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SUMMARY

Quantum technology is a developing field of science where devices possess novel and su-
perior functionalities thanks to their quantum-mechanical behaviour at the nanometer
scale. A typical example is a quantum computer, where information is stored in quan-
tum states of its quantum bits. By manipulating entangled and superposition states of
these qubits, quantum computers can achieve exponential speed-ups in calculation and
therefore solve currently unsolvable problems within polynomial computational times.
This powerful advantage of quantum computers is particularly difficult to achieve in
practice, due to decoherence - a tendency of quantum objects to lose their quantum-
mechanical properties when interacting with their environment. Obviously, qubit de-
coherence cannot be avoided because the control of a quantum computer inevitably
causes couplings to the environment. To mitigate decoherence, fault-tolerant imple-
mentations of quantum computing need to be developed.

Topological quantum computing has been proposed to achieve fault-tolerance since
its significant robustness to decoherence is inherent in the quantum-mechanical nature
of topological qubits. Building units of a topological qubit are Majorana zero modes
(MZMs) – zero-energy quasiparticles that possess the non-Abelian anyonic exchange
statistics and are localized at the boundaries of a topological superconductor. In suf-
ficiently large topological superconductors, MZMs exhibit no overlap and therefore can
in pairs host non-local fermions. By braiding non-overlapping MZMs, the information
stored in the non-local fermions is manipulated while being insensitive to local noise.
In this way one can perform computation that is topologically protected against local
sources of decoherence.

In 2010, III-V semiconductor nanowires proximitized by s-wave superconductors were
proposed as a suitable candidate platform for the realization of topological supercon-
ductors. Topological superconducting phase occurs in such a hybrid nanowire due to
an interplay among the large spin-orbit interaction, s-wave superconductivity, control-
lable electron density and large Zeeman energy introduced by an external magnetic field.
Consequently, the nanowire bulk undergoes a band inversion and two MZMs appear at
the two nanowire ends. First signatures of MZMs were reported in 2012 and since then
a lot of effort has been put in fully demonstrating them. Despite huge improvements
in the materials and measurement techniques, conclusive evidence of MZMs in hybrid
nanowires is still missing. This is because disorder in hybrid nanowires can also cause
the observed signatures of MZMs and make the topological scenario indistinguishable
from the trivial ones. Therefore, further improvements and more detailed studies are
needed and this thesis shows some recent examples of these.

We begin by presenting fundamental concepts of semiconductors, superconductors
and the quantum transport in hybrid devices that combine them. We also elaborate on
the physics of hybrid devices - such as hybrid Josephson junctions, Majorana nanowires
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and hybrid islands (Chapter 2).
The first experimental chapter (Chapter 3) studies the supercurrent transport through

a hybrid InSb-Al nanowire island. It is shown that the current-phase relation (CPR) can
have a parity-dependent phase shift when subgap states in the island mediate the super-
current. This demonstrates that CPR measurements can be used to measure the island
parity even in the 1e-regime where conductance measurements cannot distinguish be-
tween the two parities.

We proceed by studying the impact of the length of a Josephson junction (JJ) on its
supercurrent resilience against magnetic field. We use the shadow-wall lithography to
create hybrid InSb-Al nanowire JJs of various lengths and find that reducing the junction
length improves its magnetic field resilience. We reproducibly detect supercurrent at
parallel magnetic fields of ∼ 1.3T in ∼ 40nm-long JJs (Chapter 4).

Next, we embed two ∼ 40nm-long InSb-Al nanowire JJs into a superconducting loop
and study the CPR up to parallel magnetic fields of ∼ 700mT. We find that a localized
resonant state in the JJ can modulate the supercurrent asymmetrically in a narrow range
of the electro-chemical potential. Moreover, in this range the junction becomes a π-
junction at high magnetic fields. These observations have been reproduced by a theo-
retical model that considers the interference between a localized state and direct trans-
mission inside a single JJ (Chapter 5).

We move from studying supercurrent and proceed by developing hybrid InSb-Al nanowire
devices with multiple nm-thick AlOx tunnel probes. We obtain these probes by combin-
ing the shadow-wall lithography and controlled oxidation of the Al film on the nanowires.
By comparing tunneling spectroscopy obtained by neighbouring tunnel probes, Andreev
bound states (ABSs) localized over ∼ 200nm are observed at the ends and inside the
bulks of multiple hybrids. (Chapter 6)

In the last study (Chapter 7), we explore how superconductivity can be induced in
high-mobility Ge two-dimensional hole gases (2DHGs). We demonstrate for the first
time a hard superconducting gap in Ge induced by PtSiGe. The superconducting PtSiGe
is obtained by depositing Pt on top of a Ge/SiGe quantum well and thermally diffusing it
into the SiGe. This platform may be in future considered a suitable candidate for topo-
logical superconductivity since it combines low disorder and hard superconducting gap.

Finally, we comment on our results and propose several new experiments (Chapter 8)
that represent follow-up studies in various directions that have been taken throughout
this thesis.



SAMENVATTING

Kwantumtechnologie is een ontwikkelend gebied van de wetenschap waarbij apparaten
nieuwe en superieure functionaliteiten bezitten dankzij hun kwantummechanische ge-
drag op nanometerschaal. Een typisch voorbeeld is een kwantumcomputer, waar infor-
matie wordt opgeslagen in kwantumtoestanden van kwantumbits. Door het manipule-
ren van verstrengelde en superpositie-toestanden van qubits, kunnen kwantumcompu-
ters exponentiële versnellingen in de berekeningen bereiken en daardoor tegenwoordig
onoplosbare problemen binnen polynomiale rekentijden oplossen. Dit krachtige voor-
deel van kwantumcomputers is in de praktijk bijzonder moeilijk te verwezenlijken van-
wege decoherentie - de neiging van kwantumobjecten om hun kwantummechanische
eigenschappen te verliezen vanwege interactie met hun omgeving. Het is duidelijk dat
decoherentie van qubits niet kan worden vermeden, omdat de besturing van een kwan-
tumcomputer onvermijdelijk koppelingen met de omgeving veroorzaakt. Om decohe-
rentie te verminderen moeten fout-tolerante implementaties van kwantumcomputers
worden ontwikkeld.

Topologische kwantumcomputers zijn voorgesteld om fout-tolerantie te bereiken, aan-
gezien de aanzienlijke robuustheid ervan tegen decoherentie inherent is aan de kwan-
tummechanische aard van topologische qubits. De bouweenheden van een topologi-
sche qubit zijn Majorana zero modes (MZM’s) - nul-energie quasideeltjes die de niet-
Abelse anyonische uitwisselingsstatistiek bezitten en gelokaliseerd zijn aan de grenzen
van een topologische supergeleider. In voldoend grote topologische supergeleiders ver-
tonen MZM’s geen overlap en kunnen daarom in paren niet-lokale fermionen hosten.
Door niet-overlappende MZM’s te vlechten, wordt de informatie die is opgeslagen in de
niet-lokale fermionen gemanipuleerd terwijl deze ongevoelig is voor lokale ruis. Op deze
manier kan men berekeningen uitvoeren die topologisch beschermd zijn tegen lokale
bronnen van decoherentie.

In 2010 werden III-V-halfgeleidernanodraden, geproximiteerd door s-wave superge-
leiders, voorgesteld als een geschikt kandidaatplatform voor de realisatie van topologi-
sche supergeleiders. Topologische supergeleidende fase treedt op in zo’n hybride nano-
draad als gevolg van een samenspel tussen de grote spin-orbitinteractie, s-wave super-
geleiding, regelbare elektronendichtheid en grote Zeeman-energie geïntroduceerd door
een extern magnetisch veld. Als gevolg daarvan ondergaat de bulk van de nanodraden
een bandinversie en verschijnen er twee MZM’s aan de twee uiteinden van de nanodra-
den. De eerste signaturen van MZM’s werden gerapporteerd in 2012 en sindsdien is er
veel moeite gestoken in het volledig aantonen ervan. Ondanks enorme verbeteringen in
de materialen en meettechnieken ontbreekt er nog steeds sluitend bewijs voor MZM’s
in hybride nanodraden. Dit komt omdat wanorde in hybride nanodraden ook de waar-
genomen signaturen van MZM’s kan veroorzaken en het topologische scenario niet te
onderscheiden is van de triviale scenario’s. Daarom zijn verdere verbeteringen en meer
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XII SAMENVATTING

gedetailleerd onderzoek nodig en dit proefschrift laat enkele recente voorbeelden hier-
van zien.

We beginnen met het presenteren van fundamentele concepten van halfgeleiders, su-
pergeleiders en het kwantumtransport in hybride apparaten die deze combineren. We
gaan ook dieper in op de fysica van hybride apparaten, zoals hybride Josephson juncties,
Majorana nanodraden en hybride eilanden (Hoofdstuk 2).

Het eerste experimentele hoofdstuk (Hoofdstuk 3) bestudeert het superstroomtrans-
port door een hybride InSb-Al nanodraadeiland. Er wordt aangetoond dat de stroom-
faserelatie (eng. current-phase relation) (CPR) een pariteitsafhankelijke faseverschui-
ving kan hebben wanneer subgap-toestanden op het eiland de superstroom bemidde-
len. Dit toont aan dat CPR-metingen kunnen worden gebruikt om de eilandpariteit te
meten, zelfs in het 1e-regime waar geleidingsmetingen geen onderscheid kunnen ma-
ken tussen de twee pariteiten.

We gaan verder met het bestuderen van de impact van de lengte van een Josephson
junctie (JJ) op zijn superstroombestendigheid tegen magnetisch veld. We gebruiken de
schaduw-muur lithografie om hybride InSb-Al nanodraad JJ’s van verschillende lengtes
te maken en ontdekken dat het verkleinen van de junctielengte de bestendigheid tegen
het magnetische veld verbetert. We detecteren op reproduceerbare wijze superstroom
bij parallelle magnetische velden van ∼ 1.3T in ∼ 40nm-lange JJs (Hoofdstuk 4).

Vervolgens hebben we twee ∼ 40nm-lange InSb-Al nanodraad JJ’s in een superge-
leidende lus ingebed en bestuderen we de CPR bij parallelle magnetische velden tot
∼ 700nT. We ontdekken dat een gelokaliseerde resonante toestand in de JJ de super-
stroom asymmetrisch kan moduleren in een smal interval van het elektrochemische po-
tentieel. Bovendien wordt de junctie in dit interval een π-junctie bij hoge magnetische
velden. Deze waarnemingen zijn gereproduceerd door een theoretisch model dat reke-
ning houdt met de interferentie tussen een gelokaliseerde toestand en directe transmis-
sie binnen een enkele JJ (hoofdstuk 5).

We gaan over van het bestuderen van superstroom en gaan verder met het ontwikkelen
van hybride InSb-Al nanodraad-devices met meerdere nm-dikke AlOx-tunnelcontacten.
We verkrijgen deze contacten door de schaduw-muur lithografie en gecontroleerde oxi-
datie van de Al-film op de nanodraden te combineren. Door tunnelspectroscopie ver-
kregen door naburige tunnelcontacten te vergelijken, worden Andreev-gebonden toe-
standen (eng. Andreev bound states) (ABS’s) gelokaliseerd over ∼ 200nm waargenomen
aan de uiteinden en in de bulk van meerdere hybriden. (Hoofdstuk 6)

In de laatste studie (hoofdstuk 7) onderzoeken we hoe supergeleiding kan worden
geïnduceerd in Ge tweedimensionale elektronengat-gassen (eng. hole-gases) (2DHG’s)
met hoge mobiliteit. We demonstreren voor het eerst een harde supergeleidende gap
in Ge veroorzaakt door PtSiGe. Het supergeleidende PtSiGe wordt verkregen door Pt op
een Ge/SiGe kwantumstip af te zetten en het thermisch in het SiGe te diffunderen. Dit
platform kan in de toekomst worden beschouwd als een geschikte kandidaat voor to-
pologische supergeleiding, omdat het lage wanorde en een harde supergeleidende gap
combineert.

Ten slotte geven we commentaar op onze resultaten en stellen we verschillende nieuwe
experimenten voor (hoofdstuk 8) die vervolgstudies vertegenwoordigen in verschillende
richtingen die in dit proefschrift zijn gevolgd.
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2 1. INTRODUCTION

1.1. QUANTUM TECHNOLOGY

The turn between the nineteenth and twentieth century was marked by newly
observed physical phenomena - such as the black-body radiation [1] and the
photoelectric effect [2, 3] - that could not be explained by the then-existing theory of
matter. This inspired physicists to come up with a new theory with fundamentally
different concepts which would manage to explain the new phenomena. These
counterintuitive concepts, for example, allowed particles to be localized in and
transmitted through energy barriers, or assumed that a single particle can be
simultaneously in multiple states characterized by different values of a same
observable. Two central concepts in the new theory were the particle-wave duality
of matter and the discretization of energy in the form of quanta. Therefore, the new
theory was called the quantum theory and its establishment is known as the first
quantum revolution.

Quantum theory did not only manage to create a consistent set of laws that
govern the behaviour of particles at the nanometer scale, but also played an
important role in various technological developments of the twentieth century.
For example, basic components - such as lasers and transistors - could only be
invented and miniaturized thanks to understandings how electrons and photons
behave and interact - which directly followed from the quantum theory. Due
to rapid miniaturization of technology taking place over the past several decades,
electronic devices nowadays consist of nanocomponents which require a fully
quantum approach. In addition, quantum theory has also been used to design
devices that exploit the laws of quantum theory to gain fundamentally different and
superior functionalities. Applying quantum theory to create such superior and novel,
quantum technology has led to the second quantum revolution [4].

The field of quantum technology can be divided into four subfields depending
on purposes the technology serves – quantum communication, quantum sensing,
quantum simulation and quantum computing. In quantum communication, secure
communication is achieved thanks to the fundamental property of the quantum
entanglement between quantum states of two quantum objects (photons, for
example). Any interception of the information flow via a quantum-communication
link is detected by entangling the exchanged quantum state (photon) with another
precisely prepared state (photon) at each end of the link. This represents the basic
principle of the quantum key distribution (QKD) protocol for secure communication
[5]. Quantum sensing relies on the high sensitivity of quantum objects to electric and
magnetic fields, which is reached via quantum entanglement, quantum interference
or quantum phase squeezing [6]. Since extremely small values of electric and
magnetic fields can be detected with great precision, quantum sensors beat sensors
based on classical principles. Quantum simulations are performed by mapping a real
quantum many-body system onto an artificially made quantum many-body system -
a quantum simulator. The quantum simulator is then controlled and let to evolve by
following the laws of quantum mechanics - simulating the real system [7]. In this
way, quantum materials or chemicals can be modelled and their properties can be
studied by quantum simulators realized on different platforms - with some examples
being superconducting qubits, trapped ions and quantum dots [8]. In quantum
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simulators, complete control of all components is not required and they are, thus,
easier to realize in comparison to the most challenging quantum-technology systems
– quantum computers.

Quantum computing relies on encoding information into quantum states of
two-level systems known as quantum bits or qubits. As each qubit can be a quantum
superposition of the 0-state and the 1-state, both classical bits 0 and 1 can be
manipulated in parallel by single-qubit operations. If multiple qubits are entangled,
the number of states that can be manipulated in parallel exponentially grows with
the number of qubits. Consequently, exponential speed-ups of calculations can be
achieved by quantum computers. This advantage could be used to solve complex
problems within reasonably long time frames, which is not feasible by classical
computers. An example is the factorization of large numbers by the Shor’s algorithm
[9].

The idea of a powerful quantum computer is in practice considerably complicated
by decoherence - a tendency of quantum objects to lose their quantum properties
due to interactions with their environment. The noise from the environment leads to
the mechanisms of energy relaxation and dephasing. In the first one, a qubit in the
excited state (1-state) decays into the ground state (0-state), while in the second one
a coherent superposition of the two states evolves into their statistical mixture [9].
Decoherence is inevitable as qubits have to be manipulated and therefore cannot be
isolated from their environment. In order to deal with decoherence, error-correction
protocols have been proposed [10]. However, these protocols make use of additional
qubits, which increase the total number of qubits and impose the challenge of
making a scalable quantum computer.

Achieving high qubit coherence on a scalable qubit platform has been an
extremely challenging scientific and engineering task over the past two decades.
Various platforms have been extensively studied by many scientists in academia
and industry. These qubit platforms include superconducting quantum circuits
[11], semiconducting quantum dots [12], trapped ions [13], NV centers in diamond
[14] and topological superconductors [15]. Quantum processors have been
experimentally realized in most of qubit platform - with an exception for topological
superconductors, where no single topological qubit has been demonstrated yet.
However, the route of topological quantum computation is still being actively
investigated as the topological qubits have been predicted to exhibit significantly
improved coherence in comparison to the currently used qubits. Their robustness
to decoherence stems from the inherent properties of topological superconductors
rather than from specific advancements in the qubit design or operation. Therefore,
topological qubits are not only promising candidates for quantum computation, but
also form a hot topic in condensed matter physics. In the following section, we
introduce the fundamental properties of topological superconductors and show how
they are exploited in topological quantum computing.
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1.2. TOPOLOGICAL QUANTUM COMPUTING

In the three-dimensional world, all quantum particles can be divided in two
classes based on their exchange statistics. Upon exchanging the positions of two
indistinguishable particles, the wavefunction Ψ describing the system of particles
can either remain unchanged or flip its sign. The first class of particles, where
Ψ→Ψ, are bosons, which typical representatives are photons. The second class,
where Ψ→−Ψ are fermions, with electrons as common examples. Upon exchanging
the same pair of fermions or bosons twice, the system wavefunction remains the
same as before the exchanges, as Ψ→±Ψ→Ψ [16]. The mathematical property that
the wavefunction remains unchanged has a physical consequence that the system
observables do not change their values.

If one considers a system of indistinguishable particles confined in two dimensions,
a third class of particles arises. In this class, exchanging the positions of two
particles twice does not bring the system into its initial state, but, instead, changes
the phase factor in its wavefunction [17]. This means that a single exchange of two
particles gives Ψ→ e±iαΨ, where the two signs correspond to the clockwise and
anti-clockwise exchange direction. These particles are known as anyons since the
global phase factor can take any value [18]. Typical representatives of anyons are
edge states in the quantum spin-Hall system [19, 20].

A system of anyons becomes even more interesting if its ground state is degenerate.
In this case, exchanging a pair of anyons can move the system from one to another
quantum state within the same ground-state degeneracy manifold. This means that
exchanging two anyons corresponds to multiplying the system wavefunction by a
matrix, and, therefore, an interesting consequence of it is that exchange operations
do not commute in general. These anyons are known as non-Abelian anyons
[21] and typical representatives are Majorana zero modes (MZMs). The paths of
exchanging MZMs in the three-dimensional time-space (one temporal axis + two
spatial axis) can be visualized as braids and their manipulation is therefore referred
as braiding [22].

Majorana zero modes are quasiparticles that are an equal superposition of an
electron and a hole. They are in condensed matter mathematically analogous to the
Majorana fermions originally established by Ettore Majorana as zero-energy solutions
of the Dirac equation [23]. By being half-electron and half-hole, MZMs can in pairs
host single electrons. Furthermore, due to the zero- energy of MZMs an electron can
occupy a pair of MZMs with no energy cost and lead to a double parity-degeneracy
of the ground state of the system containing the MZMs. If the number of pairs of
MZMs is increased (N ), the size of the degeneracy manifold exponentially increases
2N . MZMs obey the non-Abelian exchange statistics and by moving them one can
realize braiding operations [24]. These operations move the system through different
ground states in which the total electron parity remains fixed, but the occupancy
of MZMs can change. Importantly, the outcome of braiding depends only on the
initial state of the system and the pair of MZMs being exchanged, but not on
particular details, such as the microscopic path along which the MZMs move. If
during braiding MZMs do not overlap, these operations are protected against local
perturbations because the electron states encoded in the MZMs are non-local. Such
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robustness to local disturbances is analogous to the preservation of properties of
geometrical objects studied in topology. For example, an orange can be smoothly
transformed into a cup without a handle by only stretching and twisting and without
caring about particular (local) details of these transformations. However, making a
cup with a handle would require a non-smooth transformation of creating a hole
in the orange by cutting and gluing. Analogously, braiding moves the system with
MZMs through its degeneracy manifold and the system remains in it as long as
non-smooth perturbations of its Hamiltonian do not take place. This robustness to
smooth perturbations in the Hamiltonian make the braiding of MZMs topologically
protected against local noise and represent the ultimate advantage to be used in the
topological quantum computing. In contrast to other quantum computing platforms,
the qubit states here belong to the same degeneracy manifold and have thus the
same energy. Furthermore, the qubit states are manipulated through braiding which
is in its nature fault-tolerant. Finally, the qubit is read-out by the process of fusion
[25], where two MZMs are brought close to each other and annihilated by giving
either an electron or a hole.

So far, MZMs have not been found to spontaneously occur in nature like, for
example, spins do in semiconductors and are used for spin qubits. Therefore, MZMs
have to be engineered first before a topological qubit could be realized. However,
engineering MZMs is itself already a great challenge and one could argue that
topological quantum computing is therefore practically inferior to other quantum
computing platforms. Nevertheless, the theoretically envisioned advantages from the
fault-tolerance of topological qubits have still made topological quantum computing
a hot topic in both the academic and industrial community. This has resulted in
significant advancements in fabrication, control and understanding of condensed
matter systems in which scientists have been trying to engineer MZMs. This thesis
also tackles some of the challenges that have recently been taken towards improving
and better understanding various hybrid semiconductor-superconductor quantum
devices that could host MZMs.

1.3. THESIS OUTLINE

The main body of this thesis involves five chapters (Chapter 3-7) that correspond
to five experimental studies that we have conducted over the past five years.
Although these studies have been done on various material platforms and quantum
devices, studying the quantum transport in hybrid semiconductor-superconductor
nanostructures is their common element. Some of these experiments have
inspired our collaborators to develop theoretical models that have given possible
interpretations of the experiments and have become integral parts of the studies.

Before presenting our work, we first give a theoretical background in Chapter 2,
where we introduce fundamental concepts of semiconductors, superconductors and
the quantum transport in hybrid devices that combine them. Particularly, the physics
of semiconducting Josephson junctions (JJs) and hybrid islands is described. We also
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explain how a topological superconducting phase with Majorana zero modes (MZMs)
arises in hybrid devices and by which experimental signatures it is accompanied.

In Chapter 3, we study the current-phase relation (CPR) of an InSb-Al nanowire
Cooper pair transistor (CPT). The supercurrent through the CPT is measured as a
function of the electro-chemical potential in the nanowire and an axial magnetic
field reaching ∼ 200mT. We also develop a theoretical model of the supercurrent
transport mediated by subgap states in a hybrid island.

In order to improve the compatibility of nanowire JJs with high magnetic fields, we
examine in Chapter 4 the impact of junction length on the supercurrent resilience
against magnetic field. We use the shadow-wall lithography technique to obtain
InSb-Al nanowire JJs with lengths varying from 30nm to 160nm, and we examine
how their supercurrents vanish when high magnetic fields are applied.

By implementing the design developed in Chapter 4, we embed a 40nm-long
InSb-Al nanowire JJ into a superconducting loop with another identical JJ. In Chapter
5, we perform the CPR measurements while varying the junction electro-chemical
potential and increasing axial magnetic fields up to ∼ 700mT. Here, we also develop
a theoretical model of the supercurrent through a JJ in the presence of interference
between a localized state and direct transmission.

Moving from the supercurrent experiments, in Chapter 6 we present tunneling
spectroscopy measurements in hybrid InSb-Al nanowires that use nm-thick tunnel
barriers. The novel tunnel probes are realized by combining the shadow-wall
lithography and controlled oxidation of the Al film on the nanowires. Since these
probes can be positioned at any point along a hybrid nanowire, we use multiple
tunnel probes along single hybrids to examine the longitudinal evolution of their
subgap states.

Next, we induce superconductivity in the two-dimensional hole gas (2DHG)
platform with high-mobility Ge. In Chapter 7, we thermally diffuse Pt into
Ge/SiGe quantum wells to obtain superconducting PtSiGe and proximity-induce
superconudctivity in Ge. We characterize the induced superconductivity by realizing
common hybrid device architectures, while particularly assessing the hardness of the
induced superconducting gap.

Finally, in the closing Chapter 8 we give our main conclusions and propose future
experiments that are inspired by the previous chapters.
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2
THEORY

Hybrid nanostructures combining semiconductors and superconductors are experimen-
tally and theoretically studied in this thesis. Here, we give a fundamental theoretical
background relevant for the phenomena studied in the following chapters. We start
with semiconducting nanostructures and BCS superconductivity. Then, we explain the
transport mechanisms between a normal metal and a superconductor. We continue
by introducing hybrid Josephson junctions and relevant transport phenomena inside
magnetic fields. We also explain how topological superconductivity is predicted to
arise in hybrid nanowires, and we give a brief overview of different trivial examples
mimicking the topological scenario. Finally, we explain the transport through a
Cooper pair transistor based on the hybrid nanowire platform, and we give a brief
summary of the Fano resonant effect.

9



2

10 THEORY

2.1. SEMICONDUCTING NANOSTRUCTURES

2.1.1. GENERAL CONCEPTS

Electrons in bulk solids occupy states which energies are grouped in continuous
intervals of energy bands. This is the direct consequence of the periodic potential
that is set by the crystal lattice of solids. Depending on the lattice atomic properties,
the energy bands can overlap or be separated by forbidden intervals of energy
gaps [1]. In semiconductors, the highest occupied (valence) band and the lowest
unoccupied (conduction) band are separated by an energy gap over which electrons
can be thermally excited into the conduction band and take part in transport. The
states that are so left unoccupied in the valence band are equivalent to positively
charged holes that also take part in transport.

Dispersive relation E(k) between the energy and the wave vector for electrons
(holes) in the conduction (valence) band is well approximated by the parabolic
dispersive relation for free electrons E(k) = ℏ2k2/2m∗ - with an important correction
that m∗ is an effective mass that reflects the effect of the crystal lattice potential on
the electron (hole) motion. With a confinement along any (x, y, z) direction, the wave
vector projection along that direction becomes quantized and the continuous energy
bands split into discrete subbands that are associated with the discrete projection
values. The spacing between the subbands increases with the confinement strength.
This is how parabolic subbands emerge for the in-plane motion in quantum wells
and for longitudinal motion in nanowires [1].

An important consequence of one dimensional confinement and parabollic
subbands in nanowires is that the ballistic transport is quantized [2]. The
conductance G at zero temperature and zero magnetic field is a multiple of the
number of subbands N crossing the Fermi level and the conductance quantum
G0 = 2e2/h (e is the elememtary charge and h is the Planck constant). Essentially,
this is the direct consequence of the one dimensional density of states D(E) ∝ 1p

E

and the electron momentum ℏkx ∝p
E - which results in an energy-independent

contribution of the electrons at energy E d I (E) ∝ kx D(E)dE ∝ const.dE to the total
current I . If the transport is not ballistic and scatterings are prominent, the diffusive
transport occurs and it is described by the Drude model [3]. The conductance then
depends on the electron mobility µn = eτ/m∗ as G = µnne, where τ is the time
between two scattering events and n is the electron concentration.

Semiconducting nanostructures have more complex energy dispersion when two
important interactions between an electron spin and local fields are considered. We
briefly introduce these effects in the two following paragraphs.

The interaction between the magnetic moment of an electron and a magnetic field
manifests through the Zeeman effect [4]. The Zeeman Hamiltonian for spin ℏσ/2
inside the field B is:

HZ = 1

2
µB gσ ·B (2.1)

where µB = eℏ/2m0 = 5.788×10−6 eV T−1 is the Bohr magneton and g is the Landé
factor. The magnetic field symmetrically splits the spin-degenerate electron
eigenstates into a pair of states where the spin and the field are either parallel or
antiparallel. These states are separated in energy by µB g B .
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The coupling of an electric field E to the spin σ of an electron with a momentum
p leads to the spin-orbit interaction effect. In the non-relativistic limit, this effect is
described by the Hamiltonian [5]:

HSO =− ℏ
4m2

0c2
σ ·p×E (2.2)

where c is the speed of light. The effect can be intuitively and roughly understood as
an effective Zeeman effect for the spin in its rest frame – where the electric field is
Lorentz-transformed into a magnetic field [6]. Spin-orbit interaction is present when
spatial inversion symmetry is broken. This happens via the bulk inversion asymmetry
(BIA) - that is intrinsic to some crystal lattices, or via the structural inversion
asymmetry (SIA) – that is caused by confinements and externally applied electric
fields. The BIA mechanism is referred as the Dresselhaus spin-orbit interaction [7],
while the SIA mechanism is known as the Rashba spin-orbit interaction [8].

2.1.2. RASHBA NANAOWIRES

Electron energy spectrum in semiconducting nanowires consists of different subbands
for the longitudinal motion of an electron along the nanowire. In Fig. 2.1(a), we
show a schematic of a semiconducting nanowire placed along the x-axis on top of
an electrostatic gate that sets an electro-chemical potential µ in the nanowire. The
nanowire has a hexagonal cross-section - as representative Rashba nanowires made
of III-V semiconductors (InAs and InSb). The dispersive relation of the first subband
is then E(kx ) = ℏ2k2

x /2m∗−µ and the Fermi wave vector is kF 0 =
√

2m∗(EF +µ)/ℏ, as
shown in Fig. 2.1(b) on the left.

An electric field E set by the gate is in the (y, z)-plane (due to the symmetry
constraints) and, therefore, it is perpendicular to the electron wave vector k along
the x-axis. The Rashba spin-orbit field BSO ∝ k×E then lays in the (x, y)-plane.
For the simplicity, let us assume that E is along the z-axis and BSO is along the
y-axis, as depicted in Fig. 2.1(a). If an external magnetic field B is applied along the
nanowire, with α and g being the Rashba spin-orbit coefficient and Landé g -factor,

the nanowire Hamiltonian in the basis Ψ= (
c↑,c↓

)T reads:

H0 =
(ℏ2k2

x

2m∗ −µ
)
σ0 +αkxσy +EZσz (2.3)

where the Zeeman term is EZ = 1
2 gµB B .

If the external field is zero (EZ = 0) and the spin-orbit interaction is finite, the
single band splits along the kx -axis by ±kSO = m∗α/ℏ2 into two bands and both
bands move down in energy by ESO = m∗α2/2ℏ2 (Fig.2.1(b) in the middle). The

new Fermi wave vector is kF = kSO +
√

k2
F 0 +k2

SO The electron states corresponding to

these two bands have spins that are parallel and antiparallel to the BSO field. Note
that the degeneracy at kx = 0 remains, as BSO = 0 there.

A finite external field (EZ > 0) removes the degeneracy at kx = 0 by introducing a
splitting of 2EZ (Fig. 2.1(b) on the right). As B ⊥ BSO, the pairs of eigenstates have
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Figure 2.1: (a) Schematic of a Rashba nanowire (blue) on top of a gate (grey) that
sets the electro-chemical potential µ in the nanowire. An external magnetic field B
is parallel to the nanowire and perpendicular to the electric field E set by the gate
and the spin-orbit field BSO. (b) Dispersive relation of a single subband without
spin-orbit interaction and magnetic field (left), with finite spin-orbit interaction only
(middle) and with both finite spin-orbit interaction and magnetic field (right).

opposite spins, which axis ranges from the x-axis at kx = 0 to the z-axis at large kx .
Removing the degeneracy at kx = 0 has an important consequence that there is an
energy range (shaded in red in Fig. 2.1(b) on the right) where the electron spin and
the electron momentum are interlocked. This interval is called a helical gap.

In InSb Rashba nanowires, the physics described above is quantified by the
following parameters: m∗ = 0.014m0, α = [0.2−1]eV ·Å, ESO = [0.05−1]meV and
g = [40−50] [9].

2.1.3. PLANAR GE

Bulk germanium has diamond cubic structure with p-orbitals forming covalent
bonds. Three-fold degeneracy of p-orbitals with the angular momentum quantum
number l = 1 (magnetic quantum numbers ml = −1,0,+1) and the two-fold spin
degeneracy (with spin quantum numbers ms =−1/2,+1/2) are expected to give rise
to a six-fold degeneracy in the valence band. However, due to the spin-orbit
interaction, the angular momentum L and spin S are coupled, and the total angular
momentum J = L+S characterizes electron states with corresponding total angular
momentum quantum numbers j = |l ± s| and m j = ml +ms . At the Γ point (k = 0),
the six-fold degeneracy of the valence band splits into a four-fold degeneracy of
states where L and S are parallel and j = 3/2, and two-fold degeneracy where L
and S are antiparallel and j = 1/2 [5]. Around the Γ point, the top of the valence
band further splits depending on the projection of J on k – into a heavy hole
(HH) band with projections m j =±3/2, and a light hole (LH) band with projections
m j =±1/2 (see Fig. 2.2(a)) [10]. The effective masses corresponding to these bands
mH H ≈ 0.33m0 and mLH ≈ 0.04m0 (m0 is the free electron mass) are derived from
the Luttinger parmeters for bulk germanium and differ by approximately one order
of magnitude [11]. The splitting due to the spin-orbit interaction in bulk germanium
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Figure 2.2: (a) Band structure of bulk germanium. The top of the valence band is
four-fold degenerate, with heavy holes (HH,blue) and light holes (LH, red) bands.
The spin-split band is separated from the rest of the valence band by ∆SO . EC is
the conduction band. (b) The top of the valence band for planar germanium. The
HH-like subbands (blue) and LH-like subbands (red) are splitted by ∆EH H−LH due
to the confinement and strain. HH-like subbands exhibit smaller effective mass.

is ∆0 = 0.3eV [5].
When pure germanium is confined between two SiGe buffer layers, a Ge quantum

well with a two-dimensional hole gas (2DHG) is formed - due to the valence band
offset. The strong confinement along the growth direction (z-axis in Fig. 2.2) leads
to large values of the perpendicular wave vector projections (kz ). Consequently, the
eigenstates of the confined structure are closely described by the states of heavy
holes and light holes in the bulk [5]. Such heavy hole-like (HH-like) and light
hole-like (LH-like) states in planar Ge exhibit a degeneracy splitting even at k|| = 0
[12]. This splitting due to confinement is inversely proportional to the square of the
quantum well width and can thus be controlled by design.

The splitting between the HH-like and LH-like bands is enhanced by the Ge
quantum well being compressively strained between the two SiGe layers. Namely,
the lattice constants of Ge and SiGe are aGe = 5.66Å and aSiGe = 5.43Å, and even
strains of orders of few percents can cause a splitting between the HH-like and
LH-like states of tents of meV. The splitting is controlled by the composition x in
the Si1−xGex layers.

The confinement and strain effects add up and finally determine the total splitting
between HH-like and LH-like states ∆EH H−LH , as shown in Fig. 2.2(b). Note that
the band structure here consists of different subbands corresponding to the in-plane
motion in the Ge 2DHG. Interestingly, the HH-like subbands are characterized by
rather low effective mass for in-plane motion mH H ,|| = 0.055m0, while the LH-like
subbands are described by higher effective mass mLH ,|| = 0.125m0 [13].

Diamond cubic structure of Ge has a center of inversion, and the Dresselhaus
spin-orbit interaction is negligible. The spatial inversion asymmetry for planar Ge
only occurs through the structural inversion symmetry breaking via interfaces and
gates in real devices. This means that the spin-orbit interaction has the Rashba
nature. Moreover, it is cubic, as the Rashba coefficients of k3 terms dominate. This
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is because the particular lattice symmetry makes the Rashba coefficients of linear
terms small [14].

Holes in planar Ge exhibit highly anisotropic Zeeman effect – with g⊥ ≫ g ||, where
g⊥ (g ||) is the g -factor for perpendicular (in-plane) magnetic fields. Physically, the
big anisotropy is mainly caused by the splitting between the HH-like and LH-like
subbands. The g -factors are also related to the Rashba coefficients and are, therefore,
tunable by external electric fields [15, 16].

2.2. SUPERCONDUCTIVITY
Superconductivity is a macroscopic quantum phenomenon that is observed to occur
in some metals at sufficiently low temperatures. It is manifested by non-dissipative
electron transport in a superconductor below its critical temperature [17]. Some
interesting consequences of this are that currents can flow through superconductors
without developing voltages and that superconductors exhibit perfectly diamagnetic
behaviour [18]. It took nearly five decades in the condensed matter physics
community for these and other related striking phenomena to be theoretically
understood. Bardeen, Cooper and Schrieffer created the BCS theory [19] that at the
time of the development could explain superconducting experimental observations
with high precision. However, this theory does not explain high-Tc superconductors
that were later discovered, and which full understanding still remains a great
challenge [20].

2.2.1. BCS THEORY

The main idea of the BCS theory is that electrons in superconductors pair up in
bound states – Cooper pairs. As they consist of two fermions, Cooper pairs are
bosons and can form a condensate at the Fermi energy. The formation of Cooper
pairs occurs as an attractive electron-electron interaction - mediated by the phonons
of the crystal lattice - exceeds the repulsive electron-electron Coulomb interaction.
The net interaction energy can thus become negative and the state with paired
electrons becomes favourable in energy [21].

With c†
kσ (ckσ) being the creation (annihilation) operator of an electron with wave

vector k and spin σ, and under the mean-field approximation, the BCS Hamiltonian
reads:

H = ∑
k,σ
ϵkc†

kσckσ+
∑

k
(∆kc†

k↑c†
-k↓+∆∗

kck↑c-k↓) (2.4)

where the first sum includes kinetic energy terms ϵk = ℏ2k2

2m −EF with respect to
the Fermi energy EF and the second sum includes pairing energy terms with the
order parameter ∆k. The BCS Hamiltonian can be diagonalized by transforming the
electron operators ckσ into the operators of Bogoliubov quasiparticles γk. This is
done by the Bogoliubov transformation [22]:

ck↑ = u∗
kγk+ + vkγ

†
k-

c†
-k↓ =−v∗

kγk+ +ukγ
†
k-

(2.5)
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which is due to the normalization condition |uk|2 +|vk|2 = 1 equivalent to:

γk+ = ukck↑− vkc†
-k↓

γ†
k- = v∗

k ck↑+u∗
k c†

-k↓
(2.6)

Each Bogoliubov quasiparticle is a superposition of an electron and a hole that
have opposite wave vectors with respect to the Fermi level and have opposite spins.
The factors uk and vk correspond to the electron and hole components in the
superposition. They can be chosen such that the BCS Hamiltonian in the new basis
is diagonal:

H = E0 +
∑

k
Ek(γ†

k+γk+ +γ†
k-γk-) (2.7)

with a constant condensation energy E0 and eigenergies Ek =
√
ϵ2

k +∆2
k that

correspond to excitations of Bogoliuboc quasiparticles. The factors uk and vk satisfy:

|uk|2 =
1

2

(
1+ ϵk

Ek

)
|vk|2 =

1

2

(
1− ϵk

Ek

) (2.8)

The two operators introduced in Eq. 2.6 mathematically correspond to two
particle-hole symmetric solutions of the Bogoliubov-de Gennes equation - with
energies ±Ek. However, since one operator creates and the other annihilates a
quasiparticle, their excitations have the same energy Ek, as visible in Eq. 2.7. The
minimal excitation energy is |∆k| and this non-zero value representing an energy gap
for excitations is the superconducting gap.

The length scale at which the density of Cooper pairs varies is known as the
superconducting coherence length ξ. This parameter roughly represents the size of
a Cooper pair. In a clean bulk superconductor, the coherence length ξ0 is related
to the Fermi velocity vF in the normal state and the superconducting gap ∆ as
ξ0 = ℏvF /π∆. In a dirty supercnductor with an electron mean free path l , the
coherence length ξ is related to the clean bulk coherence length as ξ=√

ξ0l .

2.2.2. DENSITY OF STATES IN SUPERCONDUCTORS

In bulk metals the Fermi surface is spherical and the excitation energies depend on
the wave vector magnitude k = |k|. If the superconducting pairing ∆k is independent
on k (s-wave superconductors), the superconducting gap ∆ uniformly opens at the

Fermi surface, where kF =
p

2mEF
ℏ .

In Fig. 2.3(a), the excitation spectrum E =
√
ϵ2

k +∆2 =
√(

ℏ2k2

2m −EF

)2 +∆2 is plotted

versus k. The excitations at the Fermi surface (|k| = kF ) have energy E =∆ (ϵk = 0)
and consequently u = v = 1

2 . These excitations are equal superpositions of electrons
and holes. The excitations outside the Fermi surface (|k| > kF ) correspond to ϵk > 0
and therefore have uk > vk . The larger electron component in the superposition
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Figure 2.3: (a) Quasiparticle energy as a function of the wave vector; (b) Density of
quasiparticle states as a function of the quasiparticle energy.

makes these excitations electron-like. Similarly, the hole-like excitations originate
from the interior of the Fermi surface (|k| < kF ), where ϵk < 0 and thus uk < vk .
The quasiparticle phase velocity is proportional to the derivative dE/dk. From Fig.
2.3(a), it can be seen that these derivatives have opposite signs for electron-like and
hole-like quasiparticles. Electron-like quasiparticles propagate in the direction of the
wave vector, while the hole-like quasiparticles propagate in the opposite direction.

As there is one-to-one correspondance between the quasiparticle states and the
electron states, a density of quasparticle states N (E) satisfies N (E)dE = n(ϵ)dϵ,
where n(ϵ) is the density of electron states in the normal state. If this density is
approximated to be constant n(ϵ) = N0, the quasiparticle density of states is:

N (E) = n(ϵ)
dϵ

dE
= N0Ep

E 2 −∆2
(2.9)

and N (E) = 0 for E <∆, inside the gap. The dependence in Eq. 2.9 is shown in Fig.
2.3(b). Density of quasiparticle states diverges and peaks at E =∆ (coherence peak).
For E ≫∆, N (E) approaches the density of electron states N0.

When transport in superconductors is considered, the excitation picture described
here is conveniently replaced by another - the one-particle picture that is used in
normal metals. In this picture, the positive quasiparticle energies are mirror-reflected
below the Fermi level such that a branch of holes of quasiparticles is introduced.
The ground state is then characterized by all the negative energies being occupied.
Excitations in this picture are present either as occupied quasiparticle states at
positive energies or as empty (missing quasiparticle) states at negative energies. The
convenience of such representation is that all allowed transitions in the transport are
"horizontal" in energy diagrams.
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2.3. TRANSPORT BETWEEN A NORMAL METAL AND A

SUPERCONDUCTOR

Transport between a normal metal (N) and a superconductor (S) is described by
Blonder, Tinkham and Klapwijk in the BTK model [23]. Here, we introduce the
model and give the main results relevant for the transport through an NS interface.

Dispersive relations on two sides of an NS interface in equilibrium are shown in
Fig. 2.4(a). The barrier at the interface has the δ-function profile with strength Z .
The dispersive relations close to the Fermi levels are approximated by the linear and
parabolic dependences on the N and S side, respectively. The superconductor has a
gap ∆.

We consider an electron at an energy E >∆ that is incident on the NS interface
and has a positive group velocity. The electron can undergo different processes
which are associated with probability amplitudes a, b, c and d , and corresponding
probabilities A, B , C and D , as depicted in Fig. 2.4(a). First, the electron can
be elastically reflected (probability B) into a state at the same energy and the
opposite velocity – in which case no transport occurs. Next, the electron can be
transmitted through the NS interface into quasiparticle states at the same energy,
while maintaining the direction of its group velocity. Therefore, the electron can
either be transmitted (probability C ) into an electron-like quasiparticle with positive
wave vector, or (probability D) into a hole-like excitation with negative wave vector.
Finally, the electron can undergo the Andreev reflection (probability A), in which
an oppositely propagating hole is created at the energy −E on the N side. In this
case, a net charge of 2e is transferred through the NS interface, as the reflected hole
corresponds to the electron that forms a Cooper pair with the incident electron.
With taking into account all described processes, the wave function in the normal
metal reads:

ψ(N ) =
(
1
0

)
e i q+x +a

(
0
1

)
e−i q−x +b

(
1
0

)
e−i q+x (2.10)

and in the superconductor:

ψ(S) = c

(
u0

v0

)
e i k+x +d

(
v0

u0

)
e−i k−x (2.11)

where u0 and v0 are the electron and hole coherence factors of the electron-like
quasiparticle in the process C . Note that the hole-like quasiparticle in the process D
has interchanged electron and hole coherence factors.

By solving the Bogoliubov-de Gennes equation with imposing A+B +C +D = 1 and
continuity of the wavefunction and its first derivative at the NS interface, the BTK
model is solved to give the probabilities. The probability for the Andreev reflection
is:

A(E) =


∆2

E 2 + (∆2 −E 2)(1+2Z 2)2 , if E ≤∆

u2
0v2

0

γ2 , if E >∆

(2.12)
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Figure 2.4: (a) Dispersive relation for the normal metal (N, black) and the
superconductor (S, blue) with the NS interface (red) in equilibrium. q- and k-wave
vectors correspond to the excitations at energy E on each side. An incident electron
undergoes different processes with probabilities A, B , C and D . (b) Differential
conductance G through the NS interface as a function of the bias voltage VN S for
different interface transparencies T .

and the probability for normal reflection is:

B(E) =


1− A(E), if E ≤∆

(u2
0 − v2

0)2Z 2(1+Z 2)

γ2 , if E >∆
(2.13)

with γ= u2
0 +Z 2(u2

0 − v2
0). Note that A(E) vanishes for E ≫∆ and that the electron is

transmitted with probability 1−B(E) ≈ 1
1+Z 2 = T , meaning that such defined T is the

transmission of the barrier.
The probability coefficients above are needed for calculating the differential

conductance G through the NS interface when a bias voltage VN S is applied:

G(VN S ) = 2e2

h
(1+ A(eVN S )−B(eVN S )) (2.14)
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In Fig. 2.4(b), we plot this dependence for different barrier strengths leading to
different transparencies T . One can see that for a perfect transmission T = 1 (no
barrier, Z = 0), the conductance inside the gap has a 4e2/h plateau - meaning
that each electron is perfectly Andreev reflected into the condensate of the
superconductor. This is known as the Andreev enhancement. Far above the gap,
the conductance reaches a 2e2/h plateau as each electron is perfectly transmitted
into the quasiparticles in the superconductor. As T decreases (finite barrier, Z > 0),
both in-gap and out-of-gap conductance drop as the normal reflection competes
with both Andreev reflection and quasiparticle transmission. Finally, for small
T (strong barrier, Z ≫ 1), the in-gap conductance is suppressed more than the
out-of-gap conductance. This in-gap suppression reflects the nature of Andreev
reflection -where both an electron and a hole have to tunnel through the interface.
Mathematically, this is visible in the Beenakker formula [24]:

G(VN S = 0) = 2e2

h

2T 2

(2−T )2 (2.15)

where the conductance at the zero bias voltage is quadratically suppressed with the
transparency of the barrier at the NS interface.

2.4. JOSEPHSON JUNCTIONS
Any weak link between two superconductors (S) that allows for a non-dissipative
transport of Cooper pairs represents a Josephson junction (JJ). The weak link can
be in the form of a thin insulating (I) barrier, a section of a normal (N) conductor
(metal), or a constricted (c) superconductor - therefore, one can define SIS, SNS
and ScS junctions [20]. In SIS junctions, the transport of Cooper pairs occurs
via tunnelling through the barrier between the superconductors. This gives rise to
a non-disspative (super)current I that has a sinusoidal dependence on the phase
difference φ between the superconductors:

I = Ic sinφ (2.16)

while the voltage drop V over the junction is proportional to the first derivative of φ
in time:

dφ

d t
= 2e

ℏ
V (2.17)

If a bias current I is below Ic , φ is constant and V = 0 (dc Josephson effect). If a
finite bias voltage V is applied, φ changes in time and consequently the current I
through the junction has varying signs (ac Josephson effect). The critical current in
tunnel junction is influenced by the superconducting gap and the junction geometry.
If the linear dimensions of the junction are smaller than the superconducting
coherence length (short junction limit), the critical current Ic is proportional to the
barrier cross-section and anti-proportional to its thickness. Consequently, if RN is
the normal resistance of the junction, the product Ic RN is constant [25].

In the following sections we are focusing on SNS junctions, since they represent
the major building blocks of various devices in this thesis.
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2.4.1. SNS JOSEPHSON JUNCTIONS

Supercurrent in an SNS Josephson junction is mediated by electron and hole
excitations in the N section, that undergo Andreev reflections at two (SN and NS)
interfaces. This is illustrated in Fig. 2.5(a). An electron propagating to the right
- and being incident on the NS interface at an energy below the superconducting
gap ∆ - is Andreev-reflected into a hole. The hole is a time-reversed partner of
the electron and propagates to the left and is incident on the SN interface. There,
it is Andree-reflected into an electron that then propagates to the right and starts a
new sequence, as the initial electron started. In the described transport sequence,
a Cooper pair is removed from the left superconductor and transferred into the
right superconductor, which is manifested as a non-dissipative supercurrent. For
each sequence depicted in Fig. 2.5(a), there is a counterpart sequence involving an
electron moving to the left and a hole moving to the right. This sequence transfers
a Cooper pair from the right lead to the left lead. If the time-reversal symmetry is
preserved, these two sequences cancel out at the zero phase difference between the
superconducting leads and the supercurrent vanishes. Otherwise, the supercurrent is
finite for finite phases.

Andreev reflection is not only crucial for the supercurrent transport in SNS JJs at
zero bias voltage. It is also responsible for transport when a finite bias voltage is
applied between the superconductors. Namely, multiple Andreev reflections (MARs)
give rise to subgap conductance peaks in SNS JJs at certain bias voltage values
below 2∆/e (∆ being the superconducting gap in the leads) [26]. If the bias voltage
is above 2∆/e, quasiparticles from one superconductor can simply propagate into
empty quasiparticle states of the other superconductor. In Fig. 2.5(b), it is shown
how a MARs process gives rise to single electron transport at a finite subgap bias
voltage. A quasiparticle in the left superconductor transfers into a right-propagating
electron that is incident at the NS interface below the gap. Therefore, it is Andreev
reflected into a left-propagating hole that is incident at the SN interface, also below
the gap. This hole is finally Andreev reflected into a right-propagating electron that
can freely leave the N section and transfer to the continuum of empty quasiparticle
states in the right superconducting lead. In the described sequence, the N section
is crossed three times and two consecutive Andreev reflections take place. This
sequence corresponds to the third-order MARs and it is prominent when the bias
voltage equals 2∆/3e. In general, the MARs can be of any order n and then take
place at bias voltages 2∆/ne. Under this condition high densities of states of two
coherence peaks (filled states on the left and empty states on the right) are matched
to yield the enhanced conductance. This is visible in Fig. 2.5(b) for n = 3. A more
precise treatment shows that the occupation probabilities of electrons and holes
acquire saw-tooth profiles which peaks cross the gap edges under the same bias
voltage condition [23]. This additionally enhances the MARs conductance at the bias
voltages given above.

It should be noted that a non-perfect transmission T < 1 of the N section
(caused by normal scatterings in the section and at the interfaces) makes that the
contributions of n-th order MARs decrease as T n . Therefore, observing high order
MARs implies high transparency of SNS junctions [27–29].
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Figure 2.5: (a) Supercurrent transport for an SNS JJ. An Andreev bound state (ABS)
consisting of an electron (full circle) and a hole (empty circle) is formed inside the
junction below the superconducting gap ∆. The electron and the hole have opposite
spins and opposite directions of propagation. A Cooper pair is transferred from the
left lead to the right lead at the zero bias voltage. (b) Multiple Andreev reflection
(MAR) transport in the junction. An electron is transferred from the occupied
continuum of quasiparticle states of the left lead into the unoccupied continuum of
quasiparticle states of the right lead via multiple consecutive Andreev reflections.
The panel depicts the third order MAR (with two Andreev reflections) at the bias
voltage 2∆/3e. (c) Energy En of a single Andreev level and (d) supercurrent In

carried by the level as a function of the superconducting phase difference φ between
the leads. Different traces correspond to different transparencies Tn of the channel
n that forms the Andreev level.

The correlated electron-hole pairs that arise in the N segment thanks to the
Andreev reflection form Andreev bound states (ABSs). The spectrum of ABSs is
derived by considering a scattering matrix problem for electrons and holes inside
the N segment [26]. In this problem, the scattering matrix of the N segment is
diagonal in the electron-hole space – since a simple propagation over the junction
only scatters electrons to electrons and holes to holes, and does not transfer them
to each other. Oppositely, at the interfaces, electrons are scattered into holes (and
vice versa), and only a phase shift is added if the interface is perfect. If an electron
at energy E is scattered at the interface i = (L,R) (the left and right superconductor
have phases φL and φR ) into a hole at energy −E , the hole is phase shifted by
−arccos(E/∆)−φi with respect to the phase of the electron. Similarly, the scattering
of a hole gives an electron shifted by −arccos(E/∆)+φi in phase. If the described
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three matrices are multiplied to represent a full cycle in propagation, eigenvectors
of such matrix product are the ABSs, and are obtained from the condition for
non-trivial solutions of the described eigenproblem. The Andreev level formed from
the channel n disperses with the junction phase φ=φL −φR as:

En =±∆
√

1−Tn sin2(φ/2) (2.18)

where Tn is the eigenvalue of the junction transmission matrix for channel n. The
energy-phase dispersions are shown for different transmissions in Fig. 2.5(c) (top).
Note that the levels are spin-degenerate if no magnetic field is present.

If spin σ is taken into account, the quantity Eg s (φ) =− 1
2

∑
n,σEn,σ(φ) - where the

sum goes over all positive Andreev levels En,σ < ∆ – represents the ground state
energy which derivative is proportional to the supercurrent:

I (φ) = 2e

ℏ
dEg s

dφ
=− e

ℏ
∑
n,σ

dEn,σ

dφ
= e∆

4ℏ
∑
n,σ

Tn sinφ√
1−Tn sin2(φ/2)

(2.19)

and I (φ) represents the current-phase relation (CPR) of the JJ. The contribution to
the CPR per a single spin-degenerate Andreev level is shown in Fig. 2.5d as In(φ)
for different transmissions Tn as in the panel (c). As the transmission increases, the
approximately sinusoidal In(φ) dependence becomes skewed. Therefore, a skewed
sinusoidal CPR of a JJ indicates a high junction transparency. In another limit,
if there are many channels with low transmission inside the junction, the total
supercurrent has approximately sinusoidal dependence on phase I (φ) ≈ Ic sinφ, with
the critical current Ic = e∆

2ℏ
∑

n Tn . Therefore, a quantization of critical current is a
superconducting analogous to the quantization of conductance in normal transport
regime [30].

2.4.2. MAGNETIC FIELD EFFECTS

If an external magnetic field is applied to an SNS JJ, an interplay among Zeeman
effect, spin-orbit interaction and orbital effects modifies the Andreev levels spectrum
and ultimately affects the CPR of the junction. The first two effects are particularly
relevant for junctions made of III-V semiconductors with large g factor and spin-orbit
interaction. The third effect is prominent in junctions where multiple channels
inside the N segment contribute to the supercurrent. Here, we shortly describe these
effects by summarizing some results of [31] and [32].

Zeeman and spin-orbit effects studied in [31]. We adjust and display several figures
from this work in Fig. 2.6. An SNS JJ is formed in a nanowire along the x-axis and
an external magnetic field B is applied along the y-axis (Fig. 2.6(a)). If we focus on a
single channel in the N section, the field breaks its spin degeneracy and introduces
Zeeman energies of opposite signs to the electron and the hole forming an Andreev
level. The Zeeman contributions to the electron and the hole wave vector add up
into a spin-dependent phase shift:

θB =± gµB BL

ℏvF
(2.20)
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Figure 2.6: (a) Schematic of an SNS (nanowire) JJ along the x-axis. The junction
length is L, two superconducting leads have phase difference φ and a magnetic field
B is along the y-axis. (b) Andreev levels dispersions with φ (single channel) for
different values of θB . Solid and broken line correspond to two electron-hole pairs
with opposite spins. (c) Supercurrent dependence on φ for several θB values taken
in (b) (see the markers in different colours). (d) Phase of the minimal energy φ0

and critical current Ic as functions of θB . The figure has been taken from [31] and
modified.

where L is the junction length and vF is the Fermi velocity of the channel. If
multiple transport channels are considered, vF is replaced with an average Fermi
velocity vF , where 1

vF
= 1

N

∑
n

1
vF,n

is the average over the all active channels n. The

two signs of θB correspond to two oppositely propagating electron-hole pairs.

Fig. 2.6(b) shows how increasing θB splits the four subgap Andreev levels of
the junction (single channel N = 1 case) and how the CPR acquires a π shift (Fig.
2.6(c)). For θB = 0, the levels are spin-degenerate and the ground state energy has
the minimum at φ0 = 0. As θB increases, the Andreev levels split and at sufficiently
large fields cross the zero energy. These crossings result in cusps in the CPR, as it
can be seen in Fig. 2.6(c). For θB ≈ π/2, the energy minimum moves from φ0 = 0
to φ0 = π, as visible in Fig. 2.6(d), and the π-junction regime is reached. Finally,
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at θB = π, the CPR is smooth and shifted by π relative to the intial CPR at θB = 0.
Dependences of the ground state phase φ0 and of the maximal supercurrent –
critical current Ic – on θB are shown in Fig. 2.6(d). Critical current exhibits cusps at
θB values associated with the 0−π transitions. Note that by increasing the field some
levels move above the gap and do not contribute to the supercurrent [33], while
other levels move below the gap – such that the number of Andreev levels remains
fixed. The results in Fig. 2.6 are obtained for a single channel, the Zeeman energy
is considered only inside the junction and the spin-orbit interaction is neglected.
Therefore, although the work considers a perpendicular B field, the results that we
show here also hold for a parallel magnetic field. The case with multiple channels
are qualitatively similar. A common feature of the spectrum is that the Andreev
levels are symmetric with respect to φ = 0 – E(φ) = E(−φ). This means that the
supercurrent obeys I (φ) =−I (−φ) and, thus, I (φ= 0) = 0. In cases with spin-orbit
interaction, Andreev levels are not anymore symmetric with respect to the zero
phase and a finite supercurrent is present at φ= 0 – a phenomenon known as the
anomalous Josephson effect [34–37]. Finally, if multiple channels are considered, the
supercurrent magnitude becomes dependent on the supercurrent direction.

Orbital effects are studied in [32]. If an external axial magnetic field B is applied
along a nanowire JJ, it couples to the quantized azimuthal motion of electrons and
holes. Semi-classically, while an electron in the subband with the orbital number l
travels along its spiral path over the junction (Fig. 2.7(a)), it accumulates a phase
difference with its partner hole, which is:

δn,l =
el BL

mvF,l
(2.21)

where m is the electron effective mass and vF,l is the Fermi velocity of the
corresponding subband. As a result, the Andreev level is shifted in phase depending
on the subband orbital number. If the coupling of B to l is treated fully quantum
mechanically, the same result is obtained within the Andreev approximation and the
approximations of conduction shell model. The first approximation assumes that the
electron and hole wave vectors are approximately the same (ke ,kh ≫|ke −kh |) and it
breaks close to the bottom of the subband. The second approximation assumes that
the electron (hole) states are localized within a certain distance from the interface,
propagating through a ring-like cross-section of radius R. The phase shifts depend
only weakly on R and the applied normalized flux is Φ= πR2B/(h/e). A subband l
carries a supercurrent which primary peak occurs for flux:

Φ1 =
πvF,l mR2

ℏlL
(2.22)

Since the Fermi velocity exhibits a dependence on flux through the change of the
effective chemical potential, the positions of other peaks are aperiodic in flux.

If multiple subbands cross the Fermi level (Fig. 2.7(b)), each pair of subbands
has certain flux values for which the sum of their individual contributions to
the supercurrent is maximal via the Josephson interference. These conditions
are aperiodic in flux and if multiple subbands are involved, the resulting critical
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Figure 2.7: (a) Schematic of a nanowire JJ of length L and phase difference φ between
the leads (superconducting gap is ∆0). A subband l is via the angular motion
coupled to the parallel magnetic field B . (b) Critical current Ic of the junction as a
function of the normalized flux Φ through the nanowire exhibits aperiodic maxima
(top left). CPR of the supercurrent carried by individual subbands l for different
values of Φ (remaining five panels, colour markers). Dotted vertical lines in the CPR
panels mark the phase φ for which the Josephson interference gives the maximal
supercurrent - the critical current in the top-left panel. The figure has been taken
and modified from [32].

current exhibits a complex dependence on the B field, as illustrated in Fig. 2.7(b).
Furthermore, scatterings inside the N section and at the interfaces (SN and NS) cause
additional phase randomization and can smear out the critical current fluctuations
[38].

The phenomena that we have described in this section are analogous in a
sense that they all occur due to the pick-up of electron-hole phase difference,
which modifies the dispersion of Andreev levels and consequently the supercurrent.
Increasing the junction length, magnetic field or the number of active subbands
inside the junction all make these effects more prominent.
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2.4.3. DC-SQUID
When a single JJ is biased with a current below its critical current, the phase
difference between its superconducting leads is constant and takes a value such
that the junction can support the maximal supercurrent. If the junction CPR is
sinusoidal, the phase difference equals π/2, for which the maximal supercurrent
equals the critical current.

If two JJs (JJ1 and JJ2) are connected in parallel by a superconducting loop, they
form a dc version of the superconducting quantum interference device (SQUID)
shown in Fig. 2.8(a). If both junctions have sinusoidal CPRs with critical currents Ic1

and Ic2, the supercurrent through the SQUID is:

ISQU I D = Ic1 sin(φ1)+ Ic2 sin(φ2) (2.23)

where φ1 and φ2 are the phase differences over corresponding junctions. Since the
junctions are embedded in the superconducting loop, φ1 and φ2 are not independent
and, in general, cannot independently take values such that the supercurrents in
both junction always reach the critical current values. The phases are connected via
the flux Φ through the superconducting loop as:

φ1 −φ2 = 2π
Φ

Φ0
(2.24)

where Φ0 = h/2e is the superconducting flux quantum. A critical current of the
SQUID is thus a function of the flux and each flux value Φ=Φ′ has a corresponding
phase φ1 =φ′ such that the expression:

ISQU I D (φ1,Φ′) = Ic1 sin(φ1)+ Ic2 sin

(
φ1 −2π

Φ′

Φ0

)
(2.25)

is maximal and ISQU I D (φ′,Φ′) = Ic,SQU I D is the critical current of the SQUID. It can
be easily found as the diagonal of a parallelogram spanned on vectors with lengths
Ic1 and Ic2 that have a phase shift of 2πΦ/Φ0. If we use the cosine theorem:

Ic,SQU I D =
√

I 2
c1 + I 2

c2 +2Ic1Ic2 cos

(
2π

Φ

Φ0

)
(2.26)

Consequently, the critical current of the SQUID ranges from |Ic1 − Ic2| to Ic1 + Ic2.
In Fig. 2.8(b), Ic,SQU I D (Φ) dependences are shown for Ic1 = 1nA and Ic2 taking the
values 1nA, 2nA and 6nA. If the SQUID is symmetric (Ic1 = Ic2), the critical current
of the SQUID can drop to zero and its flux dependence is non-sinusoidal with
cusps (red curve). As the SQUID becomes more asymmetric (Ic2 > Ic1), Ic,SQU I D (Φ)
dependence gradually becomes sinusoidal and ultimately for Ic2 ≫ Ic1 resembles
the CPR of the junction with the smaller critical current. This is because, for
a highly asymmetric dc-SQUID, the phase difference over the junction with large
critical current remains constant in order to maximize the total supercurrent, and an
external flux thus effectively modulates only the phase over the junction with small
critical current. This is conveniently used in experiments to investigate the CPR of a
JJ by embedding it in the SQUID architecture with another (reference) junction that
has much larger critical current.
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Figure 2.8: (a) Schematic of a dc-SQUID with two Josephson junctions JJ1,2
with critical currents Ic1,2 and phase drops φ1,2 inside the superconducting loop
penetrated by the flux Φ. (b) Dependence of the SQUID critical current on Φ for
different Ic2/Ic1 ratios.

2.5. TOPOLOGICAL SUPERCONDUCTIVITY

Topological superconductors are unconventional superconductors which bulk band
structure has an inverted superconducting gap. Consequently, due to the bulk-edge
correspondence, a topological superconductor hosts zero-energy excitations at
its boundaries and at topological defects. Such mid-gap states are known
as Majorana zero modes (MZMs). Topological superconductivity occurs when
p-wave superconducting pairing is introduced into a spinless Fermi liquid. Such
scenario has so far not been conclusively established in currently known materials
[39]. However, there are proposals how such conditions can be reached through
engineering by putting together different materials and combining their properties.
In this section, we focus on creating topological superconducting phase in hybrid
semiconductor-superconductor nanowires.

2.5.1. MAJORANA NANOWIRE MODEL

The proposals for creating MZMs in hybrid nanowires [40, 41] rely on introducing
s-wave superconducting pairing into a Rashba nanowire inside a parallel magnetic
field (Fig. 2.9(a)). The Rashba nanowire has already been introduced in the first
section of this chapter, and the influence of the parallel magnetic field on its band
structure E(k) is shown in Fig. 2.1(b). There, we show how the field removes the
degeneracy at k = 0 and how this results in an effective spinless scenario. Here, we
introduce conventional s-wave superconducting pairing into the Rashba Hamiltonian
(Eq. 2.3) by adding a term with the induced superconducting gap that couples the
states below and above the Fermi energy. The Hamiltonian of a Majorana nanowire
then reads:

HNW =
(ℏ2k2

2m∗ −µ
)

(τz ⊗σ0)+αk(τz ⊗σy )+EZ (τ0 ⊗σz )+∆(τx ⊗σ0) (2.27)
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Figure 2.9: (a) Schematic of a hybrid semiconductor-superconductor nanowire
formed by coupling a Rashba nanowire (blue) to an s-wave superconductor (red),
inside a parallel magnetic field B (Zeeman energy EZ ) and on top of a gate (grey)
setting the electro-chemical potential µ. Majoranas γ1,2 are present at the hybrid
nanowire ends in the topological phase. (b) Energy dispersion of a single band of
the hybrid nanowire before (left), at (middle) and after (right) the topological phase
transition at the critical Zeeman energy E c

Z . The black and red dots mark the energy
gap Eg at small wave vector k0 and large wave vector kF . (c) Single band phase
diagram in the (µ,EZ ) parameter space with the topological phase in grey and the
phase boundary E 2

Z =∆2 +µ2 in red. (d) The bulk gap at k0 (full red line) and kF

(full blue line) as a function of EZ . Eg (kF ) is also shown for a stronger spin-orbit
interaction (blue broken line).

where τ and σ are the Pauli matrices in the particle-hole and spin space, respectively.
The basis is the Nambu spinor Ψ= (c↑,c↓,c†

↓ ,−c†
↑)T for a single spin-degenerate band.

All other terms have already been defined in Eq. 2.3.

The superconducting term opens the gap ∆ at the Fermi energy in the particle-hole
symmetric spectrum. Since the degeneracy at k = 0 is already removed by the
combined effect of the Zeeman and spin-orbit interaction, the coupled electrons
and holes have finite k and their spins have parallel and anti-parallel components.
Therefore, the resulting superconducting pairing has an effective p-wave component.
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Energy gaps open at small k (k0) and large k (kF ) (black and red dots in Fig. 2.9(b).
The gap at k0 closes for a critical Zeeman energy E c

Z =
√
∆2 +µ2. As EZ further

increases, the gap at k = 0 reopens and the band inversion takes place. At this point
the nanowire enters into a topological superconducting phase and two MZMs γ1 and
γ2 appear at the ends of the hybrid (Fig. 2.9(a)). The topological phase occurs in the
entire parameter range beyond the red phase boundary E 2

Z =∆2 +µ2 in Fig. 2.9(c).
In an infinitely long nanowire, the MZMs have exact zero energy and they are

protected by the topological gap that corresponds to the minimum between the
gaps Eg at k0 = 0 and kF . We show the Eg dependences on EZ in Fig. 2.9(d). It
can be seen that Eg (k0) exhibits closely linear dependence on EZ before the phase
transition – as the spin-orbit interaction is small due to small k0. For EZ > E c

Z , this
dependence is fully linear as k0 = 0 and the spin axis is parallel to the Zeeman field.
For Eg (kF ), the evolution with EZ is non-linear due to the spin-orbit interaction
being larger at kF . Also, the stronger spin-orbit interaction protects the topological
gap at kF for large EZ (broken line in Fig. 2.9(d).

For the MZMs γ1,2, the self-conjugate operator relations for Majorana fermions
hold - γ1,2 = γ†

1,2. Therefore, they are purely real and correspond to the real and
imaginary part of a single fermionic mode c0 at zero energy:

c†
0 = γ1 + iγ2

c0 = γ1 − iγ2
(2.28)

As the MZMs are present at the nanowire ends, this fermion has the non-local nature
and, due to its zero energy, its two occupations correspond to a double-degenerate
ground states of the system. The length scale at which the MZMs wavefunction
extend from the hybrid ends into the hybrid bulk is the Majorana coherence length
ξM . The non-locality of the mid-gap fermionic mode is quantified by the overlap
between the γ1,2 wavefunctions, and this overlap quantifies the susceptibility of the
system to sources of local noise. In the limit of an infinitely long nanowire (L →∞)
the two MZMs have a zero overlap and the non-local fermionic mode is topologically
protected against local noise.

If L is finite, the MZMs exhibit a finite overlap and a finite splitting EM from the
zero energy. These oscillate with EZ and µ via an effective Fermi wave vector keff

F
that describes the oscillations of the Majorana wavefunctions [42]. In this case, the
finite energy EM reads:

EM = ℏ2keff
F

2m∗ξM
cos(keff

F L)e−2L/ξM
(2.29)

The amplitude of the oscillation increases with EZ and µ, and since neither the
overlap nor the energy are fixed at zero anymore, the non-local fermionic mode
is not perfectly protected from local noise. However, this sensitivity to noise is
exponentially suppressed by increasing the hybrid length L (as visible in Eq. 2.29).

2.5.2. CONSIDERATIONS BEYOND THE MINIMAL MODEL

When the realistic configuration of a hybrid nanowire is considered, the calculations
of energy spectrum and topological phase give results that are much more complex
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Figure 2.10: Effects of the smooth potential: (a) Electro-chemical potential φ(x) and
superconducting (S) gap ∆(x) along the nanowire (x-axis). Smooth variations are
caused by a tunnel barrier (B) at the nanowire end (x = 0). (b) Evolution of the
spectrum with the Zeeman field with three distinct regions: 1 (no states at zero
energy, non-topological), 2 (quasi-Majoranas at zero energy, non-topological) and 3
(MZMs with finite splitting, topological). The nanowire length is L. The Majorana
wavefunctions are plotted along the nanowire [0,L] for each region 1-3. The figure
has been taken from [43]

than those of the minimal model of a Majorana nanowire. In the following
paragraphs, we briefly list the main critical aspects beyond the minimal model by
following a recent review [44].

While the superconducting pairing enters the minimal model as a fixed value,
in realistic hybrid nanowires it is reduced while the parallel magnetic field drives
the system into the topological phase. This is a consequence of the parallel field
penetrating the superconductor that proximitizes the nanowire and thus reduces
the parent superconducting gap in the system. Consequently, subgap states in the
nanowire spectrum can be pinned to zero energy and mimic MZMs by causing



2.5. TOPOLOGICAL SUPERCONDUCTIVITY

2

31

zero-bias peaks (ZBPs) in tunneling-conductance measurements. This can happen
simply because the decaying induced gap pushes subgap states to zero energy as the
field is increased.

By considering the three-dimensional nanowire geometry, multiple subbands and
orbital effects of the parallel magnetic field reduce the topological gap and make the
shape of the topologcal phase much smaller and more irregular than shown by the
parabolic phase boundary in Fig. 2.9(c).

The electro-chemical potential inside hybrid nanowires is controlled by electric
fields set by gates in experiments. However, unified self-consistent Schrödinger-
Poisson studies of realistic nanowires have shown that these electric fields also
influence the coupling strength between the semiconductor and the superconductor.
Namely, the electric fields influence the cross-sectional distribution of electron
wavefunctions. The electric fields can tune the hybridization from a superconducting-
like limit - with a hard induced gap, small g factor and weak spin-orbit interaction -
to a semiconducting-like limit - with a soft induced gap, large g factor and strong
spin-orbit interaction. Importantly, this means that the parameters of the system
are neither fixed nor independently tunable. The uniformity and control of the
parameters is additional complicated by disorder that can make the parameters vary
also longitudinally.

More detailed modellings of hybrid nanowires have found that smooth profiles of
the electrostatic potential along the nanowires occur due to the mutual presence
of the superconducting shell on the nanowire and local gates. An example of
the smooth potential due to a gate-defined tunnel barrier at the nanowire end is
depicted in Fig. 2.10 [43]. The smooth variations of the electro-static potential φ(x)
and gap ∆(x) at the nanowire end give rise to subgap states that are pinned to
zero energy in a broad range of the Zeeman energy before the topological phase
transition (region 2). When decomposed into the Majorana basis, such states are
shown to consist of two Majoranas localized at the nanowire end with the smooth
potential. Although the state is at zero energy, its Majorana components are not
spatially separated and they have a finite overlap in space. Such states are known as
partially-separated ABSs, or non-topological MZMs, or quasi-Majoranas. The latest
name comes from the fact that these states can locally give experimental signatures
compatible with the true MZMs – in the form of even quantized ZBPs (2e2/h) in
tunneling spectrosopy measurements. The quasi-Majoranas ultimately evolve into
true MZMs at sufficiently large Zeeman fields (region 3). The Majoranas are then
localized at two nanowire ends and the nanowire is in the topological phase..

Based on all the aspects above, the creation of a topological phase in hybrid
nanowires turns out to be much more challenging than what has been predicted
by the minimal model. Local signatures of MZMs have been shown to occur
in various non-topological scenarios and are, therefore, considered insufficient
to conclusively establish the evidence of Majoranas in hybrid nanowires. For
an unambiguous detection of MZMs, detecting the Majorana non-locality or the
bulk-edge correspondance is needed.
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2.6. HYBRID NANOWIRE ISLAND
The ground-state degeneracy of an infinitely long topological Majorana nanowire
implies that a single electron can be added to the system without costs of energy.
However, this means that the electron-parity of a hybrid nanowire is sensitive
to the quasiparticle poisoning that can switch the electron parity. To have a
control on the parity, systems with Coulomb interaction are studied – as in such
systems the degeneracy is lifted by a finite charging energy. An example is a
hybrid nanowire which superconducting shell is not connected to a reservoir with
electrons and, therefore, represents an island with charges. Hybrid islands based on
semiconductor-superconductor nanowires provide a platform in which the interplay
between superconductivity and Coulomb interaction can be studied.

A schematic of a hybrid island is shown in Fig. 2.11(a). A gate is coupled to the
island and induces a continuous charge ng e, while the charge ne on the island is
discrete. The total energy of the system is:

Etot = EC (n −ng )2 +E0 (2.30)

The first term corresponds to the Coulomb interaction that is parabolic with ng and
characterized by a charging energy EC = e2/2C , C being the total capacitance of the
island. The second term appears due to the superconductivity. If n is even, all
electrons in the ground state form Cooper pairs at zero energy and the total energy
has only the Coulomb term. If n is odd, the Coulomb term remains, but there is
an electron that does not have a partner to pair up and, therefore, this electron has
to occupy the lowest single-electron energy state E0. If there are no subgap states,
this electron has to be added to the gap-edge, giving E0 =∆. This means that the
states with odd n are lifted by at most ∆ with respect to those with even n. This

Figure 2.11: (a) Schematic of a hybrid semiconductor(blue)-superconductor(red)
nanowire island with n electrons and coupled to a gate with charge ng e. The
charging energy of the island is EC and the lowest quasiparticle state has energy E0.
(b) Energy dispersion of the island as a function of ng . Ground state Eg s is marked
by the thick dashed black lines.
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is visible in Fig. 2.11(b), where parabolas for different n are plotted as a function
of ng . The ground-state energy Eg s is plotted in thick black. Note that in the left
panel neighbouring parabolas cross at E = EC . If E0 > EC , Eg s (ng ) only includes the
parabolas with even n and it is 2e-periodic. If 0 < E0 < EC , in some intervals of
ng the parabolas with odd n have the lowest energy and Eg s (ng ) has an even-odd
pattern. Finally, if E0 = 0, Eg s (ng ) equally includes both parities and it is 1e-periodic.

Transport through the island takes place at the degeneracy points in the ground
state. When two parabolas cross, either a Cooper pair (2e-periodic case, n → n±2) or
a single electron (even-odd or 1e-periodic, n → n ±1) is added/removed to/from the
island. At these points, both the supercurrent and the zero-bias conductance through
the island are enhanced (Coulomb peaks). They are both suppressed between the
degeneracy points as the charge there is fixed (Coulomb valleys). Besides these
generic properties, signatures of topological superconductivity have been proposed
in the zero-bias conductance when a topological island is coupled to normal leads
[45], and in the supercurrent when coupled to superconducting leads [46].
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3
SUPERCURRENT PARITY METER IN A

NANOWIRE COOPER PAIR

TRANSISTOR

We study a Cooper-pair transistor realized by two Josephson weak links that enclose a
superconducting island in an InSb-Al hybrid nanowire. When the nanowire is subject
to a magnetic field, isolated subgap levels arise in the superconducting island and, due
to the Coulomb blockade, mediate a supercurrent by coherent co-tunneling of Cooper
pairs. We show that the supercurrent resulting from such co-tunneling events exhibits,
for low to moderate magnetic fields, a phase offset that discriminates even and odd
charge ground states on the superconducting island. Notably, this phase offset persists
when a subgap state approaches zero energy and, based on theoretical considerations,
permits parity measurements of subgap states by supercurrent interferometry. Such
supercurrent parity measurements could, in a new series of experiments, provide an
alternative approach for manipulating and protecting quantum information stored in
the isolated subgap levels of superconducting islands.

The work in this chapter has been published as: J.-Y. Wang∗, C. Schrade∗, V. Levajac, D. van Driel,
K. Li, S. Gazibegović, G. Badawy, R. L. M. Op het Veld, J. S. Lee, M. Pendharkar, C. P. Dempsey, C.
J. Palmstrøm, E. P. A. M. Bakkers, L. Fu, L. P. Kouwenhoven and J. Shen "Supercurrent parity meter
in a nanowire Cooper pair transistor", Science Advances 8 (16), eabm9896 (2022)
∗These authors contributed equally to this work.
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3.1. INTRODUCTION
When two superconducting (SC) leads couple via a Coulomb-blockaded quantum
dot (QD), the isolated energy levels on the dot mediate a supercurrent by coherent
co-tunneling of Cooper pairs [1]. For the case of a single-level QD, a control knob for
the supercurrent direction is given by the charge parity of dot electrons [1]. Such a
parity-controlled supercurrent has been observed in a nanowire (NW) QD Josephson
junction (JJ) [2, 3]. It is described by the Josephson relation, I = (−1)n0 Ic sin(ϕ),
where Ic is the critical current, ϕ is the SC phase difference, and n0 is the number
of dot electrons. In general, the Josephson relation can also acquire a phase offset,
ϕ→ ϕ+ϕ0 with ϕ0 ̸= 0,π, when time-reversal and mirror symmetry are broken
[4]. This breaking occurs, for example, if a spin-orbit coupled QD is subject to a
magnetic field [4–7].

A different possibility of coupling two SC leads is via a SC island with finite
charging energy: a ‘Cooper-pair transistor’ (CPT) [8–14]. Unlike in the QD JJ, the SC
island carries, within its parity lifetime, an even number of electrons in the ground
state, as signified by a charging energy that is a 2e-periodic function of the island
gate charge (e, elementary charge) [9, 11, 13]. In particular, since the odd charge
states are energetically unfavorable for a conventional CPT, the Josephson relation is
not expected to exhibit a parity-controlled phase offset.

Recently, a CPT has been realized with an Indium Arsenide-Aluminium (Al) hybrid
NW [12, 13]. In this case, upon increasing a magnetic field parallel to the NW, a
transition from a 2e-periodic switching current to a switching current with even-odd
pattern has been observed [13]. The interpretation is that a low-energy subgap state
arises in the SC island, and, depending on its occupancy, the charge ground state
carries an even or an odd number of electrons. An open question is if the Josephson
relation of a NW CPT exhibits in the presence of subgap states a parity-controlled
phase offset?

Here, we address this question with a NW CPT integrated in a superconducting
quantum interference device (SQUID). We investigate the previously described
situation when the NW CPT is subject to a parallel magnetic field so that subgap
levels arise in the SC island and mediate a supercurrent by coherent co-tunneling of
Cooper pairs. We show that supercurrent resulting from Cooper pair co-tunneling
exhibits a phase offset, which distinguishes even and odd charge ground states on
the SC island. This phase offset persists when a subgap state approaches zero energy
and, based on theoretical considerations, may enable parity readout of low-energy
subgap states. Such supercurrent parity readout could provide a new approach for
manipulating [15–20] and protecting [21, 22] quantum information stored in the
isolated subgap levels of SC islands [23–27].

3.2. RESULTS
The device geometry of our experiment is shown in Fig. 3.1. For realizing the CPT,
we use a shadow-grown Al SC island on an Indium Antimonide (InSb) NW, which
couples to two SC Al leads via gate-tunable tunneling barriers. A plunger gate is
used for controlling the electron number on the SC island. As we intend to study the
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Figure 3.1: Sketch of the SQUID device. (A) False-color micrograph of the measured
NbTiN (green) SQUID device comprising an InSb-Al NW CPT in the right arm and an
InSb nanowire reference junction in the left arm. Top gates (L, R, REF) define tunable
JJs, and a plunger gate (P) controls the electron number on the hybrid island. The
InSb nanowires are ∼100 nm in diameter, Al shell is ∼10 nm in thickness, three
junctions are ∼150 nm in length, and the InSb-Al hybrid island is ∼1 µm in length.
(B) Cross-sections along the lines shown in (A).

full Josephson relation of the NW CPT, we integrate our setup in a SQUID loop made
of niobium-titanium nitride (NbTiN) and a second InSb NW reference junction. The
tunnel coupling of the reference junction is adjustable by a local gate electrode.
Concrete fabrication steps are discribed in the Supplementary Material section.

Initially, we pinch off the reference junction and characterize the NW CPT by
measuring the differential conductance dI /dV versus the source-drain voltage V and
the plunger gate voltage VP . Our results are shown in Fig. 3.2A for zero and finite
parallel magnetic fields B∥.

At zero magnetic field, we observe a pattern of Coulomb diamonds with sharp
edges due to the weak island-lead coupling. Besides the Coulomb diamonds, which
signify the importance of charging effects on the SC island, the zero-bias differential
conductance exhibits 2e-periodic oscillations, which implies the transport of Cooper
pairs (see the insert curve in Fig. 3.2A). Furthermore, above an onset voltage Vonset ,
a 1e-periodic modulation of the differential conductance appears, which marks the
onset of quasiparticle transport. The charging energy, EC , is estimated to be ∼20 µeV
from the 2e−charge diamond at B∥=0, and the induced gap, ∆i nd , is extracted to be
∼50 µeV from onset of quasiparticle transport. The relation EC < ∆i nd is consistent
with the condition for 2e-periodicity of the Coulomb diamonds at zero field [28–30].

At finite magnetic fields, the aforementioned onset voltage for quasiparticle
transport persists. However, below the onset voltage, the Coulomb diamonds split,
resulting in an even-odd pattern. We attribute the appearance of this even-odd



3

42 SUPERCURRENT PARITY METER IN A NANOWIRE COOPER PAIR TRANSISTOR

150

0

-150
448 449

VP (mV)
V 

(μ
V)

450

0 0.4 0.8
dI/dV (e2/h)

B
||=0 mT

V P
 (m

V)

443

444

445

446

S e/(
S e+

S o)

0.0

1.0

0.5

0 50 100 150

0

0.5

1.8
ISW (nA)

Se

So

 S
o/(

S e+
S o)

0.0

1.0

0.5

B|| (mT)

448 449
VP (mV)

450

0 0.3 0.6
dI/dV (e2/h)

B
||=100 mT

B

A

Figure 3.2: Parity control with magnetic field. (A) Differential conductance, dI /dV ,
versus source-drain voltage V and plunger gate voltage VP . At zero parallel
magnetic field, the differential conductance shows a Coulomb diamond pattern with
a 2e-periodicity. At B∥ = 100mT, the 2e-periodicity of the Coulomb diamonds is
lifted due to the appearance of an odd-parity charge ground state on the SC island.
Inset curves show the differential conductance at zero bias. Black dotted lines
mark the boundary of a 2e-charge Coulomb diamond at B∥ = 0 and the boundary
of an even-parity Coulomb diamond at B∥ = 100mT. (B) Top panel: Switching
current, Isw , versus parallel magnetic field B∥ and plunger gate voltage VP . Bottom
panel: Magnetic field dependence of the normalized even and odd peak spacings,
Se /(Se +So) and So/(Se +So), showing a transition from a 2e-periodicity to an
even-odd pattern.

pattern to low-energy subgap states that form on the SC island. More specifically, the
magnetic field induces a Zeeman splitting of spinful, odd-parity states and, thereby,
reduces the minimum single-particle excitation energy in the NW CPT. As a result,
odd-parity states can detach from the quasiparticle continuum and, because of their
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enhanced effective g -factor in comparison to the Al shell, form isolated levels below
the SC gap [13, 31].

Next, we investigate the subgap levels on the SC island in more detail. We lower
the island-lead tunneling barriers and, with the reference junction still pinched off,
measure the switching current Isw as a function of the parallel magnetic field B∥
and plunger gate voltage VP . Our results are given in Fig. 3.2B. At zero magnetic
field, the switching current exhibits a 2e-periodic peak spacing implying that the SC
island always carries an even number of electrons in its charge ground state (see
also Fig. 3.6A in the Supplementary Material section). The situation changes upon
applying a parallel magnetic field. The magnetic field induces a splitting of the
2e-periodic peaks, and, as a result, the switching current exhibits a peak-spacing
with an even-odd pattern (see also Fig. 3.6B in the Supplementary Material section).
Similar to the differential conductance, we attribute the appearance of this even-odd
pattern to charge ground states with even and odd fermion parity on the SC island.
Moreover, as shown in Fig. 3.2B, the extracted peak spacings oscillate as a function
of applied magnetic field, as well as the plunger gate voltage, indicating either the
anticrossing or the crossing of the lowest-energy subgap state with a second subgap
state at higher energy [29, 30].

We now open the reference junction and measure the NW CPT’s full Josephson
relation in the presence of low-energy subgap states. For the results presented here,
we focus on the magnetic field strength B∥ = 170 mT, and adopt a highly-asymmetric
SQUID configuration so that the phase drop occurs primarily across the NW CPT.
Under these conditions, we apply a bias current Ib and measure the voltage drop
V across the SQUID as a function of the plunger gate voltage VP and the flux φ

piercing through the SC loop. Fig. 3.3 shows our measurement data, which we will
now discuss in more detail:

Our main finding is that the Josephson relation of the NW CPT exhibits a
substantial relative phase offset ϕ0 between Coulomb valleys of opposite charge
parity. To determine this phase offset for the Coulomb valleys marked in Fig. 3.3A,
we fit the switching current Isw as a function of the flux φ. The fitted curves, shown
in Fig. 3.3B, allow us to extract ϕ0 ∼−1.24π and ϕ0 ∼−1.31π for the first and second
pair of Coulomb valleys, respectively. For the remaining pairs, we find similar values
for the phase offset, as summarized in Fig. 3.3C. Notably, the leftmost pair of data
points in Fig. 3.3C shows that phase offset persists when the Coulomb peaks are
close to a 1e-spacing (see detailed analysis in Fig. 3.7 in supplementary materials).
Therefore, the phase offset facilitates charge parity readout even if a subgap state is
close to zero energy.

Next, we discuss a possible mechanism for a parity-dependent phase offset. We
introduce a model for the NW CPT, which comprises a mesoscopic SC island
coupled to a pair of s-wave SC leads. In our model, we focus on the two lowest
isolated subgap levels in the SC island, ±εa and ±εb , indicated by the peak spacing
oscillation as a function of magnetic field and plunger gate in Fig. 3.2B. Here, we
consider two types of co-tunneling sequences:

(1) In the first type of sequence, shown in Fig. 3.4A, the Cooper pair splits so that
one electron tunnels via ±εa while the other electron tunnels via ±εb . For such a
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Figure 3.3: Parity control with magnetic field. (A) Differential conductance, dI /dV ,
versus source-drain voltage V and plunger gate voltage VP . At zero parallel
magnetic field, the differential conductance shows a Coulomb diamond pattern with
a 2e-periodicity. At B∥ = 100mT, the 2e-periodicity of the Coulomb diamonds is
lifted due to the appearance of an odd-parity charge ground state on the SC island.
Inset curves show the differential conductance at zero bias. Black dotted lines
mark the boundary of a 2e-charge Coulomb diamond at B∥ = 0 and the boundary
of an even-parity Coulomb diamond at B∥ = 100mT. (B) Top panel: Switching
current, Isw , versus parallel magnetic field B∥ and plunger gate voltage VP . Bottom
panel: Magnetic field dependence of the normalized even and odd peak spacings,
Se /(Se +So) and So/(Se +So), showing a transition from a 2e-periodicity to an
even-odd pattern.

two-level sequence, the corresponding supercurrent contribution acquires a prefactor
given by the SC island charge parity, (−1)n0 . This parity prefactor is analogous to the
parity prefactor appearing in the Josephson relation of a QD JJ, where Cooper pairs
tunnel via two dot levels with opposite spin polarization [1].

(2) In the second type of sequence, shown in Fig. 3.4B, both Cooper pair electrons
tunnel via either ±εa or ±εb . For such a single-level sequence, each of the two
electrons contributes a prefactor given by the parity of ±εa or ±εb . In particular,
since the same parity prefactor appears twice in the sequence, it squares to one.
Consequently, in the single-level supercurrent contribution a parity prefactor is
absent.

If we collect all sequences, we obtain the Josephson relation (see details in the
Supplementary Material section),

I = (−1)n0 Iab sin(ϕ+ϕab)+ ∑
ℓ=a,b

Iℓ sin(ϕ+ϕℓ). (3.1)
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Figure 3.4: Energy diagrams illustrating Cooper pair transport via subgap levels.
(A) A typical sequence of intermediate states in which a Cooper pair tunnels
between the SC leads (left, right) via the two lowest isolated subgap levels a,b
in the intermediate SC island (center). Such a sequence yields a contribution to
the supercurrent proportional to the joint parity of the two subgap levels. In the
illustration, numbers indicate the sequence of tunneling events, and solid/empty
dots represent filled/empty subgap levels. The occupation numbers of the subgap

levels (na ,nb) in the sequence are (1,0)
1−→ (0,0)

2−→ (1,0)
3−→ (1,1)

4−→ (1,0). The energy of
the initial odd parity (1,0) configuration is (−1)na+1εa + (−1)nb+1εb = εa −εb , which
corresponds to the ground state provided that εb > εa . (B) A typical sequence of
intermediate states that involves Cooper pair transport via a single subgap level
yielding no parity-dependent prefactor. The occupation numbers for this sequence

are (1,0)
1−→ (0,0)

2−→ (1,0)
3−→ (0,0)

4−→ (1,0). In (A) and (B), subgap levels are displayed in
an ‘excitation picture’ representation [32].

Here, Iab and Iℓ are amplitudes, which are 1e-periodic in the gate charge if the
lowest subgap level is at zero energy. Furthermore, the phase offsets ϕab ,ϕℓ arise
if the subgap states couple inequivalently to the SC leads (see the Eq. (3.18) in the
Supplementary Material for the detailed condition on the tunneling amplitudes) and
if, due to time-reversal symmetry breaking, the tunnel couplings acquire complex
phase factors.

We now highlight two differences between the NW CPT and a QD JJ: First, the
island which mediates the Josephson current is in a SC state, not a normal state as
for a QD JJ. Consequently, not only conventional tunneling events can occur, but
also anomalous tunneling events in which an electron is created/destroyed on both
the SC island and the leads. Second, for a QD JJ, the wavefuntions on the dot
are highly localized which justifies a point-like tunneling contact. In comparison,
for a NW CPT, the subgap level wavefunctions can be extended, which induces
longer-range island-lead tunnel couplings. In particular, such longer-range couplings
can break the mirror symmetry, due to the combined effect of spin-orbit coupling
and magnetic field in the tunneling region, and lead to additional contributions to
ϕab ,ϕℓ.

Returning to Eq. (3.1), the total phase offset is ϕn0 ≡ arg[(−1)n0 Iabe iϕab +∑
ℓ Iℓe iϕℓ ]

and the relative phase offset between the parity sectors is ϕ0 ≡ϕn0+1 −ϕn0 . In these
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Figure 3.5: Tunable phase offset. (A) Phase offset ϕ0 versus plunger gate voltage VP

for various parallel magnetic fields B∥. The dashed lines do not represent data, but
are merely used for improving data visibility. The phase offset is sensitive to both
plunger gate voltage and magnetic field variations. (B) Voltage drop V as a function
of the applied bias current Ib and the SQUID flux φ for a parallel magnetic field
B∥ = 160mT. The switching current Isw (yellow) displays a phase offset ϕ0 between
even (e) and odd (o) Coulomb valleys of the SC island that is tunable by the plunger
gate voltage VP .

expressions, the parity prefactor flips upon tuning the gate charge of the SC island
between different charge parity sectors. As a result of these parity-flips, the phase
offset does not exhibit a 1e-periodicity in the gate charge even if one of the subgap
states is at zero energy. Instead, if Iab ̸= 0, ϕ0 is always 2e-periodic and permits the



3.3. CONCLUSION

3

47

measurement of the parity of the lowest subgap level. To practically enable such
parity measurements, the two-level contribution should be sizable, Iab ≫ Iℓ. Also,
to avoid thermal excitations, the temperature T should be small compared to the
level separation |εa −εb |. Interestingly though, if |εa −εb |≳ T , the parity prefactor
measures the joint parity of ±εa and ±εb . Such joint parity measurements could be
leveraged for entangling qubits stored in the subgap levels of SC islands [15–20].

So far, we have discussed a regime with substantial ϕ0 for parity read-out with
maximal resolution. However, such an ideal situation is not always realized. In
Fig. 3.5A, we display the phase offset versus plunger gate voltage for multiple
magnetic field values. For a selection of data points, we also show the fitted
switching current Isw in Fig. 3.5B. Detailed analysis is shown in Fig. 3.8-Fig. 3.10 in
the Supplementary Material section. In comparison, there is another regime in which
NW CPT exhibits phase independence on its parity (see details in Fig. 3.11-Fig.
3.12 in the Supplementary Material). In Fig. 3.5, our findings are two-fold: First,
we observe that the phase offset for subsequent Coulomb valley pairs is tunable by
the magnetic field and the plunger gate voltage. Such a tunability arises because
both control parameters change the support of the subgap level wavefunction and,
thereby, alter the lead-island Josephson couplings. Second, we find that the phase
offset decreases upon increasing the magnetic field. This decreasing suggests that
the level seperation between the lowest-energy and higher-energy subgap states
increases so that the supercurrent contribution with the parity-dependent prefactor
becomes energetically unfavorable. As a result, in this regime, the NW CPT exhibits
a phase dependence that is only weakly dependent on its parity.

3.3. CONCLUSION
We have studied the Josephson relation of an InSb-Al NW CPT. We have demonstrated
that upon applying a magnetic field, subgap levels arise in the SC island and
mediate a supercurrent with a parity-dependent phase offset. We have shown that
the phase offset persists when the subgap state approaches zero energy and enables
parity readout of the lowest energy subgap state. Such a supercurrent parity readout
could be useful for the manipulation [15–20] and protection [21, 22] of qubits stored
in the isolated subgap levels of SC islands [23–27].
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3.4. SUPPLEMENTARY MATERIAL

3.4.1. METHODS

DEVICE FABRICATION

The InSb NWs used in the experiment were grown on an Indium phosphide substrate
by metalorganic vapor phase epitaxy. In the molecular beam epitaxy chamber, Al
flux was deposited along a specific direction to form Al shadows on InSb NWs by
neighboring NWs. InSb-Al NWs with shadows were transferred onto a doped Si/SiOx

substrate using a nano-manipulator installed inside an SEM. NbTiN superconductor
was sputter deposited right after Ar etching dedicated to removing the oxidized layer.
Subsequently, 30 nm SiNx was sputter deposited to work as a dielectric layer, and
10/120 nm Ti/Au was used as a top gate.

TRANSPORT MEASUREMENT

The sample was measured at a base temperature of ∼20 mK in an Oxford dry
dilution refrigerator equipped with a vector magnet. Differential conductance was
measured by applying small AC lock-in excitation superimposed on a DC voltage and
then measuring AC and DC current through the device. Typically, low frequency of ∼
27 Hz and AC excitation amplitude of ∼10 µV were used for lock-in measurement. In
current bias measurement, current was applied through the device while monitoring
voltage drop on device. The direction of the magnetic field was aligned with respect
to the InSb-Al island arm by detecting the supercurrent of Cooper-pair transistor
while rotating the magnetic field direction.

COULOMB VALLEY EXTRACTION

We note that the measured current-voltage Ib-V curves of Cooper-pair transistor
exhibit a finite slope for all voltages, see Fig. 3.7A- 3.10A. The possible reasons are
(1) at finite magnetic field, Josephson energy in the Cooper-pair transistor junctions
is suppressed and thermal fluctuation results in resistive electron transport [33, 34];
(2) In our device, the leads of Cooper-pair transistor are made from NbTiN/Al
and NbTiN is able to push quasiparticles into Al, softening Al gap [35]. Coulomb
valleys could still be addressed via resistance peak around zero-bias voltage, albiet
smeared IV curve resulting from above mentioned two mechanisms, because electron
transport is most resistive at Coulomb valleys in both scenarios. Furthermore, both
aforementioned mechanisms would not affect superconducting phase measurement
results with the reference arm turned on. When reference arm is turned on, total
supercurrent (as well as Josephson energy) becomes much larger. Then, thermal
fluctuation plays much less of a role and quasiparticle transport is completely
suppressed, which is reflected by very sharp transition from superconducting to
resistive regime in superconducting phase measurement.
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DISCUSSION ON THE SELF-INDUCTANCE OF THE SQUID LOOP

According to the Tinkham’s book [36], a superconducting loop subjected to an
external magnetic flux can generate screening current to expel the external flux,
which could distort the measured current-phase relationship and make precise
extraction of superconducting phase difficult. In order to eliminate the doubt,
we quantitatively estimate the amplitude of self-generated flux resulting from
inductance. In thin superconducting film, the total inductance, L comprises of
kinetic inductance, Lk and geometric inductance, Lg . NbTiN film properties have
been systematically studied [37]. A typical 100 nm film thick has a Tc of 14 K, a
resistivity of 123 µΩ·cm, and Lk /(Lk +Lg )∼0.3. In our device, NbTiN has thickness of
80 nm and we adopt the Tc and resistivity from 100 nm film, and Lk /(Lk +Lg ) is ∼ 0.5
by interpolating the data of Lk /(Lk +Lg ) versus film thickness. Kinetic inductance Lk

can be calculated from Eq. (6) in reference [38]. We suppose that the critical current
Ic of the loop is 10 nA (actual measured switching current of Cooper-pair transistor
is always below 2 nA in our measurement), and the value of Ic ·L ∼ 4×10−4Φ0, where
Φ0 is flux quantum. Thus, self-inductance is negligibly small compared with external
flux and was not taken into account in the data analysis.

3.4.2. SUPPLEMENTARY FIGURES
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Figure 3.6: Current-bias measurement results at different magnetic fields. Current-
bias characteristics of the NW CPT at different magnetic fields with the reference
arm pinched off. (A) Left panel: Voltage drop V across the NW CPT as a function
of current bias Ib and plunger gate VP at B||=0 mT. Right panel: Linecuts at three
different plunger gate values. (B) Left panel: Voltage drop V across the NW CPT
as a function of Ib and VP at B||=100 mT. Right panel: Linecuts at three different
plunger gate values. Black arrows mark the switching current Isw , where the NW
CPT transitions from the SC state to the normal state.
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Figure 3.7: Transport characteristics of the NW CPT for even and odd charge
parity sectors at B||=170 mT. (A) Voltage drop across the NW CPT as a function
of current bias Ib and plunger gate VP with reference arm pinched off. Labels ‘e’
(‘o’) indicate Coulomb valleys of even (odd) charge parities of the SC island. Black
bars mark the positions of three most left supercurrent peaks and distance between
two neighboring peaks gives peak space for even (Se ) or odd parity (So). Se and So

have comparable values, indicating that the lowest sub-gap state is close to zero.
(B) Voltage drop across the SQUID device as a function of current bias Ib and flux
φ threading the SQUID loop at different charge parities of the SC island. The
fitted switching current (yellow), Isw , display a phase offset between opposite parity
sectors. (C) Phase offset ϕ0 versus plunger gate VP . Dashed lines are guide lines to
the eye. The data shown in this figure was measured after a thermal cycle of the
dilution refrigerator, while the data in the subsequent figures was measured before
the thermal cycle.
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Figure 3.8: Transport characteristics of the NW CPT for even and odd charge parity
sectors at B||=160 mT. (A-C) The panels are analogous to those of Fig. 3.7.
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Figure 3.10: Transport characteristics of the NW CPT for even and odd charge
parity sectors at B||=180 mT. (A-C) The panels are analogous to those of Fig. 3.7.
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Figure 3.12: Another example of phase independence on parities at B||=110 mT. (A)
Differential resistance of the NW CPT as a function of current bias Ib and plunger
gate VP with reference arm pinched off. Green (red) labels ‘e’ (‘o’) indicate Coulomb
valleys of even (odd) charge parities of the SC island. (B) Differential resistance
of the SQUID device as a function of current bias Ib and flux φ threading the
SQUID loop at different plunger gate points marked by red bars in (A). (C) Extracted
switching current (blue points) versus flux φ and corresponding fitting curves (red
lines). (D) Phase offset ϕ0 versus plunger gate VP . Dashed lines are guide lines to
the eye. Note that the values ϕ0 are obtained by subtrating mean value of all points.
The varying of phase with VP is within error bar fluctuation.

3.4.3. EFFECTIVE HAMILTONIAN FOR THE NANOWIRE COOPER-PAIR

TRANSISTOR

In this section, we present more details on the derivation of the effective Hamiltonian
for the NW CPT which yields a Josephson relation with parity-dependent phase
offset. We proceed in multiple steps:
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STEP 1: MODEL HAMILTONIAN

As a first step, we introduce our model Hamiltonian, which comprises a SC island
with subgap states coupled to a pair of s-wave SC leads. The Hamiltonian for the SC
leads has the form,

HSC = ∑
ℓ=L,R

∑
k
Ψ†
ℓ,k

(
ξkηz +∆ℓηx e iϕℓηz

)
Ψℓ,k, (3.2)

where Ψℓ,k = (cℓ,k↑,c†
ℓ,−k↓)T denotes the Nambu spinor with the electron annihilation

operator cℓ,ks for momentum k, spin s, and lead ℓ. Furthermore, ηx,y,z are the
Nambu-space Pauli matrices, and ξk is the normal state dispersion. The magnitudes
and the phases of the SC order parameters are ∆ℓ and ϕℓ, respectively. For
simplicity, we assume that ∆1 =∆2 ≡∆.

Next, we introduce the charging Hamiltonian for the mesoscopic SC island,

UC(n) =U
(
n −ng

)2 , (3.3)

where U denotes the charging energy magnitude. Moreover, n is the number
operator that counts the electron charges on the island, and ng denotes the induced
charge, which is continuously tunable through the plunger gate voltage. As outlined
in the main text, we focus on the two lowest energy subgap levels in the SC
island, which will mediate the Josephson current between the SC leads. In terms of
Majorana operators, γi = γ†

i , the Hamiltonian for the two subgap states reads,

HSG = iεa γ1aγ2a + iεb γ1bγ2b , (3.4)

where εa,b are the energy splittings. We adjust the induced charge so that the SC
island hosts n0 electron charges in its ground state and, as a result, the joint fermion
parity of the subgap levels satisfies,

γ1aγ2aγ1bγ2b = (−1)n0 . (3.5)

Lastly, we introduce the tunneling Hamiltonian to describe the coupling between
the SC leads and the SC island,

HT =∑
ℓ,i

∑
ks
λs
ℓi c†

ℓ,ksγi e−iφ/2 +H.c. (3.6)

Here, λs
ℓi are complex tunneling amplitudes which connect electrons on the SC

lead ℓ to the subgap states, which are described by the Majorana operators γi .
Furthermore, e±iφ/2 increases/decreases the number of electrons on the SC island by
one unit, [n,e±iφ/2] =±e±iφ/2, while the Majorana operators γi induce flips of the
SC island parity. In summary, the total Hamiltonian for our model is given by,

H = HSC +UC +HSG +HT. (3.7)
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STEP 2: EFFECTIVE HAMILTONIAN (GENERAL FORM)

As a second step, we provide an overview of the effective Hamiltonian for the model
that we introduced in the previous subsection. More specifically, up to fourth order
in the tunnel couplings λs

ℓi , the effective Hamiltonian reads,

Heff = P HT
{
[u(na ,nb)−HSC −UC −HSG]−1(1−P )HT

}3
P. (3.8)

Here, P denotes the projection operator on the subspace of HSC+HC+HSG+HT with
a fixed charge configuration (na ,nb) at energy,

u(na ,nb) =UC
(
na +nb −ng

)2 + (−1)na+1εa + (−1)nb+1εb . (3.9)

To evaluate Heff based on the equation presented above, we need to compute all
sequences of intermediate states that mediate a Cooper pair between the SC leads
via the SC island. Before going into the details of this calculation, we first present
the general result,

Heff =−γ1aγ2aγ1bγ2b

[
β

4∑
m=1

J (m)
ab cos(ϕ+ϕ(m)

ab )

]
−αa Ja cos(ϕ+ϕa)−αb Jb cos(ϕ+ϕb)

≡−γ1aγ2aγ1bγ2b β Jab cos(ϕ+ϕab)−αa Ja cos(ϕ+ϕa)−αb Jb cos(ϕ+ϕb)
(3.10)

In the second line, we have defined the Josephson couplings and phase offsets,

Jab =
∣∣∣∣∣ 4∑
m=1

J (m)
ab e iϕ(m)

ab

∣∣∣∣∣ , ϕab = arg

(
4∑

m=1
J (m)

ab e iϕ(m)
ab

)
. (3.11)

We present expressions for the Josephson couplings (Ja , Jb , J (m)
ab ), the phase offsets

(ϕa ,ϕb ,ϕ(m)
ab ), as well as the dimensionless functions (αa ,αb ,β) in the subsequent

sections. Here, we only note that for a fixed charge configuration (na ,nb), the
Josephson relation of the NW CPT is given by,

I = (−1)n0 Iab cos(ϕ+ϕab)+ Ia cos(ϕ+ϕa)+ Ib cos(ϕ+ϕb), (3.12)

where Iab = 2eβ Jab/ℏ, Ia = 2eαa Ja/ℏ, and Ib = 2eαb Jb/ℏ. This is the result presented
in Eq. (3.1) of the main text.

STEP 3: EFFECTIVE HAMILTONIAN ( JOSEPHSON COUPLINGS)

As a third step, we give the expressions for the Josephson couplings (Ja , Jb , J (m)
ab )

as well as the dimensionless functions (αa ,αb ,β), which appear in the previously
introduced effective Hamiltonian Heff.

We, initially, define the auxiliary Josephson couplings,

J i , j
k,ℓ =− 8

π2∆

(√
Γ↓LiΓ

↑
L j −

√
Γ↓L jΓ

↑
Li

)(√
Γ↓RkΓ

↑
Rℓ−

√
Γ↓RℓΓ

↑
Rk

)
, (3.13)
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together with the linewidths,

Γs
m,1a =πνF |λs

m,1a |2 , Γs
m,2a =πνF |λs

m,2a |2
Γs

m,1b =πνF |λs
m,1b |2 , Γs

m,2b =πνF |λs
m,2b |2.

(3.14)

Here, for example, Γs
m,1a denotes the linewidth that the level a acquires due to the

tunneling of electrons with spin s from lead m into γ1a . The normal-state density of
states at the Fermi level for the leads is given by νF . If, we assume an approximate
linewidth Γapprox = 0.01meV and a SC gap ∆= 0.3meV in the SC leads, we find an
upper-bound estimate for the critical current I approx

c = [16e(Γapprox)2]/(ℏπ2∆) ≈ 0.1nA,
which is consistent with the values measured in the experiment.

With these definitions, the Josephson couplings, appearing in Heff, are given by,

Ja = J 1a,2a
1a,2a Jb = J 1b,2b

1b,2b

J (1)
ab = J 1a,1b

2a,2b , J (2)
ab = J 1b,2a

1a,2b , J (3)
ab = J 1a,2b

1b,2a , J (4)
ab = J 2a,2b

1a,1b .
(3.15)

For introducing the dimensionless functions (αa ,αb ,β), we first define,

g (x) =
√

1+x2 > 0 , h(na+Na ,nb+Nb) = u(na +Na ,nb +Nb)−u(na ,nb)

∆
> 0, (3.16)

and Z (x, Na , Nb) = g (x)+h(na +Na ,nb +Nb) which allows us to write,

αa =
∫ ∞

1
dx

∫ ∞

1
dy

1

g (x)g (y)Z (x,−1,0)[g (x)+ g (y)]Z (x,+1,0)
,

αb =
∫ ∞

1
dx

∫ ∞

1
dy

1

g (x)g (y)Z (x,0,−1)[g (x)+ g (y)]Z (x,0,+1)
,

β1 = 1

4

∫ ∞

1
dx

∫ ∞

1
dy

1

g (x)g (y)Z (y,0,+1)[g (x)+ g (y)]Z (x,+1,0)

β2 = 1

4

∫ ∞

1
dx

∫ ∞

1
dy

1

g (x)g (y)Z (x,0,−1)[g (x)+ g (y)]Z (x,+1,0)

β3 = 1

4

∫ ∞

1
dx

∫ ∞

1
dy

1

g (x)g (y)Z (y,+1,0)[g (x)+Z (y,+1,−1)]Z (x,+1,0)

β4 = 1

4

∫ ∞

1
dx

∫ ∞

1
dy

1

g (x)g (y)Z (x,0,−1)[g (x)+Z (y,+1,−1)]Z (x,+1,0)

β5 = 1

4

∫ ∞

1
dx

∫ ∞

1
dy

1

g (x)g (y)Z (x,−1,0)[g (x)+Z (y,−1,+1)]Z (y,−1,0)

β6 = 1

4

∫ ∞

1
dx

∫ ∞

1
dy

1

g (x)g (y)Z (y,0,+1)[g (x)+Z (y,−1,+1)]Z (y,−1,0)

β7 = 1

4

∫ ∞

1
dx

∫ ∞

1
dy

1

g (x)g (y)Z (x,0,−1)[g (x)+ g (y)]Z (y,−1,0)

β8 = 1

4

∫ ∞

1
dx

∫ ∞

1
dy

1

g (x)g (y)Z (y,0,+1)[g (x)+ g (y)]Z (y,−1,0)

β=
16∑

p=1
βp .

(3.17)
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In the definition of β, we have included parameters β9, . . . ,β16 which are identical to
β1, . . . ,β8 but with the arguments of h interchanged, h(n,m) → h(m,n). We note that
for a substantial charging energy, virtual states with two additional electrons on the
SC island are energetically unfavorable and, for simplicity, have not been accounted
for in the expressions for (αa ,αb ,β).

EFFECTIVE HAMILTONIAN (ANOMALOUS PHASE SHIFTS)

As a fourth step, we give the expressions for the phase offsets (ϕa ,ϕb ,ϕ(m)
ab ) appearing

in the effective Hamiltonian Heff.

We, therefore, introduce the auxiliary phase offsets,

ϕ
i , j
k,ℓ = arg[(λ↓

Liλ
↑
L j −λ↑

Liλ
↓
L j )∗(λ↓

Rkλ
↑
Rℓ−λ

↑
Rkλ

↓
Rℓ)], (3.18)

which allow us express the phase offsets appearing in Heff as,

ϕa =ϕ1a,2a
1a,2a , ϕb =ϕ1b,2b

1b,2b

ϕ(1)
ab =ϕ1a,1b

2a,2b , ϕ(2)
ab =ϕ1b,2a

1a,2b , ϕ(3)
ab =ϕ1a,2b

1b,2a , ϕ(4)
ab =ϕ2a,2b

1a,1b .
(3.19)

STEP 5: EFFECTIVE HAMILTONIAN (EXAMPLE CALCULATION)

As a final step, we provide specific examples on sequences of intermediate states that
mediate a contribution to the Josephson current with and without a parity-dependent
prefactor. We, thereby, focus on the sequences which we have shown in Fig. 3.4 of
the main text.

We begin by considering sequences of the type shown in Fig. 3.4A, which comprise
a parity-dependent prefactor. An example, for such a sequence is given by,

P (c†
R,−q↓γ2,be−iφ/2)(γ1,bcL,−k↓e iφ/2)(γ1,acL,k↑e iφ/2)(c†

R,q↑γ2,ae−iφ/2)P

= P (c†
R,−q↓γ2,bγ1,bcL,−k↓γ1,acL,k↑c†

R,q↑γ2,a)P

=−P (γ1,aγ2,aγ1,bγ2,b)(c†
R,−q↓cL,−k↓cL,k↑c†

R,q↑)P

= e i (ϕL−ϕR) uqvqukvk P (γ1,aγ2,aγ1,bγ2,b)(γR,q↑γL,−k↓γ†
L,−k↓γ

†
R,q↑)P

= e i (ϕL−ϕR) uqvqukvk P (γ1,aγ2,aγ1,bγ2,b)P

(3.20)

In the third equality, we have represented the electron operators in the
SC leads in terms of Bogoliubov quasiparticles through the relations, cℓ,k↑ =
e iϕℓ/2(ukγℓ,k↑+ vkγ

†
ℓ,−k↓) and cℓ,−k↓ = e iϕℓ/2(ukγℓ,−k↓− vkγ

†
ℓ,k↑) with the coherence

factors uk, vk. If we sum over all momenta, we find that the amplitude for the
example sequence is given by,

−Ω∑
k,q

vqukuqvk

[Eq +u(na ,nb +1)−u(na ,nb)][Ek +Eq][Eq +u(na −1,nb)−u(na ,nb)]
, (3.21)
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where Ω= (λ↑
L,1aλ

↓
L,1b)∗(λ↑

R,2aλ
↓
R,2b) and Ek =

√
ξ2

k +∆2 denotes the dispersion of the

SC leads. If we assume a constant density of states νF at the Fermi level, we can
rewrite this amplitude as,

− 1

∆

∫ ∞

1
dx

∫ ∞

1
dy

ν2
F (λ↑

L,1aλ
↓
L,1b)∗(λ↑

R,2aλ
↓
R,2b)

g (x)g (y)[g (y)+h(na ,nb +1)][g (x)+ g (y)][g (y)+h(na −1,nb)]
.

(3.22)
Hence, we conclude that the sequence contributes to the term ∝β8 in the Josephson
relation of the NW CPT.

Next, we consider sequences of the type shown in Fig. 3.4B, which do not
comprise a parity-dependent prefactor. An example, for such a sequence is given by,

P (γ1,acL,−k↓e iφ/2)(c†
R,−q↓γ2,ae−iφ/2)(c†

R,q↑γ2,ae−iφ/2)(γ1,acL,k↑e iφ/2)P

= P (γ1,acL,−k↓c†
R,−q↓γ2,ac†

R,q↑γ2,aγ1,acL,k↑)P

= P (cL,−k↓c†
R,−q↓c†

R,q↑cL,k↑)P

=−e i (ϕL−ϕR) uqvqukvk P (γL,−k↓γR,q↑γ†
R,q↑γ

†
L,−k↓)P

=−e i (ϕL−ϕR) uqvqukvk

(3.23)

If we again sum over all momenta, we find that the amplitude for the example
sequence is given by,

Ω
∑
k,q

vqukuqvk

[Ek +u(na −1,nb)−u(na ,nb)][Ek +Eq][Ek +u(na +1,nb)−u(na ,nb)]
. (3.24)

with Ω = (λ↑
L,1aλ

↓
L,1a)∗(λ↑

R,2aλ
↓
R,2a). In particular, if we assume constant density of

states νF at the Fermi level, we can rewrite this amplitude as,

1

∆

∫ ∞

1
dx

∫ ∞

1
dy

ν2
F (λ↑

L,1aλ
↓
L,1a)∗(λ↑

R,2aλ
↓
R,2a)

g (x)g (y)[g (x)+h(na −1,nb)][g (x)+ g (y)][g (x)+h(na +1,nb)]
.

(3.25)
We, thus, conclude that the sequence contributes to the term ∝αa in the Josephson
relation of the NW CPT.
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4
IMPACT OF JUNCTION LENGTH ON

SUPERCURRENT RESILIENCE

AGAINST MAGNETIC FIELD IN

INSB-AL NANOWIRE JOSEPHSON

JUNCTIONS

Semiconducting nanowire Josephson junctions represent an attractive platform to
investigate the anomalous Josephson effect and detect topological superconductivity.
However, an external magnetic field generally suppresses the supercurrent through
hybrid nanowire junctions and significantly limits the field range in which the
supercurrent phenomena can be studied. In this work, we investigate the impact
of the length of InSb-Al nanowire Josephson junctions on the supercurrent resilience
against magnetic fields. We find that the critical parallel field of the supercurrent can
be considerably enhanced by reducing the junction length. Particularly, in 30nm-long
junctions supercurrent can persist up to 1.3T parallel field - approaching the critical
field of the superconducting film. Furthermore, we embed such short junctions into
a superconducting loop and obtain the supercurrent interference at a parallel field of
1T. Our findings are highly relevant for multiple experiments on hybrid nanowires
requiring a magnetic field-resilient supercurrent.

The work in this chapter has been published as: V. Levajac, G. P. Mazur, N. van Loo, F. Borsoi, G.
Badawy, s. Gazibegović, E. P. A. M. Bakkers, S. Heedt, L. P. Kouwenhoven and J.-Y. Wang “Impact
of junction length on supercurrent resilience against magnetic field in InSb-Al nanowire Josephson
junctions”, Nano Letters 23, 11, 4716-4722 (2023)
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4.1. INTRODUCTION

Semiconducting nanowire Josephson junctions (JJs) are widely used as a versatile
platform for studying various physical phenomena that arise in semiconductor-
superconductor hybrid systems. Therein, the III-V semiconductors have attracted
a particular interest in exploring the anomalous Josephson effect[1–4], topological
superconductivity [5–11] and the Josephson diode effect [12–14], due to their strong
spin-orbit interaction and large g factor. Recently, the Josephson diode effect has
been exceptionally intriguing in both theory[15–18] and experiment[13, 14, 19–22].
In the above research works, an indispensible ingredient is the breaking of time
reversal symmetry, which is normally achieved via external magnetic fields. However,
an external magnetic field generally suppresses the supercurrent through a hybrid
nanowire JJ - therefore significantly limiting the parameter space for addressing the
aforementioned effects in hybrid nanowires. Preserving the supercurrent in hybrid
nanowire JJs at high magnetic fields becomes thus critically important. Selecting high
critical field superconductors, such as NbTiN [23], Pb [24], Sn [25] or Al doped by
Pt [26], seems to be an option for improving the magnetic field compatibility of the
supercurrent. However, none of these material platforms have yielded a supercurrent
at high magnetic fields. Moreover, it has been observed that the supercurrent of
nanowire JJs generally vanishes at magnetic fields far below the critical field of the
superconducting film [27, 28]. Searching for an alternative way to improve the
supercurrent resilience against magnetic field in nanowire JJs is thus needed. In
spite of extensive works on nanowire JJs with either evaporated superconducting
contacts[28–31] or epitaxially grown superconducting shells[27, 32, 33], a potential
impact of the junction length on supercurrent performance in magnetic fields has
not been systematically investigated.

In this work, we have studied InSb-Al nanowire JJs with the junction length L
varying from 27nm to 160nm. The junction length has been found to be an essential
parameter that determines the supercurrent evolution in a parallel magnetic field. In
the long devices (L ∼ 160nm), the supercurrent is suppressed quickly in a magnetic
field and fully vanishes at parallel fields of ∼ 0.7T. In contrast, the supercurrent in
short devices (L ∼ 30nm) persists up to parallel fields of ∼ 1.3T, approaching the
critical in-plane magnetic field of the Al film (∼ 1.5T [26, 27, 34]). Despite the
influence of the electro-chemical potential in the juntions, the resilient supercurrent
is present only in the short devices (L ∼ 30nm). We exploit this property to realise a
magnetic field-resilient superconducting quantum interference device (SQUID). At a
magnetic field of 1T, the supercurrent through the device displays the characteristic
oscillatory pattern as a function of the magnetic flux through the loop. We expect
that our demonstration of magnetic field resilient supercurrent in remarkably short
nanowire JJs offers a new approach to improving the field-compatibility of not only
SQUIDs but many other hybrid nanowire devices utilizing the Josephson effect at
high magnetic field.
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Figure 4.1: Basic characterization of a nanowire Josephson junction device: (a)
False-colored SEM image depicting a representative JJ device with a semiconducting
InSb junction defined between the source (S) and drain (D) superconducting Al leads
(blue). The junction length is determined by the hydrogen silsesquioxane (HSQ)
(yellow) shadow-wall structure. A zoom-in at the junction is shown in the inset. The
back side of the substrate is used as a global back gate. (b) Zero-field dependence
of switching current Isw (red) and normal state conductance Gn (blue) on the back
gate voltage Vg , overlapped onto the Ib - Vg two-dimensional (2D) map taken for
Device 1 (with junction length L = 37nm).

4.2. RESULTS

The hybrid nanowire JJs are fabricated by the recently developed shadow-wall
deposition techniques [27, 34]. In Fig. 4.1a, a scanning electron microscope (SEM)
image of a representative InSb-Al nanowire JJ device is taken at a tilted angle and
shown in false colors. Source (S) and drain (D) superconducting lead (blue) are
formed via an in-situ angle deposition of Al film after the preparation of a clean and
oxide-free InSb nanowire [35] interface (see the Methods section in the Supporting
Information). Pre-patterned dielectric shadow-walls (yellow) selectively define the
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nanowire sections that are exposed to the Al flux during the deposition. The junction
length is determined by the width of the shadow-wall in the vicinity of the nanowire.
In comparison with the etched dielectric shadow-walls used in recent works [27, 33,
34] or previous evaporation-defined JJs[28–31], here we use lithographically defined
shadow-walls which dimensions therefore can be as small as 20nm. This allows us
to precisely control the length of nanowire JJs and to achieve surpassingly short
junctions, as shown in the inset SEM image in Fig. 4.1a. In this work, we present
nine nanowire JJ devices (Device 1-9) with the junction length L in the range of
27nm−160nm and one InSb-Al nanowire SQUID with two junctions of ∼ 40nm. The
diameter of the nanowires is ∼ 100nm. An overview of nine nanowire JJ devices is
shown in Fig. 4.7 in the Supporting Information.

Electrical transport measurements on the nanowire Josephson junction devices
have been performed at ∼ 20mK in a dilution refrigerator equipped with a
vector magnet. Four-terminal setup is used for dc-current bias Ib measurements.
Conductance measurements have employed a two-terminal setup with a dc-voltage
bias Vb and a 10µV ac excitation (see more details in the Supporting Information).
The back side of the substrate is used as a back gate and an applied voltage Vg acts
globally on the entire nanowire. Figure 4.1b shows how the switching current Isw

(red) and the normal state conductance Gn (blue) depend on Vg at zero magnetic
field for Device 1. The switching current Isw is extracted from the (V , Ib) traces
(see the Data analysis section in the Supporting Information). The normal state
conductance Gn is obtained in the voltage-bias range 1mV < |Vb | < 2mV - well above
the double value of the induced superconducting gap of the leads (2∆∼ 0.5meV).
The conductance measurements from which Gn and ∆ are extracted are shown in
Fig. 4.8 and Fig. 4.14. By increasing Vg , both Isw and Gn , in spite of fluctuations,
become larger as the carrier states in the junction get populated and more subbands
contribute to transport. At Vg = 15V, Gn and Isw reach up to ∼ 5G0 (G0 = 2e2/h)
and ∼ 50nA, respectively. The remaining nanowire JJs (Device 2-9) show comparable
zero-field properties, as shown in Fig. 4.8 and Fig. 4.9. The high tunability of Gn

as well as of Isw enables the systematic investigation of the junctions in different
electro-chemical potential regimes.

Hybrid nanowire JJs have been shown to exhibit a supercurrent evolution in a
parallel magnetic field-B that is strongly affected by the electro-chemical potential
of the semiconducting junction [28]. Therefore, when exploring the resilience of
switching current in a parallel B-field, the electro-chemical potential of a junction
has to be taken into account. In the following, the switching current dependence
on Vg and the parallel B-field is studied for two JJs of significantly different lengths.
In Fig. 4.2a and 4.2b, we show how the switching current Isw evolves with Vg and
B for Device 2 (L = 31nm) and Device 7 (L = 157nm), respectively. Isw is extracted
from the corresponding (V , Ib) traces taken at each setting of Vg and B . As shown
in Fig. 4.2a, the short device shows a remarkable supercurrent resilience with the
supercurrent persisting above a parallel field of 1T. A linecut at 1T (red bar) is taken
and the corresponding data is shown in Fig. 4.2c. Isw (red trace) continuously
persists over a ∼ 3.5V interval of Vg . As a comparison, Isw drops more rapidly
with magnetic field in the long device, as shown in Fig. 4.2b. Fig. 4.2d shows
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Figure 4.2: Dependence of switching current on the gate voltage and parallel
magnetic field for (a) Device 2 (L = 31nm) and (b) Device 7 (L = 157nm). Each data
point in the Vg −B 2D map in (a) and (b) is extracted from the corresponding (Ib ,V )
trace as the gate voltage Vg and the parallel magnetic field B are swept. The red
markers in (a) and (b) correspond to the magnetic fields B = 1T and B = 0.6T at
which the Ib −Vg 2D maps in (c) and (d) are shown, respectively. In these maps the
red traces correspond to the extracted switching current Isw . More analogous 2D
maps at lower fields are displayed in Fig. 4.10 in the Supporting Information. The
blue markers in (c) and (d) denote the gate settings with enhanced supercurrent.

that at 0.6T the supercurrent is barely detectable. Besides this apparent difference,
the switching current behaviours in Fig. 4.2a and 4.2b still show some similarities.
Namely, Isw of both devices manifests a better resilience against the magnetic field
in an intermediate gate interval between the pinch-off and the fully open regime
- (−0.5,3)V interval for the short device and (4,10)V interval for the long device
(see Fig. 4.10). The switching current ubiquitously fluctuates in the intermediate
gate intervals. We suspect that both few-mode interference[28] and finite contact
barriers[29] may lead to such fluctuations in supercurrent as well as in normal
conductance. For the gate voltage above these intervals Isw in both devices vanishes
more rapidly in the magnetic field, especially at B > 0.3 T. The suppression of
supercurrent in at large positive Vg or high magnetic fields could be explained by
a destructive interference between multiple modes[1, 2, 28]. Another explanation
could be a gate-tuned semiconductor-superconductor hybridization[36, 37], which is
addressed in the discussion part following Fig. 4.4. An ubiquitous feature in Fig.
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4.2a and 4.2b is that, as the magnetic field is increased, certain intervals in the
intermediate gate regime support more resilient supercurrent. In these Vg intervals
we define the “resilient gate settings Vg ,r es ” (blue markers in Fig. 4.2c and 4.2d).
In this work, we quantify the impact of junction length on supercurrent resilience
against magnetic field in two ways. The first way is to compare the supercurrent
critical fields of different junctions at their Vg ,r es , which is addressed in Fig. 4.3. The
second way is to compare the supercurrent averaged over a gate range at a finite
magnetic field, which is shown in Fig. 4.4.

In Fig. 4.3 we focus on the supercurrent at the resilient gate settings Vg ,r es . For
Device 1-7 we determine the Vg ,r es values as described in Fig. 4.11, while for Device
8-9 we choose Vg = 15V. The normal conductance Gn at Vg ,r es is normally of a few
G0 (G0=2e2/h), corresponding to a few transport modes, and the value does not
show an obvious dependence on the junction length. Figure 4.3a shows the voltage
drop V over the junction as a function of Ib and the parallel magnetic field B for
Device 1 (L = 37nm). The red dotted line marks the extracted switching current Isw

at different B-fields. Three linecuts (black, red and blue) are shown in Fig. 4.3c -
demonstrating more than 1nA supercurrent at the parallel field of 1.2T. Fig. 4.3b
and Fig. 4.3d show the results for Device 6 (L = 160nm) obtained at its Vg ,r es setting.
From the overlaid red trace it can be seen that the supercurrent vanishes at ∼ 0.75T,
as confirmed by the linecuts shown in Fig. 4.3d. Analogous measurements of the
switching current evolution with parallel field are carried out for all nine devices
(see Fig. 4.12 in the Supporting Information). Finally, these Isw (B) dependences
allow for the extraction of the maximal critical parallel magnetic field of switching
current BI c for each Device 1-9. By plotting BI c versus the junction length L in Fig.
4.3e, it can be seen how the junction length influences the measured critical field of
the supercurrent. We reproducibly reach the critical fields of ∼ 1.3T in the sub-40nm
junctions while BI c drops gradually to ∼ 0.7T in the longest junctions.

As a next step, we evaluate the supercurrent resilience over a broader gate interval.
As our nanowire JJs are highly tunable, in Fig. 4.4 their supercurrent resilience
against the parallel magnetic field is studied over the gate ranges in which the
junctions are in the few-mode regimes. Fig. 4.4a shows the voltage drop V as a
function of Ib and Vg at the parallel field of 0.6T for Device 2 (L = 31nm), together
with Isw (red trace) and the normal state conductance Gn (blue trace). To quantify
the supercurrent resilience, the switching current in Fig. 4.4a is averaged in the
Vg range corresponding to 0.1G0 <Gn(Vg ) < 2G0 (denoted by the two white dotted
lines) and the obtained average switching current is I av g

sw (0.6T) = 2.73nA. Such a
moderate gate range is selected to keep enough supercurrent flow and meanwhile
diminish the multiple mode inteference effects. An analogous averaging is done for
the Isw (Vg ) dependence measured at zero field and the obtained average switching
current at zero field is I av g

sw (0T) = 11.29nA (see Fig. 4.9 for the zero-field dependence
and the average value). By calculating the ratio I av g

sw (0.6T)/I av g
sw (0T), it can be

inferred that the junction of Device 2 preserves on average ∼ 25% of its zero field
switching current when the parallel field of 0.6T is applied. The identical procedures
of calculating the average switching currents and the I av g

sw (0.6T)/I av g
sw (0T) ratios are

carried out for Device 1-7 (see Fig. 4.9 and Fig. 4.13 in the Supporting Information).
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Figure 4.3: Critical parallel magnetic field of switching current: Dependence of
the switching current (red) on B at the resilient gate settings Vg ,r es for (a) Device 1
(L = 37nm) and (b) Device 6 (L = 160nm). In each 2D map the extracted switching
current Isw up to the critical parallel field is plotted in red. The critical parallel fields
of the switching current in (a) and (b) are BI c = 1.33T and BI c = 0.74T, respectively.
Black, red and blue markers in (a) and (b) have the corresponding linecuts shown
in (c) and (d). In (e) the dependence of the critical parallel field BI c is plotted for
Device 1-9 versus the junction length L. Note that the uncertainty of BI c is not
added in the plot and the amount is within 20 mT for all data points.

The dependence of the I av g
sw (0.6T)/I av g

sw (0T) on the junction length L is shown as red
dots in Fig. 4.4b. It can be noticed that at finite parallel field the shorter junctions
preserve larger fractions of the corresponding zero field supercurrent in the described
conductance ranges. The ratio I av g

sw (0.6T)/I av g
sw (0T) drops rapidly around L ∼ 100nm,

implying a deteriorated resilience against magnetic field when the junction length
is above this value. Moreover, only negligible fractions of switching current (less
than 2%) systematically remain in the longer junctions - emphasizing their poor
performance in magnetic fields. We emphasize that the particular shape of the
dependence of the ratio on junction length could also vary depending on the choice
of the normal conductance range and the subsequently determined gate intervals
for averaging. However, the main qualitative features of such dependence would still
remain. The impact of the junction length will be in particular discussed in the
following paragraphs.
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Figure 4.4: Resilience of switching current in the junctions tunability ranges: (a)
Dependence of the switching current Isw (red) on the gate voltage Vg at the parallel
magnetic field B = 0.6T for Device 2 (L = 31nm). Two white vertical lines mark the
gate interval over which the normal state conductance Gn of the device (blue) is
tuned from 0.1G0 to 2G0. In this gate range the switching current is averaged and
I av g

sw (0.6T) value is obtained. Analogously, from the switching current dependence
on Vg at zero-field the average value I av g

sw (0T) is calculated. (b) Dependence of the
ratio I av g

sw (0.6T)/I av g
sw (0T) on the junction length L for Device 1-7.

4.3. DISCUSSION

In Fig. 4.3 and Fig. 4.4 two different approaches have been taken when quantifying
the supercurrent resilience against magnetic field. Both approaches have led to the
same observation - by reducing the junction length supercurrent resilience against
magnetic field can be significantly improved. This is a common and reproducible
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feature of the short JJs in our study. The observations still hold despite variations
in the switching current dependences on the gate voltage or the parallel field.
In the following two paragraphs, possible mechanisms for the length dependent
supercurrent resilience are discussed.

The superconducting Al shell has a mean free path le of ∼ 0.9nm according to a
recent work[26], which uses the same machine for the Al growth. The extraordinarily
short le in the thin Al shell is most likely due to massive surface scatterings and
moderate nonuniformities. Together with a phase coherence length ξ0 of ∼ 1.6µm
from a bulk Al[38], the superconducting phase coherence length ξ of the Al shell
in our work is estimated to be ∼ 38nm with the formula ξ ∼ √

ξ0 · le in the dirty
superconductor limit[39]. Then, JJs longer than ξ are in the long junction limit and
the superconducting proximity effect in these junctions is weakened in comparison
with the short junctions. Then, weakened induced superconductivity in long
junctions leads to a poor performance in magnetic fields. Destructive interference
between transversal nanowire modes is considered as another dominate reason for
reduced supercurrent critical field in longer junctions[28]. The phase differences
between modes can be accumulated in magnetic fields either via the Zeeman effect[1,
2] or orbital effect[40]. The Zeeman-induced phase accumulation is proportional to
the Zeeman energy and the junction length[1, 2], while the contribution from orbital
effect is proportional to the magnetic field and the junction length[40]. Considering
the large g factor in InSb (∼50[30, 41]) and the relatively large magnetic field (∼0.5
T), significant phase accumulations are expected in long junctions. In this case, a
prominent destructive interference is likely to appear in small magnetic fields for
long junctions, resulting in reduced critical fields of supercurrent.

In this paragraph, we make a further analysis of other relevant effects, including
a gate tunable superconductor-semicondutor hybridization under superconducting
shells, disorder and spin-orbit interaction. The nine JJs are tuned by a global back
gate, which at positive values may reduce the hybridization of the semiconductor
under the superconducting leads[37, 42, 43]. In Fig. 4.14, we have observed
decreased induced superconducting gaps for long Josephson junctions, implying
reduced semiconductor-superconductor couplings in these devices. This is likely due
to a different gating effect on semiconductor-superconductor hybrids for different
junctions. In order to investigate the relevance of such effect, we have measured
an additional short JJ device (Device 10, the right arm of the SQUID device from
Fig. 4.5). This device utilizes a bottom gate under the junction and one bottom
gate under each superconducting lead. Importantly, we find that applying a positive
gate voltage locally under a single superconducting lead does not reduce the
superconductor-semiconductor coupling to an extent that systematically limits the
resilience of supercurrent (see Fig. 4.15). The mean free path of the InSb nanowires
is ∼300nm[41], longer than all junctions. Thus, the influence of disorder is expected
to be less important. A different spin-orbit interaction in different devices might
happen as gate voltages are not the same for all devices and different electric
fields may be present in different junctions. The presence of spin-orbit interaction
together with magnetic fields can lead to anomalous superconducting phase[1–3],
further complicating the interference effects, especially in long junctions.
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Figure 4.5: SQUID operating at a parallel magnetic field of 1T: (a) False-colored
SEM image of two hybrid 40nm long InSb-Al nanowire Josephson junctions defined
by the shadow-walls (yellow). The two junctions enclose a superconducting Al (blue)
loop in the SQUID architecture. A magnetic field B|| is applied along two parallel
InSb nanowires hosting the Josephson junctions. A perpendicular out-of-plane
magnetic field B⊥ controls the magnetic flux through the superconducting loop
between the source (S) and the drain (D). The inset image displays the equivalent
device circuit; (b) Current bias measurement on the SQUID at the parallel magnetic
field B|| = 1T shows oscillations of the SQUID switching current as the magnetic flux
through the SQUID loop is swept by applying B⊥.

From the above results, we find that significantly reducing the nanowire JJ length
is essential for preserving supercurrents in a high magnetic field. Here, we take a
step further and incorporate the short nanowire JJs into a SQUID architecture. Figure
4.5a shows a false-colored SEM of a SQUID consisting of two 40nm JJs formed in
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two parallel InSb nanowires. The shadow-wall structure (yellow) is lithographically
defined such that after the Al (blue) deposition two JJs enclose the superconducting
loop denoted by the white arrows. Since the two arms are parallel, a magnetic field
B|| can be applied parallel to both JJs while the out-of-plane perpendicular magnetic
field B⊥ is applied to sweep the flux threading the loop. Upon applying B|| = 1T,
both junctions are independently tuned by the underlying local bottom gates to a
finite supercurrent. As shown in Fig. 4.5b, the oscillations of the switching current
indicate a supercurrent interference persisting despite the high parallel field. In
comparison with the previous work on nanowire SQUIDs [3, 44], this observation
of supercurrent interference at B|| = 1T represents a significant improvement of
the SQUID field compatibility. The control and the detection of the phase of
supercurrent at high magnetic field is of crucial importance for studying various
high field related phenomena in hybrid nanowire devices [10, 18, 45, 46].

4.4. CONCLUSION
We demonstrate that the length of a hybrid nanowire Josephson junction is an
essential parameter that determines its supercurrent resilience against magnetic
fields. Nanowire JJs with a length of less than 40nm can be precisely defined
by the shadow-wall angle-deposition technique and are shown to reproducibly
preserve supercurrent at parallel magnetic fields exceeding 1.3T. Superconducting
quantum interference device (SQUID) utilizing such junctions displays supercurrent
interference at the parallel field of 1T. Our study shows that hybrid nanowire
Josephson junctions of significantly reduced junction length can be considered
as necessary building blocks in various hybrid nanowire devices which exploit
Josephson coupling at high magnetic field.

4.5. SUPPORTING INFORMATION

4.5.1. METHODS

DATA SELECTION AND REPRODUCIBILITY

The study in the main text is based on nine InSb-Al nanowire Josephson junction
(JJ) devices (Device 1-9) and one InSb-Al nanowire superconducting quantum
interference device (SQUID). The JJ devices are used to investigate the impact of
junction length on the supercurrent resilience against magnetic field. The SQUID is
used to demonstrate how JJs hosting resilient supercurrent can be embedded into
a superconducting loop to yield supercurrent interference at high magnetic field.
As an additional measurement, the supercurrent resilience against magnetic field is
examined in an additional JJ device (Device 10), that is the single arm of the SQUID.

By systematically sweeping the back gate voltage Vg when measuring Device 1-7,
we could identify the resilient gate settings Vg ,r es , as described in the main text.
However, at the initial phase of the study, when measuring the chips from which
Device 8-9 originate, the resilience of supercurrent against magnetic field was only
examined at Vg = 15V. Therefore, for these devices the identification of the resilient
gate setting Vg ,r es (like those shown in Fig. 4.11) was not performed. Still, we
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include Device 8-9 in our study as they manifest resilient supercurrent even at
Vg = 15V which is not necessarily their Vg ,r es . Other short junction devices from
these chips did not manifest such resilient supercurrent (critical parallel field of
∼ 0.7T at Vg = 15V) and long junction devices from these chips showed very poor
supercurrent resilience (critical parallel field of ∼ 0.4T at Vg = 15V). We do not
include these devices in our study as their critical parallel fields at Vg = 15V may be
significantly smaller in comparison to their critical fields at the back gate tuned to
their Vg ,r es settings.

Importantly, we have never measured any long junction device (with or without
back gate tuning) that showed better supercurrent resilience than the long junction
devices (Device 6-7) presented in the study.

DEVICE FABRICATION

All devices in this work were fabricated on p+-doped Si wafers covered with ∼ 300nm
of thermal SiO2. For Device 1-9, the thermal SiO2 is used as a global back gate
dielectric. For the SQUID, extra steps in the substrate fabrication were taken in
order to create local bottom gates. On top of the thermal SiO2, the local bottom
gates were lithographically defined and produced by depositing 3/17nm of Ti/Pd by
electron beam evaporation. Then, ∼ 20nm of high-quality HfO2 layer was grown by
atomic layer deposition (ALD) at 110°C to act as the bottom gate dielectric.

Dielectric structures corresponding to specific shadow-wall patterns were defined
by electron-beam lithography on top of the thermal SiO2 and ALD HfO2 for the
Device 1-9 and the SQUID, respectively. Namely, FOx-25 (HSQ) was spun at 1.5krpm
for one minute, followed by 2 minutes of hot baking at 180°C and patterning
lithographically. The HSQ is then developed with MF-321 at 60°C for 5 minutes
and the substrates are subsequently dried using critical point dryer. This step was
followed by the nanowire deposition by an optical nanomanipulator setup and the
stemless InSb nanowires [35] were precisely placed on top of the global back gate
(Device 1-9) or the array of local bottom gates (SQUID), close to the HSQ structures.

Deposition of the superconducting Al film was carried out in the nominally
identical steps for all devices in this study. After gentle hydrogen cleaning of the
nanowire surface, the superconducting film was grown by directional evaporation
of Al. The Al flux in the deposition was 17nm and the angle with respect to the
substrate was 30° [27, 34]. Due to the specific angle and the regular hexagonal
nanowire cross-section, the Al film continuously covers three nanowire facets, as
shown in the above cited references. On one facet the Al film is deposited
perpendicularly and the film thickness on this facet is ∼ 15nm, as ∼ 2nm of Al
self-terminately oxidizes in the air. The direction of the Al deposition forms an angle
of 30° with the other two facets and these two facets therefore receive sin30° = 0.5 of
the Al flux and have the film thickness of ∼ 7nm after the oxidation. Lithographically
patterned dielectric structures cast shadows during the Al deposition and therefore
selectively define the sections along the nanowire where the superconducting film
is grown and where the semiconducting junction is formed. Additionally, the
arrangement of the shadow-wall structures on the SQUID substrate determines a
shadowed substrate area without Al enclosed by the two JJs that represents the
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superconducting loop of the SQUID. Finally, in all devices the superconducting film
on the nanowire facets forms a continuous connection to the substrate and extends
to pre-patterned bonding pads such that additional fabrication steps to contact the
nanowires are not needed.

In this work, seven nanowire JJ devices (Device 1-7) were fabricated on a single
chip, while the other two (Device 8-9) come from other two chips that passed
through the nominally identical fabrication steps. The SQUID was fabricated on a
separate chip in the fabrication steps as explained above.

MEASUREMENT SETUP

We perform the electrical transport measurements at ∼ 20mK base temperature in a
dilution refrigerator equipped with a vector-rotate magnet. Source and drain leads
of the device are bonded each to two printed circuit board (PCB) pads that are
via low-pass filters connected to the fridge lines. In this way each device occupies
in total four fridge lines - allowing for measurements in a two- and four-terminal
configuration.

We perform the conductance measurements in the two-terminal voltage bias
setup in the standard lock-in configuration. Source and drain are connected to the
measurement setup by two fridge lines, while the remaining two fridge lines are kept
floated. The voltage bias Vb is swept by a dc-voltage source while the ac-voltage
dVb = 10µV is set by a lock-in amplifier. The total current I +d I through the sample
is measured by a current-meter amplifier. The dc- and the ac-voltage drops over
the sample are obtained by subtracting the voltage drops over the series resistance
Rs = 8.89kΩ as V =Vb − I Rs and dV = dVb −d I Rs . This series resistance accounts for
other resistive elements in the circuit such as the two fridge lines, the resistance of
the voltage source and the current-meter amplifier and the resistance of the low-pass
filters on the printed circuit board. For collecting the data from which the switching
current is extracted, four-terminal current-bias setup is used. Two fridge lines are
used to connect a current source and apply the dc-current bias Ib through a device,
while the other two fridge lines are used to connect a voltage-meter and measure
the dc-voltage drop V over the device. The current bias is swept in steps of 20pA -
60pA, depending on the range of current-bias that is applied. As the voltage-meter
measures at the room temperature the sum of the voltage drops over the device and
the two fridge lines, a dc-offset of ∼ 0.01mV are substracted to compensate for the
difference in the thermal voltage drops over the fridge lines.

DATA ANALYSIS

All the codes used for the data analysis in this work are available in the data
repository. The details of the data analysis procedures performed in these codes are
described in the following subsections.

Extracting normal state conductance Gn

Normal state conductance Gn is extracted from the data collected in the voltage-bias
measurements of the nanowire JJ devices. After correcting for the series resistance
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Rs (as explained in the previous section), the normal state conductance is
obtained as Gn(Vg ) = (G+

n (Vg )+G−
n (Vg ))/2 where G+

n (Vg ) = 〈 d I
dV (Vg ,1mV < V < 2mV)〉

and G−
n (Vg ) = 〈 d I

dV (Vg ,−2mV <V <−1mV)〉 are averaged conductances at the positive
and the negative source-drain voltages much larger than the double value of the
superconducting gap (2∆∼ 500µV).
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Figure 4.6: Extraction of switching current: Examples in (a)-(d) show the voltage
drop (top) and the numerically calculated differential resistance (bottom) traces as
functions of the current bias Ib . The extracted switching current Isw (red) and the
ranges over which the presence of a switch is examined (blue) are marked by the
lines. These traces were taken in Device 2 (L = 31nm) at B = 1T parallel magnetic
field.
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Extracting switching current Isw

Switching current is extracted for each (V , Ib) trace measured in the current-bias
setup. Four-examples of (V , Ib) traces are shown in the top parts of Fig. 4.6a-d. The
corresponding differential resistance (dV /d Ib , Ib) traces are calculated as numerical
derivatives and are plotted in the bottom parts of Fig. 4.6a-d. The data in Fig. 4.6
corresponds to four traces from the back gate sweep at parallel magnetic field of 1T
in Device 2. These traces are chosen to motivate the particular method used in the
switching current extraction.

From a perfectly clean (V , Ib) trace, as the one in Fig. 4.6a, with a single voltage
step corresponding to the switching current Isw , Isw can in principle be extracted
by setting a threshold voltage Vth , such that Vth = V (Ib = Isw ). However, this can
give underestimated extracted values as the voltage V can due to noise fluctuate for
current bias values lower than the switching current - as shown in the (V , Ib) trace
in Fig. 4.6b. Setting higher Vth values to prevent this, can, on the other hand, give
an overestimation of the extracted value if the switching current is small. Therefore,
when extracting Isw , we rather look at the maximum in the differential resistance, as
it resembles the sharpness of a switch in a (V , Ib) trace.

For each differential resistance (dV /d Ib , Ib) trace, the maximal value (peak) of
dV /d Ib is found and divided by the third value of the same (dV /d Ib , Ib) trace
sorted in decreasing order. In this way we quantify how dominant the peak in the
differential resistance is. If the obtained value is smaller than the analogous value
obtained from the trace in Fig. 4.6d with clearly no switch in it - the peak in
differential resistance is not dominant and the switching current is extracted as a
"not a number" (NaN) value. These NaN values correspond to the interruptions in
the red Isw traces plotted over 2D maps throughout the study.

The trace in Fig. 4.6c depicts that the range over which the dominant peak in
(dV /d Ib , Ib) is searched for can affect the extracted value. For example, there is a
dominant peak in (dV /d Ib , Ib) in Fig. 4.6c at Ib ∼ 1.7nA, but it does not correspond
to the switching current. Therefore, the range in which the switching current is
searched for is an important input parameter that is marked by the blue lines in Fig.
4.6. This parameter is commonly set at sufficiently high values and subsequently
adjusted for particular traces where it leads to mistakes as the one described in Fig.
4.6c. The red lines in Fig. 4.6 mark the extracted switching current values and nicely
match the dominant peaks of the differential resistance in the relevant ranges of the
current bias.

The described algorithm successfully identifies the switching current in most of
the traces. After applying it, additional corrections were made after checking how an
extracted Isw value matches to its corresponding (V , Ib) trace. Some extracted finite
Isw values were set then to NaN if found to have been extracted in a highly smeared
(V , Ib) trace. On the other hand, in some non-smeared (V , Ib) traces with NaN
extracted Isw values, the switching current is re-extracted by extracting the position
of the global maximum in the differential resistance trace. Such post-extraction
corrections were performed equally frequently for all devices (5-10% of all (V , Ib)
traces).
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Extracting critical magnetic field BI c

By applying the above described algorithm to extract the switching current Isw , we
extract Isw (B) from the 2D maps shown in Fig. 4.12 where the voltage drop V is
measured as the current bias Ib and the parallel magnetic field B are swept. By
analyzing the evolution of the (V , Ib) linecuts in B field, it can be noticed that
the algorithm may give an isolated NaN value for Isw at some B value even if
the switching current is correctly extracted at higher fields. Therefore, defining the
critical field of switching current BI c as the lowest B field for which the algorithm
gives NaN value for Isw can lead to underestimations of BI c . However, if the
algorithm gives NaN values for two consecutive B field values, then even occasionally
extracted Isw values different from NaN at higher fields are most often false-positive
extracted values. We therefore determine the critical field BI c as the lowest field such
that two consecutive extracted values for Isw are NaN. In Fig. 4.12 Isw is plotted up
to the determined BI c while the entire Isw (B) data is available in the data repository.

4.5.2. EFFECTS OF JUNCTION LENGTH AND GLOBAL BACK GATE ON

INDUCED SUPERCONDUCTING GAP

In order to measure the induced superconducting gap for Device 1-9 and study
its evolution in parallel magnetic field, tunneling spectroscopy is performed in the
voltage bias setup.

In Fig. 4.14 the evolution of induced superconducting gap in parallel magnetic
field is shown for Device 1-9. Each subfigure represents a 2D map of the tunneling
conductance as a function of the voltage drop over the junction and the parallel
field. Two coherence peaks corresponding to the double value of the induced gap ∆

appear in the tunneling conductance at |V | = 2∆. By extracting the peak separation
and dividing it by 4 for each Device 1-9 at zero field, the values for induced
superconducting gap are calculated. These values are shown as insets in Fig. 4.14,
together with the global back gate voltage at which the corresponding conductance
maps are obtained.

In Fig. 4.14 it can be seen that the three short junctions (Device 1,2 and 3) have
larger values of the induced gap with the critical parallel field of ∼ 1.5T - similar to
the parent superconducting gap in the Al film [26, 27, 34]. On the other hand, the
two longest junctions (Device 6 and 7) are characterized by reduced induced gaps
and subgap states evolving towards zero energy and effectively closing the gap well
before the parent superconducting gap vanishes. These differences in the induced
gap sizes and their evolution in parallel magnetic field for junctions of different
lengths are accompanied by differences in the gate settings at which different devices
are set into the tunneling regime. Namely, it can be noticed that shorter devices
mostly require low or even negative back gate voltages for reaching the tunneling
regime, while this value is higher for the longer junctions. A valid question that
arises is whether the differences in the tunneling spectroscopy in Fig. 4.14 are due
to the differences in the junction lengths or due to the differences in the electrical
fields induced by the different gate voltages.

Despite the differences present among the nine devices in the tunneling regime
regarding the back gate settings, the junction lengths and the conductance values,
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some conclusions can be made by looking at specific subsets of the devices for which
some of these parameters are comparable. By comparing the data for Device 4, 5
and 7, it can be seen that with almost the same gate settings of Vg ∼ 2.15V and the
comparable tunneling conductance values Gn ∼ 0.3−0.4G0, the shortest device out of
the three (Device 4) exhibits the largest induced gap that closes at the highest field.
The data for the other two devices (Device 5 and 7) suggest that gradual increases of
the junction length lead to weaker proximity effect with gradually smaller induced
gap and gradually lower critical parallel field of the induced gap. Furthermore, the
shortest device in the study (Device 8) requires the largest gate voltage to be tuned
into the tunneling regime (Vg = 5.7V) and still exhibits larger induced gap than the
longest devices (Device 6-7) measured at the lower gate voltages. Despite the high
gate voltage, the induced gap of Device 8 closes at ∼ 1.3T. However, in comparison to
the remaining short junctions measured at significantly lower gate voltages (Device
1,2 and 3), Device 8 has poorer induced superconducting properties, probably due
to the the high gate voltage and reduced superconductor-semiconductor coupling.

We can conclude that junction length is an important parameter that influences
the induced superconducting gap. This does not exclude an effect that the applied
back gate voltage has on induced superconductivity. Moreover, the data in Fig. 4.14
demonstrates that both the junction length and the back gate voltage determine the
semiconductor-superconductor hybridization. This confirms that the electrostatic
profile inside a hybrid nanowire JJ device - influenced by both device geometry
and gate voltage - can control the strength of the semiconductor-superconductor
hybridization[36, 37].

The band offset at an InSb-Al interface can cause a bending of the InSb conduction
band and results in a proximitized electron layer at the interdace with Al. Because
of a finite lateral extension of such layers from the two sides of a short JJ, the
junction superconducting properties could be enhanced. Note that in some short JJs
in our study the normal conductance and supercurrent have been measured to be
finite when no back gate voltage is applied (see the data for Device 2 and 3 in Fig.
4.9). This could suggest that the accumulation layers can fully extend over a ∼ 30nm
junction by extending ∼ 15nm laterally at each side.

The evidence of different strengths of hybridization in junctions of different lengths
is in agreement with the reported zero-field values of the induced gap in Fig. 4.14
and the average switching current values at zero field in Fig. 4.9. Although the
induced gap is characterized in the tunneling regime with no supercurrent, the
critical parallel fields of switching current in Fig. 4.3e in the main text roughly match
the parallel field values at which the induced gaps close in Fig. 4.14.

4.5.3. EFFECTS OF LOCAL GATES ON SUPERCURRENT RESILIENCE

As an additional measurement, we perform current bias measurements on a single
Josephson junction (Device 10) which is one arm of the SQUID (see Fig. 4.15a and
the Fabrication section for the details on the device design). The local bottom gates
under the nanowire in Device 10 allow for a local tuning of the electro-chemical
potential in different sections of the nanowire and can therefore serve to evaluate
the effects of the local gating on the supercurrent resilience.
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We perform current bias measurements on Device 10 while the other arm of the
SQUID is pinched-off. The three bottom gates - TG and SG1/SG2 - approximately
align with the junction and the superconducting leads, as shown in Fig. 4.15a.
Two bottom gate voltages VSG1 and VSG2 mainly tune the nanowire sections
covered by the superconductor, while the middle gate voltage VTG mainly tunes the
semiconducting junction. In this way the electro-chemical potential in the nanowire
can be locally controlled, which is not possible in the global back gate configuration
of nanowire JJ devices (Device 1-9) in the main text.

The dielectric used for the local bottom gates is ALD HfO2 of ∼ 20nm thickness.
As a comparison, the global back gate of the Device 1-9 utilizes thermal SiO2 of
∼ 300nm thickness. By taking into account the dielectric constant values of HfO2

and SiO2 to be ∼ 10 and ∼ 4, respectively, the gating effect of the local bottom-gates
is estimated to be at least 30 times larger than that of the global back gate.

In Fig. 4.15b-e, dependences of the extracted switching current Isw (red) on a
single bottom gate voltage are shown, while the other two bottom gates and the
parallel magnetic field are fixed. By comparing Fig. 4.15b and Fig. 4.15c, it can
be noticed that sweeping just VT G qualitatively resembles the case when the global
back gate is swept (Fig. 4.1b, Fig. 4.9 and Fig. 4.13). When VSG1 and VSG2 are
decreased in Fig. 4.15c in comparison to Fig. 4.15b, a slight decrease in Isw can be
observed. This can be attributed to VSG1 and VSG2 cross-coupling to the junction
and effectively reducing its transmission. By looking at Fig. 4.15d and Fig. 4.15e,
it can be seen that sweeping a single local bottom gate under the superconducting
leads over 4.5V does not systematically affect the extracted switching current Isw . In
some cases, a slight increase in the background value of Isw can be observed as
VSG1 or VSG2 increase over 4.5V voltage range. This is also in agreement with VSG1

and VSG2 cross-coupling to the junction.

The fluctuations of the switching current magnitude in the single local bottom
gate sweeps in Fig. 4.15b-e are comparable to those observed in the global
back gate traces in the main text. Therefore, it cannot be determined whether
the fluctuations in the back gate sweeps arise from the modulations of the
electro-chemical potential of the junction or the nanowire sections under the
superconducting leads. Importantly, we observe that applying positive voltage on
the single local bottom gate under the superconducting lead does not diminish the
semiconductor-superconductor coupling to an extent that the supercurrent of Device
10 is systematically suppressed.
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4.5.4. SUPPORTING FIGURES

Figure 4.7: Nine nanowire Josephson junction devices: SEM images of the junctions
with the corresponding device name (Device 1-9) and the junction length L. The
diameter of the nanowires is ∼ 100nm (between 90nm and 110nm). The scale bars
correspond to 100nm.
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Figure 4.8: Differential conductance at zero-field: G for Device 1-8 as a function
of the source-drain voltage V and Vg . The normal state conductance dependences
Gn(Vg ) are obtained from these 2D maps as described in the Data analysis section.
An analogous 2D map was not taken for Device 9 and its Gn(Vg ) dependence was
measured as a single trace at V > 1mV.
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Figure 4.9: Tunable switching current and normal conductance at zero-field:
Switching current Isw (red) and normal conductance Gn (blue) plotted over Ib −Vg

2D maps obtained in the current-bias measurements at zero-field. All devices
show tunability by the back gate from the pinch-off to the open regime. Gn(Vg )
dependences are obtained from the data shown in Fig. 4.8. The white dotted lines
mark the ranges of Vg over which Gn increases from 0.1G0 to 2G0. The average
switching currents in these intervals are shown as insets.
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Figure 4.10: Isw (red) as a function of Vg at several parallel field values shown as
insets.
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Figure 4.11: Identifying the resilient gate settings Vg ,r es : Vg is swept at high parallel
field for Device 1-7. The red markers denote the resilient gate settings Vg ,r es . Vg is
set to these values for obtaining the magnetic field dependences shown in Fig. 4.3
and Fig. 4.12. The analogous measurements were not performed for Device 8-9.
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Figure 4.12: Evolution of switching current in parallel magnetic field: Dependence
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Figure 4.13: Switching current at 0.6T parallel magnetic field: Dependence of Isw

(red) on Vg at B = 0.6T for Device 1-7. The white dotted lines indicate the ranges
of Vg over which the normal state conductance Gn at the zero-field increases from
0.1G0 to 2G0. The average switching currents in these intervals are shown as insets.
The analogous measurement was not performed for Device 8-9.
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Figure 4.14: Evolution of the induced superconducting spectra in parallel magnetic
field: Dependence of tunneling conductance G-traces on B for Device 1-9. Extracted
induced superconducting gap at zero field ∆ and the Vg setting at which the each
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5
SUPERCURRENT IN THE PRESENCE

OF DIRECT TRANSMISSION AND A

RESONANT LOCALIZED STATE

We study the current-phase relation (CPR) of an InSb-Al nanowire Josephson junction
in parallel magnetic fields up to 700 mT. At high magnetic fields and in narrow voltage
intervals of a gate under the junction, the CPR exhibits π-shifts. The supercurrent
declines within these gate intervals and shows asymmetric gate voltage dependence
above and below them. We detect these features sometimes also at zero magnetic field.
The observed CPR properties are reproduced by a theoretical model of supercurrent
transport via interference between direct transmission and a resonant localized state.

The work in this chapter has been published as: V. Levajac, H. Barakov, G. P. Mazur, N. van Loo, L.
P. Kouwenhoven, Y. V. Nazarov and J.-Y. Wang "Supercurrent in the presence of direct transmission
and a resonant localized state", arXiv:2310.03296 (2023)
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5.1. INTRODUCTION

A Josephson junction (JJ) consists of two superconductors (S) and a weak
link between them that supports transport of Cooper pairs in the form of a
non-dissipative supercurrent [1]. If the weak link is a normal conductor (N), Andreev
reflections at the two SN interfaces give rise to Andreev levels inside the junction
that mediate the supercurrent [2]. JJs with semiconducting weak links are widely
used to study the influence of their tunable properties on the Andreev spectrum
and supercurrent. This is evident in multiple superconducting phenomena, such as
topological superconductivity [3–10], the anomalous Josephson effect [11–15] and the
Josephson diode effect [16–23]. Semiconducting JJs also have attractive applications
in quantum computing, such as gate-tunable superconducting qubits [24–26] and
Andreev spin qubits [27–32].

A π-shift in the current-phase relation (CPR) of a JJ can occur due to spin-splitting
of the Andreev levels in an external magnetic field. Once the splitting is of the order
of the superconducting gap, the minimum of the ground state energy moves from
the 0-phase to the π-phase, and the junction undergoes a 0−π transition [11, 12]. In
the presence of Coulomb interaction, sequential coherent single-electron tunneling
can result in a supercurrent which direction depends on the junction parity, and
0−π transitions can occur even at zero magnetic field [33–36]. These phenomena
have been studied for quantum dot-based JJs made from semiconducting nanowires
(NWs) [37–41], carbon nanotubes (CNTs) [42–44] and two-dimensional electron gases
(2DEGs) [45].

In the above works that study JJs in hybrid semiconductor-superconductor
nanowires, the CPR has been measured only at low parallel magnetic fields (up to
several tens of mT). Studying CPR of nanowire JJs in high parallel fields is motivated
by various proposals for detecting signatures of a topological phase transition in
supercurrent measurements [5, 7, 46, 47].

In this work, we embed two hybrid InSb-Al nanowire JJs into a superconducting
quantum interference device (SQUID) and we study the CPR of one JJ at parallel
magnetic fields that are unprecedentedly high for Al-based nanowire JJs - exceeding
700mT. At zero magnetic field, localized states in the junction are identified by
observing resonances in the normal-state conductance. When the localized states
become involved in the superconducting transport as they are tuned close to the
Fermi energy by a gate under the junction, the supercurrent exhibits asymmetric
amplitude modulation by the gate. In these gate intervals at zero magnetic field,
either pairs of 0−π transitions give rise to π-regions in the CPR, or the supercurrent
is enhanced with constant phase. We further investigate the CPR of the nanowire JJ
by increasing parallel magnetic field and find that high fields can enlarge π-regions
or drive 0−π transitions in the CPR. In order to understand these phenomena, we
develop a model involving a transmission channel and a localized resonant state
inside a single nanowire JJ. This model can reproduce the main interesting features
observed in the experiment by considering the interference between the transmission
channel and the localized state. This interference effect of supercurrent represents a
novel, superconducting version of the well-known Fano effect [48].
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Figure 5.1: (a) False-colored SEM image of the nanowire SQUID (left, scale bar 1µm)
and a zoom-in on one arm (right, scale bar 100nm). Dielectric shadow-walls (yellow)
define the two Josephson junctions (JJ1 and JJ2 with critical currents Ic1 and Ic2) in
two nearly parallel InSb nanowires, and the superconducting Al (blue) loop on the
substrate. Bias current Ib is applied and voltage drop V is measured between the
source and drain of the SQUID. White arrows indicate the current directions along
the two SQUID arms. JJ1 and JJ2 have ∼ 40nm-long junctions and are coupled via
20nm of HfO2 to corresponding three underlying gates at voltages VLi , VGi and VRi

(i=1,2). Magnetic fields Bz and By are applied parallel to JJ1 and perpendicular
to the SQUID loop, respectively. (b) V as a function of Ib and By at Bz = 0mT
(top) and Bz = 600mT (bottom). The red traces Isw are obtained in a setup for fast
switching current measurements. The gate settings are VG1 = 2.36V, VL1 =VR1 = 1.5V,
VG2 = 2.88V and VL2 =VR2 = 1.75V.

The nanowire SQUID is introduced in Fig. 5.1. In Fig. 5.1(a) on the left,
a false-colored scanning electron microscopy (SEM) image displays two InSb-Al
nanowire Josephson junctions - JJ1 and JJ2 - enclosed in a superconducting Al (blue)
loop. The Al layout is obtained through the shadow-wall (yellow) lithography [49–51].
White arrows indicate the current paths via the two SQUID arms between the source
and drain that are shared by JJ1 and JJ2. A zoom-in on JJ1 is displayed in Fig. 5.1(a)
on the right. The junction has a length of ∼ 40nm and its electro-chemical potential
is controlled by an underlying gate with a voltage VG1. The other two underlying
gates with voltages VL1 and VR1 predominantly tune the electro-chemical potential
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in the nanowire sections covered by the left and right lead. JJ2 has nominally the
same design as JJ1. An in-plane magnetic field Bz is applied parallel to the nanowire
of JJ1 and the flux through the loop is introduced by an out-of-plane magnetic field
By . For more details of the device fabrication, see our recent work [51] where the
identical nanowire SQUID has been introduced.

We characterize the SQUID in the standard four-terminal setup where a bias
current Ib is applied and a voltage drop V is measured between the source and
drain. V − Ib traces are measured while the flux through the loop is swept by
varying By . The measurement is performed at Bz = 0mT and Bz = 600mT (see
Fig. 5.1(b)). Aside from the measurements shown in the 2D-maps, a setup for
switching current measurements in a fast way is employed [22, 52]. In this setup,
Ib is ramped and V is monitored without recording the V − Ib trace. For each
Ib-ramp, only a single switching current value is recorded as the Ib value for
which the SQUID switches from the superconducting to the resistive regime - as V
crosses a pre-defined threshold voltage (7µV in our measurements), see the Methods
section. Switching current Isw is obtained as an average of five switching current
values measured consecutively upon setting By . Such obtained Isw (By ) dependences
(red traces in Fig. 5.1(b)) overlap well with the oscillatory boundaries between
the superconducting and resistive regime - demonstrating the accuracy of the fast
switching current measurements. The SQUID oscillations at high Bz confirm the
resilience of supercurrent interference against large magnetic fields [51]. In the rest
of this work, we employ the fast measurement setup to obtain switching current of
the SQUID. At zero magnetic field, we use the gates under JJ2 to tune its critical
current so that Ic2 ≫ Ic1. In such a highly asymmetric SQUID configuration, JJ2
serves as the reference arm and the CPR of JJ1 is directly obtained by measuring
an Isw (By ) trace. In our SQUID, parallel magnetic fields simultaneously suppress
supercurrent in both JJs, and the condition Ic2 ≫ Ic1 may not always be satisfied
at high Bz . In spite of this, the CPR of JJ1 could still be reflected in the SQUID
oscillations. For example, a 0-π transition in JJ1 would cause a half-period shift in
the Isw (By ) trace.

We first pinch-off the reference arm and measure the differential conductance
d I /dVb of JJ1 in a two-terminal setup with the standard lock-in configuration (see
the Methods section). In Fig. 5.2(a), d I /dVb at zero magnetic field is shown as a
function of a bias voltage Vb and VG1. By finding the positions of the coherence
peaks in the grey linecut, the superconducting gap of the leads ∆ ∼ 0.23meV is
extracted. Conductance peaks at 0 < |Vb | < 2∆/e and a zero-bias peak (ZBP) in
the 2D-map correspond to the superconducting transport via multiple Andreev
reflections (MARs) and supercurrent, respectively. Next to this, in the normal-state
transport for |Vb | > 2∆/e, resonances with positive slope in the (Vb ,VG1)-plane are
observed and one resonance is marked by a red dashed line. The resonances
indicate the presence of a state that is localized in the junction and coupled to both
leads. Coupling to the leads Γ and charging energy U attributed to the localized
state are estimated from the two resonance peaks for |Vb | > 2∆/e (grey linecut). From
the FWHM of the resonance peaks, the coupling is estimated as Γ ∼ 1meV ∼ 4∆.
Since no resonances with negative slope in the (Vb ,VG1)-plane are visible, only an
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Figure 5.2: (a) Differential conductance d I /dVb of JJ1 as a function of Vb and
VG1 at zero magnetic field and VL1 = VR1 = 1.5V. JJ2 is pinched-off by setting
VG2 =VL2 =VR2 = 0V. A linecut (grey marker) with sharp coherence peaks at ±2∆/e
and broad resonance peaks is shown below. One resonance is marked by a red
dashed line and the gate lever arm α∼ 0.5∆/mV is estimated from its slope in the
(Vb ,VG1)-plane. (b) Isw as a function of By and VG1 at Bz = 0mT and VL1 =VR1 = 1.5V.
JJ2 is turned on by setting VG2 = 2.88V and VL2 = VR2 = 1.75V. Horizontal linecuts
(red, blue and black marker) are shown below and a vertical linecut (purple marker)
is displayed on the right. (c) Same as (b), but for Bz = 600mT.

upper limit for U can be estimated as the separation of two neighbouring resonance
peaks along the Vb-axis - giving U < 4meV ∼ 16∆. The features of superconducting
transport exhibit strong modulation as the localized state approaches the in-gap
energies and contributes to the superconducting transport. In order to investigate
the influence of the localized state on the supercurrent, we turn on the reference
arm and use the SQUID configuration to investigate the CPR.

Fig. 5.2(b) displays Isw of the SQUID as a function of By and VG1 in the voltage
range studied in Fig. 5.2(a). Three distinct regions can be identified - with the
middle region being π-shifted (π-region) relative to the regions below and above
(0-regions). Noticeably, the π-region occurs in the same VG1 interval in which
the localized state is tuned below the superconducting gap (see Fig. 5.2(a)). Two
horizontal linecuts in the two 0-regions (blue and black) and one horizontal linecut
in the middle of the π-region (red) demonstrates that the supercurrent declines
inside the π-region - as the red linecut has the smallest amplitude. The blue and
black linecut - taken symmetrically with respect to the red linecut - yet have very
different amplitudes. This indicates an asymmetric gate voltage dependence of the
supercurrent below and above the π-region. This asymmetry is further confirmed by
a vertical linecut (purple). Upon increasing the parallel field to Bz = 600mT, Isw is
measured in the same By and VG1 ranges and the result is shown in Fig. 5.2(c).
Four linecuts taken analogously as in Fig. 5.2(b) demonstrate that the supercurrent
suppression inside the π-region and the asymmetry between the 0-regions remain
at Bz = 600mT. However, both effects are less prominent in the high parallel field.
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In addition, the high magnetic field causes a broadening of the π-region along the
gate voltage axis [41]. The observed expansion of ∼ 7.5mV in VG1 corresponds to an
energy of ∼ 0.9meV ∼ 4∆ (see Fig. 5.2(a) for the estimation of the gate lever arm)
and a same Zeeman energy gµB B ∼ 0.9meV would yield a g -factor g ∼ 26.

Figure 5.3: Isw as a function of By and VG1 at: (a) Bz = 0mT and (b) Bz = 490mT (left)
and Bz = 720mT (right). The other gate voltages are VL1 =VR1 = 1.75V, VG2 = 2.88V
and VL2 =VR2 = 1.75V. Two linecuts (red and blue markers) are shown below and a
vertical linecut (purple marker) is shown for Bz = 0mT and Bz = 720mT on the right.
Three sharp peaks in the purple linecut at high Bz are caused by instabilities of the
flux.

We proceed by studying the CPR in another gate voltage interval, that is above
the one presented in Fig. 5.2. In Fig. 5.3(a), Isw dependence on By and VG1 at
Bz = 0mT is presented, with two horizontal linecuts (red and blue) and one vertical
linecut (purple). The linecuts show that the supercurrent is enhanced by the gate
around VG1 = 2.49V. Moreover, the purple linecut demonstrates that the supercurrent
amplitude is asymmetrically modulated below and above the enhancement. In
contrast to Fig. 5.2(b), the asymmetric modulation in this VG1 range is not
accompanied by 0−π transitions - as evident from the horizontal linecuts. Next, we
increase Bz and measure Isw in the same By and VG1 ranges - at Bz = 490mT and
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Bz = 720mT (see Fig. 5.3(b)). At Bz = 720mT, a π-region is observed in the studied
VG1 interval and the supercurrent amplitudes inside the π-region (red linecut) and
0-region (blue linecut) are comparable, which indicates a very weak suppression of
the supercurrent inside the π-region. In addition, the asymmetry between the two
0-regions is also very weak (purple linecut). We see that the Isw (By ) traces are not
sinusoidal any more, with Isw approaching zero at specific By values. This indicates
that the supercurrent amplitudes in the two SQUID arms are comparable. In spite
of this, the π-region could still be well identified in the figure. At Bz = 490mT, the
frequency of Isw oscillations doubles (red linecut) in a narrow VG1 interval. Such a
double frequency oscillation has been studied in theory [12, 34, 36] and observed in
experiment [41], and is due to an intermediate regime existing in-between a stable 0-
and π-region. Therefore, the Isw dependence at Bz = 490mT could be understood as
an intermediate regime before a stable π phase is formed at higher magnetic fields.

Common features in Fig. 5.2 and Fig. 5.3 include the peculiarly sharp and
asymmetric gate voltage dependence of the supercurrent amplitude in the narrow
gate intervals associated with 0−π transitions. The π-shifted CPR in our experiment
occurs over ∼ 10mV-wide intervals of the gate voltage VG1, which correspond to
∼ 5∆-wide intervals of the junction electro-chemical potential. Sharp dependences
generally suggest that a localized state is involved, and the presence of a localized
state in our experiment is confirmed by detecting resonances in the normal-state
conductance of the junction (Fig. 5.2(a)). The supercurrent and normal-state
conductance generally remain finite when the localized state is off-resonant, which
implies the existence of a background transport channel.

The simultaneous presence of the localized state and the background transmission
motivates us to explain the asymmetric resonant features by considering the
interference between the localized state and direct transmission. Our motivation
originates from such mechanism giving rise to the peculiar asymmetry of Fano
resonances [48].

We develop a model for the transport through a nanowire JJ, in which a localized
state and a direct-transmission channel are involved. The top panel in Fig.
5.4(a) shows a schematic of a nanowire JJ with filled states in the leads and the
transmission channel given in black. Random potential minima in the junction are
either filled (small black regions) or empty (regions with dashed boundaries). The
localized state is one such random minimum and is shown in red. For convenience,
we treat the direct-transmission channel as a resonance as well, but its energy
broadening by far exceeds all other energy scales in the model. Therefore, we
develop a two-dot model of a JJ, that is introduced in the bottom panel of Fig.
5.4(a). The first (red) dot represents the localized state and the second (black) dot
models the direct-transmission channel. The dot energies and tunnel couplings to
the leads should, thus, satisfy the relation ΓL,R

2 ,E2 ≫ ΓL,R
1 ,E1 in order for the second

dot to model the transmission channel. Then, we can neglect the influence of the
gate voltage and magnetic field on the second dot, and we also neglect its charging
energy. Importantly, there is a direct tunnel coupling with the rate κ between the two
dots, that allows for the interference between them. Additional non-trivial elements
are tunneling rates γL,R that cannot be ascribed to a certain dot, but are required to
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Figure 5.4: (a) Schematic of a nanowire JJ and the geometry of electron distribution
in the nanowire and the leads - with empty states in grey and filled states in black
and red (localized state) (top). Schematic of the two-dot model - with the red
dot (energy E1, charging energy U ) modelling the localized state and the black dot
(energy E2, no charging energy) modelling the transmission channel (bottom). The
tunnel couplings to the leads (left,right) are ΓL,R

1,2 , the tunneling rate between the dots
is κ and the dots-superposition tunneling rates to the leads are γL,R . (b) Normal
state conductance G as a function of E1 for the zero (black) and finite (red) Zeeman
energy. The tunneling parameters are taken in ratios ΓL

1 : ΓR
1 : κ= 0.001 : 0.001 : 1 and

ΓL
2 : ΓR

2 : E2 = 0.33 : 0.67 : 1.2. (c) Ic in the units of 2e∆/ℏ as a function of φ and E1

for B = 0. Horizontal linecuts (blue, red and black marker) are shown below, and a
vertical linecut (purple marker) is shown on the right. (d) Analogous to (c), but for
B = 2∆. (e) Ground-state energy difference Eπ = E(φ= 0)−E(φ= π) as a function of
E1 for different Zeeman energies. In (b)-(e), the charging energy is neglected by
taking U = 0.

describe tunneling of a superposition state of the two dots. These parameters are
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at an intermediate scale, κ,γL,R ≃p
Γ1Γ2. The charging energy U of the first dot in

general cannot be neglected. A magnetic field is introduced by the Zeeman energy
in a simple form B ·σ, where we use B to represent Zeeman energies in the units
of ∆. Spin-orbit coupling is neglected here, but its influence is discussed in the
extended data sets in the supplementary section about the theoretical model. The
full derivation of the model is shown there as well.

Figure 5.4(b) shows the normal-state conductance G through the two-dot system
as a function of E1 for B = 0 (black) and B = 2∆ (red). The ratio of the coupling
rates in the model is chosen such that the total coupling to the leads is Γ = 4∆
(as in the experiment) and the two-dot interference results in competing processes
of resonant transmission and resonant reflection that almost compensate - causing
the Fano shape of the resonant peculiarity [48]. The coupling parameters remain
fixed in the rest of the study. For other possible scenarios, see the normal transport
examples in the supplementary section about the theoretical model. Next, we
perform calculations on the supercurrent transport via the two coupled dots. In
Figs. 5.4(c) and 5.4(d), the junction CPR Ic (φ) is obtained as a function of E1

for B = 0 and B = 2∆, respectively. For B = 0, the Ic amplitude is enhanced and
asymmetrically modulated around the resonance, as confirmed by a vertical linecut.
Three horizontal linecuts show that no phase shifts occur and that the CPR is skewed
at the resonance, in agreement with the enhanced transmission. For B = 2∆, the Ic

dependence exhibits three distinct regions along the E1-axis - including a π-region
and two 0-regions. The Ic amplitude declines inside the π-region (red linecut)
and is asymmetrically modulated in the two 0-regions (blue and black linecut). In
order to more easily identify π-regions in our calculations, we define a quantity
Eπ = E(φ = 0)−E(φ = π) that is the difference between the junction ground state
energies at φ= 0 and φ=π. Therefore, a π-shifted CPR is obtained whenever Eπ > 0,
as the ground state is favored for φ=π. In Fig. 5.4(e), we calculate Eπ as a function
of E1 for different B . For small B , Eπ remains negative in the entire range of E1 -
confirming the absence of π−shifts at B = 0. However, if B is sufficiently large, one
obtains intervals in E1 with Eπ > 0. These intervals correspond to π-regions that
appear due to the Zeeman energy - as in the example in Fig. 5.4(d). As B increases,
the intervals of E1 with Eπ > 0 extend, which indicates that the π-regions broaden
with the Zeeman energy.

Next, we consider the case with finite charging energy U in the first dot. For
U = 5∆, Ic is calculated as a function of φ and E1 for Zeeman terms B = 0 (Fig.
5.5(a)) and B = 2∆ (Fig. 5.5(b)). A π−region appears already for B = 0 (zero magnetic
field), and it expands for B = 2∆. Ic amplitude is suppressed inside the π-region
and asymmetrically modulated in the two neighboring 0−regions, as emphasized by
corresponding horizontal and vertical linecuts. Complementary to Fig. 5.4(e), in
Fig. 5.5(c) the ground-state energy difference Eπ = E(φ= 0)−E(φ= π) is calculated
as a function of E1 for various charging energies U and fixed Zeeman energy B = 0.
One obtains that an interval of E1 in which Eπ > 0 appears for sufficiently large U ,
despite the absence of the Zeeman energy. This interval corresponds to a π-region
in the CPR, as Eπ > 0 means that the ground-state energy minimum is achieved
for φ= π rather than φ= 0. Moreover, this interval broadens as U increases. This
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Figure 5.5: The situation with a finite U in the first dot. (a) Ic as a function of
φ and E1 for U = 5∆ and B = 0. Three linecuts (blue, red and black marker) are
shown in the bottom panel, and a linecut (purple marker) is shown in the right
panel. (b) Analogous to (a), but for B = 2∆. (c) Ground-state energy difference
Eπ = E(φ= 0)−E(φ=π) as a function of E1 for B = 0 and different charging energies
U . Eπ > 0 indicates π-shifted CPR.

demonstrates that a region with π−shifted CPR can be driven by a finite on-site
interaction of the localized state even without magnetic fields, and that increasing
the interaction leads to its expansion.
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5.3. DISCUSSION
The theoretical model reproduces the magnetic field-driven 0−π transitions reported
in the experiment. The supercurrent suppression inside the π-regions and the
asymmetrical modulation outside the π-regions have been captured by the model in
which the interference between the direct-transmission channel and the localized
state is considered. 0−π transitions at zero magnetic field are also reproduced
by the model with a sufficiently large on-site interaction and the typical features
of suppressed supercurrent inside the π-regions and the asymmetrical modulation
outside the π-regions still remain. In the calculations, Ic jumps show up due to the
Andreev-levels crossing the Fermi energy and changing the ground state parity of
the junction. In the experiment, however, the parity of the junction is not controlled
and the switching current measured close to parity-transitions represents an average
of the two parities. Therefore, the sharp jumps in the calculated Ic data are
smeared-out in the measured Isw data. In the model, π-regions are found to occur
over ∼ 10∆-wide intervals in the junction electro-chemical potential - matching the
scale at which they have been observed in the experiment.

5.4. CONCLUSION
We report on the CPR properties of an InSb-Al nanowire JJ in high magnetic
fields. The supercurrent of the device is sharply and asymmetrically modulated in
narrow intervals of the junction electro-chemical potential where a localized state is
involved in the transport. In these intervals, high parallel magnetic fields can drive
0−π transitions with π-shifted CPR in-between two 0-regions. The 0−π transitions
are favored by the on-site interaction in the localized state and can also occur at
zero magnetic field. These phenomena can be explained by a theoretical model
which involves a direct-transmission channel and a resonant localized state inside
a single JJ. When one considers the interference between the direct transmission
and the localized state, the supercurrent obtained in an effective Fano-resonance
regime exhibits CPR features as in the experiment. Our study, thus, introduces a
superconducting counterpart of the Fano effect and shows how such effect can lead
to 0−π transitions in high magnetic fields.

5.5. THEORETICAL MODEL
In this Section, we establish a theoretical model to describe the normal and
superconducting transport in the situation where a featureless direct transmission
in a single channel is combined with that via a resonant state. Technically, it is
derived from a two quantum dot model where the channel is represented as a dot
with the level width that exceeds much the level width of the dot representing the
resonant state. We believe that the model is applicable and useful in many situations
not being restricted to concrete experimental conditions at hand. This is why we
give here a detailed derivation, include the factors like strong spin-orbit interaction
that are not manifested in our experiment, and provide the general examples not
necessarily related to the current observations.
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5.5.1. HAMILTONIANS

In this subsection, we give the Hamiltonians of the constituents of our model.

THE SINGLE DOT

We start with a dot Hamiltonian. It involves on-site annihilation operators d̂α, α
being the spin index, and reads

ĤD = d̂ †
αHαβd̂β+U n̂↑n̂↓ (5.1)

n̂α = d̂ †
αd̂α. The single-particle Hamiltonian reads

Ȟ = E +B ·σ

B being the magnetic field, σ being the vector of Pauli matrices.
Importantly, we treat the interaction in the mean-field approximation. If there

is a natural quantization axis (that can be absent in the presence of spin-orbit
interaction in the coupling to the leads), the mean field gives the following additions
to the single-particle Hamiltonian,

H↑↑ =U 〈n̂↓〉; H↓↓ =U 〈n̂↑〉. (5.2)

In general situation,

Hαβ =U
(
δαβ〈N̂〉−〈d̂ †

αd̂β〉
)

(5.3)

The advantage of this mean-field scheme is that it delivers exact results in the
absence of tunnel coupling. In particular, at zero magnetic field the ground state
corresponds to single occupation of the dot in the interval U > E −µ > 0. At the
ends of the interval, sharp transitions bring the dot to the states of zero and double
occupation. The scheme is approximate in the presence of tunnel coupling, yet we
use it for the lack of better general approach to interaction.

THE LEADS

We introduce annihilation operators in the leads ĉk,α where k labels the states of
quasi-continuous spectrum in the leads. The states k are distributed over the leads
and those are labelled with a. We assume the states k are invariant with respect to
time inversion.

The leads are described by the usual BSC Hamiltonian

Ĥlead s =
∑
k
ξk ĉ†

k,αĉk,α+
∑
a

∑
k∈a

(
∆∗

a ĉk,↑ĉk,↓+h.c
)

(5.4)

ξk are the energies of the corresponding states. The superconducting order
parameter ∆a is different in different leads. To describe normal leads, we just put
∆a = 0.
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TUNNEL COUPLING

The tunnel coupling to the states is described by the following Hamiltonian

ĤT =∑
k

ĉ†
k,αt k

αβd̂β+h.c (5.5)

For time-reversible case, the tunnel amplitudes are given by

ť = tk + i tk ·σ (5.6)

with real tk ,tk . Of course, the multitude of tunneling amplitudes comes to the
answers only in a handful of parameters. One of such parameters is the decay rate
from the dot to the continuous spectrum of the lead a,

Γa(ϵ) = 2π
∑
k∈a

(|tk |2 +|tk |2
)
δ(ξk −ϵ) (5.7)

One can disregard the dependence of the rates on the energy ϵ.

5.5.2. NORMAL TRANSPORT FOR MANY DOTS

In this subsection, we will derive the currents in the nanostructure assuming the
leads are normal and are kept at different filling factors. We do this derivation for an
arbitrary number of the leads and dots, and later specify this for two dots and two
terminals. Let us consider the following Hamiltonian where we do not specify spin
or dot structure

Ĥ =∑
k
ξk ĉ†

k ck + d̂ †
αHαβd̂β+

∑
k

(ĉ†
k t kβd̂β+h.c) (5.8)

The Heisenberg equations read

i ˙̂ck = ξk ĉk + tkαd̂α; i ˙̂dα = Hαβd̂β+ t∗kαĉk (5.9)

The current operators are thus given by

Îa = ∑
k∈a

−i tkαd̂ †
k ĉα+h.c. (5.10)

We solve for operators ĉk ,

ĉk (t ) = ĉ0e−i xik t +
∫

d t ′gk (t , t ′)tkαd̂α(t ′),

gk (t , t ′) ≡−i e−iξk (t−t ′), and subsequently for d̂α,

d̂α(t ) =
∫

d t ′Gαβ(t , t ′)t∗βk e−iξk t ′ d̂ 0
k

where the Green’s function obeys(
iÇt − Ȟ − Σ̌)

Ǧ = δ(t − t ′) (5.11)
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and

Σ̌(t , t ′) =∑
k

t∗kαgk (t , t ′)tkβ. (5.12)

It is also useful to introduce partial Σ that describe the decay to a certain lead,

Σ̌a(t , t ′) = ∑
k∈a

t∗kαgk (t , t ′)tkβ. (5.13)

With this,

ĉk (t ) = c0
k e−iξk t + gk (t , t ′)tkαGαβ(t ′, t ′′)t∗k ′βe−iξk′ t ′′ ĉ0

k ′ (5.14)

in the above expression, we assume summation over t ′, t ′′,k ′. We substitute this
into the current operator, average over the quantum state replacing 〈ĉ0†

k ĉ0
k〉 = fk and

get two contributions corresponding to two terms in Eq. 5.14. The contribution A
depends only on the filling factor in the lead a and reads

I a
A = Tr

(
Ǧ(t , t ′)F̌ a(t ′, t )− F̌ a(t , t ′) ˇ̄G(t , t ′)

)
(5.15)

where Ḡ(t , t ′) ≡G†(t ′, t ),

F̌ a(t , t ′) = ∑
k∈a

t∗kαtkβ fk e−iξk (t−t ′) (5.16)

The contribution B depends on filling factors in all leads

I a
B = Tr

(
Ǧ(t , t ′)

∑
b

F̌ b(t ′, t ′′) ˇ̄G(t ′′, t ′′′)Σ†
a(t ′′′, t )−Σa(t , t ′)Ǧ(t ′, t ′′)

∑
b

F̌ b(t ′′, t ′′′) ˇ̄G(t ′′′, t )

)
(5.17)

We switch to the energy representation. To deal with the tunnel amplitudes, we will
use the following relation

Γ̌a(ϵ) = 2π
∑
k

t∗kαtkβδ(ϵ−ξk ) (5.18)

Γ̌a characterizing the decay from all dots to the lead a. Conventionally, we will
disregard the energy dependence of Γ (since we are working close to the Fermi
level). With this,

F̌ a =−i Γ̌a fa(ϵ); Σ̌a =− i

2
Γ̌a , (5.19)

where we have taken into account that the filling factor depends on energy only,
and disregarded real part of Σ (that would lead to a renormalization of the dot
Hamiltonian). With this, the Green function is given by

Ǧ = 1

ϵ− Ȟ + i Γ̌/2
; (5.20)
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Γ̌≡∑
a Γ̌a . The B contibution for the current for all b ̸= a can be written as

Ia/e = ∑
b ̸=a

∫
dϵ

2π
Pab(ϵ) fb(ϵ) (5.21)

Pab being the probability to scatter from all channels of terminal b to the channels
of terminal a,

Pab(ϵ) = Tr {Γ̌aǦ(ϵ)Γ̌b ˇ̄G(ϵ)} (5.22)

This is in accordance with the corresponding part of Landauer formula for
multi-terminal case. The contibution A reads:

I a
A/e =−i

∫
dϵ

2π
fa(ϵ)Tr {Γ̌a(Ǧ − ˇ̄G)} (5.23)

We use the relation

Ǧ − ˇ̄G =−iǦΓ̌ ˇ̄G (5.24)

to represent the contribution A in the form

I a
A/e =−

∫
dϵ

2π
fa(ϵ)

∑
b

Pab(ϵ) (5.25)

summing everything together, we reproduce the Landauer formula

Ia/e =
∫

dϵ

2π

∑
b ̸=a

Pab(ϵ)( fa(ϵ)− fb(ϵ)) (5.26)

Let us construct a scattering matrix corresponding to the situation. The scattering
to a terminal a is described by Γ̌a . Let us represent this matrix as Γ̌a = W̌ †

a W̌a .
So-introduced W̌a is a matrix where the second index goes over the dots and the first
one over the channels of the terminal a. The matrix W̌a is apparently an ambiguous
representation of Γ̌a , but the same ambiguity pertains the scattering matrix: both
are defined upon a unitary transformation in the space of the channels in each lead.
We combine all matrices Wa block by block introducing the matrix W where the
first index goes over all channels in all terminals. We note W̌ †W̌ = Γ̌. With this, a
scattering matrix describing the situation reads

Š = 1− iW̌ ǦW̌ † (5.27)

Its unitarity can be proven with using the relation (5.24).

5.5.3. NORMAL TRANSPORT FOR TWO DOTS

We concentrate on the case of two dots and two terminals. It seems a trivial
consequence of the above fomulas but requires some elaboration for the limit where
Γ in the dots are very different, this is the case under consideration. To warm up, let
us first consider a single dot. We note that Γa in this case are diagonal in spin owing
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to time-reversability and can be regarded as numbers. The transmission probability
from the left to the right (or vice versa) can be written as

T0(ϵ) = ΓLΓR

(ϵ−E)2 +Γ2/4
(5.28)

The ideal transmission is achieved at ΓL = ΓR = Γ/2 and ϵ= E . Let us go for two
dots and list possible parameters of the model. Those are: level energies (split in
spin) E1+B1 ·σ, E2+B2 ·σ, decays from the dots Γ1 = ΓL

1 +ΓR
1 , Γ2 = ΓL

2 +ΓR
2 , tunneling

between the dots κ+iκ ·σ, and non-diagonal tunneling to the leads Γ12,21 ≡ γ±iγ ·σ.
Let us write down the Green’s function:

Ǧ−1 = ϵ−
[

H1 H12

H †
12 H2

]
; H1,2 ≡ E1,2 +B1,2 ·σ− iΓ1,2/2; H12 ≡ κ+ iκ ·σ− i (γ+ iγ ·σ)/2

(5.29)

The idea of further transform is that the second dot provides a featureless
background for the first dot. To this end, we consider big E2,Γ2 ≫ ϵ,B1,2,E1,Γ1. As to
γ,κ, they are assumed to be of an intermediate scale, say γ≃p

Γ1Γ2. We note that
B2 can be ignored under this condition, and for brevity we define B1 = B .

We will apply a transform that approximately diagonalises the Green function so
that

Ǧ = ǓǦdǓ−1 (5.30)

where

Ǔ =
√

1+ s

2s

[
1 η+

−η− 1

]
; Ǔ−1 =

√
1+ s

2s

[
1 −η+
η− 1

]
(5.31)

and

η± = µ±
1+ s

; s ≡√
1+µ+µ−; µ± = 2

k ±k ·σ
−E2 + iΓ2/2

; k,k ≡−κ+ iγ/2,−κ+ iγ/2 (5.32)

with this, the biggest block of Ǧ−1
d is −E2 + iΓ2/2, while the smallest one reads

ϵ−E1 + iΓ1/2− k2 +k2

−E2 + iΓ2/2
(5.33)

We rewrite it as
ϵ−E1 + iΓ/2−∆E1 (5.34)

where the actual level width Γ is given by

Γ= Γ1 + Γ2C11 −2E2C10

E 2
2 +Γ2

2/4
; C11 ≡ κ2 −γ2/4+κ2 −γ2/4; C10 ≡ κγ+κγ (5.35)

and we neglect insignificant shift of the level position

∆E1 =−C10Γ2/2+C11E2

E 2
2 +Γ2

2/4
(5.36)
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The Γa matrices are transformed as Γ̌L → Ǔ †Γ̌LǓ , Γ̌L → Ǔ−1†Γ̌LǓ−1.
Keeping terms of the relevant orders only, we obtain

Γ̌L =
[

gL Γ+L
12 −η∗−ΓL

2
Γ−L

12 −ΓL
2η− ΓL

2

]
; gL ≡ ΓL

1 −Γ+L
12 η−−η∗−Γ−L

12 +η∗−ΓL
2η−; (5.37)

Γ̌R =
[

gR Γ+R
12 −η+ΓR

2
Γ−R

12 −ΓR
2 η

∗+ ΓR
2

]
; gR ≡ ΓR

1 −Γ+R
12 η

∗
+−η+Γ−R

12 +η+ΓR
2 η

∗
+− . (5.38)

With this, we can summarize the results for the total transmission coefficient Ttot

(summed over two spin directions). We introduce compact notations that adsorb the
energy dependence of the coefficient:

G± = 1

ϵ−E1 ±B + iΓ/2
; Gs,a = G+±G−

2
; Ḡi =G∗

i (5.39)

and write it down as

Ttot (E) = 2T0 + (ΓLΓR +Γ2)(G+Ḡ++G−Ḡ−)+2((Γ ·B )2/B 2 −Γ2)GaḠa (5.40)

+R X (G++G−+Ḡ++Ḡ−)− I X Im(G++G−−Ḡ+−Ḡ−) (5.41)

Here, the partial decay rate read (ΓL +ΓR = Γ)

ΓL = ΓL
1 +

C1Γ
L
2 −C L

3Γ2 −2E2C L
2

E 2
2 +Γ2

2/4
; C1 ≡ κ2 +γ2/4+κ2 +γ2/4; C L

2 ≡κ ·γL +γLκ; C L
3 ≡γ ·γL +γγL ,(5.42)

and similar for R. The spin-orbit interaction is represented by the vector Γ,

Γ = E2C5 +κC4 +C6 ×κ+κC6

E 2
2 +Γ2

2/4
; C4 = ΓL

2γR −ΓR
2 γL ; (5.43)

C5 = γRγL −γLγR +γR ×γL ; C6 = ΓR
2γL −ΓL

2γR (5.44)

and the coefficients R X , I Y read

R X = 1

E 2
2 +Γ2

2/4
(−E2C7 +κC8 +κ ·C9 −T0(E2C11 +C10Γ2/2)) (5.45)

I X = 1

E 2
2 +Γ2

2/4
(−C7Γ2/2+γC8/2+γ ·C9/2−T0(E2C10 −C11Γ2/2)) (5.46)

C7 = γRγL +γR ·γL ; C8 = ΓL
2γR +ΓR

2 γL ; C9 =γRΓ
L
2 +γLΓ

R
2 (5.47)

We will explain the physical significance of each term in Eq. 5.41 in the next
subsection.

To treat the interaction self-consistently, we also need the average charge and spin
in the dot,

〈d̂ †
αd̂β〉 ≡ nδαβ+n ·σ (5.48)



5

112
SUPERCURRENT IN THE PRESENCE OF DIRECT TRANSMISSION AND A RESONANT

LOCALIZED STATE

This is given by

ň =
∫

dϵ

2π
Ǧ

(
(ΓR +Γ ·σ) f R (ϵ)+ (ΓL −Γ ·σ) f L(ϵ)

)
(5.49)

This can be rewritten in more detail as (b = B/B)

n =
∫

dϵ

2π

(
(GsḠs +GaḠa)(ΓR f R (ϵ)+ΓL f L(ϵ))+ (b ·Γ)(GaḠs +GsḠa)( f R (ϵ)− f L(ϵ))

)
(5.50)

n =
∫

dϵ

2π

(
2b(b ·Γ)GaḠa +Γ(GsḠs −GaḠa)+ (b ×Γ)i (GaḠs −GsḠa))( f R (ϵ)− f L(ϵ))

+ b(GaḠs +GsḠa)(ΓR f R (ϵ)+ΓR f R (ϵ)
)

(5.51)

We substitute filling factors at vanishing temperature f L,R = Θ(eVL,R − ϵ) and
integrate over ϵ to obtain n,n and full current. It is also advantageous at this stage to
switch to dimensionless variables measuring energy in units of Γ and setting e = 1.
We introduce convenient functions

K ±
R,L = 1

2π
at an(2(VR,L −ϵd ±B)); L±

R,L = 1

2π
ln(4(VR,L ±B)2 +1); L± = L±

R −L±
L ; K ± = K ±

R −K ±
L .(5.52)

With this,

n = ∑
k=L,R

Γk (1/2+K +
k +K −

k )+ (b ·Γ)(K ++K −), (5.53)

n = b
(
ΓR (K −

R −K +
R )+ΓL(K −

L −K +
L )

)+ Γ

1+4B 2

(
K ++K −+B(L−−L+)

)
+ (b ×Γ)

2(1+4B 2)

(
B(K ++K −)+L+−L−)+ 2b(b ·Γ)B

1+4B 2

(
4B(K ++K −)+L+−L−)

(5.54)

The self-consistency equations then read:

ϵd =Un; B = B0 −U n (5.55)

B0 being the external magnetic field. This equation has to be solved at each VR,L .
With this solution, we can evaluate the current

I = T0(VL −VR )/π+2(ΓLΓR +Γ2)(K ++K −)+4((Γ ·b)2 −Γ2)
B

1+4B 2

(
4B(K ++K −)+L+−L−)

+ R X (L++L−)− I X (K ++K −)/2 (5.56)

Let us elaborate on the equilibrium case VR = VL = µ. In this case, owing to
time-reversibility, the spin-orbit interaction does not cause spin polarization and is
irrelevant, so the self-consistency equations read (K̃ = K R = K L)

ϵd =U (1/2+ K̃ ++ K̃ −);B = B0 −bU (K̃−− K̃+) (5.57)

We specify to B0 = 0 and determine the boundary of spontaneously magnetic phase
where B → 0. In this limit,

K̃−− K̃+ →−B
2

π

1

1+4(µ∗)2 ; µ∗ =µ−ϵd (5.58)
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with this, the equations for the boundary read

U = (1+4(µ∗)2)
π

2
; µ=µ∗+U (1/2+ (1/π)ar ct an(2µ∗)) (5.59)

The splitting occurs above critical value Uc = π/2, at large U the magnetic phase
occurs in the interval µ= (0,U ) as it should be in this limit.

5.5.4. NORMAL TRANSPORT EXAMPLES

In this subsection, we will analyse the peculiarities of normal transport in the model
at hand. We restrict ourselves to zero-voltage conductance and non-interacting case
where zero-voltage conductance is simply given by Ttot at ϵ corresponding to Fermi
level,

G(Vg ) = GQ

2
Ttot (ϵ= EF ). (5.60)

Since E1 is a linear function of the gate voltage, and shift of ϵ in Eq. 5.41
is equivalent to the shift of E1, the energy dependence of Ttot directly gives the
gate voltage dependence of the conductance. The conductance with interaction is
qualitatively similar to the non-interacting one since the main effect of interaction
in our model is the spin-splitting corresponding to B ≃U .

Let us explain the physical significance of the terms in Eq. 5.41. All spin-orbit
effects are incorporated into a single vector Γ in the spin space. To start with, let us
neglect the spin-orbit interaction setting Γ= 0, so we can disregard the third term.
In this case, Ttot is contributed independently by spin orientations ± with respect to
B . Their contributions are shifted by 2B in energy.

The first term in Eq. 5.41 gives the featureless transmission of the transport
channel and asymptotic value of the conductance at |E1| ≫ Γ. The second term
describes the resonant transmission via the localized state and would show up even
if there is no interference between the transmissions through the channel and the
localized state. It rives rise to a Lorentzian peak - resonant transmission - of the
width ≃ Γ in conductance that splits into two at sufficiently big spin splitting ≃ Γ.
Let us bring the fifth term into consideration. Since G − Ḡ = −iΓGḠ its energy
dependence is identical to the second one. However, it usually gives a negative
contribution to transmission describing destructive interference of the transmissions
in the dot and in the channel - resonant reflection.

The fourth term describes the celebrated Fano effect coming about the interference
of the resonant and featureless transmission. It is visually manifested as asymmetry
of otherwise Lorentzian peaks or dips. The antisymmetric Fano tail ∝ ϵ−1 at large
distances from the peak/dip centre beats Lorentzian tail ∝ ϵ−2. All these terms are
hardly affected by spin-orbit interaction, while the second one manifests it fully. It
mixes up spin channels and makes conductance to depend on the orientation of B
with respect to Γ.

We illustrate the possible forms of the energy (or, equivalently, gate-voltage)
dependence of the conductance with the plots in Fig. 5.6 for 4 settings of the
parameters ΓL,R

2 ,E2,κ,κ,γL,R ,γL,R . Owing to separation of the scales assumed, the
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relevant parameters ΓL,R ,Γ,R X , I X are invariant with respect to rescale with the
factor A,

ΓL,R
2 ,E2 → A(ΓL,R

2 ,E2); κ,κ,γL,R ,γL,R →
p

A(κ,κ,γL,R ,γL,R ). (5.61)

For all settings, energy is in units of the resulting Γ. For each setting, we give
the plots at B = 0 and B = 2Γ, the latter to achieve a visible separation of resonant
peculiarities. Spin-orbit interaction is weak except the last setting where we give
separate plots for B ∥Γ and B ⊥Γ.

For Fig. 5.6 (a) we choose ΓL
2 ,ΓR

2 ,E2 = A(0.2,0.8,0.5), κ,γL ,γR =p
A(0.5,0.2,0.2),

ΓL
1 ,ΓR

1 = 1.6,3.5. We also specify small but finite spin-orbit terms yet they hardly
affect the conductance. In this case, the transmission through the localized state is
faster than the interference with the transmission in the channel. This results in a
resonant reflection peak at B = 0 that splits into two upon increasing the magnetic
field. A little Fano asymmetry can be noticed upon a close look.

For Fig. 5.6 (b) we choose ΓL
2 ,ΓR

2 ,E2 = A(0.5,0.5,0), κ,γL ,γR = p
A(3.5,0.2,0.2),

ΓL
1 ,ΓR

1 = 0.5,0.5. The transmission through the channel is ideal, T0 = 1. The localized
state is connected to the channel better than to the leads (κ≫ γL,R ). This results in a
pronounced resonant reflection dip at B = 0 that also splits into two upon increasing
the magnetic field.

For Fig. 5.6 (c) we choose ΓL
2 ,ΓR

2 ,E2 = A(0.2,1.5,0), κ,γL ,γR = p
A(1.5,0.3,0.1),

ΓL
1 ,ΓR

1 = 0.8,0.1. This choice is such that the competing processes of resonant
transmission and reflection almost compensate each other so the resulting resonance
peculiarity assumes almost antisymmetric Fano shape. The separation of the
peculiarities upon the spin splitting is less pronounced than in the previous examples
owing to long-range Fano tails mentioned.

We illustrate the effect of strong spin-orbit interaction in Fig. 5.6 (d). We
choose ΓL

2 ,ΓR
2 ,E2 = A(0.2,0.8,0.5), κ,γL ,γR =p

A(0.5,0.2,0.2), ΓL
1 ,ΓR

1 = 1.6,3.5. As to

spin-dependent parameters, we choose κ=p
ASO[0,0.2,−0.6], γL =p

ASO[0.3,0,0],
γR =p

ASO[0.0,0,1] and set the coefficient SO to 1.6, this is its maximal value
that satisfies the positivity conditions imposed on the matrices of the rates. The
peculiarity at B = 0 is a peak with a noticeable Fano addition. It splits at B = 2Γ
changing its shape, that is different for B ∥ Γ and B ⊥ Γ as well as for positive and
negative energies. Note that owing to Onsager symmetry G(B ) =G(−B ).

We also provide an example with interaction implementing the self-consistent
scheme described in the previous subsection (Fig. 5.7). For this example, we choose
ΓL

2 ,ΓR
2 ,E2 = A(0.2,1.5,−15), κ,γL ,γR =p

A(0.8,0.1,0.1), ΓL
1 ,ΓR

1 = 1.1,0.9. This choice
corresponds to very low channel transmission (T0 = 10−3). The average number of
electrons in the dot is presented in Fig. 5.7(a) as a function of E1 for several
interaction strengths, at zero voltage difference and magnetic field. All curves
change from full occupation at big negative E1 to zero occupation at big positive
E1. At U = 0 and U = Γ the curves are smooth with no spontaneous spin splitting
emerging throught the whole interval of E1. For higher interaction strengths, there
is an interval of E1 where the spontaneous splitting is present. The ends of this
interval are in principle manifested by cusps in the curves. Only cusps at the end
of the interval close to zero are visible, the cusps at the other end are too small. It
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Figure 5.6: Examples of normal transport. The energy dependence of Ttot is the
same as the conductance dependence on the gate voltage. Red curves correspond
to B = 0, green curves to B = 2Γ. a. Basic example: resonant transmission b. Dip:
resonant reflection c. Fano. d. Strong spin-orbit. Here, green (blue) curve is for
parallel (perpendicular) orientation of B with respect to Γ.

might seem that the zero-voltage conductance (Fig. 5.7 (b)) can be computed from
Ttot at the parameters Ẽ1, B̃ that solve the self-consistency equation at zero voltage
difference. However, this is not so, since these parameters also depend on voltage
difference. We compute zero-voltage conductance by numerically differentiating the
current (Eq. 5.56) at small voltage differences. At zero interaction, we see a resonant
transmission peak. Its height does not reach GQ because of the asymmetry ΓR ̸= ΓL .
At U = Γ, there is still a single peak. At higher U we see the splitting of the peak.
The height of the peaks split is a half of the height of the original peak if they are
sufficiently separated. As we have conjectured earlier, this is qualitatively similar to
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the conductance traces where spin splitting is induced by the magnetic field.

Figure 5.7: Example of normal transport with interaction. Resonant transmission
regime, no magnetic field, no SO coupling. The setup parameters are given in the
text. a. The average number of electrons in the localized state versus E1 at various
interaction strengths. b. Zero-voltage conductance versus E1 at various interaction
strengths.

5.5.5. SUPERCONDUCTING TRANSPORT

In this subsection, we elaborate on the description of superconducting transport in
our model. Since supercurrent is a property of the ground state of the system, it is
convenient to work with electron Green functions in imaginary time and introduce
Nambu structure. Let us start, as we did previously, with an arbitrary number of
dots and superconducting leads. If we neglect tunnel couplings, the inverse Green
function H (ϵ) is a 8×8 matrix encompassing the spin index, Nambu index and that
labelling the dots. It reads:

Ȟ = iϵτz − Ȟ . (5.62)

The tunnel couplings to the leads labelled by a add the self-energy part

Ȟ = iϵτz − Ȟ + i

2

∑
a
Γ̌aQ̌a (5.63)

where Γ̌a are given by Eq. 5.18 and the matrix Q̌a is a matrix in Nambu space
reflecting the properties of the superconducting lead a,

Qa = 1√
ϵ2 +∆2

a

[
ϵ ∆ae iφa

∆ae−iφa −ϵ
]

, (5.64)

Q2
a = 1.
To find supercurrents, we need to evaluate the total energy and take its derivatives

with respect to the phase differences. Since the leads with different phases are
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connected by the dots, the phase-dependent energy is the energy of the dots. The
latter can be expressed as

E =−1

2

∫
dϵ

2π
lndet(Ȟ ) (5.65)

To see how this works, let us check this formula neglecting tunnel couplings. With
this, the energy is the sum over eigenvalues of Ȟ , En ,

E =−1

2

∫
dϵ

2π
ln(ϵ2 +E 2

n) (5.66)

The integral formally diverges at ϵ→∞. To regularize it, we subtract its value at
En = 0 to obtain

E =−∑
n

|En |
2

+ const (5.67)

To recover a familiar formula, we shift the constant by Tr (Ȟ)/2,

E =−∑
n

|En |
2

+∑
n

En

2
+ const =∑

n
EnΘ(−En)+ const , (5.68)

so it becomes the energy of the filled states (those with En < 0). This suggests that
we need to handle the integral with care keeping eye on possible problems at big ϵ.
Fortunately, no special care has to be taken for the phase-dependent energy since
it is accumulated at superconducting gap scale ϵ≃∆. We have to be careful when
expressing the occupation of the dots in terms of derivatives of E with respect to dot
energies (as we do for numerical calculations). For instance, the average occupation
of the dot 1 reads

〈n̂1〉 = ÇE

ÇE1
+1, (5.69)

the last term correcting for high-energy divergences.
For our starting two-dot, two-lead model, the inverse Green function reads (c.f.

with Eq. 5.29).

H =
[
H11 H12

H21 H22

]
(5.70)

, where

H11 = iϵτz −E1 − (B1 · σ̌)τz + i

2
(ΓR

1 Q̌R +ΓL
1Q̌L); H22 = iϵτz −E2 − (B1 · σ̌)τz + i

2
(ΓR

2 Q̌R +ΓL
2Q̌L);

(5.71)

H12 =−κ̌+ i

2
{γ̌LQ̌L + γ̌RQ̌R }; H21 =−κ̌† + i

2
{γ̌†

LQ̌L + γ̌†
RQ̌R }, (5.72)

and we turn back to the compact notations

κ̌, κ̌† = κ± iκ ·σ; γ̌L,R , γ̌†
L,R = γL,R ± iγL,R ·σ (5.73)
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and made use of Q matrices corresponding to two leads

Q̌L,R = 1p
ϵ2 +∆2

[
ϵ ∆e iφL,R

∆e−iφL,R −ϵ
]

. (5.74)

Next goal is to reduce the number of parameters implementing the separation of
scales mentioned and implemented for the normal transport. This is achieved by the
following transformation of the determinant

lndet(Ȟ ) = lndet(Ȟ11 −Ȟ12Ȟ
−1
22 Ȟ21)+ lndet(Ȟ22) (5.75)

and implementing E2,Γ2 ≫ γ,κ≫ ϵ,B2,E1,Γ1.
Let us first evaluate det(Ȟ22), which is that of a 4×4 matrix with spin structure

taken into account. Since we may assume ϵ,B2 ≪ Γ2,E2 the spin structure is trivial
and the answer reads

lndet(Ȟ22) = 2ln(E 2
2 +

1

4
Γ2

2)+2ln(1−T0
∆2

∆2 +ϵ2 sin2φ/2), (5.76)

where, as previously, we define Γ2 = ΓL
2 +ΓR

2 and T0 = ΓL
2Γ

R
2 /(E 2

2 + 1
4Γ

2
2).

The energies of Andreev levels are determined from zeros of this determinant. We
recover the well-known expression for the energy of the spin-degenerate Andreev
level in a contact with transparency T0,

E Andr =∆

√
1−T0 sin2(φ/2) (5.77)

The integration of the log of the determinant over the energy gives the expected
result for the energy of the ground state,

E =−E Andr (5.78)

Let us turn to evaluation of the rest of the expression. We note that

Ȟ −1
22 =−E2 + i

2 (Γ2RQ̌R +Γ2LQ̌L)(
E 2

2 +
Γ2

2
4

)
(1−T0s)

(5.79)

where we have introduced a convenient compact notation

s ≡ ∆p
∆2 +ϵ2

sin2(φ/2) (5.80)

The matrix in the first determinant thus contains a factor (1−T0s) in the denominator.
Multiplying with this factor cancels det(Ȟ22) so the whole expression can be reduced
to the following relatively simple form

lndet(Ȟ ) = (5.81)

lndet

(
(1−T0s)(iϵτz −E1 − (B · σ̌)τz )+∆E + s∆ES + i

2
(ΓR (s)Q̌R +ΓL(s)Q̌L)+ i

4
Γ · σ̌(Q̌LQ̌R −Q̌RQ̌L)

)
,
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where

ΓL,R (s) = ΓL,R + sΓL,R
S . (5.82)

The parameters ΓL,R , ∆E , Γ have been already defined in our consideration of
normal transport. The compact description of superconducting transport brings
three additional parameters

∆ES = −E2C7 +κC8 +κ ·C9

E 2
2 +Γ2

2/4
; ΓL

S =−T0Γ
L
1 +

ΓR (γ2
L +γ2

L)

E 2
2 +Γ2

2/4
; ΓR

S =−T0Γ
R
1 + ΓL(γ2

R +γ2
R )

E 2
2 +Γ2

2/4
.

(5.83)

Here, ∆ES is a part of the expression (5.45) for R X but is an independent parameter.
Since both normal and superconducting transport originate from the same

scattering matrix, there are many examples when the parameters characterizing the
superconducting transport can be directly determined from the results of normal
transport measurements, a single channel with transparency T0 being the simplest
one. The presence of the additional parameters ∆ES , ΓL,R

S is therefore rather
disappointing: we cannot predict superconducting transport exclusively from the
results of normal transport measurements and have to rely on model assumptions.

Let us outline the physical meaning of the overall structure of the expression
(5.81). The first term is a product of the terms whose zeros give the Andreev level
in the transport channel and energy level in an isolated localized state, the product
indicate that these levels are independent. The rest of the terms thus describe the
hybridization of these levels. Note that the terms with ∆E cannot be cancelled by
a shift of E1, so in distinction from the normal case, are active in the presence of
superconductivity. The terms with Γ(s) are similar to tunnel decay terms in Eq.
5.71, in distinction from normal case the presence of the second dot does not just
renormalize Γ. The last term describes spin-orbit effect and is proportional to the
same vector Γ as in the normal case. In distinction from all other terms, it is
odd in the phase difference since it is proportional to the commutator of two Q̌.
The combination of this term and that with magnetic field results in a shift of the
minimum of the phase-dependent energy from 0 or π positions.

5.5.6. NUMERICAL DETAILS

In this subsection, we provide the overall strategy and details of our numerical
calculations.

We postpone the discussion of self-consistency assuming that we already know
E1 and B . To find the phase-dependent energy, we have to integrate the log of
the determinant over ϵ. We compute directly the determinant of 8×8 matrices
implementing the difference of scales numerically. For quick computation at each
energy, we represent the matrix Ȟ as a sum over various scalar functions of ϵ,

Ȟ = Ǎ+ϵB̌ + ϵp
ϵ2 +∆2

Č + ∆p
ϵ2 +∆2

Ď(φL ,φR ) (5.84)
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where the matrices Ǎ − Ď do not depend on ϵ and only Ď depends on
the superconducting phase. We define the function of ϵ as log(det(Ȟ (ϵ,φ =
0))− log(det(Ȟ (ϵ,φ = 0)) and integrate using scipy.quad. Direct evaluation of the
sum over discrete equidistant ϵ the interval of the order of 5∆ provides comparable
numerical efficiency and accuracy.

As mentioned, we treat interaction self-consistently, as the interaction-induced
shift in E1 and B . The self-consistency equations read as

Ẽ1 = E1 +Un(Ẽ1, B̃ ); B̃ = B −U n(Ẽ1, B̃ ) (5.85)

,where the average number of particles on the dot are given by derivatives of the
total energy N = (ÇE1E +1) and n = ÇB1E . We compute these derivatives integrating
the analytical derivatives of det(Ȟ (ϵ) over ϵ. These integrals may converge at ϵ≫∆

provided E1,B ≫∆. An adaptive grid of discrete ϵ could be chosen to speed up the
evaluation, yet using scipy.quad suffices for our purposes.

To solve the self-consistency equations, we implement a root-finding minimization
algorithm minimizing the function F = f 2 +| f |2, where f , f are defined as

f = Ẽ1 −E1 −Un(Ẽ1, B̃ ); f = B̃ −B +U n(Ẽ1, B̃ ), (5.86)

and checking if the minimum is achieved at F = 0. Alternatively, we can make use
of the fact that the solutions of the self-consistency equations correspond to the
extrema of the following energy functional

ET (Ẽ1, B̃ ) = E (Ẽ1, B̃ )− (E1 − Ẽ1)2

2U
+ (B − B̃ )2

2U
(5.87)

Unfortunately, this energy function is not bounded, and the extrema required are
rather saddle points than minima. However, they can be found, for instance, by
maximization of the function in Ẽ1 and subsequent minimization in B̃ .

The Andreev bound states are given by the zeros of the determinant at imaginary
ϵ (thus real energy E = iϵ) in the interval (0,∆). We find these roots by minimizing
det(Ȟ (ϵ))2 and checking if the minimum is achieved at zero. but because of
the different scales in the problem and existence of a big scale, we first try to
find an equivalent matrix, the determinant of which is more efficiently minimized
numerically. Typically, there are multiple Andreev states, so we subdivide the interval
(0,∆) to find them all.

5.5.7. SUPERCONDUCTING TRANSPORT EXAMPLES

In this subsection, we present the examples of numerical evaluation of supercurrent
and Andreev state energies in our model, for 3 sets of parameters. The π state is
achieved if ET (φ = π)−ET (φ = 0) ≡ Eπ < 0. Contrary to our initial expectations, it
is rather difficult to achieve such inversion for an arbitrary parameter set at high
transmission T0. It is rather easy to find 0−π transitions at low T0. The following
examples provide interesting illustrations of rich physics captured by the model.
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In this subsection and in all plots, we measure the energies, decay rates and the
current I /2e in units of ∆.

Example A. (Fig. 5.8) Here, we disregard spin-orbit coupling and interaction. The
parameters are ΓL

2 ,ΓR
2 ,E2 = A(1.9,1.9,−2), κ,γL ,γR =p

A(0.4,0.1,0.1), ΓL
1 ,ΓR

1 = 1.2,0.9
and correspond to T0 = 0.47, ΓL = 1.3,ΓR = 0.96,Γ = 2.26. As we can see from the
normal conductance traces presented in Fig. 5.8e, for this parameter set we have the
resonant transmission accompanied by very weak Fano asymmetry. The resonant
transmission peak splits upon increasing the magnetic field.

Actually, this set illustrates an unsuccessful attempt to achieve a pair of 0−π
transitions. This is seen from the plots in Fig. 5.8a that give the (gate-voltage)
traces of Eπ at various magnetic fields. Zero-field trace peaks near the centre of
conductance peak indicating the enhancement of supercurrent upon increasing the
transmission, and saturates at finite value at |E1|≫ 1: this saturation is achieved for
all magnetic fields. Upon increasing the magnetic field the value of ET near the
resonance gets down. It becomes smaller than the saturated value at B > 0.8. It
seems it has a chance to pass zero manifesting 0−π transitions. However, this does
not happen: the tendency changes and the minimum of ET starts to increase at
B > 1.5. Prominent features in the plots are sharp cusps in energy dependence. They
indicate the crossings of Andreev states with zero energy that, for the features in this
plot, are located at φ=π and corresponding gate voltages.

Let us set E1 = 0 and look at the phase dependence of energy (Fig. 5.8b) for a
set of magnetic fields. Here we also see the cusps corresponding to the crossings
at certain values of the phase. Superconducting currents plotted in Fig. 5.8c are
obtained by numerical differentiation of the energy, so the cusps become jumps, the
discontinuities of the current. The zero-field curve is prominently non-sinusoidal as
expected for high transmission at this value of E1. The current becomes smaller
tending to almost sinusoidal curve at high magnetic fields upon increasing magnetic
field, but does not get inverted. At intermediate fields, the current jumps between
non-sinusoidal and sinusoidal curve.

In Fig. 5.8d we show the phase dependence of ABS energies for E1 = 0 and |B1| = 1.
We see four spin-split ABS counting from down up. Eventually, the picture of ABS
demonstrates little interference between the transport channel and the localized
state. The third and the fourth curves are close to E Andr for T0 = 0.47 and are thus
associated with the transport channel, their spin-splitting ≃ 0.1 is small coming from
the interference. The first and the second state are associated with the dot. The
spin splitting is thus big: the first curve looks like the second curve shifted by ≃ 1
downwards, with the part shifted to negative energy being flipped to positive ones.
This also explains sharp cusps in the first curve.

Although in our model the phase-dependent energy is not a minus half-sum of
ABS energies as it would be for energy-independent transmission, we can use this
sum for qualitative estimations. With this, the half-sum of the first and second
energies would result in an inverted supercurrent, but the half-sum of the third and
fourth states, that is, the contribution of the transport channel, adds to the balance
a usual supercurrent of slightly bigger amplitude.

Example B. (Fig. 5.9) This inspired us to check if the 0−π transitions can
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be achieved at very low transmission of the transport channel. We have taken
the following set of parameters ΓL

2 ,ΓR
2 ,E2 = A(0.2,1.5,−15), κ,γL ,γR =p

A(0.8,0.1,0.1),
ΓL

1 ,ΓR
1 = 1.1,0.91. For this choice, T0 ≃ 10−3 ΓL = 1.1,ΓR = 0.91,Γ= 2.01. The normal

conductance traces (Fig. 5.9d) show a classical scenario of resonant transmission

(a) Eπ ≡ ET (φ=π)−ET (φ= 0) versus E1 at
several values of magnetic field.

(b) The phase-dependent part of energy
ET ≡ ET (φ)−ET (φ = 0) at E1 = 0 and
several values of magnetic field.

(c) The phase dependence of the super-
conducting current at E1 = 0 for several
values of B .

(d) The phase dependence of ABS energies
at E1 = 0 and |B | = 1.

(e) Normal zero-voltage conductance ver-
sus E1 at several values of magnetic field.

Figure 5.8: Example A. Resonant transmission, moderate channel transmission. No
SO coupling.
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that saturates to almost zero far from the resonance.
The check was successful. We plot the traces of ET ≡ ET (φ = π)−ET (φ = 0) for

various magnetic fields in Fig. 5.9a. The traces look like those in Fig. 5.8a except the
shift downwards by ≃ 0.25. Owing to this, ET is negative for B > 0.8 in an interval of
gate voltages that increases with B , 0−π transitions are at the ends of the interval.

We plot the phase dependence of the supercurrent for |B | = 2 and various E1 in
Fig. 5.9b. The 0−π transitions at this field take place at E1 ≈±1.25. In accordance
with this, the almost sinusoidal curves at E1 =−2.5,2 are of positive amplitude while
those at E1 = 0,−1 are of negative one. Note a rather low value ≃ 0.02 of the
maximum "negative" current, almost 25 times smaller than the maximum value of
the current in a single transport channel. An interesting curve is found close to the
transition, at E1 =−1.5. Here, the current jumps between sin-like curves of positive
and negative amplitude. The total integral of the current between 0 and π is still
positive, so Eπ > 0.

An example of the phase dependence of ABS energies is given in Fig. 5.9c. Since
the transmission of the channel is very low, we see only two spin-split ABS. The
upper one is close to the gap edge, and eventually merges with continuous spectrum
at φ≈ 0.6,2π−0.6. The lower one is close to zero, and exhibits two zero crossings at
φ≈π±0.65 corresponding to the discontinuities in corresponding curve in Fig. 5.9b.

The example presented concerns practically zero background transmission, which
is not experimental situation. The Fig. 5.4 in the main text presents the results at
small but finite transmission T0 ≈ 0.3.

Example C. (Figs. 5.10, 5.11) In this example, we illustrate the effect of SO
coupling on the superconducting transport. We choose ΓL

2 ,ΓR
2 ,E2 = A(1.2,1.5,−1),

κ,γL ,γR =p
A(0.2,0.6,0.2), ΓL

1 ,ΓR
1 = 1.6,3.5. As to spin-dependent parameters, we

choose κ=p
ASO[0,0.8,0], γL =p

ASO[0,0.2,0], γR =p
ASO[0,0.1,0] with SO = 1 that

gives T0 = 0.64,ΓL = 1.1,ΓR = 1.38,Γ = 2.48 and a significant Γ = 0.45y . As we see
from the Figs. 5.10d, 5.11d that give the traces of normal conductance, this set
also illustrates a well-developed Fano resonance with antisymmetric features split in
sufficiently high magnetic field.

We consider first B ⊥Γ. In this case, the time-reversibility provides the symmetry
φ↔−φ that was present in all previous plots. Let us concentrate at the 0−π energy
difference (Fig. 5.10a). The curve at zero magnetic field qualitatively follows the
normal conductance. Upon increasing the magnetic field we see the multiple cusps
that are already familiar from Figs. 5.8, 5.9 and indicate the spin splitting and
eventual zero crossing of ABS. The shape of the trace becomes more complex, and
the minimum ET becomes smaller. However, it does not reach zero that is necessary
for 0−π transition.

The phase dependence of superconducting current at B = 2 and various E1 is
presented in Fig. 5.10b. Most curves display pronounced discontinuities manifesting
the zero crossings at corresponding phases. Except for this, the dependence is rather
sinusoidal corresponding to moderate transmission. It looks like the current jumps
between two sin-like curves of different amplitudes.

It is interesting to see 3 ABS in the plot presenting the phase dependence of ABS
energies for E1 =−1.5 and B = 2 (Fig. 5.10c). The fourth state is either shifted over
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(a) Eπ versus E1 at several values of
magnetic field.

(b) The phase dependence of the super-
conducting current at |B | = 1.5 for several
values of E1.

(c) The phase dependence of ABS energies
at E1 =−1.5 and |B | = 1.5.

(d) Normal zero-voltage conductance ver-
sus E1 at several values of magnetic field.

Figure 5.9: Example B. Resonant transmission, low channel transmission. No SO
coupling. A pair of 0−π transitions occurs at |B | > 0.

the gap edge to the continuous spectrum or is present very close to the edge so
we cannot resolve it with accuracy of our numerics. The lowest state displays the
familiar zero crossings corresponding to the current jumps.

When we change from perpendicular to parallel field (Fig. 5.11) we do not see
much change in normal conductance: the difference between the corresponding
traces in Figs. 5.11d and 5.10d does not exceed 10 % . This is explained by the fact
that the effect is of the second order in Γ, ∝Γ2/Γ2, and |Γ|/Γ≃ 0.2 is not so big. We
also do not see much changes in ET traces (Fig. 5.10a versus Fig. 5.11a).

The most prominent effect of SO coupling is the breaking of φ↔−φ symmetry in
magnetic field, the effect ∝ |Γ|/Γ at B ≃ Γ. We see this in Fig. 5.11b where the
current-phase dependencies for B = 2 are now shifted sin-like curves with jumps.
The values of the shift vary from trace to trace, also in sign, and are ≃ 0.2−0.3.
In addition to the shifts of the sin-like curves, the positions of jumps are shifted
non-symmetrically, these shifts are ≃ 0−0.5.

Non-symmetry of the phase dependence of ABS energies is clearly seen in Fig.
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5.11c that is done at the same parameters as Fig. 5.10c. Also, beside shift, the energy
first ABS is significantly affected by the direction of the magnetic field. A fine detail
is the crossing of the second and the third ABS near φ≈ 1. It may seem that in the
presence of SO coupling all level crossings shall be avoided, since spin is not a good
quantum number. However, since Γ is the only spin vector in our model, for the
particular case B ∥ Γ the projection of spin on B is a good quantum number and the
levels of different projections may cross.

(a) Eπ versus E1 at several values of
magnetic field.

(b) The phase dependence of the super-
conducting current at B = 2 for several
values of E1.

(c) The phase dependence of ABS energies
at E1 =−1.5 and B = 2.

(d) Normal zero-voltage conductance ver-
sus E1 at several values of magnetic field.

Figure 5.10: Example C. Well-developed Fano features, moderate SO coupling.
Magnetic field B ⊥Γ

5.5.8. CONCLUSIONS THEORY PART

To conclude, we have developed and presented a model that accurately describes
normal and superconducting transport for a situation where a high transmission in
a transport channel is accompanied by propagation via a resonant localized state.
The motivation came from the experimental observation of a pair of 0−π transitions
separated by a small interval in the gate voltage, and the model explains the main
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(a) Eπ versus E1 at several values of
magnetic field.

(b) The phase dependence of the super-
conducting current at B = 1.5 for several
values of E1.

(c) The phase dependence of ABS energies
at E1 =−2 and |B | = 2.

(d) Normal zero-voltage conductance ver-
sus E1 at several values of magnetic field.

Figure 5.11: Example C. Well-developed Fano features, moderate SO coupling. No
interaction. Magnetic field B ∥Γ. Pronounced asymmetry in φ.

features observed at semi-quantitative level. In addition, we gave several examples
not immediately related to the experiment to illustrate the rich parameter space of
the model. The accurate characterization of normal transport in the experimental
setups to choose the model parameters and taking into account more resonant states
should bring the agreement between experiment and theory to quantitative level.

5.6. METHODS

5.6.1. DATA SELECTION

Our experimental data provides the evidence of magnetic field-driven 0−π transitions
and π-shifted supercurrent inside narrow intervals of the electro-chemical potential
of a hybrid nanowire JJ. The presented intervals of VG1 were identified in rough gate
sweeps at high parallel fields Bz = [600,700]mT by detecting π-shifted oscillations of
the SQUID switching current. These VG1 intervals were subsequently investigated in
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high resolution - both at high and low Bz -fields. At Bz = 0mT, qualitatively different
scenarios - with and without π shifts - were observed, as illustrated in Fig. 5.2
and Fig. 5.3. Besides the VG1 intervals in these figures, there were also few other
VG1 intervals with π-shifted supercurrent at high Bz -fields and evolution similar to
Fig. 5.2 and Fig. 5.3. Importantly, in the rough gate sweeps at high parallel fields,
we also detected many narrow VG1 intervals in which supercurrent was sharply
modulated without π shifts. Due to the absence of striking π shifts, these intervals
were not further examined in high resolution and at low parallel fields. Relatively
low occurrence of π shifts at high parallel fields is in agreement with the findings of
our theoretical model in which π-shifted supercurrent is not generically obtained for
large Zeeman energies.

Oscillations of the SQUID switching current were observed at fields exceeding
Bz = 1T. However, the reliability of detecting switches in V − Ib traces by the setup
for fast switching current measurements was considerably lower for Bz > 750mT -
due to less sharp switches in V . Therefore, Isw could be reliably and efficiently
measured up to Bz ∼ 720mT.

5.6.2. MEASUREMENT SETUP

All transport measurements are performed at ∼ 20mK base temperature inside a
dilution refrigerator equipped with a vector magnet.

The conductance measurement in Fig. 5.2(a) is performed in a two-terminal setup
with standard lock-in configuration. A voltage-source sets a dc-bias voltage Vb

between the source and drain, and a current-meter measures a dc-current I through
the device. A lock-in amplifier sets an ac-bias voltage dVb which amplitude is 10µV,
and measures the ac-current d I . Values of the bias voltages are corrected for a serial
resistance Rs = 8.89kΩ as Vb →Vb − I Rs and dVb → dVb −d I Rs . The Rs includes the
resistance of the voltage-source and the current-meter amplifier, the resistance of
two fridge lines and the resistance of low-pass filters in the circuits.

The switching current measurements are performed in a four-terminal setup in
which two terminals are connected to a current-source setting a bias current Ib , and
the other two terminals are connected to a voltmeter measuring a voltage drop V
across the device. Depending on the way how Ib is ramped, either a slow or a fast
method for switching current measurement is used. When using the slow method,
Ib is swept in steps of 20−40pA, and V is recorded for each Ib . Switching current
can then be extracted from the recorded V − Ib traces. The slow method was used
for the 2D-maps in Fig. 5.1(b).

A scheme of the setup for fast switching current measurements is shown in Fig.
5.12(a) and time traces of relevant signals are shown in Fig. 5.12(b) - for a single
measurement period. This setup was used for collecting the data corresponding to
the Isw data in the main text - red traces in Fig. 5.1(b), Fig. 5.2(b)-(c) and Fig. 5.3.
The current source is controlled by an arbitrary-waveform generator (AWG) applying
a sawtooth waveform of voltage Vi b (maximal value Vi b0) at a frequency of 10Hz
(period T = 100ms). Consequently, Ib is ramped with the same period in the range
[0, Ib0], where Ib0 is the maximal bias current. Here, Vi b0 is pre-selected such that
Ib0 exceeds the switching current to be measured. A time-signal of the measured
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voltage drop V and a constant voltage Vr e f = 7µV set by a digital-to-analog converter
(DAC) are sent as inputs to a trigger circuit. As V crosses the threshold Vr e f , the
trigger circuit sends a narrow trigger pulse Vtr i g to a sample-and-hold (S&H) circuit.
The S&H circuit receives the AWG signal as another input and this signal is sampled
by each trigger pulse, and held as the output Vi c . Therefore, Vi c represents the
AWG voltage that sets the current bias for which the switch in the voltage V is
detected. Switching current Ic is then extracted for a single AWG period from the
conversion between the AWG and the current-source - as Ic = Ib0

Vi b
Vi c . In our work,

Ic was extracted for five AWG periods for each parameter set-point. The final Isw

was calculated as an average of the five Ic values. Delays due to the parasitic
capacitance in the circuit, in principle, can cause an overestimate of Ic - as the Vi c

output is updated with a delay with respect to the switch in V . However, from
the specifications of the components used in our setup, this delay is estimated to
be ∼ 25µs at the given frequency and thus has practically negligible effect in our
measurements where each ramp takes 100 ms.

Figure 5.12: Setup for fast switching current measurements: (a) schematic and (b)
time-domain traces of the signals shown in (a). Trigger pulse Vtr i g samples the
voltage Vi c that sets the bias current Ib = Ic for which the switch in V is detected.
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6
SUBGAP SPECTROSCOPY ALONG

HYBRID NANOWIRES BY NM-THICK

TUNNEL BARRIERS

Tunneling spectroscopy is widely used to examine the subgap spectra in semiconductor-
superconductor nanostructures when searching for Majorana zero modes (MZMs).
Typically, semiconductor sections controlled by local gates at the ends of hybrids serve
as tunnel barriers. Besides detecting states only at the hybrid ends, such gate-defined
tunnel probes can cause the formation of non-topological subgap states that mimic
MZMs. Here, we develop an alternative type of tunnel probes to overcome these
limitations. After the growth of an InSb-Al hybrid nanowire, a precisely controlled
in-situ oxidation of the Al shell is performed to yield a nm-thick AlOx layer. In such
thin isolating layer, tunnel probes can be arbitrarily defined at any position along the
hybrid nanowire by shadow-wall angle-deposition of metallic leads. In this work, we
make multiple tunnel probes along single nanowire hybrids and successfully identify
Andreev bound states (ABSs) of various spatial extension residing along the hybrids.

The work in this chapter has been published as: V. Levajac∗, J.-Y. Wang∗, C. Sfiligoj, M. Lemang, J.
C. Wolff, A. Bordin, G. Badawy, S. Gazibegović, E. P. A. M. Bakkers and L. P. Kouwenhoven “Subgap
spectroscopy along hybrid nanowires by nm-thick tunnel barriers”, Nature Communications 14, 6647
(2023)
∗These authors contributed equally to this work.
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6.1. INTRODUCTION

Topological superconductors have received significant attention in the condensed
matter physics community over the last decade due to their potential application
in fault-tolerant quantum computation [1–4]. In III-V semiconducting nanowires
with thin superconducting shells a topological phase transition is predicted to
occur at a sufficiently high magnetic field [5, 6]. An essential precondition
for this is a hybridization mechanism in which superconductivity is induced in
the semiconducting nanowire with tunable chemical potential, strong spin-orbit
interaction and large g factor. The sophisticated interplay of these physical
phenomena has motivated in-depth theoretical studies and state-of-the-art material
developments [7–9]– with a goal of reaching topological superconducting phase in
hybrid nanowires. Hallmarks of the topologically non-trivial phase are Majorana zero
modes (MZMs) - zero energy modes localized at two ends of a hybrid nanowire.

Tunneling spectroscopy is commonly used to investigate the energy spectrum in
hybrid nanowires and search for MZMs by examining the presence of zero energy
states at nanowire ends. In such experiments, a normal lead is tunnel-coupled to the
end of a hybrid nanowire and serves as a tunnel probe. The differential conductance
is measured as a function of an applied bias voltage between the tunnel probe and
a drain lead contacting the hybrid nanowire. Zero bias peaks (ZBPs) measured at
hybrid nanowire ends indicate the presence of zero energy end-states and were the
first reported signatures of MZMs in hybrid nanowires [10–12]. A semiconducting
nanowire section where the superconducting shell ends is generally used to create a
tunnel barrier and a local tunnel gate is needed to define and control the barrier
profile. Advanced numerical modellings of realistic devices have shown that low
energy states can be localized at the end of a hybrid nanowire due to smooth
variations in the electrostatic potential induced by the tunnel gate [13–15]. A recent
study on three-terminal hybrid nanowire devices has reported such zero energy
states of trivial origin coincidentally appearing at both nanowire ends and falsely
mimicking an end-to-end correlation of MZMs [16]. Therefore, due to smooth
potential effects, ambiguous signatures of MZMs can be measured by tunnel probes
with semiconducting tunnel barriers [17]. Another limitation of these tunnel probes
is that tunneling spectroscopy is performed only at the ends of a hybrid nanowire.
Therefore, a reopening of an induced gap in the hybrid bulk at the topological
phase transition can only be detected in non-local conductance measurements on
three-terminal hybrid nanowire devices [18]. Measuring the hybrid bulk directly in
local tunneling spectroscopy is additionally motivated by recent theoretical studies
showing that disorder in a hybrid nanowire can result in MZMs being localized
inside the hybrid bulk and undetectable at its ends [19, 20]. An experimental work
has shown the possibility to use AlOx as a tunnel barrier for hybrid nanowires with
superconducting Al [21]. In that work, the AlOx layer was fabricated ex-situ after
the growth of superconducting Al. The lack of in-situ fabrication required physical
etching of the nanowire surface oxide prior to the fabrication of the tunnel barriers.
This could lead to low-quality tunnel barriers - causing a soft superconducting gap
[22].

Here, we develop a new type of tunnel barriers for tunneling spectroscopy in
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hybrid nanowires in order to overcome the limitations set by the semiconducting
tunnel barriers. We fabricate InSb-Al hybrid nanowires in which a nm-thick dielectric
layer of AlOx covers the hybrid and can be used to tunnel couple it to a normal
metal lead. In contrast to reference [21], our AlOx layer is fabricated in-situ, which
improves the quality of the tunnel probes. Such tunnel probes have a sharp potential
profile set by the thickness of the AlOx layer. In addition, the AlOx layer extends
over the entire length of the hybrid and allows for a formation of tunnel probes
at any position along the nanowire. We exploit these advantages and fabricate
multiple tunnel probes along single hybrid nanowires in order to investigate the
longitudinal evolution of their energy spectra. By comparing tunneling spectroscopy
results obtained at different positions along the same nanowire, Andreev bound
states (ABSs) of various spatial extension can be identified at the end and inside the
bulk of the hybrids.

6.2. RESULTS

Hybrid nanowires that utilize nm-thick tunnel barriers are introduced in Fig. 6.1. A
false-colored scanning-electron microscopy (SEM) image of a representative device
is shown in Fig. 6.1A and a schematic longitudinal cross-section along the device is
displayed in Fig. 6.1B. A superconducting Al (red) film is grown by the shadow-wall
lithography technique [23, 24] on a semiconducting InSb (light blue) nanowire [25].
By a subsequent in-situ oxidation, the Al film is partially oxidized to form a dielectric
AlOx (pink) layer that covers the hybrid. The shadow-wall lithography technique is
used to define three normal Ag (navy) leads along the nanowire on top of the AlOx
layer. Two Au (yellow) leads contact the bare semiconducting nanowire part on the
left and the hybrid nanowire part on the right. Two Pd (dark grey) gates are coupled
to the nanowire via a dielectric HfO2 (light grey) layer. The gate under the nanowire
section with the superconducting shell (super gate) controls the electro-chemical
potential in the hybrid. The gate under the bare nanowire section (tunnel gate)
tunes a tunnel barrier at the semiconducting junction between the left Au lead
and the hybrid. Voltages VT G and VSG are applied to the tunnel and super gate,
respectively. A magnetic field B is applied parallel to the nanowire. Four normal
leads are tunnel-coupled to the hybrid and denoted as tunnel probes P0, P1, P2
and P3 in Fig. 6.1B. The fifth lead forms a contact to the hybrid and is denoted
as a drain contact. The tunnel probe P0 utilizes the semiconducting tunnel barrier
controlled by the tunnel gate, while in the tunnel probes P1, P2 and P3 the AlOx
layer serves as a nm-thick tunnel barrier. The widths of probes P1, P2 and P3 are
designed to be 200nm and the lateral edge-to-edge distances between neighboring
probes are designed to be 200nm. Schematic transverse cross-sections of the device
are displayed in Fig. 6.1C-6.1E. The cross-section through the probes P1, P2 and P3
in Fig. 6.1D indicates that the nanowire has the superconducting Al shell on one of
its facets and that the AlOx layer extends over the entire contact area between the
hybrid and the Ag leads. Four white arrows indicate transport directions between
the Ag lead and the InSb-Al hybrid. The two middle arrows correspond to direct
tunneling to the Al shell and possibly through the Al shell into the hybrid. The
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Figure 6.1: Hybrid nanowire devices with nm-thick tunnel barriers: (A) False-colored
SEM image of a representative device. A nm-thick layer of AlOx (pink) fully covers
the Al (red) shell that is visible in the schematic cross-sections (B to E). Three Ag
(navy) leads are defined on top of the AlOx layer along the hybrid. Two Au (yellow)
leads contact the semiconducting InSb (light blue) nanowire on the left and the
hybrid on the right. The white scale bar corresponds to 1µm. (B) A schematic
longitudinal cross-section along the device with two Pd (dark grey) gates coupled to
the nanowire via dielectric HfO2 (light grey). Voltages VT G and VSG are applied to
the tunnel gate and the super gate, respectively. An external magnetic field B is
applied parallel to the nanowire as indicated by the black arrow. Four probes P0,
P1, P2 and P3 are tunnel-coupled to the hybrid nanowire contacted by the right
drain lead. The probe P0 utilizes the semiconducting tunnel barrier and the probes
P1, P2 and P3 use nm-thick tunnel barriers in the AlOx layer. (C to E) Schematic
transverse cross-sections through the tunnel probes and the drain. White arrows
indicate different tunneling paths between the Ag lead and the InSb-Al hybrid. (F) A
schematic perpendicular cross-section of a planar tunnel junction with an AlOx layer
as the tunnel barrier between an Al and an Ag film as the leads (top). Differential
conductance G of the junction as a function of a bias voltage Vb and an in-plane
magnetic field B (bottom). A superconducting gap of 325±5µeV and a critical
in-plane field of ∼ 3.3T can be extracted for the Al film.

other two arrows indicate transport via hybrid nanowire states. Direct tunneling
to the Al shell is dominant at energies above the Al superconducting gap, and is
strongly suppressed at energies below the gap - resulting from the hard gap of the
Al film. Transport via the hybrid nanowire states takes place only at energies below
the gap. The AlOx layer in the drain area is removed by Ar ion milling prior to the
deposition of the gold contacts - as shown in the cross-section through the drain
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lead in Fig. 6.1E. Details can be found in the Device fabrication section and Fig. 6.6
in the Supplementary Materials. A transmission electron microscopy (TEM) analysis
of the cross-section corresponding to Fig. 6.1D is made for a hybrid nanowire device
and shown in Fig. 6.7 in the Supplementary Materials. We note that the regular
hexagonal cross-sections in Fig. 6.1C and Fig. 6.1E are likely distorted in real devices
by the Ar ion milling.

A critical step in the fabrication of our hybrid nanowire devices is the formation
of the AlOx layer by an in-situ oxidation of the superconducting Al film. In order to
test this fabrication step, we fabricate a planar tunnel junction with a perpendicular
cross-section shown in the top panel of Fig. 6.1F. The junction leads are a
superconducting Al (red) film and a normal Ag (navy) film that partially overlap and
that are separated by a thin dielectric AlOx (pink) layer. The AlOx is formed by an
in-situ oxidation of the Al film, prior to the deposition of the Ag film. The tunnel
junction is characterized in the bottom panel of Fig. 6.1F by measuring the junction
conductance as a function of a bias voltage Vb and an in-plane magnetic field
B . The result represents typical tunneling spectroscopy of superconducting Al. As
shown in the panel, superconducting coherence peaks spin-split with the magnetic
field due to the Zeeman effect (g ≈ 2). This demonstrates that our process for in-situ
oxidation of Al can yield an AlOx layer as a nm-thick tunnel barrier for tunneling
spectroscopy. Next, we perform such in-situ oxidation on hybrid nanowires and
characterize these hybrid nanowire devices in electrical transport measurements.

We have studied three hybrid nanowire devices - Device 1, 2 and 3. Devices 1 and
2 are nominally identical and described in Fig. 6.1. For Device 3, Al is deposited
instead of Ag, so that three superconducting leads are defined on top of the AlOx
layer (see the Device fabrication section in the Supplementary Materials). Therefore,
the probes P1, P2 and P3 of Device 3 form three Josephson junctions with the hybrid
nanowire. The replacement of Ag by Al in Device 3 is motivated by proposals for
studying supercurrent in hybrid devices as an alternative way of detecting MZMs
[26, 27] and for realizing MZM-based qubits [28, 29].

As an initial step, Device 1 is characterized in conductance measurements by
different probes in a voltage-bias setup. The four probes P0, P1, P2 and P3 are
consecutively connected as in Setup V1 to measure the differential conductance (see
the Measurement setups section in the Supplementary Materials) and the results are
shown in Fig. 6.2. A voltage VT G = 2.1V is applied to the tunnel gate to define a
tunnel barrier in the semiconducting junction of probe P0. The super gate is set
to VSG = 0V. In the top row of Fig. 6.2, the differential conductance G = d I /dV is
measured by each probe as a function of a bias voltage Vb and a parallel magnetic
field B along the nanowire of Device 1. In the parallel B-field, the superconducting
gap detected by the four probes closes at 3−3.5T. The variations in the critical fields
can be explained by small misalignments of the applied fields in different probes -
as the nanowire is not perfectly straight. Furthermore, in contrast to the tunneling
spectroscopy of the Al film in Fig. 6.1F, there is no splitting of the coherence peaks
measured by probes P1, P2 and P3. This is most likely due to spin-mixing by
spin-orbit interaction in the semiconducting nanowire [30]. From each 2D-map in
Fig. 6.2, a linecut at zero field is taken and shown on logarithmic scale as a red
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Figure 6.2: Characterization of the tunnel probes by differential conductance
measurements: G as a function of Vb and B along the nanowire of Device 1
measured by (A) probe P0, (B) probe P1, (C) probe P2 and (D) probe P3 consecutively
connected as in Setup V1 (top row). The gate settings are VT G = 2.1V and VSG = 0V.
A red marker indicate the linecuts at zero field and the corresponding traces are
shown in logarithmic scale (bottom row). By finding the coherence peak positions,
a superconducting gap ∆ is extracted to be (A) 290±6µeV, (B) 298±3µeV, (C)
305±11µeV and (D) 301±5µeV.

trace in the bottom row of Fig. 6.2. In some traces, large negative values appear
at the coherence peaks and their origin is explained in the Measurement setups
section in the Supplementary Materials. A superconducting gap ∆∼ 300µeV of the
hybrid can be extracted from the positions of the coherence peaks. Noticeably,
in all four probes the differential conductance at Vb < ∆ (in-gap conductance) is
roughly two orders of magnitude lower than the differential conductance at Vb >∆

(out-of-gap conductance). However, the out-of-gap conductance in the probes with
AlOx tunnel barrier is two orders of magnitude larger than in probe P0 – due to the
large number of modes in the metallic leads of P1, P2 and P3. Similarly, the large
number of modes in P1, P2 and P3 would also lead to a larger subgap conductance
of these probes in comparison with P0. There are likely only a few or even just one
mode in the semiconducting junction contributing to the differential conductance of
P0. While the out-of-gap conductance in probes P1, P2 and P3 is predominantly
determined by direct tunneling to the Al shell, the in-gap conductance in these
probes is predominantly determined by the transport via the hybrid nanowire - as
a consequence of the hard superconducting gap of the Al (see Fig. 6.1F). In order
to measure the high out-of-gap conductance by P1, P2 and P3, the measurement
sensitivity is adjusted, and consequently the modulations of the in-gap conductance
cannot be precisely detected in Figs. 6.2B-6.2D. The subgap spectra in the probes P1,
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P2 and P3 are in detail studied in Fig. 6.4 and Fig. 6.5 of this work. A characterization
measurement like the one of Device 1 in Fig. 6.2 has been performed for Device 2
and similar results are shown in Fig. 6.10 in the Supplementary Materials.

In order to test the AlOx layer as a weak link for supercurrent measurements,
current-bias measurements are performed on Device 3 and the results are shown
in Fig. 6.3. Fig. 6.3B is a schematic cross-section through P1 (or P2, or P3). It
is shown that probe P1, as well as P2 and P3, uses a superconducting lead made
of thick Al. Together with the underlying AlOx layer and the superconducting Al
shell on the nanowire, the three superconducting leads of P1, P2 and P3 form three
asymmetric Josephson junctions – JJ1, JJ2 and JJ3. In order to characterize JJ1,
probes P1 and P2 are connected as in Setup I2 - such that probe P1 is current-biased
and a voltage drop V across JJ1 is measured (see the Measurement setups section
in the Supplementary Materials). V is measured as a function of a bias current Ib

and B , see Fig. 6.3A. The linecuts taken at B = 0T and B = 0.4T are displayed in
Fig. 6.3C. The linecut taken at B = 0T (bottom panel of Fig. 6.3C) shows a zero
voltage plateau due to the non-dissipative Josephson supercurrent with a switching
current of ∼ 200nA. This demonstrates that at low fields the probe P1 is in the
SIS transport regime (S-thin superconducting Al shell, I-thin dielectric AlOx, S-thick
superconducting Al lead). As the field increases in Fig. 6.3A, the zero voltage region
shrinks and disappears at B ∼ 0.2T due to the suppressed superconductivity in the
thick Al lead. Consequently, the SIS transport regime changes to SIN transport as
the thick Al lead changes from being superconducting (S) to being normal (N). The
linecut taken at B = 0.4T (top panel of Fig. 6.3C) confirms this, as it resembles
an I −V characteristic of the tunneling transport between a superconductor and a
normal metal. This shows that a parallel field of 0.4T is sufficient to turn the thick
Al lead fully normal and that at high fields the probes P1, P2 and P3 of Device 3 can
be used as normal probes for tunneling spectroscopy.

In Fig. 6.2 and Fig. 6.3, we demonstrate that the probes with nm-thick tunnel
barriers can serve to characterize superconductivity in hybrid nanowires. In the rest
of this work, we focus on measuring in-gap conductance by different probes with
the goal to study subgap states in hybrid nanowire devices.

The capability of probes with nm-thick tunnel barriers to detect subgap states is
examined for Device 1 in Fig. 6.4. In-gap conductance is measured by two tunnel
probes - probe P0 that utilizes the semiconducting tunnel barrier and probe P1 as
the nearest probe that utilizes the nm-thick tunnel barrier. Probes P0 and P1 are
connected as in Setup V2 (see the Measurement setups section in the Supplementary
Materials) and the super gate voltage is set at VSG = 0V. In-gap conductance is
measured by both probes as a function of Vb and B (Fig. 6.4A) or VTG (Fig. 6.4B).
Upon setting B or VT G , Vb is first swept on probe P0 with probe P1 at zero bias
voltage and then Vb is swept on probe P1 with probe P0 at zero bias voltage. In this
way, two consecutive tunneling spectroscopy traces are obtained for the same (field
or gate) parameter – suppressing possible effects from drift in the device or setup.
The conductance dependences in the top panels of Fig. 6.4A and 6.4B show that a
single subgap state is detected by probe P0 for the given ranges of B and VTG . The
strong modulation by VT G (Fig. 6.4B top) suggests that the subgap state is localized
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Figure 6.3: Characterization of the weak links by supercurrent measurements:
Current-bias measurement of Device 3 with probes P1 and P2 connected as in
Setup I2 and probe P1 being current-biased. (A) V as a function of Ib and B . (B)
Schematic transverse cross-section through the probes P1, P2 and P3 of Device 3
with superconducting Al (red) leads (the colors are as in Fig. 6.1). A magnetic field
parallel to the nanowire is applied as indicated. (C) Linecuts from (A) taken at
B = 0T (bottom) and B = 0.4T (top). The bottom linecut shows a switching current
of ∼ 200nA and corresponds to the SIS transport regime. The top linecut indicates
the SIN transport regime - as the thick Al of the lead turns normal at sufficiently
high B fields.

close to the semiconducting junction. Such subgap states are commonly detected in
tunneling spectroscopy with semiconducting tunnel barriers in two-terminal [31] and
three-terminal [16, 32–35] hybrid nanowire devices. Interestingly, the conductance
dependences in the bottom panels of Fig. 6.4A and 6.4B show that the same subgap
state is also detected by probe P1. This is additionally demonstrated by the linecuts
taken from Fig. 6.4A (Fig. 6.4B) and displayed in Fig. 6.4C (Fig. 6.4D) in which
aligned conductance peaks correspond to the same subgap state detected by the
two probes. The larger background subgap conductance of P1 - compared to P0 - is
due to the large number of modes in the metallic tunnel probes, as explained when
introducing Fig. 6.2. In addition, there are conductance peaks detected by probe
P1 that are not detected by probe P0 – indicating that these subgap states most
likely reside near P1 and are decoupled from P0. An additional tunnel gate sweep
at a finite B-field and positive super gate shows that the subgap states detectable
by both P0 and P1 remain detectable by P1 even when the semiconducting junction
is pinched-off (see Fig. 6.11 in the Supplementary Materials). This means that the
probe P1 can substitute the probe P0 over broader parameter ranges than what is
accessible to P0. An analogous measurement to the one in Fig. 6.4 has been carried
out on Device 1 with different parameter settings and on Device 2 (see Fig. 6.12 and
Fig. 6.13 in the Supplementary Materials) and the capability of AlOx tunnel probes
to detect hybrid states is validated there as well. From all our results (e.g. shown in
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Figure 6.4: Comparison between the tunneling spectroscopy by probes P0 and P1:
Conductance measurements of Device 1 with the probes P0 and P1 connected as in
Setup V2. (A) G as a function of Vb and B , VTG = 2.13V. (B) G as a function of Vb

and VTG , B = 0.64T. (C) Linecuts taken from (A) in black (probe P0) and red (probe
P1) at the B settings denoted by the markers. (D) Linecuts taken in (B) in black
(probe P0) and red (probe P1) at the VT G settings denoted by the markers. In (C)
and (D), the black and red linecuts are shown on different scales, see corresponding
colors on the left and right axis. Dashed vertical blue lines in (C) and (D) mark the
conductance peaks corresponding to the same subgap states detected by both P0
and P1.

Fig. 6.4 as well as Fig. 6.12 and Fig. 6.13), we note that the subgap states detected
by P0 have always been also captured by P1. As we demonstrate that tunnel probes
utilizing nm-thick tunnel barriers can detect subgap states in hybrid nanowires, in
the rest of this work we use only these probes to study the subgap spectra in our
hybrids.

An appealing advantage of the tunnel probes with nm-thick AlOx barriers is the
opportunity to use multiple probes along a single hybrid nanowire for exploring the
spatial distribution of subgap states. In Fig. 6.5, tunneling spectroscopy is performed
by the probes P1, P2 and P3 of Device 1 and Device 3 in order to study the subgap
spectra at different positions along the hybrid nanowires. The three probes of Device
1 are in pairs consecutively connected as in Setup V2 (first P1 and P2, and then P2
and P3, see the Measurement setups section in the Supplementary Materials) and
the tunneling spectroscopy results are shown in Fig. 6.5A. For Device 3, the three
probes are consecutively connected as in Setup V1 (see the Measurement setups
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Figure 6.5: Longitudinal dependence of the subgap spectra measured by probes
P1, P2 and P3: (A) G as a function of Vb and B along the nanowire of Device 1.
First, probes P1 (left) and P2 (middle) are connected as in Setup V2 and then probes
P1 and P3 (right) are connected as in Setup V2. The super gate is at VSG = 0.6V and
the tunnel gate is floating. All the subgap states are detectable only by single probes.
These states are marked by red, purple and green markers. (B) G as a function of Vb

and VSG of Device 3 measured by probes P1, P2 and P3 consecutively connected as
in Setup V1. B = 1T is applied along the nanowire and the tunnel gate is floating.
There is a subgap state detectable by the probes P2 and P3, and non-detectable by
the probe P1. This state is marked by yellow markers.

section in the Supplementary Materials) and the tunneling spectroscopy results are
shown in Fig. 6.5B. A high magnetic field is applied for the measurements of Device
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3 in order to fully suppress superconductivity in the thick Al leads of the probes P1,
P2 and P3.

The measurement in Fig. 6.5A is performed with the super gate of Device 1 at
VSG = 0.6V and the floating tunnel gate. Differential conductance is measured by
probes P1, P2 and P3 as a function of Vb and B . The subgap spectra obtained by
the three probes show different evolutions with B field. Probe P1 detects two kinds
of subgap states – subgap states insensitive to B (purple markers in Fig. 6.5A left)
and subgap states with high g factor (g ≈ 35) that cross zero energy as B is increased
(red markers in Fig. 6.5A left). The measurement in Fig. 6.11 in the Supplementary
Materials demonstrates that the subgap states detected by P1 reside at the hybrid
end even when the semiconducting junction is pinched-off. This indicates that the
states detected by probe P1 are not localized in the section not covered by Al, but
at the end of the hybrid. As the junction becomes conductive, the states with high
g factor exhibit a finite overlap with the junction and become detectable through
the semiconducting tunnel barrier (see Fig. 6.11). The states detected by probe P1
appear to be strongly localized at the hybrid end, as no subgap states are detected
by probe P2 (Fig. 6.5A middle). Another subgap state with low g factor (g ≈ 3.5)
(green marker in Fig. 6.5A right) is measured to be localized in the hybrid bulk
- as it is detected by probe P3, but is not detected by probe P2. The correlation
between the states detected by different probes has been examined while varying
the super gate (see Fig. 6.14 and Fig. 6.15 in the Supplementary Materials) or
changing the tunnel gate regime (see Fig. 6.16 in the Supplementary Materials). The
absence of correlations indicates that the subgap states detected in Device 1 are
localized over less than ∼ 200nm. A similar qualitative picture is observed for Device
2 and the corresponding measurements are shown in Fig. 6.17 in the Supplementary
Materials. Besides confirming the strong localization of the subgap states in Device
1, the measurements of Fig. 6.14 and Fig. 6.15 show some additional features of the
subgap states that can be used to better understand their nature. This is elaborated
in the Discussion section.

For the measurements of Device 3, B = 1T is applied along the nanowire and
the tunnel gate is floating. Superconductivity in the thick Al leads of probes P1,
P2 and P3 is fully suppressed due to the high field, and these probes are used
as normal tunnel probes. In Fig. 6.5B, each of the three probes is consecutively
connected as in Setup V1 (see the Measurement setups section in the Supplementary
Materials) and G is measured as a function of Vb and VSG . The order in which
the spectroscopy is performed is P2-P1-P3 (middle, left, right in Fig. 6.5B). Striking
similarities between the two subgap features detected by probes P2 and P3 indicate
the presence of a subgap state coupled to two bulk probes (yellow markers in Fig.
6.5B). However, the absence of any similar feature in the tunneling spectroscopy
by probe P1 (taken in between the measurements by P2 and P3) suggests that the
same state is not detectable at the end of the hybrid nanowire. This implies that
the subgap state extends over more than 200nm in the hybrid bulk, but does not
reach the hybrid end. Importantly, detecting such a state shows the capability of
probes with nm-thick tunnel barriers to detect extended subgap states. Another
extended subgap state is detected in the same device in another VSG range (see Fig.
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6.18 in the Supplementary Materials). Additional tunneling spectroscopy in a broad
super gate range (−10V <VSG < 10V) in all three probes is performed and the result
implies that the induced superconducting gap can be tuned somewhat with VSG (see
Fig. 6.19A in the Supplementary Materials). This demonstrates that the AlOx tunnel
probes are capable of identifying features of the induced gap - as these are observed
at energies below the superconducting gap of the Al shell. At VSG = 10V (and
B = 1T) the gap remains open along the hybrid of Device 3. Additional supercurrent
measurement at zero field shows that sweeping VSG from −2V to 2V has no effect
on the supercurrent measured by probe P1 (see Fig. 6.19B in the Supplementary
Materials). Together with the large switching current value, such insensitivity to
the super gate indicates that the hybrid states have a negligible contribution to the
supercurrent that is dominantly carried by the condensate in the Al shell.

6.3. DISCUSSION

In order to investigate the origin of various subgap states in our devices,
their sensitivity to magnetic and electric fields is examined in several additional
measurements shown in Figs. 6.14, 6.15, 6.16 and 6.17 in the Supplementary
Materials. We find that subgap states with high g factor are sensitive to local electric
fields (Figs. 6.14, 6.16 and 6.17), while the subgap states with low g factor are weakly
sensitive or insensitive to local electric fields (Figs. 6.14, 6.15 and 6.16). This is
consistent with the nature of hybrid states, where the sensitivity of a hybrid state
to both electric and magnetic fields are determined by its wavefunction distribution
between the superconductor and semiconductor.

Multiple subgap states with high g factor are formed for sufficiently positive super
gate (Fig. 6.14). We mark these states by red markers in Fig. 6.5. Our measurements
demonstrate that these states are not bulk states, as they are localized at the hybrid
end. They are detected also when the nearby tunnel gate is floating (Fig. 6.16). This
suggests that subgap states with high g factor may be inevitably localized at the
ends of hybrid nanowires due to variations of the electro-chemical potential caused
by the edges of the superconducting film. However, subgap states with high g factor
are not localized exclusively at the hybrid ends. Namely, we also detect them -
although much more rarely - as single subgap states localized inside the hybrid bulk
(Fig. 6.17).

The probes with nm-thick tunnel barriers show subgap states with low g factors
(purple and green markers in Fig. 6.5) and these states also show weak sensitivity
or insensitivity to the gates. We speculate that these states may be formed at the
InSb-Al interface - where the electric field is strongly screened. Besides, strong
spin-orbit interaction could be present at the interface due to band bending -
leading to the magnetic field-insensitivity of the interface states (purple markers in
Fig. 6.5A) [36].

Most of the subgap states in our devices can be detected by only one tunnel probe
(∼ 200nm extension) - either at the hybrid end (by probe P1) or inside the hybrid
bulk (by probe P2 or P3) - while some subgap states can be detected by two tunnel
probes (> 200nm extension). However, we do not report any subgap state being
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detectable by all three tunnel probes (> 600nm extension). This is comparable with
the results of a previous study [21], where tunnel probes had lateral separations of
∼ 500nm and there was no report on subgap states detected by multiple probes. The
presence of the localized subgap states and the absence of extended bulk subgap
states can be caused by inhomogeneities in the electro-chemical potential due to
disorder in the hybrid nanowires [17]. This could also explain the lack of signatures
of a topological phase transition in our subgap spectroscopy - neither at the ends (in
the form of ZBPs) nor inside the bulk of the hybrids (in the form of a gap reopening)
[19]. Furthermore, we have not observed stable ZBPs of most likely trivial origins.
Potentially, additional disorder in our devices can originate from the formation of
the tunnel probes as their leads may induce additional stress on the nanowires.
However, we emphasize that the tunneling spectroscopy performed by probe P0 in
our devices regularly reports subgap states sensitive to electric fields and with high
g factor - comparable to subgap states commonly detected in standard two-terminal
and three-terminal InSb-Al hybrids that use gate-defined tunnel barriers (same as
P0) and have no nm-thick AlOx probes.

A recent work on three-terminal nanowire hybrids has used non-local measurements
to study the hybrid bulk [33]. There, finite non-local conductance signals arising
at low bias voltages and high positive super gate voltages have been interpreted as
closing of an induced superconducting gap in the hybrid bulk due to an electrostatic
effect of the super gate. In our work, however, no gap-closing at positive super
gate voltages is detected in the hybrid bulk. A possible reason for this is that the
bulk states giving rise to the non-local signals are nanowire states that are weakly
coupled or even non-coupled to the superconductor. Therefore, such predominantly
semiconducting states could contribute weakly to the tunneling spectroscopy signals
in our work, since our probes couple most strongly to the nanowire region near the
Al facet.

6.4. CONCLUSION

We develop a new type of tunnel probes for tunneling spectroscopy of hybrid
InSb-Al nanowires. These probes use a nm-thick layer of AlOx as a tunnel barrier
that is created by in-situ oxidation of the superconducting Al shell on the nanowires.
Normal or superconducting leads defined by shadow-wall lithography technique
on top of the AlOx layer are used to probe the nanowire hybrids in tunneling
spectroscopy conductance and supercurrent measurements. We demonstrate that
such probes provide an alternative way of measuring subgap spectra at the nanowire
ends, and therefore can replace standardly used tunnel probes defined by local
gates. This allows for full elimination of gate-defined tunnel barriers in future
devices and significant diminishing of smooth potential profiles that inevitably arise
due to semiconducting junctions of gate-defined tunnel probes in hybrid nanowires.
Furthermore, the tunnel probes with AlOx tunnel barriers can be defined at any
position along a hybrid nanowire and therefore can be used to directly probe the
hybrid bulk. We exploit this advantage and utilize these tunnel probes to study the
longitudinal dependence of the subgap spectra in multiple hybrid nanowires. As a
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result, we identify Andreev bound states of various extension at the ends and inside
the bulks of the hybrids. Our work offers a new way of investigating the bulk-edge
correspondence in superconducting-semiconducting nanowires.

6.5. SUPPLEMENTARY MATERIALS

6.5.1. DEVICE FABRICATION

In this work, intrinsic Si wafers covered with 285nm SiO2 were used as substrates.
On top of the SiO2 layer, gates were lithographically defined and grown by depositing
3/17nm Ti/Pd in an electron-beam evaporator. After that, atomic layer deposition
(ALD) was used to grow ∼ 20nm high-quality HfO2 at 110◦C to serve as the gate
dielectric. Next, shadow-walls were defined on top of the HfO2 layer. In this
step, FOx-25 (HSQ) was first spun at 1.5krpm for 1 min and hot-baked at 180◦C
for 2 min. Then, the HSQ layer was lithographically patterned and developed
with MF-321 at 60◦C for 5 min. After the formation of the HSQ shadow-walls,
stemless InSb nanowires were precisely deposited on top of the gates by an optical
nano-manipulator. Fig. 6.6A displays the nanowire (light blue), gates (grey) and
shadow-walls (lilac) before further fabrications.

Figure 6.6B shows the deposition of the superconducting Al film. In this step,
several sub-steps were carried out. First, the native oxide on the surface of the InSb
nanowire was removed by a gentle hydrogen cleaning. Then, Al film was grown at a
temperature of 140K. The Al was deposited at an angle of 30◦ with respect to the
substrate and with a flux of 5.5nm (this is an aimed value and the actual thickness
can be different, see Fig. 6.7). Due to the hexagonal nanowire cross-section and the
specific deposition angle, three facets of the nanowire are covered with Al. As the
direction of the Al flux is perpendicular to one facet, the thickness of the Al film on
this facet corresponds to the flux. The Al flux forms angles of 30◦ with other two
facets and the substrate. Consequently, the Al film thickness there is half of the flux.
The Al growth was followed by in-situ oxidation in the load lock chamber of the
evaporator. Here, the Al film was oxidized for 10 min at 10Torr oxygen pressure. This
was precisely controlled such that the Al film on one nanowire facet (where it is
thicker) is partially oxidized and the Al film on the other two nanowire facets (where
it is thinner) and on the substrate is fully oxidized. Therefore, the superconducting
Al remains only on one nanowire facet. On this facet, it is covered by the thin
dielectric AlOx layer which continuously extends over the other two nanowire facets
and the substrate - as the Al there has been completely turned into AlOx (see Fig.
6.7). The full oxidation of the Al on the substrate was additionally confirmed by
measuring high resistance (∼ GΩ) of Al films on chips without nanowires after the
same Al deposition and in-situ oxidation steps. The thin AlOx layer on top of
the InSb-Al nanowire would serve as tunnel barriers for tunnel probes, which are
fabricated in the next step.

After the oxidation in the load lock chamber, the sample was warmed up to
room temperature and then it was inserted back into the evaporation chamber. As
shown in Fig. 6.6C, 80nm Ag was deposited at an angle of 18◦ with respect to the
substrate. Due to the smaller deposition angle in comparison to the Al deposition
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Figure 6.6: Device fabrication by shadow-wall lithography: (A) A schematic
representation of the top view on a substrate with a nanowire (light blue), gates
(grey) and shadow-walls (lilac). Dashed black lines denote three transverse cross
sections X1, X2 and X3 depicted below. (B) A schematic representation of the top
view on the substrate and X1, X2 and X3 cuts for the Al (red) deposition at 30◦ with
respect to the substrate. (C) Analogous to (B), but for the Ag (navy) deposition at
18◦ with respect to the substrate. Due to the smaller angle, the shadow-walls create
longer shadows during the Ag deposition and three probes are selectively defined
along the nanowire.

at 30◦, the shadow-walls cast longer shadows and block the growth of Ag on the
nanowire sections aligned with the shadow-walls. Consequently, Ag reaches the
nanowire only through the interruptions in the shadow-walls, which determine the
positions of the three Ag leads along the hybrid. These leads are grown on top of the
previously formed AlOx layer and are used as probes P1, P2 and P3. The described
Ag deposition was performed for Device 1 and 2. For Device 3, the probes P1, P2
and P3 are made of thick Al rather than Ag, while keeping all the other parameters
unchanged.
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A transmission electron microscopy (TEM) analysis of a transverse cross-section
of a hybrid nanowire device with Ag leads is made and shown in Fig. 6.7. From
the figure, we see that the device is composed of materials as designed. On the
top and bottom-right facets of the nanowire, O appears where Al exists, indicating
a fully oxidized Al layer on these two facets. For top-right facet, O only exists on
the surface of the Al layer, leading to an oxidized layer on the surface. From the
bottom three panels in Fig. 6.7, we observe that the atomic fraction of Al is always
higher than that of O. Though the reason is not known yet, we are confident that
the Al layer with O is oxidized enough to be insulating, as the planar SIN junction
in Fig. 6.1F is fabricated with similar oxidation condition and the planar junction
exhibits appealing tunneling spectroscopy results. Besides, we see that the element
Ag appears in the Al region on the top-right facet and the reason is not known yet
to us. In addition, we see that the thickness of the AlOx and Al layers in TEM cuts
is a bit different from the designed values. However, the device functionality is not
influenced.

The normal probe P0 and the drain contact were fabricated ex-situ after the
growth of probes P1, P2 and P3. First, the two contacts were lithographically defined
at the nanowire ends. Then, Ar ion milling was used to remove the native oxide (for
the contact of probe P0) and the AlOx layer (for the drain contact), where also the
Al can be affected by the Ar ion milling. Finally, 10/120nm of Ti/Au was deposited
in an electron-beam evaporation step followed by lift-off.

For the fabrication of the planar tunnel junction (Fig. 6.1F), a substrate with
specifically designed shadow-walls and without gates and nanowires was used. The
Al film was deposited and then in-situ oxidized at the pressure of 1Torr. Next, the
Ag film was deposited. See details in Ref. (32) cited in the main text.

6.5.2. MEASUREMENT SETUPS

The measurements were performed at a base temperature of ∼ 20mK inside a
dilution refrigerator equipped with a superconducting vector magnet. As shown
in Fig. 6.8, three voltage-bias setups (V1, V2 and V3) are used for conductance
measurements and two current-bias setups (I1 and I2) are used for supercurrent
measurements. Table 6.1 summarizes the used measurement setups for each figure
and corresponding serial resistance in each setup is provided as well. In the
following paragraphs, we will discuss each measurement setup in Fig. 6.8 in detail.

In the voltage-bias setups (V1, V2 and V3), dc-voltage sources are used to
set dc-components of the bias voltages (Vb) and current-meters are used to
measure dc-components of the currents (I ). Lock-in amplifiers are used to apply
ac-components of the bias voltages (dVb with amplitudes of 10µV) and measure
ac-components of the currents (d I ) - in order to obtain the differential conductance
(G). The values of the dc- and ac-bias voltages are corrected for the voltage drops
across a serial resistance Rs as Vb → Vb − I Rs and dVb → dVb −d I Rs (Rs for each
setup is given in Table 6.1). The differential conductance at the dc bias voltage of
Vb − I Rs is G = d I /(dVb −d I Rs ).

Setup V1 represents a two-terminal voltage-bias setup where a bias voltage
Vb +dVb is applied to a single probe and a current I +d I is measured in the drain
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Figure 6.7: Transmission electron microscopy (TEM) analysis of a transverse
cross-section of a hybrid nanowire. (1) The most left panel in the first row is the
high-angle annular dark-field scanning transmission electron microscopy (HAADF
STEM) image of the cross-section. Three linecuts of the integrated atomic fractions
within the green boxes are shown in the third row. (2) The right three panels in
the first row and the four panels in the second row display the energy-dispersive
X-ray spectroscopy (EDX) composite maps of different elements, including In, Ag, Al,
C, Sb, Hf and O. (3) In the third row, atomic fractions of different elements along
the three traces are shown. Traces 1, 2 and 3 come from the top, top-right and
bottom-right facet of the hybrid nanowire, respectively. The top and bottom-right
facet both have ∼ 4nm of Al, as well as ∼ 4nm of O - indicating fully oxidized facets.
For the top-right facet, the AlOx layer is a bit thinner (∼ 3nm). The thickness of the
Al layer without oxide is ∼ 5.5nm.

contact. The three remaining probes are floating. Fig. 6.8A shows Setup V1 with the
bias voltage applied to the probe P1. The serial resistance Rs = 8.89kΩ includes the
resistances of the two fridge lines and the series resistances of the voltage source,
current-meter and low-pass filters on the PCB. When the differential conductance is
high, even a slight overestimation of Rs may cause obtaining falsely negative G - due
to the negative value of dVb −d I Rs . This is the reason for the large negative values
in the traces of Fig. 6.2. The setup can be applied analogously to any other probe.

In Setup V2 bias voltages Vb1 +dVb1 and Vb2 +dVb2 are applied to two probes and
a current I +d I is measured in the drain contact. The remaining two probes are
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Figure 6.8: Measurement setups: Each panel contains a schematic representation of
the nanowire device with the four probes P0, P1, P2 and P3 and the drain lead. Five
panels represent the five measurement setups: (A) Setup V1, (B) Setup V2, (C) Setup
V3, (D) Setup I1 and (E) Setup I2. For each setup, any probe or pair of probes can
be chosen to be analogously connected as in the shown examples.

floating. Fig. 6.8B shows Setup V2 with the bias voltages applied to the probes P1
and P2. Two lock-in amplifiers are used for applying dVb1 (lock-in1 at frequency
f1) and dVb2 (lock-in2 at frequency f2). Upon setting a parameter value (magnetic
field or gate voltage), the dc-bias voltages are consecutively swept on the two probes
and the differential conductance is measured by the corresponding lock-in amplifier.
For instance, Vb1 is swept and the lock-in1 is used to measure the ac-current d I in
the drain, while both Vb2 and dVb2 are fixed at zero (P2 is an inactive probe in
this case). Then, Vb2 is swept and the lock-in2 is used to measure the ac-current
d I in the drain, while both Vb1 and dVb1 are fixed at zero (P1 is an inactive
probe in this case). Consequently, the inactive probe is effectively grounded and
the ac-current d I in the drain has the frequency fi while the dc-bias voltage Vbi is
being swept (i = 1,2). Grounding the inactive probe opens an additional channel
for current that does not flow through the drain contact. Consequently, this could
cause underestimations of the dc-current I and the ac-current d I . However, the
additional channel has a resistance of the order of hundreds of kΩ (if probe P1, P2
or P3 is grounded), or even of the order of MΩ (if probe P0 is grounded), see the
red traces in Fig. 6.2. These resistances are much higher than the resistance in
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````````````Fig. 6. ...
Setup (Rs )

V1 (8.89kΩ) V2 (8.89kΩ) V3 (5.81kΩ) I1 I2

1 ×
2 ×
3 ×
4 ×
5A ×
5B ×
9 ×
10 ×
11 ×
12A ×
12B ×
13 ×
14 ×
15 ×
16 ×
17 ×
18 ×
19A ×
19B ×

Table 6.1: List of figures with corresponding measurement setups marked in grey.

the line of the drain contact (order of few kΩ). Therefore, the current in Setup V2
are predominantly drained by the drain contact and the underestimation due to the
additional channel is negligible. This is additionally confirmed in Fig. 6.11, where
the conductance measured by probe P1 does not change upon changing probe P0
from a pinch-off to a tunneling regime. Upon disconnecting P1 and P2 in Fig. 6.8B,
the setup can be analogously applied to any other pair of probes.

In Setup V3 bias voltages Vb1 +dVb1 and Vb2 +dVb2 are applied to two probes and
currents I1+d I1 and I2+d I2 are measured in these probes while the drain contact is
connected to the cold-ground. The remaining two probes are floating. An additional
voltmeter is used to detect the cold-ground fluctuation and correct the bias voltages.
Fig. 6.8C shows Setup V3 with the bias voltages applied to the probes P1 and P2.
Two lock-in amplifiers are used for applying dVb1 (lock-in1 at frequency f1) and
dVb2 (lock-in2 at frequency f2). As in Setup V2, upon setting a parameter value
(magnetic field or gate voltage), the dc-bias voltages are consecutively swept on
the two probes and the differential conductance is measured by the corresponding
lock-in amplifier. While the dc-bias voltage is swept at one probe, the other probe
is kept effectively grounded, as explained for Setup V2. The serial resistance for
each probe is Rs = 5.81kΩ, smaller than that in Setup V2, as the drain contact is
connected to the cold-ground. Upon disconnecting P1 and P2 in Fig. 6.8C, the setup
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can be analogously applied to any other pair of probes.

The use of Setup V2 and Setup V3 is motivated by an advantage to reliably
examine the correlation behaviors between two probes. In contrast to Setup V1,
the bias voltage is swept consecutively on both probes at each gate or magnetic
field set point. This allows for a direct examination of the correlation between the
subgap spectra in the two probes. Even if drifts in the device or setup are present,
they appear at the same gate or field set point in both probes, and thus do not
complicate the evaluation of the correlation in Setup V2 and Setup V3.

In spite of different setups being in use, we do not see that switching between
different configurations influences the electrostatic environment. As it can be seen
in Fig. 6.18, changing the setups does not affect the measured subgap spectra.

In the current-bias setups (I1 and I2), dc-current sources are used to set dc-bias
currents (Ib) and voltmeters are used to measure dc-voltage drops (V ). In order to
allow for four-terminal configurations, each probe is connected to two fridge lines.
Probe P0 is kept floating in the current-bias measurements.

In Setup I1 a bias current Ib is applied between two probes (or between one probe
and the drain). A voltage drop V is measured between the two probes (or between
the probe and the drain). The remaining probes are floating. Fig. 6.8D shows Setup
I1 with the bias current applied between the probes P1 and P2, and the voltage drop
measured across the series of two Josephson junctions (JJ1 of P1 and JJ2 of P2).
Upon disconnecting P1 and P2 in Fig. 6.8D, bias current can analogously be applied
in the same setup between any other pair of probes (or a probe and the drain).
Note that if two probes are connected in the setup, a series of two JJs is measured,
and if one probe and the drain are connected in the setup, a series of a single JJ
and the drain contact is measured. If the drain contact has a finite resistance, Ib −V
characteristics exhibit a finite slope instead of a plateau below the switching current
of the junction.

In Setup I2 a bias current Ib is applied between one probe and the drain. A
voltage drop V is measured between the probe and its first neighboring probe. The
remaining probes are floating. Fig. 6.8E shows Setup I2 with the bias current applied
to the probe P1, and the voltage drop measured between P1 and P2. Note that the
current in P2 is zero and that the measured voltage drop corresponds to the voltage
drop only across the Josephson junction of the probe that is current-biased (JJ1).
Upon disconnecting P1 and P2 in Fig. 6.8D, bias current can analogously be applied
in the same setup to any other probe. In contrast to Setup I1, Ib −V characteristics
exhibit a zero-voltage plateau below the switching current of the junction - as the
voltmeter measures only the voltage drop across the junction.

Device 3 is first characterized at zero magnetic field and zero gate voltages
by measuring Ib −V characteristics in current-bias measurements. First, each
superconducting probe (P1, P2 and P3) is connected with the drain contact as in
Setup I1 (see the top row in Fig. 6.9). Then, each pair of the superconducting probes
is connected as in Setup I1 (see the bottom row in Fig. 6.9). The six measured Ib −V
characteristics reveal a residual resistance of Rdr ai n ∼ 8.2kΩ in the drain contact,
as shown in Fig. 6.9. Therefore, the current-bias measurements of Device 3 are
performed in Setup I2, such that voltage drops developed across the drain contact
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Figure 6.9: Contact resistance of the drain in Device 3: Ib −V characteristics (black)
obtained in current-bias measurements of Device 3 at zero field. The indicated pairs
of leads are connected as in Setup I1. By fitting the characteristics at high bias
(red) with linear functions, series resistances of two Josephson junctions or of one
Josephson junction and the drain are obtained and denoted in the bottom-right
corners. The resistances of the three Josephson junctions and the resistance of the
drain contact are estimated to be: R J J1 ∼ 1.1kΩ, R J J2 ∼ 0.4kΩ, R J J3 ∼ 0.5kΩ and
Rdr ai n ∼ 8.2kΩ,.

are not measured. The residual resistance Rdr ai n can be attributed to an incomplete
removal of AlOx by the Ar ion milling during the ex-situ fabrication of the drain
contact. In order to avoid voltage divider effects due to the residual drain resistance,
the conductance measurements of Device 3 are performed only in Setup V1. Since
the residual drain resistance is much smaller than the subgap resistance of the
tunnel probes (hundreds of kΩ), applied bias voltages predominantly drop across the
tunnel probes, and tunneling spectroscopy can reliably be performed in Setup V1.

Tunnel gate of Device 3 was not functional as it had a leakage to the nanowire -
likely due to the Ar ion milling damaging the HfO2 gate dielectric. Therefore, the
tunnel gate of Device 3 was floating in all measurements.

6.5.3. EXTENDED DATA

Below we show additional measurement results that reproduce or supplement our
findings presented in the main text.
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Figure 6.10: Characterization of the tunnel probes by differential conductance
measurements (Device 2): G as a function of Vb and B measured by probes P0, P1
and P2. First, probes P0 (left) and P1 (middle) are connected as in Setup V3, and
then probes P1 and P2 (right) are connected as in Setup V3. Probe P3 of Device 2 is
not functional. The gate voltages are VT G = 0.75V and VSG = 0V. Subgap states in
P1 and P2 cannot be resolved due to the sensitivity of the lock-in amplifier being
adjusted to measure high out-of-gap conductance in these probes, similar as in Fig.
6.2.
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A

B

Figure 6.11: Effect of the tunnel gate on the tunneling spectroscopy by probes P0
and P1 (Device 1). (A) G as a function of VTG for P0 at a bias voltage of −0.6mV
with the super gate and other probes floating. The data is measured as in Setup V1.
We would note that the pinch-off trace was taken with different parameter settings
from panel (B). In spite of this, the panel shows that the tunnel gate is able to tune
the semiconducting junction from a relatively open regime to a tunneling regime.
(B) G as a function of Vb and VTG measured by probes P0 and P1 connected as
in Setup V2. A magnetic field of 0.23T is applied perpendicular to the substrate -
such that a subgap states is detected by P0 and P1- and VSG = 0.6V. For VTG above
∼ 1.2V, the semiconducting junction of probe P0 is conductive and the subgap state
is detectable by both probes. The same state can be detected by P1 while the
junction of P0 is pinched-off.
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Figure 6.12: Comparison between the tunneling spectroscopy by probes P0 and P1
with different parameter settings (Device 1): G as a function of Vb and B measured
by probes P0 and P1 at (A) VSG = 0.6V and VTG = 1.5V and (B) at VSG = 0.6V and
VTG = 2.12V. The panel (A) is measured as in Setup V2 and the panel (B) is measured
as in Setup V3.
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Figure 6.13: Comparison between the tunneling spectroscopy by probes P0 and P1
(Device 2): G as a function of Vb and VTG measured by probes P0 and P1 connected
as in Setup V3, at B = 0T and VSG = 0V. Subgap states sensitive to the tunnel gate
are detectable by both probes. Subgap states insensitive to the tunnel gate are only
detectable by P1.
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Figure 6.14: Effect of the super gate on the tunneling spectroscopy by probes P1
and P2 (Device 1): G as a function of Vb and VSG measured by probes P1 and P2
connected as in Setup V2. The tunnel gate is floating and B = 0.34T. For VSG above
∼ 0.4V, subgap states sensitive to the super gate are detected by P1. Also, subgap
states insensitive to the super gate are detected by P1. None of these states are
detectable by P2.
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Figure 6.15: Effect of the super gate on the tunneling spectroscopy by probes P2
and P3 (Device 1): G as a function of Vb and VSG measured by probes P2 (left) and
P3 (middle) connected as in Setup V2. The tunnel gate is floating and B = 0.5T. A
narrow VSG range is remeasured by P3 in higher resolution (right). No subgap states
are detected by P2. Subgap states weakly sensitive to the super gate and a single
subgap state highly sensitive to the super gate are detected only by P3.

Figure 6.16: Effect of the tunnel gate on the tunneling spectroscopy by probes P1
and P2 (Device 1): G as a function of Vb and B measured by probes P1 and P2
connected as in Setup V2, at VSG = 0.6V. The tunnel gate is floating (left) or set to
VTG = 1.5V (right). Only the subgap states with high g factor at the end of the hybrid
are sensitive to the tunnel gate regime. All other properties of the spectra are not
affected by the tunnel gate regime.
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Figure 6.17: Effect of the tunnel gate and parallel magnetic field on the tunneling
spectroscopy by probes P1 and P2 (Device 2): G as a function of Vb and VTG (left)
or B (right) measured by probes P1 and P2 connected as in Setup V3, at VSG = 0V.
B is fixed at 0.6T in the gate sweep and VTG is fixed at 0.81V in the field sweep.
Multiple subgap states with high g factor are detected by single probes. A subgap
state tunable by the tunnel gate is detected only by P1. This implies that all the
subgap states are localized within ∼ 200nm along the hybrid.
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Figure 6.18: An example of a subgap state detectable by multiple probes (Device
3): G as a function of Vb and VSG measured by probes: (A) P3, (B) P2 and (C) P1
consecutively connected as in Setup V1, at B = 1T. The measurements are performed
in the order P3-P2-P1. The super gate is swept over the same voltage range multiple
times for each probe in order to check the charge stability of the electrostatic
environment (repeated measurements are shown in the same row of (A-C)). A single
subgap state is detected by both P3 and P2. This state is sensitive to a charge jump
observed in the second measurement by P2. The same state appears shifted in the
third measurement by P2. A subgap state in the same VSG range is detected by P1.
However, the lever arm of the super gate in this measurement is different – meaning
that the subgap state detected by P1 may be different from the one detected by the
other two probes.
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Figure 6.19: Effects of the super gate over broad voltage ranges (Device 3): (A) G as
a function of Vb and VSG measured by probes P1, P2 and P3 consecutively connected
as in Setup V1. The tunnel gate is floating and B = 1T. (B) V as a function of Ib and
VSG at zero magnetic field. Probes P1 and P2 are connected as in Setup I2, with the
bias current applied to P1.
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7
HARD SUPERCONDUCTING GAP IN

GERMANIUM

The co-integration of spin, superconducting, and topological systems is emerging as
an exciting pathway for scalable and high-fidelity quantum information technology.
High-mobility planar germanium is a front-runner semiconductor for building
quantum processors with spin-qubits, but progress with hybrid superconductor-
semiconductor devices is hindered by the difficulty in obtaining a superconducting
hard gap, that is, a gap free of subgap states. Here, we address this challenge
by developing a low-disorder, oxide-free interface between high-mobility planar
germanium and a germanosilicide parent superconductor. This superconducting
contact is formed by the thermally-activated solid phase reaction between a metal,
platinum, and the Ge/SiGe semiconductor heterostructure. Electrical characterization
reveals near-unity transparency in Josephson junctions and, importantly, a hard
induced superconducting gap in quantum point contacts. Furthermore, we
demonstrate phase control of a Josephson junction and study transport in a gated
two-dimensional superconductor-semiconductor array towards scalable architectures.
These results expand the quantum technology toolbox in germanium and provide
new avenues for exploring monolithic superconductor-semiconductor quantum circuits
towards scalable quantum information processing.

The work in this chapter has been published as: A. Tosato, V. Levajac, J.-Y. Wang, C. J. Boor, F.
Borsoi, M. Botifoll, C. N. Borja, S. Marti-Sánchez, J. Arbiol, A. Sammak, M. Veldhorst and G.
Scappucci "Hard superconducting gap in germanium", Communications Materials 4, 23 (2023)
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7.1. INTRODUCTION

The intimate coupling between superconductors and semiconductors in hybrid
devices is at the heart of exciting pursuits, including topological qubits with
Majorana zero modes [1, 2], superconducting (Andreev) spin qubits [3], and
gate-tunable superconducting qubits [4]. Combining hybrid devices with high-fidelity
semiconductor spin qubits in a single material platform may resolve key challenges
for scalable quantum information processing. In particular, quantum information
transfer between spin and topological qubits [5–8] may enable a universal gate set
for topological quantum computation and, conversely, superconductors may be used
to coherently couple spin qubits at a distance via crossed Andreev reflection [5, 9]
or topologically protected links [10].

The use of epitaxial superconducting Al to induce a hard superconducting gap
in III-V semiconductors [11, 12] stimulated great progress with hybrid devices,
leading to experimental reports of topological superconductivity in planar Josephson
junctions [13] and in electrostatically defined quasi-1D wires [14], the demonstration
of Andreev spin qubits [3], and the realization of a minimal Kitaev chain in coupled
quantum dots [15]. However, spin qubits in III-V semiconductors suffer from the
hyperfine interactions with the nuclear spin bath [16] that severely deteriorate their
quantum coherence [17] and challenges their integration with hybrid devices.

On the other hand, spin qubits with quantum dots in Ge [18–21] can achieve
long quantum coherence due to the suppressed hyperfine interaction [22] and the
possibility of isotopic purification into a nuclear spin-free material [23]. Thanks to
the light effective mass [24] and high mobility exceeding one million cm2/Vs [25],
holes in planar Ge/SiGe heterostructures have advanced semiconductors spin qubits
to the universal operation on a 2×2 qubit array [26], and the shared control of
a 16 semiconductor quantum dot crossbar array [27]. Moreover, the ability of
holes to make contacts with low Schottky barrier heights to metals [28], including
superconductors, makes Ge a promising candidate for hybrid devices. Initial
work used superconducting Al to contact Ge either via thermal diffusion [29–31]
or by deposition on the sidewalls of etched mesas [32, 33]. However, the key
demonstration of a superconducting gap in Ge free of subgap quasiparticle states
is lacking, challenged by the difficulty of contacting uniformly a buried quantum
well (QW) with a superconductor, whilst maintaining the low disorder at the
superconductor-semiconductor interface and in the semiconductor channel.

Here we address these challenges and demonstrate a hard superconducting gap
in Ge. We contact the quantum well with a superconducting germanosilicide
(PtSiGe), similar to the silicidation process used by the microelectronics industry for
low resistance contacts [34]. The superconductor is formed uniformly within the
heterostructure and reaches the buried quantum well via a controlled thermally-
activated solid phase reaction between the metal (Pt) and the semiconductor stack
(Ge/SiGe). This process is simple, robust, and does not require specialised vacuum
conditions or etching because the superconductor-semiconductor interface is buried
into the pure semiconducting heterostructure and consequently remains pristine.
This represents a conceptually different approach compared to the subtractive
nanofabrication processes commonly used for hybrid devices, since our additive
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process does not deteriorate the active area of the semiconductor. As a result,
we demonstrate a suite of reproducible Ge hybrid devices with low disorder and
excellent superconducting properties.

7.2. RESULTS

7.2.1. MATERIAL PROPERTIES

Our approach to superconductor-semiconductor hybrid devices in Ge is illustrated in
Fig. 7.1a. We use an undoped and compressively-strained Ge quantum well, grown
by chemical vapor deposition on a Si(001) wafer [35] and separated from the surface
by a SiGe barrier (Methods). This heterostructure supports a two-dimensional hole
gas (2DHG) with high mobility (∼ 6×105 cm2/Vs), long transport scattering time τ

(∼ 30 ps), and long mean free path (∼ 7µm) (Supplementary Fig. 7.6) and hosts
high-performance spin-qubits [20]. Crucial for the reliable search of topological
superconductivity [36] and for scaling to large spin-qubit architectures [37], the
disorder in our buried Ge quantum wells is characterised by an energy level
broadening ℏ/2τ of ∼ 0.01 meV, which is more than one order of magnitude
smaller than in the other material systems exhibiting a hard superconducting
gap (Supplementary Table 7.1).

As shown by the schematics in Fig. 7.1a, we obtain PtSiGe contacts to the
quantum well by room-temperature evaporation of a Pt supply layer, metal lift-off,
and rapid thermal process at 400 °C (Methods). This low-temperature process
preserves the structural integrity of the quantum well grown at 500 °C, whilst
activating the solid phase reaction driving Pt into the heterostructure and Ge and
Si into the Pt (Supplementary Fig. 7.8). As a result, low-resistivity germanosilicide
phases are formed [38, 39] and under these process conditions the obtained
PtSiGe films are superconducting with a Tc ≈ 0.5K and an in-plane critical field
of Bc∥ ≈ 400 mT (Supplementary Fig. 7.7). Finally, we use patterned electrostatic
gates, insulated by dielectric films in between, to accumulate charge carriers in
the quantum well and to shape the electrostatic confinement potential of the
hybrid superconductor-semiconductor devices (Methods). This approach to hybrid
devices is different compared to the conventional process with 1D nanowires, where
an epitaxial superconductor proximitizes the semiconductor region underneath.
Because we do not perform any etch during the nanofabrication of hybrid devices,
the low-disorder landscape that determines the 2DHG high mobility is likely to
be preserved when further dimensional confinement is achieved by means of
electrostatic gates. By contrast, for processes where etching of the superconductor is
required, the fabrication of hybrid devices yields to mobility degradation [40].

The morphological, structural, and chemical properties of the hybrid devices are
inferred by aberration corrected high-angle annular dark-field scanning transmission
electron microscopy (HAADF-STEM) and electron energy-loss spectroscopy (EELS).
Fig. 7.1b shows a HAADF-STEM image of a cross-section of a superconductor-
normal-superconductor quantum point contact (SNS-QPC) taken off-center to
visualise the two gate layers (Fig. 7.2a shows a top view of the device). We
observe a uniform quantum well of high-crystalline quality, with sharp interfaces to
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Figure 7.1: Material properties of superconductor-semiconductor Ge devices. a)
Schematics of the fabrication process for a superconductor-normal-superconductor
quantum point contact (SNS-QPC). First, platinum is deposited on the heterostructure,
then thermal annealing at 400 °C drives Pt in the heterostructure to form PtSiGe,
finally two gate layers are deposited, insulated by Al2O3. b) False-color high
angle annular dark field scanning transmission electron microscopy (HAADF STEM)
image of a cross-section of a SNS-QPC. The PtSiGe contacts are violet, the Ti/Pd
constriction gate (CG) operated in depletion mode is yellow, the Ti/Pd accumulation
gate (AG), used to populate the quantum well, is green. A scanning electron
microscopy top view image of this device is shown in Fig. 7.2, c) Atomic resolution
HAADF STEM image of the Ge/PtSiGe interface along with the indexed fast Fourier
transforms (FFTs) of the two regions (black squares) within the PtSiGe contacts
and a schematics of the PtSiGe orthorhombic unit cell. The corresponding ternary
lattice parameters T = aT ,bT ,cT that define the dimensions of the unit cell can be
calculated, in a first approximation, by Vegard’s law: TPtSi1−xGex = x BPtGe+ (1−x) BPtSi

where B = aB ,bB ,cB are the lattice parameters of the binary compounds PtSi and
PtGe, and x is the relative content of Ge with respect to Si. d) Electron energy-loss
spectroscopy (EELS) composition maps showing the Pt, Ge, Si and O signals for
the central area of the TEM lamella of panel b, the scale-bar indicates 50 nm. The
PtGeSi stoichiometry is extracted by quantitative EELS analysis and reported in
Supplementary Fig. 7.9

the adjacent SiGe and absence of extended defects. As a result of the annealing,
Pt diffuses predominantly vertically through the SiGe spacer reaching the quantum
well. The sharp lateral interfaces between the two PtSiGe contacts and the QW in
between set the length of the channel populated by holes via the top-gates. The
PtSiGe film presents poly-crystalline domains with a crystal size up to 50×50 nm
and orthorhombic phase (PBNM, space group number 62) [41]. This is inferred
from the power spectra or fast Fourier transforms (FFTs) taken from the two PtSiGe
domains interfacing with the QW from the left contact, shown in Fig. 7.1c along
with a schematic view of the unit cell of such phase. More detailed studies
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by high-resolution plane TEM are required to assess the junction uniformity in
the direction parallel to the junction and whether this would impact Majorana
experiments. The analysis of EELS elemental concentration profiles across the
Ge QW→PtSiGe heterointerface (Supplementary Fig. 7.9) reveals that the threefold
PtSiGe stoichiometry is Ge-rich, with relative composition in the range between
Pt0.1Si0.2Ge0.7 and Pt0.1Si0.05Ge0.85 depending locally on the analysed grain. The
EELS compositional maps in Fig. 7.1d show the elemental distribution of Ge, Si, Pt,
Al, and O, at the key regions of the device. We observe Pt well confined to the
two contacts areas, which also appear Ge-rich. Crucially, O is detected only in the
Al2O3 dielectric layer below the gates, pointing to a high-purity quantum well and a
pristine superconductor-semiconductor interface.

7.2.2. HIGHLY TRANSPARENT JOSEPHSON JUNCTION

We perform low-frequency four-terminal current and voltage bias measurements
(Methods) on the SNS-QPC device shown in Fig. 7.2a to infer the properties
of the superconductor-semiconductor interface. Accumulation (AG, in green) and
constriction (CG, in yellow) gates control transport within the 70 nm long channel
between the two PtSiGe leads. We apply a large negative voltage to the accumulation
gate to populate the quantum well with holes, and we then control the effective
width of the channel by applying a more positive voltage to the constriction gates,
thus depleting the underlying quantum well.

The current bias measurements (Fig. 7.2b) reveal a tunable supercurrent with a
plateau when the constriction gate voltage VCG is in the range ≈ [−1.75,−1.50] V. This
is the same range where we observe the first conductance plateau in the normal-state
conductance GN (Fig. 7.2b, right inset), indicating that the switching current (Isw)
plateau observed in the color plot stems form the supercurrent discretization due
to the discrete number of modes in the QPC [30, 42]. Supercurrent discretization
up to the third conductance plateau is shown in Supplementary Fig. 7.10 (data are
for a different SNS-QPC device with identical design to the one presented here).
The discretization of the supercurrent at zero magnetic field, indicates that the
quality of the 2DHG is preserved also upon the formation of the superconducting
contacts. We use the switching current as a lower bound for the critical current
and we estimate an IswRN product of 51 µV, showing an improvement as compared
to previous results obtained with pure Al contacts in Ge QWs [30, 32, 33], despite
the Al Tc is higher than the PtSiGe Tc. The measured IswRN product is ∼ 0.5
the theoretical IcRN product calculated for a ballistic short junction using the
Ambegaokar–Baratoff formula π∆∗/2e = 110µV with Ic being the critical current, ∆∗
the induced superconducting gap and e the electron charge [43]. This discrepancy
has been observed in previous works [30, 44] and is consistent with a premature
switching due to thermal activation [45].

By operating the device in voltage-bias configuration and stepping the constriction
gates, we observe in the conductance color plot the typical signature of multiple
Andreev reflections (MARs) (Fig. 7.2c). When the applied voltage bias corresponds
to an integer fraction of 2∆∗, with ∆∗ being the induced superconducting gap,
we observe differential conductance d I /dV peaks (dips) in the tunneling (open)
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Figure 7.2: Highly-transparent Josephson junctions. a) False-color scanning electron
microscope image of the SNS device. The PtSiGe contacts are violet, the constriction
gates (CG) are yellow and the accumulation gate (AG) is green. The channel length
between the two super-conducting leads is 70 nm and the channel width between
the constriction gates is 40 nm. The two constriction gates are separate by design
but always shorted together during measurements. b) Color map of the voltage
drop across the junction V vs source-drain current ISD and constriction-gate voltage
VCG at zero magnetic field along with normal-state conductance (GN) trace vs VCG.
GN is calculated as the conductance average where the voltage drop across the
device is in the range [500, 650] mV or -[650,500] mV, that is much higher than
the estimated superconducting gap. c) Color map of G in units of 2e2/h vs the
source-drain voltage VSD and VCG. Bottom panel shows line-cuts of conductance at
VCG = [−1.25,−1.4,−1.49] V, red lines are the fit with the coherent scattering model
from which transparency τ is extracted. Right inset shows the evolution of the
transparency, as extracted from the fitting of conductance curves to the coherent
scattering model (Methods), with the constriction gate VCG. d) Color map of G
vs T and VSD (top panel), and vs B∥ and VSD (bottom panel), where B∥ is the
in-plane magnetic field in the direction of transport and T the temperature. The
color scale in panel d has been saturated to better infer the low conductance
limit. The source-drain bias is applied between the PtSiGe contacts, and the voltage
drop across the junction is measured with a standard four-terminal setup. The
accumulation voltage for measurements in b,c and d was set to −4.5 V, where the
2DHG is expected to reach saturation density (see Supplementary Fig. 7.6) of
≃ 6×1011 cm−2 [35]. Measurement presented in b, c and in panel d (bottom), are
performed at 15 mK, corresponding to an electron temperature of ∼ 25mK.

regime [46, 47]. We measure MARs up to the 5th order, suggesting that the coherence
length ξN in the Ge QW is a few times larger than the junction length L, and setting
a lower bound to the phase coherence length in the QW lψ > 5L = 350nm. These
observations are consistent with the findings of ref. [33] where a similar Ge/SiGe
heterostructure is used. Fitting the differential conductance with the coherent
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scattering model described in ref. [48] (and used in refs. [44, 47, 49]) reveals
single channel transport with gate tunable transparency up to 96%. Such a high
transparency confirms the high quality interface between the PtSiGe and the Ge QW.
From the MARs fit we estimate an induced superconducting gap ∆∗ = 70.6±0.9µeV,
which is about half compared to the ∆∗ = 129µeV [14] and 150 µeV [50] for recent
InAs-Al devices reporting topological superconductivity.

Further, we characterise the evolution of the induced superconducting gap with
temperature and magnetic field. After setting the device in tunneling regime, where
sharp coherence peaks are expected at e|VSD| = 2∆∗ (Fig. 7.2d), we observe the
induced superconducting gap closing with increasing temperature and magnetic field.
By fitting the temperature dependence of the coherence peaks with the empirical
formula from ref. [51] we obtain a critical temperature of 0.5 K. The peak close to
zero bias emerging at T > 0.2K can be explained in terms of thermally-activated
quasiparticle current [49]. The in-plane magnetic field in the transport direction
quenches the superconductivity at Bc∥ = 0.37T. The same critical field is found for
the in-plane direction perpendicular to the transport direction while for the out of
plane direction Bc⊥ = 0.1T (Supplementary Fig. 7.11). This in-plane vs out-of-plane
anisotropy is expected given the thin-film nature of the PtSiGe superconductor [45].

7.2.3. HARD INDUCED SUPERCONDUCTING GAP

To gain insights into the quality of the Ge/PtSiGe junction we characterise transport
through the normal-superconductor quantum point contact (NS-QPC) device shown
in Fig. 7.3a. Importantly, the methodology based on spectroscopy of NS devices
alleviates the ambiguity of measuring the amount of quasiparticle states inside
the gap with SNS junctions [31]. On the left side of the QPC there is a PtSiGe
superconducting lead and on the right side a normal lead consisting of a 2DHG
accumulated in the Ge QW. With the accumulation gate (AG) set at large negative
voltages to populate the QW we apply a more positive voltage to the constriction
gates (CG), creating a tunable barrier between the superconducting and the normal
region. In Fig. 7.3b we progressively decrease the barrier height (decreasing
VCG) going from the tunneling regime, where conductance is strongly suppressed,
to a more open regime where conductance approaches the single conductance
quantum G0. Line-cuts of the conductance color map are presented in the
bottom panel of Fig. 7.3c. In the tunneling regime, we observe a hard induced
superconducting gap, characterised by a two orders of magnitude suppression of the
in-gap conductance to the normal-state conductance, and the arising of coherence
peaks at e|VSD| ≈∆∗ = 70µeV. Fig. 7.3b also shows that the induced superconducting
gap varies with the constriction gate voltage. This observation brings confidence that
we are measuring the induced superconducting gap rather than the parent gap [52].
A possible explanation is that, upon increasing the density in the semiconductor
nearby the junction, the coupling to the parent superconductor might vary, as also
observed in other hybrid nanostructures [53].

The evolution of the gap as a function of in-plane magnetic field (B∥) shown in
Fig. 7.3c confirms that the gap remains hard for finite magnetic fields up to 0.25 T,
ultimately vanishing at B∥ ≈ 0.37 T. The magnetic field evolution of the gap in all
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Figure 7.3: Hard induced superconducting gap. a) False-color SEM image of the
normal-superconductor quantum point contact device (NS-QPC). The PtSiGe contact
is violet, the constriction gate (CG) are yellow and the accumulation gate (AG)
is green. The two constriction gates are separate by design but always shorted
together during measurements. b) Color map of conductance G vs the source-drain
voltage VSD and constriction gate VCG, along with line cuts in log-scale of G at
the constriction gate voltages VCG = [−733,−710,−695] mV marked by the colored
segment in the color-plot. c) Color map of G in units of 2e2/h vs the in-plane
magnetic field B∥ perpendicular to the transport direction and constriction gate VCG,
along with line cuts in log-scale of G at the field strength B∥ = [0.01,0.1,0.2,0.3] T
marked by the colored segment in the color-plot. d) Conductance traces normalised
to the above-gap conductance (G/GN) vs VSD in tunneling regime for 6 different
NS-QPC devices D1-D6 processed in the same fabrication run, device D1 is the one
reported in Fig 7.3 a-c, in the remaining devices the constriction gates separation
varies (specifications of these devices are provided in Supplementary Fig. 7.13).

three directions matches the behaviour observed in the SNS-QPC (Supplementary
Fig. 7.12).

Finally, Fig. 7.3d reports the conductance traces in tunneling regime for all
the six measured devices (an overview of the geometries of these devices and
the respective measurements are available in the Supplementary Fig. 7.13, the
conductance maps for all these devices are shown in Supplementary Fig. 7.14).
For all devices we observe suppression of conductance equal or larger than two
orders of magnitude. At a quantitative level, the conductance traces of Fig.
7.3d are well fitted by the BTK theory [54] (Supplementary Fig. 7.14) consistent
with a hard induced superconducting gap free of subgap states [11, 44]. This
finding is the signature of a robust process that yields a reproducible high-quality
superconductor-semiconductor interface, overcoming a long-standing challenge for
hybrid superconductor-semiconductor quantum devices in Ge.
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7.2.4. SUPERCONDUCTING QUANTUM INTERFERENCE DEVICES

We use the superconducting quantum interference device (SQUID) in Fig. 7.4a to
demonstrate phase control across a Josephson junction, an important ingredient
for achieving topological states at low magnetic field [50, 55–57]. The device is
composed of two Josephson field-effect transistors (JoFETs) with a width of 2 µm
and 1 µm for JoFET1 and JoFET2 respectively, and equal length of 70 nm. The
critical current of the junctions Ic1 and Ic2 can be tuned independently by applying
the accumulation gate voltages VAG1 and VAG2 to the corresponding gates. We
investigate the oscillations of the SQUID switching current as a function of the
out-of-plane-magnetic field penetrating the SQUID loop. Namely, we set VAG1 and
VAG2, such that both arms support supercurrent and Ic1 ≫ Ic2. This condition
provides that the first junction is used as a reference junction and that the phase
drop on it is flux-independent, while the phase drop over the second junction
is therefore modulated by the external flux through the loop. This allows the
measurement of the current-phase-relation (CPR) of the second junction. This is
demonstrated in Fig. 7.4b where the shown SQUID oscillations are well fitted by the
relation: Ic,SQUID = Ic1(B⊥A1)+ Ic2(B⊥A2)sin(2π(B⊥ASQUID −LIc1(B⊥A1))/Φ0) where
Ic1,2(B A1,2) are the Fraunhofer dependencies of the critical current obtained from
fitting the Fraunhofer pattern of each junction (Supplementary Fig. 7.15), A1,2 are
the junction areas, B⊥ is the out-of-plane magnetic field and Φ0 the flux quantum.
From the fit of the data in Fig. 7.4b (red dashed-line) we extract the effective SQUID
loop area ASQUID = 8.9µm2 (comparable to the 10 µm2 SQUID geometric area) and
the self-inductance L = 1.65pH. In order to confirm for the self-inductance effects,
we also fit SQUID oscillations for the opposite direction of the current bias (blue
dashed-line) and we get similar values for the effective loop area and self-inductance.

7.2.5. SCALABLE JUNCTIONS

As a first step towards monolithic superconductor-semiconductor quantum circuits
in two dimensions, we fabricate and study transport in a macroscopic hybrid
device comprising a large array of 510 PtSiGe islands (Fig. 7.5a) and a global
top gate. Each pair of neighbouring islands forms a Josephson junction whose
transparency can be tuned by the global accumulation gate. The top panel of Fig.
7.5b shows a current bias measurement of the junctions array resistance. As the
accumulation gate becomes more negative, all the junctions are proximitized and
a supercurrent flows through the device. Remarkably, as the source-drain current
approaches the junctions critical current the whole array simultaneously switches
from superconducting to resistive regime, as shown from the sharp resistance step
(Fig. 7.5b top).

With this device we also study the evolution of the switching current in a small
perpendicular magnetic field. In the bottom panel of Fig. 7.5b we observe
Fraunhofer-like interference, along with the fingerprint of flux commensurability
effects associated with the periodicity of the array. At integer numbers of flux
quantum per unit area of the periodic array f = B⊥/B0, where B0 =Φ0/A with A the
junction area and Φ0 the flux quanta, we observe switching current peaks at ±1 f ,
2 f , 3 f , 4 f and 5 f , denoted by a black arrow in the plot. We also notice this effect
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Figure 7.4: Phase control of a Josephson junction in a SQUID. a) False-color SEM
image of the two JoFET SQUID device. The JoFETs have a channel length of 70 nm
and a channel width of 1 µm and 2 µm respectively and can be independently
controlled by gates AG1 and AG2. The geometric loop area of the SQUID is of
10 µm2, calculated assuming a rectangle with sides positioned in the center of the
PtSiGe loop cross-section. b) Color-plot of voltage drop (V ) across the SQUID vs
current (I ) and out-of-plane magnetic field (B⊥). Arrows represent the direction of
the current (I ) sweep. With the gate voltages set at VAG1 =−3.5V and VAG2 =−1.65V
the superconducting phase drops mainly over the second junction. Upon sweeping
the out-of-plane magnetic field B⊥ we observe oscillations of the switching current.
Red and blue dashed lines are the fit of the evolution of the critical current with
magnetic field. The magnetic field is applied in the out of plane direction as
depicted in panel a.

at fractional values of f , most notably at f /2 (red arrow). Flux commensurability
effects, due to the pinning and interference of vortices in Josephson junctions arrays,
have been previously reported [58, 59].

The observation of simultaneous switching of super-current and of the Fraunhofer
pattern with flux commensurability effects, suggests that all islands effective areas
are similar and that the supercurrent through the various junctions is comparable,
meaning that all junctions respond synchronously to the applied gate voltage.
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a b c

Figure 7.5: A gated 2D superconductor-semiconductor array. a) 3D and top view
schematics of an array of 51×10 PtSiGe islands. The inset shows an atomic
force microscopy image of the PtSiGe islands of the array. The PtSiGe islands are
930×930 nm wide and the separation between neighbouring islands is of 70 nm. b)
Top panel shows a color map of sheet resistance (RS) vs accumulation gate voltage VG

and source-drain current ISD. Bottom panels shows a color map of sheet resistance
vs out of plane magnetic field B and source-drain current ISD. The measurement is
taken at gate voltage VG =−1.99V, where we expect carriers in the quantum well to
approach a saturation density value of about 6×1011 cm−2 and have a mean free
path (∼ 7µm) much longer than the separation between neighbouring islands. Black
arrows denote the magnetic field corresponding to one flux quantum Φ0 per unit cell
of the array. Red arrows correspond to one-half flux per unit cell. c) Sheet resistance
as a function of temperature for gate voltages ranging from −2 V to −1.55 V. Yellow
curves correspond to small negative gates, and purple curves to large negative gates.

This is further supported by the observation of sharp switching of super-current
and the Fraunhofer pattern of a 1D array of superconducting islands presented in
Supplementary Fig. 7.16.

Finally we present in Fig. 7.5b the sheet resistance as a function of temperature
for different gate voltages. As the gate voltage becomes more negative, the coupling
between neighbouring superconducting islands increases and the system transitions
from an insulating to a superconducting regime. At low gate voltage the resistance
increases with decreasing temperature (yellow curves) indicating the insulating state,
while at high gates the resistance drops to zero (purple curves) owing to the
global superconducting state. At intermediate gate voltages (−1.95V ≤ VG ≤−1.93V,
orange curves) there is a transition where the resistance shows a weak temperature
dependence. It will be interesting to study this regime in detail, in light of the
recent claims of an anomalous metallic state between the superconducting and the
insulating phases [59].
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7.3. CONCLUSION AND FUTURE PROSPECTIVES

We have developed superconducting germanosilicides for contacting Ge quantum
wells, which has resulted in excellent superconducting properties imparted to
the high-mobility 2DHG. We induced a hard superconducting gap in Ge, a
large advancement compared to previous work on Ge hybrid superconductor-
semiconductor devices [30–33]. We were able to observe a hard gap with 100% yield
across all the six measured devices, pointing to a robust and reproducible fabrication
process. Next to this central result, we further demonstrate phase control across a
Josephson junction and take advantage of the planar geometry to scale these devices
in 2D arrays.

While we focused on the poly-crystalline superconducting PtSiGe compound, we
anticipate two strategies to further increase the size of the induced superconducting
gap, which sets a relevant energy scale for hybrid devices. Firstly, following the
approach in ref. [33] a superconducting layer with a larger gap, such as Al or
Nb, may be deposited on top of the superconducting PtSiGe. Secondly, other
ternary superconducting germanosilicides with a higher critical temperature may be
explored, starting from the deposition and thermal anneal of other platinoid metals
such as Rh and Ir [60].

Based on our findings, we foresee the following use cases for superconductor-
semiconductor hybrids in high mobility planar Ge. Although a hard gap is necessary
but not sufficient on its own for achieving a topologically protected system, this
work positions planar Ge as a promising platform to explore Majorana bound states
in phased-biased Josephson junctions [13, 61, 62]. Calculations with experimentally
realistic material parameters [57] show that accessing the topological phase is
feasible by careful design of Ge planar Josephson junctions geometries that relaxes
magnetic field and spin-orbit constrains. More advanced future experiments should
build on our current results to fully assess the readiness of Ge for Majorana
bound states experiments, such as increasing the induced superconducting gap and
measuring it by non local spectroscopy in multi-terminal devices and demonstrate
the two-electron charging effect in hybrid Ge/PtSiGe islands, a pre-requisite for their
use in topological quantum computation.

Crucially, the realization of a hard superconducting gap positions planar Ge as
a unique material platform to pursue the coherent coupling of high fidelity spin
qubits using crossed Andreev reflection to enable two-qubit gates over micrometer
distances [5, 9]. Remote coupling of spin qubits in Ge may also be achieved by
coupling spin qubits via superconducting quantum dots [5, 6], potentially offering
a topological protection[10]. Coupling on an even longer distance may be obtained
via superconducting resonators [63]. In such a scenario, a capacitive interaction may
suffice, but connecting the resonator to a superconducting ohmic, such as PtSiGe,
could result in a larger lever arm and therefore boost the coupling, while a direct
tunnel coupling would give further directions to explore. The ability to couple
qubits over different length scales is highly relevant and a critical component in
network-based quantum computing [37].

Furthermore, the demonstration of a hard gap in Ge motivates the investigation of
alternative spin qubits systems, such as Andreev spin qubits (ASQ) [64, 65], that may



7.4. SUPPLEMENTARY INFORMATION

7

181

be coupled with gatemons [66] or superconductors [67]. Similar to semiconductor
spin qubits, the use of isotopically purified Ge [23] may overcome the strong
decoherence from the nuclear environment currently limiting progress with ASQs in
III-V materials [3, 66].

All together, these findings represent a major step in the Ge quantum information
route, aiming to co-integrate spin, superconducting, and topological systems for
scalable and high-fidelity quantum information processing on a silicon wafer.

7.4. SUPPLEMENTARY INFORMATION

7.4.1. METHODS

Ge/SiGe heterostructure growth. The Ge/SiGe heterostructure of this study is grown
on a 100-mm n-type Si(001) substrate using an Epsilon 2000 (ASMI) reduced pressure
chemical vapor deposition reactor. The layer sequence comprises a Si0.2Ge0.8 virtual
substrate obtained by reverse grading, a 16 nm thick Ge quantum well, a 22 nm-thick
Si0.2Ge0.8 barrier, and a thin sacrificial Si cap [35]. Detailed electrical characterisation
of heterostructure field effect transistors from these heterostructures are presented
in ref. [35].

Device fabrication. The fabrication of the devices presented in this paper entails
the following steps. Wet etching of the sacrificial Si-cap in buffer oxide etch for 10 s.
Deposition of the Pt contacts via e-gun evaporation of 15 nm of Pt at pressure of
3×10−6 mbar at the rate of 0.5 Å/s. Rapid thermal anneal of Pt contacts at 400 °C for
15 minutes in a halogen lamps heated chamber in argon atmosphere. Atomic layer
deposition of 10 nm of Al2O3 at 300 °C. Deposition of the first gate layer via e-gun
evaporation of 3 nm of Ti and 17 nm of Pd. For the devices with a second gate layer
the last two steps are repeated, 27 nm of Pd are deposited for the second gate layer
to guarantee film continuity where overlapping with first gate layer.

Transport measurements. Electrical transport measurements of the SNS-QPC,
NS-QPC, SQUID devices are carried out in a dry dilution refrigerators at a base
temperature of 15 mK, corresponding to an electron temperature of ≈25 mK measured
with a metallic N–S tunnel junction thermometer. This refrigerator is equipped with
a 3-axis vector magnet. Measurements of the junctions array are carried out in a wet
dilution refrigerator with base temperature of 50 mK and z-axis magnet.

Measurements are performed using a standard 4-terminals low-frequency lock-in
technique at the frequency of 17 Hz. Voltage bias measurements are performed with
an excitation voltage VAC < 4µV. By measuring in a four-terminal setup, additional
data processing to subtract series resistances of various circuit components is
avoided. For the measurements in Fig. 7.2b, c, d and Fig. 7.5b the (maximum) gate
voltage is tuned to be just below the threshold for hysteresis, caused by trapped
charges in the surface states at the semiconductor/dielectric. In these electrostatic
conditions the valence band edge at the semiconductor/dielectric interface and the
Fermi level align and the density in the buried channel is expected to approach a
saturation density of about 6×1011 cm−2 [35].

Fraunhofer meeasurements for SQUID arms We measured the Fraunhofer pattern
for each junction of the SQUID device independently (Supplementary Fig. 7.15)
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by measuring the dependence of its critical current on the out-of-plane magnetic
field while the gate voltage of the measured junction is set to −3.5V and the
other junction is pinched-off. By fitting the obtained dependencies Ic1,2(Φ1,2) as
Ic1,2(B A1,2) = Ic01,2 sin(πB A1,2/Φ0)/(πB A1,2/Φ0), where B is the out-of-plane magnetic
field and Φ0 is superconducting flux quantum, we obtain from the fits the areas of
the two junctions to be A1 = 1µm2 and A2 = 0.48µm2. Note that the ratio A1/A2 ∼ 2,
as designed and shown in Fig. 7.4a, while the values for both areas are smaller than
the geometrical areas in the design due to the flux focusing effects.

Simulations and fitting of MARs. The experimentally measured conductance
Gexp (V ) of an SNS junction is assumed to be superposition of N single-mode
contributions [47]:

Gtheor y (V )
M∑

i=1
Ni G (τi ,∆)(V ) (7.1)

where G (τi ,∆) is the simulated conductance for the Ni modes with transparency
τi . We allow for M different transparencies, but all Ni modes have the same
superconducting gap ∆. The simulations of conductance were implemented in
Python using a modified version of the code presented in ref. [68].

The theoretically computed conductance Gtheor y (V ) is fitted to Gexp (V ) using
a nonlinear least-squares procedure: χ = ∫

[Gexp (V )−Gtheor y (V )]2dV is minimised
for the fitting parameters ∆, Ni , τi with i ∈ 1, ..., M . The fitting is performed for
increasing M , provided that all Ni and τi are nonzero. We note that we assume
a coherent 1D system. When the MAR contribution is significant, this assumption
leads to an overestimation of the sharpness and amplitude of the peaks. Nonetheless,
overall we find a good agreement between the data and the model.

7.4.2. KEY METRICS

In Table 7.1 we present a comparison of key metrics for material systems for hybrid
superconductor-semiconductor applications. Given that in this paper the main focus
is on applications that require the presence of a hard gap, we limit the table only
to semiconductor-superconductor material systems with a hard gap assessed via NS
spectroscopy, which is a reliable measurement for verifying the absence of subgap
states.

On the first half of Table 7.1 we present the typical values for different platforms
for (peak) mobility (µ), disorder quantified by the transport level broadening (ℏ/2τ,
where τ is the elastic scattering time), size of induced superconducting gap (∆∗), spin
orbit length (lSO) and g-factor (g∗), important metrics for accessing the topological
phase. On the second half of Supplementary Table 7.1 we illustrate the metrics
that are significant for control and operation of spin qubits: relaxation time (T1),
dephasing time (T ∗

2 ) and 1 qubit gate fidelity (1Q gate fidelity). For a comprehensive
review of performance metrics of spin qubits in gated semiconducting nanostructures
see ref. [17]. While III-V materials benefit from a larger induced superconducting
gap and g-factor, planar Ge proximitized by PtSiGe stands out for the exceptionally
low disorder (quantified by the high µ and low ℏ/2τ), which is necessary for the
emergence of topological Majorana zero modes [36]. In line with the remarks made
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Semiconductor Superconductor
µ ℏ/2τ ∆∗ lSO g∗ T1 T ∗

2

(×103 cm2/Vs) (µeV) (µeV) (nm) (ms) (ns)

Ge/SiGe, 2D PtSiGe 615 10 70 76 0.76-15 32 833

InSb, nw Al 44 940 250 100 26-51 na 8

InAs, nw
Al

25 890
270

60 8 0.001 8
Pb 1250

InAs, 2D Al 60 370 190 45 10 na na

InSbAs, 2D Al 28 1200 220 60 55 na na

Table 7.1: Comparison of key metrics for building quantum information processing
devices based on topological or spin-qubit systems. We consider only systems where
a hard hap is assessed via NS spectroscopy, the most reliable measurement for
verifying the absence of subgap states. From left to right, columns indicate: the
semiconductor system and whether it is a planar heterostructures (2D) or a nanowire
(nw); the superconductor material used to proximitize the semiconductor; maximum
carrier mobility (µ), typically Hall mobility in 2D systems and estimated field effect
mobility in nanowires; the disorder quantified by the transport level broadening
(ℏ/2τ, where τ is the elastic scattering time)[36]; maximum induced superconducting
gap (∆∗); spin-orbit length (lSO); g-factor (g∗), the range can be large when the
g-factor is strongly anisotropic; longest relaxation time (T1) measured in a spin qubit,
longest dephasing time (T ∗

2 ) measured in a spin-qubit; largest measured 1 qubit gate
fidelity (1Q gate fidelity). The metrics reported in this table are reported from the
references below as following. Ge/SiGe, 2D: µ from this work; ℏ/2τ calculated using
m∗ = 0.09 [24]; Ge/SiGe-PtSiGe ∆∗ from this work; lSO = 76 nm (corresponding to a
spin-orbit energy of 2.2 meV) follows from the cubic Rashba coefficient α3 reported
in ref. [69] at a density of 6.1×1011 cm−2, for which we assume an effective mass
of 0.09 [35]; g∗ [70]; T1 [71]; T ∗

2 [20]; 1Q gate fidelity [72]. InSb, nw: µ [73]; ℏ/2τ
calculated using m∗ = 0.014 [74]; InSb-Al ∆∗ [75]; lSO [76]; g∗ [77]; T ∗

2 [78].; 1Q gate
fidelity. InAs nw: µ [79]; ℏ/2τ calculated using m∗ = 0.0026 [74]; InAs-Pb ∆∗ [80];
InAs-Al ∆∗ [81]; lSO [82]; g∗ [79]; T1 [83]; T ∗

2 [84]. InAs 2D: µ [14], ℏ/2τ calculated
using m∗ = 0.026 [74], InAs-Al ∆∗ [12], lSO [12, 40], g∗ [12]. InSbAs 2D: µ [85], ℏ/2τ
calculated using m∗ = 0.018 [85], ∆∗ [85], lSO [85], g∗ [85].

in the introductory section, planar Ge also shows excellent spin qubit metrics.
This comparison positions Ge/SiGe-PtGeSi as a compelling platform for topological
devices, where small disorder is necessary to preserve the topological gap ( δτ > ℏ

2τ ,
where δτ is the topological gap and and for hybrid devices, were we envision the
coupling of spins via cross Andreev reflection mechanisms, Andreev spin qubits, and
the co-integration of spins, topological, and superconducting qubits.

7.4.3. SUPPLEMENTARY FIGURES



7

184 HARD SUPERCONDUCTING GAP IN GERMANIUM

Figure 7.6: 2DHG transport properties. Mobility µ vs 2D-carrier density p2D

(left panel) and 2D-carrier density vs accumulation gate VG for a Hall-bar shaped
heterostructure field-effect transistor fabricated on the same 22 nm deep Ge/SiGe
heterostructure used for all devices in this work. The maximum mobility of
615×103 cm2/Vs is reached at the density of 5.5×1011 cm−2, corresponding to an
elastic transport scattering time τ = 31 ps, calculated using m∗ = 0.09 [24] and a
mean free path of 7.4 µm. The density vs gate curve deviates from the expected
linear behaviour due to tunneling of charges from the quantum well to the the trap
states at the oxide interface, partly screening the electric field in the quantum well.
The density and mobility reach saturation when the states at the triangular well in
the SiGe barrier at the oxide interface start to populate and thus screen the electric
field in the QW.

a b c

Figure 7.7: PtSiGe film characterization. a) Critical perpendicular magnetic field
Bc⊥ and critical temperature Tc of a PtSiGe film deposited and anneled in a 22 nm
deep Ge/SiGe QW for different process conditions. The colours of the markers
indicate the thickness of the deposited platinum layer (that covers the whole surface
of a 3×3 mm Ge/SiGe heterostructure) and the anneal temperature. The filled
(open) markers correspond to an anneal time of 15 (30) minutes. The marker’s
shape signifies the used atomic layer deposition (ALD) of Al2O3 process: no ALD
(circles), ALD with 60 min pre-heating at 300 °C (squares), or ALD with 15 min
pre-heating (triangles). In both ALD processes, 10 nm of Al2O3 was deposited. b, c)
Analysis of the critical temperature and fields of a 3 µm wide PtSiGe strip (15 nm
Pt has been annealed for 15 minutes at 400 °C). Resistance R versus perpendicular
magnetic field (B⊥) and parallel magnetic field (B∥) for various temperatures T .
These measurements were performed in a 4-probe configuration with standard low
frequency lock-in technique in a wet dilution refrigerator with electron temperature
of 100 mK.
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Figure 7.8: Structural details of the PtSiGe poly-cristalline phase. High-angle
annular dark field scanning transmission electron microscopy (HAADF STEM) and
crystallographic information of the SNS-QPC device. The yellow and blue insets show
atomic-resolution images of both the left and right contacts highlighting the sharp
interfaces between the QW and the PtSiGe film. The atomic-resolution micrograph
in the center (green) displays the high quality of the Ge QW interfaces with
diamond-structure (FD3-MS, space group number 227). The local contrast variations
observed here are attributed to uneven thickness distribution of the lamella due to
the focused ion beam (FIB) sample preparation. The fast Fourier transform (FFT)
on the top right (green) indicates that the (002) planes in the QW grow epitaxially
following the [001] axis. In addition, no dislocations were identified. The insets on
the bottom left and right show the power spectra that identify the orthorhombic
phase (PBNM, space group number 62) of the PtSiGe film.
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20 nm

a b

c

Figure 7.9: PtSiGe stoichiometry. Electron energy-loss spectroscopy (EELS)
quantitative compositional map of the region indicated from the white arrow in the
HAADF STEM image (a) of the Ge/PtSiGe interface of the SNS-QPC. The threefold
PtSiGe stoichiometry presented in panel (b) is Ge-rich, with relative composition
in the range between Pt0.1Ge0.7Si0.2 and Pt0.1Ge0.85Si0.05 depending locally on the
analysed grain. Panel (c) shows the quantitative EELS compositional maps for Ge, Si
and Pt. The averaged signal in the region along the green arrows is shown in panel
(b).

a b

Figure 7.10: Supercurrent discretization. a) Voltage drop V across an SNS-QPC
device as a function of the source drain current ISD and constriction gate voltage
VCG. Discrete plateaus in the switching current can be observed, indicating a discrete
number of modes in the QPC. b) Normal-state differential conductance G versus
VCG taken at out-of-plane magnetic field B⊥ = 0.6T, showing plateaus at quantized
value of conductance. The plateaus in the two plots are slightly shifted with respect
to each other due to the hysteretic behaviour of the device.
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a b c

Figure 7.11: SNS-QPC, evolution of the superconducting gap with magnetic field.
Color map of conductance G in units of 2e2/h vs source-drain bias VSD and magnetic
field B for the SNS-QPC. From left to right the magnetic field direction is: in-plane
parallel to transport (B∥∥), in-plane perpendicular to transport (B∥⊥), out of plane
(B⊥). The device is tuned in the tunneling regime to show the evolution of the
induced superconducting gap with the strength of the magnetic field.

a b c

Figure 7.12: NS-QPC, evolution of the induced superconducting gap with magnetic
field. Color map of conductance G in units of 2e2/h vs source-drain bias VSD and
magnetic field B for the NS-QPC. From left to right the magnetic field direction is:
in-plane parallel to transport (B∥∥), in-plane perpendicular to transport (B∥⊥), out of
plane (B⊥). The device is tuned in the tunneling regime to show the evolution of the
induced superconducting gap with the strength of the magnetic field.

Device Constriction width (nm) 

1 25 
2 25 
3 50 
4 50 
5 50 
6 75 

PtSiGe

500 nm

AG

w

CG

CG

Figure 7.13: NS-QPCs devices specifications. False-color SEM image of a normal-
superconductor quantum point contact device (NS-QPC). The PtSiGe contact is
violet, the constriction gates (CG) are yellow and the accumulation gate (AG) is
green. The constriction width (w) between the two CGs is varied across the 6
measured devices and is reported in the table. The 6 devices were fabricated in the
same fabrication run.
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Figure 7.14: Conductance maps of 6 NS-QPC devices. Color map of G in units of
2e2/h vs. the source-drain voltage VSD and constriction gate VCG, for the 6 NS-QPC
devices presented in the main text, along with the conductance line-cuts presented
in Fig. 7.3d main text. The red segment in the color maps indicates the VCG of
each linecut. Fits of the conductance linecuts to the BTK model [54] (red lines)
are consistent with a hard induced superconducting gap. Variation on the VCG

operational window can be ascribed both to the different constriction gate size and
to the accumulation gate voltage used for the specific measurement. The different
evolution of G as a function of VCG can also be related to the different accumulation
gate voltages.
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Figure 7.15: JoFETs Fraunhofer pattern for the SQUID device. Fraunhofer pattern
of the small junction (JoFET2, left panel) and large junction (JoFET1, right panel) of
the SQUID device. White dashed line represents the fitting of the switching current
to the theoretical Fraunhofer formula.

VG ~

Vxx

a b c

Figure 7.16: 1D PtSiGe superconducting array. a) Top view schematics of an
array of 51×1 PtSiGe islands on a Ge/SiGe heterostructure. The PtSiGe islands
are 930×930 nm wide and the separation between the PtSiGe islands is of 70 nm.
b) Color map of the sheet resistance (RS) vs accumulation gate voltage VG and
source-drain current ISD. Increasing the negative voltage of the accumulation gate
the array becomes superconducting (RS goes to zero) when the source-drain current
is below the switching current. c) Color map of the sheet resistance vs out-of-plane
magnetic field B⊥ and source-drain current ISD. The switching current shows the
typical Fraunhofer pattern expected for a single Josephson junction. Compared to
the 2D PtSiGe array this device does not present any signature of commensurability
effects in the switching current, as expected for a linear array.
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[19] H. Watzinger, J. Kukučka, L. Vukušić, F. Gao, T. Wang, F. Schäffler, J. J. Zhang,
and G. Katsaros. “A germanium hole spin qubit”. In: Nat. Comm. 9.1 (2018),
pp. 1–6.

[20] N. W. Hendrickx, D. P. Franke, A. Sammak, G. Scappucci, and M. Veldhorst.
“Fast two-qubit logic with holes in germanium”. In: Nature 577.7791 (2020),
pp. 487–491.

[21] D. Jirovec, A. Hofmann, A. Ballabio, P. M. Mutter, G. Tavani, M. Botifoll,
A. Crippa, J. Kukucka, O. Sagi, F. Martins, J. Saez-Mollejo, I. Prieto, M. Borovkov,
J. Arbiol, D. Chrastina, G. Isella, and G. Katsaros. “A singlet-triplet hole spin
qubit in planar Ge”. In: Nat. Mater. 20.8 (2021), pp. 1106–1112.

[22] J. H. Prechtel, A. V. Kuhlmann, J. Houel, A. Ludwig, S. R. Valentin, A. D. Wieck,
and R. J. Warburton. “Decoupling a hole spin qubit from the nuclear spins”.
In: Nat. Mater. 15.9 (2016), pp. 981–986.

[23] K. M. Itoh and H. Watanabe. “Isotope engineering of silicon and diamond for
quantum computing and sensing applications”. In: MRS Communications 4.4
(2014), pp. 143–157.



REFERENCES

7

193

[24] M. Lodari, A. Tosato, D. Sabbagh, M. A. Schubert, G. Capellini, A. Sammak,
M. Veldhorst, and G. Scappucci. “Light effective hole mass in undoped Ge/SiGe
quantum wells”. In: Phys. Rev. B 100.4 (2019).

[25] M. Lodari, O. Kong, M. Rendell, A. Tosato, A. Sammak, M. Veldhorst, A. R.
Hamilton, and G. Scappucci. “Lightly strained germanium quantum wells
with hole mobility exceeding one million”. In: Appl. Phys. Lett. 120.12 (2022),
p. 122104.

[26] N. W. Hendrickx, W. I. Lawrie, M. Russ, F. van Riggelen, S. L. de Snoo,
R. N. Schouten, A. Sammak, G. Scappucci, and M. Veldhorst. “A four-qubit
germanium quantum processor”. In: Nature 591.7851 (2021), pp. 580–585.

[27] F. Borsoi, N. W. Hendrickx, V. John, S. Motz, F. van Riggelen, A. Sammak,
S. L. de Snoo, G. Scappucci, and M. Veldhorst. Shared control of a 16
semiconductor quantum dot crossbar array. 2022.

[28] A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou. “Fermi-level
pinning and charge neutrality level in germanium”. In: Appl. Phys. Lett. 89.25
(2006), p. 252110.

[29] N. W. Hendrickx, D. P. Franke, A. Sammak, M. Kouwenhoven, D. Sabbagh,
L. Yeoh, R. Li, M. L. Tagliaferri, M. Virgilio, G. Capellini, G. Scappucci, and
M. Veldhorst. “Gate-controlled quantum dots and superconductivity in planar
germanium”. In: Nat. Comm. 9.1 (2018), p. 2835.

[30] N. W. Hendrickx, M. L. Tagliaferri, M. Kouwenhoven, R. Li, D. P. Franke, A.
Sammak, A. Brinkman, G. Scappucci, and M. Veldhorst. “Ballistic supercurrent
discretization and micrometer-long Josephson coupling in germanium”. In:
Phys. Rev. B 99.7 (2019), pp. 7–9.

[31] J. Ridderbos, M. Brauns, F. K. De Vries, J. Shen, A. Li, S. Kölling, M. A. Verheijen,
A. Brinkman, W. G. Van Der Wiel, E. P. A. M. Bakkers, and F. A. Zwanenburg.
“Hard Superconducting Gap and Diffusion-Induced Superconductors in Ge–Si
Nanowires”. In: Nano Lett. 20.1 (2020), pp. 122–130. (Visited on 02/20/2023).

[32] F. Vigneau, R. Mizokuchi, D. C. Zanuz, X. Huang, S. Tan, R. Maurand, S. Frolov,
A. Sammak, G. Scappucci, F. Lefloch, and S. De Franceschi. “Germanium
Quantum-Well Josephson Field-Effect Transistors and Interferometers”. In:
Nano Lett. 19.2 (2019), pp. 1023–1027.

[33] K. Aggarwal, A. Hofmann, D. Jirovec, I. Prieto, A. Sammak, M. Botifoll, S.
Martí-Sánchez, M. Veldhorst, J. Arbiol, G. Scappucci, J. Danon, and G. Katsaros.
“Enhancement of proximity-induced superconductivity in a planar Ge hole
gas”. In: Phys. Rev. Res. 3.2 (2021), p. L022005.

[34] J. A. Kittl, K. Opsomer, C. Torregiani, C. Demeurisse, S. Mertens, D. P.
Brunco, M. J. Van Dal, and A. Lauwers. “Silicides and germanides for
nano-CMOS applications”. In: Materials Science and Engineering B 154.1-3
(2008), pp. 144–154.



7

194 REFERENCES

[35] A. Sammak, D. Sabbagh, N. W. Hendrickx, M. Lodari, B. Paquelet Wuetz,
A. Tosato, L. Yeoh, M. Bollani, M. Virgilio, M. A. Schubert, P. Zaumseil, G.
Capellini, M. Veldhorst, and G. Scappucci. “Shallow and Undoped Germanium
Quantum Wells: A Playground for Spin and Hybrid Quantum Technology”. In:
Adv. Func. Mater. 29.14 (2019), p. 1807613.

[36] S. Ahn, H. Pan, B. Woods, T. D. Stanescu, and S. D. Sarma. “Estimating disorder
and its adverse effects in semiconductor Majorana nanowires”. In: Phys. Rev.
Mater. 5 (2021), p. 124602.

[37] L. M. K. Vandersypen, H. Bluhm, J. S. Clarke, A. S. Dzurak, R. Ishihara,
A. Morello, D. J. Reilly, L. R. Schreiber, and M. Veldhorst. “Interfacing spin
qubits in quantum dots and donors — hot , dense , and coherent”. In: npj
Quantum Information (2017), pp. 1–10.

[38] S. Gaudet, C. Detavernier, A. J. Kellock, P. Desjardins, and C. Lavoie. “Thin film
reaction of transition metals with germanium”. In: Journal of Vacuum Science
& Technology A: Vacuum, Surfaces, and Films 24.3 (2006), pp. 474–485.

[39] C. J. Raub, W. H. Zachariasen, T. H. Geballe, and B. T. Matthias.
“Superconductivity of some new Pt-metal compounds”. In: Journal of Physics
and Chemistry of Solids 24.9 (1963), pp. 1093–1100.

[40] J. Shabani, M. Kjaergaard, H. J. Suominen, Y. Kim, F. Nichele, K. Pakrouski, T.
Stankevic, R. M. Lutchyn, P. Krogstrup, R. Feidenhans’L, S. Kraemer, C. Nayak,
M. Troyer, C. M. Marcus, and C. J. Palmstrøm. “Two-dimensional epitaxial
superconductor-semiconductor heterostructures: A platform for topological
superconducting networks”. In: Phys. Rev. B 93.15 (2016), pp. 1–6.

[41] E. Alptekin, C. J. Kirkpatrick, V. Misra, and M. C. Ozturk. “Platinum
germanosilicide contacts formed on strained and relaxed Si1-xGex layers”. In:
IEEE Transactions on Electron Devices 56.6 (2009), pp. 1220–1227.

[42] H. Irie, Y. Harada, H. Sugiyama, and T. Akazaki. “Josephson coupling through
one-dimensional ballistic channel in semiconductor-superconductor hybrid
quantum point contacts”. In: Phys. Rev. B 89.16 (2014), pp. 1–6.

[43] V. Ambegaokar and A. Baratoff. “Tunneling between superconductors”. In:
Physical Review Letters 10.11 (1963), p. 486.

[44] S. Heedt, M. Quintero-Pérez, F. Borsoi, A. Fursina, N. van Loo, G. P. Mazur,
M. P. Nowak, M. Ammerlaan, K. Li, S. Korneychuk, J. Shen, M. A. Y.
van de Poll, G. Badawy, S. Gazibegovic, N. de Jong, P. Aseev, K. van Hoogdalem,
E. P. Bakkers, and L. P. Kouwenhoven. “Shadow-wall lithography of ballistic
superconductor–semiconductor quantum devices”. In: Nat. Comm. 12.1 (2021),
pp. 1–9.

[45] M. Tinkham. Introduction to superconductivity. 2nd ed. Mineola, N.Y., 2004.
ISBN: 9781621985983.

[46] M. Octavio, M. Tinkham, G. E. Blonder, and T. M. Klapwijk. “Subharmonic
energy-gap structure in superconducting constrictions”. In: Phys. Rev. B 27.11
(1983), pp. 6739–6746.



REFERENCES

7

195

[47] M. Kjaergaard, H. J. Suominen, M. P. Nowak, A. R. Akhmerov, J. Shabani,
C. J. Palmstrøm, F. Nichele, and C. M. Marcus. “Transparent Semiconductor-
Superconductor Interface and Induced Gap in an Epitaxial Heterostructure
Josephson Junction”. In: Phys. Rev. Appl. 7.3 (2017), p. 034029.

[48] D. Averin and A. Bardas. “ac Josephson Effect in a Single Quantum Channel”.
In: Phys. Rev. Lett. 75.9 (1995), pp. 1831–1834.

[49] F. Borsoi, G. P. Mazur, N. van Loo, M. P. Nowak, L. Bourdet, K. Li, S. Korneychuk,
A. Fursina, J.-Y. Wang, V. Levajac, E. Memisevic, G. Badawy, S. Gazibegovic,
K. van Hoogdalem, E. P. A. M. Bakkers, L. P. Kouwenhoven, S. Heedt, and M.
Quintero-Pérez. “Single-Shot Fabrication of Semiconducting–Superconducting
Nanowire Devices”. In: Adv. Func. Mater. 31.34 (2021), p. 2102388.

[50] A. Fornieri, A. M. Whiticar, F. Setiawan, E. Portolés, A. C. Drachmann,
A. Keselman, S. Gronin, C. Thomas, T. Wang, R. Kallaher, G. C. Gardner,
E. Berg, M. J. Manfra, A. Stern, C. M. Marcus, and F. Nichele. “Evidence
of topological superconductivity in planar Josephson junctions”. In: Nature
569.7754 (2019), pp. 89–92. ISSN: 14764687. DOI: 10.1038/s41586-019-1068-8.
URL: https://doi.org/10.1038/s41586-019-1068-8.

[51] H. A. Nilsson, P. Samuelsson, P. Caroff, and H. Q. Xu. “Supercurrent and
Multiple Andreev Reflections in an InSb Nanowire Josephson Junction”. In:
Nano Lett. 12 (2012), p. 233.

[52] N. van Loo, G. P. Mazur, T. Dvir, G. Wang, R. C. Dekker, J.-Y. Wang, M. Lemang,
C. Sfiligoj, A. Bordin, D. van Driel, G. Badawy, S. Gazibegovic, E. P. A. M.
Bakkers, and L. P. Kouwenhoven. “Electrostatic control of the proximity effect
in the bulk of semiconductor-superconductor hybrids”. In: Nat. Commun.
14.3325 (2023).

[53] M. W. De Moor, J. D. Bommer, D. Xu, G. W. Winkler, A. E. Antipov,
A. Bargerbos, G. Wang, N. V. Loo, R. L. Op Het Veld, S. Gazibegovic, D. Car,
J. A. Logan, M. Pendharkar, J. S. Lee, E. P. M Bakkers, C. J. Palmstrom,
R. M. Lutchyn, L. P. Kouwenhoven, and H. Zhang. “Electric field tunable
superconductor-semiconductor coupling in Majorana nanowires”. In: New
Journal of Physics 20.10 (2018), p. 103049.

[54] G. E. Blonder, M. Tinkham, and T. M. Klapwijk. “Transition from metallic
to tunneling regimes in superconducting microconstrictions: Excess current,
charge imbalance, and supercurrent conversion”. In: Phys. Rev. B 25.7 (1982),
pp. 4515–4532.

[55] F. Pientka, A. Keselman, E. Berg, A. Yacoby, A. Stern, and B. I. Halperin.
“Topological superconductivity in a planar Josephson junction”. In: Phys. Rev.
X 7.2 (2017), pp. 1–17.

[56] H. Ren, F. Pientka, S. Hart, A. T. Pierce, M. Kosowsky, L. Lunczer, R. Schlereth,
B. Scharf, E. M. Hankiewicz, L. W. Molenkamp, B. I. Halperin, and A. Yacoby.
“Topological superconductivity in a phase-controlled Josephson junction”. In:
Nature 569.7754 (2019), pp. 93–98.

https://doi.org/10.1038/s41586-019-1068-8
https://doi.org/10.1038/s41586-019-1068-8


7

196 REFERENCES

[57] M. Luethi, K. Laubscher, S. Bosco, D. Loss, and J. Klinovaja. Planar Josephson
junctions in germanium: Effect of cubic spin-orbit interaction. 2022.

[58] N. Poccia, T. I. Baturina, F. Coneri, C. G. Molenaar, X. R. Wang, G. Bianconi, A.
Brinkman, H. Hilgenkamp, A. A. Golubov, and V. M. Vinokur. “Critical behavior
at a dynamic vortex insulator-to-metal transition”. In: Science 349.6253 (2015),
pp. 1202–1205.

[59] C. G. Bøttcher, F. Nichele, M. Kjaergaard, H. J. Suominen, J. Shabani, C. J.
Palmstrøm, and C. M. Marcus. “Superconducting, insulating and anomalous
metallic regimes in a gated two-dimensional semiconductor–superconductor
array”. In: Nature Physics 14.11 (2018), pp. 1138–1144. ISSN: 17452481. DOI:
10.1038/s41567-018-0259-9. URL: https://doi.org/10.1038/s41567-
018-0259-9.

[60] B. T. Matthias, T. H. Geballe, and V. B. Compton. “Superconductivity”. In:
Reviews of Modern Physics 35.1 (1963), pp. 1–22.

[61] M. Hell, M. Leijnse, and K. Flensberg. “Two-Dimensional Platform for Networks
of Majorana Bound States”. In: Phys. Rev. Lett. 118.10 (2017), p. 107701.

[62] F. Pientka, A. Keselman, E. Berg, A. Yacoby, A. Stern, and B. I. Halperin.
“Topological Superconductivity in a Planar Josephson Junction”. In: Phys. Rev.
X 7.2 (2017), p. 021032.

[63] G. Burkard, M. J. Gullans, X. Mi, and J. R. Petta. “Superconductor–semiconductor
hybrid-circuit quantum electrodynamics”. In: Nat. Rev. Phys. 2.3 (2020), pp. 129–
140.

[64] N. M. Chtchelkatchev and Y. V. Nazarov. “Andreev Quantum Dots for Spin
Manipulation”. In: Physical Review Letters 90 (June 2003), p. 226806.

[65] C. Padurariu and Y. V. Nazarov. “Theoretical proposal for superconducting spin
qubits”. In: Phys. Rev. B 81.14 (2010), p. 144519.

[66] M. Pita-Vidal, A. Bargerbos, R. Žitko, L. J. Splitthoff, L. Grünhaupt, J. J. Wesdorp,
Y. Liu, L. P. Kouwenhoven, R. Aguado, B. van Heck, A. Kou, and C. K. Andersen.
“Direct manipulation of a superconducting spin qubit strongly coupled to a
transmon qubit”. In: Nat. Phys. (2023), pp. 1–6.

[67] M. Spethmann, X.-P. Zhang, J. Klinovaja, and D. Loss. “Coupled superconducting
spin qubits with spin-orbit interaction”. In: Phys. Rev. B 106.11 (2022), p. 115411.

[68] M. P. Nowak, M. Wimmer, and A. R. Akhmerov. “Supercurrent carried by
nonequilibrium quasiparticles in a multiterminal Josephson junction”. In: Phys.
Rev. B 99.7 (2019), p. 075416.

[69] P. Del Vecchio, M. Lodari, A. Sammak, G. Scappucci, and O. Moutanabbir.
“Vanishing Zeeman energy in a two-dimensional hole gas”. In: Phys. Rev. B
102.11 (2020), p. 115304.

[70] R. Mizokuchi, R. Maurand, F. Vigneau, M. Myronov, and S. De Franceschi. “Bal-
listic One-Dimensional Holes with Strong g-Factor Anisotropy in Germanium”.
In: Nano Lett. 18.8 (2018), pp. 4861–4865.

https://doi.org/10.1038/s41567-018-0259-9
https://doi.org/10.1038/s41567-018-0259-9
https://doi.org/10.1038/s41567-018-0259-9


REFERENCES

7

197

[71] W. I. Lawrie, H. G. Eenink, N. W. Hendrickx, J. M. Boter, L. Petit, S. V. Amitonov,
M. Lodari, B. Paquelet Wuetz, C. Volk, S. G. Philips, G. Droulers, N. Kalhor,
F. Van Riggelen, D. Brousse, A. Sammak, L. M. Vandersypen, G. Scappucci, and
M. Veldhorst. “Quantum dot arrays in silicon and germanium”. In: Appl. Phys.
Lett. 116.8 (2020), p. 80501.

[72] W. I. L. Lawrie, M. Russ, F. van Riggelen, N. W. Hendrickx, S. L. de Snoo,
A. Sammak, G. Scappucci, and M. Veldhorst. “Simultaneous single-qubit driving
of semiconductor spin qubits at the fault-tolerant threshold”. In: Nat. Comm.
14.3617 (2023).

[73] G. Badawy, S. Gazibegovic, F. Borsoi, S. Heedt, C. A. Wang, S. Koelling,
M. A. Verheijen, L. P. Kouwenhoven, and E. P. Bakkers. “High Mobility Stemless
InSb Nanowires”. In: Nano Lett. 19.6 (2019), pp. 3575–3582.

[74] Y.-S. Kim, K. Hummer, and G. Kresse. “Accurate band structures and effective
masses for InP, InAs, and InSb using hybrid func-tionals”. In: Phys. Rev. B 80.3
(2009), p. 035203.

[75] R. L. Op het Veld, D. Xu, V. Schaller, M. A. Verheijen, S. M. Peters, J. Jung,
C. Tong, Q. Wang, M. W. de Moor, B. Hesselmann, K. Vermeulen, J. D.
Bommer, J. Sue Lee, A. Sarikov, M. Pendharkar, A. Marzegalli, S. Koelling,
L. P. Kouwenhoven, L. Miglio, C. J. Palmstrøm, H. Zhang, and E. P. Bakkers.
“In-plane selective area InSb–Al nanowire quantum networks”. In: Comm. Phys.
3.1 (2020), pp. 1–7.

[76] I. Van Weperen, B. Tarasinski, D. Eeltink, V. S. Pribiag, S. R. Plissard, E. P.
Bakkers, L. P. Kouwenhoven, and M. Wimmer. “Spin-orbit interaction in InSb
nanowires”. In: Phys. Rev. B 91.20 (2015), pp. 1–5.

[77] F. Qu, J. Van Veen, F. K. De Vries, A. J. Beukman, M. Wimmer, W. Yi, A. A.
Kiselev, B. M. Nguyen, M. Sokolich, M. J. Manfra, F. Nichele, C. M. Marcus, and
L. P. Kouwenhoven. “Quantized Conductance and Large g-Factor Anisotropy in
InSb Quantum Point Contacts”. In: Nano Lett. 16.12 (2016), pp. 7509–7513.

[78] J. W. Van Den Berg, S. Nadj-Perge, V. S. Pribiag, S. R. Plissard, E. P. Bak-kers,
S. M. Frolov, and L. P. Kouwenhoven. “Fast spin-orbit qubit in an indium
antimonide nanowire”. In: Phys. Rev. Lett. 110.6 (2013).

[79] S. Heedt, W. Prost, J. Schubert, D. Grützmacher, and T. Schäpers. “Ballistic
Transport and Exchange Interaction in InAs Nanowire Quantum Point
Contacts”. In: Nano Lett. 16.5 (2016), pp. 3116–3123.

[80] T. Kanne, M. Marnauza, D. Olsteins, D. J. Carrad, J. E. Sestoft, J. de Bruijckere,
L. Zeng, E. Johnson, E. Olsson, K. Grove-Rasmussen, and J. Nygård. “Epitaxial
Pb on InAs nanowires for quantum devices”. In: Nat. Nanotechnol. 16.7 (2021),
pp. 776–781.

[81] M. T. Deng, S. Vaitiekenas, E. B. Hansen, J. Danon, M. Leijnse, K. Flensberg,
J. Nygård, P. Krogstrup, and C. M. Marcus. “Majorana bound state in a
coupled quantum-dot hybrid-nanowire system”. In: Science 354.6319 (2016),
pp. 1557–1562.



7

198 REFERENCES

[82] D. Liang and X. P. Gao. “Strong tuning of rashba spin-orbit interaction in single
InAs nanowires”. In: Nano Lett. 12.6 (2012), pp. 3263–3267.

[83] K. D. Petersson, L. W. McFaul, M. D. Schroer, M. Jung, J. M. Taylor, A. A. Houck,
and J. R. Petta. “Circuit quantum electrodynamics with a spin qubit”. In:
Nature 490.7420 (2012), pp. 380–383.

[84] S. Nadj-Perge, S. M. Frolov, E. P. Bakkers, and L. P. Kouwenhoven. “Spin-orbit
qubit in a semiconductor nanowire”. In: Nature 468.7327 (2010), pp. 1084–1087.

[85] C. M. Moehle, C. T. Ke, Q. Wang, C. Thomas, D. Xiao, S. Karwal, M. Lodari,
V. Van De Kerkhof, R. Termaat, G. C. Gardner, G. Scappucci, M. J. Manfra,
and S. Goswami. “InSbAs Two-Dimensional Electron Gases as a Platform for
Topological Superconductivi-ty”. In: Nano Lett. 21.23 (2021), pp. 9990–9996.



8
CONCLUSIONS & OUTLOOK

199



8

200 8. CONCLUSIONS & OUTLOOK

8.1. CONCLUSIONS

We have studied quantum transport in multiple hybrid semiconductor-
superconductor device architectures realized by different fabrication techniques
and on various material platforms. Our conclusions refer either to advantages that
we have achieved in the fabrication and design of these hybrid devices, or to the rich
physics that we have encountered in them. Below we intend to give the conclusion
of each chapter in a compact form. The conclusions are also given more elaborately
at the end of each chapter.

Chapter 3: An InSb-Al nanowire Cooper pair transistor can exhibit a current-phase
relation which phase offset depends on the electron parity on its superconducting
island. Therefore, current-phase relation measurements can be used to directly
detect the electron parity on the island. This can be done even in the 1e-regime
- where measuring only supercurrent amplitude or tunneling conductance cannot
distinguish the two parities.

Chapter 4: Reducing the length of a nanowire Josephson junction enhances the
resilience of its supercurrent against magnetic fields. The supercurrent through an
InSb-Al nanowire Josephson junction can persist up to parallel magnetic fields of
∼ 1.4T - that approach the critical field of the superconducting Al film. This occurs
in ∼ 40nm-long junctions that can be defined through the shadow-wall lithography.

Chapter 5: The supercurrent through a Josephson junction can exhibit an asym-
metric modulation by a resonant localized state inside the junction in the presence
of interference with a broad direct-transmission channel. At high magnetic fields
this mechanism can give rise to π-shifts of the supercurrent. We show this effect in
an InSb-Al nanowire Josephson junction at parallel magnetic fields of up to ∼ 700mT.

Chapter 6: Tunnel probes with nm-thick AlOx tunnel barriers can be realized in
hybrid InSb-Al nanowires by the controlled oxidation of the superconducting Al film.
The shadow-wall lithography allows for defining such multiple probes arbitrarily
along a single hybrid. Tunneling spectroscopy results obtained by neighboring
probes reveal localized Andreev bound states along the hybrids.

Chapter 7: A hard superconducting gap can be induced in a Ge two-dimensional
hole gas. This can be realized by depositing Pt on top of a Ge/SiGe quantum well
and thermally diffusing it into the SiGe. As a result, the superconducting PtSiGe is
formed, and superconductivity is induced in the Ge.

Although some devices in our studies were - according to their design - suitable
for observing signatures of a topological phase with Majorana zero modes, this did
not happen.
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8.2. OUTLOOK
In the past decade, creating Majorana zero modes (MZMs) in hybrid semiconducting-
superconducting nanostructures has turned out to be much more complex than what
initial theoretical proposals predicted [1, 2]. Most recently, hybrid InAs-Al nanowires
defined in two-dimensional electron gases (2DEGs) have been reported to pass a
topological gap protocol [3]. This protocol includes exhibiting zero-bias peaks (ZBPs)
in the local tunneling spectroscopy at the hybrid ends, and a reopening of the bulk
gap (∼ 30µeV) in the non-local spectroscopy. Observing ZBPs simultaneously at the
hybrid ends has already been shown insufficient to claim a continuous topological
phase in hybrid nanowires. However, their coincidence with the gap reopening
represents a stricter condition, which has been satisfied in some devices. Still,
an unambiguous demonstration of a topological superconducting phase cannot be
made [4, 5].

Disorder in hybrid nanowires can break the topological phase by causing local
variations in the parameters that are uniform in the model of a Majorana nanowire.
In order to have more control over the effects of disorder, hybrid nanowire devices
consisting of semiconducting quantum dots (QDs) coupled to superconductors have
recently caught significant attention. In such devices, QDs are coupled via elastic
cotunneling (ECT) and crossed Andreev reflection (CAR) into a chain known as
the Kitaev chain. A Majorana nanowire is the limit of a Kitaev chain with an
infinitely large number of QDs [6]. In finite Kitaev chains, MZMs are localized
on the two end-QDs and the topological protection is improved by increasing the
number of QDs in-between them. An advantage of the Kitaev chain devices is that
each QD in the chain can be independently tuned such that the amplitudes of
ECT and CAR become equal and satisfy the condition for an effective topological
superconductor. Consequently, by fine-tuning each QD, one could compensate for
local non-uniformity due to disorder. Realization of a minimal Kitaev chain has
recently been reported for two QDs in an InSb nanowire with Al [7]. Coupling
mechanisms required for a three-site Kitaev chain have been reported in a chain
with three QDs [8]. A demonstration of a three-site Kitaev chain has not been
reported yet. Doing so and subsequently realizing longer Kitaev chains is needed in
order to establish coupled QDs as a competitive platform for topological qubits.

Before the Kitaev chains prove experimentally superior for unambiguously detecting
MZMs, further experiments on hybrid nanowires are also worth considering. Below
we introduce several experiments on hybrid nanowires that are directly inspired by
some of the main results presented in this thesis. The devices that we introduce
here are readily obtainable through the shadow-wall lithography [9, 10].

8.2.1. MAGNETIC FIELD RESILIENT COOPER-PAIR TRANSISTOR

The Cooper-pair transistor (CPT) studied in Chapter 3 consisted of hybrid InSb-Al
nanowire Josephson junctions (JJs) that were defined by nanowires casting shadows
onto each other during the directional Al deposition. Therefore, the lengths of JJs
were limited by the nanowire diameter and could not be reduced below ∼ 100nm.
The current-phase relation (CPR) measurements have been performed up to parallel
magnetic fields of ∼ 200mT where the supercurrent vanished. We show in Chapter 4
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Figure 8.1: Schematic of a SQUID with two parallel hybrid InSb-Al (blue-red)
nanowires defined through the shadow-wall (lilac) lithography. Two electrically
isolated sections of the Al loop correspond to the source and drain of the SQUID. A
Cooper-pair transistor and a single JJ (reference arm) are defined in the left and right
nanowire, respectively. Underlying gates (grey) control the transparency of the JJs
and the electro-chemical potential of the superconducting island. All JJs are ∼ 40nm
long in order to support a magnetic-field resilient supercurrent.

that the resilience of supercurrent against magnetic fields is dramatically improved in
JJs obtained through the shadow-wall lithography technique where the junctions are
∼ 40nm long. Obtaining a CPT with such magnetic-field resilient JJs and embedding
it into the superconducting quantum interference device (SQUID) could allow for
CPR measurements at high magnetic fields.

Here, we propose a shadow-wall design for a magnetic-field resilient CPT in the
SQUID architecture. In Fig. 8.1, two InSb nanowires (blue) are placed on top of an
array of gates (grey) next to shadow-walls (lilac). During the angle-deposition of Al
(red), the shadow-walls determine the positions of three JJs on two nanowires and a
superconducting loop on the substrate - analogously as in Chapter 5. Consequently,
the JJs have lengths of ∼ 40nm and are aligned with the underlying gates. The left
nanowire hosts a CPT and the right nanowire serves as the reference arm for CPR
measurements.

8.2.2. NANOMETER-THICK TUNNEL BARRIERS ON THREE-FACET HYBRID

NANOWIRES

In Chapter 6, we have used tunnel probes with nm-thick tunnel barriers to examine
the subgap spectra along single-facet hybrid InSb-Al nanowires. We have observed
mostly highly localized states at the ends and inside the bulks of the hybrids.
Such localized states can arise due to disorder causing non-uniformities of the
electro-chemical potential along the nanowires. However, such non-uniformities
could also be caused by multiple tunnel probes locally modifying the electro-chemical
potential when biased with different bias voltages. This could be the case particularly
in single-facet hybrids, where two out of three nanowire facets contacting the tunnel
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Figure 8.2: (a) Schematic of a top view on an InSb (blue) nanowire on top of a gate
(grey). Superconducting Al (red) shell and a normal Ag (navy) probe are defined by
the shadow-wall (lilac). The wall contains a bridge-like section. (b) Schematic of the
transverse cut (broken black line) in (a). The deposition directions are shown by red
(Al) and navy (Ag) arrows. (c) Schematic of a transverse cross-section through the
probe. nm-thick tunnel barrier is made of AlOx (pink) and Al remains on all three
nanowire facets that are tunnel-coupled to the Ag lead. The Al film on the substrate
is interrupted. (d) Scanning electron microscopy (SEM) image of a three-facet hybrid
InSb-Al nanowire device with a single AlOx tunnel probe. The nanowire is grounded
by a normal drain contact on the right (not visible). (e) Differential conductance G
as a function of Vb and VG at B = 0.25T.
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probes do not have Al and, therefore, do not screen the bias voltages.
In Fig. 8.2, we propose a design and show an initial realization of a three-facet

InSb-Al (blue-red) nanowire hybrid with a single normal Ag (navy) lead that is tunnel
coupled via nm-thick AlOx (pink). Here, the Al film is present on all three facets
contacting the tunnel probe (see Fig. 8.2(c)), which makes that the tunnel probe
is screened by the Al and it does not affect the electro-chemical potential in the
hybrid. Obtaining three-facet hybrids with nm-thick AlOx can be done similarly as in
Chapter 6. An important difference is that the Al thickness is bigger – such that the
Al remains on all three-facets after the AlOx is formed. This means, however, that
the Al film remains also on the substrate and is covered by the AlOx. Crucially, the
Al film thus has to be interrupted on the substrate in order to ensure that electrons
tunnel through the AlOx on the nanowire (see Fig. 8.2(c)). This interruption is
realized by using a bridge-like shadow-wall (lilac), as shown in Fig. 8.2(a)-(b). The Al
is deposited at an angle of 30◦ such that the Al film is interrupted on the substrate
(see Fig. 8.2(a) middle), and. the Ag is deposited at an angle of 18◦ such that the
shadow falls above the nanowire (see Fig. 8.2(a) right) and the Ag lead is continuous.
The Al film can be contacted by a drain normal lead as in Chapter 6.

We show an initial realization of the described device with a single tunnel probe.
A scanning electron microscopy (SEM) image is displayed in Fig. 8.2(d) and a
tunneling spectroscopy measurement at a parallel magnetic field B = 0.25T is given
in Fig. 8.2(e). Differential conductance G is measured as a function of a bias voltage
Vb applied between the Ag lead and the grounded drain and a voltage VG applied to
the gate under the nanowire. The obtained spectrum is qualitatively similar to the
spectra reported in Chapter 6 – consisting of both subgap states that are sensitive
and insensitive to the gate. A follow-up realization with multiple tunnel probes, as
in Chapter 6, is needed to examine the spatial extension of these subgap states. This
can lead to a conclusion whether and how much does the screening of the tunnel
probes by the Al film improve the uniformity along the hybrids.

8.2.3. NON-LOCAL SPECTROSCOPY OF A HYBRID NANOWIRE WITH A

SUPERCONDUCTOR-FREE BULK

In the tunneling spectroscopy in Chapter 6, subgap states have been found to be
mostly localized over ∼ 200nm along the hybrids. Inside the bulks, no extended
subgap states with a systematic collective response to the super gate have been
found. On the other hand, a recent work on three-terminal InSb-Al nanowire hybrids
has used the non-local spectroscopy to study the properties of hybrid bulk states
[11]. It has been argued there that the super gate controls the proximity effect inside
the bulk such that positive super gate voltages reduce the coupling between the
semiconductor and the superconductor and systematically reduce the energy of the
hybrid bulk-states. These states then give rise to non-local signals below the gap. For
sufficiently positive super gates, a weak-coupling regime with a closed induced gap
has been identified as non-local signals have been measured for all in-gap energies.

The systematic detection of non-local signals in the weak-coupling regime
demonstrates that there are bulk-states that are systematically and collectively tuned
by the super gate and give rise to transport below the gap even over ∼ 8µm-long
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Figure 8.3: (a) A typical three-terminal hybrid device including an InSb (blue)
nanowire with grounded superconducting Al (red) shell. Bias voltages VbL,bR are
applied to two normal (yellow) leads defined by the shadow-walls (lilac). (b) A
three terminal hybrid device analogous to (a), but with Al only at the hybrid ends
(L1 sections) and without Al in the bulk (L2 section). The Al layout is obtained
by the middle shadow-wall. In both devices, two underlying tunnel gates and one
super gate (grey) tune the tunnel barrier transparencies and the nanowire bulk,
respectively.

hybrids. Subgap states with such properties have not been observed in Chapter 6.
On the other hand, it is known that at positive super gates fully semiconducting
states can be induced inside hybrid nanowires. Such states are localized close to the
nanowire facets that do not have the superconductor, and, in principle, could also
give rise to non-local signals both in short and long hybrids. Interestingly, if such
states form a transport channel at an energy E0 below the induced superconducting
gap ∆, non-local signals will arise even below ∆.

Non-local signals in standard three-terminal hybrids have antisymmetric depen-
dences on bias voltages at which charge carriers (electrons and holes) are injected.
The global phase factor has been shown to depend on the local superconducting
properties (electron-like versus hole-like) of the hybrid end where the carriers leave
the hybrid and are collected by the non-local lead [12]. Therefore, the local
superconducting nature at the hybrid ends essentially determines the non-local
signals measured in three-terminal hybrid nanowires. This is important for our
proposal below, where one could test whether superconductivity inside the bulk
is also essential, or even necessary, to obtain non-local signals with the reported
properties.

We propose fabricating two InSb-Al (blue-red) nanowire hybrids shown in Fig. 8.3.
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The nanowires have identical lengths, meaning that L0 = 2L1 +L2. The hybrid in Fig.
8.3(a) is a typical three-terminal hybrid of a length L0, while the hybrid in Fig. 8.3(b)
has a large segment of its bulk (length L2) that is superconductor-free. Importantly,
there are shorter Al segments (length L1) at the hybrid ends. The layouts of both
devices are easily achievable through the shadow-wall (lilac) lithography. A possible
realization of the parameters could be: L0 = 8µm, L1 = 0.5µm and L2 = 7µm. In
this case, L2 is long enough to ensure that no hybrid states can couple the two
superconducting end-segments and that, if detected, non-local signals are carried by
purely semiconducting states. L1 is chosen such that the elastic cotunneling and
crossed Andreev reflection can be mediated by single Andreev bound states (ABSs)
forming at the hybrid ends [7].

After performing non-local spectroscopy measurements on the two three-terminal
devices in Fig. 8.3 while varying the underlying super gate, a comparison between
the two non-local spectra could be made. Due to different electrostatic screening
inside the bulks of the two devices, quantitatively same responses to the super
gate are not likely to be observed. However, observing qualitatively similar features
in the two non-local spectra would demonstrate that semiconducting states in
the L2-section of the device in Fig. 8.3(b) can carry non-local signals with the
same features as in standard three-terminal hybrids. This would further mean that
the non-local signals in standard three-terminal hybrids could also be carried by
fully semiconducting states and only “dressed-up” with particular superconducting
features by entering and exiting the hybrid via the ABSs at the hybrid ends. In
this case, the onset bias voltage (VbL,bR ) at which non-local signals arise in typical
three-terminal devices would be the minimum between the induced gap and the
lowest purely semiconducting transport channel. Therefore, if semiconducting states
have energies below the induced gap, non-local signals would not provide conclusive
information about the induced gap and the proximity effect in the bulk.
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