
MODELL ING D IFFERENT LEVELS OF DETA I L OF ROADS AND
INTERSECT IONS IN 3D C I TY MODELS

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Geomatics for the Built Environment

by

Freek Boersma

July 2019

Freek Boersma: Modelling different levels of detail of roads and intersections in
3D city models (2019)
cb This work is licensed under a Creative Commons Attribution 4.0 Inter-
national License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

ISBN 978–94–6384–057–6

The work in this thesis was made in the:

3D geoinformation group
Department of Urbanism
Faculty of Architecture & the Built Environment
Delft University of Technology

Supervisors: Anna Labetski, MSc

Prof. Dr. Jantien Stoter

Co-reader: Dr. Ir. Pirouz Nourian

http://creativecommons.org/licenses/by/4.0/

ABSTRACT

In the last two decades there has been a steady rise in the gathering and
use of 3D geo-information. A common way to store and use 3D data is by
using 3D city models. In 3D city models, geo-information can be stored at
different levels of detail. CityGML, the most commonly used data model
and encoding for 3D city models, uses five levels of detail in order to model
increasing geometric and semantic complexity. These levels of detail may
be interpreted as a model quality measure, and as a guideline for users that
need data for a certain application.

CityGML consists of several thematic modules, each with their own level
of detail specification. Some of these modules have a more further devel-
oped level of detail specification than others. Recently, several authors have
proposed improvements to the Transportation module. This has led to pro-
posals for various changes, especially concerning road data. However, these
proposed changes have not been encoded yet. The main critiques are the
lack of a level of detail specification for linear representations of roads, no
ability to model networks, no representation of intersections and general
ambiguity in the level of detail specification. Many road data use cases
might potentially benefit from improvements on these points.

In this thesis I attempt to improve the current level of detail specifica-
tion of roads in the CityGML data model. The improvements are encoded
in CityJSON, a JSON encoding of the this data model. I assess the short-
comings in the current CityGML transportation module. After, a road data
needs analysis is performed on three use cases: transport modelling, navi-
gation and road maintenance. The data needs are compared to modelling
approaches of other road data standards. This has resulted in several en-
coded improvements. A topological structure has been added to CityJSON.
This includes the addition of two new modelling classes: Nodes and Edges.
This structure is general such that it can be used by other thematic modules
as well. Moreover, the level of detail specification for roads has been further
developed to include both the linear representations and less ambiguous
areal representations. This includes a prescription on how to model inter-
sections and roundabouts at different levels of detail. Finally, I provide a
structure which enables one to link the linear and areal road data together.
This link is made at the scale level of the object, which data providers may
choose themselves. This way one object can be modelled in two represen-
tation types without needing a one-to-one mapping between linear road
segments and areal triangulated surfaces. These concepts are then tested by
creating a CityJSON road data file for all new levels of detail.

iii

ACKNOWLEDGEMENTS

Writing a thesis is a satisfying but lonely affair. Nevertheless, I could not
have done it without many others, who have contributed to my thesis in
ways big or small. I would like to thank them all here. First and foremost,
I would like to thank my supervisors, Anna Labetski and Jantien Stoter. I
have struggled at times with the direction of my thesis, and you have helped
me get back on track every time. Anna, thank you for taking so much time
to guide me through the process. Your comments were always on point. I
have also enjoyed your general enthusiasm for the subject. Jantien, you often
approached the subject from the viewpoint of the user, which has been very
helpful for me. Thank you for your input and always giving me new ideas
to think about.

I would also like to thank my co-reader Pirouz Nourian for the valuable
comments on the use of graphs. Also, you reminded me to keep an eye on
the conceptual side of the thesis. When you work on a project for almost a
year, it is sometimes hard to zoom out. Thank you for your perspectives!

Throughout the research I have done fieldwork by meeting with experts
of various domains. All of them I would like to thank for their time and
expertise: Stefan van Gerwen from Provincie Noord-Brabant, for giving me
access to provincial data to use, and teaching me the ins and outs of Dutch
governmental data models. Guus Tamminga from Sweco and TU Delft,
for our discussion on how to geometrically model roads for traffic models.
Hugo Ledoux from the 3D geoinformation group here at TU Delft, for dis-
cussing with me about CityJSON and my proposals for adaptation. Lastly,
Dick Krijtenburg from Geonovum and Sandra Leijten from VNG for invit-
ing me to the sessions about central object registration. These have been
very informative for me personally, and have guided my research.

I must not forget to mention my fellow student Davey Oldenburg, who
has helped me put together the front cover for this thesis. I really should
take an InDesign course, or Illustrator, or Photoshop...

Besides Davey, I would like to thank all my fellow Geomatics students. Al-
though we did not see each other that much the final year, I have very fond
memories of us all working together in the Geolab, going to the Bouwpub,
and generally just having fun. Thank you all so much for making me feel at
home in Delft. Especially to my roommates I would like to say: ευχαριστω
for being there. I’ve truly had a great time, I will miss it.

As always, a big thanks to my family. My parents, who have shown
unconditional love and support throughout my life. Thank you for having
me whenever I wanted to escape my self-imposed thesis exile. My brother
Keje, you have always looked out for me, thank you for encouraging me to
get out of the house at times to do something fun.

And finally, Iris, I want to thank you for being there for me always, and
for your love and support, when I was struggling with writing my thesis,
and at all other times. What might have been a difficult year for me, has
turned out to be a great one.

Freek Boersma, July 2019

v

CONTENTS

1 introduction 1

1.1 Motivation . 1

1.2 Research objectives and methodology 3

1.2.1 Use case road data needs 3

1.2.2 Reviewing road standards for modelling choices . . . 4

1.2.3 Improving the road data model 4

1.2.4 Creating a road data file 4

1.2.5 Fieldwork . 5

1.3 Scope . 5

1.4 Overview of results . 5

1.5 Reading guide . 6

2 related work 7

2.1 Modelling of roads . 7

2.1.1 Road representation types 7

2.1.2 Modelling networks . 7

2.1.3 Linear referencing . 8

2.1.4 Complexity of intersections 9

2.2 3D city models . 10

2.3 CityGML . 11

2.3.1 LoD specification . 11

2.3.2 Representation of roads 12

2.3.3 CityJSON . 15

2.4 Overview of road standards . 16

2.4.1 Geographic Data Files 16

2.4.2 OpenDRIVE . 16

2.4.3 LandInfra . 17

2.4.4 RoadXML . 17

2.4.5 OpenStreetMap . 17

2.4.6 Intersection Topology Format 19

2.5 Road data in the Netherlands 19

2.5.1 BGT / IMGeo . 20

2.5.2 NWB . 20

2.5.3 Future: central object registration 20

2.6 3D city model road data use cases 21

3 road data needs analysis 25

3.1 CityGML data model . 25

3.1.1 Transportation module 26

3.1.2 Bridges and tunnels . 26

3.1.3 CityFurniture . 29

3.1.4 Extending CityGML: Application Domain Extensions 29

3.1.5 Proposed additions to Transportation module 30

3.1.6 CityJSON encoding of CityGML data model 30

3.1.7 Topology in CityGML and CityJSON 33

3.1.8 Extending CityJSON . 33

3.1.9 Shortcomings in data model and encodings 34

3.2 Use case: transport and traffic models 34

vii

viii Contents

3.2.1 Road data needs . 35

3.2.2 Data needs in CityGML & CityJSON 36

3.2.3 Data needs in other road standards 36

3.3 Use case: navigation . 38

3.3.1 Road data needs . 38

3.3.2 Data needs in CityGML & CityJSON 39

3.3.3 Data needs in other road standards 41

3.4 Use case: road maintenance . 41

3.4.1 Road data needs . 42

3.4.2 Data needs in CityGML & CityJSON 42

3.4.3 Data needs in other road standards 42

3.5 Use case data needs summary 44

4 improving the data model 45

4.1 Data model design choices . 45

4.1.1 LoD specification . 45

4.1.2 Graph structure . 46

4.1.3 Modelling attributes . 47

4.1.4 Road segments and linking representation types . . . 48

4.1.5 Intersections . 50

4.1.6 Connecting to other modules 51

4.2 Implementation of design choices 53

4.2.1 JSON schema . 53

4.2.2 CityJSON schema structure 54

4.2.3 Changes to CityJSON schemas 54

4.2.4 Schema validation and semantic validation 57

4.3 Updated LoD specification . 57

5 proof of concept: creating cityjson road data files 61

5.1 Description of the dataset . 61

5.2 Transforming the data . 62

5.2.1 Areal modelling . 62

5.2.2 Linear modelling . 64

5.2.3 Linking representation types 65

5.3 Reflection on modelling choices 66

6 conclusion, discussion and future work 69

6.1 Conclusion . 69

6.2 Discussion . 71

6.3 Future research . 75

a citygml 2.0 core module uml diagram 83

L I ST OF F IGURES

Figure 1.1 CityGML LoD overview 2

Figure 1.2 CityGML Transportation LoDs 3

Figure 1.3 Methodology flowchart 4

Figure 2.1 Graph example . 8

Figure 2.2 Different types of intersections 10

Figure 2.3 CityGML Building LoDs 12

Figure 2.4 Proposed Road LoD improvements 14

Figure 2.5 Road specified by road, carriageway and lane 14

Figure 2.6 Road example with carriageway ambiguity 15

Figure 2.7 Network LoD proposal 15

Figure 2.8 Proposed semantic road decomposition 22

Figure 3.1 CityGML Transportation UML diagram 27

Figure 3.2 Thematic subdivision of road in CityGML 28

Figure 3.3 Road encoding in CityGML 28

Figure 3.4 CityJSON file structure 31

Figure 3.5 Road encoding in CityJSON 32

Figure 3.6 Road object made up of semanctic surfaces 32

Figure 3.7 Example of XLink usage in CityGML 33

Figure 3.8 Turning lanes at various LoD 36

Figure 4.1 Overview of implementation of road LoDs. 46

Figure 4.2 Geometric and semantic tree structure of LoDs 49

Figure 4.3 Road object segmented differently per representation
type . 50

Figure 4.4 Linear modelling of intersections and roundabouts. . 52

Figure 4.5 JSON schema example 54

Figure 4.6 CityJSON schema structure 54

Figure 4.7 Node modelled in CityJSON schema 55

Figure 4.8 Edge modelled in CityJSON schema 56

Figure 4.9 Roundabout at areal LoDs 59

Figure 5.1 Noord-Brabant road dataset 61

Figure 5.2 Merging features to obtain lower areal LoDs 63

Figure 5.3 LoD0.3 representation of intersection 65

Figure 5.4 Creating objects manually 65

Figure A.1 CityGML core UML diagram 83

ix

L I ST OF TABLES

Table 2.1 Overview of road standards. 18

Table 2.2 LoD needed per road data use case 21

Table 3.1 Transport model data needs in other road standards. 37

Table 3.2 Navigation data needs in other road standards. . . . 40

Table 3.3 Road maintenance data needs in other road standards. 43

Table 4.1 Attributes modelled at LoD0.1 – LoD0.3 58

Table 4.2 Attributes modelled at LoD1 – LoD3 58

xi

ACRONYMS

COR Central Object Registration . 1

LoD level of detail . 1

LoDs levels of detail . 1

OGC Open Geospatial Consortium . 1

XML Extensible Markup Language . 2

JSON JavaScript Object Notation . 2

NMAs National Mapping Agencies . 7

LRM linear referencing method . 8

LRS linear referencing system . 8

UML Unified Modelling Language . 11

XSD XML schema files .11

ADE Application Domain Extension . 20

ADEs Application Domain Extensions . 11

GDF Geographic Data Files . 16

ISO International Organization for Standardization 16

ITS intelligent transportation systems. .16

TIN triangular irregular network . 17

OSM OpenStreetMap. .17

ITF Intersection Topology Format. .19

MAP MapData . 19

BGT Basisregistratie Grootschalige Topografie . 20

IMGeo Informatiemodel Geografie . 20

NWB Nationaal Wegenbestand . 20

BAG Basisregistratie Adressen en Gebouwen . 20

BRep boundary representation. .31

cjio CityJSON In/Out. .33

GIS geographical information system . 39

xiii

1 INTRODUCT ION

1.1 motivation
In the last decades there has been a shift towards 3D geo-information [Oude
Elberink, 2010; Stoter et al., 2015]. Recently, in the Netherlands a projct has
started to create a nation-wide 3D standard [Stoter et al., 2013]. Also, the
Dutch organisation for cadastre and national mapping is working towards
capturing objects in three dimensions [Kadster, 2019]. The Dutch govern-
ment is considered a front runner in capturing and sharing 3D data. When
talking to government officials and geo-data users, many express a desire to
either create or use 3D geo-information. At this moment the Dutch govern-
ment stores geo-data in several key registers. A pilot has started to initiate
a move towards one overarching object-oriented register, where each object
is modelled only once [Werkgroep Wegen, 2018]. The idea is to combine the
step towards 3D data with this Central Object Registration (COR). Through
this process, it is important to reconsider how we model objects.

3D geo-information can be stored using 3D city models. In these models,
real world objects can be modelled at various level of detail (LoD). Models
may have a lower LoD because of the way the data was acquired, but also
because many applications do not require the most detailed model possible
[Biljecki et al., 2013]. The different levels of detail (LoDs) are needed because
they can be a measure of model quality, and act as a guideline for which
applications can use the model [Biljecki et al., 2013]. Ultimately, 3D city
models are only useful when the data can be used for all kinds of applica-
tions. From reviewing other standards, it is clear that many were developed
with a use case in mind. Thus a use case based development of LoDs might
lead to better applications of 3D city model data.

CityGML is arguably the most popular standard used to store and rep-
resent 3D city models at various LoDs [Biljecki et al., 2013]. It is an open
standard which is maintained by the Open Geospatial Consortium (OGC).
CityGML uses five LoDs (from 0 to 4) to denote objects or models with
increasing geometric and semantic complexity, see Figure 1.1. Over the
years since its inception, changes have been proposed to the data model of
CityGML. Most of these changes concern adaptations to the building mod-
ule [Löwner and Gröger, 2016]. Buildings have the most elaborate data
model, especially concerning the differentiation between the different LoDs.
Also, most use cases identified for 3D city models seem to use mostly build-
ing data (see for example Biljecki et al. [2015]). Therefore, it is perhaps not
surprising that the debate has been mostly about buildings.

CityGML consists of a core module describing general properties that are
applicable to all objects, along with different thematic modules for each
separate thematic modelling class. One of these is a thematic module for
transportation features. Transportation objects can be modelled as tracks,

roads, squares and railways. These can be modelled using both a lin-
ear representation or an areal representation, using surfaces to model road
segments [Open Geospatial Consortium, 2012b]. The LoD specification for

1

2 introduction

Figure 1.1: Levels of detail of CityGML [Open Geospatial Consortium, 2012b].

roads distinguishes between different LoDs, where LoD0 represents the net-
work and LoD1 and higher represents the areal modelling (Figure 1.2. How-
ever, there is no clear difference between LoD2-4.

Proposed changes to the transportation module have been done only re-
cently, mainly focusing on roads. Beil and Kolbe [2017] proposed an adap-
tation of the LoD specification for roads. Here, both the linear and areal
representation have their own LoD specification, with increasing geometric
and semantic complexity per representation type. Thus this will enable the
possibility of also modelling networks at multiple LoDs. Also, sections
were introduced in order to be able to segmentise roads into different parts
[Beil and Kolbe, 2017]. Labetski et al. [2018] additionally propose a distinc-
tion between roads, carriageways and lanes. Also, they stress the need for
the modelling of intersections as a separate class. Intersections, including
roundabouts, are seen as the most complex parts of road networks, because
they can have many different configurations [Quartieri et al., 2009]. The
way intersections can be modelled in detail in CityGML has not yet been
specified. It is also not yet clear how this can be done at the newly specified
different levels of detail.

Criticism of CityGML has not only been directed at the contents of the
data model, but also at the structure of the encoding. CityGML is an
Extensible Markup Language (XML)-based format. As a result, CityGML
files have a hierarchical structure, and thus they are verbose, sometimes
hard to comprehend and hard to parse for programmers [Ledoux et al.,
2019]. This has lead to the development of CityJSON, a JavaScript Object
Notation (JSON) encoding and exchange format of the CityGML data model
[CityJSON, 2019]. CityJSON files have a flat structure and are therefore easy
to parse and compact in size compared to their CityGML counterparts.

3D city models are increasingly needed for many different applications.
Recently, use cases of 3D road data have been identified (e.g.see Labetski
et al. [2018]). Different use cases can have different road data needs. Some
might need the road network, others detailed areal geometry. Therefore
it is important that the data model takes these applications into account.
From meeting with government officials and practitioners, it became clear
that the current modelling of roads in 3D city models is not sufficient. 3D

1.2 research objectives and methodology 3

Figure 1.2: Road LoD specification of CityGML 2.0 [Open Geospatial Consortium,
2012b].

city models will be of more worth when users can use them for their pur-
pose in the way that they want. The representation of roads in CityGML
in particular can still be improved; the different LoDs, the dual linear-areal
representation, and intersections can be improved in clarity and structure.

1.2 research objectives and methodology
The goal of this research is to be able to model roads and intersections in
3D city models at different levels of detail with a data model based on the
data needs of use cases. The question I want to answer in this thesis is thus:
how can roads and intersections be modelled in 3D city models at various LoDs
such that it suits user needs? I will focus on adapting the LoD specification
of the CityGML transportation module according to the data needs of dif-
ferent use cases. This research is deeply rooted in practice, by meeting with
government officials and experts.

In order to answer the research question, the research will be conducted in
several steps. The following sub-questions will serve as the building blocks
of this research. Combining the answers to these questions should meet
the goal stated above. Per sub-question, the methodology I will employ is
described. A schematic overview of the methodology used in this research
is given in Figure 1.3.

1.2.1 Use case road data needs

The first thing needed are use cases. These are used to articulate the data
needs from which I will improve the data model. Thus the first sub-question
is: what are the use cases of roads and intersections in 3D city models and what
are their road data needs? Use cases are selected such that they represent
diversity in representation type (linear vs. areal) as well as level of detail.
As was discussed, the LoD specification of roads is especially lacking for the
linear representation. Therefore I will examine two use cases which mainly
use road networks. The other use case is chosen because it is considered to
need both a network and an areal representation of roads. This opens up the
possibility to study the need for a link between the two representation types

4 introduction

Figure 1.3: Methodology flowchart

in the data model. The data needs of the use cases are assessed through a
literature review, as well as by consulting experts (see Section 1.2.5).

As described above, adaptations to the CityGML transportation module
have already been proposed. In addition to the use case needs, it is also
important to consider the current identified shortcomings of the CityGML
data model and the encodings in both CityGML and CityJSON. From this a
comprehensive view of data needs can be made.

1.2.2 Reviewing road standards for modelling choices

The second sub-question is: what road standards exist, and how do they model
the identified data needs? Here I identify multiple road standards and their
data models and check if and how they model the data needs identified
earlier. In addition to road standards, road data and information models
used by the Dutch government will be assessed. This will give insight in
modelling choices to be made at a later stage.

1.2.3 Improving the road data model

After having assessed the data needs of the use cases, I want to know: how
can the CityGML transportation data model be improved such that it satisfies the
use case data needs? The acquired data needs have been compared to other
road standards; this leads to design ideas. In this step, the design ideas will
be implemented in the data model. Then, I choose the CityJSON encoding
of the CityGML data model to implement changes schematically. This will
lead to a detailed LoD specification of roads and intersections.

1.2.4 Creating a road data file

Finally, when the improved data model has been developed, a data file con-
forming to the new data model will be made. Road data from the Dutch

1.3 scope 5

province of Noord-Brabant will be transformed into a CityJSON road file.
Making this data file will lead to a reflection on the modelling choices made.
The practicality of certain modelling choices can be assessed. This might
lead to a reflection on possible future additions to the road data model.

1.2.5 Fieldwork

As part of this research, meetings were held with different experts. A meet-
ing was held with Stefan van Gerwen, from the Provincie Noord-Brabant.
He has provided the dataset used in this thesis, and provided informa-
tion on how governmental agencies use geographic data and link their own
datasets on the maintenance of public space to the governmental informa-
tion models. A second meeting was with Guus Tamminga, senior advisor
mobility at Sweco. He recently completed his PhD thesis on transport and
mobility modelling and contributed to the data needs analysis of the trans-
port modelling use case. I also met with Hugo Ledoux, associate professor
in the 3D geo-information group at the TU Delft. He is also the initiator of
the CityJSON project, and contributed by reviewing the proposed additions
to the CityJSON data model done in this thesis. Finally, I attended two meet-
ings of the Werkgroep Wegen (Working Group Roads) of the DiSGeo project
of the Dutch government. This group is assessing potential data needs for
the three-dimensional representations of roads. This is done in the name of
the central object registration project, see Section 2.5.3.

1.3 scope
The following subjects, though relevant, will not be addressed in this thesis.

• The transportation module of CityGML does not only deal with roads,
but also with railway tracks. However, this research focuses specifi-
cally on roads and therefore railways will not be considered.

• Also, it can be argued that in 3D city models, roads can or should be
modelled volumetrically for some use cases. This might be important
for maintenance applications concerning sewage systems or utilities,
for example. However, in this research the focus will be on two(-and-
a-half)-dimensional representations.

• Previous research has been done on LoD specifications. As mentioned
above, Beil and Kolbe [2017] and Labetski et al. [2018] have proposed
changes to the LoD specification of the CityGML transportation mod-
ule. As the above already gives a good specification for roads, this
research will not focus on developing a whole new LoD specification.
Rather, I will build on the research already conducted and aim to add
new features to it, such as an LoD description of intersections.

1.4 overview of results
The goal of this research was to adapt the data model of the CityGML trans-
portation module to the data needs of several use cases. The lack of net-
work modelling possibilities in CityGML was already determined. The use

6 introduction

case selection was done such that the need for networks was leading. Re-
searching the CityGML data model and the use cases resulted in a list of
data model shortcomings and data needs. For all these data needs, it was
checked how they were modelled in other road standards. All these road
standards once started from a use case, which is very clear in the way they
model the objects (and which objects they model). This use case driven
approach is also employed here to improve the CityGML transportation
module. I chose to encode the improved data model in CityJSON, a JSON
encoding of the CityGML data model. CityJSON was chosen because of its
ease of use, compactness, and because it is easy to parse. The choice of
CityJSON combined with the researched data needs has led to an adapted
data model. First, the ability to model networks is added to CityJSON. This
ability is then extended with the modelling of a road network. In this, at-
tribute changes can be modelled using graphs nodes. Furthermore, the LoD
specification has been explicitly modelled, showing how roads and intersec-
tions can be modelled at different LoDs in both representation types. I have
also implemented a way of linking linear and areal representations of the
same road. This is not done on the smallest scale of road segments, but
may be done on a more aggregated level. This way, the potentially highly
segmented road network (because of attribute changes) will not interfere
with the segmentation level of the areal representation of roads. Finally,
CityJSON road data files were made which model a road at the different
LoDs. Transforming data to CityJSON shows that some data model adap-
tations are quite strict, such as the linear modelling of intersections. At the
same time, the data model is still quite lenient in how road-related objects
can be modelled.

1.5 reading guide
In Chapter 2 research related to this thesis is explored. Terminology used
throughout this document is explained, and all of the relevant related sub-
ject matter is discussed. In Chapter 3, I study the data needs of three use
cases: transport and traffic modelling, navigation, and road maintenance.
Before that, the way CityGML and CityJSON model roads is thoroughly ex-
amined. This also exposes additional shortcomings in the current modelling
approaches. The use case data needs are then compared to how they are
modelled in other road standards. The final list of data needs can be found
in Section 3.5. After this, Chapter 4 sets out the design choices made in order
to accommodate the data needs in the CityJSON encoding of CityGML. The
results of the design choices is presented by setting out what has changed
and what the new LoD specification looks like. In Chapter 5 I will create
a CityJSON road data file which will adhere to the newly improved data
model. Chapter 6 will conclude this thesis. Here I will reflect on the use
case selection, modelling choices and also the necessity of having roads in
3D city models. This chapter will conclude by setting out possible future
work.

2 RELATED WORK

In this section, the related work on the subject of this research will be dis-
cussed. Previous research into road data modelling is explored, and relevant
concepts are explained. First, road modelling in general is discussed, along
with the role intersections have played in it up until now. After that, the
related work on 3D city models, CityGML and its transportation module
is reviewed. Then, other road data standards are discussed. Lastly, the
explorations of road data use cases are reviewed.

2.1 modelling of roads

2.1.1 Road representation types

National Mapping Agencies (NMAs) have been gathering topographic data
for over two hundred years (see for example Kadaster [2019] and Ordinance
Survey [2019]). Roads are also covered by this data. After NMAs digitalised
their data at the end of the last century, road data has become available dig-
itally [Ordinance Survey, 2019]. Small-scale topographic road data consists
of polygons. Thus this is an areal representation of the real-life road fea-
tures. From these polygons centre lines can be extracted. These linear road
features are often used when modelling roads in higher-scale maps. From
linear road features a road network representation can be formed. Govern-
ment agencies, but also private parties, have constructed road networks for
different types of applications, often involving navigation (see for instance
Rijkswaterstaat [2017] and TomTom [2019]). The above lead to different
ways to store and model road data, see sections 2.4 and 2.5.

2.1.2 Modelling networks

When roads are modelled linearly, it is often done in the form of a network.
These networks can be stored as graphs. A graph is a topological data
structure which models connectivity between points. The points are called
vertices or nodes and the connections between these nodes are called edges
or links [Singh and Sharma, 2012]. Roads modelled as networks are useful
for applications that employ routing, like navigation. Although the topolog-
ical connection is the main feature of a graph, the edges can be given the
geometry of the corresponding road segment (for example, its centre line)
such that the graph represents both the geometry and the topology of the
road network. Examples of standard that model roads this way are given in
Section 2.4.

There are multiple ways graphs can be stored. In essence, the information
that needs to be stored is what nodes are connected to each other. One way
to do this is with an edge list. This list contains a pair of node indices for
each pair of connected nodes. The mathematical notation of an edge set

7

8 related work

Figure 2.1: An example of a graph with three vertices and two edges.

E of the graph depicted in Figure 2.1 is E = {(v0, v1), (v1, v2)}. This is a
very straightforward way to represent a graph, however it can be inefficient
when checking for existence of a specific edge [West, 2000]. In that case one
has to go through the entire list.

A second way to store graphs is with an adjacency matrix. An adjacency
matrix A is an n × n-matrix, where n = |V|, the number of nodes in the
graph. The entries of A are either zero or one, where Ai,j = 1 when i is
adjacent to j, and zero otherwise. This format makes checking for adjacency
an easy task. The adjacency matrix for the graph in Figure 2.1 is

A =


0 1 0

1 0 1

0 1 0


However, when a graph is sparse, meaning that the ratio between edges

and nodes is low, this matrix becomes a very verbose way to store little
information [West, 2000].

A third way to store graphs is to use an adjacency list, where each node
index points to the indices of adjacent nodes. For the graph in Figure 2.1 an
adjacency list looks like [[v1], [v0, v2], [v1]]. Adjacency lists also result in easy
look-ups, but do not require big data structures for sparse graphs. When
one employs graphs for solely connectivity purposes, using adjacency lists
are thus a good option for storage [West, 2000]. However, as will be seen
in sections 2.4 and 2.5, edges in road networks represent real world road
features, with a corresponding geometry. These edges are thus explicitly
stored, and just having pointers for node connectivity does not say any-
thing about edge geometry. Therefore, graphs represented road networks
are probably best modelled using edge lists. This gives way to modelling
road segments as features and not just connections.

2.1.3 Linear referencing

Linear referencing is a technique used by institutions that work with lin-
ear features, such as transport or utility networks. It is used to reference
a position or measure along these linear features [Curtin et al., 2007]. A
linear referencing method (LRM) is used to identify a certain location with
respect to a known point. That includes being able to identify the point,
having a measurement from that point, and a direction in which to measure
[Scarponcini, 2002]. A linear referencing system (LRS) uses such LRMs to
store and maintain information on events and features that occur along the
linear features of a network. Some applications that use LRSs are mapping

2.1 modelling of roads 9

accidents or incidents along a road, or recording locations of objects such as
traffic signs and streetlights [Curtin et al., 2007].

Linear referencing has certain benefits. Having a location in reference to
something that can be easily identified, as opposed to a location specified
with coordinates, can speed up the localization process [Curtin et al., 2007].
The objects used to reference the location to are often have a real world
counterpart like kilometre markers. Emergency services use locations based
on their position relative to kilometre markers along the road because it is
the fastest way to know where to go [Werkgroep Wegen, 2019a].

On the modelling side, another benefit of linear referencing is that it
will not lead to a highly segmented linear network based on differences
in attribute values. When an LRS is not implemented, modelling attribute
changes in a network will lead to a new segment each time one of the at-
tributes changes. Having an LRS as an organization means having to main-
tain only a relatively small dataset, which leads to reduced redundancy
and less chance of errors in the data [Curtin et al., 2007]. A drawback of
implementing an LRS is the fact that one would have to implement such a
system over the data, whereas a node-based approach to modelling attribute
changes does not require an added structure.

2.1.4 Complexity of intersections

Intersections are the parts of the road infrastructure where multiple roads
meet and road users are able to make a choice in direction of further move-
ment. For this reason, intersections have attributes other parts of the road
network do not have. These attributes can include information about the
number of incident roads or information about restrictions on turning move-
ments. In linear representations, intersections also play an important role
as nodes in the graph. They are critical points for road networks as traffic
flows converge at these points [Quartieri et al., 2009]. For these reasons,
intersections can be considered as the most complex part of road networks.

Different applications will need very different specifications for intersec-
tions. Thus there is a need to specify what types of intersections there are,
and how to model these with respect to the different levels of detail (see
Section 2.2) and the linear and areal representation types. Intersections can
be very different from each other topologically, for example T-junctions vs.
X-junctions vs. roundabouts [Şerbu et al., 2014]. How to model these differ-
ent types through different LoDs and different representation in a coherent
manner is still an open question.

Intersections can be classified in different ways. Şerbu et al. [2014] classify
intersections by the amount of roads that connect and in what configuration.
They specify between T-intersections, cross-intersections (four legs), intersec-
tions with more than four legs but not circular, Y-intersections, roundabouts
and others, see Figure 2.2. Quartieri et al. [2009] do not classify intersections
by the amount and configuration of roads converging but by how traffic flow
is controlled. They categorise intersections as planar intersection (subdi-
vided in linear intersections and roundabouts) without traffic lights, planar
crossings with traffic lights and non-planar intersections, which basically
consists of overpasses (for example most highway junctions). Thus intersec-
tions can be subdivided into different classes in different ways, depending
on the supposed application. How these distinctions can be modelled in a
3D city model has up until now not been researched.

10 related work

Figure 2.2: Different types of intersection categories, by Şerbu et al. [2014].

Thomson and Richardson [1999] write about the generalization of road
networks. They describe the generalization process as basically removing
edges from the graph one by one with respect to certain importance mea-
sures. As seen above, intersections can take many forms and different con-
figurations. This makes intersections challenging in the generalization con-
text, as removing edges should result in a network that is still topologically
correct, and also “makes sense” with respect to the desired generalised out-
put.

2.2 3d city models

In the last fifteen years, there has been an increase in the construction and
use of 3D city models [Baig and Rahman, 2012; Stoter et al., 2015]. These
models consist of digital representations of three-dimensional urban areas
and landscapes, including buildings, roads, vegetation and water. 3D (city)
models were previously mostly used for visualisation purposes in the field
of computer graphics [Biljecki et al., 2016]. However, 3D city models are
nowadays increasingly used for many other applications, including spatial
analysis, urban planning, navigation and simulation purposes, see for ex-
ample Baig and Rahman [2012], Biljecki et al. [2015], Stoter et al. [2013] and
Kolbe [2009].

Central to 3D city models is the concept of LoD. This concept originated
in computer graphics [Luebke et al., 2003], where it represents the geomet-
ric complexity and detail of certain objects as they move relative to the
viewer [Gröger and Plümer, 2012]. In 3D city models, the LoD represents
the model’s usability and how well it approximates the real world features
[Biljecki et al., 2016]. This concept does not only deal with the geometric
aspects like in computer graphics, but also with the semantic ones. Thus,

2.3 citygml 11

an increasing LoD implies increasing geometric accuracy and semantic rich-
ness [Gröger and Plümer, 2012].

Level of detail can also be seen as an acquisition model and product spec-
ification [Biljecki et al., 2013]. When the LoDs are clearly defined, data
providers and their clients can use LoDs as a way to communicate on their
data needs. Furthermore, where LoD in 3D graphics just to visualization
and mesh complexity, in 3D city models it is also used as a way to model
multiple application requirements [Biljecki et al., 2013]. This means that
LoDs are defined such that for use cases it is clear which LoD they need
for their purpose. In this sense, having a higher LoD does not mean that a
model should be seen as “better”, as it might not fit the user’s data need.
Also, more detailed models are likely to be more error-prone. Having a
less detailed model can thus be desirable, also given that they can be con-
siderably smaller in storage size, and better with respect to computation
performance [Labetski et al., 2017].

2.3 citygml
CityGML is a data model and storage format maintained by the OGC for stor-
ing and representing 3D city models [Open Geospatial Consortium, 2012b].
It was developed to have a standardised way of defining the entities, at-
tributes and relations of 3D city models [Open Geospatial Consortium, 2012b].
The current version of CityGML is CityGML 2.0. In CityGML, the geome-
try and the semantics of objects are both represented in a spatio-semantic
model [Kolbe, 2009]. This model is built such that it has spatio-semantic
coherence, in which geometries know “what” they are and semantic en-
tities know “where” they are [Stadler and Kolbe, 2007]. These semantics
may also define hierarchical structures in the objects [Ledoux et al., 2019].
This makes CityGML very suitable for storing 3D city models. CityGML
consists of a core module and thematic modules. These are used to rep-
resent the different types of objects, like buildings, roads, water and so on.
These data models are conceptually defined by a series of Unified Modelling
Language (UML) diagrams [Open Geospatial Consortium, 2012a]. CityGML
data files are XML-based encodings of these data models. The CityGML
data model is thus schematically defined by XML schema files (XSD) files.
The CityGML data model can be extended by using Application Domain
Extensions (ADEs). These extensions are also modelled with XSD files. They
allow users to define their own objects and attributes to add to the data
model [Kolbe, 2009].

2.3.1 LoD specification

CityGML differentiates between five LoDs, ranging from LoD0 to LoD4,
where LoD4 is geometrically and semantically the most elaborate. Each
thematic module has its own LoD specification. The LoD specification for
buildings is the most elaborate and, probably, the most discussed, see for
example Baig and Rahman [2012], Gröger and Plümer [2012], Biljecki et al.
[2016], Labetski et al. [2017] and Löwner and Gröger [2016]. For buildings,
LoD0 actually refers to a 2.5D digital terrain model. Buildings in LoD1 are
block models, footprints extruded to a height value. LoD2 allows one to
add more complex roof structures and buildings parts, and LoD3 should
denote a complete architectural model of the external part of the buildings.

12 related work

Figure 2.3: Schematic overview of CityGML building LoDs [Häfele, 2011]. LoD0 is
omitted.

LoD4 is LoD3 with the internal objects added [Kolbe, 2009]. A schematic
overview of LoD1-4 for buildings is shown in Figure 2.3. Buildings make
up the bulk of actual 3D objects in 3D city models. Thus it can be expected
that most research has been done on the LoD specification of buildings [Beil
and Kolbe, 2017]. However, given that different LoDs are closely tied to its
applications, other thematic models of CityGML might also benefit from a
more established LoD specification.

Biljecki et al. [2013] identify certain shortcomings in the CityGML LoD
specification. The amount of semantics required per LoD can be quite min-
imal, and there is not a normative requirement for additional semantics
beyond that. At the same time, the LoDs sometimes prescribe an upper
limit for LoDs, instead of a base requirement. For example, LoD2 buildings
should not contain openings like windows, but it is not stated that LoD3

buildings have to contain openings [Biljecki et al., 2016]. There does not seem
to be a uniform approach that drives the definition of LoDs [Biljecki et al.,
2013]. The LoDs are generated regardless of the application. Biljecki et al.
[2013] specify different factors that form properties of LoDs, like presence
of certain CityObjects, geometric complexity, positional accuracy, depth of
semantic hierarchy, and so on. They define level of detail of a 3D city model
as “a quality measure of the model which has a minimum and sufficient
and sensible mix of the amount of each factor for usable applications” [Bil-
jecki et al., 2013, p. 69]. A part of this definition is that it that LoDs must
provide clear constraints per LoD. This definition has been used to define a
new LoD specification for buildings [Biljecki et al., 2016].

2.3.2 Representation of roads

In CityGML, roads are modelled using the Transportation module. In
contrast to buildings, roads in CityGML are not modelled with volumes
and can therefore be modelled using two-dimensional geometries [Open
Geospatial Consortium, 2012b]. Given that road data is often used to find
out what can be reached from where, road networks are often modelled
using at most one-dimensional objects, namely nodes and lines [Beil and
Kolbe, 2017]. For other applications, such as serious games, driving sim-
ulation and autonomous driving cars, areal representations might be used.
In research devoted to areal road models, little attention was paid to the
actual geometrically correct modelling of real-world roads [Nguyen et al.,

2.3 citygml 13

2016]. CityGML 2.0 combines the above in its LoD specification for roads
[Open Geospatial Consortium, 2012b], where LoD0 represents a line repre-
sentation and LoD1 and higher represents the areal modelling. In Figure 1.2
a schematic overview of the different LoDs is given. As seen in the figure,
there are no specified differences between LoD2-4. The only difference be-
tween LoD1 and LoD2 is that the road is subdivided into different thematic
road parts. Also, this LoD specification implies that the areal representation
is more detailed than the linear network representation. While geometri-
cally this is correct, an elaborate network might contain much more useful
information than just a sequence of LoD1 surfaces. Furthermore, having
just one LoD for linear representations makes it difficult to specify between
networks of different level of detail. Lastly, the linear representation is made
with a GeometricComplex, consisting of linestrings. Nodes are not explicitly
present in the linear model, therefore it does not constitute a full network.
Thus, there is no way to model intersections linearly [Open Geospatial Con-
sortium, 2012b].

Labetski et al. [2018] reviewed different road standards and concluded
that the LoD specification for roads in CityGML is not well-established.
They also concluded that in the other road standards there is a focus on
linear road representations. Beil and Kolbe [2017] also reviewed road stan-
dards and CityGML 2.0, and provided a starting point for an improvement
of the transportation module. Among other proposed changes, they pro-
pose adaptations to the LoD specification. In their proposal, the linear
representation is not restricted to just LoD0, but it can also be modelled
up to LoD3 with increasing complexity, similar to the areal representation.
This is schematically represented in Figure 2.4. At LoD1, the areal repre-
sentation covers the entire road, and at LoD2 it is divided up in different
TrafficAreas. The corresponding LoD network follows this segmentation.
They also remove LoD4 from the model, as this is only used to add inside
features of objects and this does not apply to roads.

Beil and Kolbe [2017] also introduce the concept of a road section. Now
in CityGML it is possible to model a whole road network with just one Road

object. Sections make it possible to subdivide Road elements into smaller
pieces (for example, so that no sections cross other sections, but just touch).
Then sections with a shared attribute (e.g. street name) can be aggregated
to retrieve the whole Road element [Beil and Kolbe, 2017].

After reviewing the proposed changes of Beil and Kolbe [2017] and con-
sulting with government agencies for a needs analysis, Labetski et al. [2018]
proposed more changes to the CityGML transportation module. One pro-
posed change is to distinguish between roads, carriageways and lanes at
LoD3, shown schematically in Figure 2.5). Here, a road represents the whole
area which permits traffic flow, a carriageway the part with the same traffic
direction and the lanes the individual driving lanes. They also agree to omit
LoD4 from the transportation module. This results is a more distinct LoD
specification than seen in Figure 1.2.

Labetski et al. [2018] propose four different LoDs for road networks. Given
that LoD0 is originally the only LoD which models linear representations of
roads, the four network LoDs are named LoD0.0 through LoD0.3. LoD0.0
is the original LoD0: linear roads modelled with solely lines. From LoD0.1,
nodes are introduced such that a network can be formed. From LoD0.1 to
LoD0.3, the complexity of the network increasing similarly as to that pro-
posed in the areal representation [Labetski et al., 2018], see Figure 2.7. The
idea is to increase the network complexity akin to the areal representation in

14 related work

Figure 2.4: Improvement of LoD specification by Beil and Kolbe [2017].

(a) LoD1 (b) LoD2 (c) LoD3

Figure 2.5: Roads, carriageways and lanes as proposed by Labetski et al. [2018].

the same corresponding LoD. This means that, for instance, in LoD0.3 each
driving lane would be modelled with its own line. From now on, when
referring to the LoD specification of linear road representation, I will write
LoD0.0 – LoD0.3. Moreover, given that most linear road data applications
use network data, LoD0.0 is not really considered in this research. Thus,
often I will refer only to LoD1 – LoD3 and LoD0.1 – LoD0.3.

The proposal to split up geometries according to carriageways and lanes
at higher LoDs needs a discussion on how to define these concepts [Van Ger-
wen, 2019]. When a dual carriageway highway is modelled, the definition
of both carriageways and lanes are clear. The presence of a median strip
creates an obvious boundary between the carriageways. However, a road
consisting of two lanes – one for each driving direction, like in Figure 2.6 –
does not have two separated carriageways. It is not clear whether the pro-
posed LoD2 carriageway specification focuses on having separate surfaces
for driving directions, or whether these actually need to be physically sepa-
rated.

Another proposed change to the data model by Labetski et al. [2018] is
that intersections are explicitly modelled as a separate class. Tamminga
[2019b] further stresses that the roads in CityGML lack attribute options for

2.3 citygml 15

Figure 2.6: Modelling ambiguity: can the lanes also be considered carriageways?

Figure 2.7: Differentiation of network LoDs [Labetski et al., 2018].

lanes. Also, he identifies the need to link the linear and areal representations
of the same object to each other. This should be easier with the proposed
LoD specifications for both linear and areal road representation types by
Labetski et al. [2018]. It is not yet researched how these proposed changes
should be implemented or encoded in CityGML.

2.3.3 CityJSON

CityJSON is a data format for encoding (a subset of) the CityGML 2.0 data
model using JavaScript Object Notation [Ledoux et al., 2019]. CityGML is
an XML-based format and can therefore be verbose and complex to work
with. CityJSON flattens out the hierarchical structure of CityGML as much
as possible. By this, CityJSON aims to be much more compact and easier
to work with for programmers. The current version of CityJSON is 1.0
[CityJSON, 2019]. The entire CityGML data model has been encoded in
CityJSON, except for LoD4. The reason for this is that up until now LoD4

datasets have been very rare [Ledoux et al., 2019]. All other LoDs have been
encoded in CityJSON, however sometimes in a different structure, to ensure
the ‘flatness’ of the model. CityJSON also allows extensions of the model.
These extensions are similar to the concept of ADEs in CityGML.

16 related work

The (transportation) data model of CityGML and its encoding in CityJSON
are extensively discussed further in Section 3.1.

2.4 overview of road standards

In this section, current road standards are discussed in order to see how
they represent geometry, topology, semantics, LoD and intersections. This
section is partly based on Beil and Kolbe [2017] and Labetski et al. [2018].
An overview of the standards is shown in Table 2.1.

2.4.1 Geographic Data Files

Geographic Data Files (GDF) is an International Organization for Standard-
ization (ISO) standard which provides a data model and an exchange format
for structured road network data [ISO, 2011]. It also provides other ge-
ographic information needed for applications in intelligent transportation
systems (ITS) [Essen and Hiestermann, 2005]. ITS are systems where new
technologies are used which result in smart and efficient usage of multi-
modal transportation networks [Boxill and Yu, 2000]. Transportation ob-
jects in GDF are modelled in three categories, from level 0 to level 2; these
levels do not correspond to CityGML LoDs. At all three levels, it is es-
sentially a combination of linking road segments to points that represent
intersections. At level 0, roads are represented by straight line segments,
with nodes at both ends of each line segment. At level 1, Road Elements

are ordered lists of level 0 segments which constitute a road between two
junctions. Junctions are defined as the place where three or more Road

Elements meet. At level 2, the road network is composed of Roads and
Intersections. Here, Roads are constructed from level 1 Road Elements,
but it can also combine different carriageways. Intersections can be T- or X-
junctions, or more of complex types like roundabouts or clover-leaf designs.
GDF objects can have many attributes assigned to them, these differ across
the different levels [ISO, 2011].

2.4.2 OpenDRIVE

OpenDRIVE is an open data format, in which road network data is stored
in an XML-based format. It was developed for use in driving simulations,
where the OpenDRIVE road network data interacts with the other objects
which are visualised in the simulation [Dupuis et al., 2010]. In OpenDRIVE,
the road network is modelled using reference lines. These consist of se-
quences of geometric primitives. OpenDRIVE does not have a notion of
LoD. Details regarding the number of lanes are added as attributes. Road
crossings in OpenDRIVE can be modelled in two different ways. Two roads
can be labelled as each other’s predecessor and successor (called standard
linkage), or can be made into a junction. Junctions link in-coming roads
to out-going roads through connecting paths. Junctions are used when the
linkage between two roads can be ambiguous. Junctions then consist of a
connection matrix which indicates the possibilities of entering a road from
another [Dupuis, 2015].

2.4 overview of road standards 17

2.4.3 LandInfra

LandInfra is an OGC standard, short for Land and Infrastructure Concep-
tual Model Standard. LandInfra defines concepts for land and civil engineer-
ing infrastructure applications. This model is mainly used to model data
for exchanging road designs [Scarponcini, 2016]. The base class in Land-
Infra is Facility, which represents an infrastructure facility. Facilities

can be simple or very complex. The Road features are parts of a Facility

that are single segments of roads that are continuous, non-overlapping and
non-branching, although they may contain intersections with other roads.
A Road feature consists of multiple RoadElement features, which specify the
parts of the Road segment. This can for instance be pavement, curb, shoulder,
etc. Roads can be represented by triangular irregular network (TIN) surfaces.
LandInfra does not have a separate class for intersections. It also does not
have a concept of level of detail [Open Geospatial Consortium, 2016].

LandInfra uses alignment, which is a positioning element used for lin-
ear referencing. It consists of geometric segments, mostly 2D linestrings,
along which some form of distance can be measured using a linear refer-
encing method. This can be useful for maintenance operations, for instance.
Road features can have any number of Alignments. Typically, centre lines
of roads have an Alignment. Dual carriageway roads can consist of different
Road features and may thus have different centre lines and corresponding
alignments [Open Geospatial Consortium, 2016].

2.4.4 RoadXML

RoadXML is a road data standard that was originally designed for driv-
ing simulation purposes. It consists of four different layers of information.
The topological layer represents the network and location. The logical layer
represents the significance of the road elements in the environment. The
physical layer represents the physical properties of a road element, like the
road surface. Lastly, the visual layer represents the element’s geometry and
3D representation. The network is built up from different Subnetworks.
These Subnetworks consist of Tracks and Intersections, and these can be
enhanced with the different layers of data [Ducloux, 2016].

A Subnetwork has a Profile which consists of Lanes and LaneBorders.
Intersections are used to connect RoadElements in a Subnetwork. Subnetworks
are joined together using Subnetworkjunctions. These can only connect
two different Tracks, not Intersections. RoadXML does not have a level
of detail concept [Ducloux, 2016].

2.4.5 OpenStreetMap

OpenStreetMap (OSM) is a free online map that anyone can edit. Along
with the map itself, the data gathered from individual contributions from
volunteers is considered the main output [OSM, 2019]. OSM employs a topo-
logical data structure in which physical ground features are modelled. The
data structure consists of four data primitives: Nodes, Ways, Relations

and Tags. Nodes are points with coordinates stored in WGS84. They are
either used to represent point map features, or used to represent Ways. Ways
are ordered lists of Nodes. Ways can represent lines features or, if the Nodes

form a closed loop, polygons. Relations model logical or geographical
relationships between objects. It links Nodes and Ways with certain roles.

18 related work

Standard
G

eom
etry

Topology
Sem

antics
/A

ttributes
LoD

concept
Intersections

G
D

F
Linear

N
ode

and
link

at
Level

1,R
oad

and
Intersec-

tion
at

Level
2

A
ttribute

catalogue,
for

R
oadElem

ents
and

Junctions
Three

levels
N

odes
at

level
1,com

-
plex

intersections
at

level
2

O
penD

R
IV

E
O

ne
ref.line

per
road

Predecessors
and

suc-
cessors,no

nodes
Everything

in
relation

to
the

ref.line
N

ot
m

odelled
C

onnecting
lines

in
the

Junction
area

LandInfra
A

real,
3D

N
o

A
lignm

ent
through

a
linear

reference
system

N
ot

m
odelled

N
o

R
oadX

M
L

Linear
N

etw
ork

A
ttributes

can
be

added
to

lanes
N

ot
m

odelled
Intersections

of
Subnet-

w
orks

O
SM

Linear,cartographically
as

surfaces
N

odes
and

W
ays

result
in

a
netw

ork

Tag
catalogue,R

ela-
tions

betw
een

N
odes

and
W

ays
N

ot
m

odelled
(C

om
plex)

intersections
m

odelled
w

ith
(m

ulti-
ple)

nodes

ITF
Lane

inform
ation

as
offsets

from
the

Inter-
section

m
iddle

point

Lane
centre

line
m

od-
eled

as
sequence

of
nodes

aw
ay

from
the

C
onflictA

rea

A
ttribute

catalogue
for

intersections,LaneSet
is

an
attribute.LaneSet

has
its

ow
n

attribute
catalogue

N
ot

m
odelled

Intersection
as

C
on-

flictA
rea,w

ith
explic-

itly
m

odelled
turning

lanes

Table
2.1:O

verview
of

road
standards.

2.5 road data in the netherlands 19

Tags are key-value pairs which are always attached to a map feature. They
describe attributes or types of Nodes, Ways and Relations. The possible
values of Tags are agreed upon by the OSM community and the prescribed
use is documented on the Wiki [OSM, 2019].

Roads are modelled using Ways. A road has a Tag with key “Highway”,
and the road type is determined by the value of the Tag. The list of possible
values of the “Highway” key is elaborate. The value also determines the
cartographic appearance of the object. Thus where roads appear on the map
as two-dimensional objects, they are modelled by non-closed Ways [OSM,
2019]. Intersections are not separately modelled, but represented by a Node

linking multiple Ways. Highways do have a possible Junction tag, with
which a roundabout can be modelled. Here, roundabouts are modelled
as one way streets with the tag Junction=Roundabout added. All other
attribute information is also added as Tags, for example number of lanes,
driving direction, etc. [OSM, 2019]. OSM does not have different modelling
LoDs.

2.4.6 Intersection Topology Format

Innovations in smart mobility lead to possibilities for communication be-
tween smart traffic lights and vehicles. This communication can be used
to increase flow of traffic and, for example, give priorities to certain emer-
gency vehicles. Further development can also lead to implementations for
automated driving. The Intersection Topology Format (ITF) is a Dutch stan-
dard which gives information on the configuration of intersections [CROW,
2018]. It is mostly based on the MapData (MAP) message [Southwest Re-
search Institute, 2018]. The MAP message is a way for vehicles and smart
traffic controllers to communicate. The message includes complex intersec-
tion descriptions. ITF can be seen as an extension of the MAP message, with
added elements which are relevant in the Netherlands.

MAP messages contain information on one or more intersections. Each
intersection contains one reference point which represents the intersection
(also called the conflict area). Each intersection has a LaneSet, which con-
tains the properties of all the lanes of an intersection, like allowed move-
ments to the other lanes. Each lane is part of an approach, which can be con-
sidered as the whole road incident to the intersection. An intersection lane
is either an ingressApproach lane (incoming) or an egressApproach lane
(outgoing). Each lane has a nodeList, a sequence of point values (stored
as offset from the reference point) used in order to build the centre line of
the lane. Nodes are always sequenced away from the conflict area. Thus
the first node of an ingress lane is positioned at the stop line, while the first
node of an egress lane is positioned at the end of the conflict area. The way
vehicles move through the conflict area is modelled by stating which egress
lanes can be reached from an ingress lane, and that trajectory is modelled
by a sequence of nodes. ITF does not have an LoD specification, its only
LoD is very detailed [CROW, 2018].

2.5 road data in the netherlands
Governmental agencies in the Netherlands provide road data in different
data models, information models and key registers. The most important are
outlined below.

20 related work

2.5.1 BGT / IMGeo

The Basisregistratie Grootschalige Topografie (BGT) is the Dutch key register
for large-scale topography [Van den Brink et al., 2013]. The BGT information
model is Informatiemodel Geografie (IMGeo). Part of IMGeo is mandatory
for all BGT objects. The other part of IMGeo can additionally be used in
order to add many desired attributes to objects if needed. The aim of the
BGT is to describe all objects in the country in 2D, giving a two-dimensional
planar partition. Thus, almost all objects represented in BGT are areal. The
roads are modelled using two classes, Wegdeel and Ondersteunend wegdeel

(analogous to TrafficArea and AuxiliaryTrafficArea from CityGML). These
can then be given a function, e.g. lane of highway or bicycle path, and an
attribute about its physical appearance. The BGT does not have centre lines
and does not give any information about connectivity of roads. Intersec-
tions are thus also not specified. The BGT is expected to expand to 3D geo-
information at a later stage. IMGeo is modelled as an Application Domain
Extension (ADE) of CityGML [Van den Brink et al., 2013].

2.5.2 NWB

The Nationaal Wegenbestand (NWB) is the Dutch national road register for
public roads that are maintained by any of the layers of government. All
streets, footpaths, bicyclepaths or dirt roads are present, as long as they
have a name or a number [Rijkswaterstaat, 2013]. The NWB is a network
representation of the road network of these roads. It was developed as a
base register on which other internal databases can be built. Like GDF, it
consists of links and nodes (Wegvak and Junctie respectively). Roads are
split into a new Wegvak when for example it crosses local government bound-
aries or changes name (becomes another road). Every Wegvak is bookended
by two Juncties. When driving lanes are physically split, they will each
have their own Wegvak. The direction of traffic is specified for each Wegvak.
The Juncties function as intersections in the NWB [Rijkswaterstaat, 2017].

The basic structure of the NWB is thus very basic. The data model
defines many possible attributes for the Wegvakken and Juncties. The
NWB also contains information about so called “hectometerpalen”, marker
posts which are present every 100 meters along most numbered roads in
the Netherlands. Rijkswaterstaat and other Dutch governmental agencies
gather data with respect to these posts. Therefore the NWB supports linear
referencing in order to support integration of these datasets with the NWB
[Rijkswaterstaat, 2013].

2.5.3 Future: central object registration

The Netherlands has a system of different key registers, where information
is gathered once so it can be used many times. There are differences in
definitions and time accuracy between the different key registers, and also
with respect to other data models [Werkgroep Wegen, 2018]. The Dutch
government has therefore started a pilot to explore the possibility of one
coherent object register, in which the real-life objects can also be repre-
sented in 3D. In this scenario, the modelled objects are seen as the base,
instead of the demands of the different key registers. For example, build-
ings are represented the earlier mentioned BGT, but also in the key register
Basisregistratie Adressen en Gebouwen (BAG), for buildings and addresses.

2.6 3d city model road data use cases 21

Areal Linear

LoD1 LoD2 LoD3 LoD0.1 LoD0.2 LoD0.3

Road repair x

De-icing roads x x x x

Disaster management x x

Surface heat monitoring x x

Air quality monitoring x x x x

Visibility analysis x x

Noise mapping x x x x

Traffic light configuration x x

Traffic simulations x x x x

Routing / navigation x x x

Autonomous driving x x

Table 2.2: Road data LoDs needed by potential applications of 3D city models.
LoD0.0 is omitted, given that networks almost always needs nodes.

This leads to having the same object represented twice in key registers, some-
times with slightly different definitions. Meanwhile the purpose of having
these registers is that information only has to be collected once.

One working group was formed which focuses strictly on roads [Werk-
groep Wegen, 2018]. It identifies two types of users, one which is primarily
interested in topography (areal representation) and one which is primarily
interested in topology (lines and nodes). The working group stresses that
these two groups can have need for the other type of representation, and
therefore adds that an integral topography-topology approach is needed for
the coherent object register. The exploration takes current Dutch key reg-
isters and other governmental data models as a starting point [Werkgroep
Wegen, 2018], which were described above.

2.6 3d city model road data use cases

With the growth of the amount of 3D geo-information available, the poten-
tial in using that data for various applications also increases [Stoter et al.,
2013]. Ross [2010] divides 3D use cases into three categories: 1) applications
using solely geometry, 2) applications based on both geometry and seman-
tics, and 3) applications based on ADEs and external data. Biljecki et al.
[2015] note that certain use cases will be a combination of these categories,
especially when geometries are semantically enriched with external data.

Biljecki et al. [2015] have made an extensive state of the art review of
applications of 3D city models. Many of these applications are not related to
roads. Earlier it was established that many road data standards are focused
on linear representation [Labetski et al., 2018]. Given that 3D city models
mostly model roads areally, it is perhaps to be expected that road data use
cases do not employ 3D city models for their application. Still, Labetski
et al. [2018] list potential applications for 3D road data, adapted from Beil
[2017]. They also consulted with governmental agencies. From this, several

22 related work

Figure 2.8: An overview of a road with its cross section. The thematic division below
resembles the proposed LoD3 in Labetski et al. [2018].

applications of road data for use cases like road maintenance and traffic
modelling were identified.

The previously mentioned COR working group [Werkgroep Wegen, 2018]
identified different themes as being users of road data. These themes are,
among others, mobility (traffic and (public) transport, logistics, hazardous
materials), parking, maintenance, water management, air quality and noise,
order and safety, information and communication. As part of their research
into the central object registration, for these themes they explored which
representation types of roads were needed for different applications [Werk-
groep Wegen, 2019b]. An areal representation of roads is suitable for road
maintenance, while a network is needed for routing. However, for many
applications they identify a need for a combination of both representation
types. These use cases include information systems for emergency vehicles,
de-icing of roads, noise analysis, air quality analysis and traffic modelling
[Werkgroep Wegen, 2019a].

An overview of potential use cases for road data in 3D city models iden-
tified in the explorations above is given in Table 2.2. For each use case, the
presumed needed LoD(s) of the roads is given. The needed LoDs marked
in this table are not definite. For example, noise mapping is said to use
LoD1, LoD2, LoD3 and LoD0.3. All three areal LoDs are given, because
modelling noise propagation could be done with models in all three LoDs.
However, using a higher areal LoD will probably result in a more accurate
result (assuming the data geometric data is also more accurate). For exam-
ple, when a road is modelled with high geometric and semantic level of
detail, as in Figure 2.8, the location of the cause of the noise can be more ac-
curately determined. LoD0.3 is also mentioned, because adding a high LoD
road network can also aid in locating where the most heavy traffic passes.
Thus, the choice of LoD may depend on what data is available, and also the
scale of the simulation one wants to run. One might want to use a low LoD
dataset to map noise propagation for a large area.

2.6 3d city model road data use cases 23

In addition the working group identified some use cases that could benefit
from a volumetric road representation. These mostly concern road, intersec-
tion and bridge design and maintenance, in addition to modelling service
networks [Werkgroep Wegen, 2019a]. As mentioned in Section 1.3, a volu-
metric approach to modelling roads is not further explored in this thesis.

3 ROAD DATA NEEDS ANALYS IS

In this chapter I will try to answer the first two sub-questions outlined in
Section 1.2:

• What are use cases of roads and intersections in 3D city models and
their road data needs?

• How do other road standards model these data needs?

In the previous chapter, several shortcomings in how roads and intersections
are currently modelled in CityGML were set out. The LoD specification for
roads is not sufficient for various applications [Labetski et al., 2018]. The
LoDs of CityGML should be defined such that they serve as a model for a
certain set of use cases [Biljecki et al., 2013]. In Section 2.6 a summary has
been given into use cases for road data in 3D city models, partly answering
the first sub-question. It followed that while there are applications which
require network representations at various levels of detail, it is currently not
possible to model this in CityGML. Given that the areal LoDs are already
more developed, I have decided to focus mainly on use cases which use
road networks. In total I will check the data needs of three different, broadly
defined, use cases: transport and traffic modelling, car navigation and road
maintenance. As we will see, the latter use case relies on both representation
types. This use case has been selected to try to incorporate the idea of a
central object registration, mentioned in Section 2.5.3.

The data needs of the use cases are extracted through literature review.
After, these data needs are compared to how other road standards (set
out in Section 2.4) model these data needs. This will answer the second
sub-question. The comparison will lead to modelling ideas which may be
used for implementing the data needs in Chapter 4. The data need analysis
and standard comparison are done per use case in Section 3.2 through Sec-
tion 3.4. The data needs are also compared to what is already modelled in
the CityGML transportation module data model. To be able to do that, first
the CityGML transportation data model and the data encodings of CityGML
and CityJSON are explored below in Section 3.1.

3.1 citygml data model
In this section the CityGML transportation data model will be examined.
Other modules that contain mobility-related objects are also checked. The
goal is to understand how roads and related objects are modelled, and to
identify current shortcomings in modelling these objects. Moreover, the
encoding of these objects in CityJSON is assessed and compared with how
it is encoded in CityGML. Finally I compare the extension possibilities of
both encodings. The goals of this section are: to understand how roads and
related objects are modelled, to identify current shortcomings in modelling

25

26 road data needs analysis

these objects (which may be already known), and I want to compare the use
case data needs to what is now possible in the CityGML data model.

3.1.1 Transportation module

CityGML is partitioned into different modules. It has a Core module, in
which the base class of the CityObject is defined. The UML diagram of
the Core is found in Appendix A. City models in CityGML consist of a col-
lection of these CityObjects. All objects are modelled as subclasses of the
abstract CityObject type. CityObjects have as attributes “class”, “function”
and “usage”. Next to the core module, CityGML has thematic modules
that represent the subclasses of the CityObjects. These subclasses repre-
sent buildings, water, vegetation, transportation, and so on. As the thematic
classes are subclasses of the CityObject, thematic objects will inherit the
attributes of the CityObject type [Kolbe, 2009].

One of the thematic modules of CityGML is transportation. Its UML
diagram is shown in Figure 3.1. This module enables one to model infras-
tructural objects like roads, squares and railway lines. The main class in this
module is the TransportationComplex. A TransportationComplex is an ag-
gregation of TrafficAreas and AuxiliaryTrafficAreas. TrafficAreas are
representations of those objects that are used for hosting traffic. Thus they
represent driving lanes, pavements, cycle lanes etc. AuxiliaryTrafficAreas
describe the other elements in roads like kerbstones and patches of vegeta-
tion between two carriageways [Open Geospatial Consortium, 2012b]. A
schematic overview of this division is shown in Figure 3.2.
TransportationComplexes can be thematically divided into subclasses

Railway, Road, Square and Track. It is a subclass of CityObject, and
therefore inherits the attributes “class”, “function” and “usage”. Here, “class”
denotes the classification of the objects. “Function” describes the purpose of
the objects (for example highway, airport, bicycle lane), while “usage” might
be used if the actual usage of the object differs from the original intended
use. Both “function” and “usage” may be used multiple times per feature.
TrafficArea and AuxiliaryTrafficArea both also have the attribute “sur-
faceMaterial”, in which the surface of the modelled object is described. The
OGC prescribes enumerated code lists which state possible values for the
three attributes [Open Geospatial Consortium, 2012b].

The LoD specification for transportation objects states that LoD0 has a
linear representation of the objects. Here, the TransportationComplex is
modelled with a GeometricComplex. At LoD1, the TransportationComplex

is represented by one MultiSurface, embedded in three-dimensional space.
From LoD2 and higher, the TransportationComplexes become aggregates
of the TrafficAreas and AuxiliaryTrafficAreas. The latter two are then
again modelled by single MultiSurfaces [Open Geospatial Consortium, 2012b].
An example of a road object in CityGML is given in Figure 3.3.

3.1.2 Bridges and tunnels

Road networks also include bridges and tunnels. In CityGML, these ob-
jects each have their own thematic module, which are quite elaborate. The
Bridge module is similar to the building module in LoD specification. LoD1

is a footprint extruded to a certain height, where LoD2 and LoD3 have
increasing geometrical and semantic detail. LoD4 includes interior struc-
tures. As Bridge is a subclass of CityObject, it also has attributes “class”,

3.1 citygml data model 27

Figure
3.1:U

M
L

diagram
of

the
Transportation

m
odule

of
C

ityG
M

L
[O

pen
G

eospatialC
onsortium

,
2

0
1

2b].

28 road data needs analysis

Figure 3.2: Subdivision of a road in the CityGML transportation module.

<core:cityObjectMember>

<tran:TrafficArea gml:id="_A299D47AD4E6D2BB7E0532B0B5B0AE93E">

<core:creationDate>2014-02-13</core:creationDate>

<tran:class>local carriageway</tran:class>

<tran:surfaceMaterial>surfaced pavement</tran:surfaceMaterial>

<tran:lod2MultiSurface>

<gml:MultiSurface srsName="EPSG:7415" srsDimension="3">

<gml:surfaceMember>

<gml:Polygon>

<gml:exterior>

<gml:LinearRing>

<gml:posList>94273.344 463812.831 0.6688626441047193

94260.472 463809.828 0.583103089885288 94272.374

463807.149 0.6979061812650841 94273.344 463812.831

0.6688626441047193</gml:posList>

</gml:LinearRing>

</gml:exterior>

</gml:Polygon>

</gml:surfaceMember>

<gml:surfaceMember>

<gml:Polygon>

<gml:exterior>

<gml:LinearRing>

<gml:posList>94261.624 463815.323 0.5593409338157872

94260.472 463809.828 0.583103089885288 94273.344

463812.831 0.6688626441047193 94261.624 463815.323

0.5593409338157872</gml:posList>

</gml:LinearRing>

</gml:exterior>

</gml:Polygon>

</gml:surfaceMember>

</gml:MultiSurface>

</tran:lod2MultiSurface>

</tran:TrafficArea>

</core:cityObjectMember>

Figure 3.3: Example of an encoding of a road object in CityGML.

3.1 citygml data model 29

“function” and “usage”. The attribute “function” may describe whether the
bridge is used for railway transport, pedestrians etc. These values are again
given in code lists maintained by the OGC. From this attribute the type of
transportation usage can be inferred. At LoD2 and higher, the traffic area of
a bridge may be modelled with an OuterFloorSurface. However, these sur-
faces do not contain any more information which pertains to transportation
infrastructure [Open Geospatial Consortium, 2012b].

The thematic module for tunnels is also somewhat similar to that of build-
ings. A Tunnel can be subdivided into TunnelParts. Again, LoD1 is a block
model, with an extruded footprint, LoD2 and LoD3 are more detailed ver-
sions of the exterior, and LoD4 contains the interior. One could argue that
the interior is the most important part of a tunnel when modelling. However,
for consistency reasons it was decided that the interior is only modelled at
LoD4, without representations at other LoDs. This can be done by using the
class HollowSpace. Here, FloorSurface may be used to model the trans-
portation infrastructure object at the “bottom” of the inside of the tunnel.
This corresponds to the road surface. Again, the attribute “function” in-
herited from the superclass CityObject can say something about the traffic
mode that uses the tunnel [Open Geospatial Consortium, 2012b].

3.1.3 CityFurniture

Traffic lights or bus stops are examples of objects that can be of influence
on transportation. These immovable objects can be modelled using the the-
matic module CityFurniture. The model only describes that a CityFurniture

has a geometry at an LoD, and that it inherits the attributes “class”, “func-
tion” and “usage”. The code list provided by the OGC is extensive, but
will not provide details on, for example, how a traffic light works, or how
it is connected to the road. This information would have to be provided
externally [Open Geospatial Consortium, 2012b].

3.1.4 Extending CityGML: Application Domain Extensions

Despite the availability of the thematic modules, in practice it is often nec-
essary to store extra attributes which are not represented in CityGML, or
objects that do not belong to any of the thematic classes already defined.
There are two ways to extend CityGML in order to incorporate these extra
features [Kolbe, 2009]. First, one can use the thematic extension module
Generics. This enables one to add GenericAttributes to the CityObject

core. These are name-value pairs which can be freely chosen and may
consist of many data types (string, integer, double, etc.). Because they
are defined as attributes of the CityObject, all thematic subclasses also in-
herit these attributes. In Generics one can also make GenericCityObjects,
where the class, function and usage can be defined by the user. Geometries
can be assigned to an LoD of choice.

Using generics has some downsides. CityGML is an XML-based standard
and thus uses XML schema files (XSD files) to define the structure of the files.
When one uses generics, they go outside the scope of the XSD files. Thus, it
may for instance impossible to validate a certain CityGML file, or a parser
may skip the added Generics. When added domain specific information
is well structured, CityGML can also be extended by using ADEs. ADEs
specify the extension of the CityGML data model in an XSD file and in a

30 road data needs analysis

UML diagram. These can include adding new properties to existing classes
or defining new feature classes [Open Geospatial Consortium, 2012b].

Biljecki et al. [2018] have made an overview of CityGML ADEs and the de-
velopments surrounding them. ADEs have been part of CityGML since the
beginning of the project. It has received much focus, and many ADEs have
been developed for CityGML. Developement of ADEs has been application
driven, and has stemmed from the need for specific semantic enrichment
of the modelled objects. ADEs have enabled the CityGML data model to
remain relatively “light” [Biljecki et al., 2018]. Another way to look at it is
that ADEs add complexity to the data model. This can also be seen as a
negative. A related downside of ADEs, is that often ADEs cannot be fully
interpreted by software [Biljecki et al., 2018]. The added schema with its
verbose XML structure means that existing software is not easily modified
to incorporate parsing of the ADE.

3.1.5 Proposed additions to Transportation module

Adaptations to the Transportation module of CityGML have been proposed.
This has been set out in Section 2.3.2. Here I will set out how this is suppos-
edly modelled in the CityGML data model. Beil and Kolbe [2017] propose
to change the LoD specification of the module. They propose to have only
four LoDs (0-3) instead of five, for both the linear and areal representation
of the transportation objects. Labetski et al. [2018] worked this out further.
At LoD0 only the lowest LoD linear representation is present. LoD1 con-
tains the same linear representation as LoD1, but also including an areal
representation for the whole TransportationComplex. LoD2 has separate
TrafficAreas for the different driving directions (carriageways) and its cor-
responding centre lines make up the lines. LoD3 has separate TrafficAreas

for each driving lane and again the centre lines as the linear representation.
Labetski et al. [2018] also introduce a new feature class Section. An ag-
gregation of Sections can make up one of the four thematic subclasses
Road, Rail, Track and Square. The idea of Sections is that a road can be
modelled as one TransportationComplex while still detailing the changing
attributes inside the road itself. Also, this makes possible that a section can
be part of multiple roads.

Labetski et al. [2018] propose more changes. Whereas the linear repre-
sentation in CityGML is modelled by using a GeometricComplex, how to
do this is not specified. Also, it does not limit one to using just lines and
points. Therefore it is proposed to explicitly model the linear representation
by using just lines and points. This also makes the use of nodes explicit,
which might be needed for applications which rely on a graph representa-
tion. They propose to make the use of nodes explicit from LoD1 upwards.
They also propose to add stop lines, which indicate where a car should
stop at an intersection. Intersections also should be modelled as a sepa-
rate feature class, which describes its geometry. It can then be linked to
its corresponding TrafficAreas, AuxiliaryTrafficAreas, stop lines and
CityFurniture by using XLinks.

3.1.6 CityJSON encoding of CityGML data model

In Section 2.3.3, CityJSON was briefly introduced. CityJSON is a JSON-
based exchange format for the CityGML data model [Ledoux et al., 2019].
A CityJSON file contains a CityJSON object, which represents a 3D city

3.1 citygml data model 31

{

"type": "CityJSON",

"version": "1.0",

"CityObjects": {

"id1": {

"type": ...,

"attributes": {

...

},

"geometry": [{

"type": ...,

"lod": ...,

"boundaries": ...

}]

},

},

"vertices": [

...

]

}

Figure 3.4: Schematic overview of CityJSON structure

model. This 3D city model is a collection of features which are defined in
the CityGML data model. The CityJSON object in the file has one member:
“CityObjects”. This member contains a collection of key value pairs, one
pair for each object modelled, for a schematic overview see Figure 3.4. Here,
the key is the id of the object, and the value contains the information of the
CityObject. A CityJSON object also contains the member “Vertices”, which
is an array of coordinates of all vertices in the model. In the CityObjects,
the vertices are not explicitly stored, but pointers are used where they refer
to the index of the vertex in the “Vertices” array. This is in contrast to
CityGML, where vertices are always explicitly stored [Ledoux et al., 2019].

The above is mandatory in each CityJSON file. A CityJSON file can ad-
ditionally have members representing the metadata, the transform informa-
tion or extensions [Ledoux et al., 2019].

CityGML has quite a hierarchical structure [Open Geospatial Consortium,
2012b]. The aim of the CityJSON encoding is to flatten out the data struc-
ture [Ledoux et al., 2019]. CityJSON differentiates between first-level and
second-level CityObjects. Second-level objects are those that need to have
a “parent” to exist. CityObjects have a member “Geometry”, of which
the value is an array containing zero or more geometry objects. If there is
more than one geometry object, it is used to model the same object at dif-
ferent LoDs. CityObjects may have a member “Attributes”, containing the
attributes code listed by the CityGML data model.

Because of the flattened out structure of CityJSON, the class Transportation
Complex is not present [CityJSON, 2019]. CityObjects are directly consid-
ered to be a Road, Railway or TransportSquare. Track is omitted as it
can be modelled as a Road with a certain attribute. These three classes can
subsequently be modelled with TrafficAreas and AuxiliaryTrafficAreas.
This is done by using semantic surface objects. These semantic surfaces are
the method with which CityJSON assigns the semantics to the different sur-
faces that model CityObjects [CityJSON, 2019]. A geometry object can
have a member “Semantics”, whose values are the properties “Surfaces”
and “Values”. “Surfaces” contains the different semantic types occurring in
that geometry, and “Values” contains an array which has for each boundary
representation (BRep) surface a pointer to which semantic surface belongs to

32 road data needs analysis

"ma_rue": {

"type": "Road",

"geometry": [{

"type": "MultiSurface",

"lod": 2,

"boundaries": [

[[0, 3, 2, 1, 4]], [[4, 5, 6, 666, 12]], [[0, 1, 5]], [[20, 21, 75]]

],

"semantics": {

"surfaces": [

{

"type": "TrafficArea",

"surfaceMaterial": ["asphalt"],

"function": "road"

},

{

"type": "AuxiliaryTrafficArea",

"function": "green areas"

},

{

"type": "TrafficArea",

"surfaceMaterial": ["dirt"],

"function": "road"

}

],

"values": [0, 1, null, 2]

}

}]

}

Figure 3.5: Example of an areal Road object in CityJSON, adapted from CityJSON
[2019].

Figure 3.6: Figure showing a road with different surfaces modelled as semantic sur-
face objects, corresponding to Figure 3.5.

it [Ledoux et al., 2019]. This modelling technique is efficient when surfaces
are triangulated. In that case, many small surfaces that make up a Multi-
Surface or CompositeSurface will have the same semantics. By defining the
semantic type once and using pointers to the surface array, this will results
in less redundant data [CityJSON, 2019].

Roads are modelled with either a MultiSurface or a CompositeSurface.
The semantics that make up the main geometry (TrafficArea or Auxiliary
TrafficArea, for example) are then thus specified per sub-surface. An ex-
ample of what a road CityObject would look like in a CityJSON data file
is given in Figure 3.5. A very schematic overview of what that road object
could look like is given in Figure 3.6.

Note that the CityObject member “Attributes” relates to the whole City

Object, while additional attributes can also be defined in the semantic sur-
face, as in Figure 3.5. This makes it possible to retain some semantic hierar-
chy in a flattened structure.

LoD4 is currently not implemented in CityJSON. This means that the
inside of a Tunnel cannot be modelled yet.

3.1 citygml data model 33

<bldg:Building>

<bldg:lod2Solid>

<gml:surfaceMember>

<gml:OrientableSurface orientation="-">

<gml:baseSurface xlink:href="#wallSurface4711"/>

</gml:OrientableSurface>

</gml:surfaceMember>

...

</bldg:lod2Solid>

</bldg:Building>

Figure 3.7: A surface of a Building object is modelled using an XLink [Open
Geospatial Consortium, 2012b]. It refers to the object ID of another poly-
gon, defined elsewhere in the data file.

3.1.7 Topology in CityGML and CityJSON

For many applications of 3D city models, having a topologically correct
model is important [Kolbe, 2009]. In CityGML, it is possible to construct
a topological relationship using XLinks. With XLinks, one object references
another object in the header of an object. The XLink type specifies what type
of relationship the objects have. A small example is shown in Figure 3.7. In
practice, this is seldom used [Ledoux, 2019].

CityJSON does not currently provide a standardised way to reference
other objects. In some instances, with second-level CityObjects, a parent-
child relationship is specified. CityJSON does make it easier to construct
topologically correct 3D city models. In CityGML, every geometry has its
own list of coordinates. This can lead to topological errors. In CityJSON,
vertices need to be stored only once, and can be reused by different geome-
tries [Ledoux et al., 2019]. However, there is no method for constructing
a graph from distinct lines and points. There are CityObject classes that
permit these geometric primitives, but a method to link these has not yet
been developed [CityJSON, 2019].

3.1.8 Extending CityJSON

In contrast to CityGML, one can add attributes or features to CityJSON files
without documenting this in schemas [Ledoux et al., 2019]. The CityJSON
validator, part of CityJSON In/Out (cjio), a Python command line interface
for CityJSON files, will not consider the file invalid, but it will return a
warning. This is part of the “schema-less” philosophy of CityJSON. How-
ever, these additions to the data model may also be documented formally,
such that it will not trigger a warning. Where CityGML can be extended
using ADEs, CityJSON uses Extensions to document how the data model
is altered. This is done by using JSON Schemas. These schemas also
double as a tool for validating your extensions. A CityJSON extension
file is a separate JSON file of which the most important members are “ex-
traAttributes”, “extraCityObjects” and “extraRootProperties”. In “extraAt-
tributes”, the schema should specify for which class the attributes are meant,
the name of the attribute (which should start with a “+”) and the possible
values and data types of the attribute object [CityJSON, 2019].

In “extraCityObject”, new CityObject types can be defined. All CityObjects
are defined in the schemas of CityJSON, and because CityJSON does not
do inheritance, if one wants to extend a CityObject, the schema of that
CityObject has to be copied into the schema of the new one. Also, it needs

34 road data needs analysis

to be stated explicitly whether it is a first-level or second-level CityObject
[CityJSON, 2019].

In “extraRootProperties” information can be stored at the root of the
CityJSON document. If one has data which pertains to the whole city model
(for example, the city model covers one neighbourhood and you want to add
neighbourhood statistics), here this data can be added [CityJSON, 2019]. A
further elaboration on the way these schemas are structured is found in
Section 4.2.

3.1.9 Shortcomings in data model and encodings

In this section I have reviewed how roads and related objects are explicitly
modelled using the CityGML and CityJSON encodings of the CityGML data
model. This was done to get familiar with the standard, and to be able to
compare the use case data needs – that will be identified in the next chapter
– to the way they are currently modelled in the CityGML data model. This
review has also resulted in some identified shortcomings in modelling roads
and their related objects, summarised below.

• Roads use bridges and tunnels. There is currently no explicit way to
model a link between a road surface and the corresponding bridge
and tunnel surfaces.

• It was established that the LoD specification for roads is not sufficient.
The improved LoD specification according to Beil and Kolbe [2017]
and Labetski et al. [2018] is not yet incorporated in the data model.

• It is not yet possible to model graphs. The concept of nodes and links
is not present in the data model. CityJSON developers have expressed
the desire to implement this at a later stage [CityJSON, 2019].

• The road data model lacks a concept of road segments, or sections.
These can be used to aggregate short pieces of road into larger road
objects in different ways.

• It is currently not possible to model intersection stop lines in the data
model.

When improving the data model in Chapter 4, these shortcomings can also
be considered, along with the use case data needs identified below.

3.2 use case: transport and traffic mod-
els

In transportation and traffic models real world objects are modelled which
interact to resemble and simulate as closely as possible the transportation
and traffic processes [Tamminga, 2019b]. These models abstract objects like
people, trip destinations like houses and addresses, and different types of
activities. These activities cause a demand for transport services as peo-
ple have activities at different locations. The key to traffic modelling is to
balance this demand with the supply of transportation services in these lo-
cations. The result should be a model which shows how the activities model
throughout the transport infrastructure [Tamminga, 2019b]. Transport and

3.2 use case: transport and traffic models 35

traffic models exist for all modes of transport, however here I will mostly
consider those that concern cars.

Transport models are identified as a use case of 3D city models [Biljecki
et al., 2015], but also as needing two-dimensional data [Labetski et al., 2018]
and road networks [Werkgroep Wegen, 2019b; de Dios Ortúzar and Willum-
sen, 2011]. Research done by Tamminga [2019b] contains an analysis of road
data needs of transport models. This section is partly based on this analy-
sis, and also on a meeting I had with the author [Tamminga, 2019a]. de
Dios Ortúzar and Willumsen [2011] also list data needs for road network
attributes.

3.2.1 Road data needs

Transport and traffic models can exist at various levels of detail [de Dios
Ortúzar and Willumsen, 2011]. They can roughly be divided into two LoD
groups: microscopic models, and meso- and macroscopic models [Haubrich
et al., 2014; Tamminga, 2019b]. Microscopic models consider individual
traffic units, and every individual’s behavior is modelled separately. Meso-
and macroscopic models aggregate traffic units and behavior of group to
various degrees. Both groups of models mostly use graph-like structures to
model traffic. Microscopic models mostly need networks where every lane
has its own edge. For meso- and macroscopic models an edge per driving
direction will suffice [Tamminga, 2019b].

The transportation network represents the supply of the transport model.
It represents what the transportation system offers to satisfy movement
needs of people that make trips [de Dios Ortúzar and Willumsen, 2011].
This is normally modelled with a directed graph, with nodes and directional
edges linking the nodes. However, many models use undirected graphs,
which deduce directionality from attributes [de Dios Ortúzar and Willum-
sen, 2011]. A data requirement for a edge-and-node model as described
above is that it needs nodes at intersections, or when lanes merge or split.
For intersections, this requires a representation of each turning lane, includ-
ing the location of the stop lines. Each lane entering a junction has to have
a connecting edge to each of the exit lanes that are reachable from that lane.
In a meso- or macroscopic simulation, the network still needs to be topolog-
ically valid [Tamminga, 2019b]. At junctions, connecting edges still need to
be put for each exit edge reachable. An example of what this could look
like is given in Figure 3.8. In these models, characteristics of lanes might be-
come attributes of edges (for example, the number of lanes per carriageway,
or junction connector attributes in intersection nodes). It is also important to
be able to determine routes between different points, but this is addressed
in the next section, Section 3.3.

One can think of some applications where an areal representation may
be needed. For example, parallel parking next to roads. Also, some inter-
sections have a ”stopping field” bicycle lane behind the vehicle stop line.
Also, some bicycle lanes are not strictly separated from vehicle lanes, but
share it (when there is a discontinuous lane marker). This raises the ques-
tion whether the areal representation needs to be incorporated [Tamminga,
2019a].

Related to the above is the concept of the cross section. A vehicle in a lane
needs to know whether it can change lanes. Therefore it needs to know if
there are other lanes surrounding it, and also whether it is allowed to change
lanes (what type of lane markers are separating the lanes?) [Tamminga,

36 road data needs analysis

Figure 3.8: Modelling turning lanes of junctions at different levels of detail, by Tam-
minga [2019b].

2019b]. For this, vehicles need to know what the cross section of the road
is. Cross section information is present at an LoD3 areal representation. If
this information is not explicitly stored in the linear model, the linear model
needs to be connected to the areal model.

Other physical road properties that are useful in transport models are
speed bumps, width of the lane(s) and curvature of the road. Of course,
also the maximum driving speed allowed on a road is important. These
properties have an impact on the speed of drivers and therefore on the flow
of traffic. Finally, at intersections and points where lanes merge or split, it
is important to know which lane has the right of way [Tamminga, 2019b].

The data needs specified above are listed in Table 3.1, along with whether
they are already modelled in the CityGML data model, and how they are
modelled in other road standards.

3.2.2 Data needs in CityGML & CityJSON

As mentioned before, CityGML currently only supports a linear representa-
tion of roads at LoD0, and that representation does not contain nodes. How-
ever, the need for the road network in the micro- and mesoscopic models do
correspond to the LoD0.3 and LoD0.2 of the proposed extended CityGML
transportation module [Labetski et al., 2018]. Because this linear LoD speci-
fication is not worked out yet, many data need attributes also are not mod-
elled yet in CityGML, like lane width or curvature of the road.

Some attributes, although not modelled now in CityGML, could poten-
tially be deduced from the areal representation. As said, cross section infor-
mation is present at an LoD3 areal representation. If speed bumps or stop
lines are added to the areal representation, they could also be deduced as
attributes.

3.2.3 Data needs in other road standards

It is checked how the identified road data needs are modelled in other road
standards. The full comparison can be found in Table 3.1. In this section I
elaborate on the most relevant modelling ideas. Lane information is often
added as an attribute to the road objects. This includes the width and height
of the lane, but also cross section information. Sometimes this is stored as
an array, with an entry per lane. Another way this can be modelled is by
defining these attributes as an offset from a reference line or point. Road
standards often have either a linear or an areal representation, thus a link
between the two was not found in the road standards. Therefore geometric
attributes are always stored in linear features. Splitting or merging lanes are

3.2 use case: transport and traffic models 37

D
ata

need
C

ityG
M

L
&

C
ityJSO

N
G

D
F

O
penD

R
IV

E
LandInfra

R
oadX

M
L

O
SM

IT
F

N
etw

ork
for

m
icro

and
m

eso
LoD

specification
proposed

Lanes
not

m
od-

elled
separately

Lanes
specified

in
relation

to
ref.line

N
ot

m
odelled

N
o,lanes

are
at-

tributes
of

the
Profile

Lanes
m

odelled
separately

w
hen

separated

Every
lane

m
od-

elled
separately

Lane
inform

ation
N

ot
m

odelled
A

ttributes
of

R
oad-

Elem
ent

Very
detailed

lane
inform

ation
N

ot
m

odelled
Extensive

in
Pro-

file

#
lanes

as
attr.,

lane
info

as
sub-

attr.

A
ttributes

in
Lane-

Set
attributes

Stop
lines

Proposed
for

areal
representation

R
elationship

be-
tw

een
intersection

and
roads

N
ot

m
odelled

N
ot

m
odelled

D
educed

from
stop

sign

N
odes

have
at-

tribute
highw

ay
=

stop

N
ode

on
C

on-
flictA

rea
border

M
erge

/splitlanes
N

ot
m

odelled
M

odelled
at

low
er

levelw
ith

node
In

lane
inform

a-
tion

N
ot

m
odelled

D
educed

from
Profile

#
lanes

as
attribute

Split
/

m
erge

node

Explicitturning
lanes

Proposed
for

lin-
ear

representation
N

ot
m

odelled
Yes

N
ot

m
odelled

N
ot

m
odelled

Turning
lanes

only
as

an
attribute

Yes,m
odelled

in
the

C
onflictA

rea

C
ross

section
C

an
be

deduced
from

high
LoD

arealrep.
N

ot
m

odelled
D

efined
in

R
oad

Lanes
R

ecord
w

.r.t.
ref.line

R
oadElem

ents
have

elaborate
C

ross
Sections

Extensive
in

Pro-
file

C
an

be
derived

from
lane

inform
a-

tion
N

ot
m

odelled

Speed
bum

ps
N

ot
m

odelled
N

ot
m

odelled
N

ot
m

odelled
N

ot
m

odelled
D

educed
from

traffic
sign

N
odes

can
have

traffic
calm

ing
=

speed
bum

p
N

ot
m

odelled

C
urvature

N
ot

m
odelled

N
ot

m
odelled

R
ef.line

m
ay

be
curve

N
ot

m
odelled

Lines
can

be
m

od-
elled

as
curves

N
ot

m
odelled

N
ot

m
odelled

G
iving

w
ay

N
ot

m
odelled

R
elationship

be-
tw

een
intersection

and
roads

N
ot

m
odelled

N
ot

m
odelled

D
educed

from
traffic

sign
H

ighw
ay

=
prior-

ity
is

a
tag

N
ot

m
odelled

Link
betw

een
rep.

types
N

ot
m

odelled
N

ot
m

odelled
N

ot
m

odelled
N

ot
m

odelled
N

ot
m

odelled
N

ot
m

odelled
N

ot
m

odelled

Table
3.1:Transport

m
odeldata

needs
in

other
road

standards.

38 road data needs analysis

sometimes modelled with nodes (when lanes have their own linear feature)
or as a change in the lane attribute information.

The proposed LoD specification for networks by Beil and Kolbe [2017]
makes room for the explicit modelling of turning lanes. How intersection
should explicitly be modelled has not yet been specified. OpenStreetMap
uses nodes to model intersections. Lanes are not modelled separately, but
are attributes of ways. Turning restrictions in the nodes are used to deter-
mine which way one can turn. ITF and OpenDRIVE both explicitly model
turning lanes inside an intersection area. Such an area is a polygon, where
the links within determine what the intersection looks like and how it be-
haves. Stop lines are often modelled using nodes, while way giving in-
formation is handled differently per standard. GDF models a relationship
between the intersection and the incident roads, while the OSM data model
admits a priority attribute to ways.

3.3 use case: navigation

Automotive navigation is one of the most well-known and widely used ap-
plications of geographic data. Navigation relies heavily on the geometric
and semantic modeling of spatial data [Zhang and Ai, 2015]. With naviga-
tion, one uses this data to determine how to get from a certain location to
another location. Navigation systems help driver to plan trips, create routes
and aid them trying to follow that route by giving instructions [Egenhofer,
1993]. The objects modelled in these systems contain roads and intersec-
tions, but also landmarks along roads and information on signage [Egen-
hofer, 1993]. The topological structure of the road network itself can be
represented by a graph [Thomson and Richardson, 1999], where edges rep-
resent the roads between pairs of vertices. Nodes here can function as inter-
sections, a lane merge/split, a dead-end of a road, or perhaps places of other
interest. By inserting a node in a road segment where an attribute changes,
nodes can be used to model these changes such that every road segment has
unique attributes over its whole geometry [Thomson and Richardson, 1999].

3.3.1 Road data needs

Vehicle navigation systems have a front-end component, where the user
can interact with the system and it will give directions, and a back-end
component which does the routing based on different kind of preference
settings [Mapbox, 2019]. For the road data needs I am mostly interested in
the latter. Mapbox [2019] and Claussen et al. [1989] both mostly identify the
same data needs in road geometry and attributes, outlined below.

As navigation systems have to tell you how to conduct your route, the
first main requirement of the navigation system is that it has knowledge of
the topology of the road network. Thus, the road network needs to be repre-
sented as a graph. In order to identify the location one wants to reach, one
often enters the destination address into the navigation system. Therefore, it
is important to have the street name as an attribute of the road segments. To
differentiate between different roads with the same name, the municipality
can also be considered as an attribute. Also, the navigation system needs to
know what roads are meant for, or accessible to, cars. Therefore, the modes
of transport allowed on a road segments can also be an attribute.

3.3 use case: navigation 39

In routing, often one can choose between different path options. For
instance, one can choose the shortest route or the predicted fastest route.
Apart from maximum speed, another classification that influences these
routes is the road classification. Administrations often classify roads in a
hierarchy, with terms like motorway, highway, local road etc. Routing algo-
rithms can make use of these classifications to estimate what road segments
might yield the fastest travel time.

Finally, in routing it is important to know which way you are allowed to
go. Therefore, you need to know the driving direction of the road (whether
it is one way or two way for instance). At intersections, any possible turning
restrictions need to be modelled. That is, if I am not allowed to turn left at
an intersection, the navigation system should be aware of that. This is also a
important for transportation models [de Dios Ortúzar and Willumsen, 2011].
Furthermore, roundabouts are somewhere between an intersection and a
road. The characteristics of roundabouts are unique. For navigation they
need an explicit way of modelling.

As said above, navigation systems sometimes use landmarks for user ori-
entation purposes. For this, the CityGML data model could be useful, be-
cause the surroundings are also modelled and could be extracted from it.
Also, road signs are sometimes present in navigation systems.

Tavares et al. [2009] conducted research in implementing a 3D geographical
information system (GIS) for the collection of municipal waste. Here, they
used the third dimension to extract the gradient of the road. This gradi-
ent was then use in routing algorithms. Waste collection trucks are heavy
and will also carry the waste. Thus the gradient has a big effect on the
cost-effectiveness of the route choice.

3.3.2 Data needs in CityGML & CityJSON

As already mentioned in Section 3.2, a graph structure for CityGML roads
has been proposed, but it is not developed yet. Currently, at LoD0 the roads
are modelled by using just lines, without any connectivity. In CityGML
there is the option to use Xlinks to make connections between objects. In
practice however, this is seldom used, and also not worked out well. Also
in CityJSON the possibility to create networks is not supported as of yet.

TransportationComplexes are sub-classes of the root class CityObject.
From here it inherits the attribute “gml:name”. This attribute can be used to
model street names. However, it does not have fixed attributes for street
names or municipality names. CityJSON does not support inheritance,
therefore the only thing that can be used for identification is the object id.
However, because a road with a fixed name may consists of separately mod-
elled parts, this is not suitable for a road name.

The modes of transport that can use a road can be modelled using the
Usage attribute that TransportationComplexes inherit. The OGC provides
a code list of usages [Open Geospatial Consortium, 2012b], but one can add
these themselves. Again, in CityJSON inheritance does not exist. Therefore
this road usage can be added as an attribute. Driving direction, turn restric-
tions, roundabouts, slopes and road classifications are not modelled. Road
sign is a value in the CityGML CityFurniture code list.

40 road data needs analysis

D
ata

need
C

ityG
M

L
&

C
ityJSO

N
G

D
F

O
penD

R
IV

E
LandInfra

R
oadX

M
L

O
SM

IT
F

G
raph

structure
Proposed,cur-
rently

not
m

od-
elled

Yes
N

o
nodes,but

graph
through

adjacency
N

o
Yes,startN

ode
to

endN
ode

N
odes

and
W

ays
provide

graph
Sequence

of
nodes

A
ddress

inform
ation

C
ould

be
deduced

from
Buildings

nearby

A
ttribute

of
R

oad-
Elem

ent
N

ot
m

odelled
O

bjects
can

have
address

as
at-

tribute
N

ot
m

odelled
A

ddress
tag

for
all

objects
N

ot
m

odelled

M
odes

oftransport
allow

ed

U
sage

in
C

ityG
M

L,
not

present
in

C
ityJSO

N
A

ttribute
Bicycle

lanes,
pedestrian

lanes,
no

restrictions
N

ot
m

odelled
Lanes

have
Vehi-

cleType
attribute

A
s

a
tag

for
all

road
objects

N
ot

m
odelled

D
riving

direction
N

ot
m

odelled
A

ttribute
of

R
oad-

Elem
ent

A
ttribute

of
R

oads
and

Lanes
N

ot
m

odelled
A

ttribute
C

ircula-
tionW

ay

Boolean
tag

for
being

one
w

ay
road

IngressA
pproach

or
EgressA

p-
proach

Turn
restrictions

N
ot

m
odelled

A
ttribute

Turning
lanes

ex-
plicitly

m
odelled

N
ot

m
odelled

O
nly

on
traffic

sign
inform

ation

C
an

be
explicitly

m
odelled

for
every

node

D
eterm

ined
by

lack
of

turning
lane

R
oundabouts

N
ot

m
odelled

Yes,m
odelled

as
a

circular
road

G
roup

of
Junc-

tions,not
related

further
A

R
oad

subclass
A

s
LaneType

at-
tribute

Tag
junction

=
roundabout

possi-
ble

N
ot

m
odelled

R
oad

classification
N

ot
m

odelled
A

ttribute
R

oadType
at-

tribute
provides

som
e

classification

Yes,m
otorw

ay,car-
riagew

ay,highw
ay,

etc.

R
oad

attribute
PriorityLevel

H
ighw

ay
key

has
hierarchicalvalues

N
ot

m
odelled

Slope
C

an
be

deduced
from

arealgeom
e-

try
A

ttribute
C

an
be

deduced
from

ref.line
M

ay
be

deduced
from

geom
etry

N
ot

m
odelled

Include
tag

possi-
ble

for
w

ays

C
an

be
deduced

from
N

ode
alti-

tude

R
oad

signs
C

an
be

m
odelled

as
C

ityFurniture
Linear

referenced
along

netw
ork

N
ot

m
odelled

N
ot

m
odelled

Extensive
inform

a-
tion

Their
use

m
od-

elled
in

N
odes

N
ot

m
odelled

Table
3.2:N

avigation
data

needs
in

other
road

standards.

3.4 use case: road maintenance 41

3.3.3 Data needs in other road standards

The comparison of the navigation data needs with how they are modelled
in other road standards can be found in Table 3.2. Road standards that
employ graph data structures model these in different ways. A common
method is to specify a start and end node for each linear road segment.
OpenDRIVE does not use nodes, but specify adjacency of road segments.
ITF only models a sequence of nodes. Note that this is only possible for
road segments, and intersections cannot be modelled in this way. Strictly
speaking the latter two modelling methods are not graphs, since they only
represent either nodes or edges. However it does model the connectivity.

Road classification, driving direction and transportation modes allowed
are always attributes of road segments. The latter is sometimes split into a
road type (road, bicycle path, pedestrian path) and vehicle restrictions (no
trucks allowed) for easy identification of different types of infrastructure.
Turn restrictions, also identified in the previous section, can be modelled
either as an attribute of an intersection or by explicitly modelling turning
lanes. Roundabouts are often modelled as a separate class, or have an at-
tribute identifying them as such. Sometimes they are also simply modelled
as a one way circular road with many junctions. Slope is almost never
modelled, but can often be deduced from three-dimensional geometry. If
information on road signs and addresses is modelled, it is probably linearly
referenced to the road data. In OpenStreetMap, road signs can be modelled
as nodes as well.

3.4 use case: road maintenance

Road maintenance is carried out by the administration that is responsible for
the road. Spielmann and Scholz [2005] identify road marking, road lighting,
weed control and de-icing of roads as parts of road maintenance. Road de-
icing happens after it has snowed, or when it freezes. Soetens and Tijink
[2019] conducted a study into the data needs for automatic dispensing of
salt by salt trucks in the Netherlands. At this moment, salt truck routes
are determined beforehand, and the truck drivers manually handle the salt
dispenser. They can determine how much salt is dispensed, and how wide.
The goal of the research is to work towards a system that automatically
makes the routes and determines how much salt (and how wide) is dis-
pensed based on road characteristics along the route. This automation has
two benefits. First, it is considered to be safer, as the truck driver does not
have to check the route and handle the salt dispenser simultaneously. Sec-
ondly, it is better for the infrastructure and the environment, as there is less
chance of dispensing too much salt on the roads. This can lead to defects in
infrastructure and surrounding buildings [Soetens and Tijink, 2019].

Ozbek et al. [2010] have made an inventory of variables that influence the
need of maintenance of bridges. These include variables like cost, which are
unrelated to this research. However, they also include variables based on
geometric and semantic attributes of the bridge, like road deck type.

Road maintenance and road de-icing in particular have been identified
as a road use cases needing both a network representation and an areal
representation [Werkgroep Wegen, 2019a]. Thus by checking the road data
needs for this use case, I want to check how the two representation types
can co-exist and perhaps be linked. The following road data needs are based

42 road data needs analysis

on an attribute catalogue determined by Soetens and Tijink [2019] and the
variable listing by Ozbek et al. [2010].

3.4.1 Road data needs

As with the other use cases mentioned in this research, routing is important
for road de-icing [Soetens and Tijink, 2019]. Thus again the road network
needs to be modelled as a graph. Another important data need is lane
geometry. Trucks are wide vehicles, thus the lane width but also height
is important. Lane height is the maximum height a vehicle can have such
that it can safely drive on that lane. This height may be limited by bridges,
for example. This lane geometry includes the road surface material. This
greatly influences the way ice forms on the road. Ozbek et al. [2010] also
identify surface material and thickness as a factor in maintenance.

For road de-icing, it is also important to know whether the road segment
is part of a bridge or tunnel. This influences the amount of salt that should
be dispensed. Furthermore, the surroundings of the road are important.
When housing is close to the road, this should limit the amount of salt that
is being dispensed. Also obstacles like traffic islands, and related road parts
like bus stops and passing lanes should be taken into account [Soetens and
Tijink, 2019].

An attributes that is important is who is responsible for the maintenance
of the road. Most of the time this is one of the layers of government, be it
local of national. Road classification is again important, as ‘more important’
roads will probably have a higher priority [Soetens and Tijink, 2019; Ozbek
et al., 2010].

The height of the road itself is also something to take into account. High
altitude can lead to lower temperatures, and thus it might influence de-icing
algorithms [Soetens and Tijink, 2019].

3.4.2 Data needs in CityGML & CityJSON

Lane width can be determined from the areal geometry of the lane. Lane
height could theoretically also be extracted, when a road passes underneath
a bridge or some other object. Realistically this would be very challenging.
This is not an attribute that is modelled in CityGML. The altitude of the road
segments are modelled in CityGML; after all it is a data model for 3D city
models. Obstacles, bus stops, and surrounding housing can all be extracted
from surrounding objects in the 3D city model.

In CityGML, there is an attribute “surfaceMaterial”, which again refers to
a code list. This attribute is also modelled in CityJSON. Who is responsible
for the maintenance of the road is not a modelled attribute, this could be
added however.

3.4.3 Data needs in other road standards

The comparison with other road standards can be found in Table 3.3. Many
of the data needs identified in this section are modelled as attributes. Road
surface material, lane information, road administrator, and whether it is
part of a bridge or tunnel can all be modelled as attributes of road segments.
When roads are modelled in three dimensions, the altitude can be deduced.

3.4 use case: road maintenance 43

D
ata

need
C

ityG
M

L
&

C
ityJSO

N
G

D
F

O
penD

R
IV

E
LandInfra

R
oadX

M
L

O
SM

IT
F

R
oad

surface
m

ate-
rial

SurfaceM
aterial

attribute
for

areal
representation

A
ttribute

of
R

oad-
Elem

ent
A

ttribute
of

lanes
A

ttribute
of

R
oad-

Elem
ent

Surface
m

aterials
are

m
odelled

w
ith

G
round

type

W
ays

have
surface

tag
N

ot
m

odelled

Lane
w

idth
C

an
be

extracted
from

geom
etry

A
ttribute

of
R

oad-
Elem

ent
A

ttribute
as

offset
from

reference
line

R
oad

has
A

pprox-
im

ateW
idth

at-
tribute

Inform
ation

in
Lane

in
Profile

Lane
specific

key
after

#
lanes

is
stated

A
ttribute

of
the

lanes

Lane
height

N
ot

m
odelled

A
ttribute

of
R

oad-
Elem

ent
N

ot
m

odelled
N

ot
m

odelled
Part

of
lane

at-
tribute

Vehicle-
Type

Lane
specific

key
after

#
lanes

is
stated

A
ttribute

of
the

nodes

A
dm

inistrator
N

ot
m

odelled
A

ttribute
of

R
oad-

Elem
ent

N
ot

m
odelled

N
ot

m
odelled

N
ot

m
odelled

N
ot

m
odelled

N
ot

m
odelled

R
oad

altitude
Inherently

part
of

its
geom

etry
M

ay
be

m
odelled

In
relation

to
ref.

line
C

an
be

deduced
from

geom
etry

Lines
are

m
odelled

in
3D

Elevation
tag

for
N

odes,not
for

W
ays

R
ef.point

of
the

intersection
m

ay
contain

z-value

R
oad

obstacles
C

an
be

m
odelled

w
ith

A
uxiliaryTraf-

ficA
rea

M
ay

be
m

odelled
by

an
area

N
ot

m
odelled

N
ot

m
odelled

C
an

be
m

odelled
adjacent

to
road

Traffic
calm

ing
=

island
tag

for
A

reas
N

ot
m

odelled

Bus
stops

/passing
lanes

C
ityFurniture

or
Transportation-
C

om
plex

Bus
stop

m
odelled

as
a

Stop
Point

Lanes
w

ith
Type

attributes
N

ot
m

odelled
N

ot
m

odelled

H
ighw

ay
=

bus
stop

for
N

odes,lanes
other-

w
ise

N
ot

m
odelled

Partofbridge
or

tunnel

C
ould

be
con-

nected
to

O
uter-

FloorSurface
A

ttribute
A

ttribute
Bridges

and
tun-

nels
separately

m
odelled

Profile
has

at-
tributes

Bridge
and

Tunnel

Separate
Tunnel

and
Bridge

keys
N

ot
m

odelled

Proxim
ity

ofhous-
ing

C
an

be
deduced

in
3D

city
m

odel

D
istance

to
A

d-
dressed

area
can

be
determ

ined
N

ot
m

odelled
M

ay
be

deduced
from

distance
to

building
objects

N
ot

m
odelled

C
an

be
deduced

from
houses

in
the

data
N

ot
m

odelled

Table
3.3:R

oad
m

aintenance
data

needs
in

other
road

standards.

44 road data needs analysis

3.5 use case data needs summary
After analyzing the shortcoming in CityGML and CityJSON and checking
the data needs of the three use cases above, a list of data needs can be
assembled. Some of the data needs are already modelled in the CityGML
data model. The others are outlined below. The data needs are grouped
in categories. This categorization of data needs in then used in the next
chapter to specify the design choices for improving the data model.

LoD specification. Use the improved LoD specification by Beil and Kolbe
[2017] and Labetski et al. [2018] as a starting point for improving the data
model. This includes the road-carriageway-lane differentiation for respec-
tively LoD(0.)1, LoD(0.)2 and LoD(0.)3.

Graph structure. Implement a graph structure such that LoD0.1 up to
LoD0.3 can be modelled as a network. This includes having a node when
lanes merge or split.

Attributes. Attributes that need to be added to roads are: allowed vehicle
types, road classification, driving direction, administrator, maximum speed.
Other attributes that have to do with its geographic configuration are lane
width, lane height, cross section, slope, surface material, road curvature.
Also road features that might have an impact on driving can be included,
like speed bumps.

Road segments and linking representation types. Introduce the concept
of road segments such that small parts can be aggregated into bigger road
objects. Related to this is the ability to link linear and areal representations.

Intersections. Intersections and roundabouts need explicit modelling, in-
cluding specific turning lanes, turn restrictions, way giving information and
stop lines.

Connecting to other modules. Link Road surfaces with Bridge surfaces
when a road is on a bridge. The same applies to roads in tunnels. Estab-
lish whether a link can be made with relevant roadside information like
addresses, road signs and traffic lights.

In the next chapter, the importance of these data needs will be discussed.
After, I will try to improve the CityGML data model such that these data
needs are satisfied.

4 IMPROV ING THE DATA MODEL

In this chapter I want to answer the question: how can the CityGML trans-
portation data model be improved such that it satisfies the use case data
needs? In Chapter 3 the road data needs of three use cases were determined.
It was checked how these needs are currently modelled in the data model
and how they are modelled in other road standards. Now choices have to
be made on whether, and if so, how, these data needs will be modelled.

In Section 3.1 the CityGML data model and the encodings in both CityGML
and CityJSON were explained. Besides wanting to improve the data model,
I want to encode these changes in a schema. This way data files adhering
to the improved data model can be created and validated. In this thesis I
choose to encode the data model in CityJSON. The flattened structure that
the JSON encoding provides makes it easier to implement changes [Ledoux
et al., 2019]. Furthermore, CityJSON is developmentally in an early stage.
At the time of writing, the first version has just been released. The CityJSON
developing community highly encourages users to propose changes and ad-
ditions. The need for a network structure was also identified CityJSON
[2019]. The above motivated me to use CityJSON as the CityGML data
model encoding.

In Section 4.1 the design choices for improving the data model are pre-
sented and motivated. Section 4.2 contains a technical exploration of how
JSON files (and by extension, CityJSON files) can be modelled using JSON
schemas. This knowledge is then used to explain and adapt the current
CityJSON schemas. Finally, Section 4.3 contains the results of the improved
data model as an LoD specification. Here it is explicitly shown how roads
and intersections can be modelled at different LoDs. In Chapter 5, this new
LoD specification will then be used to create a CityJSON road file that ad-
heres to this improved data model.

4.1 data model design choices
In this section I will discuss the considerations made towards the data needs
identified in the previous chapter. I will discuss whether they should be
addressed in the improved model and if so, how this will be encoded in
CityJSON.

4.1.1 LoD specification

The starting point of this research was the research already conducted on
enhanced LoD specifications of the CityGML transportation module [Beil
and Kolbe, 2017; Labetski et al., 2018]. Thus my proposal is to model roads
in a linear and areal representation according to the LoD concept set out in
Section 2.3.2. This means that at LoD(0.)1 the road is modelled as one piece,
at LoD(0.)2 I specify by carriageway, or driving direction and at LoD(0.)3

45

46 improving the data model

(a) LoD(0.)1 (b) LoD(0.)2 (c) LoD(0.)3

Figure 4.1: Overview of implementation of road LoDs.

each lane is modelled separately. An overview is given in Figure 4.1. A
benefit of this LoD specification is that data providers can choose at what
LoD they offer their data. This could be dependent on the accuracy of their
data gathering techniques, for example.

Zhang and Ai [2015] identify modelling issues for dual carriageways in
OpenStreetMap. Users are often not consistent in the way they model this.
This is also important for modelling this LoD specification. Regarding car-
riageways and lanes, there are different ways to model this. At LoD0.2, one
could always make an edge for each driving direction possible (two edges
for a two-way street), or one could only do that when the two driving di-
rections are physically separated, as in carriageways. Sometimes these two
situations happen sequentially, how does one model this consistently? This
point was already discussed in Section 2.3.2 and Figure 2.6. Here, I make
the choice to allow the user to model “downwards”. For example, when a
narrow road is bi-directional and doesn’t have separate lanes, it is allowed
to model this at LoD0.3 with only one edge. This edge then does need to
have information on the directionality and the number of lanes.

4.1.2 Graph structure

From the use cases analysis it is clear a topological graph structure is needed.
As seen in Section 2.1.2, there are different ways to store graphs: edge lists,
adjacency lists and adjacency matrices. In terms of storage and efficiency,
adjacency lists seems the best choice. However, I would like to implement
this graph structure in CityJSON. Therefore the possibilities of modelling
a graph in CityJSON should be taken into account. As seen in Section 3.1,
in CityJSON geometries are stored as arrays of pointers to vertices. When
roads are considered to be edges represented by (Multi)Linestrings, then
each of these geometries represents an edge. Thus there already is some-
thing akin to an edge list: CityJSON facilitates an edge list graph-like struc-
ture because of the pointers to the vertices list.

These edges also need to be linked together. There are different ways to
do this. The OpenDRIVE standard refers to a predecessor and a successor
edge [Dupuis, 2015]. However, other standards opt for a structure where
the edges are connected using nodes. In this data structure, nodes point
to the incident edges and edges point to the incident vertices. The main
reason to use nodes seems to be because this is an object which can be used
for attribute changes in road segments. As discussed in Chapter 2, attribute

4.1 data model design choices 47

changes in networks can be modelled by starting a new road segment (by
adding a node), or through linear referencing. The main benefit of using
nodes of these attribute changes, is that it doesn’t require one to have an
added structure of a linear referencing system. Therefore it seems that mod-
elling attribute changes with nodes is more beneficial. Also it seems that
when CityJSON road data files will be used not only for storage, but also
because one wants to perform an application on it, then additional systems
will be used anyway. Thus it is decided to pick a node-based model but to
accommodate the external addition of a linear referencing system.

An important benefit of having a graph structure is that networks can be
used by more classes than just Transportation. The class WaterBody might
for instance use the graph structure to model a network of waterways. This
possibility of multiple use of graphs is important for the implementation.
It leads to having graphs as a base structure in the data model. This is
achieved by adding new CityObject types: Nodes and Edges. These new
classes can then be extended for the required class, in our case roads. In
CityGML this might be modelled by inheritance. Here I will extend the
new classes by using a CityJSON extension, see Section 4.2. These extended
classes will be called RoadNode and RoadEdge.

4.1.3 Modelling attributes

Many data needs that arose from the need analysis can be added as at-
tributes to geometry. Some of these are only useful for one of the two repre-
sentations, others can be useful for both. Also, some attributes concern the
physical road configuration, which might be deduced from the geometry
itself.

The concept of Application Domain Extensions in CityGML has made
it possible to keep the CityGML data model itself relatively brief. Thus
the CityGML modules facilitate the use of the model by many different
applications. As the name indicates, ADEs are made to enhance the data
model specifically for a certain application. In the previous chapter, I have
identified the data needs of three use cases. If I add all these to the improved
road data model, this will not correspond to the original idea of CityGML.
Therefore, the idea is to extract geometrically and semantically from the
data needs what should be added to the geometry, such that the data model
facilitates the use of many other use cases.

The question that remains is: what attributes can be considered general
enough to warrant a place in the data model? Attributes collected from the
data needs assessment that do not concern geometric aspects are: allowed
vehicle types, road classification, driving direction, administrator and max-
imum speed. Attributes that have to do with its geographic configuration
are road/lane width, road/lane height, cross section, slope, surface mate-
rial, road curvature. At first I planned to add all assessed attributes to a
CityJSON extension. However, like ADEs, extensions are mostly meant to
be used to facilitate one single use case. Related, the COR working group
wants to move to a core set of attributes which are mandatory for every road
object [Werkgroep Wegen, 2019a]. During a meeting it was decided that the
attributes classification, vehicle restriction, maximum speed and driving di-
rection should always be present, given that these attributes are used for
many applications. I have decided to follow this approach. These attributes
are mostly used in road networks. Therefore I add them as attributes of
RoadEdges in the data model.

48 improving the data model

The driving direction will be modelled in relation to the start and end
node. Thus there will be three possible values: from start to end node, from
end to start node, and both ways. Vehicle restriction can often be deduced
from the road classification attribute (like highway, or bicycle path). This
is not always these. Therefore I also add an attribute modes, which may
additionally specify what modes are allowed.

I have chosen not to model the attributes related to geometry. Most of
these attributes can be deduced from areal geometry, when this is modelled.
“SurfaceMaterial” is already an attribute of the roads in CityGML. Road /
lane width, slope or restricted height can be added to the linear representa-
tion in an extension if one wants to model this. Again, given that CityJSON
is “schema-less”, this is not necessary. The attributes can also be added to
the objects without becoming invalid. Cross sections are more complicated.
Some use cases need road cross section information to determine whether
one can change lanes. This information can become quite specific, as seen
in Section 2.4. In theory, this information can be deduced from LoD3. This
might be hard to implement practically. Further research needs to be done
in how to model cross section information in CityGML.

4.1.4 Road segments and linking representation types

Another data need that arose was the ability to make a connection between
the linear and areal representation. In Section 3.2 it was concluded that none
of the considered road standards model an explicit link. The main benefits
of linking a linear representation of a road segment with its areal representa-
tion is that one can combine the data in analyses, and that they can be kept
consistent [Werkgroep Wegen, 2019a]. Linking of representation types is
also beneficial when one wants to combine the road network with an analy-
sis of other objects in the 3D city models, as the areal representation directly
borders neighbouring features [Biljecki et al., 2015]. However, linking repre-
sentation types has several drawbacks. It would only make sense if the two
representations linked have the same respective level of detail in their repre-
sentation. Otherwise the geometries would maybe not intersect. This would
mean that the two datasets should align in their LoD modelling. A bigger
drawback is that when the linear network is modelled as a graph with at-
tribute changing nodes, this might result in a highly fragmented network.
Making a one-to-one mapping between a highly fragmented network and
an areal representation is theoretically possible, but practically will result in
an also highly fragmented areal representation nobody might want. Linked
representation types can be useful however. As mentioned above, when one
wants to have lane information concerning their geometry, like lane width
or information about the cross section of the road. When these represen-
tations are not linked, this has to be become an attribute of the RoadEdges.
Another option in an application would be to link the two geometries on
the fly, provided that the two geometries intersect.

CityJSON is an object-oriented data format. Data files consist of a se-
quence CityObjects which together make up (a part of) a 3D city model.
This object-oriented approach makes that CityJSON has the ability to link
representation types already built in. Each CityObject can have an array of
geometry objects. These are meant to store different LoDs of the same object
in one file. Therefore when we have two representation types, they can thus
both be modelled with two different geometry objects in one CityObject.
However, as said above, this might cause issues because a network could be

4.1 data model design choices 49

Figure 4.2: Schematic overview of how road objects are modelled.

segmented in small parts while road surfaces might be modelled as large
areas. This would lead to having to split up both representation types in
exactly the same manner, which would be a lot of work.

The same considerations arise in the discussion on the COR, as discussed
in Section 2.5.3. The idea of the COR is that the object is central. It serves as
the base of object modelling in governmental spatial data. The question then
becomes: what is the scale of an object. For buildings, this is more intuitive.
However, almost all roads in a country are interconnected, and it is not
always clear where one begins and another one ends. The street name could
be leading in determining what an object is. Intersections then however are
parts of multiple roads. Combining this with using nodes for modelling
attribute changes, it becomes difficult to determine what the object is. It
can be a road segment with constant attributes. However this would seem
an arbitrary base to define an object as the main governmental modelling
object.

In Chapter 3 it was shown that it has been proposed to model sections
[Beil and Kolbe, 2017], or road segments. These sections are smaller parts
of roads which can be aggregated to form “proper” roads. This notion can
be used as an answer to the object scale question. An object can be made
up of smaller sub-objects, which each have different characteristics. In this
way, the user can determine themselves what the scale of the object is. In
the context of the dual representation modelling in CityJSON, the question
is how to implement this notion of sections, or segments.

At first I tried to implement sections, and to model the areal and linear
sections one-to-one. I only added RoadNode as a new object class. I changed
the name of object class Road to RoadSegment. These road segments could
then have multiple geometry values, for both the linear and areal repre-

50 improving the data model

(a) (b)

Figure 4.3: One Road object modelled in both representation types. Note that they
are segmented differently.

sentations. The RoadSegments could then a aggregated to roads with an
extension of the CityObjectGroup (which I called Road). In this scenario,
the areal and linear representations are segmented identically. However,
in Chapter 3 it was shown that the areal representation has less needs for
different attributes. Most applications that need attributes, need a linear net-
work. Thus, it is assumed that areal representations of roads can often be
modelled in “bigger” segments. In addition, areal representations already
have a notion of segments in the semantic surface objects. The CityObjects

are divided in different areas with different properties (see Figure 3.6).
To accommodate the central object concept, it is chosen to model the Road

in CityJSON as either the areal geometry consisting of multiple semantic sur-
faces, or as an array of RoadEdges. These RoadEdges are the edges of the
graph with which the road network is modelled. This way, the same Road

object can be modelled in two different representation types which are par-
titioned in different ways. Thus the implementation of the road segments,
or sections, is done differently for the two representation types. This gives
some flexibility to the dual modelling. A schematic overview of how roads
are modelled can be found in Figure 4.2. What this would look like can be
seen in Figure 4.3. It is chosen not to explicitly model links between the
road segments and the semantic surfaces. This would negate the flexibility
mentioned above. If one wants to explicitly link the two segments together,
one can always use GIS software to join them together. In order to model
bigger aggregated of road objects, the aggregation class CityObjectGroup

can be used.

4.1.5 Intersections

From the use case analysis, there was a need to explicitly model intersec-
tions’ turning lanes, roundabouts, stop lines, way giving properties among
other things. All these needs relate to the linear representation. Tamminga

4.1 data model design choices 51

[2019b] recommends to model turning lanes explicitly for microscopic trans-
port models, and per driving direction for mesoscopic models. This corre-
sponds to our LoD0.3 and LoD0.2, respectively, see Figure 4.4. By putting
the node that starts the turning lane at the location of the stop line, these
can be modelled. Given that LoD0.1 modelled whole roads by a single
RoadEdge, I choose to model intersections at this LoD with a single node.
Furthermore, nodes are used at LoD0.3 to represent splitting or merging
lanes, as in Figure 4.3a.

Roundabouts follow a similar configuration. At LoD0.1 they are modelled
with a single node. At LoD0.2, they are modelled with roundabout lane
types. The nodes become the points where the road meets the roundabout.
Roundabout lanes always have a one way driving direction. In LoD0.3,
roundabout are modelled the same as in LoD0.2. Only roundabouts that
have multiple lanes going around the centre (common in the Netherlands),
will be modelled differently, see Figure 4.4.

Thus, RoadEdges can have three different edge types: “Road” for regular
stretches of road, “Connecting” for turning lanes, and “Roundabout” for
roundabout lanes. The latter two always have a single driving direction.
For routing, one needs to be able to model intersection turning restrictions.
In LoD0.2 and LoD0.3 these are explicitly modelled by the turning lanes.
In order to be able to model turning restrictions in LoD0.1 as well, I add a
RoadNode attribute “turns”. This is a two-dimensional array which specifies
which incident RoadEdge can be reached from other RoadEdges. This can
be considered an adjacency matrix as in Section 2.1.2, only now for edges
instead of nodes. The indices of the matrix refer to the position of the edge
in the edges list in the RoadNode.

The use cases did not contain many areal intersection data needs, except
that it is sometimes nice to know that there is one (for salt dispensing for
example). The exact areal configuration of the intersection seems to matter
less. Therefore I choose to add “Intersection” as a Road type, like “Carriage-
way” and “Lane” will be added for LoD2 and LoD3. The decision is made
to model intersections as single surfaces. Therefore it may be best not to
link network and areal representations for intersections. There will not be
a one-to-one mapping with all the turning lanes. It might also not be very
useful for any application. Instead, it is agreed to have the option to assign
an id to an intersection, such that every linear RoadEdge road segment or
turning lane can be linked to a certain intersection. This was already pro-
posed by Labetski et al. [2018], by using XLinks in the CityGML encoding.
This also makes it easier to link traffic lights, modelled with CityFurniture,
to an entire intersection (see next section). This also opens up the possibil-
ity to generalise interchanges. At an interchange, roads pass each other at
different grade level, but have exit and enter lanes to and from the other
road. At the highest level of detail this is not considered an intersection, but
just many lanes splitting and merging. By letting all these segments have a
link to the same intersection id, this interchange can be easily generalised to
a node that is an intersection at a lower LoD. It sometimes seems arbitrary
whether two neighbouring intersection are the same or separate. Therefore
it is allowed for objects to link to more than one intersection.

4.1.6 Connecting to other modules

A data need that arose was to model a link between roads, and bridges and
tunnels. For linear roads, this is not especially necessary. RoadEdges could

52 improving the data model

(a)
LoD

0.
1

intersection
(b)

LoD
0.

2
intersection

(c)
LoD

0.
3

intersection

(d)
LoD

0.
1

intersection
(e)

LoD
0.

2
intersection

(f)
LoD

0.
3

intersection

Figure
4.4:Linear

m
odelling

of
intersections

and
roundabouts.

4.2 implementation of design choices 53

be enhanced with an attribute which specifies that it is part of a bridge
or tunnel. In theory this could also be done for areal roads. However, this
would mean that both the road and the bridge or tunnel would be modelled.
This would lead to having overlapping geometries, as the road surface and
the road surface of the bridge or road would be touching. However, I also
do not want to for instance model the entire road in the Bridge module, or
vice versa. Therefore I choose to be able to link a road surface to a bridge
or tunnel surface. This “link” property can be added in all three modules.
In CityJSON, the tunnel surface on which one drives is not modelled, given
that it belongs to LoD4. Thus this link is not yet implemented for tunnels.

As said in the previous section, traffic lights modelled with CityFurniture

can be linked to intersections through the new intersection id. How this will
be modelled exactly is outside the scope of this research.

4.2 implementation of design choices
In the previous section, choices have been made on how to translate the
data needs identified in Chapter 3 into modelling concepts in CityJSON.
In this section, it is explained how these are implemented technically. The
CityJSON file structure is defined by JSON schemas. How these work is
outlined in Section 4.2.1. After, I describe what has been changed in the
schema in order to accommodate the data needs. The full set of updated
schemas can be found on https://github.com/fhb1990/cityjson, which
is forked from the original CityJSON repository.

4.2.1 JSON schema

What a CityJSON file should look like is determined by the CityJSON specifi-
cations [CityJSON, 2019]. These specifications are modelled in JSON schemas.
JSON schema is a tool for validating JSON data file structure [Droettboom,
2019]. Thus the CityJSON schemas serve to assess the validity of a CityJSON
data file.

JSON files are built out of objects (a sequence of key-value pairs), arrays,
numbers, strings, booleans and a null value. From these data structures,
complex structured data can be represented. When one wants to standardise
certain data formats, it is important to know how exactly the data will be
represented. This is what JSON schemas do for JSON files [Droettboom,
2019]. As JSON schemas themselves are JSON files, it has limitations. It can
only declare the way the JSON data should be structured. It cannot parse the
data and check whether it is semantically correct. Therefore, validation of
files should be extended with a semantic validation, outside of the syntactic
schema validation, see Section 4.2.4.

Objects are the most important data structure in JSON schemas. They
map keys to values. The keys must always be strings. A key-value pair is
referred to as a “property”. When the type is required to be an “object”, the
structure of its properties can be set, as seen in Figure 4.5. These properties
can again have value type “object”. This will create a hierarchical object
structure, which is often seen in JSON files.

Objects can have a key “additionalProperties”, which controls whether
one is allowed to add properties to an object that are not modelled in the
schema. This can be set as “false”, or an object which specifies what data
structure these added properties are allowed to have. Similarly, the key “re-

https://github.com/fhb1990/cityjson

54 improving the data model

{

"type": "object",

"properties": {

"number": { "type": "number" },

"street_name": { "type": "string" },

"street_type": {

"type": "string",

"enum": ["Street", "Avenue", "Boulevard"]

}

}

}

Figure 4.5: Schema example for JSON objects, from Droettboom [2019].

|-- appearance.schema.json

|-- cityjson.schema.json

|-- cityobjects.schema.json

|-- geomprimitives.schema.json

|-- geomtemplates.schema.json

|-- metadata.schema.json

|-- /extensions

|-- noise.json

Figure 4.6: CityJSON schema structure, from CityJSON [2019].

quiredProperties” can also be added. Normally, an empty object is always
valid. However, the value of “requiredProperties” may determine what key-
words should be present in the object in the data file [Droettboom, 2019].

JSON schema also has commands for combining schemas. This is ex-
tensively used in CityJSON. By using the keywords “allOf”, “anyOf” and
“oneOf”, a value can be validated against all, at least one or exactly one
specified sub-schema respectively. It is also customary to add a “defini-
tions” keyword at the beginning of a schema. This will include certain data
type templates which can be re-used in the schema [Droettboom, 2019]. Fi-
nally, an important element is “$ref”. This can be used to create a recursive
schema that refers to itself. Using “$ref” in combination with the keywords
“allOf”, “anyOf” and “oneOf” will give the tools to make powerful schemas
without much duplication [Droettboom, 2019].

4.2.2 CityJSON schema structure

CityJSON files are validated against the file cityjson.schema.json. This
file refers to other schema files. The schema files and how they are struc-
tured is shown in Figure 4.6. These files are referred to as the CityJSON
core. Outside of the core are the extensions, covered in Section 3.1. The file
cityjson.schema.json validates the CityObjects to the schema cityobjects.

schema.json, which in turn validates the different geometry types to
geomprimitives.schema.json. In a CityJSON file, the extensions used are
declared. The extension files need to be in the folder extensions in the
schema folder. The CityJSON file is then also validated against the extension.
The extensions themselves can be validated against extension.schema.json.

4.2.3 Changes to CityJSON schemas

Here I outline how the data needs will be modelled in CityJSON. Some
changes will be made in the core schemas of CityJSON. The other changes

4.2 implementation of design choices 55

"Node": {

"allOf": [

{ "$ref": "#/_AbstractCityObject" },

{

"properties": {

"attributes": {

"properties": {

"edges": {

"type": "array",

"items": {

"type": "string"

},

"description": "array of Edge CityObject IDs

which are incident to the node"

},

}

},

"geometry": {

"type": "array",

"items": {

"$ref":"geomprimitives.schema.json#/MultiPoint"

}

}

},

"required": ["geometry"]

}

]

}

Figure 4.7: Addition of object class Node in cityobjects.schema.json.

will be realised in an extension called RoadExt.json. Why a change is mod-
elled in one or the other is motivated below.

As observed earlier, roads are not the only class which could benefit from
a graph structure. For this reason, nodes and edges are modelled as new
general classes Node and Edge in the core. They are modelled by MultiPoint
and MultiLinestring geometries repspectively. These new CityObjects are
directly added in cityobjects.schema.json. Nodes have an array attribute
that specifies which CityObjects are the edges that are incident to it. Edges
have both a “startNode” and “endNode” attribute, which specify from and
to which Node the edge goes. The additions in the schema for Nodes and
Edges can be found in Figure 4.7 and Figure 4.8 respectively.

A graph structure has been defined which can be applied throughout the
data model. In order to use this structure for roads, new CityObjects are
defined in the extension, under “extraCityObjects”. The new objects de-
fined are +RoadNode and +RoadEdge, which are Nodes and Edges enriched
with road attributes. The RoadNode can have four different types: “Inter-
section”, “Roundabout”, “Attribute” and “LaneSplit”. In what LoD which
attribute can be modelled is specified in Section 4.3. The RoadEdge can be of
the type: “Road”, “Connecting” or “Roundabout”. RoadNodes can have an
attribute “turns”, which specifies what roads can be reached from where at
an intersection node. This is represented by a two-dimensional array with
zeroes and ones. A one at position i, j means that that one can drive from
edge i to edge j, where i and j represent the index in the “edges” array in
the Node.

The linear road segments RoadEdges can have many attributes. Earlier,
I identified the needs for allowed modes of transport, street name, maxi-
mum speed, administrator and driving direction. Because of the schema-
less principle of CityJSON, these can just be added as attributes in data files.
However, they are modelled in the extension for completeness. As the class
Road is validated against AbstractTransportationComplex, it gets the at-

56 improving the data model

"Edge": {

"allOf": [

{ "$ref": "#/_AbstractCityObject" },

{

"properties": {

"attributes": {

"properties": {

"startNode": {

"type": "string",

"description": "CityObject ID of startNode"

},

"endNode": {

"type": "string",

"description": "CityObject ID of endNode"

},

}

},

"geometry": {

"type": "array",

"items": {

"$ref": "geomprimitives.schema.json#/MultiLineString"}

}

}

}

]

}

Figure 4.8: Addition of object class Edge in cityobjects.schema.json.

tribute “surfaceMaterial”, but the RoadEdge does not inherit this. This is
because the class Node only inherits from the AbstractCityObject. As a
consequence, in the linear representation, the surface material still needs to
be added as an attribute. From AbstractCityObject both representations
do get “class”. Thus road classification does not need a separate attribute.

Attributes for the areal representation are modelled differently. This is
because an areal Road object is modelled with the aforementioned seman-
tic surfaces. The attributes have to be added per semantic surface. This
can again be done schema-less. To document this in the schema, it requires
some change in how the semantic surfaces are modelled. Road semantic sur-
faces are now either of the type TrafficAreas or AuxiliaryTrafficAreas.
Additional attributes or categorisation is not modelled. For the LoD specifi-
cation proposed by Labetski et al. [2018], a further specification to “Road”,
“Carriageway” and “Lane” is needed. From the data needs “Intersection”
and “Roundabout” should also be added. To keep the CityGML data model
as intact as possible, the TrafficArea and AuxiliaryTrafficArea are kept.
Thus we model Road, Carriageway, Lane, Intersection and Roundabout as
subclasses of TrafficArea. I do this by adding attribute “roadType”, which
can have one of the five values mentioned above when the semantic surface
is a TrafficArea. To the semantic road surfaces I propose to add an at-
tribute to link it to an “OuterFloorSurface” of a bridge. This way, the road
can be “laid over” the bridge with the same surface. As said above, this is
not possible yet for tunnels, as LoD4 is not yet modelled in CityJSON.

In order to link the representation types, I have added an extra possibility
to model geometries in Roads with an array of strings. These strings then
refer to the CityObject id’s of the RoadEdges that correspond to the object.
Thus the geometry of a Road object is either a MultiSurface, or an array
with RoadEdges. To each RoadNode, RoadEdge and Road, I add the ability to
add an “intersectionID”. This is also modelled as an attribute. This might
be useful for generalization purposes, for instance. This way, traffic light
information can also be linked to intersections.

4.3 updated lod specification 57

4.2.4 Schema validation and semantic validation

The CityJSON schemas serve not only as a guide for how to model the
data. It is also used to validate the syntax of the data files. The files can be
validated with a JSON schema validator. However, these are not compatible
with extensions. The software cjio has been developed to handle, adapt
and validate CityJSON files [Ledoux et al., 2019]. Data files can also be
checked against CityJSON extensions with cjio.

JSON schemas are not suitable for semantic validation. Although one can
set limitations on the values an attribute value might attain, it cannot be
checked whether these values make sense with respect to other attributes or
features. The software cjio does also perform semantic validation. How-
ever, this is at this moment of course just for the regular CityJSON release.
The road extension syntax developed from this thesis can be checked ac-
cording to the file extension.schema.json. This has been done, and the
RoadExt.json extension is valid. However, the added semantics cannot yet
be validated. Examples of added semantic constraints are:

• LoD constraints. A semantic surface can only be a carriageway in
LoD2, and a lane in LoD3. Turning lanes may only be represented in
LoD0.2 and LoD0.3. A node may only have as NodeType “laneSplit”
in LoD0.3. These types of restrictions cannot be made in JSON schema.

• Nodes refer to CityObject id’s of incident RoadEdges, and vice versa.
It needs to be checked whether these id’s exist in the data file.

• In an LoD0.1 intersection RoadNode, the number of rows and columns
of the two-dimensional array value of the “turns” attribute must cor-
respond to the number of incident RoadEdges.

Among others, these semantic constraints need to be either incorporated
in cjio, or externally validated. This is outside the scope of this research,
and is recommended as future research.

4.3 updated lod specification
The identified road data needs have been processed in the updated CityJSON
schemas. Here the improved LoD specification of roads in CityJSON is sum-
marised in tables. In Table 4.1 the modelled attributes for the linear represen-
tation is shown. When combined with the geometric overview in Figure 4.4,
we can get a complete overview of how I propose to model roads linearly in
the CityGML data model. As can be seen, most attributes are modelled at
all linear LoDs, except for some related to topology. Modelling turn restric-
tions with “turns” is meant only for LoD0.1, but is allowed in LoD0.2 and
LoD0.3 when “modelling down”, as discussed before.

The areal LoD specification is an extension of the proposals by Beil and
Kolbe [2017] and Labetski et al. [2018]. The attributes modelled are set out
in Table 4.2. Road objects can be modelled by a TrafficArea at LoD1, where
the whole area is of the type Road. “Intersections” and “Roundabout” are
already their own “roadType” in LoD1. In LoD2, different carriageways
are modelled separately, both as TrafficArea semantic surfaces with type
“Carriageway”. From LoD2, AuxiliaryTrafficArea is used to represent
the non-drivable parts of the road. Intersections and roundabouts are still
modelled with their own roadType. In LoD3, each driving lane gets its own

58 improving the data model

Linear

Object Attribute Value LoD0.1 LoD0.2 LoD0.3

RoadNode edges x x x

roadNodeType Intersection x x x

Roundabout x x x

LaneSplit x

Attribute x x x

turns x (x) (x)

intersectionID x x x

RoadEdge startNode x x x

endNode x x x

edgeType Road x x x

Connecting x x

Roundabout x x

class x x x

function x x x

direction toEnd, toStart, both x x x

maxSpeed x x x

administrator x x x

streetName x x x

intersectionID x x x

surfaceMaterial x x x

modes x x x

Table 4.1: Attributes modelled per linear LoD.

Areal

Object Attribute Value LoD1 LoD2 LoD3

Road roadType Road x

Carriageway x

Lane x

Intersection x x x

Roundabout x x x

class x x x

function x x x

intersectionID x x x

streetName x x x

bridge x x x

administrator x x x

Table 4.2: Attributes modelled per areal LoD.

4.3 updated lod specification 59

(a) (b)

(c)

Figure 4.9: A roundabout at (a) LoD1, (b) LoD2 and (c) LoD3.

TrafficArea, with type “Lane”. Again, “Intersections” and “Roundabouts”
have their own “roadType”. The areal modelling of intersections and round-
abouts as TrafficAreas thus does not necessarily change through LoD1

to LoD3, as the driving lanes are not modelled – although an intersection
might be more segmented in LoD3. Some parts of an intersection might be-
come AuxiliaryTrafficAreas from LoD2 upwards (for example, a grassy
area in the centre of a roundabout, see Figure 4.9).

The use of AuxiliaryTrafficArea in CityGML is not well specified. In
the documentation, it is used from LoD2 onwards, with increasing geomet-
ric and semantic complexity [Open Geospatial Consortium, 2012b]. How-
ever, I have followed Beil and Kolbe [2017] and Labetski et al. [2018] in
removing LoD4 from the road specification. Thus there are only two levels
where AuxiliaryTrafficAreas are modelled. My suggestion is to model
these parts of the road at LoD2 as simply AuxiliaryTrafficAreas, and pro-
vide further segmentation at LoD3 in the categories one desires. The exist-
ing code list for AuxiliaryTrafficArea prescribes values such as “Kerbstone”,
“Ditch”, “Traffic Island”. These values can then be attained at LoD3.

When solely the areal representation is modelled, without linking with
linear road objects, the modeller can make a choice in object scale. One can
model each surface as a separate object. In that case, each Road object has
only one semantic surface. These might be very small polygons, for example
in the case of triangulation. A rather more elegant solution would be to set
the object at a bigger scale, and model smaller surfaces as semantic surfaces
belonging to that object. This is however not necessary. The modeller can
make their own choice in deciding the object scale.

5 PROOF OF CONCEPT: CREAT ING
C I TY JSON ROAD DATA F I LES

The updated CityJSON data model and the new LoD specification for roads
are the main results in this thesis. In this chapter, as a proof of concept, I
will transform a dataset into a CityJSON road data file. This serves multi-
ple purposes. First, a data file is useful for demonstrating the new model.
But more importantly, it can be used to identify potential shortcomings of
the data modelling choices. Some modelling choices can seem theoretically
smart, but in practice might be very difficult to use. Thus, creating a data file
from another dataset will reveal certain discussion points on the usability of
the data model.

5.1 description of the dataset

For creating the data file, a dataset maintained by the Provincie Noord-
Brabant is used. The dataset are shapefiles with areal and centre line data
of provincial road N640. The source data is from the BGT/IMGEO (see Sec-
tion 2.5), and the data is enriched with additional attributes and classes used
for maintenance of public space. The modelling catalogue can be found in
Deijzen et al. [2014].

Both the areal and linear dataset are very detailed. The extensive cata-
logue makes that small areal features, like kerbs, are modelled as their own
objects. The areal dataset can be considered LoD3, based on the geometric
and semantic scale, and the fact that the polygons have three-dimensional
vertices. The linear dataset is also detailed, but can be considered a combi-
nation of LoDs. It consists of centre lines of all lanes, and is thus LoD0.3.
However, there is also a centre line for the entire road, which is LoD0.1.
Furthermore, there is no line adjacency data in the dataset; no nodes or ad-
jacency lists are present. In a sense this data can thus even be considered
LoD0.0. In Figure 5.1 both layers are shown overlapping.

Figure 5.1: Linear and areal data of the N640 road in Noord-Brabant.

61

62 proof of concept: creating cityjson road data files

My goal is to model one stretch of road at all developed levels of detail.
In order to cover all elementary modelling concepts, I have chosen a stretch
between an intersection and a roundabout, between Kruisstraat and Hoeven.
The street has one lane per driving direction, and at the intersection some
separated turning lanes (see also Figure 5.3a). This makes an interesting
case, given that it links to the carriageway discussion from Section 2.3.2.
The dataset also includes polygons and centre lines for bicycle lanes, also
visible in Figure 5.1. For this case I have decided to not consider these and
focus on the main roads. It is however interesting to research how these can
be incorporated, and is recommended future research.

5.2 transforming the data
In this section it is explained what steps have been taken to transform the
data into CityJSON road format. I use both QGIS and Python to create
the data file. QGIS was used to preprocess the data, and to do some spa-
tial analysis. After, the data was written to CityJSON with Python. In
the program, also some additional linking of data was done. The process,
along with the difficulties, is outlined below. I want to have a CityJSON
file at every level of detail, and one where I link both representation types
at LoD(0.)1. First I considered the areal representations, then the linear
representations, and after that the linking of both. Note that the purpose
of the transformation was not to create a perfect dataset. The transforma-
tion was done to reflect on the modelling choices made, and to see what
happens when one wants to model a single dataset at various levels of de-
tail. The resulting data files and the Python programs used can be found at
https://github.com/fhb1990/cityjson.

5.2.1 Areal modelling

The areal dataset contains polygons that are directly adjacent to the road.
The first step in data processing was to remove these. After, the features
that I wanted to consider in the transformation were selected. Besides the
roundabout, the intersection, and the stretch of road between the two, the
other “ends” of the roundabout and intersections were also selected, but
only for a short distance. Afterwards, polygons that I consider part of an
intersection were given an “intersectionID”. Thus there are only two id’s.
These were used later to map the value to the CityJSON attribute.

Creating the LoD3 file was rather straightforward. Figure 5.2c shows
the dataset without any processing; the layer symbology came with the
dataset. As said, the dataset already subdivides the road into driving lanes.
All features that I considered to be driving lanes (no footpaths and bicycle
lanes) were written as a TrafficArea with roadType “Lane”, except when
it had an “intersectionID”; then it was either written as roadType “Inter-
section” or “Roundabout”. The Dutch object description was mapped to
“function” and the administrator information to “administrator”. Other at-
tribute values were not available. All other features present were written
as AuxiliaryTrafficArea, with the Dutch object description mapped to
“function”.

I decided to model each feature from the dataset as its own object. Thus
each CityObject in the data file has only one semantic surface. All features
had their own object ID. The only attribute I could have used to link sur-

https://github.com/fhb1990/cityjson

5.2 transforming the data 63

(a) LoD1

(b) LoD2

(c) LoD3

Figure 5.2: (a) & (b) Derived areal levels of detail after merging in the (c) original

64 proof of concept: creating cityjson road data files

faces together was the road number N640, but this was equal for almost the
entire dataset. Therefore I chose to model each feature as its own object. In
Section 5.2.3 I try to incorporate more semantic surfaces in one object.

Creating the LoD1 and LoD2 data files proved to be more difficult. This
required the merging of features, such that the geometry aligns to the new
LoD. For two adjacent driving lanes this is relatively easy. Still, adjacent
lane features might have very different “endpoints” along the road, in which
case merging result in exotically shaped polygons. For LoD1, I merged all
features across a road; see Figure 5.2a. One could alter the vertices of the
polygon boundaries in order to change the shape, but I chose to leave it as
is.

The same issue occurs when merging AuxiliaryTrafficAreas. As out-
lined in the previous chapter, I decided to model these at LoD2 without any
further specification, or semantic information. Thus, I randomly merged fea-
tures that were at the side of the road (see Figure 5.2b), and wrote these as
AuxiliaryTrafficAreas without any further attributes. The TrafficAreas

were written with roadType “Carriageway” at LoD2 and “Road” at LoD1,
as prescribed by the adapted data model. Also, when merging, I merged
by the previously added “intersectionID”, such that the intersection and
roundabout could be written as separate objects with their own “roadType”
at both LoD1 and LoD2.

One of the benefits of CityJSON is that is reuses vertices. However, the cur-
rent implementation of my Python writer program does not reuse vertices.
This is allowed by the CityJSON specifications, but this can be improved at
a later stage.

5.2.2 Linear modelling

When writing a linear representation CityJSON road file, we need to write
two types of objects: RoadNodes and RoadEdges. Given that the linear data
only consists of edges, the nodes have to be generated. The linear data is
specified per lane, but it was still work to create the LoD0.3 data file. This
mostly has to do with the geometry of my proposed data model. The in-
tersections at LoD0.2 and LoD0.3 have precise modelling prescriptions. The
linear road data has some turning lanes, but not many. Thus these needed
to be added manually. Some lines needed to be split in two. Also, not all
endpoints of the linear data matched, which is crucial for implementing the
topological data structure. Thus, I also had to snap many lines together.
It needed only a small adjustment to obtain the LoD0.2 lines from these.
Creating the LoD0.1 lines was easy, given that it consisted of only a few
lines.

With QGIS I generated a point layer for start and end points of the lines,
which contained the incident line features id. For LoD0.3, the result is
shown in Figure 5.3. This happened for every line, which resulted in over-
lapping points (for instance: four when four lines meet in a vertex). Later,
in the writer, it is checked whether there already is a vertex around that
location, and if so, it adds its incident edge information to the other node.
This information is crucial for the network structure. Again, I manually
assigned intersectionID’s, this time to turning lanes and the nodes that be-
long to intersections and roundabouts. When the node’s roadNodeType had
to be either “attribute” or “laneSplit”, I also added this manually as an at-
tribute value. The edgeType can be determined from the “intersectionID”,
otherwise it is just “Road”.

5.2 transforming the data 65

(a) (b)

Figure 5.3: LoD0.3 representation of the intersection in the dataset.

Figure 5.4: Division of the road data into various objects.

While the centre line data of the lane had attributes such as maximum
speed and administrator, the LoD0.1 centre line data had no attributes which
I could map. Other attributes like street names or driving directions were
not present in the data.

When writing the CityJSON file, first the nodes were handled. As de-
scribed above, duplicate points were aggregated such that all incident edge
id’s appeared in the “edges” attribute of the RoadNodes. After, the edges
were written to the file. To obtain the start and end node of the edges, for
each edge the program goes through all nodes to search for its own id in
the attribute “edges”. This is very inefficient, but given that the dataset was
relatively small, it did not matter in this case. When this writer is used
for larger datasets, the incident node id’s should be added as attributes in
pre-processing through spatial analysis.

5.2.3 Linking representation types

One of the results of the previous chapter was to provide a method to link
a linear road representation to an areal representation. To do this, an object
needs to be defined first. We need to know on what basis we aggregate
edges and surfaces.

As a test case, I decided to manually create objects. I used LoD0.1 and
LoD1 data to create a data file. I defined the intersection, the roundabout,
the stretch of road between the two, and the other outgoing roads of the
intersections as the objects(see Figure 5.4). The object id’s were added man-
ually, as it concerns a small amount of features.

66 proof of concept: creating cityjson road data files

After defining the object id’s, the process was a combination of the previ-
ous two sections. First the nodes and lines were written as in the previous
section. Then, the Road objects were written to file. The difference with
before is that now surfaces with the same object id will become semantic
surfaces in the same object, as desired. The writer program was slightly
altered to achieve this. After writing the RoadNode, RoadEdge and Road ob-
jects, for each Road object the corresponding RoadEdges were written in an
array in the “geometry” property.

5.3 reflection on modelling choices
The aim of this chapter is to reflect on the new LoD specification by populat-
ing the improved data model. It can be concluded that it is not always easy
to create a data file adhering to the LoD specification. Creating the LoD3

file was straightforward. The input dataset was already LoD3-like, and thus
was easy to transform. Creating lower LoD datasets was actually less easy.
I had to merge features, which led to some strange feature shapes. The pro-
cess of merging polygons to create lower LoDs could be automated. This
gets more in the domain of map generalisation. One can also ask whether
it is desirable to create lower LoD datasets from higher LoD input data.

LoD0.2 and LoD0.3 require exact modelling of the turning lanes at inter-
sections. When an input dataset does not have these turning lanes, they
need to be added. This will cease to be a problem when datasets will be
created with the improved data model in mind. However, for transforming
data to the CityJSON encoding having these explicit turning lanes might be
much to ask. The dataset used here already had some turning lanes, but
still it took quite some preprocessing to get it right according to the LoD
specification.

In Chapter 2 and Chapter 4 I talked about the possibility of “modelling
down”: using a lower LoD type to model an object. This also appeared
when using this dataset. In Figure 5.3b, the road coming from the south
is bi-directional, but has no lane specification. Because of this, the road is
modelled in the input dataset with a single edge. Another option would
have been to use two edges, one for each driving direction. This is both
allowed. But given that it is already modelled like this, I chose to accom-
modate this. At the same time, users want to know what is in what LoD.
Leaving too much room for own interpretation might lead to ambiguity in
what an object is supposed to be at a certain LoD.

Linking the two representation types also leads to the question: what is
the object? I have determined this manually for a small dataset. Ultimately it
is something the data provider should decide on. Also users can determine
objects themselves if they want to aggregate certain features. It is probably
better to assign object ids based on spatial analysis, or on an attribute. In
the linking done above, the linear representation objects did not end exactly
at the boundaries of the corresponding polygons. The question is whether
this is necessary. If desirable, one could split geometries based on the other
representation type. However, when making a new datafile this should be
less of a problem, and objects can be created such that they correspond
spatially as well as semantically.

Working with this specific dataset brought up some additional questions.
Merging AuxiliaryTrafficAreas when creating an LoD2 file resulted in
strange-looking geometries. The role of AuxiliaryTrafficAreas in LoD2 is

5.3 reflection on modelling choices 67

still not well-defined. Perhaps this is also the case for LoD3. One models
nothing, the other model everything. The use of AuxiliaryTrafficArea

might need reconsideration. It is also not clear what to do with parallel
lanes, bicycle paths and footpaths. One can consider them part of the same
Road object. In that case, at what LoD do I start modelling them, LoD2

or LoD3? Here I modelled them as AuxiliaryTrafficAreas, mostly for
simplicity’s sake. However, a further specification seems appropriate.

Creating the data files has given some insight in what the ideal CityJSON
road dataset should look like. Ideally it contains both a linear and areal
representation, with corresponding LoD. The objects are classified such that
it is easy to determine whether something is an intersection, roundabout,
road, or something auxiliary. Turning lanes are explicitly modelled, and
endpoints of lines meet in the exact same point. It would be nice if features
had an object id which specifies to what object a feature belongs. This would
result in an easy linking between the representation types.

6 CONCLUS ION , D ISCUSS ION AND
FUTURE WORK

6.1 conclusion
3D city models are becoming increasingly prevalent. As three-dimensional
data becomes more common, the usage and potential applications of these
models increases. As we have observed, government agencies are also mov-
ing towards capturing and storing their data in 3D. They are enthused about
the potential of 3D applications. The different levels of detail of 3D city
models allow objects to be modelled at multiple geometric and semantic
scales. Different applications demand different LoDs. In CityGML, the most
widely used data format and data model for 3D city models, there are five
LoDs. This research was guided by the notion that the LoD specification of
the transportation module is not well developed. As the development and
importance of three-dimensional geographic data and city models is depen-
dent on the use cases it enables, the aim of this research was to answer the
question: how should roads and intersections be modelled at different levels
of detail in 3D city models based on use case needs?

In meetings with the Dutch working group for Central Object Registra-
tion, it was made clear that the Dutch government wants to move to one
central register where real-world objects are modelled only once. In this
register, the object takes centre stage, and is the modelling unit. At this mo-
ment, objects are modelled in different key registers, which leads to prob-
lems with linking the data, and with temporal accuracy. 3D city models
are also object-based. The CityJSON encoding of the CityGML data model
accentuates that by having the CityObjects as the main modelling unit. Be-
cause of the COR intention and the object-central modelling of CityJSON, in
addition to CityJSON user-friendliness, it was decided to model the roads
and intersections in the CityJSON encoding of the CityGML data model.
Some elementary changes were made in the CityJSON core. All other im-
provements were modelled with a CityJSON extension.

In short, the methodology in this thesis was that a) road data needs
were extracted from use cases, b) these needs were compared to modelling
choices for these data needs in other road standards, and then c) modelled
in CityJSON. From reviewing other road standards, it was clear that these
standards were all developed with one, or a couple of use cases in mind. In
this research, in the same vein, I tried to select use cases that were diverse
in application but still all had data needs that CityGML and CityJSON cur-
rently lack: the modelling of road networks. The use cases researched were
transport modelling, automotive navigation and road maintenance. The lat-
ter use case was chosen because it also combines the two representation
types.

From the use case data needs analysis, it became clear that many use
cases rely on a graph structure. The road standard review showed different
ways in which these structures were actually modelled. Choosing to adapt
the data model in CityJSON allowed me to model graphs in a flat structure.
New CityObject types Node and Edge were added to the CityJSON core such

69

70 conclusion, discussion and future work

that networks can be topologically modelled. Furthermore, these graphs are
not limited to road networks, and can be used for other classes as well. I
have extended these new classes to RoadNodes and RoadEdges. With these
new objects road networks can be modelled in 3D city models. This is
one of the main results of this thesis, as this is something that up to now
has not been done before. This opens many new possibilities for potential
applications.

Apart from having a graph structure, many data needs concerned the way
these networks were modelled through different LoDs. For example, how to
allow for routing information at different linear LoDs, or how intersections
should be explicitly modelled. The previously proposed LoD specification
for the linear representation was combined with an assessment of how other
road standards model roads and intersections in networks. This has led to
a new LoD specification for the linear representations of roads, as seen in
Section 4.3. This gives a clear description of how nodes and edges should
be combined to form roads, intersections and roundabouts at various levels
of detail.

The use cases assessed mostly pertained to modelling linear networks.
However, data needs related to areal representations were also acquired.
The data needs for areal representations are mostly attributes that can be
added to the geometry itself. Thus, from the assessment of the three use
cases listed, a further specification for the areal LoDs was not needed. The
areal LoD specification in Section 4.3 is therefore mostly a worked out model
of the previously proposed LoD improvement by Beil and Kolbe [2017] and
Labetski et al. [2018]. There was a data need to specify intersections and
roundabouts as objects separate from the roads, but no need for a further
elaboration of the configuration for higher areal LoDs. As seen, intersec-
tions can have complex configurations and can differ among themselves.
While at LoD0.3 the intersection configuration with all its turning lanes is
completely modelled, my proposal for all areal LoDs is to simply model in-
tersections and roundabouts as surfaces, without any further specification.
The majority of data model improvements were thus made in the modelling
of the linear network. These data needs were implemented in the schemas
defining the CityJSON data structure.

A data need that arose was the ability to link the linear and areal geome-
tries together. This corresponds to the idea of having central object registra-
tion. The decision was made to model changing attributes in networks by
using a node. In this way, the edges of road networks have their own set
of attributes. This can however lead to a highly fragmented network when
many attributes are modelled. When one wants to link areal and linear rep-
resentation under the guise of one object, and the modelling features are
quite segmented, it will be very difficult to consistently model a one-to-one
mapping between the two. The concept of having road segments in the data
model has been proposed before. The way this is modelled in this thesis is
not by mapping the smallest modelling objects to each other, but by making
this possible on a more aggregated level. As previously stated, Nodes and
Edges become separate CityObjects such that they can be used by multi-
ple modelling classes. In the CityJSON extension, these are enhanced into
RoadNodes and RoadEdges. These constitute the linear road network. The
areal geometry is already modelled using semantic surfaces. A Road object
can contain many of these surfaces within one geometric object. Together
they are the geometric value of a Road object. The decision was made to
allow Road objects to also have, as a geometry, an array of RoadEdges. In

6.2 discussion 71

this way, there does not need to be a new Road object each time an attribute
changes. Thus there can be a mapping between the two representation types,
despite different segmentations. The data provider decides what the scale
of the Road object is at which the different segmentations of the same Road

object (linear road segments and semantic surfaces) are aggregated.
Transforming data into CityJSON road files has shown that as an encod-

ing, CityJSON is easy to work with. Transforming areal data to the CityGML
data model is rather straight forward, as it is mostly a case of attribute map-
ping. However, linear data needs to adhere to the new LoD specification,
which can be geometrically strict at high LoD intersections, for example.
The linear dataset needed quite some preprocessing before the mapping
could take place. However, in order to obtain a graph structure such that
routing is possible, strict modelling choices are perhaps necessary.

How do we model roads and intersections across various levels of detail
in 3D city models? Previous proposals by Beil and Kolbe [2017] and Labetski
et al. [2018] have been combined with a new data needs assessment. This has
resulted in a new improved CityGML road data model, with a correspond-
ing LoD specification. For LoD2 and LoD3 it is specified how the areal
geometry and semantics should be modelled, whereas this was not clear in
the current CityGML transport module specification. Furthermore, a new
LoD0 specification has been developed at three levels with a prescribed ap-
proach describing how to model these. Moreover, the research has resulted
in a CityJSON extension which provides the schema for modelling the new
LoD specification. In order to implement this, a method has been devel-
oped to model graphs in CityJSON. Finally, changes to the CityJSON core
have been made to accommodate the central object modelling of different
representation types into one Road object.

While the goal was to further enhance the LoD specification, I have tried
to still allow for a lot of flexibility for the user. For example, I want to leave
room for users to implement their own linear referencing system when they
do not want to use a node-based attribute system. Also, navigation could
be done with LoD0.1 or LoD0.3, depending on the amount of attributes one
has. The goal is not to over-fit the data model with attributes, but allow
users and data providers a framework where they can implement their own
data.

6.2 discussion
In this research, the CityGML road data model has been improved based on
data needs arising from different use cases. Thus the result is heavily de-
pendent on use cases chosen. We saw that other road standards often had
an origin in applications. This is also true for the changes in the data model
made here. The use cases were chosen because of the previous research into
an expanded LoD specification of roads. Given that the areal representation
was already more specified, use cases which relied more on a network repre-
sentation were chosen for the data needs analysis. Thus, the improvements
to the data model mostly concern the LoD specification of the network.

The focus on using the linear representation of roads might lead to a
one-sided view on what is necessary for road modelling. The use cases,
transport modelling and navigation, had overlapping data needs, especially
in attributes needed. This might lead to the preconception that some at-
tributes are necessary for modelling roads (in 3D city models or otherwise).

72 conclusion, discussion and future work

However, in this research I have tried not to over-fit the data model with
attributes. In government meetings about the COR, the same discussion
was held. It can be difficult, and sometimes arbitrary, to determine what
attributes are necessary to have in your model.

Furthermore, it is also debatable to what extent one wants to encode the
possible values of an attribute. Take for instance the attribute driving di-
rection. Every information model has different ways of modelling such an
attribute. My proposal is to have three possible values for the three possibil-
ities (”toEnd”, ”toStart”, or ”both”). The question is whether it is necessary
to prescribe these values. Users might want to store their data in CityGML /
CityJSON, but use their own information model values. When I created the
CityJSON road data files, I for instance mapped the object description at-
tribute to “function”. The latter has a code list which prescribes values, but
this way the actual values from the original information model can be trans-
ferred. This accommodates data providers to store their own data using the
CityGML data model. Accommodating data providers’ attribute values can
also be done by creating a CityJSON extension.

The choice was made to model attribute changes in networks using nodes.
The choice for node-based attribute modelling can be defended by the way
the representation types are linked, and also because using a linear refer-
encing system instead is still supported. The network might become highly
segmented, but this will not influence the segmentation of the areal repre-
sentation. Furthermore, if one wants to prevent a high level of segmentation,
an LRS can still be implemented. For example, the NWB uses linear refer-
encing for many road attributes. There are plans for the NWB to be part
of the future road central object registration of the Netherlands. Thus, this
is an extra incentive to be able to accommodate LRSs in the data format.
The way this can be integrated with the proposed CityJSON encoding is
something that is still open to research.

The new LoD specification leads to a discussion on the meaning of LoDs.
A higher level of detail in a 3D city model means that both the geometry
and the semantics related to the geometries are more detailed. Different
authors place different emphasis on whether the LoD differentiation should
focus more on the geometry or the semantics. In the areal road LoD spec-
ification, the LoDs are geometry-led, but the semantics change along with
it. In a high areal LoD, having a “lane” semantic surface only makes sense
when that surface actually exists. The geometry has to be divided into dif-
ferent parts in order for the semantics to follow. In a certain way, the linear
LoD specification is similar in this aspect. The LoD specification set out in
Section 4.3 is very geometrical in its approach, and the semantics also fol-
lows suit. However, in a low level of detail, the network can still be quite
semantically rich. In networks, many things that cannot be deduced from
its geometry, can be added as attributes (e.g. number of lanes, cross section,
etc.). An example of this is OpenStreetMap, where roads are often repre-
sented by just one line, but have many key-value pairs attached to it, which
makes it usable for many applications. This again leads to the discussion on
how desirable it is to have many attributes modelled. Do I want to be able
to do complex network computations with LoD0.1? If yes, should this infor-
mation be added to the data model, or can this be modelled as an extension?
Low LoD road models can be useful when detailed geometric information
is not necessary. This might be the case when working with a dataset with a
very large extent. This might lead to a case where the lack of detailed geom-
etry has to be compensated by a high semantic detail in order to perform

6.2 discussion 73

the needed computations, but still have a manageable dataset. This can lead
to a superfluous idea of LoDs. Thus, it can be discussed whether all of these
strict LoDs are necessary in a 3D city model. However, the strength in hav-
ing the detailed LoD specification is perhaps also in having people decide
what LoD they want to use for the data they already have. Furthermore, it
is of course important to have a standardised way of knowing what the data
requirements are for certain datasets, so users know what to expect.

The above mirrors how Biljecki et al. [2013] see LoDs: as a quality measure
of a model based on different factors. They eventually let go of the five LoDs
of CityGML, in order to permit an LoD specification based on more factors
than first exterior complexity and eventually interior complexity. However,
in this research I have stuck to the LoD proposals by Beil and Kolbe [2017]
and Labetski et al. [2018]. Mostly because the data needs and assessed use
cases seemed to fit with the LoDs presented in these proposals.

The node-based attribute changes in road networks also lead to a parallel
idea in level of detail. When many attributes changes are modelled, a net-
work can become highly fragmented. This can be interpreted as having a
high level of detail. However, this could be done at LoD0.1. In this sense,
the LoD specification of networks becomes semantic-led: as the semantic
detail increases, the network becomes more segmented, and thus becomes
more detailed. This is a separate notion of LoD, which can be considered
along the road, as opposed to the current LoD specification, which mostly
considers the detail across the road. Earlier I established that in the across
linear LoD specification, geometric and semantic LoD are not necessarily
related. The same can thus be said about the along LoD when using the
node-based attribute change method. Naturally, this notion changes when
one uses a linear referencing method instead.

An important question that impacts the relevance of this study, is whether
we need 3D road data at all. It can be argued that 3D data was not really
needed in the use cases assessed in this research. Then again, some use cases
can benefit, like the waste collection use case which incorporated slope de-
ducted from 3D data. Although this could also be an attribute of a 2D
dataset. I would argue that the real strength of having the road data in a 3D
city model is that it adds to the benefit of being able to combine a road net-
work with spatial analysis of the surroundings around the road. Other use
cases like noise modelling definitely benefit from using 3D city models, as
all objects surrounding roads that are necessary for the analysis are already
present. This use case was not chosen for this thesis as it has already been
researched at TU Delft. Also, keeping the central object registration in mind,
and the tendency of governments to move towards 3D geographic data, it
makes sense to have these objects modelled in a 3D city model, since this is
also 3D and object based.

The central object concept has led to the implementation, in this research,
of linking the two representation types, but not at the smallest scale of se-
mantic surfaces and RoadEdges. A question is whether this mapping of
two representations of objects is otherwise desirable. 3D city models are
object-based models. Thus, conceptually linking the types seems like good
practice. However, when doing spatial analysis, the linking may also be
done on the fly by doing a spatial join. This does require that the network
is geometrically modelled overlapping with its areal counterpart. Having
the linkage modelled may lead to issues in creating the data such that the
objects line up correctly. In the COR meetings this was also addressed as a
potential problem. Given that they would like to have a link between the

74 conclusion, discussion and future work

representation types, there is skepticism around the use of node-based at-
tribute change modelling. My proposal might be a solution for them, as it
permits bigger objects, but still with a possibly highly segmented network.

Eventually, it comes down to accommodating the user and data providers.
3D city models can never be one size fits all. Not even five sizes fit all. The
five specified LoDs of CityGML help in providing quality measures for both
users and providers. Nevertheless, these levels will never be perfect for any
application. There needs to be a balance between meaningless LoDs – as
the Transportation module specification was before – and highly specified
and restricted LoD specifications. In every modelling choice made in this
research I have tried to keep that balance. However, from creating the data
files it did turn out that it is still very dependent on the dataset whether
the LoDs fit well with the data. Then again, having well-specified LoDs
makes it easier for new data providers to create consistent datasets among
themselves.

It was decided to encode the improved data model using the CityJSON en-
coding of the CityGML data model. The development of CityJSON is still in
its early stages. Thus, this research also serves as proof of how CityJSON can
be extended for certain use cases. However, the characteristics of CityJSON
have also influenced certain design choices. For example, the object-based
nature of CityJSON helped in modelling the linking of the representation
types. Moreover, because CityJSON uses Road as a separate CityObject class,
the changes made to the data model are actually restricted to the roads only.
In CityGML, roads are part of the Transportation module. Furthermore,
the semantic surfaces used in modelling the areal representation differ from
the way CityGML stores surfaces. The semantic surfaces made it easy to
have a Road object composed of different smaller parts. Therefore it made
it easier to link this with the corresponding road segments that are part of
the same object. When one wants to store a data file adhering to the newly
improved data model in CityGML, they would need a new way of imple-
menting these concepts. Topology of networks can theoretically be imple-
mented using XLinks. However, because CityGML does not store vertices
like CityJSON, this might lead to too much redundant data.

Choosing to encode the improved data model in CityJSON does not only
have technical consequences. CityGML is widely accepted as the main stan-
dard for exchanging 3D city models. Modelling my proposed changes in
CityGML might thus lead to more impact. However, I have noticed that
users and government officials are interested in the JSON encoding of the
CityGML data model. It seems like users are not overly attached to the
CityGML encoding itself. They care more for how they can eventually use
and store the information. Also, there exists software to convert CityGML
to CityJSON and vice versa [CityJSON, 2019]. Thus, it matters less which
encoding is used. Though I must add that the improvements I propose are
not yet processed in this software.

As was said, the data model changes were based on a needs analysis of
three different use cases. This, by definition, makes the additions limited.
A benefit of using CityJSON is that it is still in development, and its devel-
opment is an ongoing open source project. This makes it easier to propose
changes and implement them. This is also why it is interesting to focus
future research on what other changes can be done, not only to the Road
data model, but also to the structure of the entire JSON encoding of the data
model. This might lead to new changes that will partly contradict with my

6.3 future research 75

final proposal. In this way the development of CityJSON can be advanced
such that it might become a widely-used alternative encoding of CityGML.

6.3 future research
Conducting this research has led to the insight that gaining knowledge
also means gaining many new questions. The following subjects can be
researched following this thesis.

• In this research I focused on roads which are mostly used by cars.
Further thought can be put into checking whether a further specifica-
tion is needed for bicycle lanes, footpaths, or pedestrian areas. The
CityGML Transportation module also considers railways and squares.
Can the concept devised in this thesis also be applied to these object
classes?

• In this research I have only considered having objects of the same
LoD in one data file. Modelling the same object in different LoDs
is already possible. How do we model neighbouring road objects in
different LoDs? Can a RoadNode be incident to RoadEdges of various
LoD? What would this imply for the data model?

• In the discussion above I observed that having a segmented road net-
work leads to a second type of LoD: not along the road but across.
Should the CityGML concept of LoD take this into account. Previous
authors have proposed multi-dimensional concepts of LoD (see for in-
stance Biljecki et al. [2013]). This might be something to consider for
roads as well.

• This research mostly focused on improving the linear LoD specifica-
tion of roads in the CityGML data model. However, also a further
specification of areal LoDs might be needed for several use cases. A
further use case analysis based on areal representation might be useful.
Also, my implementation of AuxiliaryTrafficArea is still somewhat
vague for practical use, as turned out in Chapter 5. This might benefit
from a further improved specification. One could also think of getting
rid of both TrafficArea and AuxiliaryTrafficArea completely. I de-
cided to keep these, in order to keep in line with the current CityGML
data model and encoding. Which leads me to...

• At the time of writing, CityGML 3.0 is in development. This might
entail changes to the Transportation module. If that is the case, a po-
tential topic to research is whether the improved CityJSON encoding
has to be adapted, and if how this can be done.

• My modelling choices were often made with the thought of accom-
modating many different data users and providers in the same data
model. I implemented a node-based approach to attribute changes,
but also mentioned that, if one wants, they can additionally implement
a linear referencing structure. How this might be done in CityGML or
CityJSON is still to be researched.

• A topological graph structure has been implemented for linear road
networks. It is however not clear whether this structure is especially
suited for routing purposes. If one wants to do perform routing with

76 conclusion, discussion and future work

CityJSON road data, is an additional structure needed? Perhaps an
adjacency matrix or list can be extracted from the road data, which
helps routing performance.

• During the data need analysis, the need for having road cross section
information came up. This information can be quite complicated for
roads with various lanes. It was out of scope for this thesis to im-
plement a way to use cross section data in CityJSON. However, an
extension can be devised which works out this concept.

• The software cjio currently provides a way to validate CityJSON files
both syntactically and semantically. However, by changing the data
model, the semantic validation process needs to be updated. Some ex-
amples of validation points are given in Section 4.2.4. A full overview
of validation checks is needed. Afterwards this needs to be modelled,
either in cjio, or in a separate program.

• In Chapter 5, I transformed road data to CityJSON road data at all
LoDs. The CityJSON writer Python program is however only made
to use the specific dataset I used with the specific preprocessing I did.
This writer can be generalised and further developed into a writer
that takes arguments, and perhaps does geometric / topologic data
processing inside the program.

B IBL IOGRAPHY

Baig, S. U. and Rahman, A. A. (2012). Generalization and visualization of 3D
building models in CityGML. In Pouliot J., Daniel S., Hubert F., Zamyadi
A. (eds) Progress and New Trends in 3D Geoinformation Sciences. Lecture
Notes in Geoinformation and Cartography., pages 63–77. Springer Berlin
Heidelberg.

Beil, C. (2017). Detaillierte repräsentation des straßenraums in 3d-
stadtmodellen. Master’s thesis, Technische Universität München.

Beil, C. and Kolbe, T. H. (2017). CityGML and the streets of New York - a
proposal for detailed street space modelling. ISPRS Annals of Photogram-
metry, Remote Sensing and Spatial Information Sciences, IV-4/W5:9–16.

Biljecki, F., Kumar, K., and Nagel, C. (2018). CityGML application domain
extension (ADE): overview of developments. Open Geospatial Data, Soft-
ware and Standards, 3(1):13.

Biljecki, F., Ledoux, H., and Stoter, J. (2016). An improved LoD specifica-
tion for 3D building models. Computers, Environment and Urban Systems,
59:25–37.

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., and Çöltekin, A. (2015). Ap-
plications of 3D city models: State of the art review. ISPRS International
Journal of Geo-Information, 4(4):2842–2889.

Biljecki, F., Zhao, J., Stoter, J., and Ledoux, H. (2013). Revisiting the concept
of level of detail in 3D city modelling. ISPRS Annals of Photogrammetry,
Remote Sensing and Spatial Information Sciences, II-2/W1:63–74.

Boxill, S. A. and Yu, L. (2000). An evaluation of traffic simulation models
for supporting ITS. Houston, TX: Development Centre for Transportation
Training and Research, Texas Southern University.

CityJSON (2019). CityJSON 1.0 Documentation. https://www.cityjson.

org/. Accessed: 2019-05-02.

Claussen, H., Lichtner, W., Heres, L., Lahaije, P., and Siebold, J. (1989). GDF,
a proposed standard for digital road maps to be used in car naviga-
tion systems. In Conference Record of papers presented at the First Vehicle
Navigation and Information Systems Conference (VNIS ’89). IEEE.

CROW (2018). Intersection Topology Format (ITF). Topology Guidelines
version 2.1. Technical report, CROW.

Curtin, K. M., Nicoara, G., and Arifin, R. R. (2007). A comprehensive process
for linear referencing. URISA Journal, 19(2):23–32.

de Dios Ortúzar, J. and Willumsen, L. G. (2011). Modelling transport. John
Wiley & Sons, 4th edition.

Deijzen, W. v., Steinvoort, N., Buul, K. v., Reyngoud, N., Looijen, W., and
Gerwen, S. v. (2014). Objectenwoordenboek IMGEO+ Provincie Noord-
Brabant. Provincie Noord-Brabant.

77

https://www.cityjson.org/
https://www.cityjson.org/

78 BIBLIOGRAPHY

Droettboom, M. (2019). Understanding JSON schema. Release 7.0. Space Tele-
scope Science Institute.

Ducloux, P. (2016). RoadXML format specification 2.4.1. Technical report,
RoadXML.

Dupuis, M. (2015). OpenDRIVE format specification, Rev. 14. Technical
report, VIRES Simulationstechnologie GmbH.

Dupuis, M., Strobl, M., and Grezlikowski, H. (2010). OpenDRIVE 2010 and
beyond–status and future of the de facto standard for the description
of road networks. In Proc. of the Driving Simulation Conference Europe,
pages 231–242.

Egenhofer, M. J. (1993). What’s special about spatial? Database requirements
for vehicle navigation in geographic space. In SIGMOD ’93 Proceedings
of the 1993 ACM SIGMOD international conference on Management of data,
pages 398–402.

Essen, R. v. and Hiestermann, V. (2005). “X-GDF” — the ISO model of
geographic information for ITS. In ISPRS Workshop on Service and Appli-
cation of Spatial Data Infrastructure, XXXVI (4/W6).

Gröger, G. and Plümer, L. (2012). CityGML – interoperable semantic 3D city
models. ISPRS Journal of Photogrammetry and Remote Sensing, 71:12–33.

Haubrich, T., Seele, S., Herpers, R., Müller, M. E., and Becker, P. (2014).
A semantic road network model for traffic simulations in virtual en-
vironments: Generation and integration. In 2014 IEEE 7th Workshop
on Software Engineering and Architectures for Realtime Interactive Systems
(SEARIS), pages 43–50. IEEE.

Häfele, K.-H. (2011). CityGML model of the FJK-haus.

ISO (2011). Intelligent transport systems - Geographic Data Files (GDF) - GDF5.0
(ISO 14825:2011).

Kadaster (2019). Geschiedenis van de topografie. https://www.kadaster.

nl/web/kadaster.nl/over-ons/het-kadaster/geschiedenis/

topografie. Accessed: 2019-06-21.

Kadster (2019). Meerjarenbeleidsplan: speerpunten. https:

//www.kadaster.nl/over-ons/beleid/meerjarenbeleidsplan/

speerpunten. Accessed: 2019-06-29.

Kolbe, T. H. (2009). Representing and exchanging 3D city models with
CityGML. In Lee J., Zlatanova S. (eds) 3D Geo-Information Sciences. Lecture
Notes in Geoinformation and Cartography, pages 15–31. Springer Berlin
Heidelberg.

Labetski, A., Gerwen, S. v., Tamminga, G., Ledoux, H., and Stoter, J. (2018).
A proposal for an improved transportation model in CityGML. ISPRS
- International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, XLII-4/W10:89–96.

Labetski, A., Ledoux, H., and Stoter, J. (2017). Generalising 3D Buildings from
LoD2 to LoD1, chapter 92. University of Manchester, United Kingdom.

Ledoux, H. (2019). Personal communication. Date: 2019-04-29.

https://www.kadaster.nl/web/kadaster.nl/over-ons/het-kadaster/geschiedenis/topografie
https://www.kadaster.nl/web/kadaster.nl/over-ons/het-kadaster/geschiedenis/topografie
https://www.kadaster.nl/web/kadaster.nl/over-ons/het-kadaster/geschiedenis/topografie
https://www.kadaster.nl/over-ons/beleid/meerjarenbeleidsplan/speerpunten
https://www.kadaster.nl/over-ons/beleid/meerjarenbeleidsplan/speerpunten
https://www.kadaster.nl/over-ons/beleid/meerjarenbeleidsplan/speerpunten

BIBLIOGRAPHY 79

Ledoux, H., Ohori, K. A., Kumar, K., Dukai, B., Labetski, A., and Vitalis, S.
(2019). CityJSON: A compact and easy-to-use encoding of the CityGML
data model. Open Geospatial Data, Software and Standards, 4(1):4.

Luebke, D., Reddy, M., Cohen, J. D., Varshney, A., Watson, B., and Huebner,
R. (2003). Level of detail for 3D graphics. Morgan Kaufmann Publishers.

Löwner, M.-O. and Gröger, G. (2016). Evaluation criteria for recent LoD
proposals for CityGML buildings. Photogrammetrie - Fernerkundung -
Geoinformation, 2016(1):31–43.

Mapbox (2019). Mapping guides: mapping for navigation. https://labs.

mapbox.com/mapping/mapping-for-navigation/. Accessed: 2019-03-
20.

Nguyen, H. H., Daniel, M., and Desbenoit, B. (2016). Realistic urban road
network modelling from GIS data. In Tourre, V. and Biljecki, F., editors,
Eurographics Workshop on Urban Data Modelling and Visualisation, pages
9–15.

Open Geospatial Consortium (2012a). CityGML UML diagrams.

Open Geospatial Consortium (2012b). OGC City Geography Markup Language
(CityGML) Encoding Standard.

Open Geospatial Consortium (2016). OGC Land and Infrastructure Conceptual
Model Standard (LandInfra).

Ordinance Survey (2019). Our history. https://www.ordnancesurvey.co.

uk/about/overview/history.html. Accessed: 2019-06-21.

OSM (2019). OpenStreetMap Wiki. https://wiki.openstreetmap.org/

wiki/Main_Page. Accessed: 2019-03-12.

Oude Elberink, S. (2010). Acquisition of 3D topography: automated 3D road
and building reconstruction using airborne laser scanner data and topographic
maps. PhD thesis, Universiteit Twente, Enschede.

Ozbek, M. E., de la Garza, J. M., and Triantis, K. (2010). Data and mod-
eling issues faced during the efficiency measurement of road mainte-
nance using data envelopment analysis. Journal of Infrastructure Systems,
16(1):21–30.

Quartieri, J., Mastorakis, N., Guarnaccia, C., Troisi, A., D’Ambrosio, S., and
Iannone, G. (2009). Road intersections noise impact on urban environ-
ment quality. In Bulucea, C., Mladenov, V., Pop, E., Leba, M., and Mas-
torakis, N., editors, Recent Advances in Applied and Theoretical Mechanics,
pages 162–171. World Scientific and Engineering Academy and Society,
WSEAS Press.

Rijkswaterstaat (2013). Handleiding Nationaal Wegenbestand - NWB.

Rijkswaterstaat (2017). Nationaal Wegenbestand Achtergrondinformatie.

Ross, L. (2010). Virtual 3D City Models in Urban Land Management. PhD thesis,
Technischen Universität Berlin.

Scarponcini, P. (2002). Generalized model for linear referencing in trans-
portation. GeoInformatica, 6(1):35–55.

https://labs.mapbox.com/mapping/mapping-for-navigation/
https://labs.mapbox.com/mapping/mapping-for-navigation/
https://www.ordnancesurvey.co.uk/about/overview/history.html
https://www.ordnancesurvey.co.uk/about/overview/history.html
https://wiki.openstreetmap.org/wiki/Main_Page
https://wiki.openstreetmap.org/wiki/Main_Page

80 BIBLIOGRAPHY

Scarponcini, P. (2016). OGC Project Document 16-000r1: LandInfra Executive
Summary.

Singh, H. and Sharma, R. (2012). Role of adjacency matrix & adjacency list
in graph theory. International Journal of Computers & Technology, 3(1):179–
183.

Soetens, M. and Tijink, G. (2019). De volgende stap in gladheidsbestrijding.
Project HAS Hogeschool.

Southwest Research Institute (2018). Basic infrastructure message development
and standards support for connected vehicles applications. The MAP Message
– Beyond Intersections. White Paper.

Spielmann, M. and Scholz, R. (2005). Life cycle inventories of transport
services: Background data for freight transport. The International Journal
of Life Cycle Assessment, 10(1):85–94.

Stadler, A. and Kolbe, T. H. (2007). Spatio-semantic coherence in the inte-
gration of 3D city models. In Stein, A., editor, Proceedings of the 5th
International ISPRS Symposium on Spatial Data Quality ISSDQ 2007 in En-
schede, The Netherlands, 13-15 June 2007, ISPRS Archives. ISPRS.

Stoter, J., Beetz, J., Ledoux, H., Reuvers, M., Klooster, R., Janssen, P., Pen-
ninga, F., Zlatanova, S., and van den Brink, L. (2013). Implementation
of a national 3D standard: Case of the Netherlands. In Pouliot J., Daniel
S., Hubert F., Zamyadi A. (eds) Progress and New Trends in 3D Geoinfor-
mation Sciences. Lecture Notes in Geoinformation and Cartography., pages
277–298. Springer Berlin Heidelberg.

Stoter, J., Roensdorf, C., Home, R., Capstick, D., Streilein, A., Kellenberger,
T., Bayers, E., Kane, P., Dorsch, J., Woźniak, P., Lysell, G., Lithen, T.,
Bucher, B., Paparoditis, N., and Ilves, R. (2015). 3d modelling with na-
tional coverage: Bridging the gap between research and practice. In
Breunig M., Al-Doori M., Butwilowski E., Kuper P., Benner J., Haefele K.
(eds) 3D Geoinformation Science. Lecture Notes in Geoinformation and Car-
tography, pages 207–225. Springer International Publishing.

Tamminga, G. (2019a). Personal communication. Date: 2019-02-26.

Tamminga, G. (2019b). A novel design of the Transportation Context of Open-
TrafficSim. PhD thesis, Delft University of Technology.

Tavares, G., Zsigraiova, Z., Semiao, V., and Carvalho, M. (2009). Optimisa-
tion of MSW collection routes for minimum fuel consumption using 3D
GIS modelling. Waste Management, 29(3):1176–1185.

Thomson, R. C. and Richardson, D. E. (1999). The ‘good continuation’ prin-
ciple of perceptual organization applied to the generalization of road
networks. In Proceedings of the ICA, Ottawa, Canada, Session 47B.

TomTom (2019). TomTom Maps - Map Data. https://www.tomtommaps.

com/mapdata/. Accessed: 2019-06-21.

Van den Brink, L., Krijtenburg, D., Van Eekelen, H., and Maessen, H. (2013).
Basisregistratie Grootschalige Topografie: Gegevenscatalogus BGT 1.0.
Technical report, Ministerie van Infrastructuur en Milieu.

Van Gerwen, S. (2019). Personal communication. Date: 2019-02-14.

https://www.tomtommaps.com/mapdata/
https://www.tomtommaps.com/mapdata/

BIBLIOGRAPHY 81

Werkgroep Wegen (2018). Programma Doorontwikkeling in Samenhang: Rapport
Werkgroep Wegen 1.0.

Werkgroep Wegen (2019a). Personal communication. Date: 2019-05-07.

Werkgroep Wegen (2019b). Centrale objectregistratie: werkgroep wegen.
vervolg verkenning.

West, D. B. (2000). Introduction to Graph Theory. Prentice Hall, 2nd edition.

Zhang, X. and Ai, T. (2015). How to model roads in OpenStreetMap? a
method for evaluating the fitness-for-use of the network for navigation.
In Advances in Geographic Information Science, pages 143–162. Springer
International Publishing.

Şerbu, C., Oprut,a, D., and Socaciu, L. (2014). Ranking the types of inter-
sections for assessing the safety of pedestrians using TOPSIS method.
Leonardo Electronic Journal of Practices and Technologies, 13(25):242–253.

A C I TYGML 2 . 0 CORE MODULE UML
D IAGRAM

Figure
A.1:U

M
L

diagram
of

the
C

ore
m

odule
of

C
ityG

M
L

[O
pen

G
eospatialC

onsortium
,

2
0

1
2b].

83

colophon
This document was typeset using LATEX. The document layout was gen-
erated using the arsclassica package by Lorenzo Pantieri, which is an
adaption of the original classicthesis package from André Miede.

	1 Introduction
	1.1 Motivation
	1.2 Research objectives and methodology
	1.2.1 Use case road data needs
	1.2.2 Reviewing road standards for modelling choices
	1.2.3 Improving the road data model
	1.2.4 Creating a road data file
	1.2.5 Fieldwork

	1.3 Scope
	1.4 Overview of results
	1.5 Reading guide

	2 Related work
	2.1 Modelling of roads
	2.1.1 Road representation types
	2.1.2 Modelling networks
	2.1.3 Linear referencing
	2.1.4 Complexity of intersections

	2.2 3D city models
	2.3 CityGML
	2.3.1 LoD specification
	2.3.2 Representation of roads
	2.3.3 CityJSON

	2.4 Overview of road standards
	2.4.1 Geographic Data Files
	2.4.2 OpenDRIVE
	2.4.3 LandInfra
	2.4.4 RoadXML
	2.4.5 OpenStreetMap
	2.4.6 Intersection Topology Format

	2.5 Road data in the Netherlands
	2.5.1 BGT / IMGeo
	2.5.2 NWB
	2.5.3 Future: central object registration

	2.6 3D city model road data use cases

	3 Road data needs analysis
	3.1 CityGML data model
	3.1.1 Transportation module
	3.1.2 Bridges and tunnels
	3.1.3 CityFurniture
	3.1.4 Extending CityGML: Application Domain Extensions
	3.1.5 Proposed additions to Transportation module
	3.1.6 CityJSON encoding of CityGML data model
	3.1.7 Topology in CityGML and CityJSON
	3.1.8 Extending CityJSON
	3.1.9 Shortcomings in data model and encodings

	3.2 Use case: transport and traffic models
	3.2.1 Road data needs
	3.2.2 Data needs in CityGML & CityJSON
	3.2.3 Data needs in other road standards

	3.3 Use case: navigation
	3.3.1 Road data needs
	3.3.2 Data needs in CityGML & CityJSON
	3.3.3 Data needs in other road standards

	3.4 Use case: road maintenance
	3.4.1 Road data needs
	3.4.2 Data needs in CityGML & CityJSON
	3.4.3 Data needs in other road standards

	3.5 Use case data needs summary

	4 Improving the data model
	4.1 Data model design choices
	4.1.1 LoD specification
	4.1.2 Graph structure
	4.1.3 Modelling attributes
	4.1.4 Road segments and linking representation types
	4.1.5 Intersections
	4.1.6 Connecting to other modules

	4.2 Implementation of design choices
	4.2.1 JSON schema
	4.2.2 CityJSON schema structure
	4.2.3 Changes to CityJSON schemas
	4.2.4 Schema validation and semantic validation

	4.3 Updated LoD specification

	5 Proof of concept: creating CityJSON road data files
	5.1 Description of the dataset
	5.2 Transforming the data
	5.2.1 Areal modelling
	5.2.2 Linear modelling
	5.2.3 Linking representation types

	5.3 Reflection on modelling choices

	6 Conclusion, discussion and future work
	6.1 Conclusion
	6.2 Discussion
	6.3 Future research

	A CityGML 2.0 Core module UML diagram

