 𝑝፮. For components with two neighbours
this is done in Equation (8.5h). Here if the side neighbours of 𝑖 are occupied and 𝑖 isn’t, then
𝑓። is forced to be at least 𝑝፮. The same principle is used for the locations with three and four
neighbours, with one equation for each combination of the neighbours left and right. This is
shown for three and four neighbours respectively in Equations (8.5i) and (8.5j)

min∑
፭∈ፓ

∑
፧∈ፍ

∑
።∈ፒ
∑
፣∈ፒ
𝑥፭፧።፣ +∑

።∈ፒ
𝑓።

(8.5a)

∑
፧∈ፍ፝ዄ፛

𝑦፭፞፧ፑ፡። + ∑
፧∈ፍ፛

𝑦፭፞፧። − 𝑓ፑ፡። ≤ 1∀𝑖 ∈ 𝑀
፡ , 𝑏 ∈ 𝐵፝

(8.5b)

∑
፧∈ፍ፝ዄ፛

𝑦፭፞፧ፑ፬ኻ።ኻ + ∑
፧∈ፍ፝ዄ፛

𝑦፭፞፧ፑ፬ኼ።ኻ + ∑
፧∈ፍ፛

𝑦፭፞፧። − 𝑓ፑ፬ኻ።ኻ − 𝑓ፑ፬ኼ።ኻ ≤ 2∀𝑖 ∈ 𝑀
፬
ኼ , 𝑛 ∈ 𝐵፝

(8.5c)

2 ∑
፧∈ፍ፝ዄ፛

𝑦፭፞፧ፑ፬ኻ።ኻ + ∑
፧∈ፍ፝ዄ፛

𝑦፭፞፧ፑ፬ኼ።ኻ + ∑
፧∈ፍ፝ዄ፛

𝑦፭፞፧ፑ፬ኼ።ኼ + 2 ∑
፧∈ፍፁ፛

𝑦፭፞፧። − 2𝑓ፑ፬ኻ።ኻ − 𝑓ፑ፬ኼ።ኻ − 𝑓ፑ፬ኼ።ኼ ≤ 4∀𝑏 ∈ 𝐵
፝ , 𝑖 ∈ 𝑀፬

ኾ

(8.5d)

2 ∑
፧∈ፍ፝ዄ፛

𝑦፭፞፧ፑ፬ኻ።ኼ + ∑
፧∈ፍ፝ዄ፛

𝑦፭፞፧ፑ፬ኼ።ኻ + ∑
፧∈ፍ፝ዄ፛

𝑦፭፞፧ፑ፬ኼ።ኼ + 2 ∑
፧∈ፍፁ፛

𝑦፭፞፧። − 2𝑓ፑ፬ኻ።ኼ − 𝑓ፑ፬ኼ።ኻ − 𝑓ፑ፬ኼ።ኼ ≤ 4∀𝑏 ∈ 𝐵
፝ , 𝑖 ∈ 𝑀፬

ኾ

(8.5e)

2 ∑
፧∈ፍ፝ዄ፛

𝑦፭፞፧ፑ፬ኻ።ኻ + ∑
፧∈ፍ፝ዄ፛

𝑦፭፞፧ፑ፬ኼ።ኻ + ∑
፧∈ፍ፝ዄ፛

𝑦፭፞፧ፑ፬ኼ።ኼ + 2 ∑
፧∈ፍፁ፛

𝑦፭፞፧። − 2𝑓ፑ፬ኻ።ኻ − 𝑓ፑ፬ኼ።ኻ − 𝑓ፑ፬ኼ።ኼ ≤ 4∀𝑏 ∈ 𝐵
፝ , 𝑖 ∈ 𝑀፬

ኽ

(8.5f)

𝑦፭፞ፑ፡። − 𝑦፭፞። −
1
𝑝፮ 𝑓። ≤ 0∀𝑖 ∈ 𝑀

፡

(8.5g)

8.3. Subproblem MILP 69

Figure 8.6: Configuration showing the need of a clustering coefficient

𝑦፭፞፧ፑ፬ኻ።ኻ + 𝑦፭፞፧ፑ፬ኼ።ኻ − 𝑦፭፞፧። −
1
𝑝፮ 𝑓። ≤ 1∀𝑖 ∈ 𝑀

፬
ኼ , 𝑛 ∈ 𝐵፝

(8.5h)

2𝑦፭፞ፑ፬ኻ።ኻ + 𝑦፭፞ፑ፬ኼ።ኻ + 𝑦፭፞ፑ፬ኼ።ኼ − 2𝑦፭፞፧። −
2
𝑝፮ 𝑓። ≤ 2∀𝑖 ∈ 𝑀

፬
ኽ

(8.5i)

2𝑦፭፞ፑ፬ኻ።ኻ + 𝑦፭፞ፑ፬ኼ።ኻ + 𝑦፭፞ፑ፬ኼ።ኼ − 2𝑦፭፞፧። −
2
𝑝፮ 𝑓። ≤ 2∀𝑖 ∈ 𝑀

፬
ኾ

(8.5j)

2𝑦፭፞ፑ፬ኻ።ኼ + 𝑦፭፞ፑ፬ኼ።ኻ + 𝑦፭፞ፑ፬ኼ።ኼ − 2𝑦፭፞፧። −
2
𝑝፮ 𝑓። ≤ 2∀𝑖 ∈ 𝑀

፬
ኾ

(8.5k)

An alternative model can be used where instead of minimizing the blocking components,
the amount of blocking components is required to be zero. This forces each problem to finish
without any blocked components regardless of the cost. It is done only for the components
blocked on departure and not for the unavailable locations. The reasoning behind this is
that an unavailable location does not necessarily result in an extra move, while a component
blocked on departure will. The model is obtained by replacing Equations (8.5b) to (8.5f) by
Equations (8.6a) to (8.6e). In the equations the parts with 𝑓 in it are removed. This removes
the ability to validate the constraints by setting and 𝑓 and therefore no blocked components
are possible.

∑
፧∈ፍ፝ዄ፛

𝑦፭፞፧ፑ፡። + ∑
፧∈ፍ፛

𝑦፭፞፧። ≤ 1∀𝑖 ∈ 𝑀፡ , 𝑏 ∈ 𝐵፝ (8.6a)

∑
፧∈ፍ፝ዄ፛

𝑦፭፞፧ፑ፬ኻ።ኻ + ∑
፧∈ፍ፝ዄ፛

𝑦፭፞፧ፑ፬ኼ።ኻ + ∑
፧∈ፍ፛

𝑦፭፞፧።− ≤ 2∀𝑖 ∈ 𝑀፬
ኼ , 𝑛 ∈ 𝐵፝ (8.6b)

2 ∑
፧∈ፍ፝ዄ፛

𝑦፭፞፧ፑ፬ኻ።ኻ + ∑
፧∈ፍ፝ዄ፛

𝑦፭፞፧ፑ፬ኼ።ኻ + ∑
፧∈ፍ፝ዄ፛

𝑦፭፞፧ፑ፬ኼ።ኼ + 2 ∑
፧∈ፍፁ፛

𝑦፭፞፧። ≤ 4∀𝑏 ∈ 𝐵፝ , 𝑖 ∈ 𝑀፬
ኾ (8.6c)

2 ∑
፧∈ፍ፝ዄ፛

𝑦፭፞፧ፑ፬ኻ።ኼ + ∑
፧∈ፍ፝ዄ፛

𝑦፭፞፧ፑ፬ኼ።ኻ + ∑
፧∈ፍ፝ዄ፛

𝑦፭፞፧ፑ፬ኼ።ኼ + 2 ∑
፧∈ፍፁ፛

𝑦፭፞፧። ≤ 4∀𝑏 ∈ 𝐵፝ , 𝑖 ∈ 𝑀፬
ኾ (8.6d)

2 ∑
፧∈ፍ፝ዄ፛

𝑦፭፞፧ፑ፬ኻ።ኻ + ∑
፧∈ፍ፝ዄ፛

𝑦፭፞፧ፑ፬ኼ።ኻ + ∑
፧∈ፍ፝ዄ፛

𝑦፭፞፧ፑ፬ኼ።ኼ + 2 ∑
፧∈ፍፁ፛

𝑦፭፞፧። ≤ 4∀𝑏 ∈ 𝐵፝ , 𝑖 ∈ 𝑀፬
ኽ (8.6e)

The final layout quality determiner is called the clustering coefficient. Since the approach
of identifying unavailable empty locations only considers the direct neighbours, a layout as
shown in Figure 8.6 has no unavailable empty locations according the formulation given in
Equations (8.5g) to (8.5j). However, it can be seen that there is one available location in this
layout. As soon as a component is placed on either of the empty locations, the other one
becomes unavailable. This would not happen if both components in Figure 8.6 were placed
next to each other.

For this reason the clustering coefficient 𝑐 is added. The goal of this coefficient is to
decrease the costs of layouts where components are clustered together. The clustering co-
efficient 𝑐። defines a clustering bonus for every location 𝑖. This score, multiplied with the

70 8. Rolling Horizon Algorithm

clustering coefficient 𝑝፜, is subtracted from the cost function resulting in Equation (8.7a).
The set 𝑅። is defined as the set of all neighbours of location 𝑖. This coefficient has an upper
bound of zero when there is no component at location 𝑖, and an upper bound of |𝑅።| if there
is one. This is set by Equation (8.7b). When there is a component at location 𝑖, 𝑐። should
be equal to the amount of adjacent components. This is added in Equation (8.7c). Thus by
adding Equation (8.7), the optimisation algorithm will have a preference for adding compo-
nents adjacent to each other. By setting 𝑝፜ not too large it can be made sure that this does
not cause blocking.

min∑
፭∈ፓ

∑
፧∈ፍ

∑
።∈ፒ
∑
፣∈ፒ
𝑥፭፧።፣ +∑

።∈ፒ
𝑓። − 𝑝፜ ∑

።∈ፒ፬
𝑐። (8.7a)

𝑐። ≤ |𝑅።| ∗ 𝑦፭፞።∀𝑖 ∈ 𝑆፬ (8.7b)

𝑐። − ∑
፣∈ፑ።

𝑦፭፞፣ ≤ 0∀𝑖 ∈ 𝑆፬ (8.7c)

Therefore, the MILP the subproblem is defined as Equations 6.7, Equations (6.3b) to (6.3e),
Equation (6.3g), Equation (6.3j), Equation (6.3k), Equation (6.13), Equations 8.3, Equa-
tion (8.6) and Equation (8.7). This mode limproves the rolling horizon heuristic by measuring
the quality of a given layout. By taking into account information about future batches, the
algorithm is allowed to look further than it’s planning horizon. It turns out however that even
the subproblem takes a long time to solve. In the next chapter a method is described on how
to increase the solving time by using a warm start.

8.4. Warm start
An MILP solver explores the searchspace by branching on integer variables. Each branching
create nodes and for each node, if feasible, an optimal solution is calculated while relaxing
the integer requirement for the non-branched variables. If this solution is completely integer,
a feasible solution is found for the problem. When this happens all nodes with a (non-integer)
optimal solution of a higher value than this solution will be pruned. By pruning a certain
node, further exploration for the branch of that node will not happen anymore. Therefore,
an integer solution reduces the search space and speeds up the solver.

Instead of letting the solver find the first integer solution, it is also possible to already
start with an integer solution. This is called a warm start. The solution does not have to
be optimal, but the better it is the more nodes it will prune and the lesser time the solver
will take. This warm start is provided for each subproblem. Furthermore, using a known
solution will also decrease the search space by reducing the size of the problem, due to the
fact that a better upperbound on the amount of moves decreased the amount of variables.

The reason for this is that time is discretised and all timesteps available are stored in 𝑇.
The amount of both variables and constraints are then directly related to |𝑇|. To solve the
problem, 𝑇 has to be large enough to contain the steps needed. An estimate has to be made
in the beginning of the size needed for 𝑇. If an initial solution is already present, taking 𝑇 as
the time needed for this solution will always give a feasible solution.

If no initial feasible solution is present, 𝑇 has to be estimated. In practice this will result
in making a conservative estimate for 𝑇, running the solver, and if no feasible solution can
be found the size of 𝑇 is increased and this process is repeated. This requires the solver to
run multiple times for a single problem, which will not happen with a warm start. In the next
section it is described how this warm start is generated.

8.4.1. Warm start algorithm
The warm start algorithm divides the subproblem further in non-overlapping problems. Most
of these problems are solved by the same LP-model as for the problem, although for the
unloading phase a separate algorithm is tried first. This will be described later. The rolling
horizon subproblem (RHS) is divided into multiple warm-start subproblems (WSS).

8.4. Warm start 71

For each batch in the RHS, a WSS is created to complete this batch. Before creating this
problem the available place on loadout will be evaluated. If there is not enough space, a WSS
will be created without any batches but with the only goal to clear the loadout space. This
is possible because of Equation (8.3c). After this problem is solved, a WSS is created and
solved to (un)load all components in batch 𝑏.

Variable Description

𝑏 Batch considered in WSS
𝑏 + 1 Batch directly after WSS
𝑁፛ Components in batch 𝐵

Table 8.3: Variables for Equations 8.8

For an arriving batch 𝑏, this consists of
unloading the components from the vessel
to the storage area. These components are
placed on either the loadout locations or
the storage-only locations. The condition
for the final component layout depends on
the next batch. If the next batch is an ar-
riving batch, it is required that there will
be enough empty locations in the loadout
area by Equation (8.8a). The same criterion
holds if the next batch is a departing batch, although here the required space in the loadout
should be enough just for all components not currently in the loadout area which have to
depart in the next batch. This is set by Equation (8.8b).

∑
፧∈ፍ

∑
።∈ፒ፬፥

𝑦፭፞፧። ≤ |𝑆፬፥| − |𝐾፛ዄኻ| (8.8a)

∑
፧∈ፍ⧵ፍ፛

∑
።∈ፒ፬፥

𝑦፭፞፧። ≤ |𝑆፬፥| − |𝐾፛ዄኻ| (8.8b)

By combining all moves from all warm start subproblems, it might result in double moves
where a component moves to a position in the storage only area 𝑖 ∈ 𝑆፬ and consecutively to
another position 𝑗 ∈ 𝑆. Moves like these are detected and contracted. This does not only
create a better solution, but also is required because otherwise Equation (7.7) will invalidate
the warm start.

Algorithm 9Warm start algorithm
𝑏 = 0
moves = {} ◃Batch index
𝐵ᖣ batches in subproblem
while 𝑏 < |𝐵ᖣ| do

if batch type is arriving and Not enough place in loadout then
new_moves = wss_create_loadout_space(𝑏)
moves = moves ∪ new_moves

end if
new_moves = wss_complete_batch(𝑏)
moves = moves ∪ new_moves
𝑏 = 𝑏 + 1

end while
if type of 𝑏 is arrival and next batch is departure then

new_moves = wss_prepare_loadout_for_next(𝑏)
moves = moves ∪ new_moves

end if
moves = contract_double_relocations(moves)

8.4.2. Direct unloading algorithm
During the execution of this algorithm, it was shown that the warm start horizon algorithm for
arriving batches took a long time. During this time two problems are solved simultaneously:

72 8. Rolling Horizon Algorithm

Where to place the components and how to place them there. If separated, the former can
be solved fairly quick if no other components are relocated.

The following approach is therefore tried for arriving components. Consider all arriving
components 𝑁ፚ in batch 𝑏. A model can then bemade to define a location for each component,
while optimizing the layout quality. All other components 𝑁 ⧵ 𝑁ፚ are considered fixed. The
model to define the component position is based on a relaxed version of the repositioning
model, without the blocking constraints and variables. Instead, the binary variable 𝑧፧። is
used. For arriving components, it holds that 𝑧፧። = 1 if component 𝑛 is placed at location 𝑖,
and 0 otherwise. For components already in the storage area, 𝑧፧። is fixed at 1 if component 𝑛
is initially located at location 𝑖. The model will assume direct unloading, without reshuffling.

If this model can be solved, unloading to these positions can be done by a simple al-
gorithm, which places the components in the correct order. This method finds a feasible
solution for the unloading part in a fraction of the time needed to solve the relocation model.
Afterwards, the relocation model is still ran to prepare the field for the next batch by trans-
ferring components between storage only area and loadout area.

As stated before, the location model uses the binary variable 𝑧፧። , being equal to 1 if a
component 𝑛 is moved to 𝑖. Furthermore, it also includes the layout quality variable 𝑓. The
variable 𝑧፧። is only defined for the components 𝑁ፁ፛ in arriving batch 𝑏. The cost function is
defined as the cost based on cost variable 𝑓, which is given in Equation (8.9a). The equations
Equations (8.9b) and (8.9c) impose that at each location only one component can be placed
and that all components have to be relocated to the storage-only locations, respectively.

Furthermore, two types of locations are identified. Locations in enclosed clusters and
locations in free clusters. A cluster is defined as a set of adjacent, unoccupied and unblocked
locations in the same row. If the cluster is enclosed on both sides by a component, it is called
an enclosed cluster. Otherwise it is called a free cluster. This is shown in Figure 8.7. Here
all non-blocked positions are divided into either free or enclosed clusters.

Figure 8.7: Field with components (gray), enclosed clusters(stripes) and free clusters(dots)

The set of all clusters is called 𝐶, with 𝐶፟ denoting the free clusters and 𝐶፞ denoting
the enclosed clusters. 𝑆፜፫ includes all locations inside cluster 𝑟. Without any relocations, a
free cluster can be filled completely with components. An enclosed cluster of length |𝑆፜፫ | can
include at most have |𝑆፜፫ |−1. This is because of the side neighbour constraints. It can be seen
in Figure 8.7 that as soon as one component is added to an enclosed cluster, it is impossible
to add a second one without reshuffling. There will be always one unoccupied location left.

Therefore, Equation (8.9d) is added. This equation sets the total amount of components
placed in an enclosed segment to maximum |𝑆፜፫ | − 1. A layout restricted by these constraints
can therefore always be placed without reshuffling. Furthermore, the constraints which
define the costs of blocking components and unavailable locations are added. This is done
by the usual constraints for this, modifying them slightly for the 𝑧 variable. This is shown in
Equations (8.9e) to (8.9p).

In this model all components are removed to the storage-only locations, but the compo-
nents already placed in the loadout area do not move. It therefore might be possible that
there is not enough space for the next batch. If this is the case, the normal WSS will run for
relocating these components.

8.4. Warm start 73

Variable Description

𝑆ᖣ Locations unoccupied at beginning
𝑁፮ Movable components
𝑅 all clusters
𝑅፟ All free clusters
𝑅፞ All enclosed clusters
𝑆፜፫ Locations of all clusters in 𝑆፜፫
𝑏፮ Current batch

Table 8.4: Variables for Equations 8.9

min∑
።∈ፒ፮

𝑓። − 𝑝፜ ∑
።∈ፒ፬

𝑐።

(8.9a)
subject to

∑
፧∈ፍ፮

𝑧፧። ≤ 1∀𝑖 ∈ 𝑆፮

(8.9b)

∑
።∈ፒ፮

𝑥፧። = 1∀𝑛 ∈ 𝑁ᖣ

(8.9c)

∑
፧∈ፍ፮

∑
።∈ፒ፜፫

𝑧፧። ≤ |𝑆፜፫ | − 1∀𝑟 ∈ 𝐶፞

(8.9d)

∑
፧∈ፍ፝ዄ፛

𝑧፧ፑ፡። + ∑
፧∈ፍ፛

𝑧፧። − 𝑓ፑ፡። ≤ 1∀𝑖 ∈ 𝑀
፡ , 𝑏 ∈ 𝐵፝

(8.9e)

∑
፧∈ፍ፝ዄ፛

𝑧፧ፑ፬ኻ።ኻ + ∑
፧∈ፍ፝ዄ፛

𝑧፧ፑ፬ኼ።ኻ + ∑
፧∈ፍ፛

𝑧፧። − 𝑓ፑ፬ኻ።ኻ − 𝑓ፑ፬ኼ።ኻ ≤ 2∀𝑖 ∈ 𝑀
፬
ኼ , 𝑛 ∈ 𝐵፝

(8.9f)

2 ∑
፧∈ፍ፝ዄ፛

𝑧፧ፑ፬ኻ።ኻ + ∑
፧∈ፍ፝ዄ፛

𝑧፧ፑ፬ኼ።ኻ + ∑
፧∈ፍ፝ዄ፛

𝑧፧ፑ፬ኼ።ኼ + 2 ∑
፧∈ፍፁ፛

𝑧፧። − 2𝑓ፑ፬ኻ።ኻ − 𝑓ፑ፬ኼ።ኻ − 𝑓ፑ፬ኼ።ኼ ≤ 4∀𝑏 ∈ 𝐵
፝ , 𝑖 ∈ 𝑀፬

ኾ

(8.9g)

2 ∑
፧∈ፍ፝ዄ፛

𝑧፧ፑ፬ኻ።ኼ + ∑
፧∈ፍ፝ዄ፛

𝑧፧ፑ፬ኼ።ኻ + ∑
፧∈ፍ፝ዄ፛

𝑧፧ፑ፬ኼ።ኼ + 2 ∑
፧∈ፍፁ፛

𝑧፧። − 2𝑓ፑ፬ኻ።ኼ − 𝑓ፑ፬ኼ።ኻ − 𝑓ፑ፬ኼ።ኼ ≤ 4∀𝑏 ∈ 𝐵
፝ , 𝑖 ∈ 𝑀፬

ኾ

(8.9h)

2 ∑
፧∈ፍ፝ዄ፛

𝑧፧ፑ፬ኻ።ኻ + ∑
፧∈ፍ፝ዄ፛

𝑧፧ፑ፬ኼ።ኻ + ∑
፧∈ፍ፝ዄ፛

𝑧፧ፑ፬ኼ።ኼ + 2 ∑
፧∈ፍፁ፛

𝑧፧። − 2𝑓ፑ፬ኻ።ኻ − 𝑓ፑ፬ኼ።ኻ − 𝑓ፑ፬ኼ።ኼ ≤ 4∀𝑏 ∈ 𝐵
፝ , 𝑖 ∈ 𝑀፬

ኽ

(8.9i)

∑
፧∈ፍ

𝑧፧ፑ፡። − ∑
፧∈ፍ

𝑧፧። −
1
𝑝፮ 𝑓። ≤ 0∀𝑖 ∈ 𝑀

፡

(8.9j)

74 8. Rolling Horizon Algorithm

∑
፧∈ፍ

𝑧፧ፑ፬ኻ።ኻ + ∑
፧∈ፍ

𝑧፧ፑ፬ኼ።ኻ − ∑
፧∈ፍ

𝑧፧። −
1
𝑝፮ 𝑓። ≤ 1∀𝑖 ∈ 𝑀

፬
ኼ , 𝑛 ∈ 𝐵፝

(8.9k)

2∑
፧∈ፍ

𝑧፧ፑ፬ኻ።ኻ + ∑
፧∈ፍ

𝑧፧ፑ፬ኼ።ኻ + ∑
፧∈ፍ

𝑧፧ፑ፬ኼ።ኼ − 2∑
፧∈ፍ

𝑧፧። −
2
𝑝፮ 𝑓። ≤ 2∀𝑖 ∈ 𝑀

፬
ኽ

(8.9l)

2∑
፧∈ፍ

𝑧፧ፑ፬ኻ።ኻ + ∑
፧∈ፍ

𝑧፧ፑ፬ኼ።ኻ + ∑
፧∈ፍ

𝑧፧ፑ፬ኼ።ኼ − 2∑
፧∈ፍ

𝑧፧። −
2
𝑝፮ 𝑓። ≤ 2∀𝑖 ∈ 𝑀

፬
ኾ

(8.9m)

2∑
፧∈ፍ

𝑧ፑ፬ኻ።ኼ + ∑
፧∈ፍ

𝑧፧ፑ፬ኼ።ኻ + ∑
፧∈ፍ

𝑧፧ፑ፬ኼ።ኼ − 2∑
፧∈ፍ

𝑧፧። −
2
𝑝፮ 𝑓። ≤ 2∀𝑖 ∈ 𝑀

፬
ኾ

(8.9n)

𝑐። ≤ |𝑅።| ∗ ∑
፧∈ፍ

𝑧፧።∀𝑖 ∈ 𝑆፬

(8.9o)

𝑐። − ∑
፣∈ፑ።

𝑧፧፣ ≤ 0∀𝑖 ∈ 𝑆፬

(8.9p)
𝑧፧። ∈ {0, 1}∀𝑛 ∈ 𝑁, 𝑖 ∈ 𝑆

(8.9q)

Although this algorithm will quite often not provide a feasible solution, it’s computational
time is negligible compared to running the full MILP model. The role of this algorithm is thus
to see quickly if a simple solution is possible to reduce the amount of times the full MILP
model has to run.

8.5. Discussion
Multiple remarks can be made for this solution approach. It will be shown later that although
this model performs in a reasonable time compared to project execution duration and makes
it possible to find solutions for which the complete MILP model could not find any, large
instances will still take a considerable amount of time. A possible way of improving this
model would be to consider certain components to be fixed.

For a single horizon step, all components are considered. Although it is certainly possible
that it might be beneficial to move components without them being required to move at that
time, it also increased the problem size. If a faster method is required, it might be interesting
to see if certain components can be considered immovable at certain timesteps. This would
decrease the problem size. A possible way of deciding on the immovable components would be
by considering the components which are non-blocking and depart later than the components
in the current batch. It is probably useful though to still consider blocking conditions on
immovable components.

The direct loadout algorithm tries to place all components directly to the storage-only field.
This is done because the goal of the warm start is to create a feasible solution and moving
all components to storage-only simplifies the future steps. However, there are two issues
with this. First of all no solution will exists if there is not enough space in the storage-only
area, which results in the full MILP model having to be solved for the arriving batch. This
will especially decrease performance in configurations with relatively more loadout places.
Secondly, leaving components in the loadout area might result in less moves, especially when
these components will be requested to leave the storage area shortly after arriving.

The final discussion point is the upper-bound on the amount of moves on subproblems.
Currently, for the warm-start subproblems, this is taken as slightly higher than the lower-

8.6. Conclusion 75

bound, and if no solution is found this upper bound is increased. For the rolling-horizon
subproblems, this upper bound is taken as the value from the warm start solution. A tight
upper bound does decrease the solver-time, but since optimisation of these subproblems is
done for both quality and the amount of moves, having a tight upper bound might also cut
away optimal solutions. For example, consider a solution which uses exactly the amount of
moves allowed. If there is a possible move which will increase the quality, for example by
unblocking a component, doing this move might lead to a better solution. However, due to
the upper bound on the amount of moves, this solution does not fit inside the MILP model.

8.6. Conclusion
The rolling horizon algorithm makes it possible to use the earlier given MILP model for real
world installation problems. By using the MILP formulation the algorithm can be easily
modified similar problems as long as an MILP formulation can be found. This is important
since the relocation of TPs is a specific problem, but relocating components in a two dimen-
sional space with spatial constraints is a problem which occurs on multiple occasions during
wind farm installation projects or harbour operations in general. Besides the generality in-
troduced by using the MILP formulation, it also allows incorporation of future research on
similar problems as well as improvements in MILP solvers in general.

There are some tuning parameters available. The length of the horizon defines the size of
a horizon-subproblem, and thus the solver duration. The choice whether to allow blocking
components can be seen as the choice of solving a problem directly, or when needed. These
parameters will allow the user the find a balance in feasibility, performance and duration.
Additionally, due to the structure of the algorithm, it allows the user to save computational
time by only solving the problem up to a certain time. By doing this, it still takes into account
information about future arrivals and departure in the form of blocking constraints, while
not spending computational time on unneeded moves.

In the remaining chapters, a model and method for the SIRP will be given. After this
computational results for all solution methods are presented.

9
Ship Installation Routing Model

In the SIRP, the ship routes and task are assigned. There are two principles, which are
defining in solving this problem. First, there is the availability consideration. Defining a
ship route might put requirements on certain other objects. When two ships have to be on
location simultaneously to perform an action, it means that this action can only performed if
both ships are available. Secondly, there is the travelling consideration. A ship has to travel
between turbines, and it is desired to minimise this travelling time.

Both principles affect each other. A schedule optimised on waiting time might result in
an inefficient travelling path, and an optimal route based on sailing distances might result in
waiting time due to synchronization. In the analysis of the Walney project, it was shown that
it happened often that an installation ship was waiting on a monopile to arrive. By modifying
the installation order, this can be prevented, although this might result in a large increase in
intrafield travelling time. Therefore, the optimisation must take into account both travelling
distances and synchronization.

Two modelling methods have been considered. The first option takes a vehicle routing
problem and expands it to include time synchronization. The second option models the
problem as a flowshop, and adds travelling to it. Both approaches were evaluated based on
available literature, and for the flowshop based approached a large gap in the literature was
found, as is discussed in Appendix B. For this reason, the VRP model is used. This model
is described in Section 4.3.2. The basic version consists of a network with one depot node
and multiple customers node. The goal here is to route multiple vehicles so that each node
is visited exactly once for the lowest total travelling cost.

In this chapter, a vehicle routing model is given for the SIRP in multiple steps. In the first
step the basic VRP-model is given for the ship routing problem. Subsequently, the principle
of multiple installation methods are given with installation precedence. After this the plugs
are added and the availability of components.

9.1. Installation routing
In this section, the single-ship installation model is given for the SIRP. In this simplified
problem, a turbine can be installed in a single visit by any ship. Set 𝐾 contains all ships and
𝐾። ⊆ 𝐾 contains the installation ships. In this problem, it thus holds that 𝐾 = 𝐾።. Each ship
𝑘 has a capacity 𝑄፤, meaning that it can visit 𝑄፤ turbines in a single trip.

The field is defined as a directed graph with nodes 𝑁. Any trip starts in node 𝑛ኺ, represent-
ing the harbour. Subsequently, a subset of the turbine nodes 𝑁፭ is visited, before returning
to the returning harbour node 𝑛፞. This replicate harbour node is added to have a distinction
between the arrival and departure time, as will be shown later.

The network is defined as having an arc (𝑛ኺ, 𝑖) for each turbine 𝑖, arcs in both directions
between any two turbines, an arc (𝑖, 𝑛፞) for every turbine to the return harbour node and,
finally, there is an arc (𝑛ኺ, 𝑛፞), which enables a certain ship to not travel on a trip.

77

78 9. Ship Installation Routing Model

The cost is defined by a three-dimensional matrix 𝑐. For each arc (𝑖, 𝑗) and ship 𝑘, the cost
𝑐፤።፣ is defined as the activities done at 𝑖, plus the travelling from 𝑖 to 𝑗, for ship 𝑘. If 𝑖 = 𝑛ኺ,
this includes the time of loading and travelling from the harbour to the turbine. If 𝑖 ∈ 𝑁፭, the
installation time is added. The cost of arc (𝑛ኺ, 𝑛፞) is 0, as this describes a ship not travelling.
If an arc (𝑖, 𝑗) does not exists, the cost 𝑐፤።፣ is set to a very large number 𝐻. These variables
were found in multiple articles about vehicle-dependent durations, for example in Stålhane
et al. [2015].

A vehicle is allowed to make multiple trips to the installation field. Tests were done with
both a three-index formulation and a four-index formulation, as found in Aghezzaf et al.
[2006] and Cattaruzza et al. [2016], respectively. In a three-index formulation, 𝑥፤።፣ is 1 if and
only if arc (𝑖, 𝑗) is traversed at any point by ship 𝑘. In a four-index formulation, 𝑥፤፫።፣ is 1 if and
only if arc (𝑖, 𝑗) is traversed by ship 𝑘 on trip 𝑟. Small performance tests were performed for
both formulations, which resulted in the choice of the four-index formulation due to smaller
solving times.

For the four-index formulation, the set of trip sets 𝑅 is introduced. Each ship has a set of
trips 𝑅፤, from 𝑛ኺ to 𝑛፞. If a ship uses less than |𝑅፤| trips, the direct arc from 𝑛ኺ to 𝑛፞ is used
to represent these unused trips. Furthermore, the arrival time 𝑡 is introduced. The problem
considered by Cattaruzza et al. [2016] did not include time variables, and for a four-index
multi-trip VRP no case with time variables has been found. Additionally, the three-index
formulation, as found in Toth and Vigo [2002], did not specify the times at the depots. Since,
as will be shown later, ship precedence constraints and component availability constraints
require the times at the depot to be specified, this approach cannot be used.

Therefore, the vehicle-dependent single-trip time variable formulation, as used by numer-
ous authors (e.g: Bredström and Rönnqvist [2008]), has beenmodified to account for multiple
trips per vehicle. The variable 𝑡፤፫። denotes the time that ship 𝑘 visits 𝑖 on trip 𝑟. If a ship
does not make a visit corresponding to (𝑘, 𝑟, 𝑖), 𝑡፤፫። = 0. Furthermore, the helper variable 𝑦 is
introduced, where 𝑦፤፫። = 1 if and only if ship 𝑘 visits turbine 𝑖 on trip 𝑟. Similarly, 𝑦፤። = 1 if
and only if ship 𝑘 visits turbine 𝑖 on any trip. Both variables are an expression of 𝑥, as seen
in Equations (9.1) and (9.2).

𝑦፤፫። =∑
፣∈ፍ

𝑥፤፫፣። (9.1)

𝑦፤። =∑
፣∈ፍ

∑
፫∈ፑ፤

𝑥፤፫፣። (9.2)

Since the ship installation routing problem is optimised for ship and project cost, addi-
tional variables have been introduced. Similar to Yu et al. [2017], a variable 𝑒 is introduced
which represents the total project duration. Although not found in literature, this approach
can be expanded by also introducing variables 𝑠𝑠፤ and 𝑒𝑠፤, which denote the starting time
and ending time of ship 𝑘, respectively.

Together with the constants 𝑠𝑐፤ and 𝑝𝑐, for ship and project cost respectively, the cost
function of the model can be defined as Equation (9.3a).

With the variables in Table 9.1, the MILP model can be formulated. First the routing
constraints are given. In a connected trip from 𝑛ኺ to 𝑛፞, the following holds: For both 𝑛ኺ and
𝑛፞, there is exactly one outgoing and incoming arc, respectively. For all other nodes, it holds
that the amount of arcs coming in is equal to the amount of arcs going out. The constraints
for trips beginning and ending at the harbour nodes are given in Equations (9.3b) and (9.3c)
respectively. The constraints for the turbine nodes are given in Equation (9.3d). Furthermore,
every node needs to be visited exactly once. This constraint is added in Equation (9.3e).
Additionally, Equation (9.3f) is added to limit the maximum amount of turbines per trip to
the capacity of a ship.

To complete the routing requirements, the timing variables and constraints need to be
added. The timing variable 𝑡፤፫። denotes the time that ship 𝑘 arrives at node 𝑖 on trip 𝑟. If
this visit does not exist, 𝑡፤፫። = 0. If 𝑥፤፫።፣ = 1, Equation (9.3g) turns into 𝑡፤፫፣ − 𝑡፤፫። ≥ 𝑐፤።፣,

9.1. Installation routing 79

Variable Description

𝑥፤፫።፣ Binary variable representing if ship 𝑘 travels over arc (𝑖, 𝑗) in trip 𝑟
𝑦፤። Helper variable: one if and only if ship 𝑘 visits node 𝑖
𝑦፤፫። Helper variable: one if and only if ship 𝑘 visits node 𝑖 in trip 𝑟
𝑡፤፫። Variable equal to time of arrival of ship 𝑘 at node 𝑖 on trip 𝑟, or 0 if this visit does not exist.
𝐾 Set of all ships
𝐾። Installation ships
𝑄፤ Capacity of ship 𝑘
𝑐፤።፣ Time of activity at 𝑖 plus travelling along arc (𝑖, 𝑗) for ship 𝑘
𝑁 Set of all nodes
𝑁፭ Set of all turbine nodes
𝑛ኺ departing harbour node
𝑛፞ arriving harbour node
𝐻 A very large number (representing infinity)
𝑒 Ending time of project
𝑠𝑠 Start time of ship
𝑒𝑠 Ending time of ship
𝑠𝑐፤ Cost for ship 𝑘 per time
𝑝𝑐 Project cost per time

Table 9.1: Variables for the single-ship installation routing problem

meaning that the arrival time at 𝑗 is at least 𝑐፤።፣ later than the arrival time at 𝑖. Conversely, if
𝑥፤፫።፣ = 0, the corresponding constraint turns into 𝑡፤፫። − 𝑡፤፫፣ ≤ 𝐻, where 𝐻 represents infinity.
Therefore, no restriction is put on any variable in this case. This allows Equation (9.3g) to
define a relationship only when a certain arc is used, and have no effect otherwise.

If a certain node is not visited in a trip, the corresponding 𝑡 variable is set to zero. This
is done in Equation (9.3h). This completes the timing part for individual trips. This also
mitigates subtours by preventing cycles, as shown in Lemma 9.1.1. Besides the timing con-
straints for nodes in trips, the timing between trips should also be set. This is set in Equa-
tion (9.3i). In Equations (9.3j) to (9.3l), the variables 𝑒,𝑒𝑠 and 𝑠𝑠 are defined by setting them
smaller or larger than any beginning or ending time. This allows the cost to be evaluated on
makespan.

The variable ranges are defined in Equations (9.3m) and (9.3n) to finalise the MILP model.
This results in the MILP model as given in Equation (9.3).

min𝑝𝑐 ∗ 𝑒 + ∑
፤∈ፊ።

𝑠𝑐፤𝑒𝑠፤ − ∑
፤∈ፊ።

𝑠𝑐፤𝑠𝑠፤ (9.3a)

subject to

∑
፣∈ፍ

𝑥፤፫ኺ፣ = 1∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅፤ (9.3b)

∑
።∈ፍ
𝑥፤፫።፧፞ = 1∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅፤ (9.3c)

∑
፫∈ፑ፤

∑
፣∈ፍ

𝑥፤፫።፣ − ∑
፫∈ፑ፤

∑
፣∈ፍ

𝑥፤፫።፣∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁፭ (9.3d)

∑
፤∈ፊ።

𝑦፤። = 1∀𝑖 ∈ 𝑁፭ (9.3e)

80 9. Ship Installation Routing Model

∑
።∈ፍ፭

𝑦፤፫። ≤ 𝑄፤∀𝑖 ∈ 𝑁፭∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅፤ (9.3f)

𝑡፤፫። − 𝑡፤፫፣ + (𝑐፤።፣ + 𝐻)𝑥፤፫።፣ ≤ 𝐻∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅፤ , 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 (9.3g)
𝑡፤፫። − 𝐻𝑦፤፫። ≤ 0∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅፤ , 𝑖 ∈ 𝑁 (9.3h)

𝑡፤፫፧፞ − 𝑡፤(፫ዄኻ)፧ኺ ≤ 0∀𝑘 ∈ 𝐾, 𝑟 𝑅፤ ⧵ {|𝑅፤| − 1} (9.3i)
𝑡፤፫፧፞ − 𝑒 ≤ 0∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅፤ (9.3j)

𝑡፤፫፧፞ − 𝑒𝑠፤ ≤ 0∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅፤ (9.3k)
𝑠𝑠፤ − 𝑡፤፫ኺ ≤ 0∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅፤ (9.3l)

𝑥፤፫።፣ ∈ {0, 1}∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅፤ , 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 (9.3m)
𝑡፤፫። ≥ 0∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅፤ , 𝑖 ∈ 𝑁 (9.3n)

This MILP formulation is a combination of the four-index formulation of Cattaruzza et al.
[2016], the network (with separate start and ending node) from Bredström and Rönnqvist
[2008] and the timing constraints based on Azi et al. [2007]. Besides combining this, the 𝑡
variable has been changed to include both a trip and a vehicle index. Additional constraints
were added to account for the vehicle duration variables 𝑠𝑠 and 𝑒𝑠, and a constraint was added
to set 𝑡 to zero if not used. It will be shown later why this is important. In the next section,
this MILP formulation will be expanded to account for installation methods and precedence
relationships.

Lemma 9.1.1. Consider a single trip by a ship. By introducing variable 𝑡ᖣ። for each node 𝑛 ∈ 𝑁 and
adding Equation (9.4) as constraints, cycles are prevented.

𝑡ᖣ። − 𝑡ᖣ፣ + (𝑐ᖣ።፣ + 𝐻)𝑥።፣ ≤ 𝐻∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 (9.4)

Proof. Let 𝑆 be a cycle include 𝑖ᖣ. For each arc (𝑖, 𝑗) in this cycle 𝑥።፣ = 1 and thus by Equation (9.4):

𝑡ᖣ። + 𝑐ᖣ።፣ ≤ 𝑡ᖣ፣ (9.5)

Since 𝑐ᖣ።፣ = 0 if and only if 𝑖 = 𝑛ኺ and 𝑗 = 𝑛፞, and 𝑛፞ can never be part of a cycle since it has no outgoing
arcs, it follows that 𝑡ᖣ። < 𝑡ᖣ፣. Thus for a cycle 𝑆 = (𝑖ኺ, ...𝑖፧) it would imply that 𝑡ᖣ።ኺ < .. < 𝑡

ᖣ
።፧ < 𝑡

ᖣ
።ኺ → 𝑡

ᖣ
።ኺ < 𝑡

ᖣ
።ኺ ,

which is impossible.

9.2. Installation methods and precedence relations
In the MILP model given above, each turbine node gets visited once by any ship. However,
installing a turbine takes multiple ships, and often these ships can only perform their actions
if a certain other action is done. For example, installing a transition piece can only be done
after the foundation is installed. In this section the model will be expanded to account for
these characteristics.

For this purpose, the concept of installation methods 𝑀 is introduced. An installation
method 𝑚 ∈ 𝑀 is a collection of method steps 𝑠 ∈ 𝑆፦, and each method step is a set of
ships 𝐾፦፬ . A turbine is installed if one installation method for this turbine is completed. An
installation method is completed if every step in it is completed, by having at least on ship of
this method visit the turbine.

This is illustrated in the following example. Consider 𝑀, 𝑆 and 𝐾፦ as given in Equa-
tions (9.6) to (9.11). Equation (9.6) shows that there are two installation methods. The first
installation methods exists of a single step, with a single ship, as shown in Equations (9.7)
and (9.9). Therefore, to install turbine 𝑖 by this method, it has to be visited by ship 1. The
other installation step consists out of two steps, as seen in Equation (9.8). This means
that, for installation by this method, one ship from Equation (9.10) and one ship from Equa-
tion (9.11) has to visit 𝑖. In logical terms, this can be expresses as Equation (9.12), where 𝑏፤
is true if ship 𝑘 visits node 𝑖 and false otherwise. Note that installation methods only define
which ships should visit the node, it says nothing about the order or time when this should
happen.

9.2. Installation methods and precedence relations 81

𝑀 = {1, 2} (9.6)

𝑆ኻ = {1} (9.7)

𝑆ኼ = {2, 3} (9.8)

𝐾፦ኻ = {1} (9.9)

𝐾፦ኼ = {2, 3} (9.10)

𝐾፦ኽ = {4} (9.11)

𝑀 ∶ 𝑏ኺ ∨ ((𝑏ኻ ∨ 𝑏ኼ) ∧ 𝑏ኽ) (9.12)

Each turbine has a set of installation methods by which it can be installed. This set for
a turbine 𝑖 is defined as 𝑀፭። . For each turbine, one of these methods has to be completed.
To achieve this, first Equation (9.3e) is removed from the model. Subsequently, the variable
𝑝 is introduced. 𝑝፦። is a binary variable, equal to one if and only if turbine 𝑖 is installed by
method 𝑚. Equation (9.13a) defines that every turbine has to have a compatible installation
method selected. Equation (9.13b) adds the requirement that if a method 𝑚 is chosen for
turbine 𝑖, for every step at least one ship of that ship has to visit 𝑖.

The next characteristic to be included in the model is installation precedence. An installa-
tion precedence relationship requires a certain component has to be installed before another
one. Until so far, the installation times were included in 𝑐, but to include installation prece-
dence, the installation times per ship are defined separately under 𝑐።፤. Furthermore, in 𝐷𝑖,
the installation precedence relationships are stored. For each precedence relationship 𝑑 ∈ 𝐷𝑖,
𝐾ፃ፝ኻ denotes the set of ships, of which one has to visit a turbine before a ship in the set 𝐾ፃ፝ኼ.

This is added in Equation (9.13c), by using the notation from Bredström and Rönnqvist
[2008]. The first and third term denote the ship visiting time. The ship visiting time can be
taken as the sum of 𝑡 over all trips, due to the fact that 𝑡 is set to 0 when a ship doesn’t
visit a node, by Equation (9.3h). Furthermore, it is required for this approach that for every
precedence relationship, the turbine has to be visited by exactly one ship from both sets.
This can be done by defining the installation methods correctly. The equation sets the time
of arrival of the second ship to be later than the arrival of the first ship plus the installation
method.

In the Walney project the Aeolus will first install complete turbines by the jacked instal-
lation method. After finishing these it will undergo a week-long transformation to install
transition pieces with the floating method. In the ship routing model this will be modelled as
two separate ships, with a ship precedence constraint. A ship precedence constraint 𝑑 ∈ 𝐷𝑠
defines that all trips of ship 𝑘ፃ፝ኻ must be finished 𝑡ፃ፝ time before ship 𝑘ፃ፝ኼ can start.

∑
፦∈ፌ፭።

𝑝፦። = 1∀𝑖 ∈ 𝑁፭ (9.13a)

𝑝፦። − ∑
፤∈ፊ፦፬

𝑦፤። ≤ 0∀𝑚 ∈ 𝑀, 𝑠 ∈ 𝑆፦ , 𝑖 ∈ 𝑁፭ (9.13b)

∑
፤∈ፊፃ፝ኻ

∑
፫∈ፑ፤

𝑡፤፫። + ∑
፤∈ፊፃ፝ኻ

∑
፫∈ፑ፤

∑
፣∈ፍ

𝑥፤፫።፣𝑐።፤ − ∑
፤∈ፊፃ፝ኼ

∑
፫∈ፑ፤

𝑡፤፫። ≤ 0∀𝑑 ∈ 𝐷𝑖, 𝑖 ∈ 𝑁፭ (9.13c)

𝑡፤ኺ፫ኺ፧፞ − 𝑑 − 𝑡፤ኻ፫ኻ፧ኺ = 0∀(𝑘ኺ, 𝑘ኻ, 𝑑) ∈ 𝐷𝑠, 𝑟ኻ = 𝑅፤,|ፑ፤|𝑟ኼ = 𝑅፤,ኻ (9.13d)
𝑝፦። ∈ {0, 1}∀𝑚 ∈ 𝑀, 𝑖 ∈ 𝑁፭ (9.13e)

The modifications to the ship routing model make it possible to include installation with
multiple installation method, with both precedence relationships for installation tasks and

82 9. Ship Installation Routing Model

Variable Description

𝑀 Installation methods
𝑀፭። Installation methods for turbine 𝑖
𝑆፦ Method steps for method 𝑚
𝐾፦፬ Ships in method step 𝑠
𝑐።፤ Installation time for ship 𝑘
𝑝፦። Decision binary variable: Is turbine 𝑖 installed by installation method 𝑚
𝐷𝑖 Installation precedence sets
𝐷𝑠 Ship precedence set
𝐾ፃ፝፧ 𝑛th set of ships of installation precedence set 𝑑
𝑘ፃ፝፧ 𝑛th ship of ship precedence set 𝑑
𝑡ፃ፝ Offset between ship precedence 𝑑

Table 9.2: Variables used in Equations 9.13

ship actions. The obtained model is shown in Equations 9.13 and Equation (9.3) without
Equation (9.3e). The introduced parameters and variables are given in Table 9.2. In the next
section plugs will be introduced along with the required synchronization requirements.

9.3. Synchronization of plugs and component availability
Finally, plugs and component availability are added to the model. A monopile can be trans-
ported to the field with a tugboat. A monopile first has to be prepared by fitting two compatible
plugs at both ends to make the MP buoyant. After the installation, the plugs will be picked
up by another tugboat and returned to the harbour. Here they will be reused for transporting
another MP.

These requirements can be modelled by introducing virtual nodes as in Drexl [2007].
Virtual nodes are then introduced per turbine, representing the state for plugs after being
removed at the locations. Tugs can be routed to pick up these plugs, by introducing con-
straints where plugs and tugs have to travel simultaneously over certain arcs. This, however,
greatly increases the size of the model and in tests this was shown to have a very negative
effect on solver efficiency.

Therefore, a simplified approach is used. Since tugboats are not considered a bottleneck
during installation due to their relatively low cost, it is assumed that there are enough tugs.
This assumption allow plugs to move around without considering the availability of plugs.
Then one way to model plugs is as ships with a capacity of one, with a modified loading time
to model the monopile preparation.

However, for a ship with capacity one, it is redundant to require it to return to the harbour
after every node. It is more efficient to model it as a ship with unlimited capacity. The
travelling time from 𝑖 to 𝑗 is then the time travelling from 𝑖 to the harbour, plus the loading
time, plus the time travelling from the harbour to 𝑗. This will represent the same trip without
any simplifications, but a strong reduction in problem size.

Plugs can thus be modelled as separate ships with an infinite capacity. These are defined
in the set 𝐾፩. For plugs to be included in the installation, they have to be added to the
installation method and a synchronization relationship has to be added. A synchronization
relationship requires that from two sets, one ship from each set visits the turbine from at the
same time. The exact synchronization sets are stored in 𝐷𝑒, and for each 𝑑 ∈ 𝐷𝑒 it holds that
one ship from 𝐾ፄ፝ኻ has to be simultaneous with a ship from 𝐾ፄ፝ኼ at a turbine. This is set by
Equation (9.14a),

A benefit of this technique is that it also allows for the modification of plugs. Although not
considered in the modelling scope of this thesis, a plug consists of a core and a ring around
it. It is possible to exchange this ring and therefore changing the diameter of the plug. This
exchange takes time, but allows the plug to be used for a different set of transition pieces.

9.4. Discussion 83

This can easily be modelled by varying the cost matrix. If a plug, compatible with MP set
𝐴 can be modified to be compatible with MP set 𝐵, this can be modelled as a single plug
compatible with 𝐴 ∪ 𝐵 with an additional cost for every arc between 𝐴 and 𝐵.

Additionally, the availability of components is added. For this, two types of available times
are introduced. The trip starting times 𝑡፫፤። define when the trip in which ship 𝑘 visits ship 𝑖
can be visited. This is shown in Equation (9.14b). This cannot be added for the plugs, since
these are modelled as one trip. Therefore, 𝑡𝑖፤። is introduced. This defines the earliest time a
certain ship can visit a node 𝑖. For plugs it is to be set at the arrival time of the components,
minus the travelling time from harbour to node. This constraint is added in Equation (9.14c).

Variable Description

𝐷𝑒 Exact synchronization sets
𝐾ፄ፝ Contains the two sets of ships for synchronization set 𝑑
𝑡𝑟፤። Trip starting time for trip where ship 𝑘 visits node 𝑖
𝑡𝑖፤። Earliest time of ship 𝑘 visiting node 𝑖

Table 9.3: Parameters and variables used in Equations 9.14

∑
፤∈ፊፄ፝ኻ

∑
፫∈ፑ፤

𝑡፤፫። − ∑
፤∈ፊፄ፝ኼ

∑
፫∈ፑ፤

𝑡፤፫። = 0∀𝑑 ∈ 𝐷𝑒, 𝑖 ∈ 𝑁 (9.14a)

∑
።∈ፍ
𝑦፤፫።𝑡𝑟፤። − 𝑡፤፫ኺ ≤ 0∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅፤ , 𝑗 ∈ 𝑁፭ (9.14b)

𝑦፤፫።𝑡𝑖፤። − 𝑡፤፫። ≤ 0∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅፤ , 𝑗 ∈ 𝑁፭ , ∀𝑖 ∈ 𝑁፭ (9.14c)

The introduced variables are shown in Table 9.3 and the full model can thus be defined
by Equations 9.13 and 9.14 and Equation (9.3) without Equation (9.3e).

9.4. Discussion
A few things can be noted about this model. First, it can be seen that it has a very weak
LP-relaxation. This is due to the cost being based on makespan. The makespan depends on
Equation (9.3g), which can be rewritten to Equation (9.15). Here it is shown that if 𝑥፤፫።፣ is not
1, the right side is equal to something times 𝐻. Since 𝐻 is a very large number representing
infinity, this will quickly result in the left side of the equation being unbounded. This results
in a weak LP-relaxation.

𝑡፤፫። − 𝑡፤፫፣ + 𝑐፤።፣𝑥፤፫።፣ ≤ 𝐻(1 − 𝑥፤፫።፣)∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅፤ , 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 (9.15)

Additionally, the model is limited by the fact the each node can only be visited once by a
ship. This is not specified specifically by a constraint, but a side effect of Equation (9.13b).
This behaviour is desired however, since allowing the same vehicle to visit the same node
multiple times will break the approach of summing over the times to get the visiting time of
ship 𝑘 at node 𝑖. This same principle has to be kept in mind when defining the installation
precedence en synchronization constraints. Both types of constraints consists of two vehicle
sets 𝐾ኺ and 𝐾ኻ. Since in Equations (9.13d) and (9.14a), the arrival times are defined by
summing 𝑡 over all ships, the model will break if multiple ships from either 𝐾ኺ or 𝐾ኻ will
visit the same nodes. This restriction can be enforced by defining the installation methods
correctly or splitting up the synchronization and precedence sets.

On another note, it is interesting to see where this model would be applicable as well and
what the modifications needed would be. The core of the model is routing vehicles to perform

84 9. Ship Installation Routing Model

tasks with time synchronization constraints and multiple ways to perform these tasks. The
area of offshore maintenance seems very promising for this. In literature, onshore problems
as forest operations and road maintenance were found. By abstracting the ship installation
problem, the model introduced above might be valuable for multiple other areas.

One might also notice that modelling the plugs as ships with a capacity one means that
given a subset of turbines for a plug to visit, the total time will always be the same. It also
means that, due to the ratio between intrafield travelling time plus plug preparation time and
intrafield travelling, the time between any two turbines is nearly equal. The reason that this
approach was taken is because of it’s versatility. It was shown already that this methods
allows for plug modification as well, and it also allows for exact synchronization with ships
with a capacity of higher than one. However, if the scope would be narrowed down to improve
performance in cost of versatility, one might look for a simpler way of modelling these plugs.

Finally, the model introduced above allows for the possibility of an offset between ship
precedence: If there is a ship precedence relationship, there has to be a minimum amount
of time between the final activities of the first ship and the first activities of the second ship.
However, on might notice that in the model this offset is always present. If the first ship is
not used, there will still be a time gap between the project start and the start of the activities
of the second ship.

9.5. Conclusion
In this chapter, an MILP model for SIRP. This model represents a vehicle routing problem,
thus defining the routes for the ships during installation. The possible routes are contained
in a network of turbine locations and the harbour locations. A feasible solution represents a
set of ship routes where for each turbine a set of compatible ships visit to fulfil the installation
requirements.

The installation requirements were modelled as multiple methods of which exactly one
has to be fulfilled per turbine. An installation method exists of a set of ships which have
to visit a turbine, with corresponding time constraints. The different options for installation
methods and timing constraints are a necessary generalization for the VRP to model the ship
routing problem. So far, no literature has been found with a similar combination of these
constraints.

With these generalizations, a combination of routing and installation is possible. This
model is therefore useful for offshore wind turbine installation projects and for projects with
similar characteristics. This model is however not capable of solving these problems. It will
later be demonstrated that even for very small problem the computational time becomes very
large. This was expected though as the VRP is an 𝒩𝒫-complete [Kumar and Panneerselvam,
2012] problem. In the remaining chapters, exact optimisation techniques for the SRP will be
explored, as well as a heuristic method.

10
Optimization method for ship routing

model
Like the CRP, the SIRP was modelled in CPLEX as well. As the model introduced in Chapter 9
will later be shown to have very bad solver performance, multiple cutting planes were added.
Additionally, a BC algorithm was developed.

10.1. Total time cutting planes
First, the total-time cutting planes are presented. The makespan variables 𝑒,𝑠𝑒 and 𝑠𝑠 are
based on the maximum and minimum value of the timing variables. A lower bound for the
ship makespans are the total ship trip durations. Similarly, for the total project makespan,
the lowerbound is the total trip duration for the ships. For each ship, the total cost of all
trips is set lesser than or equal to the makespan for that ship, and the total makespan in
Equations (10.1) and (10.2), respectively.

∑
፫∈ፑ፤

∑
(።,፣)∈ፏ

𝑐፤።፣𝑥፤፫።፣ − 𝑠𝑒፤ + 𝑠𝑠፤ ≤ 0∀𝑘 ∈ 𝐾 (10.1)

∑
፫∈ፑ፤

∑
(።,፣)∈ፏ

𝑐፤።፣𝑥፤፫።፣ − 𝑒 ≤ 0∀𝑘 ∈ 𝐾 (10.2)

10.2. Trip Symmetry
For each ship, the trips 𝑅፤ are defined up front. The amount of trips has to be enough for
a single ship to install all possible turbines. The downside of this is that multiple possible
trips are empty. For a single ship with a fixed set of trips, the empty trips can be located on
different positions in 𝑅፤. Because of this, there are multiple solutions which can represent
the same trip, with just the empty trips at different positions. Similar to symmetry in the
CRP, this is defined as trip-symmetry

To remove trip symmetry, Equation (10.3) can be added. This requires every trip except the
first one to be empty, unless the trip before it is not empty. This moves all empty trips to the
end of 𝑅. Additionally, during most construction projects the assumption can be made that
a ship will always go to the field with full capacity, except for the last one. In Equation (10.4),
any trip is set to full capacity if the next trip contains at least one turbine. This cut improves
the solver performance, but adds a new assumption and it is to be evaluated per problem is
this assumption is valid.

∑
።∈ፍ
𝑥፤(፫ዄኻ)ኺ። −∑

።∈ፍ
𝑥፤፫ኺ። ≤ 0∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅፤ ⧵ {|𝑅፤|}, (10.3)

85

86 10. Optimization method for ship routing model

𝑄፤𝑥፤(፫ዄኻ)ኺ፤ −∑
።∈ፍ

∑
፣∈ፍ፭

𝑥፤፫።፣ ≤ 0∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅፤ ⧵ {|𝑅፤|}, 𝑘 ∈ 𝑁፭ (10.4)

10.3. Field trips
Due to the long outerfield travelling times an optimal non-integer solution will probably con-
tain subtours to avoid using the costly arcs from and to the field. To prevent this, a minimum
bound on trips to the field might be beneficial. This is done in the form of capacity constraints
as given in Equation (5.1). Two types of constraints are added by Equations 10.5. The first
constraint-set defines that for each ship the amount of turbines visited is less than capacity
per trip times the amount of trips. The same is done in the second constraint-set for trips
from the field to the harbour.

∑
።∈ፍ

∑
፣∈ፍ፭

∑
፫∈ፊ፫

𝑥፤፫።፣ − 𝑄፤ ∑
፣∈ፍ፭

∑
፫∈ፊ፫

𝑥፤፫፧ኺ፣ ≤ 0∀𝑘 ∈ 𝐾 (10.5a)

∑
።∈ፍ

∑
፣∈ፍ፭

∑
፫∈ፊ፫

𝑥፤፫።፣ − 𝑄፤ ∑
።∈ፍ፭

∑
፫∈ፊ፫

𝑥፤፫።፧፞ ≤ 0∀𝑘 ∈ 𝐾 (10.5b)

10.4. Waiting variables
Variables can also be introduced to improve performance of the solver. Equations (10.1)
and (10.2) put the total travelling time as a lower bound on the project and ship duration.
The gap between the real duration and the travelling time is the waiting time. Therefore,
variables are introduced to define this gap. Two types are used, waiting-node variables and
waiting-arc variables. Waiting variables are used in multiple VRP studies, usually when the
goal it to minimise this waiting time [Christiansen et al., 2013]. Although this is not the goal
of the SIRP model, waiting variables are still introduced in order to define cutting planes.

The waiting arc variable 𝑤𝑎፤፫።፣ defines the waiting time for ship 𝑘 on trip 𝑟 on arc (𝑖, 𝑗),
just before arriving at node 𝑗. Similarly, the waiting node variable 𝑤𝑛፤፫። defines the waiting
time of ship 𝑘 on trip 𝑟 before node 𝑖.

With these new variables, multiple cuts can be added to the model. First, the waiting arcs
variables 𝑤𝑎 are discussed. If a ship 𝑘 traverses arc (𝑖, 𝑗) on trip 𝑟, it should hold that the
time between leaving and arriving is equal to the travelling time, plus the waiting time as
seen in Equation (10.6). This equation is split up in a larger than and smaller than equation
to only impose it when arc (𝑖, 𝑗) is used. This can be seen in Equations (10.7a) and (10.7b).
In these equations, the right-part is always larger if 𝑥፤፫።፣ is zero, while otherwise both terms
with 𝐻 in it cancel out. Furthermore, Equation (10.7c) is added to set zero if arc (𝑖, 𝑗) is not
being used.

𝑐፤።፣ +𝑤𝑎፤፫።፣ = 𝑡፤፫፣ − 𝑡፤፫። (10.6)

𝑡፤፫። − 𝑡፤፫፣ +𝑤𝑎፤፫።፣ + 𝐻𝑥፤፫።፣ ≤ 𝐻 − 𝑐፤።፣∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅፤ , 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 (10.7a)
−𝑡፤፫። + 𝑡፤፫፣ −𝑤𝑎፤፫።፣ + 𝐻𝑥፤፫።፣ ≤ 𝐻 + 𝑐፤።፣∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅፤ , 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 (10.7b)

𝑤𝑎፤፫።፣ − 𝐻 ∗ 𝑥፤፫።፣ ≤ 0∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅፤ , 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 (10.7c)
𝑤𝑎፤፫።፣ ≥ 0∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝐾፫ , 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 (10.7d)

After defining the mechanics of the waiting arc variables, they can be used to formulate
multiple cuts. Before doing this, however, the variable can be set to zero in multiple cases.
First of all, a vessel will not wait before returning to the harbour, so for all arcs {(𝑖, 𝑁፞)|𝑖 ∈ 𝑁፭},

10.5. Flow cuts 87

the variable 𝑤𝑎 is set to zero. Furthermore, 𝑤𝑎 can be set to zero for all ships, except ships
which form the second part of either a ship, or installation precedence relationship, or are
part of a synchronization relationship.

For a ship which has no synchronization relationship and is not included in the second
part of a precedence relationship, waiting on all intrafield arcs can be set to zero. Further-
more, if a vessel is also not the second part of a ship precedence relationship, all 𝑤𝑎 can be
set to zero for all arcs from harbour to field as well. Otherwise, if it is the second part of a
ship precedence relationship, all arcs to the field not in the first trip can be set to zero.

With this, the cuts in Equations (10.1) and (10.2) can be modified to also account for
waiting time. This results in Equation (10.8). The same approach can be used for the node
waiting variables 𝑤𝑛፤፫።. Here, the waiting time is defined per node instead of arc.

∑
፫∈ፑ፤

∑
(።,፣)∈ፀ

𝑐፤።፣𝑥፤፫።፣ + ∑
፫∈ፑ፤

∑
(።,፣)∈ፀ

𝑤፤፫።፣ ≤ 𝑠𝑒፤ − 𝑠𝑠፤∀𝑘 ∈ 𝐾 (10.8a)

∑
፫∈ፑ፤

∑
(።,፣)∈ፀ

𝑤፤፫።፣ + ∑
፫∈ፑ፤

∑
(።,፣)∈ፀ

𝑐፤።፣𝑥፤፫።፣ − 𝑒 ≤ 0∀𝑘 ∈ 𝐾 (10.8b)

The node waiting time 𝑤𝑛፤፫። defines the time ship 𝑘 is waiting on trip 𝑟 just before arriving
at node 𝑖. This is defined in Equations (10.9a) and (10.9b). Furthermore, Equation (10.9c)
sets 𝑤𝑛፤፫። to zero if 𝑘 does not visit node 𝑖 on trip 𝑟. These can be set to zero for all ships with
no precedence or synchronization requirements. If a ship only occupies the first place of a
precedence relationship the same holds. Furthermore, it can again be set for ships which
only have a ship precedence relationship, that 𝑤𝑛፤፫። is zero for all 𝑟 > 0. With this, the lower
bounds on both project and ship duration can be set as Equations (10.9d) and (10.9e)

𝑡፤፫። + 𝑐፤።፣ +𝑤𝑛፤፫፣ ≤ 𝑡፤፫፣ + 𝐻 − 𝐻𝑥፤፫።፣∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅፤ , 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 (10.9a)
𝑡፤፫። + 𝑐፤።፣ +𝑤𝑛፤፫፣ + 𝐻 − 𝐻𝑥፤፫።፣ ≥ 𝑡፤፫፣𝑡፤፫፣∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅፤ , 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 (10.9b)

𝑤፤፫። ≤ 𝐻𝑥፤፫።፣∀𝑗 ∈ 𝑁 (10.9c)

∑
፫∈ፑ፤

∑
(።,፣)∈ፀ

𝑐፤።፣𝑥፤፫።፣ + ∑
፫∈ፑ፤

∑
።∈ፍ
𝑤𝑛፤፫። ≤ 𝑠𝑒፤ − 𝑠𝑠፤ (10.9d)

∑
፫∈ፑ፤

∑
(።,፣)∈ፀ

𝑐፤።፣𝑥፤፫።፣ + ∑
፫∈ፑ፤

∑
።∈ፍ
𝑤𝑛፤፫። ≤ 𝑒 (10.9e)

10.5. Flow cuts
In a flow based formulation, the resources which are to be delivered from depot to consumer
nodes are modelled as a flow. In Baldacci et al. [2004], this was shown for the VRP. The
same approach will be illustrated here to understand the principle of flow formulation, before
applying it to the SIRP. The example is simplified and shows how the flow formulation works
for a single vehicle. In the flow formulation, the depot is a source for flow. This flow travels
over the directed arcs used in the vehicle routes from depot to customer nodes. At each
node, the demand 𝑞። is consumed. Let 𝑥።፣ be the binary decision variable which is one if and
only if arc (𝑖, 𝑗) is used by the vehicle, and 𝑓።፣ the flow on arc (𝑖, 𝑗). The flow consumed 𝑞። by
node 𝑖 can be modelled by Equation (10.10). Furthermore, the total flow per arc is limited
to the capacity 𝑄 if the arc is used, and zero otherwise. This is done by Equation (10.11).
Equation (10.12) set that if arc (𝑖, 𝑗) is used, the flow is at least enough to meet the demand
at 𝑗.

∑
፣∈ፍ

𝑓፣። −∑
፣∈ፍ

𝑓።፣ = 𝑞።∀𝑖 ∈ 𝑁፭ (10.10)

88 10. Optimization method for ship routing model

𝑓።፣ ≤ 𝑄𝑥።፣∀(𝑖, 𝑗) ∈ 𝐴 (10.11)

𝑓።፣ ≥ 𝑥።፣𝑞፣∀(𝑖, 𝑗) ∈ 𝐴 (10.12)

The flow can thus only be satisfied if the route does not exceed the capacity constraint.
This also shows a possible use for the flow formulation: adding the requirement constraints.
However, in the SIRP the capacity constraints are already fulfilled due to the four index
𝑥 formulation. Nevertheless, the flow formulation in Yaman [2006] shows to improve the
formulation quality, and therefore this is added to the SIRP. Yaman gives multiple flow for-
mulations. The two-index flow variable 𝑓።፣ defines for each arc the total flow for all ships, and
the three-index flow variable 𝑓፤።፣ defines for each arc the flow for each ship. Similarly, this
can be split further to 𝑓፤፫።፣ to specify a flow variable for each arc, ship, trip combination.

Since the SIRP might include vehicles with infinite capacity, the two-index 𝑓 formulation
results in an infinite bound on all edges and therefore did not improve the performance of
the solver. The other two formulations will be presented here. The three-index formulation is
called k-flow and the four-index formulation is called kr-flow. First, k-flow will be presented.
This formulation was taken from Yaman [2006] and wasmodified for the four-index 𝑥 variable.
In Equation (10.13a) the demand (1) is consumed for flow 𝑓፤, if 𝑘 visits node 𝑖. The capacity
is set by Equation (10.13b). Here the flow 𝑓፤።፣ is set to be larger than 1 if arc (𝑖, 𝑗) is traversed
by 𝑘. Furthermore, Equation (10.13c) limits the flow to the total capacity. Here 𝑑። is the
demand at node 𝑖. For 𝑖 ∈ 𝑁፭, 𝑖 = 1. For the depot nodes 𝑖 = 0.

∑
፣∈ፍ

𝑓፤፣። −∑
፣∈ፍ

𝑓፤።፣ − 𝑦፤። = 0∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁፭ (10.13a)

𝑓፤።፣ ≥ ∑
፫∈ፑ፤

𝑥፤፫።፣∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾 (10.13b)

𝑓፤።፣ ≤ ∑
፫∈ፑ፤

(𝑄፤ − 𝑑።)𝑥፤፫።፣∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, (10.13c)

Yaman [2006] did not consider multiple trips, and therefore did not use a four-index flow-
formulation. This formulation is introduced here by defining the flow variables 𝑓፤፫።፣ for each
combination of ship, trip and arc. The approach is similar to Equations (10.13a) and (10.13c).
Equation (10.14a) sets the flow consumed equal to one if node 𝑖 is visited by vehicle 𝑘 on trip
𝑟. Also analog to k-flow formulation, Equation (10.14b) ensures that the capacity constraint
is met and Equation (10.14c) requires the flow 𝑓፤፫።፣ to be at least 1 if arc (𝑖, 𝑗) is used by vehicle
𝑘 on trip 𝑟.

∑
፣∈ፍ

𝑓፤፫፣። −∑
፣∈ፍ

𝑓፤፫።፣ = 𝑦፤፫።∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅፤ , 𝑖 ∈ 𝑁፭ (10.14a)

𝑓፤፫።፣ ≤ (𝑄፤ − 𝑑።)𝑥፤፫።፣∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, 𝑟 ∈ 𝐾፫ (10.14b)
𝑓፤፫።፣ ≥ 𝑥፤፫።፣∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, 𝑟 ∈ 𝐾፫ (10.14c)

10.6. Branch and Cut
The subtour elimination constraints are one of the mayor difficulties in the VRP. It was shown
earlier that subtour constraints need to be defined for each subset of nodes, resulting in
an exponential amount of constraints. There are other ways however to eliminate these
subtours without including a constraint for every subset. In the original formulation given in
Chapter 9, subtours are eliminated due to the constraints on time variables. This principle
to use additional variables to eliminate subtours was introduced by Miller et al. [1960].

10.6. Branch and Cut 89

Unfortunately using these extra variables to prevent subtours give a convenient but weak
formulation [Pataki, 2000]. A method often used in modern VRP solvers is column generation
where variables are generated during the solver algorithm, however it has been shown in
the literature study that no working column generation method has been found yet for the
VRP with time synchronization between vehicles. For this reason, the possibilities of row
generation are explored. In this method, new constraints are generated during the solver
process.

The Branch and Cut algorithm was given in Section 4.5.1. This algorithm is a variation
on the standard Branch and Bound algorithm commonly used to solve MILP problems. The
Branch and Cut algorithm used in this thesis is similar, except that instead of adding con-
straints after finding a feasible solution, it adds constraint at each Branch and Bound node.
After an non-integer optimal solution 𝑥ᖣ has been found, new constraints are added to cut
away 𝑥ᖣ. This new constraint thus separates 𝑥ᖣ from the solution space. The set of capacity
constraints (Equation (4.6d)) are defined for each subset of 𝑁 and thus increase factorial.
Therefore, it will quickly become impossible to add them all, and instead a Branch and Cut
algorithm is needed to decide which subset of cuts to add.

In the implemented BC algorithm a non-integer optimal solution 𝑥ᖣ is considered per node.
It was shown earlier that the timing constraints prevented subtours in the integer solution.
However, in the non-integer solution subtours still can occur. A subtour results in a subset
of nodes 𝑁ᖣ for which the demand is not delivered from the depot. For the standard VRP this
can be seen as finding a subset where the total capacity of vehicles entering is insufficient
for serving all nodes. However, in the ship installation routing, the demand for a subset is
not a constant but depends on the installation methods chosen.

It is therefore first explained how the separation problem works for a traditional VRP.
After this, the modifications for the time-synchronization problem are given. An approach
for capacity constraints in a Branch and Cut algorithm is given in Blasum and Hochstättler
[2002], who introduced multiple cuts. Multiple were tried where the capacity constraints
gave the best results. This is used in the BC algorithm.

Blasum and Hochstättler [2002] show how to solve the separation constraint for the ca-
pacity based VRP constraints by solving maximum flow problem. A maximum flow problem
considers a network with a source and a sink node, and capacities on each arc. The max-flow
min-cut theorem [Dantzig and Fulkerson, 1955] states that the maximum flow through this
network, bounded by the capacities, is equal to the minimum value cut. A cut is a subset of
arcs 𝐴, such that two distinct subsets of nodes 𝑁ኻ and 𝑁ኼ are created. Each arc in 𝐴 has one
endpoint in 𝑁ኻ and one in 𝑁ኼ, and there is no arc 𝑎 ∉ 𝐴 connecting 𝑁ኻ and 𝑁ኼ

Consider node subset 𝑁ᖣ ⊆ 𝑁፭. Assume vehicles with capacities 𝑄፤. Let 𝛿ዅ(𝑁ᖣ) consist of all
arcs entering the subset of 𝑁ᖣ. It follows that all nodes have to be serviced by vehicles coming
in on these arcs. The total inflow of components in 𝑁ᖣ on an arc (𝑖, 𝑗) is ∑፤∈ፊ ∑፫∈ፑ፤ 𝑥

ᖣ፤፫
።፣ ∗ 𝑄፤.

Note that 𝑥ᖣ does not have to be integer. The total supply of components delivered to 𝑁ᖣ is
therefore given in Equation (10.15). The separation problem is finding 𝑁ᖣ which has a supply
less than the demand.

𝑠𝑢𝑝𝑝𝑙𝑦(𝑁ᖣ) = ∑
፤∈ፊ

∑
፫∈ፑ፤

∑
(።,፣)∈᎑ዅ(ፍᖣ)

𝑥ᖣ።፣ ∗ 𝑄፤ (10.15)

This can be modelled as a maximum flow problem. Create graph 𝐺 with the harbour node
𝑛ኺ and turbine nodes 𝑁፭ and a sink node 𝑛፬. Arcs are defined between any 2 nodes in {𝑛ኺ}∪𝑁፭
with the value of ∑፤∈ፊ ∑፫∈ፑ፤ 𝑥

ᖣ
።፣ ∗ 𝑄፤, still considering a demand of 1 per node, regardless of

which vehicle delivers. Furthermore, add arc (𝑖, 𝑁፬) with a capacity of 1 for each turbine node
𝑖.

If there is a flow from 𝑛ኺ to 𝑛፬ in 𝐺 of size |𝑁፭|, it follows that the demand is fulfilled for
every node due to the arc capacity on (𝑖, 𝑛ኺ). If the maximum flow is less, it holds that the arcs
in 𝐺ᖣ do not have enough capacity to send a flow of 1 to every turbine node. The minimum
cut then holds the arcs for which the flow is at full capacity. The nodes on the sink-side of

90 10. Optimization method for ship routing model

the 𝑛ኺ − 𝑛፬ cut therefore do not have enough supply. This set of nodes is taken as 𝑁ᖣ, and
the Equation (10.16) can be introduced to require enough supply for this subset of nodes.

∑
፤∈ፊ

∑
፫∈ፑ፤

∑
(።,፣)∈᎑ዅ(ፍᖣ)

𝑥ᖣ።፣ ∗ 𝑄፤ ≥ |𝑁፭| (10.16)

This method provides a bound, although it does not take into account multiple installation
methods nor multiple ships per installation method. Equation (10.16) will only require a
supply of 1 per turbine. It also does not take into account any information about which
method will be used. Therefore, two approaches have been introduced which can be used
with the multiple installation methods.

The first approach, called branch-cut 1, uses ℎᖣ. This variable holds the chosen installation
methods for the non-integer optimal solution. The min-flow max-cut problem is then solved
for each installation step 𝑠፦, for each installation method 𝑚 and for each ship set 𝐾፬ ∈ 𝑠፦.
For installation method 𝑚, the demand for each turbine node 𝑖 ∈ 𝑁፭ is set to ℎ፦። , thus setting
the capacity on each arc from a turbine to the sink node as given in Equation (10.17). The
maximum capacity per edge to a turbine node is defined by Equation (10.18). The mincut-
maxflow problem is then solved by using the Edmonds-Karp algorithm [Edmonds, 1965]. If
the max flow is lower than ∑።∈ፍ፭ ℎ

፦
። , 𝑁ᖣ is defined as the set of turbines on the sink-side of

the minimum cut. This set thus has not enough inflow of ships to fulfil the demand for the
current installation method 𝑚. In this case, Equation (10.19) is added for 𝑁ᖣ.

𝑐𝑎𝑝።ፍ፬ = ℎ፦። ∀𝑖 ∈ 𝑁፭ (10.17)

𝑐𝑎𝑝።፣ = ∑
፤∈ፊ፬

∑
፫ ።፧ፑ፤

𝑥ᖣ፤፫።፣ 𝑄፤∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑁፞ , 𝑗 ≠ 𝑁፞ (10.18)

∑
።∈ፒ

∑
፣∈ፍ⧵ፍᖣ

∑
፤∈ፊ፬

∑
፫∈ፑ፤

(𝑥፤፫።፣ + 𝑥፤፫፣።) ≥ 2 ∑
።∈ፍᖣ

ℎ፦። (10.19)

The second branch-cut considers the set 𝐾ፚ. In Equation (10.20), 𝑀ᖣ is defined as the set
of all combinations of steps per methods. Equation (10.21) then defines 𝑆ፚ as a collection
of ship sets. Each element of 𝑆ፚ holds the ships from a combination of steps 𝑆ᖣ, where 𝑆ᖣ
contains exactly one method step per method.

This means that for every collection of ships 𝐾ᖣ ∈ 𝑆ፚ, at least one set of ships is contained
for the chosen turbine method. Thus for every 𝐾ᖣ ∈ 𝑆ፚ, each turbine has to be visited by at
least one ship 𝑘 ∈ 𝐾ᖣ. Therefore, a minflow-maxcut problem is solved for each 𝐾ᖣ ∈ 𝐾.

Since for each node 𝑖, one ship in 𝐾ᖣ has to visit 𝑖, the demand per node is one. This
means that the arc capacity between each turbine node and the sink node is equal to 1
(Equation (10.22)). The capacity on each arc to a turbine node is equal to the combined
capacity of all ships in 𝐾ᖣ, as shown in Equation (10.23).

𝑀ᖣ = ∏
፦∈ፌ

𝑆፦ (10.20)

𝑆ፚ = {∪፬∈ፒᖣ𝐾፦፬ ∶ 𝑆ᖣ ∈ 𝑀ᖣ} (10.21)

𝑐𝑎𝑝።፧፬ = 1∀𝑖 ∈ 𝑁፭ (10.22)

𝑐𝑎𝑝።፣ = ∑
፤∈ፊᖣ

∑
፫ ።፧ፑ፤

𝑥ᖣ፤፫።፣ 𝑄፤∀(𝑖, 𝑗) ∈ 𝐴, 𝑖 ≠ 𝑁፞ , 𝑗 ≠ 𝑁፞ (10.23)

Similar to branch-cut method 1, a minimum cut smaller than |𝑁፭| indicates a subset
𝑁ᖣ ⊂ 𝑁 for which the demand is not met. Equation (10.24) is then added to fulfil this demand.

∑
።∈ፒ

∑
፣∈ፍ⧵ፍᖣ

∑
፤∈ፊᖣ

∑
፫∈ፑ፤

(𝑥፤፫።፣ + 𝑥፤፫፣።) ≥ 2|𝑁ᖣ| (10.24)

10.7. Discussion 91

10.7. Discussion
The Branch and Cut method above are created by taking existing capacity based cuts for
the vehicle routing problem and modifying it to the concept of different installation methods.
Although it will show later that this method provides good results, an important property of
these cuts are lost in it. This is the rounding property. This is explained by the following
example. If a subset of nodes with demand 𝑎 has to be supplied by a vehicle with capacity
𝑏, the minimum amount of trips to these nodes is 𝑎/𝑏. However, since partial trips are not
possible, this lower bound can be rounded up to set the minimum amount of trips to ⌈𝑎/𝑏⌉.
This thus provides a tighter bound, but relies on the fact that the capacity is a constant.
Since in the SIRP the capacity depends on a variable, rounding is not possible.

11
Adaptive Iterative Simulated Annealing

algorithm
Since the VRP is well known to be an 𝒩𝒫-hard problem, the exact optimisation cannot be
used for large instances. The value of formulating an exact method lays in its ability to
evaluate other heuristic solution methods. In this chapter, an Adaptive Iterative Simulated
Annealing (AISA) for the SIRP will be presented.

11.1. Algorithm
In metallurgy, the process of annealing involves heating and cooling of the material, to in-
crease the size of its crystals. This process served as an inspiration to create the simulated
annealing meta-heuristic, which is used to solve a broad range of optimisation problems.
The simulated annealing is a LS based. The basic local search algorithm has the problem
that when no improving solution can be found in it’s neighbourhood, it will stop. This means
that it is not capable of escaping local optima.

The approach of simulated annealing to overcome this problem, is to introduce a temper-
ature variable during its execution. This temperature gradually cools during the local-search
iterations. When evaluating a neighbouring solution 𝑥ᖣ, the algorithm will always move from
the current solution 𝑥 to 𝑥ᖣ if the cost 𝑓(𝑥ᖣ) of this new solution is lower than the cost 𝑓(𝑥)
of 𝑥. If 𝑓(𝑥ᖣ) is larger than 𝑓(𝑥), it depends probabilistically on the current temperature 𝑇. If
𝑇 is high, the chance of accepting a worsening solution is high as well, and vice versa. This
gives the simulated annealing algorithm the capability of escaping local optima, although it
cannot be guaranteed that a global optimum will be reached.

It was shown earlier that a mayor problem in using LS based optimisation were the syn-
chronization constraints. If a reasonable good current solution is considered, a neighbour-
hood solution might be created by changing one or a few nodes. Consider the current solution
𝑥 and the neighbourhood solution 𝑥ᖣ, created by performing move 𝑚 on 𝑥. It might very well
be that the routes in 𝑥ᖣ are better than those in 𝑥. However, only a few nodes in the solution
are changed. The rest of the solution is still optimised for the synchronization constraints in
𝑥. Therefore, it is likely that the cost of 𝑥ᖣ is higher than that of 𝑥, due to the synchronization
requirements. This results in 𝑚 being marked unfairly as a bad move.

To give 𝑥ᖣ a fair chance, a new optimisation process starts after doing move 𝑚. The goal
of this second optimisation process is to fix the synchronization requirements. This involves
a second simulation annealing algorithm which handles the synchronization vehicles. Al-
though this mitigates the problem of a high quality solution 𝑥ᖣ being dismissed only because
it is incompatible with the synchronization requirements in 𝑥, it increases the time to evaluate
a move 𝑚 by a large amount.

The amount of moves to be evaluated in the upper level simulated annealing algorithm,
from now on denoted by 𝑆𝐴ᖣ, is desired to have as few move-evaluations as possible. For

93

94 11. Adaptive Iterative Simulated Annealing algorithm

the bottom level simulated annealing algorithm, from now on denoted by 𝑆𝐴ᖥ, more move
evaluations per iterations are allowed. This means that 𝑆𝐴ᖥ will, after selecting a move,
evaluate multiple variations of this move and select the best one. In contrast, 𝑆𝐴ᖣ will only
evaluate one variation before deciding whether or not to move in this direction.

The structure of the algorithm is shown in Algorithm 10. It is initialised by setting the
upper algorithm temperature to an initial condition and by creating a feasible initial solution.
The local search is then ran until some stopping criterion is met. A move is selected, and
this move creates a new temporary solution 𝑥ᖣ፮. This solution might be infeasible. Often,
a ship visiting a node is changed to a different ship. If this new ship is part of a different
installation method, the new solution is not feasible. Therefore, a repair move is done after
this. Subsequently, the repaired temporary solution 𝑥ᖣ፮ is used as the initial solution for the
bottom algorithm 𝑆𝐴ᖥ.

The structure of the bottom local search is similar to the upper local search. The difference
is found in the initial solution, the moves done, and the stopping criteria. Just like 𝑆𝐴ᖣ a move
is selected and a temporary solution 𝑥ᖣ፛ is created. This solution is then compared against
the current bottom solution 𝑥፛. Based on the quality of both solutions and the temperature
it is then decided if this move is accepted as the new current solution. Furthermore, if the
solution is better than the best solution found so far in 𝑆𝐴ᖥ it is stored as the best solution.
After each iteration in 𝑆𝐴ᖥ the bottom temperature 𝑇፛ is updated.

When some stopping criterion is met, 𝑆𝐴ᖥ stops and returns the best solution found 𝑥∗፛.
This solution is then compared with the current solution 𝑥፮ from 𝑆𝐴ᖣ. Depending on quality
and temperature, it can be accepted as the new current solution. Again, if it is the best
solution found so far it is stored as well. After this, the temperature is updated and the
iteration runs again. This is repeated until some stopping criterion terminates the algorithm,
after which 𝑥∗፮ holds the best solution found.

This gives a description of how the iterative simulated annealing algorithm works. There
are still multiple details to be presented, such as the stopping criteria, the moves, creation
of the initial solution and more. First, the motivation of this algorithm over other possible
candidates will be given. Subsequently, the details for different parts of the algorithm is
presented.

11.2. Choice of algorithm
With the structure of the algorithm explained, the motivation for this algorithm can now be
presented. As seen in the literature review, there are two main approaches in heuristics for
synchronised routing, with multiple variations on these. The first one is a large neighbour-
hood search which has two actions, a destroy and a repair action. In the destroy action,
a large part of the solution is to be destroyed which is then repaired by a heuristic in the
repair action. Traditional local search algorithms encounter the problem that most neigh-
bourhoods are infeasible due to the synchronization constraints. The idea behind LNS is to
destroy a large enough part of the solution, such that these constraints will be loose and new
neighbourhoods will be feasible.

The other main approach was a two-level local search. Here, the problem was split into
two parts where traditional neighbourhood moves are used at the top level problem. This, of
course, results in conflicts with schedules for other vehicles, so after each move belonging to
a top-level neighbourhood, a second optimisation is performed to resolve these conflicts.

To make a choice, it is important to first understand the characteristics of our problem.
A major difference with problems found in literature, is that we consider a synchronization
problem with multiple trips per vehicle. Although each trip can be modelled as a separate
vehicle, this adds the constraint that a vehicle can only start after its predecessor has finished
its trip. This creates much more synchronization constraints than found in most problems.

This might cause problems with an LNS algorithm. By destroying a part of the solution and
rebuilding it, there is no guarantee that a different solution will be generated. It is possible
that the rebuild solution is exactly the same as the original solution, but when the amount of
possible solution to which the destroyed solution can be rebuilt is high, this chance is very

11.2. Choice of algorithm 95

Algorithm 10 Iterated simulated annealing algorithm
𝑇፮ = 𝑇ኺ፮
𝑥፮ = generate_initial_solution()
𝑥∗፮ = 𝑥ᖣ፮
while Upper stopping criteria not met do

𝑚፮ = select_upper_move()
𝑥ᖣ፮ = do_move(𝑚፮,𝑥፮)
𝑥ᖣ፮ = repair(𝑥ᖣ፮)
𝑇፛ = 𝑇ኺ፛
𝑥፛ = 𝑥ᖣ፮
𝑥∗፛ = 𝑥ᖣ፛
while bottom stopping criteria not met do

𝑇፛ = 𝑇ኺ፛
𝑚፛ = select_bottom_move()
𝑥ᖣ፛ = do_move(𝑚፛,𝑥፛)
if accept(𝑥ᖣ፛ , 𝑥፛ , 𝑇፛) then

𝑥፛ = 𝑥ᖣ፛
end if
if 𝑓(𝑥ᖣ፛) < 𝑓(𝑥∗፛) then

𝑥∗፛ = 𝑥ᖣ፛
end if
𝑇፛ = update_bottom_T()

end while
if accept(𝑥∗፛ , 𝑥፮ , 𝑇፮) then

𝑥፮ = 𝑥∗፛
end if
if 𝑓(𝑥∗፛) < 𝑓(𝑥∗፮) then

𝑥∗፮ = 𝑥∗፛
end if
𝑇፮ = update_upper_T()

end while

small. However, if the problem is very constrained, the amount of possible solutions after
rebuilding is lower, and the chance of building a similar solution increases. In a two-level
local search, a change is forced, and therefore this algorithm will always generate a different
solution after a move.

Our problem also has a large dominant-subjective character. Due to the high costs of the
installation ships in comparison to other vehicles it is very clear that these need to be opti-
mised. It would basically never be a smart choice to delay these ships to minimise support-
vehicle time. The contrary statement is also true, if a support vehicle can be delayed to
minimise installation ship time, very often it will be profitable to do so.

The two-parts character matches very well with a two level search. When a schedule of the
installation ships is known, the plug-schedules are very constrained. Simple tests also have
been done for both types of algorithms, and the results were more promising for the two level
local search. However, it has to be stated that the choice relies more on the logical arguments
presented above than on quantitative tests results. The reason for this, is that to create a fair
comparison a simple test is not sufficient since there are many neighbourhood structures to
define in both. The goal of creating both algorithms was to get a better understanding of the
these algorithms in order to derive logical arguments.

In the rest of this chapter, the details of the adaptive iterated simulated annealing algo-
rithm for the vehicle routing problem are presented. The next section will cover the first thing
to be done when the algorithm starts: Creating an initial solution.

96 11. Adaptive Iterative Simulated Annealing algorithm

11.3. GRASP Algorithm
As shown in Algorithm 10, the AISA algorithm explores the search space by moving between
feasible solutions. Therefore, an initial feasible solution has to be generated. This solution
will then be improved by the local search.

Additionally, it is favourable for an initial solution to have some degree of randomness. The
reason for this can be found in the mechanics of local search. A local search method starts
at a certain initial solution and keeps moving from neighbour to neighbour. The simulated
annealing helps the local search in ‘climbing out’ of local optima, but only to a certain extent.
Therefore, the starting location in the searchspace is a large influencer for the final position.

By using multiple initial solutions, the AISA algorithm can run multiple times, exploring
different parts of the search space. For this reason, GRASP, as introduced in Section 4.5.2, is
used. This algorithm has a randomness built in, and therefore will create a different solution
each time it runs.

GRASP stands for greedy randomised adaptive search procedure, and was used by Salazar-
Aguilar et al. [2013] and Ait Haddadene et al. [2016] for synchronised routing problems. It
starts with an empty solution, and for each iteration it adds one component, randomly se-
lected from the list of 𝑛 best options. This is what greedy and randomised stands for. Greedy
means taking the best option, not taking into account future choices. It is randomised be-
cause it selects randomly from a list of top candidates. For the next iteration, the costs of
inserting a node somewhere are recalculated, with the choice made in the previous iteration
taken into account. This is what adaptive stands for.

Algorithm 11 Grasp implementation for Installation and Routing Problem
function create_initial_solution

node_list = {(𝑖, ⋃
፦∈ፌ።

𝐾𝑠፦ኺ) ∶ 𝑖 ∈ 𝑁፭}
R = create_empty_routes()
while |node_list| > 0 do

scores = {}
for all (i,ships) ∈ node_list do

for all 𝑘 ∈ 𝑠ℎ𝑖𝑝𝑠 do
cost_at_every_position = calc_cost_at_every_position(i,k,𝑅፤)
(position,cost) = select_best(cost_at_every_position)
scores = scores ∪ {(i,k,position,cost)}

end for
end for
(i,k,position) = select_randomly_from_top_n(scores)
𝑅 = insert(R,i,k,position)
node_list = remove_node(node_list)
if k is first ship in method then

node_list = node_list ∪ create_new_nodes()
end if

end while
return R

end function

The GRASP implementation for the SIRP is given in Algorithm 11. When the algorithm
starts, a node list is initialised. This node list holds an entry for each turbine node. Each
entry exists of the node and the set of ships included in the first step of each installation
method compatible for this turbine. Additionally, a set of empty trips is generated. This
holds multiple empty trips per ship, depending on the capacity of that ship and the maximum
demand.

Then for each node 𝑖 and each ship 𝑘 in the corresponding ship list, the cost for inserting
node 𝑖 at every position in trip-set 𝑅 is calculated. All non feasible positions, for example due
to capacity constraints, are removed and the cost at every position is returned. This thus

11.4. Moves 97

contains all positions where node 𝑖 can be inserted in 𝑅፤, and its corresponding costs. From
these the best position is selected and stored in the scores list.

When all possible ships are evaluated for every node, the result is a node list which holds
for each node a ship to include at a position. This results in the smallest possible cost
increase for all options for that node. This list is sorted and one entry is selected randomly
from the top 𝑛 entries. This entry holds a node, a ship and a position where to insert this
visit. The trips 𝑅 are updated by changing the corresponding trip of ship 𝑘 to visit node 𝑖 at
the specified position.

After this, the selected entry is removed from the node list. If it is the case that this entry
defines the first visit to turbine 𝑖, the method for 𝑖 will now be fixed. The node list is then
updated by adding an entry for each method step. Each entry consists of the node 𝑖 and the
possible ships in the method step. If there is already a visit to node 𝑖, it thus follows that all
steps were added to the node list earlier and nothing is added. This process is iterated until
the node list is empty, resulting in a feasible solution. .

This completes the GRASP algorithm for the SIRP. It is modified from examples found
in literature to take into account the multiple installation methods and trips. With this
algorithm an initial route can be found, and by changing the size of the restricted list the
randomness can be varied.

The grasp algorithm is used on two occasions. Firstly, in creating the initial solution.
Secondly, it is used in the repair move. Here the conflicting ships caused by doing a move in
𝑆𝐴ᖣ are removed and the node list is repopulated with these ships for the relevant turbines.
It is then ran with a list size of 1. This repairs the installation method conflicts, after which
the repaired solution will be optimised further.

11.4. Moves
In local search, the neighbourhood of a solution 𝑥 is defined as the set of all other solution in
which 𝑥 can be transformed by a single permutation. These permutations are called moves,
and in order to explore the search space multiple moves were defined. A move thus takes a
solution 𝑥 and transforms it into another solution 𝑥ᖣ. It is important that the moves connect
the complete search space, meaning that for any two feasible solutions 𝑥ኻ and 𝑥ኼ, there is a
sequence of moves to transform 𝑥ኻ to 𝑥ኼ and vice versa.

A characteristic of a move is howmuch it changes a certain solution. Moves which perform
small changes have the benefit of not moving too far away from the solution 𝑥, which might
already be a good solution. Changing 𝑥 to much will often negate the positive effect of earlier
improvement steps. A downside of a small alteration move is that it might get trapped in a
local optimum. It might be necessary in these cases to have a move which alters the solution
a bit more.

The effectiveness of a move varies with the status of the current solution. It is for this
reason that instead of one, multiple moves are used. The different moves will be described in
this section. The selection mechanism will be discussed afterwards. Each move takes a set
of trips, and relocates one or more nodes in this. A move is restricted to a subset of ships for
which it can change the routes based on whether the move belongs to 𝑆𝐴ᖣ or 𝑆𝐴ᖥ. A division
is made between leading ships and following ships. The leading ships are changed in 𝑆𝐴ᖣ and
the following ships are considered in 𝑆𝐴ᖥ.

The first move considered is the swap move. This move first selects two compatible ships
randomly. Compatible means that the nodes in routes between these ships can be swapped.
For 𝑆𝐴ᖥ this means that the ships are both included in the same method step. In 𝑆𝐴ᖣ this
does not have to be the case, since the repair step in Algorithm 10 will fix the infeasible
solution created by swapping two ships which are not part of the same method step. When
two compatible ships are selected, a trip and turbine for the first position is selected. This is
done by selecting the node which has the maximum waiting time. An additional swap move
is created by changing this step to selecting a random node. A list is then created which
contains all nodes on all trips for the second ship.

98 11. Adaptive Iterative Simulated Annealing algorithm

From this list one entry is selected. For 𝑆𝐴ᖥ this is done by evaluating the effect of all, and
then selecting the best one. For 𝑆𝐴ᖣ, this would result in running 𝑆𝐴ᖥ for each evaluation,
so instead it is selected randomly. Now two nodes are selected on two trips: (𝑘ኺ, 𝑟ኺ, 𝑖ኺ) and
(𝑘ኻ, 𝑟ኻ, 𝑖ኻ). Node 𝑖ኺ and 𝑖ኻ are then exchanged between their respective trips, as shown in
Figure 11.1.

Figure 11.1: Swap move

The second move is called an insert move. The selec-
tion mechanic for selecting nodes is the same as for the
swap-move, except that for the second ship the final har-
bour node 𝑛፞ is considered. This, again, results in two
nodes with corresponding ships and trips: (𝑘ኻ, 𝑟ኻ, 𝑖ኻ) and
(𝑘ኼ, 𝑟ኼ, 𝑖ኼ). Node 𝑖ኻ Is then removed from 𝑟ኻ and inserted in
𝑟ኼ just before 𝑖ኼ. This is shown in Figure 11.2. It is noted
that for selection of the second ship and trip, empty trips
are considered as well. An empty trip consists of just the
beginning and ending harbour node. The only possible po-

sition of inserting is then just before the ending harbour node 𝑛፞, thus creating a new trip to
the field.

Figure 11.2: insert move

The third move considered is the multiswap, which
swaps multiple adjacent nodes. It first selects two posi-
tions from two compatible trips, similar to the swap and
insert moves. The difference is that it does not consider
harbour nodes and that it only considers trips with at least
two turbine nodes. From both selected positions, a se-
quence of 𝑛 nodes is selected, where 𝑛 is random but will
not be larger than the amount of turbine nodes left from
the selected position in both positions. These adjacent seg-
ments are then exchanged between trips. This exchange
is shown in Figure 11.3

Figure 11.3: Multiswap move

In contrast to the previous moves, the two-opt move
does only modify a single trip. The move randomly selects
a trip and corresponding ship (𝑘, 𝑟). From this trip, one
position is selected, either randomly or on longest waiting
time. Then a candidate list is created by including all re-
maining nodes in the selected trip 𝑟. Again, if the move is
part of 𝑆𝐴ᖥ all candidates are evaluated, otherwise one is
picked randomly.

Thus two positions 𝑖 and 𝑗 in this trip are selected,
where 𝑖 is visited before 𝑗. Let 𝑖ᖣ be the node visited just be-
fore 𝑖 and 𝑗ᖣ the node visited just after 𝑗. The two-opt move
then replaces arc (𝑖ᖣ, 𝑖) by (𝑖ᖣ, 𝑗) and arc (𝑗, 𝑗ᖣ) by (𝑖, 𝑗ᖣ). This

can be seen as crossing the arcs to 𝑖 and from 𝑗. Additionally, the arcs from 𝑖 to 𝑗 are reversed
to maintain a correct route. This move is shown in Figure 11.4.

Figure 11.4: Two-opt move

Furthermore, the cross move is used. This move selects
a single ship randomly as long as the ship has at least two
trips which both visit more than 1 turbine. Subsequently,
two trips are selected and all nodes of the shortest trip are
added to a candidate list. The selection of a candidate,
which is the same as explained in the previous moves, re-
sults in a ship 𝑘, two trips for this ship 𝑟ኺ and 𝑟ኻ, and one
node 𝑖 located on the shortest of these two trips. If 𝑖 is the
𝑛th node in it’s trip, then 𝑗 is defined as the 𝑛th node in the
other trip. The cross move then crosses the arcs leaving 𝑖
and 𝑗 similar to the two-opt move. This is illustrated in Figure 11.7.

The next move included in the algorithm is called or-opt. This move selects two compatible

11.5. Move selection 99

Figure 11.5: Adjacent insert move Figure 11.6: Or-opt move

ships with two trips randomly, with both trips visiting at least 3 nodes. The length of the
shortest trip is then defined as 𝑙𝑟. A random integer from 1 to ⌈𝑙𝑟/2⌉ is then defined as the
amount of nodes 𝑛 which will be swapped. Then 𝑛 non-adjacent nodes are selected randomly
and swapped with the corresponding nodes in the other trip as shown in Figure 11.6.

Similarly, the adjacent-insert move also selects two trips from two compatible ships. The
requirements for the trips are that the first one is not empty ,and that the second one has at
least one available space. From the first trip an adjacent segment of random size is selected,
with a maximum length equal to the capacity left in the second trip. This adjacent segment
is then removed from the first trip and placed at a random position in the second trip. The
adjacent insert move can be seen in (11.5).

Figure 11.7: Cross move

Finally two more moves are introduced which threat trips
as a whole. The reverse move, as seen in Figure 11.8 selects
a random trips from any ship and reverses the direction. The
trip-swap selects two trip from a single ship and interchanges
them. Both these moves will not result in a shorter travel-
ling time, but might improve synchronization and therefore
reduce waiting time.

11.5. Move selection
As stated before, the performance of moves depend on the
current solution state. Different moves will be effective at
different times during the solving process. For example, the two-opt move has an untangling
effect, which is highly effective if a trip has an inefficient ordering of the included nodes.
Likewise, when a certain ship has a much longer makespan then another, then the insert
move will perform well.

Figure 11.8: Reverse move

Using all moves with the same frequency will there-
fore often result in selecting moves which are not effec-
tive at the current time, therefore wasting computational
resources. For this reason, an adaptive move selection
mechanism is implemented, as found in Ropke [2005].
This mechanism keeps track of the performance of the
moves and uses this information to chance the frequency

of choice per move. For each move, two scores are kept, the smoothed score 𝑠፦ and the
observed score 𝑠ᖣ፦. These scores are updated as the algorithm runs, and choices are made
based on the smoothed scores.

All scores are set equal when the algorithm starts. A move is chosen based on the roulette
wheel random drawing. This means that the probability 𝑝(𝑚) of selecting a certain move 𝑚 is
directly proportional to the score, as is shown in Equation (11.1). For the first iteration, this
of course results in an equal probability for all moves. After a move is executed, feedback

100 11. Adaptive Iterative Simulated Annealing algorithm

is given. Two update parameters are set for the algorithm, the 𝑠𝑢ፚ and 𝑠𝑢፛. If a move is
accepted, the observed score 𝑠፦ for move 𝑚 will be incremented by 𝑠𝑢ፚ. If the move also
resulted in a new best solution, it will be incremented by 𝑠𝑢፛. Furthermore, the amount of
move selections for move 𝑚 are stored in 𝑚𝑐፦.

𝑝(𝑚) = 𝑠፦
∑፦∈ፌ 𝑠፦

(11.1)

This is done for a fixed amount of iterations: The segment length. This is a parameter
in the AISA algorithm. At the end of a segment, the smoothed scores are updated according
to Equation (11.2). In this equation, two constants are introduced which are both algorithm
parameters: The smoothing coefficient 𝜌 and the score constant 𝑐𝑠. It can be seen that the
new smoothed score is a combination of the previous smoothed score and of the observed
score divided by the move call count in the previous segment. The smoothing coefficient
defines the weight-factor of both terms. A high 𝜌will thus result in an observed score resistant
against modifications, and a low 𝜌 will result in a smoothed score heavily reliant on the last
observed score. Furthermore, introduced in this thesis, the 𝑐𝑠 can be set to a non-zero value
to prevent scores of reaching near zero. After updating the smoothed scores, the observed
score and move counters are reset.

𝑠፦ ∶= 𝜌 ∗
𝑠ᖣ፦
𝑚𝑐፦

+ (1 − 𝜌)𝑠፦ + 𝑐𝑠 (11.2)

11.6. Simulated annealing temperature
As stated earlier, the simulated annealing algorithm keeps a temperature variable during ex-
ecution. This temperature variable defines how tolerant the algorithm is in accepting worsen-
ing solutions. The temperature 𝑇 is set to an initial temperature at the start of the algorithm.
After each iteration, the temperature is multiplied by the temperature reduction parameter
𝛼 < 1.

When a move creates a new temporary solution 𝑥ᖣ, the value of this move is compared to
the current solution 𝑥. If the cost 𝑓(𝑥ᖣ) of 𝑥ᖣ is smaller than or equal to the cost 𝑓(𝑥) of 𝑥, the
temporary solution 𝑥ᖣ is always accepted. If 𝑓(𝑥ᖣ) > 𝑓(𝑥), then 𝑥ᖣ is accepted with a probability
based on the difference and the temperature as given in Equation (11.3) [Ropke, 2005]. In
the beginning of the algorithm worsening solutions are easily accepted, therefore exploring
a varied region in the search space. As the iterations proceed, the temperature gradually
lowers and the acceptance criteria is getting more selective. Where in the beginning it will
accept even highly worsening solutions, later in the algorithm it will more often only accept
slightly worsening solutions.

𝑝 = 𝑒
፟(፱ᖣ)ዅ፟(፱)

ፓ (11.3)

After some time, the temperature will be nearly zero and only improving solutions will
be accepted. At this moment, it will usually soon get trapped in a local optimum, after
which the algorithm stalls. When this happens, the temperature will be increased to 𝑇ኺ
again. This is called reheating. It enables the solution to diversify again and possibly reach
a better optimum. The algorithm terminates after the maximum allowed amounts of reheats
is reached.

11.7. Cost evaluation
During the execution of the algorithm, the costs will be calculated after evaluating every
move, and for 𝑆𝐴ᖥ it will be calculated to evaluate the possibilities per move. This is done by
first calculating the travelling times for the given trips, and then calculating the cost based
on ship and project cost per duration. If a ship exceeds its capacity, a cost penalty will be
added. The same holds if a turbine is installed by an incompatible method.

11.8. Discussion 101

When the trip times are calculated, waiting times are introduce to fulfil the synchroniza-
tion constraints. This means that if a ship is scheduled to deliver a component which has
not arrived yet, it will wait at the harbour until it arrives. The same holds for other time
synchronizations.

11.8. Discussion
The grasp algorithm currently evaluates all possible insertion points for a visit based on ship
and trip location. As soon as the first visit for a turbine is decided, the corresponding method
will be decided. If a single ship is part of multiple installation methods, one method will be
picked randomly. This is done to decrease the amount of options to evaluate and thus the
time required to run the grasp algorithm. However, it would be interesting to see what the
effects are of evaluating all installation methods.

Furthermore, reheating now is done by simple resetting to the original temperature. How-
ever, by suddenly increasing the temperature by a large amount, the algorithm might move
far away from the current solution. Although this diversifies the search space, it also means
that certain work done on optimizing the solution is lost. It might improve the algorithm
if more research was done for this balance. An example is not completely reheating, but
slowly increasing the temperature. Another possibility is reheating instantly, but varying the
magnitude of this.

Also, the penalties given based on ship capacities are now constant, increasing the cost if
these capacities are exceeded. It might be interesting as well to research the effect of varying
these capacities. At the end of the algorithm, the penalties have to be large enough to forbid
any trips exceeding the capacities. However, during the execution of the algorithm this is
not necessary. Varying the penalties might lead to temporarily leaving the solution space in
order find better solutions later, although this principle is also present in the temperature
acceptance criterion. Another possible approach would be to completely disregard penalties,
and use moves which will never exceed the capacity penalty.

11.9. Conclusion
An algorithm is created with the goal of overcoming the problems encountered when us-
ing standard local search methods by introducing a nested second local search. Simulated
annealing is used in order to overcome local optima and due to the probabilistic nature of
both GRASP and simulated annealing, running the algorithm multiple times will result in
exploring a larger part of the search space.

Since further problem-specific constraints can be implemented in the cost function, this
algorithm is very versatile and is expected to handle changes in project requirements well. As
long as the solution found can still be expressed as a collection of routes, changing the cost
function can be enough to handle different projects. Penalties can be introduced to forbid
certain outcomes and can be implemented independently of the solver algorithm.

The adaptive move selector provides automatic monitoring and implementation of move
performance. Not only does this help to change the frequency of moves according to perfor-
mance, this self regulating principle also makes the algorithm very expandable performance-
wise. When new moves are added, little evaluation of their performance has to be done since
the adaptive solver mechanism handles this.

Furthermore, the algorithm can be tuned for requested performance. A slow cooling al-
gorithm with a lot of reheats will result in the best solutions and can be useful for the initial
planning when a lot of time is available. During the execution of a project the algorithm can
be tuned to run faster. This might result in solutions of worse quality, but allows the algo-
rithm to be run in real time to adapt to changes during project execution. Finally by tuning
to an even faster algorithm it can be used as a planning helper tool. It might be useful for
example to quickly test what reducing or increasing the amount of plugs does. In this case
the algorithm can be tuned to create very fast solutions, which give a quick impression of the
consequences of certain decisions.

12
Results

As presented earlier, two solutions methods have been developed for each problem: an ex-
act optimisation method and a heuristic. The roles for both methods are the same in each
problem. For the exact optimisation method, this is to validate and evaluate the heuristic
method. The exact optimisation only works for small instances, but by trying to get these
instances as large as possible the heuristic can be validated with more confidence. The goal
of the heuristic is then to solve the real-world problems.

The tests done are based on these purposes per model. Each exact method has as goal
to improve the original MILP model. Therefore, the solver performance of this original model
is compared to the proposed optimisation techniques. This gives an insight in the strength
of these techniques. Subsequently, the heuristics are tested. The results of these tests are
compared against the exact solutions. Afterwards tests will be done for the Walney project.

The tests were performed on the DAS-5 cluster of TU Delft and other institutes. Tests
were done on a single node, with 8 dual cores which have a processor speed of 2.4 GHz. To
compare this with a regular pc, a similar test which took 725 seconds in the DAS-5 cluster,
took 800 seconds on a pc with 2 cores with a processor speed of 2.70 GHz. This change
is thus not very large. All algorithms were created in Python. To solve the MILP problems,

these were formulated in Python as well by using the PULP library (see Roy, J.S. [2017]).
This library allows for a general way of formulating MILP problems, which can be linked
to multiple solvers. Since the problems became quite big, expansions to this library where
made in order to significantly decrease the time and memory needed to formulate problems.
Besides this, extensions to include a warm-start were also written. After formulating these
problems with PULP, they were solved with CPLEX.

To compare MILP solver performance, the term deterministic time is introduced. This
stands for an arbitrary amount of calculations done. The benefit of using this in comparison
with actual time, is that it is independent of other processes being carried out on the same
computer. For example, a student compiling his latex document might slow down the solver
running on the same computer. This technique is part of CPLEX Optimisation Studio and
therefore not used in custom scripts.

Because deterministic time is a CPLEX custom measurement, the real value is not impor-
tant and all times are normalised.

12.1. Computational Results Component Relocation Problem
A series of tests has been performed to test the optimisation methods for the component
relocation problem. First, the performance of different cutting planes is evaluated. After
this, the exact method is compared against the heuristic method and finally the algorithm is
ran for the Walney project.

103

104 12. Results

12.1.1. Problem configurations
For the component relocation problem, three types of flow configurations have been studied.
The first configuration is called loading. This configuration handles the loading of a fixed set
of components from a storage area to a ship. The initial field consists of an empty loadout
area, and occupied and empty storage-only locations. On the occupied locations, the com-
ponents are placed randomly. From there, they are requested to be loaded onto the ship, in
ordered sets of batches of size 2. The loadout area therefore consists of 2 locations. All com-
ponents are thus places on the storage area in the beginning and the problem is completed
when all are unloaded.

The second configuration is called storage. This method combines arriving components
with departing components. At the start of this problem, all locations are empty. The com-
ponents arrive in batches of 2. After they all have arrived, departing starts in batches of 2
until all components are loaded onto the vessel. This problem thus exists of first unloading
all components to the storage area, before loading them all to the ships.

Finally, the configuration called buffer is introduced. Where the first problems both mod-
elled a project where the components were all available at the start of the project, the buffer
configuration models a mixed flow of arriving and departing components. It is then per case
specified what the in- and outflow of components is, as well as the field geometry. In all
cases it holds that, except for the starting and ending conditions, the storage area will never
be empty.

12.1.2. Cut Performance
In the first batch of tests, the influence of cutting planes in the CRP is evaluated. Multiple
instances per problem configuration are solved by different methods, and the performance of
these methods are compared against each other. First, Algorithm 9 is ran for each instance
to get a heuristic solution. The amount of moves in this solution is used as an upper bound,
such that the variables 𝑥፭፤።፣ can be initialised.

In Chapter 7, multiple cutting planes were introduced. By ignoring the spatial block-
ing constraints, a lower bound could be calculated based on the flow of components and
the available loadout space. This is defined as the min-moves cutting planes set. Further-
more, the double-relocate cutting planes set forbade moving the same element in consecutive
timesteps in the storage-only area. The third cutting planes set is called time-symmetry,
which removes symmetrical solutions by shifting all moves to the beginning of the available
time. Finally, a method is introduced called all, which includes all cutting planes. These
cuts are summarised in Table 12.1

Description Equations

Min-moves Minimum moves without considering blocking constraints (7.4)
Double-relocate Minimises redundant direct relocations of one blocking (7.7)
Time-symmetry Shift all moves to beginning (7.6)

All Combines all cuts (7.4),(7.6) and (7.7)

Table 12.1: CRP cutting planes

For each problem configuration, multiple instances were solved by all cutting planes con-
figurations. The results are shown in Appendix D.1.1. A time limit of 2 hours was set for
all problems. In Table 12.2, the percentage of problems solved per cutting-plane configura-
tion is shown. Each configuration improves the amount of problems solved, however it is
interesting to see that combining them did not improve the percentage of solved instances.
It can also been seen that blocking consecutive relocations of the same component leads to
the highest improvement.

12.1. Computational Results Component Relocation Problem 105

Det. time Nodes
Buffer Loading Storage Buffer Loading Storage

None 1.0 1.0 1.0 1.0 1.0 1.0
All 2.0 0.7 0.8 3.6 0.4 0.6

Double-relocate 1.1 4.8 3.9 1.3 13.2 8.0
Min-moves 1.7 1.3 2.0 13.6 0.9 3.3

Time-symmetry 2.2 1.3 2.1 4.7 0.8 1.9

Table 12.3: Time and nodes for crane optimisation performance

Solved

None 83.3%
All 83.3%

Double-relocate 94.4%
Min-moves 88.9%

Time-symmetry 88.9%

Table 12.2: Exact instances solved

To investigate the performance, only instances have been
selected which have been solved for all cutting-plane config-
urations. Both the deterministic time and explored nodes
are evaluated per problem and cutting-planes configuration.
The total time and nodes required for solving all problems,
is shown normalised with respect to the performance without
additional cutting planes in Table 12.3. From these results, it
can be concluded that not all cuts increase the performance
of the exact solving method for these instances.

Time-symmetry and min-moves do not improve the perfor-
mance on nodes nor time. Although double-relocate improves

the performance for the combined configuration, it significantly increases the time and nodes
on other problem configurations. However, it can be seen that for the storage and loading
problem configurations, adding all cuts improves the performance. Besides this, it seems
that the value of the cutting planes will only become apparent for more difficult problems. In
Table 12.3 only instances have been considered that were solved for all cutting-plane sets.
This was necessary for comparison. However, this meant that more difficult problems were
not taken into account.

The rolling horizon algorithm solves the subproblem by dividing it into even smaller prob-
lems. To initialise the 𝑥 variables, a maximum time has to be set for which the problem can
be solved. Currently, this is done by calculating a lower amount of moves and incrementing
this by two. If no solution will be found, the solver is ran again while increasing the amount
of possible timesteps.

When all of these smaller problems are solved, the solutions can be combined to create a
(sub)optimal solution for the subproblem. This is used as a warm start, and the solver will
be ran to find a better solution.

Therefore, two things are interesting while considering the starting conditions of the algo-
rithm. By introducing the extra time, the amount of available timesteps is usually higher than
the amount of moves in the initial condition. To evaluate the effect of these extra timesteps,
each solved problem-instance is ran again for the starting condition tight-upperbound. This
starting condition sets the total amount of timesteps available equal to the amount of moves
in the optimal solution.

Det. time Nodes Solved

Standard 1.00 1.00 86.7%
Tight-upperbound 0.92 0.98 86.7%

Warm-start 0.98 0.81 90.0%

Table 12.4: Performance with different starting conditions

Furthermore, since the RH algo-
rithm uses a warm start, the effect
of this is evaluated as well. The
starting condition named warm-start
solves each problem, while using a
sub-optimal warm start, generated by
Algorithm 9.

The normalised results of these
tests have been summarised in Ta-
ble 12.4. It can be seen that using
this additional information improves the performance on all criteria. The amount of nodes

106 12. Results

was decreased with 19% by using a warm start, which is a significant improvement. In the
next section the performance of the rolling horizon algorithm will be tested and the results
will be evaluated.

12.1.3. Heuristic performance
To evaluate the heuristic performance, tests were done for all instances in Section 12.1.1.
This was done for multiple settings. The setting set standard allows blocking components
and puts a penalty of 1 for each blocking component. The penalty set for unavailable spaces
is equal to 0.2. The motivation for this number is that it will not likely force extra moves to
minimise unavailable spaces, but given two equivalent moves the one is chosen which results
in the lowest amount. Furthermore, the cost of a component on storage-only locations at the
end of the rolling horizon time window is set to 1.

Another configuration of settings is introduced called double blocking. As its name implies,
this configuration sets penalises blocking with a cost of 2. The reasoning behind this is that
1 is a lower bound for the amount of moves resulting from a blocking component, but there
is a possibility it will result in more than this. Therefore, tests are done with a double costs.
Furthermore, a configuration is created with the name loadout. This configuration sets the
cost for locating components on storage only to 0.99. The reasoning behind this is to avoid
it if possible, but not waste any extra moves on it. Therefore, components will be more
often left at loadout locations. It must be noted that this decreases the lower bound given in
Equation (7.5). Additionally, the configurations sets no-blocking and cluster are introduced.
Both configuration do not allow blocking at the end of the horizon step, and the latter also
includes the clustering variables from Equation (8.7).

For all tests, both the exact solver as the heuristic algorithm was ran, and the results
were subsequently compared. These tests are shown in Appendix D.1.2, and show that for
instances with up to 46 moves in the optimal solution, all heuristic results were found equal
to this exact solution. The only instance where a significant difference was noted between
the different configurations was for a combined in and outflow consisting of 18 components.
Since the algorithm was terminated if a step could not be solved within 3 hours, all solvers
except for the setting clustering did not came to a result. The cluster setting, however, came
to the exact solution.

12.2. Operational results crane optimisation
All methods for the heuristic optimisation were used on the walney arrival schedule with
a horizon of 2. The duration of executing these algorithms was very large, taking nearly a
week to finish. It was however shown that the results obtained from this are significantly
better than the manually made schedule. The exact moves of the best solution can be found
in Appendix D.1.3. The amount of crane movements done is 336. In Section 3.5 it was
shown that in the crane movement schedule 363 moves were accounted for, of which 189
were mandatory vessel loadout moves. When using the lower-bound algorithm of Chapter 7,
a lower bound of 314 moves was found.

Scheduled Algorithm

Moves 363 336
Lower bound moves 314 314

Upper bound additional moves 49 22

Table 12.5: Operational results crane movements

As summarised in Table 12.5, this means that in the crane schedule included a maximum
of 49 more moves than required. The generated schedule has at most 22 additional moves,
27 less than the schedule. This means that there is at least a decrease of 55% in unnecessary
crane movements.

12.3. Computational results Ship Installation Routing Problem 107

12.3. Computational results Ship Installation Routing Problem
12.3.1. Problem configurations
The tests for the SIRP are carried out on three different fields. The first field is the Walney
field. The Walney field has a rather standard grid-like layout. Besides this, two other lay-
outs were considered. A recent research development in the wind industry is to optimise the
layout of turbine fields in regards to wakes created by other turbine. This is a promising
development, but it leads to less grid-like layouts where thus intrafield routing has an in-
creased impact. Therefore, it is also interesting to see how the solution method performs on
these fields. For this reason, the coordinates were taken from the real-world Hornsrev field,
based on an illustration in Fischetti and Pisinger [2017] and from an artificial case, generated
by the model in Fischetti and Monaci [2016]. This third field is referred to as artificial field.

Since, as in the CRP, the SIRP for these fields is too large to solve exactly, multiple tests
are done for subsets of all turbines per field. These are selected by choosing one random
turbine and selecting the closest 𝑛 turbines from this. This is done because it is expected
that in an optimal solution, routes will usually go from a turbine to a close neighbour. Since
no plugs or installation method requirements are available for the Hornsrev field and the
artificial field, these are set random for all three fields. Furthermore, to adapt to the smaller
field instances the capacity for the Aeolus floating installation method is changed from 5 to
4. The costs per ship and for project duration are all set equal.

The tests are done while considering four types of tasks. The first tasks, called free-
installation, considers only the requirements that each turbine has to be installed by a com-
patible installation method, but without any temporal constraints. This means that two
versions of the Aeolus, floating and jacked, can be present in the field at the same time. It
also means that A transition piece can be installed before an monopile. Although this is not
applicable to the Walney project, it might be useful for other cases. Moreover, it serves as a
comparison for the other tasks.

The second task-set models just the Svanen and the Aeolus without any plugs. Temporal
constraints are taken into account here. This task set is called precedence. Additionally, the
task-set called plugs adds the buoyancy plugs to this model and finally the task set arrival
also adds delayed arrival of transition pieces.

12.3.2. Exact performance
To get an indication of the performance of the exact optimisation model, first the model
without any cuts is ran. The runtime limit was set to four hours and tests were ran for 6
turbines. The full results are shown in Appendix Appendix D.2.2. In Table 12.6, the results
are summarised. Although integer solutions were found for all instances, optimal solutions
were found only for the precedence class. For all other instances there is at least a 10% gap
between the lower bound and the best solution found after the time limit is exceeded.

solved gap

blank 0 % 19.8 %
plugs 0 % 17.2 %
prec 100 % 0 %

arrival 0 % 12.0 %

Table 12.6: Results without any cuts

It might seen counter-intuitive that the precedence test
instances are solved to optimality and not the blank test in-
stances. Upon further inspection of the results it is shown
that the linear relaxation value is 0 for all blank test-instances
and 10 for all other test-configurations. This is a consequence
of the time offset in the ship precedence constraint Equa-
tion (9.13d). The model assumes that the transition period
happens regardless if turbines are installed by the second
ship of the precedence relationship. This imposes a lower
bound which might be the cause of the precedence-tests solv-
ing to optimality while the blank-tests don’t.

However, besides the instances for the precedence relationship, no optimal solutions were
found for the case of 6 turbines and the solver performance on the original MILP model
Chapter 9 can be considered as quite bad. For this reason, multiple improvements were
proposed in Chapter 10, and in the remainder of this section those improvements will be
evaluated.

108 12. Results

For this purpose, three evaluations are done. First, multiple cuts are added to the model
individually. It will show that certain cuts improve the performance significantly. Some of
these cuts will be used as standard cuts in the model. Subsequently, the remaining cuts are
tested again, but now combined with these standard cuts. Based on this it is decided which
cuts improve the performance. Finally the Branch and Bound method is evaluated.

The tests were done by adding multiple cutting-plane configurations from Chapter 10.
Three of these did not including extra variables. The total-time constraints sets themakespans
larger than or equal to the length of the routes. Trip-symmetry removes symmetric solutions
by shifting all routes the beginning of the available route positions, and the field-trip cutting
plane configuration puts a lower bound on the trips to the installation field. Besides these, 4
more cutting plane configurations were introduced in Chapter 10 which use additional vari-
ables. The flow based sets introduce additional variables to define the flow per arc, and the
waiting-based sets introduce additional variables to define the waiting time per nodes. These
are listed in Table 12.7

Description Equation

Total-time Makespan time larger than cost of routes (10.1),(10.2)
Route-symmetry Only use route if preceding route is used (10.3)

Waiting-arc Variable to define waiting time on arcs (10.7)
Waiting-node Variables to define waiting time on nodes (10.9)

K-flow Define flow per arc per ship (10.13)
Kr-flow Define flow per arc per route per ship (10.14)

Field-trips Lower bound on trips to field (10.5)

Table 12.7: Cutting-plane sets for the SIRP

Single cuts
In the first batch of tests, the individual performance of the cutting-plane sets is evaluated.
For the multiple test instances, the problem is solved to optimality by each set of cutting
planes. The full results are available in Appendix D.2.3. Here, it can be seen that only
problems from problem types blank and precedence are solved to optimality for all cutting
planes. The normalised time and nodes used for these instances are shown in Table 12.8.

Time Nodes

None 1.000 1.000
Demand 0.887 0.750
K-flow 0.285 0.396
Kr-flow 0.339 0.388

Total-time 0.003 0.005
Trip-symmetry 0.284 0.334

Trips-back 0.842 0.872
Waiting-arc 0.925 0.884

Waiting-node 0.909 0.803

Table 12.8: Normalised result with single cuts for
problem types blank and precedence

It can be seen that every cutting-plane config-
uration results in a decrease in both time needed
and Branch and Bound nodes explored. By far
the largest improvement is due to the total-time
cutting plane set, which has improves the for-
mulation without additional cutting planes by
over 99%. Furthermore, it can be seen that
route-symmetry and both flow formulations are
the other cutting planes with a very large perfor-
mance improvements. The difference with k-flow
and kr-flow is not very clear, as k-flow requires
less time, but kr-flow requires less nodes.

To analyse the problem configurations arrival
and plugs, the amount of instances solved was
evaluated in Table 12.9. For clarity, only improv-
ing cut-sets are considered here. Trips-back and
waiting-nodes solved the same instances as the
formulation without additional cutting planes. It is interesting to see that the min-routes
cutting-plane set solves less instances for the plug-configurations, but solves all arrival-
instances. Furthermore, it is shown that kr-flow is the only configuration which solves all
instances.

12.3. Computational results Ship Installation Routing Problem 109

Plugs Arrival Total

None 67 33 50
Kr-flow 100 100 100
K-flow 100 67 83

Total-time 100 67 83
Waiting-arc 100 67 83
Min-routes 33 100 67

Trip-symmetry 67 67 67

Table 12.9: Amount of instances solved for plugs and
arrival (Single cuts)

Based on these results, and on additional
small tests, the cutting planes time-symmetry,
total-time and field-trips are considered standard
cuts which will be included in every exact solution
method. Another motivation for excluding other
the cutting planes from the standard set, was that
those include additional variables. As was shown
in small extra tests, that this influences the solver
performance often in a less straightforward way,
and therefore require extra evaluation.

Combined cuts
Based on previous tests, the standard cut set was
defined as route-symmetry, total-time and trips
back. It is expected that, especially for larger
problems, these cuts will improve the performance, regardless of which other cutting planes
are added to the model. For cuts which contain additional variables, more testing is done in
this section, since adding new variables might result in unexpected behaviour. Therefore, a
new batch of test is done where the non-standard cuts are evaluated. Each problem instance
is solved once with the standard cut-set, and once for each non-standard cutting-plane set
from Table 12.7, in combination with the standard set.

Time Nodes

Standard 1.00 1.00
K-flow 0.33 0.24
Kr-flow 0.40 0.28

Table 12.10: Results for combined cuts
for instances solved for every cutting

plane set

In Appendix D.2.4, the results of these tests are given.
From these results, the problem instances were taken which
were solved by all cutting-plane sets. By taking the average
nodes and time needed per cutting-plane set, it was shown
that only the flow-based cutting-plane sets further improve
the standard configuration. The result however, was signifi-
cant, and k-flow shows to improve the standard cutting-plane
set the most by both nodes and time. Both flow formulations
were also capable of solving all instances.

More information about the results is given in Table 12.11.
This shows quite favourable results. For the most complete

problem type, arrival, the improvement by k-flow is almost 90%. It also shows that for each
problem type the amount of nodes is reduced, although for the precedence case the time
needed is increased. It can also be seen that, except for the blank problem-type, k-flow
performs better than or equal to kr-flow on both nodes and times.

Problem type Cutting planes Time Nodes

Blank Standard 1.00 1.00
Kr-flow 0.20 0.04
K-flow 0.32 0.06

Plugs Standard 1.00 1.00
Kr-flow 0.78 0.51
K-flow 0.73 0.48

Precedence Standard 1.00 1.00
Kr-flow 1.79 0.75
K-flow 1.32 0.75

Arrival Standard 1.00 1.00
Kr-flow 0.32 0.18
K-flow 0.20 0.12

Table 12.11: Normalised average time and BB-nodes required per problem type

110 12. Results

Branch and Cut
So far, the exact tests use the standard Branch and Bound algorithm of CPLEX. In this
section, test results are presented for the Branch and Cut algorithm. Although this algorithm
uses CPLEX as well, there are some implementation notes which affect the way of testing.
Because of this, first the implementations issues will be discusses before presenting the
results.

The Branch and Cut algorithm is created by adding callbacks to the Cplex Branch and
Bound algorithm. A callback is a custom function which will be executed at certain steps in
the algorithm. By registering a callback after branching node optimisation, custom code is
called each time that a branching node produces an optimal (non-integer) solution. In this
custom code, new constraints are generated and added to the problem.

There are two drawbacks of this method regarding implementation. First, the custom code
is many times slower than CPLEX. The custom code is written in Python, while CPLEX is
written in C, a significantly faster programming language. Besides pure performance of code
there is also overhead since variables have to be converted from C to Python, and constraints
have to be converted the other way around.

Secondly, normally CPLEX uses multiple cores to run the optimisation. This means that
the work is split in parts, which are divided amongst computer cores. Letting code run in
multi-core is not a trivial task. It needs to be defined how code is split amongst the cores, and
how the cores communicate. Since this was not implemented in the custom code, multi-core
processing is turned of during the Branch and Cut algorithm.

Two branch-cut methods have been introduced in Chapter 10. Branch-cut-1 defines mul-
tiple ship-sets of which at least one has to visit each turbine, and adds constraints based
on this. Branch-cut-2 defines the demand per turbine based on the installation method vari-
ables. For each method, two cutting-plane sets are added, one in combination with the stan-
dard cutting planes set and once in combination k-flow. The cutting plane sets are listed in
Table 12.12. 1e−10

Description Additional equations

Standard Standard set
K-flow Branch-cut-2 with k-flow (10.13)

Branch-cut-1 Branch cut based on ship sets (10.19)
Branch-cut-2 Branch cut based on installation method (10.24)
Branch-cut-1k Branch-cut-1 with k-flow (10.19),(10.13)
Branch-cut-2k Branch-cut-2 with k-flow (10.24),(10.13)

Table 12.12: Cutting plane sets for branch-cut, all include the standard-set

Time Nodes

Standard 1.00 1.00
K-flow 0.19 0.08

Branch-cut-1 0.20 0.14
Branch-cut-1k 0.19 0.08
Branch-cut-2 0.03 0.02

Branch-cut-2k 0.18 0.08

Table 12.13: Performance branch cut

For these tests, initially the performance is
evaluated for instances which were solved for all
cutting-sets. From these instances, the cutting-
plane sets which had improvements on either
time or nodes are shown in Table 12.13. It is
shown that all Branch and Cut methods improve
the standard formulation, but only branch-cut-2
improves k-flow on both nodes and time required.
It is also shown that adding the k-flow cuts to the
branch-cut cutting-plane sets worsen the perfor-
mance. When looking more closely at the results
in Appendix D.2.5, it can be seen that for these
instances, the amount of cuts added by the BC-
algorithm is nearly zero. It thus seems that the k-flow cutting planes almost completely force
the demand per node-subset to be met at the non-integer solutions. This prevents branch-cut
constraints from being added.

12.4. Operation results Routing optimisation 111

The same tests can be viewed per problem type, as shown in Table 12.14. For all but
the blank problem-type the results are consistent with Table 12.13. For the blank problem-
type branch-cut-1 actually performs better than branch-cut-2, although k-flow performs even
better here. Besides this, the deterministic times of the callbacks were evaluated. Due to the
complexity of the Edmunds-Karp algorithm, it was not expected that the time to solve the
separation problemwas significant. In Appendix D.2.5 it is shown that the highest percentage
of callback time per total time is 1.75%. When overhead (writing variables from C++ to Python)
is ignored, this percentage reduces to 0.0143%.

Blank Precedence Plugs Arrival

Standard 1.000 1.000 1.000 1.000
K-flow 1.849 0.011 0.433 0.020

Branch-cut-1 2.098 0.012 0.287 0.092
Branch-cut-1k 1.849 0.011 0.433 0.020
Branch-cut-2 0.258 0.035 0.168 0.006
Branch-cut-2k 0.866 0.011 0.858 0.020

Table 12.14: Nodes branch cut per problem

12.3.3. Heuristic performance
To evaluate the performance of the AISA algorithm, multiple small tests are done to com-
pare the exact solution against the heuristic solutions. The tests were done for small field
consisting of 6 turbines. The tests were done with two different settings for the repair move.
The setting repair-broken uses a repair-move where only the necessary visits are removed
and re-added in order to create feasible routes. The tests with the repair-waiting settings
removed these visits, together with all visits where a ship was waiting. Each test included
three GRASP-restarts, and the best result of these was selected. The full results of these
tests are available in Appendix D.2.6.

It was shown that for the problem configurations blank and precedence, all tests came to
the optimal conclusion. For the other two configurations, in both cases 2 out of 3 tests came
to an optimal solution for both settings. For these configurations, the average gaps between
the optimal and exact solutions are shown in Table 12.15. The other two problem types are
not shown here since the gaps are zero. It can be concluded that introducing plugs in the

problem decreases the simulated annealing performance. The repair-waiting settings shows
better performance in both cases, especially in the full problem which also considers arrival
times of components.

Repair-broken Repair-waiting

Plugs 0.53% 0.28%
Arrival 0.87% 0.06%

Table 12.15: Gap between heuristic solution and exact solution

When comparing the durations of both
algorithms, the repair-waiting method took
on average 7.2% percent longer to finish in
comparison with the repair-broken method.

12.4. Operation results Rout-
ing optimisation
For further testing the simulated annealing
algorithm is ran multiple times on the full
Walney configuration. Two problem types were handled, the problem with component arrival
times and the problem without component arrival times. Both types are ran for the repair-
broken and the repair-waiting setting. Since for the size of the Walney project (87) turbines
the broken-waiting algorithm took significantly longer, this algorithm was ran with a max-
imum of 1000 iterations and the algorithm with the repair-broken settings was ran with a
maximum of 6000 iterations. The best route is given in Appendix D.2.7 and Appendix D.2.8.

112 12. Results

Comparison of the results was done against the original Walney schedule. It was dis-
cussed in Chapter 2 that this original schedule detail in intrafield travelling and plug waiting
time. For this reason the original routes where considered, but evaluated against the same
distance-matrix 𝑐 and costs as the heuristic tests. Since the planned Walney schedule was
created with different (constant) sailing times and without considering plugs, adding syn-
chronization and component arrival times would result in a really bad result. Therefore, this
is ignored in the cost-calculation based on the original schedule.

Cost (€) Normalised

Scheduled 607.288 1.00
No arrival heuristic 553.717 0.91

Arrival heuristic 735.002 1.21

Table 12.16: Costs for best solution per problem setting

In Table 12.16 the resulting costs are
shown. It shows that when component ar-
rival times are included, the solution found
by the heuristic is increased compared to
the Walney Schedule, but that without ar-
riving components the cost is significantly
decreased.

The average intrafield distances trav-
elled (per trip between two turbines) are
shown in Table 12.17. This show that for
both the Aeolus floating as the Svanen there is an increase in sailing time, and for the Ae-
olus jacked there is a significant decrease. When taking the average over all trips between
turbines, it is seen that the intrafield sailing time increases by 4% and 17% for without and
with component arrival respectively. Comparing this to Table 3.2, this increase is signifi-
cantly lower than the difference between scheduled and executed routing.

The average time for these tests was around 21 hours. When evaluating the plug syn-
chronization, it was found that waiting on plugs occurred twice, totalling to 8 hours. This is
a very large improvement compared to the 96 hours in the project execution.

Aeolus floating Aeolus jacked Svanen All Increase

Arrival heuristic 1.82 1.97 2.58 2.15 17 %
No arrival heuristic 1.71 1.75 2.24 1.92 4 %

Scheduled 1.43 3.66 1.75 1.84 0%

Table 12.17: Average sailing distances (km)

12.5. Discussion
It was shown that the costs are reduced by the AISA algorithm for the SIRP. However, it is
important to place this conclusion into context. An offshore wind turbine farm installation
project is an elaborate project including many aspects. A full time spends many hours on
discussing the details to create a well suited planning.

Even with the most important aspects taken into account, there are still factors not in-
cluded in the model. An example is contractual obligations to finish a subset of all turbines
before a certain date. This was included in the Walney project, together with multiple other
non-modelled, project specific requirements.

Therefore, simply looking at the costs saving and drawing conclusionsmight be considered
naive. The performance of the algorithm can better be evaluated by looking deeper into the
generated schedules, and comparing the sailing distances and synchronization problems

12.6. Conclusion
For the routing optimisation, it was shown that the introduction of plugs in the problem de-
creased both the exact as the heuristic solver performance. The MILP formulation from Chap-
ter 9 performed very bad, but significant increases were made by adding the standard-set of
cuts. For further performance improvement the branch-cut-2 method from Section 4.5.1 has

12.6. Conclusion 113

theoretically the best results, although if implementation is considered as well k-flow can be
seen as the most practical method since there is no need to modify the solver.

For the AISA it was shown that the repair-waiting method where all nodes with bad syn-
chronization were removed and re-added to the solution was slower, but amounted to better
results. Upon optimisation of the Walney project it was revealed that the solver did not in-
crease the total cost and that the installation methods chosen were quite different than the
planned order.

However, upon further inspection it was shown that although the average distance trav-
elled between nodes was higher in the optimised solution than in the original schedule, this
increase was significantly lower than the increase from the scheduled to the execution route.
It was also shown that the amount of plug synchronization issues was very low.

For the crane movements it was shown that the performance due to the added cutting
planes did not always improve the speed of the solutions. However, when considering the
amount of instances solved the cuts did improve this. This suggests that the strength of
those cuts becomes mostly apparent in larger and complicated problems.

The rolling horizon algorithms produced solutions of high quality, as for every problem
instance for which a lower bound was found the rolling horizon produced at least one solution
with this amount of moves. It was also shown that adding a clustering variable increased the
amount of solvable problems. A possible explanation for this is that the clustering variable
prevents the algorithm to enter state where most empty locations are blocked.

Furthermore, the operational results of the CRP resulted in an improvement of at least
55% based on the non-necessary crane movements. This solution took over 6 days to cal-
culate, but the maximum amount of calculating a single step was only 12 hours. For the
simulated annealing algorithm the solution was created in 10 hours.

Comparing these times to the times of ship trips, it can be concluded that a choice can
be made in less time than it takes a ship to complete its trip. Since the rolling horizon
algorithm improved the original schedule, it can be concluded that this algorithm can be
implemented directly in future projects with similar storage requirements. For the simulated
annealing algorithm, even although it did not improve the original schedule, the choices
made during the executed resulted in a larger increase of travelling time. On top of this, the
simulated annealing algorithm showed good synchronization results and thus it can be used
as a decision support tool during wind farm installation projects.

13
Recommendations, Discussion and

Conclusion

13.1. Recommendations
Based on this thesis, some recommendations are given for future research. When considering
what is done it can be seen that two separate problems were solved. The next step would be
to combine these two, finding a schedule which optimises both. The AISA already contains
an option for delayed arrival of components, but not for costs based on relocations. In theory
the two presented heuristic algorithms could be linked together, calculating for each iteration
in the simulated annealing algorithm the optimal amount of moves and including this in the
cost. Unfortunately, this would take an immense amount of time to solve and realistically
cannot be done.

However, in combined optimization it is not required to know what exactly the TP move-
ments are, but instead it is enough to know the amount of steps. It also might be possible
to work with an indication of this amount instead of the exact amount. This might be done
in a similar approach as the lower bound algorithms presented, with some addition for an
estimate on the amount of blocking components based on in and outflow. However, before
doing this it must be noted that the relocation prices are almost insignificant compared to
the price of installation ships and research has to be done if it would in any case be profitable
to change the ship routing in favor of crane optimisation.

Furthermore, it must be noted that the goal of the algorithms is to provide more flexi-
bility and faster decision making during the execution of projects. To evaluate this further,
a modelling assignment should be done to model how the optimisation would behave when
used. In this model an initial planning should be made for an installation project. A sim-
ulation will then be done based on the decisions of this planning, but with more random
variables, including varying weather and installation circumstances. Periodically during the
simulation, feedback will be given to the optimiser, allowing for changes in for example sailing
times and a new planning should be made based on the remaining tasks. This will evaluate
how the optimisation methods deal with the randomness present during offshore installation
projects.

If it turns out that themodel does not handle this randomness very well, it is recommended
to look into research for randomised vehicle routing. Since both sailing times and installation
times are modelled as arc costs, a VRP model with stochastic arc costs would cover both
aspects. Han et al. [2014] researched the vehicle routing problem with only rough stochastic
information about arc costs in the future, which seems as a good starting point for what is
possible for this.

It is also noted that the travel times for the Walney project are based on the distance be-
tween turbines and the average intrafield velocity. In reality this assumption overestimates

115

116 13. Recommendations, Discussion and Conclusion

the traveling time on longer trips since ships will reach a higher velocity here. For imple-
mentation in real projects this should be considered. This does not call for any changes to
the model, but the cost matrix should be calculated while taking into account the increased
traveling speed on long distances.

On a computational level it was shown that the VRP with synchronization and multiple
installation methods is a very difficult problem. Even with multiple cuts added the perfor-
mance is nowhere near the performance of the exact methods for the traditional VRP. Based
on literature and tests, Branch and Cut is proposed as the most promising direction for
further research. There is a broad selection of cuts available for this. A few of these were
converted to work with multiple installation methods, and even while they lost some strength
in the process, it is recommended to try a similar approach for other cuts. This could be, for
example, the multistar cut-family as found in Letchford et al. [2002].

With the addition of new branch-and-cut cutting planes and by handling larger problems,
the amount of constraints added might become too large. Currently, the cuts are added
based on the total supply to a subset of nodes. If this supply is not enough to satisfy the
demand of that subset, a constraint will be added. To decrease the amount of cuts added,
it might be possible to add threshold there. For example, only add cuts if the total supply
is 80% of the demand. It should be tested what the effects of this are. If this approach falls
short, then it is recommended to introduce cut management. In this approach a cut-pool is
maintained where cuts are not only added to the problem, but also removed. A good starting
point for this might be the research of Lysgaard et al. [2004], who presents a branch-and-cut
algorithm for the CVRP with cut management.

Similarly, more research should be done to increase solving time for the CRP MILP model.
This is especially important since any improvements will also improve the rolling horizon
heuristic. To do this the recommended direction is to look on how to decrease the problem
size. The reason for this is that the rolling horizon heuristic slows down significantly on steps
with a lot of components loaded. This is expected as it has more components to consider for
relocations. Disallowing certain components to move components might lead to worse solu-
tions, but since a significant decrease of computational time is expected this is recommended
for further research.

A similar approach could be implemented in the direct unloading algorithm. The direct
placement algorithm for the CRP first determines the optimal locations for the arriving com-
ponents, and then an algorithm is applied to see if it is possible to directly relocate to these
positions. This is done while taking into account the blocking constraints. Although this
works well and decreases the solver-time, it is very problem specific and changes in the
neighbour-based blocking constraints might require a very different algorithm. It is there-
fore recommended to investigate the performance of using an MILP model for this problem.
This MILP model would be a variation of the CRP model given in this thesis. It would require
a maximum of one move per arriving component and no possibility of movements for other
components besides the arriving ones.

Furthermore, the simulated annealing algorithm showed good results, but showed diffi-
culties when the time synchronizations were very tight. For this reason it is recommended
to look into a different algorithm for the inner-optimisation in the iterated local search. The
reason for this is that a part of the subproblem, namely the plugs, is very constrained and
simulated annealing does not make use of this property very well. The reasoning is that
when all ship routes are set, the corresponding plug routing problem has a relatively small
search space. It was noted that most work on deciding the plug routes was done by the repair
phase rather than the second simulated annealing. It is therefore recommended to look into
techniques as constraint programming or even MILP optimisation.

Finally, it also must be noted that the penalty inner step in the AISA slows the algorithm
significantly. Although this part is definitely required, no tests were performed to see the
effects of only running this second step periodically, so for example once in every 10 top
iterations. This would increase the amount of top-iterations done. .

13.2. Discussion 117

13.2. Discussion
In this chapter some discussion points will be presented. Firstly the modelling part is dis-
cussed. To make optimisation possible multiple assumptions were done and the problem
was modelled as a linear model. One can question how valid an exact model is for a process
like wind farm installation which is subjected to much randomness. However, it should also
be noted that in the current planning a lot of random variables are fixed as well, or simply
accounted for by using a large buffer.

Another possible issue in this thesis is how valid the comparison of the model with the
planning is. In this planning, plugs were not considered as a possible bottleneck, and all
intrafield routing times are set to constant values. Furthermore, the installation times as-
sumed in the original planning are taken much larger to account for possible bad weather.
These concerns were mitigated as much as possible by evaluating the chosen route by the
same travelling times as used in the optimisation, but it is certainly a discussion point how
valid it is to judge a schedule while changing certain assumptions. It remains not fully clear
if the improvement from the simulated annealing algorithm is due to its own quality or due
to having access to more information.

It is also an issue that there are, and always will be, unmodelled things which might
influence the planning process. An example of the Walney project are contractual details
which require deadlines on subsets of certain installation notes. This causes problems for two
reasons. Firstly, again during the comparison with the real Walney planning, the question
can be made if any improvement is created due to the strength of the algorithm or due to
the fact that certain requirements are made. Secondly, it causes problems for using the
algorithm since the suggestions made by it might interfere with these details.

Another issue is how valid are the comparisons done for the simulated annealing algorithm
with the lower bounds. It showed good results and achieved optimality in multiple cases, but
due to the weak MILP formulations this was only possible for very small cases. It must be
noted however that even for small instances it is valuable to have validation. Firstly because
it is a sign that an optimum can be reached, but moreover it can be used as a validation
to determine whether the algorithms used in for example cost evaluation are correct. For a
certain route, the waiting times have to be calculated at each turbine before calculating the
turbines. This is not a trivial task since waiting at one position might cause a requirement
for other ships to wait as well. Furthermore, in the optimal solutions ship might start later
to decrease makespan cost. Things like these are very easy to mis during the construction
of a simulated annealing algorithm.

Finally it can be questioned whether certain options in the model could not easily be
decided manually. An example of this is the amount of turbines installed per installation
method. This is a very defining factor in project duration and not very difficult to calculate.
It might unnecessary to leave this decision to be made by the optimisation method. On the
other hands, the methods presented are easily adaptable to implement a fixed choice here.

13.3. Conclusion
In this thesis optimisation methods are given for two different problems occuring during
offshore wind farm installation, namely the Ship Installation Routing Problem and the Com-
ponent Relocation Problem. By evaluating the decisions made in the planning and execution
of the Walney wind farm installation projects the conclusion was made that it is commer-
cially interesting to look into these problems. It was also concluded that there was a need for
an adaptive method since it turned out that the actual execution deviates from the planned
schedule, and that this deviation caused a delay and increase of cost. Furthermore, the de-
tails which were not considered bottlenecks during the scheduling phase turned out to have
significant effect on the execution of this project.

The intrafield routing problem was modelled as a Vehicle Routing Problem. The instal-
lation field and harbour were represented by a network with nodes for each turbine and
harbour locations and arcs between them. The optimisation method then looks for a way

118 13. Recommendations, Discussion and Conclusion

to route the ships over these arcs while setting the node visiting requirements based on the
installation methods. An MILP model was developed for this and several cutting planes and
additional variables were explored. The most promising method was Branch and Cut. Al-
though the performance was limited by implementation issues caused by Cplex, this method
showed an improvement based on nodes explored and time needed.

It is further concluded that the combination of optimisation by makespan in combination
with synchronization constraints weaken the LP formulation and additional cuts are needed
to get a non-zero LP lower bound. Furthermore, the synchronization requirements are not
compatible with any Branch and Price formulation found so far.

To solve real-world size problems an iterative simulated annealing algorithm was devel-
oped. An Adaptive iterative simulated annealing algorithm was developed which temporarily
leaves the search space after a move, and the repairs an re-optimises the solution to return
to the search space. This was done in order to prevent the synchronization constraints from
invalidating or worsening the neighbourhood of a solution.

Compared to a real-world installation schedule showed a decrease in cost but an increase
in travelling distance. However, a similar increase was also found when comparing the plan-
ning with the execution of the project, and the increase by the simulated annealing algorithm
was significantly larger. It was also shown that the algorithm was able to significantly de-
crease synchronization issues between vehicles. Therefore, it is concluded that the AISA is
well suited for the SIRP.

An MILP model for the CRP was created as well and a rolling horizon algorithm was created
based on this, which divides the problem into chronological overlapping subproblems which
are solved one by one. The optimisation of these subproblems was done both on amount
of crane movements and layout quality. It was shown that stimulating the solver to put
components next to each other, while preventing components to block each other based on
departure time created the best results. It was also shown that using simple algorithms
to define a lower bound and providing an initial solution to the MILP solver improved the
amount of problems solved within a set time limit.

The solutions found by the rolling horizon algorithm were of high quality, both compared
to optimal solutions and compared to the crane schedule for the Walney project. The most
influencing factors on the duration of the algorithm are the size of the storage area and the
amount of components passing through. To optimise the crane movements for a whole wind
farm project several days are needed to compute a solution. However, the rolling horizon
algorithm is capable of calculating a partial solution for moves in the near future without
computing the whole algorithm. A single shipload can be calculated in several hours, which
is in comparison to the time in between ship arrivals more than enough. It is therefore
concluded that the rolling horizon algorithm is a very good fit for crane optimisation problems
during wind farm installation projects.

It is thus concluded that both algorithms can provide valuable information to the decision
maker during the execution of a wind farm project in the time available. In contrast to manual
planning, new information can be processed quickly and changes can be made to the original
planning. On an operational level it is therefore believed that the work done in this thesis will
help decrease cost and increase efficiency during the installation of offshore wind farms.

From operational research viewpoint, a vehicle routing problem is introduced which com-
bines the aspect of multiple split delivery methods with multiple time synchronization con-
straints. Multiple delivery methods in this form were not found yet in literature, but are
crucial in using the VRP for installation projects.

Additionally, in container relocation problems, no MILP was found which included both
unloading, loading and pre-marshalling. The constraints introduced in this thesis can be
directly implemented in the model of Caserta et al. [2012].

Nomenclature
Abbreviations

𝑆𝐴ᖣ Upper SA in Adaptive Iterative Simulated Annealing Algorithm

𝑆𝐴ᖥ Upper SA in Adaptive Iterative Simulated Annealing Algorithm

AISA Adaptive Iterative Simulated Annealing

ALNS Adaptive Large Neighbourhood Search

BB Branch and Bound

BC Branch and Cut

BCP Branch and Cut and Price

BP Branch And Price

CRP Component Relocation Problem

CVRP Capacitated Vehicle Routing Problem

ESPPRC Elementary Shortest Path Problem with Resources Constraints

FSP Flow Shop Problem

GA Genetic Algorithm

GRASP Greedy Randomised Adaptive Search Procedure

ILS Iterated Local Search

LNS Large Neighbourhood Search

LP Linear Programming

LS Local Search

MILP Mixed Integer Linear Programming

REF Resource Extension Function

RHS Rolling Horizon Subproblem

SA Simulated Annealing

SEC Subtour Elimination Constraint

SIRP Ship Installation Routing Problem

SP Set Partitioning

TSP Traveling Salesman Problem

VND Variable Neighbourhood Descent

VNS Variable Neighbourhood Search

VRP Vehicle Routing Problem

119

120 13. Recommendations, Discussion and Conclusion

VRPTT Vehicle Routing Problem with Trailers and Transshipments

VRPTW Vehicle Routing Problem with Time Windows

WSS Warm Start Subproblem

Variables CRP

𝐵 Batches

𝐵ᖣ Batches in subproblem

𝑏ፚ Arrival batches per component

𝑏፝ Departure batches per component

𝐶 Clusters in direct unloading algorithm

𝑐 Clustering variable

𝑐 Decision variable for clustering

𝐶፞ Enclosed clusters in direct unloading algorithm

𝐶፟ Free clusters in direct unloading algorithm

𝑓 Blocking variable

𝑓 Decision variable for blocking

𝑀፡ Locations with front neighbours

𝑀፬ Locations with side neighbours

𝑁 Components

𝑁ᖣፚ Arriving components in subproblem

𝑁ᖣ፝ Departing components in subproblem

𝑁ፚ Arriving components

𝑁ፁ Components per batch

𝑁፝ Departing components

𝑁፮ Movable components in direct unloading algorithm

𝑁፝ዄ፛ Components departing after batch 𝑏

𝑃 Allowed paths

𝑝 Penalty for unavailable space

𝑝፜ Penalty for clustering

𝑝፮ Penalty for unavailable space

𝑃፛፭፛ Paths corresponding to batch type of 𝑏

𝑅፡ Front neighbouring locations

𝑅፬ Side neighbouring locations

𝑅። All neighbouring locations of location 𝑖

𝑆 Locations

13.3. Conclusion 121

𝑆፜፫ Locations of cluster 𝑟

𝑠፝ Vessel location

𝑆፬ Storage locations

𝑆፮ Locations unoccupied in direct unloading algorithm

𝑆፬፥ Loadout locations

𝑆፬፭ Storage-only locations

𝑇 Timesteps

𝑡፞ time after last timestep (𝑡፞ = 𝑡፦ፚ፱ + 1)

𝑡𝑏፦ፚ፱፛ latest departure time for batch 𝑏

𝑡𝑏፦።፧፛ Earliest arrival time for batch 𝑏

𝑥 Decision variable for relocations

𝑦 Helper variable for positions

Definitions

Blocked location Location which is inaccessible by crane due to surrounding components

Deterministic Time Measure for computational time

Efficient Taking polynomial (or less) time

Free side Having a free side means having an unoccupied location directly next to it. If this
location is at the back row, there must also be an unoccupied location in front of it.

Integral Relaxations Removing the requirement of integrality

Intrafield travelling Travelling between turbines in the installation field

Outerfield travelling Travelling between the harbour and the installation field

Pre-marshalling Preparing storage field for the next loading or unloading action

Relevant side neighbour A side neighbour of location 𝑖, which has to be considered in deter-
mining if location 𝑖 is blocked

Self blocking The principle that when location 𝑗 is blocked, but would not be if there is no
component at neighbour 𝑖, then relocation from 𝑖 to 𝑗 is allowed.

Tour Complete path of vehicle consisting of multiple trips

Trip Path of vehicle between leaving from and returning to the depot without any interme-
diate stop at a depot

Variables SIRP

𝑐 Arc costs

𝑐። Installation durations

𝐷𝑖 Installation precedence sets

𝐷𝑠 Ship precedence set

𝑒 Decision variable: ending time of project

𝑒𝑠 Ship ending times

122 13. Recommendations, Discussion and Conclusion

𝐻 Large number representing infinity

𝐾 Ships / objects

𝐾 Ships per method

𝐾ፃ Installation precedence ship sets

𝑘ፃ Ship precedence ships

𝐾። Installation ships

𝐾፩ Plugs

𝑀 Installation methods

𝑁 Nodes

𝑛ኺ Departing harbour node

𝑛፞ Arriving harbour node

𝑝 Decision variable: Installation methods

𝑝𝑐 Project cost

𝑄 Capacities

𝑆 Method steps

𝑆𝐴ᖣ Outer simulated annealing subalgorithm

𝑆𝐴ᖥ Inner simulated annealing subalgorithm

𝑠𝑐 Ship costs

𝑠𝑠 Ship starting times

𝑇 simulated annealing temperature

𝑡 time

𝑡፝ Ship precedence offset

𝑡𝑖 Node starting time

𝑡𝑟 Trip starting time

𝑤𝑎 Waiting arc variable

𝑤𝑛 Waiting node variable

𝑥 Decision variable: Arc selection

𝑦 Visits to turbines

Bibliography
El Houssaine Aghezzaf, Birger Raa, and Hendrik Van Landeghem. Modeling inventory routing
problems in supply chains of high consumption products. Eur. J. Oper. Res., 169(3):1048–
1063, 2006. ISSN 03772217. doi: 10.1016/j.ejor.2005.02.008.

Reza H Ahmadi. Scheduling in network flow shops. J. Glob. Optim., 9:293–320, 1996. ISSN
09255001. doi: 10.1007/BF00121676. URL http://www.springerlink.com/content/
g803v0683j19230p/?p=e5c5a647f471401a814935e477fab515{&}pi=4.

Abderrahim Ait-Alla, Moritz Quandt, and Michael Lütjen. Aggregate installation planning of
offshore wind farms. Int. J. Energy, 7(2):23–30, 2013. URL http://www.naun.org/main/
NAUN/energy/b012001-201.pdf.

Syrine Roufaida Ait Haddadene, Nacima Labadie, and Caroline Prodhon. A GRASP × ILS
for the vehicle routing problem with time windows, synchronization and precedence con-
straints. Expert Syst. Appl., 66:1339–1351, 2016. ISSN 09574174. doi: 10.1016/j.eswa.
2016.09.002. URL http://dx.doi.org/10.1016/j.eswa.2016.09.002.

Attahiru Sule Alfa, Sundresh S. Heragu, and Mingyuan Chen. A 3-OPT based simu-
lated annealing algorithm for vehicle routing problems. Comput. Ind. Eng., 21(1-4):
635–639, jan 1991. ISSN 03608352. doi: 10.1016/0360-8352(91)90165-3. URL
http://www.sciencedirect.com/science/article/pii/0360835291901653http:
//linkinghub.elsevier.com/retrieve/pii/0360835291901653.

F. Alonso, M. J. Alvarez, and J. E. Beasley. A tabu search algorithm for the periodic vehicle
routing problem with multiple vehicle trips and accessibility restrictions. J. Oper. Res. Soc.,
59(7):963–976, 2008. ISSN 01605682. doi: 10.1057/palgrave.jors.2602405.

P Augerat, Jm Belenguer, E Benavent, A Coberan, D Naddef, and G Rinaldi. Compu-
tational results with a branch-and-cut code for the capacitated vehicle routing prob-
lem. Rapp. Rech. - IMAG, 95(949-M):30, 1998. URL http://cat.inist.fr/?aModele=
afficheN{&}cpsidt=51607.

Nabila Azi, Michel Gendreau, and Jean Yves Potvin. An exact algorithm for a single-vehicle
routing problem with time windows and multiple routes. Eur. J. Oper. Res., 178(3):755–
766, 2007. ISSN 03772217. doi: 10.1016/j.ejor.2006.02.019.

R. Baldacci, E. Hadjiconstantinou, and A. Mingozzi. An Exact Algorithm for the Capacitated
Vehicle Routing Problem Based on a Two-Commodity Network Flow Formulation. Oper.
Res., 52(5):723–738, 2004. ISSN 0030-364X. doi: 10.1287/opre.1040.0111. URL http:
//pubsonline.informs.org/doi/abs/10.1287/opre.1040.0111.

Roberto Baldacci, Aristide Mingozzi, and Roberto Roberti. Recent exact algorithms for solving
the vehicle routing problem under capacity and time window constraints. Eur. J. Oper.
Res., 218(1):1–6, 2012. ISSN 03772217. doi: 10.1016/j.ejor.2011.07.037. URL http:
//dx.doi.org/10.1016/j.ejor.2011.07.037.

M L Balinski and R E Quandt. On an Integer Program for a Delivery Problem. Oper. Res., 12
(2):300–304, 1964. ISSN 0030-364X. doi: 10.1287/opre.12.2.300.

John E. Bell and Patrick R. McMullen. Ant colony optimization techniques for the vehicle
routing problem. Adv. Eng. Informatics, 18(1):41–48, 2004. ISSN 14740346. doi: 10.1016/
j.aei.2004.07.001.

123

http://www.springerlink.com/content/g803v0683j19230p/?p=e5c5a647f471401a814935e477fab515{&}pi=4
http://www.springerlink.com/content/g803v0683j19230p/?p=e5c5a647f471401a814935e477fab515{&}pi=4
http://www.naun.org/main/NAUN/energy/b012001-201.pdf
http://www.naun.org/main/NAUN/energy/b012001-201.pdf
http://dx.doi.org/10.1016/j.eswa.2016.09.002
http://www.sciencedirect.com/science/article/pii/0360835291901653 http://linkinghub.elsevier.com/retrieve/pii/0360835291901653
http://www.sciencedirect.com/science/article/pii/0360835291901653 http://linkinghub.elsevier.com/retrieve/pii/0360835291901653
http://cat.inist.fr/?aModele=afficheN{&}cpsidt=51607
http://cat.inist.fr/?aModele=afficheN{&}cpsidt=51607
http://pubsonline.informs.org/doi/abs/10.1287/opre.1040.0111
http://pubsonline.informs.org/doi/abs/10.1287/opre.1040.0111
http://dx.doi.org/10.1016/j.ejor.2011.07.037
http://dx.doi.org/10.1016/j.ejor.2011.07.037

124 Bibliography

Ulrich Blasum and Winfried Hochstättler. Application of the Branch and Cut Method to the
Vehicle Routing Problem. White Pap., pages 1–22, 2002.

Kris Braekers, Katrien Ramaekers, and Inneke Van Nieuwenhuyse. The vehicle rout-
ing problem: State of the art classification and review, 2016. ISSN 03608352. URL
http://dx.doi.org/10.1016/j.cie.2015.12.007.

José Brandão. A tabu search algorithm for the heterogeneous fixed fleet vehicle routing
problem. Comput. Oper. Res., 38(1):140–151, 2011. ISSN 03050548. doi: 10.1016/j.cor.
2010.04.008.

David Bredström and Mikael Rönnqvist. Combined vehicle routing and scheduling with tem-
poral precedence and synchronization constraints. Eur. J. Oper. Res., 191(1):19–29, 2008.
ISSN 03772217. doi: 10.1016/j.ejor.2007.07.033.

Katja Buhrkal, Allan Larsen, and Stefan Ropke. The Waste Collection Vehicle Routing
Problem with Time Windows in a City Logistics Context. Procedia - Soc. Behav. Sci.,
39:241–254, 2012. ISSN 18770428. doi: 10.1016/j.sbspro.2012.03.105. URL http:
//linkinghub.elsevier.com/retrieve/pii/S1877042812005721.

Héctor J. Carlo, Iris F.A. Vis, and Kees Jan Roodbergen. Storage yard operations in
container terminals: Literature overview, trends, and research directions. Eur. J. Oper.
Res., 235(2):412–430, jun 2014. ISSN 03772217. doi: 10.1016/j.ejor.2013.10.054. URL
http://ac.els-cdn.com/S0377221713008771/1-s2.0-S0377221713008771-main.
pdf?{_}tid=8dd68ec2-54c6-11e7-9820-00000aacb35d{&}acdnat=
1497859922{_}e14d8412bc92edcca8ba526f89c0e05bhttp://linkinghub.elsevier.
com/retrieve/pii/S0377221713008771.

Marco Caserta, Silvia Schwarze, and Stefan Voß. A mathematical formulation
and complexity considerations for the blocks relocation problem. Eur. J. Oper.
Res., 219(1):96–104, may 2012. ISSN 03772217. doi: 10.1016/j.ejor.2011.12.
039. URL http://dx.doi.org/10.1016/j.ejor.2011.12.039http://linkinghub.
elsevier.com/retrieve/pii/S0377221711011337.

Diego Cattaruzza, Nabil Absi, Dominique Feillet, and Thibaut Vidal. A memetic algorithm
for the Multi Trip Vehicle Routing Problem. Eur. J. Oper. Res., 236(3):833–848, 2014.
ISSN 03772217. doi: 10.1016/j.ejor.2013.06.012. URL http://dx.doi.org/10.1016/
j.ejor.2013.06.012.

Diego Cattaruzza, Nabil Absi, and Dominique Feillet. Vehicle routing problems with multiple
trips. 4or, 14(3):223–259, 2016. ISSN 16142411. doi: 10.1007/s10288-016-0306-2.

Marielle Christiansen, Kjetil Fagerholt, Bjørn Nygreen, and David Ronen. Ship
routing and scheduling in the new millennium. Eur. J. Oper. Res., 228(3):
467–483, aug 2013. ISSN 03772217. doi: 10.1016/j.ejor.2012.12.002. URL
http://dx.doi.org/10.1016/j.ejor.2012.12.002http://linkinghub.elsevier.
com/retrieve/pii/S0377221712009125.

William J Cook, William H Cunningham, William R Pulleyblank, and Alexander Schri-
jver. Combinatorial optimization. Comput. Math. with Appl., 35(9):139, may 1998. ISSN
08981221. doi: 10.1016/S0898-1221(98)90683-6. URL http://linkinghub.elsevier.
com/retrieve/pii/S0898122198906836.

Teodor Gabriel Crainic, Nicoletta Ricciardi, and Giovanni Storchi. Models for Evaluating
and Planning City Logistics Systems. Transp. Sci., 43(4):432–454, 2009. ISSN 0041-
1655. doi: 10.1287/trsc.1090.0279. URL http://pubsonline.informs.org/doi/abs/
10.1287/trsc.1090.0279.

G Dantzig and Delbert Ray Fulkerson. On the max flow min cut theorem of networks. 1955.

http://dx.doi.org/10.1016/j.cie.2015.12.007
http://linkinghub.elsevier.com/retrieve/pii/S1877042812005721
http://linkinghub.elsevier.com/retrieve/pii/S1877042812005721
http://ac.els-cdn.com/S0377221713008771/1-s2.0-S0377221713008771-main.pdf?{_}tid=8dd68ec2-54c6-11e7-9820-00000aacb35d{&}acdnat=1497859922{_}e14d8412bc92edcca8ba526f89c0e05b http://linkinghub.elsevier.com/retrieve/pii/S0377221713008771
http://ac.els-cdn.com/S0377221713008771/1-s2.0-S0377221713008771-main.pdf?{_}tid=8dd68ec2-54c6-11e7-9820-00000aacb35d{&}acdnat=1497859922{_}e14d8412bc92edcca8ba526f89c0e05b http://linkinghub.elsevier.com/retrieve/pii/S0377221713008771
http://ac.els-cdn.com/S0377221713008771/1-s2.0-S0377221713008771-main.pdf?{_}tid=8dd68ec2-54c6-11e7-9820-00000aacb35d{&}acdnat=1497859922{_}e14d8412bc92edcca8ba526f89c0e05b http://linkinghub.elsevier.com/retrieve/pii/S0377221713008771
http://ac.els-cdn.com/S0377221713008771/1-s2.0-S0377221713008771-main.pdf?{_}tid=8dd68ec2-54c6-11e7-9820-00000aacb35d{&}acdnat=1497859922{_}e14d8412bc92edcca8ba526f89c0e05b http://linkinghub.elsevier.com/retrieve/pii/S0377221713008771
http://dx.doi.org/10.1016/j.ejor.2011.12.039 http://linkinghub.elsevier.com/retrieve/pii/S0377221711011337
http://dx.doi.org/10.1016/j.ejor.2011.12.039 http://linkinghub.elsevier.com/retrieve/pii/S0377221711011337
http://dx.doi.org/10.1016/j.ejor.2013.06.012
http://dx.doi.org/10.1016/j.ejor.2013.06.012
http://dx.doi.org/10.1016/j.ejor.2012.12.002 http://linkinghub.elsevier.com/retrieve/pii/S0377221712009125
http://dx.doi.org/10.1016/j.ejor.2012.12.002 http://linkinghub.elsevier.com/retrieve/pii/S0377221712009125
http://linkinghub.elsevier.com/retrieve/pii/S0898122198906836
http://linkinghub.elsevier.com/retrieve/pii/S0898122198906836
http://pubsonline.informs.org/doi/abs/10.1287/trsc.1090.0279
http://pubsonline.informs.org/doi/abs/10.1287/trsc.1090.0279

Bibliography 125

G. B. Dantzig and J H Ramser. The Truck Dispatching Problem. Manage.
Sci., 6(1):80–91, 1959. ISSN 0025-1909. doi: 10.1287/mnsc.6.1.80. URL
http://www.jstor.org/stable/2627477{%}5Cnhttp://pubsonline.informs.org/
doi/abs/10.1287/mnsc.6.1.80.

Martin Desrochers, Jacques Desrosiers, and Marius Solomon. A New Optimization Algorithm
for the Vehicle Routing Problem with Time Windows. Oper. Res., 40(2):342–354, apr 1992.
ISSN 0030-364X. doi: 10.1287/opre.40.2.342. URL http://pubsonline.informs.org/
doi/abs/10.1287/opre.40.2.342.

Jacques Desrosiers. Fleet Management and Logistics. Number January. Springer US, Boston,
MA, 1998. ISBN 978-1-4613-7637-8. doi: 10.1007/978-1-4615-5755-5. URL http:
//link.springer.com/10.1007/978-1-4615-5755-5.

E W Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1(1):269–271,
dec 1959. ISSN 0029-599X. doi: 10.1007/BF01386390. URL http://link.springer.
com/10.1007/BF01386390.

M. Drexl. Synchronization in Vehicle Routing–A Survey of VRPs with Multiple Synchroniza-
tion Constraints. Transp. Sci., 46(3):297–316, 2012. ISSN 0041-1655. doi: 10.1287/trsc.
1110.0400.

Michael Drexl. On Some Generalized Routing Problems. 2007.

Jack Edmonds. Maximum matching and a polyhedron with 0,1-vertices. J. Res. Natl. Bur.
Stand. Sect. B Math. Math. Phys., 69B(1 and 2):125, 1965. ISSN 0022-4340. doi: 10.6028/
jres.069B.013.

Jalel Euchi and Habib Chabchoub. A hybrid tabu search to solve the heterogeneous fixed
fleet vehicle routing problem. Logist. Res., 2(1):3–11, 2010. ISSN 18650368. doi: 10.1007/
s12159-010-0028-3.

Dominique Feillet. A tutorial on column generation and branch-and-price for vehicle routing
problems. 4or, 8(4):407–424, 2010. ISSN 16194500. doi: 10.1007/s10288-010-0130-z.

Dominique Feillet, Pierre Dejax, Michel Gendreau, and Cyrille Gueguen. An exact algorithm
for the elementary shortest path problem with resource constraints: Application to some
vehicle routing problems. Networks, 44(3):216–229, 2004. ISSN 00283045. doi: 10.1002/
net.20033.

Thomas A. Feo and Mauricio G C Resende. Greedy Randomized Adaptive Search Procedures.
J. Glob. Optim., 6(2):109–133, mar 1995. ISSN 0925-5001. doi: 10.1007/BF01096763.
URL http://link.springer.com/10.1007/BF01096763.

Martina Fischetti and Michele Monaci. Proximity search heuristics for wind farm op-
timal layout. J. Heuristics, 22(4):459–474, 2016. ISSN 15729397. doi: 10.1007/
s10732-015-9283-4.

Martina Fischetti and David Pisinger. Optimizing wind farm cable routing considering power
losses. Eur. J. Oper. Res., 0:1–14, 2017. ISSN 03772217. doi: 10.1016/j.ejor.2017.07.061.
URL http://dx.doi.org/10.1016/j.ejor.2017.07.061.

Florian Forster and Andreas Bortfeldt. A tree search heuristic for the container retrieval prob-
lem. InOper. Res. Proc. 2011, pages 257–262. 2012. doi: 10.1007/978-3-642-29210-1_41.
URL http://link.springer.com/10.1007/978-3-642-29210-1{_}41.

Ricardo Fukasawa, Humberto Longo, Jens Lysgaard, Marcus Poggi De Aragao, Marcelo Reis,
Eduardo Uchoa, and Renato F. Werneck. Robust branch-and-cut-and-price for the capac-
itated vehicle routing problem. Math. Program., 106(3):491–511, 2006. ISSN 00255610.
doi: 10.1007/s10107-005-0644-x.

http://www.jstor.org/stable/2627477{%}5Cnhttp://pubsonline.informs.org/doi/abs/10.1287/mnsc.6.1.80
http://www.jstor.org/stable/2627477{%}5Cnhttp://pubsonline.informs.org/doi/abs/10.1287/mnsc.6.1.80
http://pubsonline.informs.org/doi/abs/10.1287/opre.40.2.342
http://pubsonline.informs.org/doi/abs/10.1287/opre.40.2.342
http://link.springer.com/10.1007/978-1-4615-5755-5
http://link.springer.com/10.1007/978-1-4615-5755-5
http://link.springer.com/10.1007/BF01386390
http://link.springer.com/10.1007/BF01386390
http://link.springer.com/10.1007/BF01096763
http://dx.doi.org/10.1016/j.ejor.2017.07.061
http://link.springer.com/10.1007/978-3-642-29210-1{_}41

126 Bibliography

B Gillett and L Miller. A Heuristic algorithm for the vehicle dispatch problem. Eur. J. Oper.
Res., 22(May 2018):340–349, 1974. ISSN 0030-364X. doi: 10.1287/opre.22.2.340.

Fred Glover. HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CON-
STRAINTS. Decis. Sci., 8(1):156–166, jan 1977. ISSN 0011-7315. doi: 10.1111/
j.1540-5915.1977.tb01074.x. URL http://doi.wiley.com/10.1111/j.1540-5915.
1977.tb01074.x.

Fred Glover. Tabu Search—Part I. ORSA J. Comput., 1(3):190–206, aug 1989. ISSN
0899-1499. doi: 10.1126/science.220.4598.671. URL http://link.springer.com/
10.1007/978-1-4419-1153-7http://pubsonline.informs.org/doi/abs/10.1287/
ijoc.1.3.190.

Bruce Golden, Arjang Assad, Larry Levy, and Filip Gheysens. The fleet size and mix vehicle
routing problem. Comput. Oper. Res., 11(1):49–66, jan 1984. ISSN 03050548. doi: 10.
1016/0305-0548(84)90007-8. URL http://linkinghub.elsevier.com/retrieve/pii/
0305054884900078.

Luis Gouveia and Jose Manuel Pires. The asymmetric travelling salesman problem and a
reformulation of the Miller-Tucker-Zemlin constraints. Eur. J. Oper. Res., 112(1):134–146,
1999. ISSN 03772217. doi: 10.1016/S0377-2217(97)00358-5.

Tore Grünert and H. J. Sebastian. Planning models for long-haul operations of postal and
express shipment companies. Eur. J. Oper. Res., 122(2):289–309, 2000. ISSN 03772217.
doi: 10.1016/S0377-2217(99)00234-9.

Jatinder N D Gupta. FLOWSHOP SCHEDULES WITH SEQUENCE DEPENDENT SETUP
TIMES. J. Oper. Res., 29(3):206–219, 1986.

Jorgen Haahr and Richard M. Lusby. Integrating rolling stock scheduling with train unit
shunting. Eur. J. Oper. Res., 259(2):452–468, 2017. ISSN 03772217. doi: 10.1016/j.ejor.
2016.10.053.

J.T. Haahr, R.M. Lusby, and J.C. Wagenaar. Optimization methods for the Train Unit
Shunting Problem. Eur. J. Oper. Res., 262(3):981–995, 2017. ISSN 03772217. doi:
10.1016/j.ejor.2017.03.068.

Jinil Han, Chungmok Lee, and Sungsoo Park. A Robust Scenario Approach for the Vehicle
Routing Problem with Uncertain Travel Times. Transp. Sci., 48(3):373–390, 2014. ISSN
0041-1655. doi: 10.1287/trsc.2013.0476. URL http://pubsonline.informs.org/doi/
abs/10.1287/trsc.2013.0476.

Pierre Hansen, Nenad Mladenović, and José A. Moreno Pérez. Variable neighbour-
hood search: methods and applications. 4OR, 6(4):319–360, dec 2008. ISSN 1619-
4500. doi: 10.1007/s10288-008-0089-1. URL http://link.springer.com/10.1007/
s10479-009-0657-6http://link.springer.com/10.1007/s10288-008-0089-1.

Peter Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis for the Heuristic Determi-
nation of Minimum Cost Paths. IEEE Trans. Syst. Sci. Cybern., 4(2):100–107, 1968. ISSN
0536-1567. doi: 10.1109/TSSC.1968.300136. URL http://portal.acm.org/citation.
cfm?doid=1056777.1056779http://ieeexplore.ieee.org/document/4082128/.

F. Hernandez, D. Feillet, R. Giroudeau, and O. Naud. A new exact algorithm to solve the
multi-trip vehicle routing problem with time windows and limited duration. 4or, 12(3):
235–259, 2014. ISSN 16142411. doi: 10.1007/s10288-013-0238-z.

IEA. World Energy Outlook 2017. Int. Energy Agency, 2017. ISSN <null>. doi: 10.1016/
0301-4215(73)90024-4. URL http://www.iea.org/Textbase/npsum/weo2017SUM.pdf.

http://doi.wiley.com/10.1111/j.1540-5915.1977.tb01074.x
http://doi.wiley.com/10.1111/j.1540-5915.1977.tb01074.x
http://link.springer.com/10.1007/978-1-4419-1153-7 http://pubsonline.informs.org/doi/abs/10.1287/ijoc.1.3.190
http://link.springer.com/10.1007/978-1-4419-1153-7 http://pubsonline.informs.org/doi/abs/10.1287/ijoc.1.3.190
http://link.springer.com/10.1007/978-1-4419-1153-7 http://pubsonline.informs.org/doi/abs/10.1287/ijoc.1.3.190
http://linkinghub.elsevier.com/retrieve/pii/0305054884900078
http://linkinghub.elsevier.com/retrieve/pii/0305054884900078
http://pubsonline.informs.org/doi/abs/10.1287/trsc.2013.0476
http://pubsonline.informs.org/doi/abs/10.1287/trsc.2013.0476
http://link.springer.com/10.1007/s10479-009-0657-6 http://link.springer.com/10.1007/s10288-008-0089-1
http://link.springer.com/10.1007/s10479-009-0657-6 http://link.springer.com/10.1007/s10288-008-0089-1
http://portal.acm.org/citation.cfm?doid=1056777.1056779 http://ieeexplore.ieee.org/document/4082128/
http://portal.acm.org/citation.cfm?doid=1056777.1056779 http://ieeexplore.ieee.org/document/4082128/
http://www.iea.org/Textbase/npsum/weo2017SUM.pdf

Bibliography 127

Chandra Ade Irawan, Dylan Jones, and Djamila Ouelhadj. Bi-objective optimisa-
tion model for installation scheduling in offshore wind farms. Comput. Oper.
Res., 78:393–407, feb 2017. ISSN 03050548. doi: 10.1016/j.cor.2015.09.
010. URL http://dx.doi.org/10.1016/j.cor.2015.09.010http://linkinghub.
elsevier.com/retrieve/pii/S0305054815002312.

Siti Nurbaya Ismail, Ku Ruhana Ku-Mahamud, and Syariza Abdul-Rahman. A review on
delivery routing problem and its approaches, 2017. ISSN 18173195.

Bardia Kamrad, Akhtar Siddque, and Ricardo Ernst. Models and Algorithms for Shuffling
Problems in Steel Plants. Nav. Res. Logist., 55(April 2007):541–550, 2012. ISSN 0894069X.
doi: 10.1002/nav. URL http://www.interscience.wiley.com/jpages/0894-069X/.

Kap Hwan Kim and Gyu Pyo Hong. A heuristic rule for relocating blocks. Comput. Oper. Res.,
33(4):940–954, 2006. ISSN 03050548. doi: 10.1016/j.cor.2004.08.005.

Scott Kirkpatrick, C. D. Gelatt, and M P Vecchi. Optimization by Simulated Annealing. Sci-
ence (80-.)., 220(4598):671–680, may 1983. ISSN 0036-8075. doi: 10.1126/science.220.
4598.671. URL http://www.sciencemag.org/cgi/doi/10.1126/science.220.4598.
671.

Cagri Koc and Ismail Karaoglan. A Branch and Cut Algorithm for the Vehicle Routing Problem
With Multiple Use of Vehicles. Proc. 41st Int. Conf. Comput. Ind. Eng., pages 554–559, 2011.

Çağrı Koç, Tolga Bektaş, Ola Jabali, and Gilbert Laporte. Thirty years of heterogeneous
vehicle routing. Eur. J. Oper. Res., 249(1):1–21, feb 2016. ISSN 03772217. doi:
10.1016/j.ejor.2015.07.020. URL http://linkinghub.elsevier.com/retrieve/pii/
S0377221715006530.

Suresh Nanda Kumar and Ramasamy Panneerselvam. A Survey on the Vehicle Routing
Problem and Its Variants. Intell. Inf. Manag., 04(03):66–74, 2012. ISSN 2160-5912. doi: 10.
4236/iim.2012.43010. URL http://www.scirp.org/journal/doi.aspx?DOI=10.4236/
iim.2012.43010.

Jana Lehnfeld and Sigrid Knust. Loading, unloading and premarshalling
of stacks in storage areas: Survey and classification. Eur. J. Oper.
Res., 239(2):297–312, 2014. ISSN 03772217. doi: 10.1016/j.ejor.2014.
03.011. URL http://dx.doi.org/10.1016/j.ejor.2014.03.011http:
//ac.els-cdn.com/S0377221714002252/1-s2.0-S0377221714002252-main.
pdf?{_}tid=66ba2c22-54c6-11e7-8dee-00000aab0f01{&}acdnat=
1497859856{_}99568dfb40fa5b4a85013ddae89dbc50.

Adam N. Letchford, Richard W. Eglese, and Jens Lysgaard. Multistars, partial multistars and
the capacitated vehicle routing problem. Math. Program. Ser. B, 94(1):21–40, 2002. ISSN
00255610. doi: 10.1007/s10107-002-0336-8.

Helena R. Lourenço, Olivier C Martin, and Thomas Stützle. Iterated Local Search:
Framework and Applications. volume 146, pages 363–397. 2010. ISBN 978-
1-4419-1663-1. doi: 10.1007/978-1-4419-1665-5_12. URL http://link.
springer.com/10.1007/978-1-4419-1665-5http://link.springer.com/10.1007/
978-1-4419-1665-5{_}12.

Chao Lu, Ruiyou Zhang, and Shixin Liu. A 0-1 integer programming model and solving
strategies for the slab storage problem. Int. J. Prod. Res., 54(8):2366–2376, 2016. ISSN
0020-7543. doi: 10.1080/00207543.2015.1076949. URL http://www.tandfonline.
com/doi/full/10.1080/00207543.2015.1076949.

Quan Lu and Maged M. Dessouky. A new insertion-based construction heuristic for solving
the pickup and delivery problem with time windows. Eur. J. Oper. Res., 175(2):672–687,
2006. ISSN 03772217. doi: 10.1016/j.ejor.2005.05.012.

http://dx.doi.org/10.1016/j.cor.2015.09.010 http://linkinghub.elsevier.com/retrieve/pii/S0305054815002312
http://dx.doi.org/10.1016/j.cor.2015.09.010 http://linkinghub.elsevier.com/retrieve/pii/S0305054815002312
http://www.interscience.wiley.com/jpages/0894-069X/
http://www.sciencemag.org/cgi/doi/10.1126/science.220.4598.671
http://www.sciencemag.org/cgi/doi/10.1126/science.220.4598.671
http://linkinghub.elsevier.com/retrieve/pii/S0377221715006530
http://linkinghub.elsevier.com/retrieve/pii/S0377221715006530
http://www.scirp.org/journal/doi.aspx?DOI=10.4236/iim.2012.43010
http://www.scirp.org/journal/doi.aspx?DOI=10.4236/iim.2012.43010
http://dx.doi.org/10.1016/j.ejor.2014.03.011 http://ac.els-cdn.com/S0377221714002252/1-s2.0-S0377221714002252-main.pdf?{_}tid=66ba2c22-54c6-11e7-8dee-00000aab0f01{&}acdnat=1497859856{_}99568dfb40fa5b4a85013ddae89dbc50
http://dx.doi.org/10.1016/j.ejor.2014.03.011 http://ac.els-cdn.com/S0377221714002252/1-s2.0-S0377221714002252-main.pdf?{_}tid=66ba2c22-54c6-11e7-8dee-00000aab0f01{&}acdnat=1497859856{_}99568dfb40fa5b4a85013ddae89dbc50
http://dx.doi.org/10.1016/j.ejor.2014.03.011 http://ac.els-cdn.com/S0377221714002252/1-s2.0-S0377221714002252-main.pdf?{_}tid=66ba2c22-54c6-11e7-8dee-00000aab0f01{&}acdnat=1497859856{_}99568dfb40fa5b4a85013ddae89dbc50
http://dx.doi.org/10.1016/j.ejor.2014.03.011 http://ac.els-cdn.com/S0377221714002252/1-s2.0-S0377221714002252-main.pdf?{_}tid=66ba2c22-54c6-11e7-8dee-00000aab0f01{&}acdnat=1497859856{_}99568dfb40fa5b4a85013ddae89dbc50
http://link.springer.com/10.1007/978-1-4419-1665-5 http://link.springer.com/10.1007/978-1-4419-1665-5{_}12
http://link.springer.com/10.1007/978-1-4419-1665-5 http://link.springer.com/10.1007/978-1-4419-1665-5{_}12
http://link.springer.com/10.1007/978-1-4419-1665-5 http://link.springer.com/10.1007/978-1-4419-1665-5{_}12
http://www.tandfonline.com/doi/full/10.1080/00207543.2015.1076949
http://www.tandfonline.com/doi/full/10.1080/00207543.2015.1076949

128 Bibliography

Michael Lütjen and Hamid Reza Karimi. Approach of a Port Inventory Control System for
the Offshore Installation of Wind Turbines. Isope, 4(January 2012):502–508, 2012. ISSN
10986189.

Jens Lysgaard, Adam N Letchford, and Richard W Eglese. A new branch-and-cut algorithm
for the capacitated vehicle routing problem. Math. Program., 100(2):423–445, jun 2004.
ISSN 0025-5610. doi: 10.1007/s10107-003-0481-8. URL http://link.springer.com/
10.1007/s10107-003-0481-8.

Federico Malucelli, Stefano Pallottino, and Daniele Pretolani. The stack loading and un-
loading problem. Discret. Appl. Math., 156(17):3248–3266, 2008. ISSN 0166218X. doi:
10.1016/j.dam.2008.05.020. URL http://dx.doi.org/10.1016/j.dam.2008.05.020.

Sanjay V. Mehta. Predictable scheduling of a single machine subject to breakdowns.
Int. J. Comput. Integr. Manuf., 12(1):15–38, jan 1999. ISSN 0951-192X. doi:
10.1080/095119299130443. URL http://www.tandfonline.com/doi/abs/10.1080/
095119299130443.

C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer Programming Formulation of Traveling
Salesman Problems. J. ACM, 7(4):326–329, 1960. ISSN 00045411. doi: 10.1145/321043.
321046. URL http://portal.acm.org/citation.cfm?doid=321043.321046.

N. Mladenović and P. Hansen. Variable neighborhood search. Comput. Oper. Res., 24(11):
1097–1100, 1997. ISSN 03050548. doi: 10.1016/S0305-0548(97)00031-2. URL http:
//linkinghub.elsevier.com/retrieve/pii/S0305054897000312.

Zahra Naji-Azimi and Majid Salari. A complementary tool to enhance the effectiveness of
existing methods for heterogeneous fixed fleet vehicle routing problem. Appl. Math. Model.,
37(6):4316–4324, 2013. ISSN 0307904X. doi: 10.1016/j.apm.2012.09.027. URL http:
//dx.doi.org/10.1016/j.apm.2012.09.027.

Jungsup Oh, Jongmoon Baik, and Sung Hwa Lim. A model independent S/W framework for
search-based software testing. Sci. World J., 2014(September), 2014. ISSN 1537744X. doi:
10.1155/2014/126348.

Manfred Padberg and Giovanni Rinaldi. A Branch-and-Cut Algorithm for the Resolution of
Large-Scale Symmetric Traveling Salesman Problems. SIAM Rev., 33(1):60–100, mar 1991.
ISSN 0036-1445. doi: 10.1137/1033004. URL http://epubs.siam.org/doi/10.1137/
1033004.

G Abor Pataki. The bad and the good-and-ugly: formulations for the traveling salesman
problem. Citeseer, pages 1–6, 2000. URL http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.34.7256{&}rep=rep1{&}type=pdf.

R. J. Petch and S. Salhi. A multi-phase constructive heuristic for the vehicle routing problem
with multiple trips. Discret. Appl. Math., 133(1-3):69–92, 2003. ISSN 0166218X. doi:
10.1016/S0166-218X(03)00434-7.

Matthew E H Petering and Mazen I. Hussein. A new mixed integer program and extended
look-ahead heuristic algorithm for the block relocation problem. Eur. J. Oper. Res., 231(1):
120–130, 2013. ISSN 03772217. doi: 10.1016/j.ejor.2013.05.037. URL http://dx.doi.
org/10.1016/j.ejor.2013.05.037.

David Pisinger and Stefan Ropke. A general heuristic for vehicle routing problems. Comput.
Oper. Res., 34(8):2403–2435, 2007. ISSN 03050548. doi: 10.1016/j.cor.2005.09.012.

Christian Prins. A simple and effective evolutionary algorithm for the vehicle routing
problem. Comput. Oper. Res., 31(12):1985–2002, oct 2004. ISSN 03050548. doi:
10.1016/S0305-0548(03)00158-8. URL http://linkinghub.elsevier.com/retrieve/
pii/S0305054803001588.

http://link.springer.com/10.1007/s10107-003-0481-8
http://link.springer.com/10.1007/s10107-003-0481-8
http://dx.doi.org/10.1016/j.dam.2008.05.020
http://www.tandfonline.com/doi/abs/10.1080/095119299130443
http://www.tandfonline.com/doi/abs/10.1080/095119299130443
http://portal.acm.org/citation.cfm?doid=321043.321046
http://linkinghub.elsevier.com/retrieve/pii/S0305054897000312
http://linkinghub.elsevier.com/retrieve/pii/S0305054897000312
http://dx.doi.org/10.1016/j.apm.2012.09.027
http://dx.doi.org/10.1016/j.apm.2012.09.027
http://epubs.siam.org/doi/10.1137/1033004
http://epubs.siam.org/doi/10.1137/1033004
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.7256{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.7256{&}rep=rep1{&}type=pdf
http://dx.doi.org/10.1016/j.ejor.2013.05.037
http://dx.doi.org/10.1016/j.ejor.2013.05.037
http://linkinghub.elsevier.com/retrieve/pii/S0305054803001588
http://linkinghub.elsevier.com/retrieve/pii/S0305054803001588

Bibliography 129

R Z Rios-Mercado and Jonathan F Bard. The flow shop scheduling polyhedron with setup
times. J. Comb. Optim., 7(3):291–318, 2003.

Roger Z. Ríos-Mercado and Jonathan F Bard. An Enhanced TSP-Based Heuristic for
Makespan Minimization in a Flow Shop with Setup Times. J. Heuristics, 5(1):53–70, 1999.
ISSN 13811231. doi: 10.1023/A:1009691028143. URL http://link.springer.com/
10.1023/A:1009691028143.

ROGER Z. RÍOS-MERCADO and JONATHAN F. BARD. A branch-and-bound algorithm for
permutation flow shops with sequence-dependent setup times. IIE Trans., 31(8):721–731,
1999. ISSN 0740817X. doi: 10.1023/A:1007650011043. URL http://link.springer.
com/10.1023/A:1007650011043.

Juan Carlos Rivera, H. Murat Afsar, and Christian Prins. A multistart iterated local search
for the multitrip cumulative capacitated vehicle routing problem. Comput. Optim. Appl.,
61(1):159–187, may 2015. ISSN 0926-6003. doi: 10.1007/s10589-014-9713-5. URL
http://link.springer.com/10.1007/s10589-014-9713-5.

Stefan Ropke. Heuristic and exact algorithms for vehicle routing problems. Unpubl. PhD
thesis, Comput. Sci. Dep. Univ. Copenhagen, (December):256, 2005. URL http://www.
diku.dk/{~}sropke/Papers/PHDThesis.pdf.

Stefan Ropke and David Pisinger. An Adaptive Large Neighborhood Search Heuristic for the
Pickup and Delivery Problem with Time Windows. Transp. Sci., 40(4):455–472, 2006. ISSN
0041-1655. doi: 10.1287/trsc.1050.0135. URL http://pubsonline.informs.org/doi/
abs/10.1287/trsc.1050.0135.

Stuart A. Mitchell Roy, J.S. PuLP, 2017. URL https://github.com/coin-or/pulp.

M. Angélica Salazar-Aguilar, André Langevin, and Gilbert Laporte. The synchronized arc and
node routing problem: Application to road marking. Comput. Oper. Res., 40(7):1708–1715,
2013. ISSN 03050548. doi: 10.1016/j.cor.2013.01.007.

S. Salhi and R. J. Petch. A GA based heuristic for the vehicle routing problem with multiple
trips. J. Math. Model. Algorithms, 6(4):591–613, 2007. ISSN 15701166. doi: 10.1007/
s10852-007-9069-2.

Bernd Scholz-Reiter, Jens Heger, Michael Lütjen, and Anne Schweizer. A milp for installation
scheduling of offshore wind farms. Int. J. Math. Model. Methods Appl. Sci., 5(2):371–378,
2011. ISSN 19980140.

Kenneth Sörensen and Fred W. Glover. Metaheuristics. In Saul I. Gass and Michael C.
Fu, editors, Encycl. Oper. Res. Manag. Sci., number April 2016, pages 960–970. Springer
US, Boston, MA, 2013. ISBN 978-1-4419-1137-7. doi: 10.1007/978-1-4419-1153-7_
1167. URL http://link.springer.com/10.1007/978-1-4419-1153-7http://link.
springer.com/10.1007/978-1-4419-1153-7{_}1167.

Magnus Stålhane, Lars Magnus Hvattum, and Vidar Skaar. Optimization of Routing and
Scheduling of Vessels to Perform Maintenance at Offshore Wind Farms. Energy Procedia,
80(1876):92–99, 2015. ISSN 18766102. doi: 10.1016/j.egypro.2015.11.411. URL http:
//linkinghub.elsevier.com/retrieve/pii/S1876610215021438.

E Taillard. Parallel Iterative Search Methods for Vehicle-Routing Problems. Networks, 23(8):
661–673, 1993. doi: DOI10.1002/net.3230230804.

É. D. Taillard, G. Laporte, and M. Gendreau. Vehicle routing with multiple use of vehicles. J.
Oper. Res. Soc., 47(March 1995):1065–1070, 1996. ISSN 0160-5682. URL http://www.
palgrave-journals.com/jors/journal/v47/n8/abs/jors1996133a.html.

http://link.springer.com/10.1023/A:1009691028143
http://link.springer.com/10.1023/A:1009691028143
http://link.springer.com/10.1023/A:1007650011043
http://link.springer.com/10.1023/A:1007650011043
http://link.springer.com/10.1007/s10589-014-9713-5
http://www.diku.dk/{~}sropke/Papers/PHDThesis.pdf
http://www.diku.dk/{~}sropke/Papers/PHDThesis.pdf
http://pubsonline.informs.org/doi/abs/10.1287/trsc.1050.0135
http://pubsonline.informs.org/doi/abs/10.1287/trsc.1050.0135
https://github.com/coin-or/pulp
http://link.springer.com/10.1007/978-1-4419-1153-7 http://link.springer.com/10.1007/978-1-4419-1153-7{_}1167
http://link.springer.com/10.1007/978-1-4419-1153-7 http://link.springer.com/10.1007/978-1-4419-1153-7{_}1167
http://linkinghub.elsevier.com/retrieve/pii/S1876610215021438
http://linkinghub.elsevier.com/retrieve/pii/S1876610215021438
http://www.palgrave-journals.com/jors/journal/v47/n8/abs/jors1996133a.html
http://www.palgrave-journals.com/jors/journal/v47/n8/abs/jors1996133a.html

130 Bibliography

Lixin Tang and Lin Huang. Optimal and near-optimal algorithms to rolling batch scheduling
for seamless steel tube production. Int. J. Prod. Econ., 105(2):357–371, feb 2007. ISSN
09255273. doi: 10.1016/j.ijpe.2004.04.011. URL http://linkinghub.elsevier.com/
retrieve/pii/S0925527305002343.

C. D. Tarantilis, C. T. Kiranoudis, and V. S. Vassiliadis. A threshold accepting metaheuristic
for the heterogeneous fixed fleet vehicle routing problem. Eur. J. Oper. Res., 152(1):148–
158, 2004. ISSN 03772217. doi: 10.1016/S0377-2217(02)00669-0.

Paolo Toth and Daniele Vigo. Models, relaxations and exact approaches for the capacitated
vehicle routing problem, 2002. ISSN 0166218X.

Pamela H. Vance. Branch-and-price algorithms for the one-dimensional cutting stock prob-
lem. Comput. Optim. Appl., 9(3):211–228, 1998. ISSN 09266003. doi: 10.1023/A:
1018346107246.

Iris F.A. Vis and Reneé De Koster. Transshipment of containers at a container terminal:
An overview. Eur. J. Oper. Res., 147(1):1–16, 2003. ISSN 03772217. doi: 10.1016/
S0377-2217(02)00293-X.

Yat-wahWan, Jiyin Liu, and Pei-Chun Tsai. The assignment of storage locations to containers
for a container stack. Nav. Res. Logist., 56(8):699–713, dec 2009. ISSN 0894069X. doi:
10.1002/nav.20373. URL http://www.interscience.wiley.com/jpages/0894-069X/
http://doi.wiley.com/10.1002/nav.20373.

Thomas Winter and Uwe T Zimmermann. Real-time dispatch of trams in storage yards *.
Ann. Oper. Res., 96:287–315, 2000. ISSN 02545330. doi: 10.1023/A:1018907720194.

Hande Yaman. Formulations and valid inequalities for the heterogeneous vehicle rout-
ing problem. Math. Program., 106(2):365–390, 2006. ISSN 00255610. doi: 10.1007/
s10107-005-0611-6.

Yujun Yang, Ye Chen, and Chuanze Long. Flexible robotic manufacturing cell scheduling
problem with multiple robots. Int. J. Prod. Res., 7543(July):0, 2017. ISSN 0020-7543.
doi: 10.1080/00207543.2016.1176267. URL http://dx.doi.org/10.1080/00207543.
2016.1176267.

Victor Yaurima, Larisa Burtseva, and Andrei Tchernykh. Computers & Industrial Engineer-
ing Hybrid flowshop with unrelated machines , sequence-dependent setup time , availabil-
ity constraints and limited buffers q. Comput. Ind. Eng., 56(4):1452–1463, 2009. ISSN
0360-8352. doi: 10.1016/j.cie.2008.09.004. URL http://dx.doi.org/10.1016/j.cie.
2008.09.004.

Miao Yu, Viswanath Nagarajan, and Siqian Shen. Minimum makespan vehicle routing prob-
lem with compatibility constraints. In Lect. Notes Comput. Sci. (including Subser. Lect. Notes
Artif. Intell. Lect. Notes Bioinformatics), volume 10335 LNCS, pages 244–253, 2017. ISBN
9783319597751. doi: 10.1007/978-3-319-59776-8_20.

Wei Yu, Zhaohui Liu, Leiyang Wang, and Tijun Fan. Routing open shop and flow shop
scheduling problems. Eur. J. Oper. Res., 213(1):24–36, 2011. ISSN 03772217. doi: 10.
1016/j.ejor.2011.02.028. URL http://dx.doi.org/10.1016/j.ejor.2011.02.028.

Zhen You Zhang. Scheduling and Routing Optimization of Maintenance Fleet for Offshore
Wind Farms Using Duo-ACO. Adv. Mater. Res., 1039:294–301, oct 2014. ISSN 1662-
8985. doi: 10.4028/www.scientific.net/AMR.1039.294. URL http://www.scientific.
net/AMR.1039.294.

http://linkinghub.elsevier.com/retrieve/pii/S0925527305002343
http://linkinghub.elsevier.com/retrieve/pii/S0925527305002343
http://www.interscience.wiley.com/jpages/0894-069X/ http://doi.wiley.com/10.1002/nav.20373
http://www.interscience.wiley.com/jpages/0894-069X/ http://doi.wiley.com/10.1002/nav.20373
http://dx.doi.org/10.1080/00207543.2016.1176267
http://dx.doi.org/10.1080/00207543.2016.1176267
http://dx.doi.org/10.1016/j.cie.2008.09.004
http://dx.doi.org/10.1016/j.cie.2008.09.004
http://dx.doi.org/10.1016/j.ejor.2011.02.028
http://www.scientific.net/AMR.1039.294
http://www.scientific.net/AMR.1039.294

Appendices

131

A
Analysis Walney project

This appendix contains detailed information on the original planning and on the execution
of ship routing and installation schedule of the Walney project. The routes, along with travel
durations, are given in Appendix A.1. Furthermore, in Appendix A.2 and Appendix A.3 the
waiting times and costs are given, respectively.

A.1. Routes

133

134 A. Analysis Walney project

ኾ.ኾ ኾ.ኾኼ ኾ.ኾኾ ኾ.ኾዀ ኾ.ኾዂ ኾ.኿ ኾ.኿ኼ ኾ.኿ኾ ኾ.኿ዀ ኾ.኿ዂ ኾ.ዀ ኾ.ዀኼ ኾ.ዀኾ
⋅ኻኺ኿

኿.ዃዂ

኿.ዃዃ

኿.ዃዃ

኿.ዃዃ

኿.ዃዃ

኿.ዃዃ

ዀ

ዀ

ዀ

ዀ
⋅ኻኺዀ

F06

B01

D05B03

D01

C10

F03

H03
F01

B04

B14

B17

C14

F04

A11
C20

H06

E01

A12

C18C15

F07

G04

A14

D02
H05

B07

H02

C06
A01

B11

C04
G05

E05

E02

A08

F02

B16

E08

B09

E04

C08

C19

C09

E03

B06

A13

B10

D06

A09

A06

H01

B02
C05

A03

A05

D03

A04

C01

E06

B13

C11

G02

C02

B12

D07

H04

C07

D08

G03

F05

D09

A02

C16

B08

E07

B05

C12

B15
C21

C17

D04

G01

C03

C13

A10

A07

Easting

N
or
th
in
g

Turbine Labels

Figure A.1: Labels of Walney Installation field

A.1. Routes 135

4.4 4.42 4.44 4.46 4.48 4.5 4.52 4.54 4.56 4.58 4.6 4.62 4.64
⋅10኿

5.98

5.99

5.99

5.99

5.99

5.99

6

6

6

6
⋅10ዀ

Easting

N
or
th
in
g

Scheduled route

Route Svanen
Route Aeolus

Figure A.2: Scheduled Walney route

136 A. Analysis Walney project

4.4 4.42 4.44 4.46 4.48 4.5 4.52 4.54 4.56 4.58 4.6 4.62 4.64
⋅10኿

5.98

5.99

5.99

5.99

5.99

5.99

6

6

6

6
⋅10ዀ

Easting

N
or
th
in
g

Executed route

Route Svanen
Route Aeolus

Figure A.3: Executed Walney route

A.1. Routes 137

A.1.1. Aeolus travel durations
from to duration (min)

C06 E03 55
C05 E01 10
B05 D03 25
B01 F02 85
C02 C04 80
F01 D04 55
A04 C03 75
E02 B02 40
F03 G01 10
B04 H01 45
H05 G02 55
D01 H03 95
A03 A05 80
A02 C01 15
A01 H02 90
B03 F04 57
F04 G03 35
H04 G04 40
G04 F05 95
F05 E04 15
E04 D05 35
D05 E04 25
C07 H06 115
H06 G05 25
G05 F06 25
F06 E05 50
A08 E08 95
E08 D08 45
D08 C09 40
D06 D07 80
D07 E06 30
E06 F07 60
F07 E07 20
B09 C10 25
C10 A06 25
A06 D09 40
D09 B08 40
B12 B13 30
B13 A10 25
A10 A11 50
C08 B07 45
B07 A09 60
A09 B06 85
B06 A12 75

A13 A14 75
A14 B16 60
B16 B15 65
B15 B14 60
C21 C20 35
C20 C19 40
C19 C17 40
C17 C15 30
C11 B17 70
B17 B11 85
B11 B10 25
B10 A07 30
C12 C13 45
C13 C14 40
C14 C16 30
C16 C18 40

Table A.1: Duration of Aeolus intrafield travelling

A.1.2. Svanen travel durations
from to duration (min)

G05 H06 55
H06 H04 890
H04 G04 135
G04 E05 40
E05 F06 30
F06 F05 50
F05 E04 20
E04 D06 60
D06 C08 20
C08 D05 35
D05 C07 60
C07 B06 95
B06 A06 90
A06 F04 70
F04 B03 180
B03 B07 110
B07 D07 115
D07 C09 70
C09 G03 75
G03 E08 70
E08 D09 25
D09 E07 30
E07 B08 450
B08 B09 20
B09 C10 17
C10 D08 30
D08 F07 40

138 A. Analysis Walney project

F07 B10 62
B10 A07 20
A07 A08 20
A08 A09 28
A09 A10 20
A10 A11 25
A11 A12 19
A12 A13 4
A13 B17 380
B17 B16 20
B16 B15 19
B15 B14 13
B14 B13 5
B13 B12 25
B12 E06 115
E06 A14 140
A14 C21 65
C21 C20 95
C20 C19 40
C19 C17 21
C17 C18 13
C18 C16 5
C16 C15 16
C15 C14 25
C14 C13 15
C13 B11 25
B11 C12 95
C12 C11 20

Table A.2: Executed intrafield route of Svanen

A.2. Waiting

Turbine Time (min)

G05 2440
H04 120
F05 150
C07 60
A06 35
B03 15
B07 27
D07 45
C09 80
E08 45
D09 225
A07 95
A09 480
A10 325
A11 195
A12 690
B17 25
B15 25
B13 425
C11 286

Total 5788

Table A.3: Svanen waiting time due to plugs

A.3. Costs 139

A.3. Costs

Costs (€)

Aeolus per day 150.000
Svanen per day 75.000
Tugboat per day 5.000
Harbour per day 50.000
Crane relocation 1.000

Table A.4: Estimated costs during Walney project

Intrafield sailing (hr) Cost (10ኽ €)
Svanen intrafield Sailing 71 220
Aeolus intrafield sailing 50 310

Total sailing 120 530

Svanen waiting on plugs 96 301

Table A.5: Costs of intrafield sailing

B
Offshore scheduling by Flowshop

approach
The offshore scheduling problem can be seen as a variation of a flow shop problem, or as a
variation of a vehicle routing problem. Both approaches were researched based on available
literature and it was found that the flow shop approach would require large extensions which
could not be found in literature. Therefore, the VRP is considered the best option. The flow
shop approach is still discussed partially here since it has potential to solve the installation
method decision problem. The first extension to be considered when looking at this problem
from a flow shop point of view is the routing flow shop. This is a flow shop where machines
or jobs travel between locations.

A generalised version for the routing open shop problem was given by Yu et al. [2011]. An
open shop problem is a flow shop without constraints on the order of processes. This means
that all processes will have to be finished, but it can be in any order. They also handle a
flow shop for just 2 machines and a tree-graph. A tree graph is a graph is a graph where any
two vertices are connected by exactly one path, as seen in Figure B.1. For this problem they
prove NP-Hardness.

Ahmadi [1996] introduce the network flow shop. This is a flow shop where the jobs travel
between machines, instead of the machines between location. The problem might contain
some useful elements for the routing flow shop. The paper of Ahmadi focuses mainly on the
computational hardness of the problem and proposes a heuristic. The problem where jobs
travel between machines is well researched since it is used for manufacturing systems where
items are moved by automated guided vehicles.

Figure B.1: A tree graph

The flowshop with traveling machines can be seen as a flow-
shop with sequence dependent setup times. This problem was
introduced by Gupta [1986]. They included setup times for
machines based on the job order at that machine. This means
that if job 𝑗 is scheduled after 𝑖 on machine time 𝑚, there will
be a setup time of 𝑎፦(𝑖, 𝑗). This approach can be used to model
travelling time for ships. They propose a mathematical model
and prove its NP-completeness.

The installation process has similarities with a flow shop
problem with sequence dependent durations. Here the dura-
tion of certain tasks are depending on the sequence in which
the operations are done. This can be used to model the travel-
ling times between locations.

RÍOS-MERCADO and BARD [1999] presented a branch-and-bound algorithm to solve the
sequence dependent setup time flow shop scheduling problem. This algorithm included a

141

142 B. Offshore scheduling by Flowshop approach

custom lower and upper bound and an elimination criterion. In the same year, Bard pre-
sented a heuristic procedure for the same problem Ríos-Mercado and Bard [1999]. Later
Rios-Mercado and Bard [2003] presented two MILP models for the same problem which was
solved using a branch-and-cut model.

Another branch and bound algorithm was presented by Tang and Huang [2007] who stud-
ied production scheduling for steel tube production. Next to this they also presented a two-
stage heuristic based on a neighbourhood search method.

A method to model the transporting capacity on ships would be by using a constrained
buffer. A constrained buffer in a flowshop means that there is a limited amount of jobs
waiting between machines. If loading and installing components are seen as machines, then
a buffer would model the carrying capacity of transporting ships. Yaurima et al. [2009] used a
genetic algorithm to solve the buffer-constrained flowshop problem with sequence dependent
setup times.

An important part of the flow shop approach is that machines need to be able to handle
multiple tasks. A ship needs to load and install. Travelling can be modelled as a setup time
and does not have to be a seperate task. There are studies about job shops for multi-purpose
machines (see Yang et al. [2017]), but nothing for flow shops. This is a major gap in required
research. It is of course possible that there is some research and it has not been found, but
the scarcity suggest that the flow shop approach probably is not the best way to solve the
problem.

C
Relocation constraints Monopiles

Similar to the relocation of transition pieces is the relocation of monopiles, also present in
the Walney Installation project. These are stored in multiple rows, of which one is shown
in Figure C.1. To solve the crane movement problem for monopiles, the same model as
introduced in Chapter 6 can be used, but with differen relocation constraints.

Figure C.1: Rows of monopiles. Diagonal lines show
blocked positions

In a given row, monopiles can only be placed
on the outsides of that row, and only the outer
ones can be removed, as shown in Figure C.1.
While in theory it is possible to leave empty spaces
in a row as shown as in the top row, this will
still only allow the outer ones to be accessible and
therefore any solution with space in between the
rows can be converted to a solution of the same
amount of moves by not allowing empty spaces in
rows.

Consider a field with multiple rows 𝑟 ∈ 𝑅
where each row 𝑅፫ consists of multiple locations
{𝑠𝑟፫ኻ , ..., 𝑠𝑟፫፦ፚ፱} with 𝑠𝑟፫ኻ denoting the leftmost loca-
tion and 𝑠𝑟፫፦ፚ፱ denoting the rightmost location. All rows combined form the storage field,
thus 𝑆፬ = ∪፫∈ፑ𝑅፫. The rest of the notation is the same as in Chapter 4.

As stated earlier, MPs can only be relocated from the end of rows to ends of other rows,
or to empty rows. Equation (C.1a) blocks relocations from 𝑖, if there is at least one other
component on any location left of 𝑖, and no component directly left of 𝑖. Note that the two
leftmost locations are not considered in Equation (C.1a) since the leftmost location is never
blocked, and the second location always has an adjacent occupied left-neighbour, or no left-
neighbours at all.

The converse is done in Equation (C.1b) for components on the right side. Adding these
two equations thus define that if there is an adjacent unoccupied location at either side
of location 𝑖, that complete side must be empty for relocations from 𝑖 to be non-blocked.
Therefore, any component with an adjacent unoccupied location is now blocked unless it is
at the first,last or only component in a row.

This leaves components with no adjacent unoccupied locations, and since these com-
ponents always will be blocked blocks any relocations to 𝑖 if 𝑖 has two adjacent occupied
neighbours. Since the self-blocking principle does not apply in this problem, blocking con-
straints for relocating from a locations can simply be added in the same form, resulting in

143

144 C. Relocation constraints Monopiles

Equations (C.1d) to (C.1f)

∑
፣∈ፒ

∑
፧∈ፍ

𝑥፭፧።፣ ≤ 1 −
1

𝑖 − 2

።ዅኼ

∑
፣዆ኻ
𝑦፭𝑗 + 𝑦፭(፣ዅኻ)∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇, 3 ≤ 𝑖 ≤ |𝑅፫| (C.1a)

∑
፣∈ፒ

∑
፧∈ፍ

𝑥፭፧።፣ ≤ 1 −
1

|𝑅፫| − 𝑖 − 2

|ፑ፫ |

∑
፣዆።ዄኼ

𝑦፭፣ + 𝑦፭(፣ዅኻ)∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇, 1 ≤ 𝑖 ≤ |𝑅፫| − 2 (C.1b)

∑
፣∈ፒ

∑
፧∈ፍ

𝑥፭፧።፣ ≤ 2 − 𝑦፭(።ዅኻ) − 𝑦፭(።ዄኻ)∀𝑟 ∈ 𝑅, 1 ≤ 𝑖 ≤ |𝑅፫| − 1 (C.1c)

∑
፣∈ፒ

∑
፧∈ፍ

𝑥፭፧፣። ≤ 1 −
1

𝑖 − 2

።ዅኼ

∑
፣዆ኻ
𝑦፭፣ + 𝑦፭(፣ዅኻ)∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇, 3 ≤ 𝑖 ≤ |𝑅፫| (C.1d)

∑
፣∈ፒ

∑
፧∈ፍ

𝑥፭፧፣። ≤ 1 −
1

|𝑅፫| − 𝑖 − 2

|ፑ፫ |

∑
፣዆።ዄኼ

𝑦፭፣ + 𝑦፭(፣ዅኻ)∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇, 1 ≤ 𝑖 ≤ |𝑅፫| − 2 (C.1e)

∑
፣∈ፒ

∑
፧∈ፍ

𝑥፭፧፣። ≤ 2 − 𝑦፭(።ዅኻ) − 𝑦፭(።ዄኻ)∀𝑟 ∈ 𝑅, 1 ≤ 𝑖 ≤ |𝑅፫| − 1 (C.1f)

With the rest of the model as introduced by in Chapter 6 the relocation problem for the
monopiles is now defined.

D
Te
st
re
su
lts

D
.1
.C

ra
ne

te
st
s

In
th
is
se
ct
io
n
th
e
re
su
lt
s
fo
r
th
e
C
R
P
ar
e
pr
es
en
te
d.

Te
st
s
ar
e
pe
rf
or
m
ed

fo
r
th
re
e
ty
pe
s
of
pr
ob
le
m
s:

lo
ad

in
g,

st
or
ag

e
an

d
bu

ff
er
.
Th

e
fir
st

tw
o
ty
pe
s
bo
th

co
n
si
de
r
co
m
po
n
en
ts

ar
ri
vi
n
g
an

d
de
pa
rt
in
g
in

ba
tc
h
es

of
2.

Th
e
fie
ld

fo
r
th
es
e
pr
ob
le
m
s
co
n
si
st
s
of

2
lo
ad
ou

t
lo
ca
ti
on

s,
an

d
a
st
or
ag
e
of
co
n
si
st
in
g
w
it
h
th
e
di
m
en
si
on

s
(⌈|
𝑁|
/2
⌉,2
)(
W
id
th
,H

ei
gh
t)
.
Th

e
bu

ff
er

ty
pe

pr
ob
le
m
s
h
av
e
cu
st
om

fie
ld
s
an

d
flo
w
sc
h
ed
u
le
s

pe
r
in
st
an

ce
,a

n
d
ar
e
gi
ve
n
in

Ta
bl
e
D
.1

.

D
.1
.1
.E

xa
ct
cr
an
e
op

tim
is
at
io
n
te
st
s

C
om

po
ne
nt
s

Lo
ad
ou
t

St
or
ag
e-
on
ly

Fl
ow

sc
he
du
le

6
2

5
(2
in
,2

in
,2

ou
t,
2
in
,2

ou
t,
2
ou
t)

8
4

5
(4
in
,2

ou
t,
4
in
,2

ou
t,
2
ou
t,
2
ou
t)

12
3

12
(3
in
,3

in
,2

ou
t,
3
in
,3

in
,2

ou
t,
2
ou
t,
2
ou
t,
2
ou
t,
2
ou
t)

18
3

12
(3
in
,3

in
,2

ou
t,
2
in
,3

in
,2

ou
t,
2
ou
t,
3
in
,3

in
,2

ou
t,
2
ou
t,
2
ou
t,
2
ou
t,
2
ou
t,
2
ou
t)

Ta
bl
e
D
.1
:C

om
bi
ne
d
te
st
s

145

146 D. Test results

Ty
pe

C
ut
s

M
ov
es

D
et
.
ti
m
e

R
ea
l-t
im

e
|t
|

C
om

po
ne

nt
s

N
od

es
St
ar
t
ty
pe

B
u
ffe
r

N
on

e
20

37
50

9
39

4
28

8
31

7
W
ar
m
-s
ta
rt

B
u
ffe
r

N
on

e
20

43
11

2
12

10
20

8
24

59
Ti
gh
t-
u
pp

er
bo
u
n
d

B
u
ffe
r

N
on

e
20

46
28

8
60

2
28

8
77

0
S
ta
n
da
rd

B
u
ffe
r

A
ll

20
14

56
24

34
48

28
8

20
22

W
ar
m
-s
ta
rt

B
u
ffe
r

A
ll

20
64

87
17

20
8

0
Ti
gh
t-
u
pp

er
bo
u
n
d

B
u
ffe
r

A
ll

20
11

26
72

19
40

28
8

17
60

S
ta
n
da
rd

B
u
ffe
r

Ti
m
e-
sy
m
m
et
ry

20
68

63
7

39
5

28
8

35
3

W
ar
m
-s
ta
rt

B
u
ffe
r

Ti
m
e-
sy
m
m
et
ry

20
25

63
0

19
4

20
8

13
2

Ti
gh
t-
u
pp

er
bo
u
n
d

B
u
ffe
r

Ti
m
e-
sy
m
m
et
ry

20
12

66
54

31
10

28
8

24
33

S
ta
n
da
rd

B
u
ffe
r

M
in
-m

ov
es

20
51

04
4

42
9

28
8

53
7

W
ar
m
-s
ta
rt

B
u
ffe
r

M
in
-m

ov
es

20
25

89
3

53
3

20
8

95
3

Ti
gh
t-
u
pp

er
bo
u
n
d

B
u
ffe
r

M
in
-m

ov
es

20
16

05
05

51
34

28
8

10
71

2
S
ta
n
da
rd

B
u
ffe
r

D
ou

bl
e-
re
lo
ca
te

20
45

92
8

84
6

28
8

20
2

W
ar
m
-s
ta
rt

B
u
ffe
r

D
ou

bl
e-
re
lo
ca
te

20
25

15
3

41
8

20
8

45
5

Ti
gh
t-
u
pp

er
bo
u
n
d

B
u
ffe
r

D
ou

bl
e-
re
lo
ca
te

20
67

88
1

10
64

28
8

79
9

S
ta
n
da
rd

B
u
ffe
r

N
on

e
20

45
29

5
13

6
29

8
45

W
ar
m
-s
ta
rt

B
u
ffe
r

N
on

e
20

48
16

15
20

8
0

Ti
gh
t-
u
pp

er
bo
u
n
d

B
u
ffe
r

N
on

e
20

63
27

2
15

5
29

8
17

S
ta
n
da
rd

B
u
ffe
r

A
ll

20
13

24
84

26
99

29
8

29
77

W
ar
m
-s
ta
rt

B
u
ffe
r

A
ll

20
28

13
5

44
1

20
8

66
9

Ti
gh
t-
u
pp

er
bo
u
n
d

B
u
ffe
r

A
ll

20
10

86
96

13
78

29
8

10
83

S
ta
n
da
rd

B
u
ffe
r

Ti
m
e-
sy
m
m
et
ry

20
95

06
1

13
35

29
8

91
1

W
ar
m
-s
ta
rt

B
u
ffe
r

Ti
m
e-
sy
m
m
et
ry

20
19

70
9

16
2

20
8

15
4

Ti
gh
t-
u
pp

er
bo
u
n
d

B
u
ffe
r

Ti
m
e-
sy
m
m
et
ry

20
11

48
00

14
53

29
8

13
04

S
ta
n
da
rd

B
u
ffe
r

M
in
-m

ov
es

20
93

63
1

13
92

29
8

12
03

W
ar
m
-s
ta
rt

B
u
ffe
r

M
in
-m

ov
es

20
93

32
26

20
8

0
Ti
gh
t-
u
pp

er
bo
u
n
d

B
u
ffe
r

M
in
-m

ov
es

20
22

89
0

62
29

8
0

S
ta
n
da
rd

B
u
ffe
r

D
ou

bl
e-
re
lo
ca
te

20
50

57
4

17
7

29
8

43
W
ar
m
-s
ta
rt

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮

D.1. Crane tests 147

Ty
pe

C
ut
s

M
ov
es

D
et
.
ti
m
e

R
ea
l-t
im

e
|t
|

C
om

po
ne

nt
s

N
od

es
St
ar
t
ty
pe

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
B
u
ffe
r

D
ou

bl
e-
re
lo
ca
te

20
30

19
3

49
6

20
8

87
3

Ti
gh
t-
u
pp

er
bo
u
n
d

B
u
ffe
r

D
ou

bl
e-
re
lo
ca
te

20
51

15
4

31
4

29
8

24
3

S
ta
n
da
rd

Lo
ad
in
g

N
on

e
15

21
54

2
15

7
0

W
ar
m
-s
ta
rt

Lo
ad
in
g

N
on

e
15

35
77

13
15

7
0

Ti
gh
t-
u
pp

er
bo
u
n
d

Lo
ad
in
g

N
on

e
15

35
77

14
15

7
0

S
ta
n
da
rd

Lo
ad
in
g

A
ll

15
25

04
2

15
7

0
W
ar
m
-s
ta
rt

Lo
ad
in
g

A
ll

15
45

52
13

15
7

0
Ti
gh
t-
u
pp

er
bo
u
n
d

Lo
ad
in
g

A
ll

15
45

52
14

15
7

0
S
ta
n
da
rd

Lo
ad
in
g

Ti
m
e-
sy
m
m
et
ry

15
17

33
1

15
7

0
W
ar
m
-s
ta
rt

Lo
ad
in
g

Ti
m
e-
sy
m
m
et
ry

15
26

30
7

15
7

0
Ti
gh
t-
u
pp

er
bo
u
n
d

Lo
ad
in
g

Ti
m
e-
sy
m
m
et
ry

15
26

30
8

15
7

0
S
ta
n
da
rd

Lo
ad
in
g

M
in
-m

ov
es

15
27

44
3

15
7

0
W
ar
m
-s
ta
rt

Lo
ad
in
g

M
in
-m

ov
es

15
30

27
7

15
7

0
Ti
gh
t-
u
pp

er
bo
u
n
d

Lo
ad
in
g

M
in
-m

ov
es

15
30

27
7

15
7

0
S
ta
n
da
rd

Lo
ad
in
g

D
ou

bl
e-
re
lo
ca
te

15
41

67
10

15
7

4
W
ar
m
-s
ta
rt

Lo
ad
in
g

D
ou

bl
e-
re
lo
ca
te

15
11

38
8

42
15

7
89

Ti
gh
t-
u
pp

er
bo
u
n
d

Lo
ad
in
g

D
ou

bl
e-
re
lo
ca
te

15
11

38
8

44
15

7
89

S
ta
n
da
rd

Lo
ad
in
g

N
on

e
22

12
05

24
4

46
15

9
22

9
10

35
36

W
ar
m
-s
ta
rt

Lo
ad
in
g

N
on

e
22

68
01

53
23

83
3

22
9

50
57

8
Ti
gh
t-
u
pp

er
bo
u
n
d

Lo
ad
in
g

N
on

e
22

68
01

53
23

91
3

22
9

50
57

8
S
ta
n
da
rd

Lo
ad
in
g

A
ll

22
81

37
90

33
16

8
22

9
63

71
3

W
ar
m
-s
ta
rt

Lo
ad
in
g

A
ll

22
54

79
49

22
80

7
22

9
30

44
8

Ti
gh
t-
u
pp

er
bo
u
n
d

Lo
ad
in
g

A
ll

22
54

79
49

23
12

8
22

9
30

44
8

S
ta
n
da
rd

Lo
ad
in
g

Ti
m
e-
sy
m
m
et
ry

22
23

89
82

1
11

27
33

22
9

89
10

5
W
ar
m
-s
ta
rt

Lo
ad
in
g

Ti
m
e-
sy
m
m
et
ry

22
14

05
73

8
57

11
9

22
9

95
37

2
Ti
gh
t-
u
pp

er
bo
u
n
d

Lo
ad
in
g

Ti
m
e-
sy
m
m
et
ry

22
14

05
73

8
57

16
9

22
9

95
37

2
S
ta
n
da
rd

Lo
ad
in
g

M
in
-m

ov
es

22
59

76
34

18
61

5
22

9
27

56
0

W
ar
m
-s
ta
rt

Lo
ad
in
g

M
in
-m

ov
es

22
13

58
77

3
69

86
9

22
9

16
73

41
Ti
gh
t-
u
pp

er
bo
u
n
d

Lo
ad
in
g

M
in
-m

ov
es

22
13

58
77

3
69

45
7

22
9

16
73

41
S
ta
n
da
rd

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮

148 D. Test results

Ty
pe

C
ut
s

M
ov
es

D
et
.
ti
m
e

R
ea
l-t
im

e
|t
|

C
om

po
ne

nt
s

N
od

es
St
ar
t
ty
pe

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
Lo
ad
in
g

D
ou

bl
e-
re
lo
ca
te

22
26

56
80

8
13

80
81

22
9

37
72

60
W
ar
m
-s
ta
rt

Lo
ad
in
g

D
ou

bl
e-
re
lo
ca
te

22
26

85
78

7
14

23
43

22
9

40
48

17
Ti
gh
t-
u
pp

er
bo
u
n
d

Lo
ad
in
g

D
ou

bl
e-
re
lo
ca
te

22
26

85
78

7
14

24
91

22
9

40
48

17
S
ta
n
da
rd

S
to
ra
ge

N
on

e
26

18
27

2
26

7
0

W
ar
m
-s
ta
rt

S
to
ra
ge

N
on

e
26

11
47

59
27

02
26

7
37

82
Ti
gh
t-
u
pp

er
bo
u
n
d

S
to
ra
ge

N
on

e
26

11
47

59
27

91
26

7
37

82
S
ta
n
da
rd

S
to
ra
ge

A
ll

26
23

54
2

26
7

0
W
ar
m
-s
ta
rt

S
to
ra
ge

A
ll

26
81

74
3

17
04

26
7

14
20

Ti
gh
t-
u
pp

er
bo
u
n
d

S
to
ra
ge

A
ll

26
81

74
3

16
45

26
7

14
20

S
ta
n
da
rd

S
to
ra
ge

Ti
m
e-
sy
m
m
et
ry

26
20

90
2

26
7

0
W
ar
m
-s
ta
rt

S
to
ra
ge

Ti
m
e-
sy
m
m
et
ry

26
14

65
55

29
80

26
7

28
95

Ti
gh
t-
u
pp

er
bo
u
n
d

S
to
ra
ge

Ti
m
e-
sy
m
m
et
ry

26
14

65
55

30
59

26
7

28
95

S
ta
n
da
rd

S
to
ra
ge

M
in
-m

ov
es

26
18

62
2

26
7

0
W
ar
m
-s
ta
rt

S
to
ra
ge

M
in
-m

ov
es

26
14

81
17

36
23

26
7

33
48

Ti
gh
t-
u
pp

er
bo
u
n
d

S
to
ra
ge

M
in
-m

ov
es

26
14

81
17

36
30

26
7

33
48

S
ta
n
da
rd

S
to
ra
ge

D
ou

bl
e-
re
lo
ca
te

26
21

19
2

26
7

0
W
ar
m
-s
ta
rt

S
to
ra
ge

D
ou

bl
e-
re
lo
ca
te

26
55

56
57

19
40

9
26

7
49

77
3

Ti
gh
t-
u
pp

er
bo
u
n
d

S
to
ra
ge

D
ou

bl
e-
re
lo
ca
te

26
55

56
57

19
90

3
26

7
49

77
3

S
ta
n
da
rd

S
to
ra
ge

N
on

e
35

39
78

35
4

15
19

07
37

9
32

71
8

W
ar
m
-s
ta
rt

S
to
ra
ge

N
on

e
0

30
25

30
4

16
97

96
35

9
46

03
3

Ti
gh
t-
u
pp

er
bo
u
n
d

S
to
ra
ge

N
on

e
35

37
89

15
3

16
11

10
37

9
20

45
8

S
ta
n
da
rd

S
to
ra
ge

A
ll

35
44

45
78

3
14

79
73

37
9

21
30

7
W
ar
m
-s
ta
rt

S
to
ra
ge

A
ll

0
31

31
36

6
16

71
89

35
9

55
01

8
Ti
gh
t-
u
pp

er
bo
u
n
d

S
to
ra
ge

A
ll

35
42

48
03

4
15

73
62

37
9

16
65

1
S
ta
n
da
rd

S
to
ra
ge

Ti
m
e-
sy
m
m
et
ry

36
39

43
52

1
16

17
04

37
9

20
19

1
W
ar
m
-s
ta
rt

S
to
ra
ge

Ti
m
e-
sy
m
m
et
ry

34
28

22
13

1
70

65
4

36
9

11
63

4
Ti
gh
t-
u
pp

er
bo
u
n
d

S
to
ra
ge

Ti
m
e-
sy
m
m
et
ry

35
41

05
49

6
15

94
57

37
9

19
25

3
S
ta
n
da
rd

S
to
ra
ge

M
in
-m

ov
es

34
24

85
00

9
67

20
6

37
9

19
28

4
W
ar
m
-s
ta
rt

S
to
ra
ge

M
in
-m

ov
es

0
32

28
35

4
17

71
09

34
9

34
02

3
Ti
gh
t-
u
pp

er
bo
u
n
d

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮

D.1. Crane tests 149

Ty
pe

C
ut
s

M
ov
es

D
et
.
ti
m
e

R
ea
l-t
im

e
|t
|

C
om

po
ne

nt
s

N
od

es
St
ar
t
ty
pe

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
S
to
ra
ge

M
in
-m

ov
es

0
32

53
45

0
16

63
86

37
9

49
83

4
S
ta
n
da
rd

S
to
ra
ge

D
ou

bl
e-
re
lo
ca
te

34
27

38
37

3
75

61
7

37
9

13
83

7
W
ar
m
-s
ta
rt

S
to
ra
ge

D
ou

bl
e-
re
lo
ca
te

0
32

40
36

0
16

95
90

34
9

59
70

1
Ti
gh
t-
u
pp

er
bo
u
n
d

S
to
ra
ge

D
ou

bl
e-
re
lo
ca
te

34
16

87
10

2
43

34
6

37
9

56
72

S
ta
n
da
rd

Ta
bl
e
D
.2
:E

xa
ct
te
st
s
C
R
P

D
.1
.2
.H

eu
ris

tic
C
R
P
te
st
re
su
lts

Pr
ob
le
m

ty
pe

Se
tt
in
gs

H
or
iz
on

le
ng

th
C
om

po
ne

nt
s

H
eu
ri
st
ic

so
lu
ti
on

E
xa
ct

so
lu
ti
on

H
eu
ri
st
ic

so
lv
ed

In
ou

t
flo
w

D
ou

bl
e
bl
oc
k

1
4

16
16

Ye
s

In
ou

t
flo
w

D
ou

bl
e
bl
oc
k

2
4

16
16

Ye
s

In
ou

t
flo
w

Lo
w
st
or
ag
e

1
4

16
16

Ye
s

In
ou

t
flo
w

Lo
w
st
or
ag
e

2
4

16
16

Ye
s

In
ou

t
flo
w

S
ta
n
da
rd

1
4

16
16

Ye
s

In
ou

t
flo
w

S
ta
n
da
rd

2
4

16
16

Ye
s

In
ou

t
flo
w

N
o-
bl
oc
k

1
4

16
16

Ye
s

In
ou

t
flo
w

N
o-
bl
oc
k

2
4

16
16

Ye
s

In
ou

t
flo
w

C
lu
st
er

1
4

16
16

Ye
s

In
ou

t
flo
w

C
lu
st
er

2
4

16
16

Ye
s

C
om

bi
n
ed

D
ou

bl
e
bl
oc
k

1
18

0
64

N
o

C
om

bi
n
ed

D
ou

bl
e
bl
oc
k

2
18

0
64

N
o

C
om

bi
n
ed

Lo
w
st
or
ag
e

1
18

0
64

N
o

C
om

bi
n
ed

Lo
w
st
or
ag
e

2
18

0
64

N
o

C
om

bi
n
ed

S
ta
n
da
rd

1
18

0
64

N
o

C
om

bi
n
ed

S
ta
n
da
rd

2
18

0
64

N
o

C
om

bi
n
ed

N
o-
bl
oc
k

1
18

0
64

N
o

C
om

bi
n
ed

N
o-
bl
oc
k

2
18

0
64

N
o

⋮
⋮

⋮
⋮

⋮
⋮

⋮

150 D. Test results

Pr
ob
le
m

ty
pe

Se
tt
in
gs

H
or
iz
on

le
ng

th
C
om

po
ne

nt
s

H
eu
ri
st
ic

so
lu
ti
on

E
xa
ct

so
lu
ti
on

H
eu
ri
st
ic

so
lv
ed

⋮
⋮

⋮
⋮

⋮
⋮

⋮
C
om

bi
n
ed

C
lu
st
er

1
18

0
64

N
o

C
om

bi
n
ed

C
lu
st
er

2
18

64
64

Ye
s

O
u
t
flo
w

D
ou

bl
e
bl
oc
k

1
4

10
10

Ye
s

O
u
t
flo
w

D
ou

bl
e
bl
oc
k

2
4

10
10

Ye
s

O
u
t
flo
w

Lo
w
st
or
ag
e

1
4

10
10

Ye
s

O
u
t
flo
w

Lo
w
st
or
ag
e

2
4

10
10

Ye
s

O
u
t
flo
w

S
ta
n
da
rd

1
4

10
10

Ye
s

O
u
t
flo
w

S
ta
n
da
rd

2
4

10
10

Ye
s

O
u
t
flo
w

D
ou

bl
e
bl
oc
k

1
4

8
8

Ye
s

O
u
t
flo
w

D
ou

bl
e
bl
oc
k

2
4

8
8

Ye
s

O
u
t
flo
w

Lo
w
st
or
ag
e

1
4

8
8

Ye
s

O
u
t
flo
w

Lo
w
st
or
ag
e

2
4

8
8

Ye
s

O
u
t
flo
w

S
ta
n
da
rd

1
4

8
8

Ye
s

O
u
t
flo
w

S
ta
n
da
rd

2
4

8
8

Ye
s

O
u
t
flo
w

Lo
w
st
or
ag
e

1
4

8
8

Ye
s

O
u
t
flo
w

Lo
w
st
or
ag
e

2
4

8
8

Ye
s

O
u
t
flo
w

D
ou

bl
e
bl
oc
k

1
4

8
8

Ye
s

O
u
t
flo
w

D
ou

bl
e
bl
oc
k

2
4

8
8

Ye
s

O
u
t
flo
w

S
ta
n
da
rd

1
4

8
8

Ye
s

O
u
t
flo
w

S
ta
n
da
rd

2
4

8
8

Ye
s

C
om

bi
n
ed

N
o-
bl
oc
k

1
6

16
16

Ye
s

C
om

bi
n
ed

N
o-
bl
oc
k

2
6

16
16

Ye
s

C
om

bi
n
ed

Lo
w
st
or
ag
e

1
6

16
16

Ye
s

C
om

bi
n
ed

Lo
w
st
or
ag
e

2
6

16
16

Ye
s

C
om

bi
n
ed

D
ou

bl
e
bl
oc
k

1
6

16
16

Ye
s

C
om

bi
n
ed

D
ou

bl
e
bl
oc
k

2
6

16
16

Ye
s

C
om

bi
n
ed

S
ta
n
da
rd

1
6

16
16

Ye
s

C
om

bi
n
ed

S
ta
n
da
rd

2
6

16
16

Ye
s

O
u
t
flo
w

Lo
w
st
or
ag
e

1
4

8
8

Ye
s

⋮
⋮

⋮
⋮

⋮
⋮

⋮

D.1. Crane tests 151

Pr
ob
le
m

ty
pe

Se
tt
in
gs

H
or
iz
on

le
ng

th
C
om

po
ne

nt
s

H
eu
ri
st
ic

so
lu
ti
on

E
xa
ct

so
lu
ti
on

H
eu
ri
st
ic

so
lv
ed

⋮
⋮

⋮
⋮

⋮
⋮

⋮
O
u
t
flo
w

Lo
w
st
or
ag
e

2
4

8
8

Ye
s

O
u
t
flo
w

D
ou

bl
e
bl
oc
k

1
4

8
8

Ye
s

O
u
t
flo
w

D
ou

bl
e
bl
oc
k

2
4

8
8

Ye
s

O
u
t
flo
w

S
ta
n
da
rd

1
4

8
8

Ye
s

O
u
t
flo
w

S
ta
n
da
rd

2
4

8
8

Ye
s

In
ou

t
flo
w

N
o-
bl
oc
k

1
12

46
46

Ye
s

In
ou

t
flo
w

N
o-
bl
oc
k

2
12

46
46

Ye
s

In
ou

t
flo
w

Lo
w
st
or
ag
e

1
12

46
46

Ye
s

In
ou

t
flo
w

Lo
w
st
or
ag
e

2
12

46
46

Ye
s

In
ou

t
flo
w

D
ou

bl
e
bl
oc
k

1
12

46
46

Ye
s

In
ou

t
flo
w

D
ou

bl
e
bl
oc
k

2
12

46
46

Ye
s

In
ou

t
flo
w

S
ta
n
da
rd

1
12

46
46

Ye
s

In
ou

t
flo
w

S
ta
n
da
rd

2
12

46
46

Ye
s

In
ou

t
flo
w

N
o-
bl
oc
k

1
6

24
24

Ye
s

In
ou

t
flo
w

N
o-
bl
oc
k

2
6

24
24

Ye
s

In
ou

t
flo
w

Lo
w
st
or
ag
e

1
6

24
24

Ye
s

In
ou

t
flo
w

Lo
w
st
or
ag
e

2
6

24
24

Ye
s

In
ou

t
flo
w

D
ou

bl
e
bl
oc
k

1
6

24
24

Ye
s

In
ou

t
flo
w

D
ou

bl
e
bl
oc
k

2
6

24
24

Ye
s

In
ou

t
flo
w

S
ta
n
da
rd

1
6

24
24

Ye
s

In
ou

t
flo
w

S
ta
n
da
rd

2
6

24
24

Ye
s

Ta
bl
e
D
.3
:C

R
P
he
ur
is
tic

re
su
lts

D
.1
.3
.C

om
po

ne
nt

re
lo
ca
tio

n
re
su
lt
W
al
ne
y

Th
e
be
st
so
lu
ti
on

fo
u
n
d
fo
r
th
e
co
m
po
n
en
t
re
lo
ca
ti
on

pr
ob
le
m

in
th
e
w
al
n
ey

pr
oj
ec
t
is
gi
ve
n
.
Fi
rs
t
th
e
lo
ca
ti
on

s
ar
e
gi
ve
n
in

Fi
gu

re
D
.1
,a
n
d

su
bs
eq
u
en
tl
y
th
e
re
lo
ca
ti
on

sc
h
ed
u
le
is
gi
ve
n
.

152 D. Test results

78

910

1112

1314

1516

1718

19
20

21
2223

2425

2627

2829

3031

32
33

34
35

36
37

1
2

3
4

5
6

Fi
gu
re
D
.1
:L

ay
ou
to
fW

al
ne
y
TP

st
or
ag
e.

Lo
ad
ou
tl
oc
at
io
ns

ar
e
in
gr
ay
.P

os
iti
on
s
0
an
d
38

de
no
te
th
e
ar
riv
al
an
d
de
pa
rtu
re
lo
ca
tio
ns
,r
es
pe
ct
iv
el
y

D.1. Crane tests 153

B
lo
ck

Fr
om

To

G
04

0
1

D
03

0
2

E
02

0
3

C
05

0
4

D
02

0
5

F0
1

0
6

G
04

1
17

D
03

2
15

E
02

3
13

C
05

4
11

D
02

5
16

F0
1

6
14

B
04

0
1

C
04

0
2

B
05

0
3

C
03

0
4

E
01

0
5

C
02

0
6

B
04

1
24

C
04

2
22

B
05

3
21

C
03

4
19

E
01

5
20

C
02

6
18

A
01

0
1

A
02

0
2

A
03

0
3

B
01

0
4

D
01

0
5

B
02

0
6

A
01

1
35

⋮
⋮

⋮

B
lo
ck

Fr
om

To

⋮
⋮

⋮
A
02

2
34

A
03

3
33

B
01

4
26

D
01

5
28

B
02

6
27

C
01

0
1

B
03

0
2

A
05

0
3

A
04

0
4

F0
2

0
5

E
03

0
6

C
01

1
36

B
03

2
37

A
05

3
7

A
04

4
29

F0
2

5
25

E
03

6
12

E
04

0
4

H
01

0
5

H
04

0
3

F0
3

0
2

C
06

0
1

G
01

0
6

G
01

6
8

E
03

12
6

E
03

6
38

C
06

1
38

C
05

11
1

H
01

5
30

E
04

4
9

⋮
⋮

⋮

B
lo
ck

Fr
om

To

⋮
⋮

⋮
G
02

0
5

D
04

0
6

D
04

6
31

G
02

5
23

H
04

3
10

H
02

0
3

C
07

0
4

D
05

0
5

G
03

0
6

C
05

1
38

F0
3

2
38

F0
1

14
2

D
04

31
1

D
04

1
38

F0
1

2
38

G
02

23
2

E
02

13
1

E
02

1
38

G
02

2
38

D
02

16
1

G
03

6
11

D
03

15
6

D
03

6
38

D
02

1
38

D
05

5
15

H
03

0
2

H
05

0
1

F0
5

0
5

F0
4

0
6

H
05

1
38

⋮
⋮

⋮

B
lo
ck

Fr
om

To

⋮
⋮

⋮
H
03

2
38

B
05

21
2

F0
2

25
1

F0
2

1
38

B
05

2
38

A
06

0
2

B
06

0
1

B
06

1
31

A
06

2
25

C
04

22
1

H
02

3
22

C
07

4
21

G
01

8
2

F0
5

5
16

F0
4

6
14

H
06

0
3

G
05

0
4

F0
6

0
5

A
08

0
6

C
04

1
38

G
01

2
38

A
06

25
8

C
07

21
2

H
02

22
21

B
04

24
1

B
06

31
24

A
06

8
25

A
08

6
23

H
01

30
6

B
04

1
38

⋮
⋮

⋮

154 D. Test results

B
lo
ck

Fr
om

To

⋮
⋮

⋮
H
01

6
38

E
01

20
6

C
02

18
1

C
02

1
38

E
01

6
38

A
05

7
1

F0
6

5
7

C
03

19
5

A
04

29
6

A
04

6
38

C
03

5
38

G
05

4
19

D
01

28
5

D
01

5
38

A
05

1
38

H
06

3
20

C
07

2
8

D
07

0
2

B
08

0
3

B
07

0
4

C
08

0
1

E
05

0
5

D
06

0
6

D
06

6
30

A
03

33
6

C
08

1
32

F0
4

14
1

A
03

6
38

F0
4

1
38

A
02

34
6

⋮
⋮

⋮

B
lo
ck

Fr
om

To

⋮
⋮

⋮
G
03

11
1

A
02

6
38

G
03

1
38

A
01

35
6

H
02

21
1

H
02

1
38

A
01

6
38

B
03

37
1

B
02

27
6

B
02

6
38

B
03

1
38

E
05

5
21

F0
5

16
5

D
05

15
6

D
07

2
13

B
08

3
37

B
07

4
31

G
04

17
2

C
01

36
1

B
01

26
3

C
01

1
38

B
01

3
38

H
04

10
1

E
04

9
3

F0
5

5
38

E
04

3
38

H
04

1
38

G
04

2
38

D
05

6
38

C
09

0
1

⋮
⋮

⋮

B
lo
ck

Fr
om

To

⋮
⋮

⋮
D
09

0
2

E
08

0
3

B
09

0
4

D
08

0
5

C
10

0
6

C
10

6
33

D
08

5
34

B
09

4
26

E
08

3
17

D
09

2
11

C
09

1
18

H
06

20
1

C
07

8
5

E
05

21
4

F0
6

7
3

G
05

19
6

H
06

1
38

F0
6

3
38

G
05

6
38

E
05

4
38

C
07

5
38

E
07

0
1

B
10

0
2

B
11

0
3

E
06

0
4

F0
7

0
5

A
07

0
6

A
07

6
21

F0
7

5
19

E
06

4
20

⋮
⋮

⋮

B
lo
ck

Fr
om

To

⋮
⋮

⋮
B
11

3
9

B
10

2
7

E
07

1
12

D
07

13
6

D
08

34
2

E
06

20
5

E
07

12
4

F0
7

19
1

D
07

6
38

E
07

4
38

D
08

2
38

F0
7

1
38

E
06

5
38

A
10

0
1

A
11

0
2

A
12

0
3

B
12

0
4

A
09

0
5

B
13

0
6

B
13

6
36

A
09

5
20

B
12

4
15

A
12

3
16

A
11

2
10

A
10

1
8

C
09

18
3

E
08

17
5

C
10

33
2

B
09

26
6

D
09

11
1

⋮
⋮

⋮

D.1. Crane tests 155

B
lo
ck

Fr
om

To

⋮
⋮

⋮
B
09

6
38

D
09

1
38

E
08

5
38

C
09

3
38

C
10

2
38

A
06

25
5

C
08

32
6

B
07

31
2

B
06

24
3

D
06

30
1

D
06

1
38

B
06

3
38

A
06

5
38

C
08

6
38

B
07

2
38

B
17

0
4

A
14

0
5

A
13

0
6

B
14

0
3

B
16

0
2

B
15

0
1

B
15

1
13

A
13

6
33

A
14

5
32

B
17

4
26

A
10

8
5

B
08

37
1

A
07

21
6

B
14

3
30

⋮
⋮

⋮

B
lo
ck

Fr
om

To

⋮
⋮

⋮
B
16

2
37

A
09

20
2

A
08

23
4

A
09

2
38

A
08

4
38

A
07

6
38

B
08

1
38

A
10

5
38

C
17

0
1

C
21

0
2

C
15

0
3

C
12

0
4

C
20

0
5

C
19

0
6

C
19

6
22

C
20

5
21

C
12

4
17

C
15

3
19

C
21

2
20

C
17

1
18

A
13

33
3

A
11

10
6

A
12

16
4

B
15

13
2

A
14

32
1

A
12

4
38

A
14

1
38

A
13

3
38

A
11

6
38

⋮
⋮

⋮

B
lo
ck

Fr
om

To

⋮
⋮

⋮
B
15

2
38

C
20

21
1

C
21

20
6

C
19

22
5

B
17

26
2

B
16

37
3

C
20

1
38

B
17

2
38

B
16

3
38

C
19

5
38

C
21

6
38

C
17

18
5

C
11

0
4

C
13

0
6

C
16

0
3

C
14

0
2

C
18

0
1

C
18

1
38

C
14

2
38

C
16

3
38

C
13

6
38

C
17

5
38

B
11

9
2

B
12

15
5

C
12

17
1

B
10

7
6

C
12

1
38

B
10

6
38

C
11

4
38

⋮
⋮

⋮

B
lo
ck

Fr
om

To

⋮
⋮

⋮
B
12

5
38

B
11

2
38

C
15

19
3

B
13

36
6

B
14

30
2

B
14

2
38

C
15

3
38

B
13

6
38

156 D. Test results

D
.2
.R

ou
tin

g
te
st
s

Th
e
ro
u
ti
n
g
te
st
s
w
er
e
pe
rf
or
m
ed

fo
r
th
re
e
di
ffe
re
n
t
fie
ld
s,
sh
ow

n
in

A
pp

en
di
x
D
.2
.1
.
Th

e
sh
ip
s
u
se
d
w
er
e
th
e
sa
m
e
as

th
os
e
in

th
e
w
al
n
ey

en
vi
ro
n
m
en
t,
al
th
ou

gh
w
it
h
so
m
e
m
od
ifi
ca
ti
on

s.
Th

e
de
ta
ils

ar
e
gi
ve
n
in

Ta
bl
e
D
.4
.

In
st
al
la
tio
n
m
et
ho
ds

Al
lt
ur
bi
ne
s
ar
e
in
st
al
la
bl
e
by

th
e
co
m
bi
ne
d
m
et
ho
d,
an
d
25
%
ra
nd
om

ly
pi
ck
ed

tu
rb
in
es

ar
e
in
st
al
la
bl
e
by

th
e
Ae

ol
us
-o
nl
y
m
et
ho
d.

Pl
ug
s:

8
Pl
ug
s.
Fo
rb
ot
h
th
e
to
p
as

bo
tto
m
pl
ug
s,
2
pl
ug

ty
pe
s
ar
e
us
ed
.F

or
ea
ch

ty
pe

2
pl
ug
s
w
er
e
av
ai
la
bl
e.

Ar
riv
al

W
he
n
co
m
po
ne
nt
ar
riv
al
is
co
ns
id
er
ed
,t
ra
ns
iti
on

pi
ec
es

ar
riv
e
in
ba
tc
he
s
of
4
w
ith

an
in
te
rv
al
of
48

ho
ur
s.

Ta
bl
e
D
.4
:D

et
ai
ls
of
ro
ut
in
g
te
st
s

D.2. Routing tests 157

D
.2
.1
.F
ie
ld
s

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1
1.1 ⋅
10

ኾ

00.10.20.30.40.50.60.70.80.911.11.2

⋅1
0ኾ

Ea
st
in
g

Northing
Ar
tif
ic
ia
lF
ie
ld Fi
gu
re
D
.2
:T

ur
bi
ne
s
in
th
e
Ar
tif
ic
ia
lf
ie
ld

158 D. Test results

0
50

10
0
15
0
20
0
25
0
30
0
35
0
40
0
45
0
50
0
55
0
60
0
65
0
70
0
75
0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

Ea
st
in
g

Northing
H
or
ns
re
v
Fi
el
d

Fi
gu
re
D
.3
:T

ur
bi
ne
s
in
th
e
H
or
ns
re
v
fie
ld

D
.2
.2
.R

ou
tin

g
ex
ac
tt
es
ts
w
ith

ou
tc
ut
tin

g
pl
an
es

D.2. Routing tests 159

Pr
ob
le
m

ty
pe

C
ut
s

Tu
rb
in
es

So
lu
ti
on

D
et

ti
m
e

N
od

es
So

lv
ed

In
te
ge
r
re
la
xa
ti
on

G
ap

B
la
n
k

W
al
n
ey

6
31

3
45

79
99

1
62

45
03

11
N
o

0
0.
22

Pr
ec
ed
en
ce

W
al
n
ey

6
36

6
77

82
64

14
35

86
63

Ye
s

10
0.
00

Pl
u
gs

W
al
n
ey

6
36

6
63

38
66

6
69

04
18

6
N
o

10
0.
21

A
rr
iv
al

W
al
n
ey

6
36

9
47

67
72

0
17

51
94

65
N
o

10
0.
11

B
la
n
k

H
or
n
sr
ev

6
31

4
43

41
07

9
63

45
95

55
N
o

0
0.
16

Pr
ec
ed
en
ce

H
or
n
sr
ev

6
36

8
11

61
04

0
21

06
11

39
Ye
s

10
0.
00

Pl
u
gs

H
or
n
sr
ev

6
36

8
65

70
27

9
81

06
06

9
N
o

10
0.
16

A
rr
iv
al

H
or
n
sr
ev

6
36

9
51

11
94

2
17

91
98

56
N
o

10
0.
13

B
la
n
k

O
pt
im

iz
ed

6
31

7
51

91
18

5
56

93
26

19
N
o

0
0.
22

Pr
ec
ed
en
ce

O
pt
im

iz
ed

6
36

9
73

68
75

13
98

82
74

Ye
s

10
0.
00

Pl
u
gs

O
pt
im

iz
ed

6
36

6
60

81
11

6
11

98
05

18
N
o

10
0.
15

A
rr
iv
al

O
pt
im

iz
ed

6
37

0
58

14
96

6
12

21
35

94
N
o

10
0.
12

D
.2
.3
.R

ou
tin

g
ex
ac
tt
es
ts
w
ith

cu
tti
ng

pl
an
es

Pr
ob
le
m

ty
pe

C
ut
s

Tu
rb
in
es

So
lu
ti
on

D
et

ti
m
e

N
od

es
So

lv
ed

In
te
ge
r
re
la
xa
ti
on

G
ap

B
la
n
k

W
ai
ti
n
g
ar
c

5
27

8
42

96
81

10
41

31
76

Ye
s

0.
00

0.
00

B
la
n
k

K
flo
w

5
27

8
13

03
98

45
57

70
6

Ye
s

0.
00

0.
00

B
la
n
k

N
on

e
5

27
8

15
60

02
53

00
13

6
Ye
s

0.
00

0.
00

B
la
n
k

W
ai
ti
n
g
n
od
e

5
27

8
44

25
50

75
57

64
2

Ye
s

0.
00

0.
00

B
la
n
k

Tr
ip
s-
ba
ck

5
27

8
38

68
85

89
39

47
3

Ye
s

0.
00

0.
00

B
la
n
k

M
in

ro
u
te
s

5
27

8
32

76
88

97
93

57
7

Ye
s

0.
00

0.
00

B
la
n
k

Tr
ip

sy
m
m
et
ry

5
27

8
70

78
4

24
63

96
0

Ye
s

0.
00

0.
00

B
la
n
k

K
r
de
m
an

d
5

27
8

63
79

92
15

84
61

14
Ye
s

0.
00

0.
00

B
la
n
k

K
de
m
an

d
5

27
8

22
69

43
69

79
13

1
Ye
s

0.
00

0.
00

B
la
n
k

K
r
flo
w

5
27

8
11

78
79

40
80

23
9

Ye
s

0.
00

0.
00

B
la
n
k

D
em

an
d

5
27

8
33

28
66

80
85

64
8

Ye
s

0.
00

0.
00

B
la
n
k

Fu
ll
tr
ip
s

5
27

8
15

60
02

53
00

13
6

Ye
s

0.
00

0.
00

B
la
n
k

To
ta
l-
ti
m
e

5
27

8
14

8
15

5
Ye
s

24
8.
70

0.
00

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮

160 D. Test results

Pr
ob
le
m

ty
pe

C
ut
s

Tu
rb
in
es

So
lu
ti
on

D
et

ti
m
e

N
od

es
So

lv
ed

In
te
ge
r
re
la
xa
ti
on

G
ap

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
Pr
ec
ed
en
ce

W
ai
ti
n
g
ar
c

5
32

7
81

78
1

16
61

43
0

Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

K
flo
w

5
32

7
98

38
25

76
37

Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

N
on

e
5

32
7

16
63

17
27

56
90

6
Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

W
ai
ti
n
g
n
od
e

5
32

7
74

12
2

10
56

11
7

Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

Tr
ip
s-
ba
ck

5
32

7
27

36
5

90
21

86
Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

M
in

ro
u
te
s

5
32

7
13

85
63

21
79

33
1

Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

Tr
ip

sy
m
m
et
ry

5
32

7
26

62
6

71
30

31
Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

K
r
de
m
an

d
5

32
7

47
04

9
82

41
59

Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

K
de
m
an

d
5

32
7

10
18

25
23

62
55

9
Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

K
r
flo
w

5
32

7
85

68
25

92
72

Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

D
em

an
d

5
32

7
15

53
52

21
03

97
2

Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

Fu
ll
tr
ip
s

5
32

7
16

63
17

27
56

90
6

Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

To
ta
l-
ti
m
e

5
32

7
10

37
54

08
1

Ye
s

24
8.
68

0.
00

Pl
u
gs

W
ai
ti
n
g
ar
c

5
32

7
76

70
18

55
27

84
0

Ye
s

5.
10

0.
00

Pl
u
gs

K
flo
w

5
32

7
93

44
6

35
29

01
Ye
s

5.
10

0.
00

Pl
u
gs

N
on

e
5

32
7

13
11

17
7

24
95

82
75

N
o

5.
10

0.
18

Pl
u
gs

W
ai
ti
n
g
n
od
e

5
32

7
63

22
49

27
74

98
9

Ye
s

5.
10

0.
00

Pl
u
gs

Tr
ip
s-
ba
ck

5
32

7
15

86
08

5
46

92
04

5
N
o

5.
10

0.
23

Pl
u
gs

M
in

ro
u
te
s

5
32

7
45

19
01

19
64

97
4

Ye
s

5.
10

0.
00

Pl
u
gs

Tr
ip

sy
m
m
et
ry

5
32

7
48

38
15

17
43

21
3

Ye
s

5.
10

0.
00

Pl
u
gs

K
r
de
m
an

d
5

32
7

72
61

64
61

12
82

2
Ye
s

5.
10

0.
00

Pl
u
gs

K
de
m
an

d
5

32
7

97
47

35
22

74
24

3
Ye
s

5.
10

0.
00

Pl
u
gs

K
r
flo
w

5
32

7
18

12
08

32
94

70
Ye
s

5.
10

0.
00

Pl
u
gs

D
em

an
d

5
32

7
62

28
91

23
48

48
4

Ye
s

5.
10

0.
00

Pl
u
gs

Fu
ll
tr
ip
s

5
32

7
13

52
38

3
25

23
95

91
N
o

5.
10

0.
18

Pl
u
gs

To
ta
l-
ti
m
e

5
32

7
31

49
38

23
20

28
3

Ye
s

18
4.
89

0.
00

A
rr
iv
al

W
ai
ti
n
g
ar
c

5
32

6
15

70
39

2
65

28
09

4
N
o

6.
86

0.
02

A
rr
iv
al

K
flo
w

5
32

6
13

87
31

40
80

74
Ye
s

6.
86

0.
00

A
rr
iv
al

N
on

e
5

32
6

16
29

07
2

74
52

23
5

N
o

6.
86

0.
21

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮

D.2. Routing tests 161

Pr
ob
le
m

ty
pe

C
ut
s

Tu
rb
in
es

So
lu
ti
on

D
et

ti
m
e

N
od

es
So

lv
ed

In
te
ge
r
re
la
xa
ti
on

G
ap

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
A
rr
iv
al

W
ai
ti
n
g
n
od
e

5
32

6
41

76
58

23
95

88
2

Ye
s

6.
86

0.
00

A
rr
iv
al

Tr
ip
s-
ba
ck

5
32

6
11

88
56

3
10

19
38

96
Ye
s

6.
86

0.
00

A
rr
iv
al

M
in

ro
u
te
s

5
32

6
47

26
7

48
58

49
Ye
s

6.
86

0.
00

A
rr
iv
al

Tr
ip

sy
m
m
et
ry

5
32

6
75

14
17

50
30

12
5

Ye
s

6.
86

0.
00

A
rr
iv
al

K
r
de
m
an

d
5

32
6

54
55

71
21

25
27

7
Ye
s

6.
86

0.
00

A
rr
iv
al

K
de
m
an

d
5

32
6

11
51

11
2

41
96

02
6

Ye
s

6.
86

0.
00

A
rr
iv
al

K
r
flo
w

5
32

6
10

82
15

33
15

95
Ye
s

6.
86

0.
00

A
rr
iv
al

D
em

an
d

5
32

6
16

50
29

8
37

26
93

7
N
o

6.
86

0.
24

A
rr
iv
al

Fu
ll
tr
ip
s

5
32

6
16

28
78

4
74

48
69

1
N
o

6.
86

0.
21

A
rr
iv
al

To
ta
l-
ti
m
e

5
32

6
11

45
2

87
33

4
Ye
s

18
4.
89

0.
00

B
la
n
k

W
ai
ti
n
g
ar
c

5
27

6
31

24
00

79
75

13
1

Ye
s

0.
00

0.
00

B
la
n
k

K
flo
w

5
27

6
10

81
55

42
81

90
3

Ye
s

0.
00

0.
00

B
la
n
k

N
on

e
5

27
6

47
08

69
13

95
85

24
Ye
s

0.
00

0.
00

B
la
n
k

W
ai
ti
n
g
n
od
e

5
27

6
21

68
63

61
76

28
3

Ye
s

0.
00

0.
00

B
la
n
k

Tr
ip
s-
ba
ck

5
27

6
40

51
76

96
50

70
7

Ye
s

0.
00

0.
00

B
la
n
k

M
in

ro
u
te
s

5
27

6
30

02
23

79
70

67
2

Ye
s

0.
00

0.
00

B
la
n
k

Tr
ip

sy
m
m
et
ry

5
27

6
72

58
6

22
79

03
4

Ye
s

0.
00

0.
00

B
la
n
k

K
r
de
m
an

d
5

27
6

39
13

40
13

59
55

80
Ye
s

0.
00

0.
00

B
la
n
k

K
de
m
an

d
5

27
6

55
62

13
16

03
06

07
Ye
s

0.
00

0.
00

B
la
n
k

K
r
flo
w

5
27

6
16

28
34

37
62

94
0

Ye
s

0.
00

0.
00

B
la
n
k

D
em

an
d

5
27

6
20

74
59

54
25

91
5

Ye
s

0.
00

0.
00

B
la
n
k

Fu
ll
tr
ip
s

5
27

6
47

08
69

13
95

85
24

Ye
s

0.
00

0.
00

B
la
n
k

To
ta
l-
ti
m
e

5
27

6
97

19
8

Ye
s

24
7.
19

0.
00

Pr
ec
ed
en
ce

W
ai
ti
n
g
ar
c

5
32

6
10

29
47

20
90

50
8

Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

K
flo
w

5
32

6
92

27
29

30
05

Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

N
on

e
5

32
6

78
14

0
18

94
30

2
Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

W
ai
ti
n
g
n
od
e

5
32

6
61

60
4

14
58

05
0

Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

Tr
ip
s-
ba
ck

5
32

6
20

61
6

80
59

38
Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

M
in

ro
u
te
s

5
32

6
85

90
5

13
69

07
8

Ye
s

5.
10

0.
00

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮

162 D. Test results

Pr
ob
le
m

ty
pe

C
ut
s

Tu
rb
in
es

So
lu
ti
on

D
et

ti
m
e

N
od

es
So

lv
ed

In
te
ge
r
re
la
xa
ti
on

G
ap

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
Pr
ec
ed
en
ce

Tr
ip

sy
m
m
et
ry

5
32

6
63

97
9

10
98

15
9

Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

K
r
de
m
an

d
5

32
6

13
67

24
18

25
22

5
Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

K
de
m
an

d
5

32
6

10
39

87
23

47
66

0
Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

K
r
flo
w

5
32

6
12

54
8

27
21

91
Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

D
em

an
d

5
32

6
16

67
91

21
74

92
1

Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

Fu
ll
tr
ip
s

5
32

6
78

14
0

18
94

30
2

Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

To
ta
l-
ti
m
e

5
32

6
11

23
66

05
7

Ye
s

24
7.
11

0.
00

Pl
u
gs

W
ai
ti
n
g
ar
c

5
32

5
97

29
93

24
05

75
0

Ye
s

5.
10

0.
00

Pl
u
gs

K
flo
w

5
32

5
16

65
90

32
06

58
Ye
s

5.
10

0.
00

Pl
u
gs

N
on

e
5

32
5

33
18

20
17

35
44

1
Ye
s

5.
10

0.
00

Pl
u
gs

W
ai
ti
n
g
n
od
e

5
32

5
16

80
75

4
33

85
97

4
N
o

5.
10

0.
23

Pl
u
gs

Tr
ip
s-
ba
ck

5
32

5
16

30
16

3
22

17
37

5
N
o

5.
10

0.
21

Pl
u
gs

M
in

ro
u
te
s

5
32

5
16

11
97

1
43

16
54

7
N
o

5.
10

0.
37

Pl
u
gs

Tr
ip

sy
m
m
et
ry

5
32

5
15

19
71

9
53

74
96

7
N
o

5.
10

0.
22

Pl
u
gs

K
r
de
m
an

d
5

32
5

15
37

49
4

62
14

05
9

N
o

5.
10

0.
08

Pl
u
gs

K
de
m
an

d
5

32
5

15
83

47
4

29
13

43
4

N
o

5.
10

0.
18

Pl
u
gs

K
r
flo
w

5
32

5
21

66
57

33
95

89
Ye
s

5.
10

0.
00

Pl
u
gs

D
em

an
d

5
32

5
78

21
88

37
61

81
7

Ye
s

5.
10

0.
00

Pl
u
gs

Fu
ll
tr
ip
s

5
32

5
33

18
20

17
35

44
1

Ye
s

5.
10

0.
00

Pl
u
gs

To
ta
l-
ti
m
e

5
32

5
35

89
10

25
43

40
8

Ye
s

18
4.
87

0.
00

A
rr
iv
al

W
ai
ti
n
g
ar
c

5
32

5
10

03
16

0
65

06
51

0
Ye
s

6.
86

0.
00

A
rr
iv
al

K
flo
w

5
32

5
15

69
38

2
28

71
78

6
N
o

6.
86

0.
15

A
rr
iv
al

N
on

e
5

32
5

15
90

12
5

10
01

82
07

N
o

6.
86

0.
03

A
rr
iv
al

W
ai
ti
n
g
n
od
e

5
32

5
13

47
47

4
81

24
77

8
Ye
s

6.
86

0.
00

A
rr
iv
al

Tr
ip
s-
ba
ck

5
32

5
13

20
37

91
72

37
Ye
s

6.
86

0.
00

A
rr
iv
al

M
in

ro
u
te
s

5
32

5
37

66
13

12
03

28
4

Ye
s

6.
86

0.
00

A
rr
iv
al

Tr
ip

sy
m
m
et
ry

5
32

5
16

37
16

6
75

49
98

7
N
o

6.
86

0.
19

A
rr
iv
al

K
r
de
m
an

d
5

32
5

16
44

43
6

48
88

56
0

N
o

6.
86

0.
16

A
rr
iv
al

K
de
m
an

d
5

32
5

16
23

06
1

37
80

03
2

N
o

6.
86

0.
21

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮

D.2. Routing tests 163

Pr
ob
le
m

ty
pe

C
ut
s

Tu
rb
in
es

So
lu
ti
on

D
et

ti
m
e

N
od

es
So

lv
ed

In
te
ge
r
re
la
xa
ti
on

G
ap

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
A
rr
iv
al

K
r
flo
w

5
32

5
96

58
2

49
61

61
Ye
s

6.
86

0.
00

A
rr
iv
al

D
em

an
d

5
32

5
42

88
98

10
07

66
7

Ye
s

6.
86

0.
00

A
rr
iv
al

Fu
ll
tr
ip
s

5
32

5
15

91
92

2
10

02
54

21
N
o

6.
86

0.
03

A
rr
iv
al

To
ta
l-
ti
m
e

5
32

5
15

10
19

4
10

38
02

13
N
o

18
5.
15

0.
00

B
la
n
k

W
ai
ti
n
g
ar
c

5
27

9
21

50
98

66
35

18
9

Ye
s

0.
00

0.
00

B
la
n
k

K
flo
w

5
27

9
11

78
49

41
41

07
8

Ye
s

0.
00

0.
00

B
la
n
k

N
on

e
5

27
9

36
93

32
93

25
42

7
Ye
s

0.
00

0.
00

B
la
n
k

W
ai
ti
n
g
n
od
e

5
27

9
35

59
43

99
10

49
9

Ye
s

0.
00

0.
00

B
la
n
k

Tr
ip
s-
ba
ck

5
27

9
28

28
52

94
70

04
9

Ye
s

0.
00

0.
00

B
la
n
k

M
in

ro
u
te
s

5
27

9
75

71
72

13
66

70
45

Ye
s

0.
00

0.
00

B
la
n
k

Tr
ip

sy
m
m
et
ry

5
27

9
12

24
72

43
66

15
5

Ye
s

0.
00

0.
00

B
la
n
k

K
r
de
m
an

d
5

27
9

37
87

75
11

59
98

76
Ye
s

0.
00

0.
00

B
la
n
k

K
de
m
an

d
5

27
9

42
86

04
12

58
47

05
Ye
s

0.
00

0.
00

B
la
n
k

K
r
flo
w

5
27

9
14

87
00

48
98

88
4

Ye
s

0.
00

0.
00

B
la
n
k

D
em

an
d

5
27

9
25

01
24

66
42

84
6

Ye
s

0.
00

0.
00

B
la
n
k

Fu
ll
tr
ip
s

5
27

9
36

93
32

93
25

42
7

Ye
s

0.
00

0.
00

B
la
n
k

To
ta
l-
ti
m
e

5
27

9
11

3
10

Ye
s

25
0.
10

0.
00

Pr
ec
ed
en
ce

W
ai
ti
n
g
ar
c

5
32

6
10

98
87

21
36

55
7

Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

K
flo
w

5
32

6
10

48
1

32
36

65
Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

N
on

e
5

32
6

11
20

51
17

14
36

5
Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

W
ai
ti
n
g
n
od
e

5
32

6
79

13
4

19
00

78
2

Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

Tr
ip
s-
ba
ck

5
32

6
15

97
4

69
63

63
Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

M
in

ro
u
te
s

5
32

6
16

67
73

26
73

73
4

Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

Tr
ip

sy
m
m
et
ry

5
32

6
27

30
6

74
07

84
Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

K
r
de
m
an

d
5

32
6

80
80

3
17

93
12

7
Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

K
de
m
an

d
5

32
6

13
95

08
17

53
27

9
Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

K
r
flo
w

5
32

6
80

61
29

66
99

Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

D
em

an
d

5
32

6
87

62
6

17
71

73
6

Ye
s

5.
10

0.
00

Pr
ec
ed
en
ce

Fu
ll
tr
ip
s

5
32

6
11

20
51

17
14

36
5

Ye
s

5.
10

0.
00

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮

164 D. Test results

Pr
ob
le
m

ty
pe

C
ut
s

Tu
rb
in
es

So
lu
ti
on

D
et

ti
m
e

N
od

es
So

lv
ed

In
te
ge
r
re
la
xa
ti
on

G
ap

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
Pr
ec
ed
en
ce

To
ta
l-
ti
m
e

5
32

6
91

7
56

12
1

Ye
s

24
8.
44

0.
00

Pl
u
gs

W
ai
ti
n
g
ar
c

5
32

7
56

46
27

16
68

00
1

Ye
s

5.
10

0.
00

Pl
u
gs

K
flo
w

5
32

7
24

79
71

48
83

09
Ye
s

5.
10

0.
00

Pl
u
gs

N
on

e
5

32
7

51
00

10
37

39
04

2
Ye
s

5.
10

0.
00

Pl
u
gs

W
ai
ti
n
g
n
od
e

5
32

7
16

71
89

0
25

32
44

7
N
o

5.
10

0.
24

Pl
u
gs

Tr
ip
s-
ba
ck

5
32

7
36

73
45

17
41

05
0

Ye
s

5.
10

0.
00

Pl
u
gs

M
in

ro
u
te
s

5
32

7
13

36
71

5
16

28
18

76
N
o

5.
10

0.
24

Pl
u
gs

Tr
ip

sy
m
m
et
ry

5
32

7
24

62
00

21
15

71
0

Ye
s

5.
10

0.
00

Pl
u
gs

K
r
de
m
an

d
5

32
7

16
06

38
4

27
50

81
0

N
o

5.
10

0.
23

Pl
u
gs

K
de
m
an

d
5

32
7

16
36

29
0

49
46

88
8

N
o

5.
10

0.
14

Pl
u
gs

K
r
flo
w

5
32

7
30

11
32

29
87

46
Ye
s

5.
10

0.
00

Pl
u
gs

D
em

an
d

5
32

7
15

86
44

2
75

08
41

6
N
o

5.
10

0.
19

Pl
u
gs

Fu
ll
tr
ip
s

5
32

7
51

00
10

37
39

04
2

Ye
s

5.
10

0.
00

Pl
u
gs

To
ta
l-
ti
m
e

5
32

7
62

08
65

27
69

63
1

Ye
s

18
6.
82

0.
00

A
rr
iv
al

W
ai
ti
n
g
ar
c

5
32

6
49

97
84

29
82

87
4

Ye
s

6.
86

0.
00

A
rr
iv
al

K
flo
w

5
32

6
61

90
8

72
25

80
Ye
s

6.
86

0.
00

A
rr
iv
al

N
on

e
5

32
6

48
20

65
19

75
74

5
Ye
s

6.
86

0.
00

A
rr
iv
al

W
ai
ti
n
g
n
od
e

5
32

6
16

69
87

7
53

50
51

0
N
o

6.
86

0.
57

A
rr
iv
al

Tr
ip
s-
ba
ck

5
32

6
14

87
43

8
89

80
90

2
N
o

6.
86

0.
22

A
rr
iv
al

M
in

ro
u
te
s

5
32

6
79

81
56

43
05

17
7

Ye
s

6.
86

0.
00

A
rr
iv
al

Tr
ip

sy
m
m
et
ry

5
32

6
24

01
86

81
08

32
Ye
s

6.
86

0.
00

A
rr
iv
al

K
r
de
m
an

d
5

32
6

16
01

73
0

62
59

24
7

N
o

6.
86

0.
13

A
rr
iv
al

K
de
m
an

d
5

32
6

88
94

48
56

30
42

7
Ye
s

6.
86

0.
00

A
rr
iv
al

K
r
flo
w

5
32

6
18

74
09

47
65

19
Ye
s

6.
86

0.
00

A
rr
iv
al

D
em

an
d

5
32

6
15

51
29

8
33

74
33

8
N
o

6.
86

0.
15

A
rr
iv
al

Fu
ll
tr
ip
s

5
32

6
48

20
65

19
75

74
5

Ye
s

6.
86

0.
00

A
rr
iv
al

To
ta
l-
ti
m
e

5
32

6
15

51
21

7
50

48
52

8
Ye
s

18
6.
18

0.
00

D
.2
.4
.R

ou
tin

g
ex
ac
tt
es
ts
w
ith

st
an
da
rd

D.2. Routing tests 165

Pr
ob
le
m

ty
pe

C
ut
s

Tu
rb
in
es

So
lu
ti
on

D
et

ti
m
e

N
od

es
So

lv
ed

In
te
ge
r
re
la
xa
ti
on

G
ap

B
la
n
k

K
r
de
m
an

d
18

84
9

27
09

33
12

43
93

Ye
s

83
8.
40

0.
00

B
la
n
k

D
em

an
d

18
84

9
14

26
35

13
31

68
Ye
s

83
8.
25

0.
00

B
la
n
k

K
flo
w

18
84

9
18

07
5

88
34

Ye
s

83
9.
03

0.
00

B
la
n
k

W
ai
ti
n
g
n
od
e

18
84

9
11

51
95

18
87

56
Ye
s

83
8.
17

0.
00

B
la
n
k

S
ta
n
da
rd

18
84

9
62

40
8

14
11

80
Ye
s

83
8.
17

0.
00

B
la
n
k

K
de
m
an

d
18

84
9

18
87

93
11

13
88

Ye
s

83
8.
40

0.
00

B
la
n
k

K
r
flo
w

18
84

9
79

82
39

68
Ye
s

83
9.
03

0.
00

Pr
ec
ed
en
ce

K
r
de
m
an

d
8

43
7

55
28

13
40

60
Ye
s

39
9.
43

0.
00

Pr
ec
ed
en
ce

D
em

an
d

8
43

7
66

74
14

73
50

Ye
s

39
9.
34

0.
00

Pr
ec
ed
en
ce

K
flo
w

8
43

7
57

45
10

36
33

Ye
s

39
9.
49

0.
00

Pr
ec
ed
en
ce

W
ai
ti
n
g
n
od
e

8
43

7
55

73
12

84
63

Ye
s

39
9.
28

0.
00

Pr
ec
ed
en
ce

S
ta
n
da
rd

8
43

7
46

66
13

71
20

Ye
s

39
9.
28

0.
00

Pr
ec
ed
en
ce

K
de
m
an

d
8

43
7

62
65

15
18

21
Ye
s

39
9.
43

0.
00

Pr
ec
ed
en
ce

K
r
flo
w

8
43

7
63

77
10

51
84

Ye
s

39
9.
49

0.
00

Pl
u
gs

K
r
de
m
an

d
6

36
9

34
65

7
13

03
28

Ye
s

24
8.
68

0.
00

Pl
u
gs

D
em

an
d

6
36

9
14

17
03

6
39

15
68

0
N
o

24
8.
48

0.
03

Pl
u
gs

K
flo
w

6
36

9
30

18
2

85
22

0
Ye
s

24
8.
84

0.
00

Pl
u
gs

W
ai
ti
n
g
n
od
e

6
36

9
12

83
31

2
39

92
97

8
N
o

24
8.
48

0.
03

Pl
u
gs

S
ta
n
da
rd

6
36

9
14

63
6

63
69

6
Ye
s

24
8.
48

0.
00

Pl
u
gs

K
de
m
an

d
6

36
9

12
17

23
5

23
25

39
0

N
o

24
8.
68

0.
03

Pl
u
gs

K
r
flo
w

6
36

9
31

38
1

11
51

31
Ye
s

24
8.
84

0.
00

A
rr
iv
al

K
r
de
m
an

d
6

36
8

22
70

4
10

52
47

Ye
s

24
8.
25

0.
00

A
rr
iv
al

D
em

an
d

6
36

8
12

58
74

2
61

46
44

6
Ye
s

24
8.
15

0.
00

A
rr
iv
al

K
flo
w

6
36

8
20

99
7

10
89

99
Ye
s

24
8.
28

0.
00

A
rr
iv
al

W
ai
ti
n
g
n
od
e

6
36

8
97

14
77

27
72

99
2

Ye
s

24
8.
15

0.
00

A
rr
iv
al

S
ta
n
da
rd

6
36

8
17

19
90

11
26

25
1

Ye
s

24
8.
15

0.
00

A
rr
iv
al

K
de
m
an

d
6

36
8

78
91

0
42

47
56

Ye
s

24
8.
25

0.
00

A
rr
iv
al

K
r
flo
w

6
36

8
31

23
4

72
09

7
Ye
s

24
8.
28

0.
00

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮

166 D. Test results

Pr
ob
le
m

ty
pe

C
ut
s

Tu
rb
in
es

So
lu
ti
on

D
et

ti
m
e

N
od

es
So

lv
ed

In
te
ge
r
re
la
xa
ti
on

G
ap

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
B
la
n
k

K
r
de
m
an

d
18

85
1

14
06

91
5

50
87

83
N
o

83
1.
67

0.
00

B
la
n
k

D
em

an
d

18
85

1
46

66
22

21
64

21
Ye
s

83
2.
34

0.
00

B
la
n
k

K
flo
w

18
85

1
41

36
6

12
53

0
Ye
s

84
0.
69

0.
00

B
la
n
k

W
ai
ti
n
g
n
od
e

18
85

1
38

85
34

27
52

50
Ye
s

83
1.
21

0.
00

B
la
n
k

S
ta
n
da
rd

18
85

1
14

32
48

19
16

19
Ye
s

83
1.
21

0.
00

B
la
n
k

K
de
m
an

d
18

85
1

92
35

34
27

54
31

Ye
s

83
1.
67

0.
00

B
la
n
k

K
r
flo
w

18
85

1
20

03
2

50
56

Ye
s

84
0.
69

0.
00

Pr
ec
ed
en
ce

K
r
de
m
an

d
8

43
7

53
36

12
11

92
Ye
s

39
6.
79

0.
00

Pr
ec
ed
en
ce

D
em

an
d

8
43

7
76

30
14

31
29

Ye
s

39
6.
65

0.
00

Pr
ec
ed
en
ce

K
flo
w

8
43

7
67

71
98

91
1

Ye
s

39
9.
91

0.
00

Pr
ec
ed
en
ce

W
ai
ti
n
g
n
od
e

8
43

7
58

16
10

94
33

Ye
s

39
6.
58

0.
00

Pr
ec
ed
en
ce

S
ta
n
da
rd

8
43

7
51

20
13

37
27

Ye
s

39
6.
58

0.
00

Pr
ec
ed
en
ce

K
de
m
an

d
8

43
7

59
44

14
23

59
Ye
s

39
6.
79

0.
00

Pr
ec
ed
en
ce

K
r
flo
w

8
43

7
10

14
1

98
59

8
Ye
s

39
9.
91

0.
00

Pl
u
gs

K
r
de
m
an

d
6

36
7

76
33

4
35

24
61

Ye
s

24
6.
42

0.
00

Pl
u
gs

D
em

an
d

6
36

7
28

62
9

11
19

46
Ye
s

24
6.
42

0.
00

Pl
u
gs

K
flo
w

6
36

7
27

95
3

80
02

0
Ye
s

24
6.
65

0.
00

Pl
u
gs

W
ai
ti
n
g
n
od
e

6
36

7
15

23
89

48
78

13
Ye
s

24
6.
42

0.
00

Pl
u
gs

S
ta
n
da
rd

6
36

7
96

59
9

37
78

12
Ye
s

24
6.
42

0.
00

Pl
u
gs

K
de
m
an

d
6

36
7

16
16

96
82

19
32

Ye
s

24
6.
42

0.
00

Pl
u
gs

K
r
flo
w

6
36

7
43

30
4

60
41

5
Ye
s

24
6.
65

0.
00

A
rr
iv
al

K
r
de
m
an

d
6

36
8

14
71

16
87

98
14

Ye
s

24
5.
77

0.
00

A
rr
iv
al

D
em

an
d

6
36

8
19

86
63

16
75

52
0

Ye
s

24
5.
74

0.
00

A
rr
iv
al

K
flo
w

6
36

8
34

42
1

82
27

4
Ye
s

24
6.
38

0.
00

A
rr
iv
al

W
ai
ti
n
g
n
od
e

6
36

8
98

43
3

29
45

58
Ye
s

24
5.
74

0.
00

A
rr
iv
al

S
ta
n
da
rd

6
36

8
86

35
1

47
20

50
Ye
s

24
5.
74

0.
00

A
rr
iv
al

K
de
m
an

d
6

36
8

19
44

44
67

40
29

Ye
s

24
5.
77

0.
00

A
rr
iv
al

K
r
flo
w

6
36

8
39

99
3

16
32

99
Ye
s

24
6.
38

0.
00

B
la
n
k

K
r
de
m
an

d
18

84
8

15
02

60
4

10
28

69
6

N
o

82
8.
40

0.
00

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮

D.2. Routing tests 167

Pr
ob
le
m

ty
pe

C
ut
s

Tu
rb
in
es

So
lu
ti
on

D
et

ti
m
e

N
od

es
So

lv
ed

In
te
ge
r
re
la
xa
ti
on

G
ap

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
B
la
n
k

D
em

an
d

18
84

8
44

06
19

40
11

40
Ye
s

82
9.
16

0.
00

B
la
n
k

K
flo
w

18
84

8
78

65
4

23
97

9
Ye
s

83
7.
06

0.
00

B
la
n
k

W
ai
ti
n
g
n
od
e

18
84

8
28

99
21

42
94

30
Ye
s

82
8.
01

0.
00

B
la
n
k

S
ta
n
da
rd

18
84

8
22

99
13

40
92

49
Ye
s

82
8.
01

0.
00

B
la
n
k

K
de
m
an

d
18

84
8

88
54

40
60

88
45

Ye
s

82
8.
40

0.
00

B
la
n
k

K
r
flo
w

18
84

8
60

60
9

18
55

2
Ye
s

83
7.
06

0.
00

Pr
ec
ed
en
ce

K
r
de
m
an

d
8

43
3

55
32

13
46

45
Ye
s

39
4.
60

0.
00

Pr
ec
ed
en
ce

D
em

an
d

8
43

3
10

90
9

19
14

17
Ye
s

39
4.
52

0.
00

Pr
ec
ed
en
ce

K
flo
w

8
43

3
66

58
10

07
27

Ye
s

39
6.
11

0.
00

Pr
ec
ed
en
ce

W
ai
ti
n
g
n
od
e

8
43

3
68

93
11

06
37

Ye
s

39
4.
49

0.
00

Pr
ec
ed
en
ce

S
ta
n
da
rd

8
43

3
47

54
13

36
40

Ye
s

39
4.
49

0.
00

Pr
ec
ed
en
ce

K
de
m
an

d
8

43
3

75
24

12
15

30
Ye
s

39
4.
60

0.
00

Pr
ec
ed
en
ce

K
r
flo
w

8
43

3
94

93
10

01
44

Ye
s

39
6.
11

0.
00

Pl
u
gs

K
r
de
m
an

d
6

36
7

26
70

4
99

86
1

Ye
s

24
6.
05

0.
00

Pl
u
gs

D
em

an
d

6
36

7
10

36
24

73
62

67
Ye
s

24
5.
97

0.
00

Pl
u
gs

K
flo
w

6
36

7
40

62
5

10
90

12
Ye
s

24
6.
55

0.
00

Pl
u
gs

W
ai
ti
n
g
n
od
e

6
36

7
77

51
19

16
57

24
1

Ye
s

24
5.
97

0.
00

Pl
u
gs

S
ta
n
da
rd

6
36

7
23

90
2

12
80

40
Ye
s

24
5.
97

0.
00

Pl
u
gs

K
de
m
an

d
6

36
7

51
46

94
13

04
03

0
Ye
s

24
6.
05

0.
00

Pl
u
gs

K
r
flo
w

6
36

7
30

30
2

11
51

48
Ye
s

24
6.
55

0.
00

A
rr
iv
al

K
r
de
m
an

d
6

36
6

45
69

2
14

75
90

Ye
s

24
6.
26

0.
00

A
rr
iv
al

D
em

an
d

6
36

6
49

73
1

25
59

15
Ye
s

24
6.
24

0.
00

A
rr
iv
al

K
flo
w

6
36

6
94

97
38

33
5

Ye
s

24
6.
45

0.
00

A
rr
iv
al

W
ai
ti
n
g
n
od
e

6
36

6
69

11
4

22
98

40
Ye
s

24
6.
24

0.
00

A
rr
iv
al

S
ta
n
da
rd

6
36

6
64

32
2

34
13

47
Ye
s

24
6.
24

0.
00

A
rr
iv
al

K
de
m
an

d
6

36
6

10
67

41
28

94
19

Ye
s

24
6.
26

0.
00

A
rr
iv
al

K
r
flo
w

6
36

6
31

10
1

11
41

14
Ye
s

24
6.
45

0.
00

D
.2
.5
.R

ou
tin

g
B
ra
nc
h
C
ut

168 D. Test results

Pr
ob
le
m

ty
pe

C
ut
s

Tu
rb
in
es

So
l.

D
et

ti
m
e

N
od

es
So

lv
ed

In
t.

re
la
x.

G
ap

B
c
de
t
ti
m
e

G
en

er
at
ed

cu
ts

B
la
n
k

S
ta
n
da
rd

9
45

8
68

24
57

48
Ye
s

42
7.
10

0.
00

0
0

B
la
n
k

B
ra
n
ch

cu
t
2
k

9
45

8
16

70
17

1
Ye
s

42
9.
70

0.
00

0
0

B
la
n
k

B
ra
n
ch

cu
t
1

9
45

8
37

6
0

Ye
s

42
7.
10

0.
00

0
9

B
la
n
k

B
ra
n
ch

cu
t
1
k

9
45

8
16

70
17

1
Ye
s

42
9.
70

0.
00

0
0

B
la
n
k

B
ra
n
ch

cu
t
2

9
45

8
32

8
0

Ye
s

42
7.
10

0.
00

0
7

B
la
n
k

K
flo
w

9
45

8
16

70
17

1
Ye
s

42
9.
70

0.
00

0
0

Pr
ec
ed
en
ce

S
ta
n
da
rd

6
36

6
79

85
66

70
85

87
Ye
s

29
8.
84

0.
00

0
0

Pr
ec
ed
en
ce

B
ra
n
ch

cu
t
2
k

6
36

6
51

50
56

81
Ye
s

30
2.
27

0.
00

0
0

Pr
ec
ed
en
ce

B
ra
n
ch

cu
t
1

6
36

6
65

92
9

55
76

6
Ye
s

29
8.
84

0.
00

0
67

Pr
ec
ed
en
ce

B
ra
n
ch

cu
t
1
k

6
36

6
51

50
56

81
Ye
s

30
2.
27

0.
00

0
0

Pr
ec
ed
en
ce

B
ra
n
ch

cu
t
2

6
37

0
26

42
30

29
Ye
s

29
8.
84

0.
00

0
56

Pr
ec
ed
en
ce

K
flo
w

6
36

6
51

50
56

81
Ye
s

30
2.
27

0.
00

0
0

Pl
u
gs

S
ta
n
da
rd

5
33

2
48

49
2

22
68

4
Ye
s

21
3.
56

0.
00

0
0

Pl
u
gs

B
ra
n
ch

cu
t
2
k

5
39

6
57

66
5

19
63

9
Ye
s

21
5.
89

0.
00

0
1

Pl
u
gs

B
ra
n
ch

cu
t
1

5
33

2
11

31
2

58
90

Ye
s

21
3.
56

0.
00

0
57

Pl
u
gs

B
ra
n
ch

cu
t
1
k

5
33

2
21

74
7

59
68

Ye
s

21
5.
89

0.
00

0
0

Pl
u
gs

B
ra
n
ch

cu
t
2

5
35

6
63

28
32

16
Ye
s

21
3.
56

0.
00

0
89

Pl
u
gs

K
flo
w

5
33

2
21

74
7

59
68

Ye
s

21
5.
89

0.
00

0
0

A
rr
iv
al

S
ta
n
da
rd

5
33

2
57

27
89

43
21

54
N
o

21
4.
39

0.
03

0
0

A
rr
iv
al

B
ra
n
ch

cu
t
2
k

5
39

7
33

49
3

13
94

4
Ye
s

21
5.
97

0.
00

0
1

A
rr
iv
al

B
ra
n
ch

cu
t
1

5
33

2
34

81
3

18
12

4
Ye
s

21
4.
39

0.
00

0
93

A
rr
iv
al

B
ra
n
ch

cu
t
1
k

5
33

2
57

76
0

11
98

0
Ye
s

21
5.
97

0.
00

0
0

A
rr
iv
al

B
ra
n
ch

cu
t
2

5
33

8
33

77
15

50
Ye
s

21
4.
39

0.
00

0
64

A
rr
iv
al

K
flo
w

5
33

2
57

76
0

11
98

0
Ye
s

21
5.
97

0.
00

0
0

B
la
n
k

S
ta
n
da
rd

9
45

9
26

13
5

20
24

9
Ye
s

42
6.
85

0.
00

0
0

B
la
n
k

B
ra
n
ch

cu
t
2
k

9
45

9
13

08
14

6
Ye
s

43
0.
59

0.
00

0
0

B
la
n
k

B
ra
n
ch

cu
t
1

9
45

9
66

1
99

Ye
s

42
6.
85

0.
00

0
11

B
la
n
k

B
ra
n
ch

cu
t
1
k

9
45

9
13

08
14

6
Ye
s

43
0.
59

0.
00

0
0

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮

D.2. Routing tests 169

Pr
ob
le
m

ty
pe

C
ut
s

Tu
rb
in
es

So
l.

D
et

ti
m
e

N
od

es
So

lv
ed

In
t.

re
la
x.

G
ap

B
c
de
t
ti
m
e

G
en

er
at
ed

cu
ts

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
B
la
n
k

B
ra
n
ch

cu
t
2

9
46

1
65

6
0

Ye
s

42
6.
85

0.
00

0
9

B
la
n
k

K
flo
w

9
45

9
13

08
14

6
Ye
s

43
0.
59

0.
00

0
0

Pr
ec
ed
en
ce

S
ta
n
da
rd

6
37

1
87

22
6

95
59

6
Ye
s

30
4.
25

0.
00

0
0

Pr
ec
ed
en
ce

B
ra
n
ch

cu
t
2
k

6
37

1
42

89
52

02
Ye
s

30
8.
59

0.
00

0
0

Pr
ec
ed
en
ce

B
ra
n
ch

cu
t
1

6
37

1
62

83
65

67
Ye
s

30
4.
25

0.
00

0
37

Pr
ec
ed
en
ce

B
ra
n
ch

cu
t
1
k

6
37

1
42

89
52

02
Ye
s

30
8.
59

0.
00

0
0

Pr
ec
ed
en
ce

B
ra
n
ch

cu
t
2

6
37

7
87

4
90

9
Ye
s

30
4.
25

0.
00

0
28

Pr
ec
ed
en
ce

K
flo
w

6
37

1
42

89
52

02
Ye
s

30
8.
59

0.
00

0
0

Pl
u
gs

S
ta
n
da
rd

5
33

3
35

01
9

23
58

6
Ye
s

21
5.
98

0.
00

0
0

Pl
u
gs

B
ra
n
ch

cu
t
2
k

5
39

8
61

44
3

20
05

7
Ye
s

21
7.
95

0.
00

0
1

Pl
u
gs

B
ra
n
ch

cu
t
1

5
33

3
22

30
0

73
82

Ye
s

21
5.
98

0.
00

0
95

Pl
u
gs

B
ra
n
ch

cu
t
1
k

5
33

3
41

79
2

14
08

0
Ye
s

21
7.
95

0.
00

0
0

Pl
u
gs

B
ra
n
ch

cu
t
2

5
33

7
98

86
45

60
Ye
s

21
5.
98

0.
00

0
79

Pl
u
gs

K
flo
w

5
33

3
41

79
2

14
08

0
Ye
s

21
7.
95

0.
00

0
0

A
rr
iv
al

S
ta
n
da
rd

5
33

4
12

20
1

93
97

Ye
s

21
4.
89

0.
00

0
0

A
rr
iv
al

B
ra
n
ch

cu
t
2
k

5
39

8
11

88
9

46
88

Ye
s

21
6.
02

0.
00

0
1

A
rr
iv
al

B
ra
n
ch

cu
t
1

5
33

4
57

27
5

17
00

0
Ye
s

21
4.
89

0.
00

0
90

A
rr
iv
al

B
ra
n
ch

cu
t
1
k

5
33

4
50

55
0

13
06

6
Ye
s

21
6.
02

0.
00

0
0

A
rr
iv
al

B
ra
n
ch

cu
t
2

5
34

1
53

53
28

31
Ye
s

21
4.
89

0.
00

0
63

A
rr
iv
al

K
flo
w

5
33

4
50

55
0

13
06

6
Ye
s

21
6.
02

0.
00

0
0

B
la
n
k

S
ta
n
da
rd

9
46

1
37

47
24

99
Ye
s

43
1.
15

0.
00

0
0

B
la
n
k

B
ra
n
ch

cu
t
2
k

9
46

1
10

22
1

Ye
s

43
1.
74

0.
00

0
0

B
la
n
k

B
ra
n
ch

cu
t
1

9
46

1
14

39
24

6
Ye
s

43
1.
15

0.
00

0
28

B
la
n
k

B
ra
n
ch

cu
t
1
k

9
46

1
10

22
1

Ye
s

43
1.
74

0.
00

0
0

B
la
n
k

B
ra
n
ch

cu
t
2

9
46

3
38

81
10

08
Ye
s

43
1.
15

0.
00

0
26

B
la
n
k

K
flo
w

9
46

1
10

22
1

Ye
s

43
1.
74

0.
00

0
0

Pr
ec
ed
en
ce

S
ta
n
da
rd

6
36

8
55

07
66

12
Ye
s

30
2.
68

0.
00

0
0

Pr
ec
ed
en
ce

B
ra
n
ch

cu
t
2
k

6
36

8
41

58
51

41
Ye
s

30
4.
81

0.
00

0
0

Pr
ec
ed
en
ce

B
ra
n
ch

cu
t
1

6
36

8
10

51
3

12
50

7
Ye
s

30
2.
68

0.
00

0
50

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮

170 D. Test results

Pr
ob
le
m

ty
pe

C
ut
s

Tu
rb
in
es

So
l.

D
et

ti
m
e

N
od

es
So

lv
ed

In
t.

re
la
x.

G
ap

B
c
de
t
ti
m
e

G
en

er
at
ed

cu
ts

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
Pr
ec
ed
en
ce

B
ra
n
ch

cu
t
1
k

6
36

8
41

58
51

41
Ye
s

30
4.
81

0.
00

0
0

Pr
ec
ed
en
ce

B
ra
n
ch

cu
t
2

6
36

8
93

1
80

5
Ye
s

30
2.
68

0.
00

0
15

Pr
ec
ed
en
ce

K
flo
w

6
36

8
41

58
51

41
Ye
s

30
4.
81

0.
00

0
0

Pl
u
gs

S
ta
n
da
rd

5
33

4
21

34
1

11
76

4
Ye
s

21
6.
78

0.
00

0
0

Pl
u
gs

B
ra
n
ch

cu
t
2
k

5
39

9
60

95
35

15
33

66
N
o

21
7.
33

0.
09

0
1

Pl
u
gs

B
ra
n
ch

cu
t
1

5
33

4
41

68
1

16
33

8
Ye
s

21
6.
78

0.
00

0
99

Pl
u
gs

B
ra
n
ch

cu
t
1
k

5
33

4
20

66
24

51
40

0
Ye
s

21
7.
33

0.
00

0
0

Pl
u
gs

B
ra
n
ch

cu
t
2

5
34

4
57

00
32

14
Ye
s

21
6.
78

0.
00

0
88

Pl
u
gs

K
flo
w

5
33

4
20

66
24

51
40

0
Ye
s

21
7.
33

0.
00

0
0

A
rr
iv
al

S
ta
n
da
rd

5
33

5
14

24
7

10
00

0
Ye
s

21
7.
72

0.
00

0
0

A
rr
iv
al

B
ra
n
ch

cu
t
2
k

5
40

0
33

53
6

12
10

3
Ye
s

21
8.
15

0.
00

0
1

A
rr
iv
al

B
ra
n
ch

cu
t
1

5
33

5
31

18
0

23
70

2
Ye
s

21
7.
72

0.
00

0
39

A
rr
iv
al

B
ra
n
ch

cu
t
1
k

5
33

5
69

41
8

22
80

1
Ye
s

21
8.
15

0.
00

0
0

A
rr
iv
al

B
ra
n
ch

cu
t
2

5
34

5
37

67
21

68
Ye
s

21
7.
72

0.
00

0
70

A
rr
iv
al

K
flo
w

5
33

5
69

41
8

22
80

1
Ye
s

21
8.
15

0.
00

0
0

D
.2
.6
.R

ou
tin

g
H
eu
ris

tic
Ty

pe
Se
tt
in
gs

H
eu
ri
st
ic

so
lu
ti
on

E
xa
ct

so
lu
ti
on

D
ur
at
io
n

Tu
rb
in
es

Fi
el
d

G
ap

B
la
n
k

R
ep
ai
r
br
ok
en

35
6.
52

35
6.
52

50
1.
48

6
W
al
n
ey

0.
00

B
la
n
k

R
ep
ai
r
br
ok
en

35
6.
52

35
6.
52

50
0.
28

6
W
al
n
ey

0.
00

B
la
n
k

R
ep
ai
r
br
ok
en

35
6.
52

35
6.
52

49
9.
79

6
W
al
n
ey

0.
00

B
la
n
k

R
ep
ai
r
w
ai
ti
n
g

35
6.
52

35
6.
52

50
2.
20

6
W
al
n
ey

0.
00

B
la
n
k

R
ep
ai
r
w
ai
ti
n
g

35
6.
52

35
6.
52

49
9.
77

6
W
al
n
ey

0.
00

B
la
n
k

R
ep
ai
r
w
ai
ti
n
g

35
6.
52

35
6.
52

50
3.
11

6
W
al
n
ey

0.
00

Pr
ec
ed
en
ce

R
ep
ai
r
br
ok
en

36
6.
53

36
6.
53

58
3.
97

6
W
al
n
ey

0.
00

Pr
ec
ed
en
ce

R
ep
ai
r
br
ok
en

36
6.
53

36
6.
53

58
2.
17

6
W
al
n
ey

0.
00

Pr
ec
ed
en
ce

R
ep
ai
r
br
ok
en

36
6.
53

36
6.
53

57
9.
49

6
W
al
n
ey

0.
00

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

D.2. Routing tests 171

Ty
pe

Se
tt
in
gs

H
eu
ri
st
ic

so
lu
ti
on

E
xa
ct

so
lu
ti
on

D
ur
at
io
n

Tu
rb
in
es

Fi
el
d

G
ap

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

Pr
ec
ed
en
ce

R
ep
ai
r
w
ai
ti
n
g

36
6.
53

36
6.
53

58
3.
55

6
W
al
n
ey

0.
00

Pr
ec
ed
en
ce

R
ep
ai
r
w
ai
ti
n
g

36
6.
53

36
6.
53

59
0.
16

6
W
al
n
ey

0.
00

Pr
ec
ed
en
ce

R
ep
ai
r
w
ai
ti
n
g

36
6.
53

36
6.
53

59
3.
22

6
W
al
n
ey

0.
00

Pl
u
gs

R
ep
ai
r
br
ok
en

37
4.
59

36
6.
96

53
5.
55

6
W
al
n
ey

2.
08

Pl
u
gs

R
ep
ai
r
br
ok
en

36
6.
96

36
6.
96

56
4.
89

6
W
al
n
ey

0.
00

Pl
u
gs

R
ep
ai
r
br
ok
en

36
6.
96

36
6.
96

56
7.
91

6
W
al
n
ey

0.
00

Pl
u
gs

R
ep
ai
r
w
ai
ti
n
g

36
7.
15

36
6.
96

61
2.
82

6
W
al
n
ey

0.
05

Pl
u
gs

R
ep
ai
r
w
ai
ti
n
g

36
6.
96

36
6.
96

63
4.
09

6
W
al
n
ey

0.
00

Pl
u
gs

R
ep
ai
r
w
ai
ti
n
g

36
6.
96

36
6.
96

60
7.
21

6
W
al
n
ey

0.
00

A
rr
iv
al

R
ep
ai
r
br
ok
en

36
6.
43

36
6.
43

53
2.
53

6
W
al
n
ey

0.
00

A
rr
iv
al

R
ep
ai
r
br
ok
en

36
6.
61

36
6.
43

55
0.
06

6
W
al
n
ey

0.
05

A
rr
iv
al

R
ep
ai
r
br
ok
en

37
4.
55

36
6.
43

52
9.
58

6
W
al
n
ey

2.
22

A
rr
iv
al

R
ep
ai
r
w
ai
ti
n
g

36
6.
82

36
6.
43

58
9.
99

6
W
al
n
ey

0.
11

A
rr
iv
al

R
ep
ai
r
w
ai
ti
n
g

36
6.
61

36
6.
43

61
2.
95

6
W
al
n
ey

0.
05

A
rr
iv
al

R
ep
ai
r
w
ai
ti
n
g

36
6.
48

36
6.
43

58
9.
10

6
W
al
n
ey

0.
01

B
la
n
k

R
ep
ai
r
br
ok
en

35
7.
11

35
7.
11

50
1.
15

6
G
en
er
at
ed

0.
00

B
la
n
k

R
ep
ai
r
br
ok
en

35
7.
11

35
7.
11

49
9.
90

6
G
en
er
at
ed

0.
00

B
la
n
k

R
ep
ai
r
br
ok
en

35
7.
11

35
7.
11

49
7.
78

6
G
en
er
at
ed

0.
00

B
la
n
k

R
ep
ai
r
w
ai
ti
n
g

35
7.
11

35
7.
11

49
8.
13

6
G
en
er
at
ed

0.
00

B
la
n
k

R
ep
ai
r
w
ai
ti
n
g

35
7.
11

35
7.
11

50
0.
90

6
G
en
er
at
ed

0.
00

B
la
n
k

R
ep
ai
r
w
ai
ti
n
g

35
7.
11

35
7.
11

50
2.
43

6
G
en
er
at
ed

0.
00

Pr
ec
ed
en
ce

R
ep
ai
r
br
ok
en

37
1.
66

37
1.
66

52
4.
51

6
G
en
er
at
ed

0.
00

Pr
ec
ed
en
ce

R
ep
ai
r
br
ok
en

37
1.
66

37
1.
66

52
4.
33

6
G
en
er
at
ed

0.
00

Pr
ec
ed
en
ce

R
ep
ai
r
br
ok
en

37
1.
66

37
1.
66

52
8.
15

6
G
en
er
at
ed

0.
00

Pr
ec
ed
en
ce

R
ep
ai
r
w
ai
ti
n
g

37
1.
66

37
1.
66

55
5.
72

6
G
en
er
at
ed

0.
00

Pr
ec
ed
en
ce

R
ep
ai
r
w
ai
ti
n
g

37
1.
66

37
1.
66

53
1.
59

6
G
en
er
at
ed

0.
00

Pr
ec
ed
en
ce

R
ep
ai
r
w
ai
ti
n
g

37
1.
66

37
1.
66

52
7.
32

6
G
en
er
at
ed

0.
00

Pl
u
gs

R
ep
ai
r
br
ok
en

37
0.
34

36
8.
91

48
3.
83

6
G
en
er
at
ed

0.
39

Pl
u
gs

R
ep
ai
r
br
ok
en

36
8.
91

36
8.
91

53
2.
59

6
G
en
er
at
ed

-0
.0
0

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

172 D. Test results

Ty
pe

Se
tt
in
gs

H
eu
ri
st
ic

so
lu
ti
on

E
xa
ct

so
lu
ti
on

D
ur
at
io
n

Tu
rb
in
es

Fi
el
d

G
ap

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

Pl
u
gs

R
ep
ai
r
br
ok
en

36
9.
67

36
8.
91

51
5.
80

6
G
en
er
at
ed

0.
21

Pl
u
gs

R
ep
ai
r
w
ai
ti
n
g

37
7.
19

36
8.
91

57
7.
66

6
G
en
er
at
ed

2.
25

Pl
u
gs

R
ep
ai
r
w
ai
ti
n
g

36
8.
91

36
8.
91

60
7.
37

6
G
en
er
at
ed

-0
.0
0

Pl
u
gs

R
ep
ai
r
w
ai
ti
n
g

36
8.
91

36
8.
91

58
7.
53

6
G
en
er
at
ed

-0
.0
0

A
rr
iv
al

R
ep
ai
r
br
ok
en

37
0.
34

36
9.
04

52
8.
82

6
G
en
er
at
ed

0.
35

A
rr
iv
al

R
ep
ai
r
br
ok
en

36
9.
04

36
9.
04

56
6.
37

6
G
en
er
at
ed

0.
00

A
rr
iv
al

R
ep
ai
r
br
ok
en

37
1.
82

36
9.
04

49
3.
72

6
G
en
er
at
ed

0.
76

A
rr
iv
al

R
ep
ai
r
w
ai
ti
n
g

36
9.
11

36
9.
04

57
5.
58

6
G
en
er
at
ed

0.
02

A
rr
iv
al

R
ep
ai
r
w
ai
ti
n
g

36
9.
59

36
9.
04

57
0.
63

6
G
en
er
at
ed

0.
15

A
rr
iv
al

R
ep
ai
r
w
ai
ti
n
g

36
9.
04

36
9.
04

59
5.
83

6
G
en
er
at
ed

0.
00

B
la
n
k

R
ep
ai
r
br
ok
en

35
8.
37

35
8.
37

50
9.
07

6
H
or
n
sr
ev

0.
00

B
la
n
k

R
ep
ai
r
br
ok
en

35
8.
37

35
8.
37

50
8.
46

6
H
or
n
sr
ev

0.
00

B
la
n
k

R
ep
ai
r
br
ok
en

35
8.
37

35
8.
37

50
6.
20

6
H
or
n
sr
ev

0.
00

B
la
n
k

R
ep
ai
r
w
ai
ti
n
g

35
8.
37

35
8.
37

50
5.
79

6
H
or
n
sr
ev

0.
00

B
la
n
k

R
ep
ai
r
w
ai
ti
n
g

35
8.
37

35
8.
37

51
0.
31

6
H
or
n
sr
ev

0.
00

B
la
n
k

R
ep
ai
r
w
ai
ti
n
g

35
8.
37

35
8.
37

50
9.
92

6
H
or
n
sr
ev

0.
00

Pr
ec
ed
en
ce

R
ep
ai
r
br
ok
en

36
8.
49

36
8.
49

58
5.
19

6
H
or
n
sr
ev

0.
00

Pr
ec
ed
en
ce

R
ep
ai
r
br
ok
en

36
8.
49

36
8.
49

58
7.
70

6
H
or
n
sr
ev

0.
00

Pr
ec
ed
en
ce

R
ep
ai
r
br
ok
en

36
8.
49

36
8.
49

58
5.
23

6
H
or
n
sr
ev

0.
00

Pr
ec
ed
en
ce

R
ep
ai
r
w
ai
ti
n
g

36
8.
49

36
8.
49

59
3.
27

6
H
or
n
sr
ev

0.
00

Pr
ec
ed
en
ce

R
ep
ai
r
w
ai
ti
n
g

36
8.
49

36
8.
49

59
4.
91

6
H
or
n
sr
ev

0.
00

Pr
ec
ed
en
ce

R
ep
ai
r
w
ai
ti
n
g

36
8.
49

36
8.
49

59
1.
33

6
H
or
n
sr
ev

0.
00

Pl
u
gs

R
ep
ai
r
br
ok
en

37
5.
60

36
8.
12

50
8.
72

6
H
or
n
sr
ev

2.
03

Pl
u
gs

R
ep
ai
r
br
ok
en

36
8.
24

36
8.
12

49
2.
67

6
H
or
n
sr
ev

0.
03

Pl
u
gs

R
ep
ai
r
br
ok
en

36
8.
14

36
8.
12

52
7.
89

6
H
or
n
sr
ev

0.
01

Pl
u
gs

R
ep
ai
r
w
ai
ti
n
g

36
8.
15

36
8.
12

58
1.
68

6
H
or
n
sr
ev

0.
01

Pl
u
gs

R
ep
ai
r
w
ai
ti
n
g

36
8.
20

36
8.
12

58
2.
30

6
H
or
n
sr
ev

0.
02

Pl
u
gs

R
ep
ai
r
w
ai
ti
n
g

36
8.
69

36
8.
12

58
5.
54

6
H
or
n
sr
ev

0.
16

A
rr
iv
al

R
ep
ai
r
br
ok
en

37
6.
09

36
8.
37

52
9.
03

6
H
or
n
sr
ev

2.
10

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

D.2. Routing tests 173

Ty
pe

Se
tt
in
gs

H
eu
ri
st
ic

so
lu
ti
on

E
xa
ct

so
lu
ti
on

D
ur
at
io
n

Tu
rb
in
es

Fi
el
d

G
ap

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

A
rr
iv
al

R
ep
ai
r
br
ok
en

36
9.
63

36
8.
37

57
2.
74

6
H
or
n
sr
ev

0.
34

A
rr
iv
al

R
ep
ai
r
br
ok
en

37
5.
71

36
8.
37

53
4.
04

6
H
or
n
sr
ev

1.
99

A
rr
iv
al

R
ep
ai
r
w
ai
ti
n
g

36
8.
37

36
8.
37

63
5.
30

6
H
or
n
sr
ev

0.
00

A
rr
iv
al

R
ep
ai
r
w
ai
ti
n
g

36
8.
79

36
8.
37

62
9.
20

6
H
or
n
sr
ev

0.
11

A
rr
iv
al

R
ep
ai
r
w
ai
ti
n
g

36
8.
82

36
8.
37

61
9.
13

6
H
or
n
sr
ev

0.
12

174 D. Test results

D.2.7. Optimised Schedule with arrival

4.4 4.42 4.44 4.46 4.48 4.5 4.52 4.54 4.56 4.58 4.6 4.62 4.64
⋅10኿

5.98

5.99

5.99

5.99

5.99

5.99

6

6

6

6
⋅10ዀ

Easting

N
or
th
in
g

Heuristic route

Svanen
Aeolus

Figure D.4: Optimised walney route with arrival

D.2. Routing tests 175

Object Location Time

Aeolus jacked Harbour 3610
Aeolus jacked C07 3631
Aeolus jacked F06 3651
Aeolus jacked Harbour 3681
Aeolus jacked D04 3702
Aeolus jacked D02 3721
Aeolus jacked Harbour 3751
Aeolus jacked F01 3773
Aeolus jacked H01 3793
Aeolus jacked Harbour 3824
Aeolus jacked B01 3846
Aeolus jacked C01 3865
Aeolus jacked Harbour 3896
Aeolus jacked C03 3917
Aeolus jacked B03 3936
Aeolus jacked Harbour 3966
Aeolus jacked H04 3988
Aeolus jacked F05 4007
Aeolus jacked Harbour 4038
Aeolus jacked C06 4058
Aeolus jacked A05 4078
Aeolus jacked Harbour 4107
Aeolus jacked B05 4128
Aeolus jacked A04 4147
Aeolus jacked Harbour 4176
Aeolus jacked G04 4198
Aeolus jacked G05 4217
Aeolus jacked Harbour 4247
Aeolus jacked C02 4269
Aeolus jacked D01 4288
Aeolus jacked Harbour 4319
Aeolus jacked F02 4341
Aeolus jacked G01 4360
Aeolus jacked Harbour 4391
Aeolus jacked G02 4413
Aeolus jacked F04 4432
Aeolus jacked Harbour 4462
Aeolus jacked G03 4484
Aeolus jacked D06 4504
Aeolus jacked Harbour 4534
Aeolus jacked E02 4555
Aeolus jacked F03 4574
Aeolus jacked Harbour 4605
Aeolus jacked B04 4626
⋮ ⋮ ⋮

Object Location Time

⋮ ⋮ ⋮
Aeolus jacked C05 4645
Aeolus jacked Harbour 4675
Aeolus jacked H02 4697
Aeolus jacked H03 4716
Aeolus jacked Harbour 4747
Aeolus jacked D05 4768
Aeolus jacked E04 4787
Aeolus jacked Harbour 4817
Aeolus jacked A02 4838
Aeolus jacked A03 4857
Aeolus jacked Harbour 4887
Aeolus jacked E05 4907
Aeolus jacked H06 4927
Aeolus jacked Harbour 4957
Aeolus jacked A06 4976
Aeolus jacked B06 4996
Aeolus jacked Harbour 5024
Aeolus jacked B07 5044
Aeolus jacked H05 5064
Aeolus jacked Harbour 5095
Aeolus jacked B02 5116
Aeolus jacked A01 5135
Aeolus jacked Harbour 5165
Aeolus jacked C10 5185
Aeolus jacked B09 5204
Aeolus jacked Harbour 5232
Aeolus jacked E03 5254
Aeolus jacked D03 5273
Aeolus jacked Harbour 5303
Aeolus jacked D09 5323
Aeolus jacked E08 5342
Aeolus jacked Harbour 5371
Aeolus jacked B08 5390
Aeolus jacked F07 5410
Aeolus jacked Harbour 5439
Aeolus jacked D07 5460
Aeolus jacked C08 5479
Aeolus jacked Harbour 5508
Aeolus jacked C09 5527
Aeolus jacked D08 5546
Aeolus jacked Harbour 5575

Table D.5: Schedule with arrival times for Aeolus jacked

Object Location Time

Aeolus floating Harbour 5815
⋮ ⋮ ⋮

176 D. Test results

Object Location Time

⋮ ⋮ ⋮
Aeolus floating C17 5835
Aeolus floating C15 5847
Aeolus floating B14 5858
Aeolus floating A11 5870
Aeolus floating A07 5882
Aeolus floating Harbour 5902
Aeolus floating A14 5921
Aeolus floating A13 5933
Aeolus floating B16 5944
Aeolus floating C21 5956
Aeolus floating B17 5967
Aeolus floating Harbour 5987
Aeolus floating A12 6007
Aeolus floating C18 6019
Aeolus floating C20 6030
Aeolus floating C19 6042
Aeolus floating B15 6053
Aeolus floating Harbour 6073
Aeolus floating A10 6093
Aeolus floating C13 6105
Aeolus floating C14 6116
Aeolus floating C16 6128
Aeolus floating Harbour 6148
Aeolus floating C04 6170
Aeolus floating E01 6182
Aeolus floating Harbour 6205
Aeolus floating A08 6225
Aeolus floating B11 6236
Aeolus floating C12 6248
Aeolus floating B12 6260
Aeolus floating B13 6271
Aeolus floating Harbour 6291
Aeolus floating E06 6313
Aeolus floating E07 6324
Aeolus floating B10 6337
Aeolus floating C11 6349
Aeolus floating A09 6361
Aeolus floating Harbour 6380

Table D.6: Schedule with arrival times for Aeolus floating

Object Location Time

Svanen Harbour 7
Svanen A14 20
Svanen B17 30
Svanen B16 41
⋮ ⋮ ⋮

Object Location Time

⋮ ⋮ ⋮
Svanen C21 52
Svanen C20 63
Svanen C19 74
Svanen C18 84
Svanen C16 95
Svanen C17 106
Svanen B15 117
Svanen A13 127
Svanen A12 138
Svanen B14 152
Svanen A11 163
Svanen A10 173
Svanen B13 184
Svanen B12 194
Svanen C15 205
Svanen C14 216
Svanen C13 227
Svanen C12 237
Svanen E07 254
Svanen C11 267
Svanen E06 281
Svanen E01 295
Svanen C04 307
Svanen B10 324
Svanen B11 335
Svanen A09 346
Svanen A08 356
Svanen A07 367
Svanen Harbour 390

Table D.7: Schedule with arrival times for Svanen

Object Location Time

Plug 0 Harbour 53
Plug 0 C19 74
Plug 0 C13 227
Plug 0 C11 267
Plug 0 C04 307
Plug 0 A08 356
Plug 0 Harbour 384

Table D.8: Schedule with arrival times for plug 0

Object Location Time

Plug 1 Harbour 11
Plug 1 B17 30
⋮ ⋮ ⋮

D.2. Routing tests 177

Object Location Time

⋮ ⋮ ⋮
Plug 1 C18 84
Plug 1 B12 194
Plug 1 C12 237
Plug 1 E01 295
Plug 1 B11 335
Plug 1 Harbour 362

Table D.9: Schedule with arrival times for plug 1

Object Location Time

Plug 2 Harbour 0
Plug 2 A14 20
Plug 2 C20 63
Plug 2 A11 163
Plug 2 C14 216
Plug 2 E07 254
Plug 2 B10 324
Plug 2 A07 367
Plug 2 Harbour 394

Table D.10: Schedule with arrival times for plug 2

Object Location Time

Plug 3 Harbour 32
Plug 3 C21 52
Plug 3 C16 95
Plug 3 A12 138
Plug 3 B13 184
Plug 3 E06 281
Plug 3 A09 346
Plug 3 Harbour 373

Table D.11: Schedule with arrival times for plug 3

Object Location Time

Plug 4 Harbour 21
Plug 4 B16 41
Plug 4 C17 106
Plug 4 A10 173
Plug 4 Harbour 200

Table D.12: Schedule with arrival times for plug 4

Object Location Time

Plug 5 Harbour 108
⋮ ⋮ ⋮

Object Location Time

⋮ ⋮ ⋮
Plug 5 A13 127
Plug 5 C15 205
Plug 5 Harbour 233

Table D.13: Schedule with arrival times for plug 5

Object Location Time

Plug 6 Harbour 97
Plug 6 B15 117
Plug 6 B14 152
Plug 6 Harbour 179

Table D.14: Schedule with arrival times for plug 6

Object Location Time

Plug 7 Harbour 0
Plug 7 A14 20
Plug 7 C17 106
Plug 7 B13 184
Plug 7 E06 281
Plug 7 B10 324
Plug 7 A07 367
Plug 7 Harbour 394

Table D.15: Schedule with arrival times for plug 7

Object Location Time

Plug 8 Harbour 32
Plug 8 C21 52
Plug 8 C16 95
Plug 8 A10 173
Plug 8 C14 216
Plug 8 E07 254
Plug 8 A09 346
Plug 8 Harbour 373

Table D.16: Schedule with arrival times for plug 8

Object Location Time

Plug 9 Harbour 118
Plug 9 A12 138
Plug 9 Harbour 165

Table D.17: Schedule with arrival times for plug 9

178 D. Test results

Object Location Time

Plug 10 Harbour 0

Table D.18: Schedule with arrival times for plug 10

Object Location Time

Plug 11 Harbour 206
Plug 11 C13 227
Plug 11 C11 267
Plug 11 B11 335
Plug 11 Harbour 362

Table D.19: Schedule with arrival times for plug 11

Object Location Time

Plug 12 Harbour 64
Plug 12 C18 84
Plug 12 B12 194
Plug 12 A08 356
Plug 12 Harbour 384

Table D.20: Schedule with arrival times for plug 12

Object Location Time

Plug 13 Harbour 53
Plug 13 C19 74
Plug 13 A11 163
Plug 13 Harbour 190

Table D.21: Schedule with arrival times for plug 13

Object Location Time

Plug 14 Harbour 11
Plug 14 B17 30
Plug 14 Harbour 58

Table D.22: Schedule with arrival times for plug 14

Object Location Time

Plug 15 Harbour 108
Plug 15 A13 127
Plug 15 C12 237
Plug 15 E01 295
Plug 15 Harbour 326

Table D.23: Schedule with arrival times for plug 15

Object Location Time

Plug 16 Harbour 21
Plug 16 B16 41
Plug 16 B15 117
Plug 16 B14 152
Plug 16 C04 307
Plug 16 Harbour 337

Table D.24: Schedule with arrival times for plug 16

Object Location Time

Plug 17 Harbour 43
Plug 17 C20 63
Plug 17 C15 205
Plug 17 Harbour 233

Table D.25: Schedule with arrival times for plug 17

D.2. Routing tests 179

D.2.8. Optimised Schedule without arrival

4.4 4.42 4.44 4.46 4.48 4.5 4.52 4.54 4.56 4.58 4.6 4.62 4.64
⋅10኿

5.98

5.99

5.99

5.99

5.99

5.99

6

6

6

6
⋅10ዀ

Easting

N
or
th
in
g

Heuristic route

Svanen
Aeolus

Figure D.5: Optimised walney route without arrival

180 D. Test results

Object Location Time

Aeolus jacked Harbour 0
Aeolus jacked B08 19
Aeolus jacked B06 39
Aeolus jacked Harbour 67
Aeolus jacked B02 89
Aeolus jacked B01 108
Aeolus jacked Harbour 138
Aeolus jacked B09 158
Aeolus jacked A06 177
Aeolus jacked Harbour 205
Aeolus jacked D04 226
Aeolus jacked D05 245
Aeolus jacked Harbour 275
Aeolus jacked H06 296
Aeolus jacked H04 316
Aeolus jacked Harbour 347
Aeolus jacked B05 367
Aeolus jacked B04 387
Aeolus jacked Harbour 416
Aeolus jacked D02 438
Aeolus jacked F01 457
Aeolus jacked Harbour 488
Aeolus jacked G04 509
Aeolus jacked G03 529
Aeolus jacked Harbour 559
Aeolus jacked A03 580
Aeolus jacked C06 600
Aeolus jacked Harbour 629
Aeolus jacked F02 651
Aeolus jacked E02 670
Aeolus jacked Harbour 701
Aeolus jacked G02 723
Aeolus jacked F03 742
Aeolus jacked Harbour 772
Aeolus jacked H05 794
Aeolus jacked G05 813
Aeolus jacked Harbour 843
Aeolus jacked C01 865
Aeolus jacked A01 884
Aeolus jacked Harbour 915
Aeolus jacked D03 936
Aeolus jacked E04 955
Aeolus jacked Harbour 985
Aeolus jacked A02 1006
⋮ ⋮ ⋮

Object Location Time

⋮ ⋮ ⋮
Aeolus jacked C03 1026
Aeolus jacked Harbour 1056
Aeolus jacked C07 1077
Aeolus jacked F05 1096
Aeolus jacked Harbour 1127
Aeolus jacked A05 1147
Aeolus jacked A04 1166
Aeolus jacked Harbour 1196
Aeolus jacked C09 1215
Aeolus jacked B07 1234
Aeolus jacked Harbour 1263
Aeolus jacked D06 1283
Aeolus jacked C08 1302
Aeolus jacked Harbour 1331
Aeolus jacked H03 1353
Aeolus jacked H01 1373
Aeolus jacked Harbour 1404
Aeolus jacked B03 1425
Aeolus jacked C05 1444
Aeolus jacked Harbour 1474
Aeolus jacked E08 1494
Aeolus jacked D09 1513
Aeolus jacked Harbour 1542
Aeolus jacked D08 1562
Aeolus jacked D07 1581
Aeolus jacked Harbour 1610
Aeolus jacked C10 1630
Aeolus jacked F07 1650
Aeolus jacked Harbour 1679
Aeolus jacked D01 1701
Aeolus jacked C02 1720
Aeolus jacked Harbour 1750
Aeolus jacked E03 1772
Aeolus jacked F04 1791
Aeolus jacked Harbour 1821
Aeolus jacked F06 1842
Aeolus jacked E05 1861
Aeolus jacked Harbour 1891
Aeolus jacked H02 1913
Aeolus jacked G01 1932
Aeolus jacked Harbour 1963

Table D.26: Schedule without arrival times for Aeolus jacked

Object Location Time

Aeolus floating Harbour 2203
⋮ ⋮ ⋮

D.2. Routing tests 181

Object Location Time

⋮ ⋮ ⋮
Aeolus floating E01 2227
Aeolus floating C04 2238
Aeolus floating Harbour 2261
Aeolus floating A09 2281
Aeolus floating B12 2292
Aeolus floating C13 2304
Aeolus floating C14 2315
Aeolus floating B13 2327
Aeolus floating Harbour 2347
Aeolus floating B17 2366
Aeolus floating C21 2378
Aeolus floating C19 2390
Aeolus floating B15 2401
Aeolus floating Harbour 2421
Aeolus floating B16 2441
Aeolus floating C20 2452
Aeolus floating C18 2464
Aeolus floating C17 2475
Aeolus floating C15 2487
Aeolus floating Harbour 2507
Aeolus floating B11 2527
Aeolus floating C12 2538
Aeolus floating C11 2550
Aeolus floating A07 2562
Aeolus floating A08 2573
Aeolus floating Harbour 2593
Aeolus floating E06 2615
Aeolus floating E07 2626
Aeolus floating B10 2640
Aeolus floating C16 2652
Aeolus floating B14 2664
Aeolus floating Harbour 2683
Aeolus floating A10 2703
Aeolus floating A11 2714
Aeolus floating A12 2726
Aeolus floating A13 2737
Aeolus floating A14 2749
Aeolus floating Harbour 2768

Table D.27: Schedule without arrival times for Aeolus floating

Object Location Time

Svanen Harbour 7
Svanen A14 20
Svanen B17 30
Svanen B16 41
⋮ ⋮ ⋮

Object Location Time

⋮ ⋮ ⋮
Svanen C21 52
Svanen C20 63
Svanen C19 74
Svanen C18 84
Svanen C16 95
Svanen C14 106
Svanen C15 116
Svanen C13 132
Svanen C17 143
Svanen B15 154
Svanen A13 165
Svanen A12 175
Svanen B14 186
Svanen A11 197
Svanen A10 207
Svanen B13 218
Svanen B12 229
Svanen B11 239
Svanen A09 250
Svanen A08 264
Svanen C12 275
Svanen C11 286
Svanen E07 299
Svanen E06 310
Svanen E01 324
Svanen C04 336
Svanen B10 353
Svanen A07 364
Svanen Harbour 387

Table D.28: Schedule without arrival times for Svanen

Object Location Time

Plug 0 Harbour 75
Plug 0 C16 95
Plug 0 C13 132
Plug 0 B14 186
Plug 0 B12 229
Plug 0 A08 264
Plug 0 E06 310
Plug 0 B10 353
Plug 0 Harbour 381

Table D.29: Schedule without arrival times for plug 0

182 D. Test results

Object Location Time

Plug 1 Harbour 11
Plug 1 B17 30
Plug 1 C15 116
Plug 1 A12 175
Plug 1 B13 218
Plug 1 C11 286
Plug 1 A07 364
Plug 1 Harbour 391

Table D.30: Schedule without arrival times for plug 1

Object Location Time

Plug 2 Harbour 0
Plug 2 A14 20
Plug 2 C20 63
Plug 2 C14 106
Plug 2 B15 154
Plug 2 A11 197
Plug 2 C12 275
Plug 2 E01 324
Plug 2 Harbour 355

Table D.31: Schedule without arrival times for plug 2

Object Location Time

Plug 3 Harbour 32
Plug 3 C21 52
Plug 3 A13 165
Plug 3 B11 239
Plug 3 E07 299
Plug 3 Harbour 328

Table D.32: Schedule without arrival times for plug 3

Object Location Time

Plug 4 Harbour 21
Plug 4 B16 41
Plug 4 C18 84
Plug 4 C17 143
Plug 4 A10 207
Plug 4 A09 250
Plug 4 C04 336
Plug 4 Harbour 366

Table D.33: Schedule without arrival times for plug 4

Object Location Time

Plug 5 Harbour 53
Plug 5 C19 74
Plug 5 Harbour 101

Table D.34: Schedule without arrival times for plug 5

Object Location Time

Plug 6 Harbour 0

Table D.35: Schedule without arrival times for plug 6

Object Location Time

Plug 7 Harbour 43
Plug 7 C20 63
Plug 7 B15 154
Plug 7 A11 197
Plug 7 B11 239
Plug 7 E01 324
Plug 7 Harbour 355

Table D.36: Schedule without arrival times for plug 7

Object Location Time

Plug 8 Harbour 32
Plug 8 C21 52
Plug 8 Harbour 80

Table D.37: Schedule without arrival times for plug 8

Object Location Time

Plug 9 Harbour 53
Plug 9 C19 74
Plug 9 Harbour 101

Table D.38: Schedule without arrival times for plug 9

Object Location Time

Plug 10 Harbour 0

Table D.39: Schedule without arrival times for plug 10

Object Location Time

Plug 11 Harbour 96
Plug 11 C15 116
Plug 11 A12 175
Plug 11 B12 229
⋮ ⋮ ⋮

D.2. Routing tests 183

Object Location Time

⋮ ⋮ ⋮
Plug 11 E06 310
Plug 11 B10 353
Plug 11 Harbour 381

Table D.40: Schedule without arrival times for plug 11

Object Location Time

Plug 12 Harbour 75
Plug 12 C16 95
Plug 12 C13 132
Plug 12 B14 186
Plug 12 C11 286
Plug 12 Harbour 314

Table D.41: Schedule without arrival times for plug 12

Object Location Time

Plug 13 Harbour 11
Plug 13 B17 30
Plug 13 C14 106
Plug 13 A13 165
Plug 13 B13 218
Plug 13 A08 264
Plug 13 A07 364
Plug 13 Harbour 391

Table D.42: Schedule without arrival times for plug 13

Object Location Time

Plug 14 Harbour 21
Plug 14 B16 41
Plug 14 C18 84
Plug 14 C17 143
Plug 14 A10 207
Plug 14 A09 250
Plug 14 C04 336
Plug 14 Harbour 366

Table D.43: Schedule without arrival times for plug 14

Object Location Time

Plug 15 Harbour 0
Plug 15 A14 20
Plug 15 C12 275
Plug 15 Harbour 303
⋮ ⋮ ⋮

Object Location Time

⋮ ⋮ ⋮

Table D.44: Schedule without arrival times for plug 15

Object Location Time

Plug 16 Harbour 277
Plug 16 E07 299
Plug 16 Harbour 328

Table D.45: Schedule without arrival times for plug 16

Object Location Time

Plug 17 Harbour 0

Table D.46: Schedule without arrival times for plug 17

	Abstract
	Introduction
	Logistics during wind farm installation
	Offshore wind farm installation
	Walney Project description
	Material
	Turbine foundation Installation

	Onshore Component Relocation
	Field
	Relocation constraints
	Phases

	Offshore optimisation challenges
	Installation methods
	Ship routing
	Buoyancy Plugs
	Component availability

	Problem definition

	Analysis of Walney project
	Planning
	Installation choices
	Intrafield sailing
	Waiting time
	Crane actions
	Discussion
	Conclusion

	Combinatorial optimisation
	Introduction
	Formulation
	Linear Programming
	Duality
	Mixed Integer Linear Programming

	Problems
	Travelling Salesman Problem
	Vehicle Routing Problem
	Flow Shop Problem

	Problem Complexity
	Finding Solutions
	Exact
	Heuristics

	Conclusion

	Literature review
	Introduction
	Offshore scheduling
	Vehicle routing Problem
	Solution Methods
	Generalizations
	Heterogeneous Vehicles
	Synchronization
	Multitrip
	Multiple Installation options

	Component Relocation
	Container relocation
	Train shunting problems
	Factory item relocation

	Conclusion

	Component Relocation Model
	One Dimensional loading
	Two dimensional relocation constraints
	Batches
	Discussion
	Conclusion

	Crane optimisation exact
	Variables
	Cutting Planes

	Rolling Horizon Algorithm
	Algorithm
	Choice heuristics
	Subproblem MILP
	Partial unloading
	Layout quality

	Warm start
	Warm start algorithm
	Direct unloading algorithm

	Discussion
	Conclusion

	Ship Installation Routing Model
	Installation routing
	Installation methods and precedence relations
	Synchronization of plugs and component availability
	Discussion
	Conclusion

	Optimization method for ship routing model
	Total time cutting planes
	Trip Symmetry
	Field trips
	Waiting variables
	Flow cuts
	Branch and Cut
	Discussion

	Adaptive Iterative Simulated Annealing algorithm
	Algorithm
	Choice of algorithm
	GRASP Algorithm
	Moves
	Move selection
	Simulated annealing temperature
	Cost evaluation
	Discussion
	Conclusion

	Results
	Computational Results Component Relocation Problem
	Problem configurations
	Cut Performance
	Heuristic performance

	Operational results crane optimisation
	Computational results Ship Installation Routing Problem
	Problem configurations
	Exact performance
	Heuristic performance

	Operation results Routing optimisation
	Discussion
	Conclusion

	Recommendations, Discussion and Conclusion
	Recommendations
	Discussion
	Conclusion

	Nomenclature
	Bibliography
	Appendices
	Analysis Walney project
	Routes
	Aeolus travel durations
	Svanen travel durations

	Waiting
	Costs

	Offshore scheduling by Flowshop approach
	Relocation constraints Monopiles
	Test results
	Crane tests
	Exact crane optimisation tests
	Heuristic CRP test results
	Component relocation result Walney

	Routing tests
	Fields
	Routing exact tests without cutting planes
	Routing exact tests with cutting planes
	Routing exact tests with standard
	Routing Branch Cut
	Routing Heuristic
	Optimised Schedule with arrival
	Optimised Schedule without arrival

