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SUMMARY

Quantum technology is a developing field of science where devices possess novel and su-
perior functionalities thanks to their quantum-mechanical behaviour at the nanometer
scale. A typical example is a quantum computer, where information is stored in quan-
tum states of its quantum bits. By manipulating entangled and superposition states of
these qubits, quantum computers can achieve exponential speed-ups in calculation and
therefore solve currently unsolvable problems within polynomial computational times.
This powerful advantage of quantum computers is particularly difficult to achieve in
practice, due to decoherence - a tendency of quantum objects to lose their quantum-
mechanical properties when interacting with their environment. Obviously, qubit de-
coherence cannot be avoided because the control of a quantum computer inevitably
causes couplings to the environment. To mitigate decoherence, fault-tolerant imple-
mentations of quantum computing need to be developed.

Topological quantum computing has been proposed to achieve fault-tolerance since
its significant robustness to decoherence is inherent in the quantum-mechanical nature
of topological qubits. Building units of a topological qubit are Majorana zero modes
(MZMs) - zero-energy quasiparticles that possess the non-Abelian anyonic exchange
statistics and are localized at the boundaries of a topological superconductor. In suf-
ficiently large topological superconductors, MZMs exhibit no overlap and therefore can
in pairs host non-local fermions. By braiding non-overlapping MZMs, the information
stored in the non-local fermions is manipulated while being insensitive to local noise.
In this way one can perform computation that is topologically protected against local
sources of decoherence.

In 2010, III-V semiconductor nanowires proximitized by s-wave superconductors were
proposed as a suitable candidate platform for the realization of topological supercon-
ductors. Topological superconducting phase occurs in such a hybrid nanowire due to
an interplay among the large spin-orbit interaction, s-wave superconductivity, control-
lable electron density and large Zeeman energy introduced by an external magnetic field.
Consequently, the nanowire bulk undergoes a band inversion and two MZMs appear at
the two nanowire ends. First signatures of MZMs were reported in 2012 and since then
a lot of effort has been put in fully demonstrating them. Despite huge improvements
in the materials and measurement techniques, conclusive evidence of MZMs in hybrid
nanowires is still missing. This is because disorder in hybrid nanowires can also cause
the observed signatures of MZMs and make the topological scenario indistinguishable
from the trivial ones. Therefore, further improvements and more detailed studies are
needed and this thesis shows some recent examples of these.

We begin by presenting fundamental concepts of semiconductors, superconductors
and the quantum transport in hybrid devices that combine them. We also elaborate on
the physics of hybrid devices - such as hybrid Josephson junctions, Majorana nanowires
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and hybrid islands (Chapter 2).

The first experimental chapter (Chapter 3) studies the supercurrent transport through
a hybrid InSb-Al nanowire island. It is shown that the current-phase relation (CPR) can
have a parity-dependent phase shift when subgap states in the island mediate the super-
current. This demonstrates that CPR measurements can be used to measure the island
parity even in the 1e-regime where conductance measurements cannot distinguish be-
tween the two parities.

We proceed by studying the impact of the length of a Josephson junction (JJ) on its
supercurrent resilience against magnetic field. We use the shadow-wall lithography to
create hybrid InSb-Al nanowire JJs of various lengths and find that reducing the junction
length improves its magnetic field resilience. We reproducibly detect supercurrent at
parallel magnetic fields of ~ 1.3T in ~40nm-long JJs (Chapter 4).

Next, we embed two ~ 40nm-long InSb-Al nanowire JJs into a superconducting loop
and study the CPR up to parallel magnetic fields of ~ 700mT. We find that a localized
resonant state in the JJ can modulate the supercurrent asymmetrically in a narrow range
of the electro-chemical potential. Moreover, in this range the junction becomes a 7-
junction at high magnetic fields. These observations have been reproduced by a theo-
retical model that considers the interference between a localized state and direct trans-
mission inside a single JJ (Chapter 5).

We move from studying supercurrent and proceed by developing hybrid InSb-Al nanowire
devices with multiple nm-thick AlOx tunnel probes. We obtain these probes by combin-
ing the shadow-wall lithography and controlled oxidation of the Al film on the nanowires.
By comparing tunneling spectroscopy obtained by neighbouring tunnel probes, Andreev
bound states (ABSs) localized over ~ 200nm are observed at the ends and inside the
bulks of multiple hybrids. (Chapter 6)

In the last study (Chapter 7), we explore how superconductivity can be induced in
high-mobility Ge two-dimensional hole gases (2DHGs). We demonstrate for the first
time a hard superconducting gap in Ge induced by PtSiGe. The superconducting PtSiGe
is obtained by depositing Pt on top of a Ge/SiGe quantum well and thermally diffusing it
into the SiGe. This platform may be in future considered a suitable candidate for topo-
logical superconductivity since it combines low disorder and hard superconducting gap.

Finally, we comment on our results and propose several new experiments (Chapter 8)
that represent follow-up studies in various directions that have been taken throughout
this thesis.
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Kwantumtechnologie is een ontwikkelend gebied van de wetenschap waarbij apparaten
nieuwe en superieure functionaliteiten bezitten dankzij hun kwantummechanische ge-
drag op nanometerschaal. Een typisch voorbeeld is een kwantumcomputer, waar infor-
matie wordt opgeslagen in kwantumtoestanden van kwantumbits. Door het manipule-
ren van verstrengelde en superpositie-toestanden van qubits, kunnen kwantumcompu-
ters exponentiéle versnellingen in de berekeningen bereiken en daardoor tegenwoordig
onoplosbare problemen binnen polynomiale rekentijden oplossen. Dit krachtige voor-
deel van kwantumcomputers is in de praktijk bijzonder moeilijk te verwezenlijken van-
wege decoherentie - de neiging van kwantumobjecten om hun kwantummechanische
eigenschappen te verliezen vanwege interactie met hun omgeving. Het is duidelijk dat
decoherentie van qubits niet kan worden vermeden, omdat de besturing van een kwan-
tumcomputer onvermijdelijk koppelingen met de omgeving veroorzaakt. Om decohe-
rentie te verminderen moeten fout-tolerante implementaties van kwantumcomputers
worden ontwikkeld.

Topologische kwantumcomputers zijn voorgesteld om fout-tolerantie te bereiken, aan-
gezien de aanzienlijke robuustheid ervan tegen decoherentie inherent is aan de kwan-
tummechanische aard van topologische qubits. De bouweenheden van een topologi-
sche qubit zijn Majorana zero modes (MZM’s) - nul-energie quasideeltjes die de niet-
Abelse anyonische uitwisselingsstatistiek bezitten en gelokaliseerd zijn aan de grenzen
van een topologische supergeleider. In voldoend grote topologische supergeleiders ver-
tonen MZM'’s geen overlap en kunnen daarom in paren niet-lokale fermionen hosten.
Door niet-overlappende MZM’s te vlechten, wordt de informatie die is opgeslagen in de
niet-lokale fermionen gemanipuleerd terwijl deze ongevoelig is voor lokale ruis. Op deze
manier kan men berekeningen uitvoeren die topologisch beschermd zijn tegen lokale
bronnen van decoherentie.

In 2010 werden III-V-halfgeleidernanodraden, geproximiteerd door s-wave superge-
leiders, voorgesteld als een geschikt kandidaatplatform voor de realisatie van topologi-
sche supergeleiders. Topologische supergeleidende fase treedt op in zo'n hybride nano-
draad als gevolg van een samenspel tussen de grote spin-orbitinteractie, s-wave super-
geleiding, regelbare elektronendichtheid en grote Zeeman-energie geintroduceerd door
een extern magnetisch veld. Als gevolg daarvan ondergaat de bulk van de nanodraden
een bandinversie en verschijnen er twee MZM’s aan de twee uiteinden van de nanodra-
den. De eerste signaturen van MZM’s werden gerapporteerd in 2012 en sindsdien is er
veel moeite gestoken in het volledig aantonen ervan. Ondanks enorme verbeteringen in
de materialen en meettechnieken ontbreekt er nog steeds sluitend bewijs voor MZM’s
in hybride nanodraden. Dit komt omdat wanorde in hybride nanodraden ook de waar-
genomen signaturen van MZM'’s kan veroorzaken en het topologische scenario niet te
onderscheiden is van de triviale scenario’s. Daarom zijn verdere verbeteringen en meer

XI
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gedetailleerd onderzoek nodig en dit proefschrift laat enkele recente voorbeelden hier-
van zien.

We beginnen met het presenteren van fundamentele concepten van halfgeleiders, su-
pergeleiders en het kwantumtransport in hybride apparaten die deze combineren. We
gaan ook dieper in op de fysica van hybride apparaten, zoals hybride Josephson juncties,
Majorana nanodraden en hybride eilanden (Hoofdstuk 2).

Het eerste experimentele hoofdstuk (Hoofdstuk 3) bestudeert het superstroomtrans-
port door een hybride InSb-Al nanodraadeiland. Er wordt aangetoond dat de stroom-
faserelatie (eng. current-phase relation) (CPR) een pariteitsathankelijke faseverschui-
ving kan hebben wanneer subgap-toestanden op het eiland de superstroom bemidde-
len. Dit toont aan dat CPR-metingen kunnen worden gebruikt om de eilandpariteit te
meten, zelfs in het 1e-regime waar geleidingsmetingen geen onderscheid kunnen ma-
ken tussen de twee pariteiten.

We gaan verder met het bestuderen van de impact van de lengte van een Josephson
junctie (J]) op zijn superstroombestendigheid tegen magnetisch veld. We gebruiken de
schaduw-muur lithografie om hybride InSb-Al nanodraad JJ’s van verschillende lengtes
te maken en ontdekken dat het verkleinen van de junctielengte de bestendigheid tegen
het magnetische veld verbetert. We detecteren op reproduceerbare wijze superstroom
bij parallelle magnetische velden van ~ 1.3T in ~ 40nm-lange JJs (Hoofdstuk 4).

Vervolgens hebben we twee ~ 40nm-lange InSb-Al nanodraad JJ’s in een superge-
leidende lus ingebed en bestuderen we de CPR bij parallelle magnetische velden tot
~ 700nT. We ontdekken dat een gelokaliseerde resonante toestand in de JJ de super-
stroom asymmetrisch kan moduleren in een smal interval van het elektrochemische po-
tentieel. Bovendien wordt de junctie in dit interval een 7-junctie bij hoge magnetische
velden. Deze waarnemingen zijn gereproduceerd door een theoretisch model dat reke-
ning houdt met de interferentie tussen een gelokaliseerde toestand en directe transmis-
sie binnen een enkele JJ (hoofdstuk 5).

We gaan over van het bestuderen van superstroom en gaan verder met het ontwikkelen
van hybride InSb-Al nanodraad-devices met meerdere nm-dikke AlOx-tunnelcontacten.
We verkrijgen deze contacten door de schaduw-muur lithografie en gecontroleerde oxi-
datie van de Al-film op de nanodraden te combineren. Door tunnelspectroscopie ver-
kregen door naburige tunnelcontacten te vergelijken, worden Andreev-gebonden toe-
standen (eng. Andreev bound states) (ABS’s) gelokaliseerd over ~ 200nm waargenomen
aan de uiteinden en in de bulk van meerdere hybriden. (Hoofdstuk 6)

In de laatste studie (hoofdstuk 7) onderzoeken we hoe supergeleiding kan worden
geinduceerd in Ge tweedimensionale elektronengat-gassen (eng. hole-gases) (2DHG’s)
met hoge mobiliteit. We demonstreren voor het eerst een harde supergeleidende gap
in Ge veroorzaakt door PtSiGe. Het supergeleidende PtSiGe wordt verkregen door Pt op
een Ge/SiGe kwantumstip af te zetten en het thermisch in het SiGe te diffunderen. Dit
platform kan in de toekomst worden beschouwd als een geschikte kandidaat voor to-
pologische supergeleiding, omdat het lage wanorde en een harde supergeleidende gap
combineert.

Ten slotte geven we commentaar op onze resultaten en stellen we verschillende nieuwe
experimenten voor (hoofdstuk 8) die vervolgstudies vertegenwoordigen in verschillende
richtingen die in dit proefschrift zijn gevolgd.
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2 1. INTRODUCTION

1.1. QUANTUM TECHNOLOGY

The turn between the nineteenth and twentieth century was marked by newly
observed physical phenomena - such as the black-body radiation [1] and the
photoelectric effect [2, 3] - that could not be explained by the then-existing theory of
matter. This inspired physicists to come up with a new theory with fundamentally
different concepts which would manage to explain the new phenomena. These
counterintuitive concepts, for example, allowed particles to be localized in and
transmitted through energy barriers, or assumed that a single particle can be
simultaneously in multiple states characterized by different values of a same
observable. Two central concepts in the new theory were the particle-wave duality
of matter and the discretization of energy in the form of quanta. Therefore, the new
theory was called the quantum theory and its establishment is known as the first
quantum revolution.

Quantum theory did not only manage to create a consistent set of laws that
govern the behaviour of particles at the nanometer scale, but also played an
important role in various technological developments of the twentieth century.
For example, basic components - such as lasers and transistors - could only be
invented and miniaturized thanks to understandings how electrons and photons
behave and interact - which directly followed from the quantum theory. Due
to rapid miniaturization of technology taking place over the past several decades,
electronic devices nowadays consist of nanocomponents which require a fully
quantum approach. In addition, quantum theory has also been used to design
devices that exploit the laws of quantum theory to gain fundamentally different and
superior functionalities. Applying quantum theory to create such superior and novel,
quantum technology has led to the second quantum revolution [4].

The field of quantum technology can be divided into four subfields depending
on purposes the technology serves — quantum communication, quantum sensing,
quantum simulation and quantum computing. In quantum communication, secure
communication is achieved thanks to the fundamental property of the quantum
entanglement between quantum states of two quantum objects (photons, for
example). Any interception of the information flow via a quantum-communication
link is detected by entangling the exchanged quantum state (photon) with another
precisely prepared state (photon) at each end of the link. This represents the basic
principle of the quantum key distribution (QKD) protocol for secure communication
[5]. Quantum sensing relies on the high sensitivity of quantum objects to electric and
magnetic fields, which is reached via quantum entanglement, quantum interference
or quantum phase squeezing [6]. Since extremely small values of electric and
magnetic fields can be detected with great precision, quantum sensors beat sensors
based on classical principles. Quantum simulations are performed by mapping a real
quantum many-body system onto an artificially made quantum many-body system -
a quantum simulator. The quantum simulator is then controlled and let to evolve by
following the laws of quantum mechanics - simulating the real system [7]. In this
way, quantum materials or chemicals can be modelled and their properties can be
studied by quantum simulators realized on different platforms - with some examples
being superconducting qubits, trapped ions and quantum dots [8]. In quantum
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simulators, complete control of all components is not required and they are, thus,
easier to realize in comparison to the most challenging quantum-technology systems
- quantum computers.

Quantum computing relies on encoding information into quantum states of
two-level systems known as quantum bits or qubits. As each qubit can be a quantum
superposition of the 0-state and the 1-state, both classical bits 0 and 1 can be
manipulated in parallel by single-qubit operations. If multiple qubits are entangled,
the number of states that can be manipulated in parallel exponentially grows with
the number of qubits. Consequently, exponential speed-ups of calculations can be
achieved by quantum computers. This advantage could be used to solve complex
problems within reasonably long time frames, which is not feasible by classical
computers. An example is the factorization of large numbers by the Shor’s algorithm
[91.

The idea of a powerful quantum computer is in practice considerably complicated
by decoherence - a tendency of quantum objects to lose their quantum properties
due to interactions with their environment. The noise from the environment leads to
the mechanisms of energy relaxation and dephasing. In the first one, a qubit in the
excited state (1-state) decays into the ground state (0-state), while in the second one
a coherent superposition of the two states evolves into their statistical mixture [9].
Decoherence is inevitable as qubits have to be manipulated and therefore cannot be
isolated from their environment. In order to deal with decoherence, error-correction
protocols have been proposed [10]. However, these protocols make use of additional
qubits, which increase the total number of qubits and impose the challenge of
making a scalable quantum computer.

Achieving high qubit coherence on a scalable qubit platform has been an
extremely challenging scientific and engineering task over the past two decades.
Various platforms have been extensively studied by many scientists in academia
and industry. These qubit platforms include superconducting quantum circuits
[11], semiconducting quantum dots [12], trapped ions [13], NV centers in diamond
[14] and topological superconductors [15]. Quantum processors have been
experimentally realized in most of qubit platform - with an exception for topological
superconductors, where no single topological qubit has been demonstrated yet.
However, the route of topological quantum computation is still being actively
investigated as the topological qubits have been predicted to exhibit significantly
improved coherence in comparison to the currently used qubits. Their robustness
to decoherence stems from the inherent properties of topological superconductors
rather than from specific advancements in the qubit design or operation. Therefore,
topological qubits are not only promising candidates for quantum computation, but
also form a hot topic in condensed matter physics. In the following section, we
introduce the fundamental properties of topological superconductors and show how
they are exploited in topological quantum computing.
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1.2. TOPOLOGICAL QUANTUM COMPUTING

In the three-dimensional world, all quantum particles can be divided in two
classes based on their exchange statistics. Upon exchanging the positions of two
indistinguishable particles, the wavefunction ¥ describing the system of particles
can either remain unchanged or flip its sign. The first class of particles, where
¥ — ¥, are bosons, which typical representatives are photons. The second class,
where W — —V¥ are fermions, with electrons as common examples. Upon exchanging
the same pair of fermions or bosons twice, the system wavefunction remains the
same as before the exchanges, as ¥ — +¥ — ¥ [16]. The mathematical property that
the wavefunction remains unchanged has a physical consequence that the system
observables do not change their values.

If one considers a system of indistinguishable particles confined in two dimensions,
a third class of particles arises. In this class, exchanging the positions of two
particles twice does not bring the system into its initial state, but, instead, changes
the phase factor in its wavefunction [17]. This means that a single exchange of two
particles gives ¥ — e*/*¥, where the two signs correspond to the clockwise and
anti-clockwise exchange direction. These particles are known as anyons since the
global phase factor can take any value [18]. Typical representatives of anyons are
edge states in the quantum spin-Hall system [19, 20].

A system of anyons becomes even more interesting if its ground state is degenerate.
In this case, exchanging a pair of anyons can move the system from one to another
quantum state within the same ground-state degeneracy manifold. This means that
exchanging two anyons corresponds to multiplying the system wavefunction by a
matrix, and, therefore, an interesting consequence of it is that exchange operations
do not commute in general. These anyons are known as non-Abelian anyons
[21] and typical representatives are Majorana zero modes (MZMs). The paths of
exchanging MZMs in the three-dimensional time-space (one temporal axis + two
spatial axis) can be visualized as braids and their manipulation is therefore referred
as braiding [22].

Majorana zero modes are quasiparticles that are an equal superposition of an
electron and a hole. They are in condensed matter mathematically analogous to the
Majorana fermions originally established by Ettore Majorana as zero-energy solutions
of the Dirac equation [23]. By being half-electron and half-hole, MZMs can in pairs
host single electrons. Furthermore, due to the zero- energy of MZMs an electron can
occupy a pair of MZMs with no energy cost and lead to a double parity-degeneracy
of the ground state of the system containing the MZMs. If the number of pairs of
MZMs is increased (INV), the size of the degeneracy manifold exponentially increases
2N. MZMs obey the non-Abelian exchange statistics and by moving them one can
realize braiding operations [24]. These operations move the system through different
ground states in which the total electron parity remains fixed, but the occupancy
of MZMs can change. Importantly, the outcome of braiding depends only on the
initial state of the system and the pair of MZMs being exchanged, but not on
particular details, such as the microscopic path along which the MZMs move. If
during braiding MZMs do not overlap, these operations are protected against local
perturbations because the electron states encoded in the MZMs are non-local. Such
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robustness to local disturbances is analogous to the preservation of properties of
geometrical objects studied in topology. For example, an orange can be smoothly
transformed into a cup without a handle by only stretching and twisting and without
caring about particular (local) details of these transformations. However, making a
cup with a handle would require a non-smooth transformation of creating a hole
in the orange by cutting and gluing. Analogously, braiding moves the system with
MZMs through its degeneracy manifold and the system remains in it as long as
non-smooth perturbations of its Hamiltonian do not take place. This robustness to
smooth perturbations in the Hamiltonian make the braiding of MZMs topologically
protected against local noise and represent the ultimate advantage to be used in the
topological quantum computing. In contrast to other quantum computing platforms,
the qubit states here belong to the same degeneracy manifold and have thus the
same energy. Furthermore, the qubit states are manipulated through braiding which
is in its nature fault-tolerant. Finally, the qubit is read-out by the process of fusion
[25], where two MZMs are brought close to each other and annihilated by giving
either an electron or a hole.

So far, MZMs have not been found to spontaneously occur in nature like, for
example, spins do in semiconductors and are used for spin qubits. Therefore, MZMs
have to be engineered first before a topological qubit could be realized. However,
engineering MZMs is itself already a great challenge and one could argue that
topological quantum computing is therefore practically inferior to other quantum
computing platforms. Nevertheless, the theoretically envisioned advantages from the
fault-tolerance of topological qubits have still made topological quantum computing
a hot topic in both the academic and industrial community. This has resulted in
significant advancements in fabrication, control and understanding of condensed
matter systems in which scientists have been trying to engineer MZMs. This thesis
also tackles some of the challenges that have recently been taken towards improving
and better understanding various hybrid semiconductor-superconductor quantum
devices that could host MZMs.

1.3. THESIS OUTLINE

The main body of this thesis involves five chapters (Chapter 3-7) that correspond
to five experimental studies that we have conducted over the past five years.
Although these studies have been done on various material platforms and quantum
devices, studying the quantum transport in hybrid semiconductor-superconductor
nanostructures is their common element. Some of these experiments have
inspired our collaborators to develop theoretical models that have given possible
interpretations of the experiments and have become integral parts of the studies.

Before presenting our work, we first give a theoretical background in Chapter 2,
where we introduce fundamental concepts of semiconductors, superconductors and
the quantum transport in hybrid devices that combine them. Particularly, the physics
of semiconducting Josephson junctions (JJs) and hybrid islands is described. We also
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explain how a topological superconducting phase with Majorana zero modes (MZMs)
arises in hybrid devices and by which experimental signatures it is accompanied.

In Chapter 3, we study the current-phase relation (CPR) of an InSb-Al nanowire
Cooper pair transistor (CPT). The supercurrent through the CPT is measured as a
function of the electro-chemical potential in the nanowire and an axial magnetic
field reaching ~200mT. We also develop a theoretical model of the supercurrent
transport mediated by subgap states in a hybrid island.

In order to improve the compatibility of nanowire JJs with high magnetic fields, we
examine in Chapter 4 the impact of junction length on the supercurrent resilience
against magnetic field. We use the shadow-wall lithography technique to obtain
InSb-Al nanowire JJs with lengths varying from 30nm to 160nm, and we examine
how their supercurrents vanish when high magnetic fields are applied.

By implementing the design developed in Chapter 4, we embed a 40nm-long
InSb-Al nanowire JJ into a superconducting loop with another identical JJ. In Chapter
5, we perform the CPR measurements while varying the junction electro-chemical
potential and increasing axial magnetic fields up to ~700mT. Here, we also develop
a theoretical model of the supercurrent through a JJ in the presence of interference
between a localized state and direct transmission.

Moving from the supercurrent experiments, in Chapter 6 we present tunneling
spectroscopy measurements in hybrid InSb-Al nanowires that use nm-thick tunnel
barriers. The novel tunnel probes are realized by combining the shadow-wall
lithography and controlled oxidation of the Al film on the nanowires. Since these
probes can be positioned at any point along a hybrid nanowire, we use multiple
tunnel probes along single hybrids to examine the longitudinal evolution of their
subgap states.

Next, we induce superconductivity in the two-dimensional hole gas (2DHG)
platform with high-mobility Ge. In Chapter 7, we thermally diffuse Pt into
Ge/SiGe quantum wells to obtain superconducting PtSiGe and proximity-induce
superconudctivity in Ge. We characterize the induced superconductivity by realizing
common hybrid device architectures, while particularly assessing the hardness of the
induced superconducting gap.

Finally, in the closing Chapter 8 we give our main conclusions and propose future
experiments that are inspired by the previous chapters.
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THEORY

Hybrid nanostructures combining semiconductors and superconductors are experimen-
tally and theoretically studied in this thesis. Here, we give a fundamental theoretical
background relevant for the phenomena studied in the following chapters. We start
with semiconducting nanostructures and BCS superconductivity. Then, we explain the
transport mechanisms between a normal metal and a superconductor. We continue
by introducing hybrid Josephson junctions and relevant transport phenomena inside
magnetic fields. We also explain how topological superconductivity is predicted to
arise in hybrid nanowires, and we give a brief overview of different trivial examples
mimicking the topological scenario. Finally, we explain the transport through a
Cooper pair transistor based on the hybrid nanowire platform, and we give a brief
summary of the Fano resonant effect.
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2.1. SEMICONDUCTING NANOSTRUCTURES

2.1.1. GENERAL CONCEPTS

Electrons in bulk solids occupy states which energies are grouped in continuous
intervals of energy bands. This is the direct consequence of the periodic potential
that is set by the crystal lattice of solids. Depending on the lattice atomic properties,
the energy bands can overlap or be separated by forbidden intervals of energy
gaps [1]. In semiconductors, the highest occupied (valence) band and the lowest
unoccupied (conduction) band are separated by an energy gap over which electrons
can be thermally excited into the conduction band and take part in transport. The
states that are so left unoccupied in the valence band are equivalent to positively
charged holes that also take part in transport.

Dispersive relation E(k) between the energy and the wave vector for electrons
(holes) in the conduction (valence) band is well approximated by the parabolic
dispersive relation for free electrons E(k) = h?k?/2m* - with an important correction
that m* is an effective mass that reflects the effect of the crystal lattice potential on
the electron (hole) motion. With a confinement along any (x, y, z) direction, the wave
vector projection along that direction becomes quantized and the continuous energy
bands split into discrete subbands that are associated with the discrete projection
values. The spacing between the subbands increases with the confinement strength.
This is how parabolic subbands emerge for the in-plane motion in quantum wells
and for longitudinal motion in nanowires [1].

An important consequence of one dimensional confinement and parabollic
subbands in nanowires is that the ballistic transport is quantized [2]. The
conductance G at zero temperature and zero magnetic field is a multiple of the
number of subbands N crossing the Fermi level and the conductance quantum
Go =2e?/h (e is the elememtary charge and & is the Planck constant). Essentially,

1

this is the direct consequence of the one dimensional density of states D(E) o 75

and the electron momentum /%k, o vVE - which results in an energy-independent
contribution of the electrons at energy E dI(E) x kyD(E)dE x const.dE to the total
current I. If the transport is not ballistic and scatterings are prominent, the diffusive
transport occurs and it is described by the Drude model [3]. The conductance then
depends on the electron mobility u, = er/m* as G = pu,ne, where 7 is the time
between two scattering events and 7 is the electron concentration.

Semiconducting nanostructures have more complex energy dispersion when two
important interactions between an electron spin and local fields are considered. We
briefly introduce these effects in the two following paragraphs.

The interaction between the magnetic moment of an electron and a magnetic field
manifests through the Zeeman effect [4]. The Zeeman Hamiltonian for spin ho/2
inside the field B is:

1
szg,uBgaHB 2.1

where pp = eh/2my=5.788x 107%eVT~! is the Bohr magneton and g is the Landé
factor. The magnetic field symmetrically splits the spin-degenerate electron
eigenstates into a pair of states where the spin and the field are either parallel or
antiparallel. These states are separated in energy by upgB.
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The coupling of an electric field E to the spin o of an electron with a momentum
p leads to the spin-orbit interaction effect. In the non-relativistic limit, this effect is
described by the Hamiltonian [5]:

h
Hsop=————0 -pxE (2.2)
SO 4m§cz |Y

where c is the speed of light. The effect can be intuitively and roughly understood as
an effective Zeeman effect for the spin in its rest frame — where the electric field is
Lorentz-transformed into a magnetic field [6]. Spin-orbit interaction is present when
spatial inversion symmetry is broken. This happens via the bulk inversion asymmetry
(BIA) - that is intrinsic to some crystal lattices, or via the structural inversion
asymmetry (SIA) — that is caused by confinements and externally applied electric
fields. The BIA mechanism is referred as the Dresselhaus spin-orbit interaction [7],
while the SIA mechanism is known as the Rashba spin-orbit interaction [8].

2.1.2. RASHBA NANAOWIRES

Electron energy spectrum in semiconducting nanowires consists of different subbands
for the longitudinal motion of an electron along the nanowire. In Fig. 2.1(a), we
show a schematic of a semiconducting nanowire placed along the x-axis on top of
an electrostatic gate that sets an electro-chemical potential p in the nanowire. The
nanowire has a hexagonal cross-section - as representative Rashba nanowires made
of III-V semiconductors (InAs and InSb). The dispersive relation of the first subband
is then E(ky) = hzk)zc/Zm* —u and the Fermi wave vector is kpg = /2m*(Er+ 1) /h, as
shown in Fig. 2.1(b) on the left.

An electric field E set by the gate is in the (y,z)-plane (due to the symmetry
constraints) and, therefore, it is perpendicular to the electron wave vector k along
the x-axis. The Rashba spin-orbit field Bgg < k x E then lays in the (x,y)-plane.
For the simplicity, let us assume that E is along the z-axis and Bgg is along the
y-axis, as depicted in Fig. 2.1(a). If an external magnetic field B is applied along the
nanowire, with @ and g being the Rashba spin-orbit coefficient and Landé g-factor,
the nanowire Hamiltonian in the basis W = (c;,¢;)" reads:

272
Hy = X _ulog+akeo,+Ez0 2.3
0 (Zm* ,U) 0 xOy+Ez0; (2.3)

where the Zeeman term is Ez = %g,uBB.

If the external field is zero (Ez =0) and the spin-orbit interaction is finite, the
single band splits along the ky-axis by +kso=m*a/h? into two bands and both
bands move down in energy by Eso= m*a?/2h? (Fig.2.1(b) in the middle). The

new Fermi wave vector is kr = kso+ 1/ k}%O + kgo The electron states corresponding to
these two bands have spins that are parallel and antiparallel to the Bgg field. Note
that the degeneracy at kyx =0 remains, as Bsp =0 there.

A finite external field (Ez > 0) removes the degeneracy at k, =0 by introducing a
splitting of 2E, (Fig. 2.1(b) on the right). As B L Bgg, the pairs of eigenstates have
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(a) (b) Eso=o,Ez=0 E50>0,Ez=0 E50>0, Ez>0

—kro 0 +kpo —kr
k.

X

Figure 2.1: (a) Schematic of a Rashba nanowire (blue) on top of a gate (grey) that
sets the electro-chemical potential ¢ in the nanowire. An external magnetic field B
is parallel to the nanowire and perpendicular to the electric field E set by the gate
and the spin-orbit field Bgp. (b) Dispersive relation of a single subband without
spin-orbit interaction and magnetic field (left), with finite spin-orbit interaction only
(middle) and with both finite spin-orbit interaction and magnetic field (right).

opposite spins, which axis ranges from the x-axis at k, =0 to the z-axis at large k.
Removing the degeneracy at ky =0 has an important consequence that there is an
energy range (shaded in red in Fig. 2.1(b) on the right) where the electron spin and
the electron momentum are interlocked. This interval is called a helical gap.

In InSb Rashba nanowires, the physics described above is quantified by the
following parameters: m* =0.014my, a =[0.2—-1]eV-A, Eso=[0.05—1]meV and
g =1[40-50] [9].

2.1.3. PLANAR GE

Bulk germanium has diamond cubic structure with p-orbitals forming covalent
bonds. Three-fold degeneracy of p-orbitals with the angular momentum quantum
number /=1 (magnetic quantum numbers m; = —1,0,+1) and the two-fold spin
degeneracy (with spin quantum numbers m; =—-1/2,4+1/2) are expected to give rise
to a six-fold degeneracy in the valence band. However, due to the spin-orbit
interaction, the angular momentum L and spin S are coupled, and the total angular
momentum J =L+S characterizes electron states with corresponding total angular
momentum quantum numbers j=|l+s| and m; = m;+ ms. At the ' point (k=0),
the six-fold degeneracy of the valence band splits into a four-fold degeneracy of
states where L and S are parallel and j=3/2, and two-fold degeneracy where L
and S are antiparallel and j=1/2 [5]. Around the T point, the top of the valence
band further splits depending on the projection of J on k - into a heavy hole
(HH) band with projections m; = +3/2, and a light hole (LH) band with projections
mj=+1/2 (see Fig. 2.2(a)) [10]. The effective masses corresponding to these bands
mpyg =~ 0.33mg and mrg =~ 0.04my (mg is the free electron mass) are derived from
the Luttinger parmeters for bulk germanium and differ by approximately one order
of magnitude [11]. The splitting due to the spin-orbit interaction in bulk germanium
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Figure 2.2: (a) Band structure of bulk germanium. The top of the valence band is
four-fold degenerate, with heavy holes (HH,blue) and light holes (LH, red) bands.
The spin-split band is separated from the rest of the valence band by Agp. Ec is
the conduction band. (b) The top of the valence band for planar germanium. The
HH-like subbands (blue) and LH-like subbands (red) are splitted by AEgy_1y due
to the confinement and strain. HH-like subbands exhibit smaller effective mass.

is Ag =0.3eV [5].

When pure germanium is confined between two SiGe buffer layers, a Ge quantum
well with a two-dimensional hole gas (2DHG) is formed - due to the valence band
offset. The strong confinement along the growth direction (z-axis in Fig. 2.2) leads
to large values of the perpendicular wave vector projections (k;). Consequently, the
eigenstates of the confined structure are closely described by the states of heavy
holes and light holes in the bulk [5]. Such heavy hole-like (HH-like) and light
hole-like (LH-like) states in planar Ge exhibit a degeneracy splitting even at k=0
[12]. This splitting due to confinement is inversely proportional to the square of the
quantum well width and can thus be controlled by design.

The splitting between the HH-like and LH-like bands is enhanced by the Ge
quantum well being compressively strained between the two SiGe layers. Namely,
the lattice constants of Ge and SiGe are age =5.66A and asice = 5.43A, and even
strains of orders of few percents can cause a splitting between the HH-like and
LH-like states of tents of meV. The splitting is controlled by the composition x in
the Si;_xGey layers.

The confinement and strain effects add up and finally determine the total splitting
between HH-like and LH-like states AEgy-ry, as shown in Fig. 2.2(b). Note that
the band structure here consists of different subbands corresponding to the in-plane
motion in the Ge 2DHG. Interestingly, the HH-like subbands are characterized by
rather low effective mass for in-plane motion mpyg, = 0.055mp, while the LH-like
subbands are described by higher effective mass mip ) =0.125my [13].

Diamond cubic structure of Ge has a center of inversion, and the Dresselhaus
spin-orbit interaction is negligible. The spatial inversion asymmetry for planar Ge
only occurs through the structural inversion symmetry breaking via interfaces and
gates in real devices. This means that the spin-orbit interaction has the Rashba
nature. Moreover, it is cubic, as the Rashba coefficients of k® terms dominate. This
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is because the particular lattice symmetry makes the Rashba coefficients of linear
terms small [14].

Holes in planar Ge exhibit highly anisotropic Zeeman effect — with g, > g, where
g1 (g is the g-factor for perpendicular (in-plane) magnetic fields. Physically, the
big anisotropy is mainly caused by the splitting between the HH-like and LH-like
subbands. The g-factors are also related to the Rashba coefficients and are, therefore,
tunable by external electric fields [15, 16].

2.2. SUPERCONDUCTIVITY

Superconductivity is a macroscopic quantum phenomenon that is observed to occur
in some metals at sufficiently low temperatures. It is manifested by non-dissipative
electron transport in a superconductor below its critical temperature [17]. Some
interesting consequences of this are that currents can flow through superconductors
without developing voltages and that superconductors exhibit perfectly diamagnetic
behaviour [18]. It took nearly five decades in the condensed matter physics
community for these and other related striking phenomena to be theoretically
understood. Bardeen, Cooper and Schrieffer created the BCS theory [19] that at the
time of the development could explain superconducting experimental observations
with high precision. However, this theory does not explain high-T. superconductors
that were later discovered, and which full understanding still remains a great
challenge [20].

2.2.1. BCS THEORY

The main idea of the BCS theory is that electrons in superconductors pair up in
bound states — Cooper pairs. As they consist of two fermions, Cooper pairs are
bosons and can form a condensate at the Fermi energy. The formation of Cooper
pairs occurs as an attractive electron-electron interaction - mediated by the phonons
of the crystal lattice - exceeds the repulsive electron-electron Coulomb interaction.
The net interaction energy can thus become negative and the state with paired
electrons becomes favourable in energy [21].

With C;;U (ckg) being the creation (annihilation) operator of an electron with wave
vector k and spin o, and under the mean-field approximation, the BCS Hamiltonian
reads:

H= Zekcligckg + Z(Akcltrcfkl + Ay ki Ck]) (2.4)
k,o k
212
where the first sum includes kinetic energy terms ¢y = Z—,’fl—EF with respect to

the Fermi energy Er and the second sum includes pairing energy terms with the
order parameter Ax. The BCS Hamiltonian can be diagonalized by transforming the
electron operators ¢y, into the operators of Bogoliubov quasiparticles yx. This is
done by the Bogoliubov transformation [22]:

ok t
Ckt = Uy Yir + VKY
T (2.5)

— * il
C'kl ==V Yk+ + uk}/k_
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which is due to the normalization condition |u|? +|vi|? = 1 equivalent to:

Yie = UkCh] = UkCly,
. L (2.6)
Yk- = chkT + ukc-kl

Each Bogoliubov quasiparticle is a superposition of an electron and a hole that
have opposite wave vectors with respect to the Fermi level and have opposite spins.
The factors ux and vy correspond to the electron and hole components in the
superposition. They can be chosen such that the BCS Hamiltonian in the new basis
is diagonal:

H=Eo+Y Ef vie + 75 11c) @7
k

with a constant condensation energy E; and eigenergies FEy = ,/ei+Ai that
correspond to excitations of Bogoliuboc quasiparticles. The factors uy and vy satisfy:

1 €
T

) e" (2.8)
|vk|2=—(1——“)

2 Ex

The two operators introduced in Eq. 2.6 mathematically correspond to two
particle-hole symmetric solutions of the Bogoliubov-de Gennes equation - with
energies +Eyx. However, since one operator creates and the other annihilates a
quasiparticle, their excitations have the same energy Ey, as visible in Eq. 2.7. The
minimal excitation energy is |Ax| and this non-zero value representing an energy gap
for excitations is the superconducting gap.

The length scale at which the density of Cooper pairs varies is known as the
superconducting coherence length ¢. This parameter roughly represents the size of
a Cooper pair. In a clean bulk superconductor, the coherence length &, is related
to the Fermi velocity vr in the normal state and the superconducting gap A as
o =hvr/nA. In a dirty supercnductor with an electron mean free path I, the
coherence length ¢ is related to the clean bulk coherence length as ¢ = \/m.

2.2.2. DENSITY OF STATES IN SUPERCONDUCTORS

In bulk metals the Fermi surface is spherical and the excitation energies depend on
the wave vector magnitude k = |k|. If the superconducting pairing Ay is independent

on k (s-wave superconductors), the superconducting gap A uniformly opens at the

omE
Fermi surface, where kp = Y=3=F.

In Fig. 2.3(a), the excitation spectrum E = /e{ + A2 = \/ hzkz —E + A2 is plotted

versus k. The excitations at the Fermi surface (IkI kr) have energy E=A (e, =0)
and consequently u=v = % These excitations are equal superpositions of electrons
and holes. The excitations outside the Fermi surface (|k| > kr) correspond to € >0
and therefore have uy > vi. The larger electron component in the superposition
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Figure 2.3: (a) Quasiparticle energy as a function of the wave vector; (b) Density of
quasiparticle states as a function of the quasiparticle energy.

makes these excitations electron-like. Similarly, the hole-like excitations originate
from the interior of the Fermi surface (|k| < kr), where €; <0 and thus u; < v.
The quasiparticle phase velocity is proportional to the derivative dE/dk. From Fig.
2.3(a), it can be seen that these derivatives have opposite signs for electron-like and
hole-like quasiparticles. Electron-like quasiparticles propagate in the direction of the
wave vector, while the hole-like quasiparticles propagate in the opposite direction.
As there is one-to-one correspondance between the quasiparticle states and the
electron states, a density of quasparticle states N(E) satisfies N(E)dE = n(e)de,
where n(e) is the density of electron states in the normal state. If this density is
approximated to be constant n(e) = Ny, the quasiparticle density of states is:

N(E) = I’l(é‘)ﬁ = % (2.9)
B dE_,/EZ_AZ ’

and N(E) =0 for E <A, inside the gap. The dependence in Eq. 2.9 is shown in Fig.
2.3(b). Density of quasiparticle states diverges and peaks at E = A (coherence peak).
For E > A, N(E) approaches the density of electron states Nj.

When transport in superconductors is considered, the excitation picture described
here is conveniently replaced by another - the one-particle picture that is used in
normal metals. In this picture, the positive quasiparticle energies are mirror-reflected
below the Fermi level such that a branch of holes of quasiparticles is introduced.
The ground state is then characterized by all the negative energies being occupied.
Excitations in this picture are present either as occupied quasiparticle states at
positive energies or as empty (missing quasiparticle) states at negative energies. The
convenience of such representation is that all allowed transitions in the transport are
"horizontal" in energy diagrams.
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2.3. TRANSPORT BETWEEN A NORMAL METAL AND A
SUPERCONDUCTOR

Transport between a normal metal (N) and a superconductor (S) is described by
Blonder, Tinkham and Klapwijk in the BTK model [23]. Here, we introduce the
model and give the main results relevant for the transport through an NS interface.

Dispersive relations on two sides of an NS interface in equilibrium are shown in
Fig. 2.4(a). The barrier at the interface has the §-function profile with strength Z.
The dispersive relations close to the Fermi levels are approximated by the linear and
parabolic dependences on the N and S side, respectively. The superconductor has a
gap A.

We consider an electron at an energy E > A that is incident on the NS interface
and has a positive group velocity. The electron can undergo different processes
which are associated with probability amplitudes a, b, ¢ and d, and corresponding
probabilities A, B, C and D, as depicted in Fig. 2.4(a). First, the electron can
be elastically reflected (probability B) into a state at the same energy and the
opposite velocity — in which case no transport occurs. Next, the electron can be
transmitted through the NS interface into quasiparticle states at the same energy,
while maintaining the direction of its group velocity. Therefore, the electron can
either be transmitted (probability C) into an electron-like quasiparticle with positive
wave vector, or (probability D) into a hole-like excitation with negative wave vector.
Finally, the electron can undergo the Andreev reflection (probability A), in which
an oppositely propagating hole is created at the energy —E on the N side. In this
case, a net charge of 2e is transferred through the NS interface, as the reflected hole
corresponds to the electron that forms a Cooper pair with the incident electron.
With taking into account all described processes, the wave function in the normal
metal reads:

1)\ ; 0\ _; 1\ _;
pW™ = (0) e 1a 1)6 ’q*x+b(0)e e (2.10)
and in the superconductor:
'S :c(z[‘)’)eihud(zz)e*”‘-x (2.11)

where uy and vg are the electron and hole coherence factors of the electron-like
quasiparticle in the process C. Note that the hole-like quasiparticle in the process D
has interchanged electron and hole coherence factors.

By solving the Bogoliubov-de Gennes equation with imposing A+ B+C+ D =1 and
continuity of the wavefunction and its first derivative at the NS interface, the BTK
model is solved to give the probabilities. The probability for the Andreev reflection
is:

AZ
, if E<A
E?2+ (A2 -E2)(1+2272)2
AE) =5 , , (2.12)
Uy Vo .
, if E>A

,),2
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Figure 2.4: (a) Dispersive relation for the normal metal (N, black) and the
superconductor (S, blue) with the NS interface (red) in equilibrium. g- and k-wave
vectors correspond to the excitations at energy E on each side. An incident electron
undergoes different processes with probabilities A, B, C and D. (b) Differential
conductance G through the NS interface as a function of the bias voltage Vyg for
different interface transparencies 7.

and the probability for normal reflection is:

1-A(B), if E<A

B(E) =1 (u5-vd*Z*(1+2% (2.13)
7 , ifE>A

with y = u(z) + Zz(ué — vé). Note that A(E) vanishes for E > A and that the electron is
transmitted with probability 1-B(E) = ; +122 = T, meaning that such defined T is the
transmission of the barrier.

The probability coefficients above are needed for calculating the differential

conductance G through the NS interface when a bias voltage Vs is applied:

2 2
G(Vis) = %(1 + A(eVivs) — B(eVivs)) (2.14)
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In Fig. 2.4(b), we plot this dependence for different barrier strengths leading to
different transparencies T. One can see that for a perfect transmission T =1 (no
barrier, Z =0), the conductance inside the gap has a 4e?/h plateau - meaning
that each electron is perfectly Andreev reflected into the condensate of the
superconductor. This is known as the Andreev enhancement. Far above the gap,
the conductance reaches a 2¢%/h plateau as each electron is perfectly transmitted
into the quasiparticles in the superconductor. As T decreases (finite barrier, Z > 0),
both in-gap and out-of-gap conductance drop as the normal reflection competes
with both Andreev reflection and quasiparticle transmission. Finally, for small
T (strong barrier, Z > 1), the in-gap conductance is suppressed more than the
out-of-gap conductance. This in-gap suppression reflects the nature of Andreev
reflection -where both an electron and a hole have to tunnel through the interface.
Mathematically, this is visible in the Beenakker formula [24]:

2% 272

G(Vns=0)= Tm

(2.15)
where the conductance at the zero bias voltage is quadratically suppressed with the
transparency of the barrier at the NS interface.

2.4. JOSEPHSON JUNCTIONS

Any weak link between two superconductors (S) that allows for a non-dissipative
transport of Cooper pairs represents a Josephson junction (J]). The weak link can
be in the form of a thin insulating (I) barrier, a section of a normal (N) conductor
(metal), or a constricted (c) superconductor - therefore, one can define SIS, SNS
and ScS junctions [20]. In SIS junctions, the transport of Cooper pairs occurs
via tunnelling through the barrier between the superconductors. This gives rise to
a non-disspative (super)current I that has a sinusoidal dependence on the phase
difference ¢ between the superconductors:

I=1I,sin¢ (2.16)

while the voltage drop V over the junction is proportional to the first derivative of ¢
in time:
d¢ _2e
dt h
If a bias current I is below I, ¢ is constant and V =0 (dc Josephson effect). If a
finite bias voltage V is applied, ¢ changes in time and consequently the current I
through the junction has varying signs (ac Josephson effect). The critical current in
tunnel junction is influenced by the superconducting gap and the junction geometry.
If the linear dimensions of the junction are smaller than the superconducting
coherence length (short junction limit), the critical current I; is proportional to the
barrier cross-section and anti-proportional to its thickness. Consequently, if Ry is
the normal resistance of the junction, the product IRy is constant [25].
In the following sections we are focusing on SNS junctions, since they represent
the major building blocks of various devices in this thesis.

(2.17)
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2.4.1. SNS JOSEPHSON JUNCTIONS

Supercurrent in an SNS Josephson junction is mediated by electron and hole
excitations in the N section, that undergo Andreev reflections at two (SN and NS)
interfaces. This is illustrated in Fig. 2.5(a). An electron propagating to the right
- and being incident on the NS interface at an energy below the superconducting
gap A - is Andreev-reflected into a hole. The hole is a time-reversed partner of
the electron and propagates to the left and is incident on the SN interface. There,
it is Andree-reflected into an electron that then propagates to the right and starts a
new sequence, as the initial electron started. In the described transport sequence,
a Cooper pair is removed from the left superconductor and transferred into the
right superconductor, which is manifested as a non-dissipative supercurrent. For
each sequence depicted in Fig. 2.5(a), there is a counterpart sequence involving an
electron moving to the left and a hole moving to the right. This sequence transfers
a Cooper pair from the right lead to the left lead. If the time-reversal symmetry is
preserved, these two sequences cancel out at the zero phase difference between the
superconducting leads and the supercurrent vanishes. Otherwise, the supercurrent is
finite for finite phases.

Andreev reflection is not only crucial for the supercurrent transport in SNS JJs at
zero bias voltage. It is also responsible for transport when a finite bias voltage is
applied between the superconductors. Namely, multiple Andreev reflections (MARs)
give rise to subgap conductance peaks in SNS JJs at certain bias voltage values
below 2A/e (A being the superconducting gap in the leads) [26]. If the bias voltage
is above 2A/e, quasiparticles from one superconductor can simply propagate into
empty quasiparticle states of the other superconductor. In Fig. 2.5(b), it is shown
how a MARs process gives rise to single electron transport at a finite subgap bias
voltage. A quasiparticle in the left superconductor transfers into a right-propagating
electron that is incident at the NS interface below the gap. Therefore, it is Andreev
reflected into a left-propagating hole that is incident at the SN interface, also below
the gap. This hole is finally Andreev reflected into a right-propagating electron that
can freely leave the N section and transfer to the continuum of empty quasiparticle
states in the right superconducting lead. In the described sequence, the N section
is crossed three times and two consecutive Andreev reflections take place. This
sequence corresponds to the third-order MARs and it is prominent when the bias
voltage equals 2A/3e. In general, the MARs can be of any order n and then take
place at bias voltages 2A/ne. Under this condition high densities of states of two
coherence peaks (filled states on the left and empty states on the right) are matched
to yield the enhanced conductance. This is visible in Fig. 2.5(b) for n=3. A more
precise treatment shows that the occupation probabilities of electrons and holes
acquire saw-tooth profiles which peaks cross the gap edges under the same bias
voltage condition [23]. This additionally enhances the MARs conductance at the bias
voltages given above.

It should be noted that a non-perfect transmission T <1 of the N section
(caused by normal scatterings in the section and at the interfaces) makes that the
contributions of n-th order MARs decrease as T". Therefore, observing high order
MARs implies high transparency of SNS junctions [27-29].
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Figure 2.5: (a) Supercurrent transport for an SNS JJ. An Andreev bound state (ABS)
consisting of an electron (full circle) and a hole (empty circle) is formed inside the
junction below the superconducting gap A. The electron and the hole have opposite
spins and opposite directions of propagation. A Cooper pair is transferred from the
left lead to the right lead at the zero bias voltage. (b) Multiple Andreev reflection
(MAR) transport in the junction. An electron is transferred from the occupied
continuum of quasiparticle states of the left lead into the unoccupied continuum of
quasiparticle states of the right lead via multiple consecutive Andreev reflections.
The panel depicts the third order MAR (with two Andreev reflections) at the bias
voltage 2A/3e. (c) Energy E, of a single Andreev level and (d) supercurrent I,
carried by the level as a function of the superconducting phase difference ¢ between
the leads. Different traces correspond to different transparencies T, of the channel
n that forms the Andreev level.

The correlated electron-hole pairs that arise in the N segment thanks to the
Andreev reflection form Andreev bound states (ABSs). The spectrum of ABSs is
derived by considering a scattering matrix problem for electrons and holes inside
the N segment [26]. In this problem, the scattering matrix of the N segment is
diagonal in the electron-hole space — since a simple propagation over the junction
only scatters electrons to electrons and holes to holes, and does not transfer them
to each other. Oppositely, at the interfaces, electrons are scattered into holes (and
vice versa), and only a phase shift is added if the interface is perfect. If an electron
at energy E is scattered at the interface i = (L, R) (the left and right superconductor
have phases ¢; and ¢pg) into a hole at energy —E, the hole is phase shifted by
—arccos(E/A) — ¢; with respect to the phase of the electron. Similarly, the scattering
of a hole gives an electron shifted by —arccos(E/A) + ¢; in phase. If the described
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three matrices are multiplied to represent a full cycle in propagation, eigenvectors
of such matrix product are the ABSs, and are obtained from the condition for
non-trivial solutions of the described eigenproblem. The Andreev level formed from
the channel n disperses with the junction phase ¢ = ¢ —¢g as:

E,=+A\/1-T,sin?(¢/2) (2.18)

where T, is the eigenvalue of the junction transmission matrix for channel n. The
energy-phase dispersions are shown for different transmissions in Fig. 2.5(c) (top).
Note that the levels are spin-degenerate if no magnetic field is present.

If spin ¢ is taken into account, the quantity Egs(¢) = —%Znyg E,o(®) - where the
sum goes over all positive Andreev levels E,, <A — represents the ground state
energy which derivative is proportional to the supercurrent:

2e dE dE A T, si
I(¢) = 22 28 ro _ 22 nSing 2.19)

__EZ
hode hing A Ahig [1 7, sin?(¢r2)

and I(¢) represents the current-phase relation (CPR) of the JJ. The contribution to
the CPR per a single spin-degenerate Andreev level is shown in Fig. 2.5d as I,(¢)
for different transmissions 7, as in the panel (c). As the transmission increases, the
approximately sinusoidal I,(¢) dependence becomes skewed. Therefore, a skewed
sinusoidal CPR of a JJ indicates a high junction transparency. In another limit,
if there are many channels with low transmission inside the junction, the total
supercurrent has approximately sinusoidal dependence on phase I(¢) = I.sin¢, with
the critical current I, = %Zn T,. Therefore, a quantization of critical current is a
superconducting analogous to the quantization of conductance in normal transport
regime [30].

2.4.2. MAGNETIC FIELD EFFECTS

If an external magnetic field is applied to an SNS JJ, an interplay among Zeeman
effect, spin-orbit interaction and orbital effects modifies the Andreev levels spectrum
and ultimately affects the CPR of the junction. The first two effects are particularly
relevant for junctions made of I1I-V semiconductors with large g factor and spin-orbit
interaction. The third effect is prominent in junctions where multiple channels
inside the N segment contribute to the supercurrent. Here, we shortly describe these
effects by summarizing some results of [31] and [32].

Zeeman and spin-orbit effects studied in [31]. We adjust and display several figures
from this work in Fig. 2.6. An SNS JJ is formed in a nanowire along the x-axis and
an external magnetic field B is applied along the y-axis (Fig. 2.6(a)). If we focus on a
single channel in the N section, the field breaks its spin degeneracy and introduces
Zeeman energies of opposite signs to the electron and the hole forming an Andreev
level. The Zeeman contributions to the electron and the hole wave vector add up
into a spin-dependent phase shift:

_ 8HsBL

O =+ 2.20
B hor (2.20)
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Figure 2.6: (a) Schematic of an SNS (nanowire) JJ along the x-axis. The junction
length is L, two superconducting leads have phase difference ¢ and a magnetic field
B is along the y-axis. (b) Andreev levels dispersions with ¢ (single channel) for
different values of 8p. Solid and broken line correspond to two electron-hole pairs
with opposite spins. (c) Supercurrent dependence on ¢ for several Op values taken
in (b) (see the markers in different colours). (d) Phase of the minimal energy ¢y
and critical current I, as functions of 8. The figure has been taken from [31] and
modified.

where L is the junction length and vg is the Fermi velocity of the channel. If
multiple transport channels are considered, vr is replaced with an average Fermi
velocity vr, where % = %Zn ﬁ is the average over the all active channels n. The
two signs of Op correspond to two oppositely propagating electron-hole pairs.

Fig. 2.6(b) shows how increasing 0p splits the four subgap Andreev levels of
the junction (single channel N =1 case) and how the CPR acquires a n shift (Fig.
2.6(c)). For g =0, the levels are spin-degenerate and the ground state energy has
the minimum at ¢y =0. As 0p increases, the Andreev levels split and at sufficiently
large fields cross the zero energy. These crossings result in cusps in the CPR, as it
can be seen in Fig. 2.6(c). For Op = /2, the energy minimum moves from ¢y =0
to ¢ =m, as visible in Fig. 2.6(d), and the m-junction regime is reached. Finally,
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at 0p = m, the CPR is smooth and shifted by 7 relative to the intial CPR at 65 = 0.
Dependences of the ground state phase ¢pg and of the maximal supercurrent —
critical current I, — on Op are shown in Fig. 2.6(d). Critical current exhibits cusps at
0p values associated with the 0— transitions. Note that by increasing the field some
levels move above the gap and do not contribute to the supercurrent [33], while
other levels move below the gap — such that the number of Andreev levels remains
fixed. The results in Fig. 2.6 are obtained for a single channel, the Zeeman energy
is considered only inside the junction and the spin-orbit interaction is neglected.
Therefore, although the work considers a perpendicular B field, the results that we
show here also hold for a parallel magnetic field. The case with multiple channels
are qualitatively similar. A common feature of the spectrum is that the Andreev
levels are symmetric with respect to ¢ =0 — E(¢) = E(—¢p). This means that the
supercurrent obeys I(¢p) = —I(—¢) and, thus, I(¢) =0) =0. In cases with spin-orbit
interaction, Andreev levels are not anymore symmetric with respect to the zero
phase and a finite supercurrent is present at ¢) =0 — a phenomenon known as the
anomalous Josephson effect [34-37]. Finally, if multiple channels are considered, the
supercurrent magnitude becomes dependent on the supercurrent direction.

Orbital effects are studied in [32]. If an external axial magnetic field B is applied
along a nanowire JJ, it couples to the quantized azimuthal motion of electrons and
holes. Semi-classically, while an electron in the subband with the orbital number !/
travels along its spiral path over the junction (Fig. 2.7(a)), it accumulates a phase
difference with its partner hole, which is:

elBL

Spy = (2.21)
muvg|

where m is the electron effective mass and vg; is the Fermi velocity of the
corresponding subband. As a result, the Andreev level is shifted in phase depending
on the subband orbital number. If the coupling of B to [ is treated fully quantum
mechanically, the same result is obtained within the Andreev approximation and the
approximations of conduction shell model. The first approximation assumes that the
electron and hole wave vectors are approximately the same (k,, kj, > |k, — ky|) and it
breaks close to the bottom of the subband. The second approximation assumes that
the electron (hole) states are localized within a certain distance from the interface,
propagating through a ring-like cross-section of radius R. The phase shifts depend
only weakly on R and the applied normalized flux is ® = 7R?B/(h/e). A subband [
carries a supercurrent which primary peak occurs for flux:

nvg mR?

o
! hIL

(2.22)
Since the Fermi velocity exhibits a dependence on flux through the change of the
effective chemical potential, the positions of other peaks are aperiodic in flux.

If multiple subbands cross the Fermi level (Fig. 2.7(b)), each pair of subbands
has certain flux values for which the sum of their individual contributions to
the supercurrent is maximal via the Josephson interference. These conditions
are aperiodic in flux and if multiple subbands are involved, the resulting critical
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Figure 2.7: (a) Schematic of a nanowire JJ of length L and phase difference ¢ between
the leads (superconducting gap is Ag). A subband [ is via the angular motion
coupled to the parallel magnetic field B. (b) Critical current I, of the junction as a
function of the normalized flux @ through the nanowire exhibits aperiodic maxima
(top left). CPR of the supercurrent carried by individual subbands / for different
values of @ (remaining five panels, colour markers). Dotted vertical lines in the CPR
panels mark the phase ¢ for which the Josephson interference gives the maximal
supercurrent - the critical current in the top-left panel. The figure has been taken
and modified from [32].

current exhibits a complex dependence on the B field, as illustrated in Fig. 2.7(b).
Furthermore, scatterings inside the N section and at the interfaces (SN and NS) cause
additional phase randomization and can smear out the critical current fluctuations
[38].

The phenomena that we have described in this section are analogous in a
sense that they all occur due to the pick-up of electron-hole phase difference,
which modifies the dispersion of Andreev levels and consequently the supercurrent.
Increasing the junction length, magnetic field or the number of active subbands
inside the junction all make these effects more prominent.
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2.4.3. Dc-SQUID

When a single JJ is biased with a current below its critical current, the phase
difference between its superconducting leads is constant and takes a value such
that the junction can support the maximal supercurrent. If the junction CPR is
sinusoidal, the phase difference equals n/2, for which the maximal supercurrent
equals the critical current.

If two JJs (JJ1 and JJ2) are connected in parallel by a superconducting loop, they
form a dc version of the superconducting quantum interference device (SQUID)
shown in Fig. 2.8(a). If both junctions have sinusoidal CPRs with critical currents I
and I, the supercurrent through the SQUID is:

Isquip = Ic1sin(¢py) + Iz sin(¢hz) (2.23)

where ¢; and ¢, are the phase differences over corresponding junctions. Since the
junctions are embedded in the superconducting loop, ¢; and ¢, are not independent
and, in general, cannot independently take values such that the supercurrents in
both junction always reach the critical current values. The phases are connected via
the flux @ through the superconducting loop as:

)
o -r=2m (2.24)

where ®( = h/2e is the superconducting flux quantum. A critical current of the
SQUID is thus a function of the flux and each flux value ® = @’ has a corresponding
phase ¢1 = ¢’ such that the expression:

q)/
Isouip (1, ®") = o sin(¢y) + Iz sin (d’l - zan) (2.25)
0

is maximal and Isqup(¢',®') = I,souip is the critical current of the SQUID. It can
be easily found as the diagonal of a parallelogram spanned on vectors with lengths
I, and I, that have a phase shift of 27®/®,. If we use the cosine theorem:

Ie,sQuiD = \/ 12+ 1%, + 211 I cos (Zﬂ%) (2.26)
Consequently, the critical current of the SQUID ranges from |I;; — Ic2| to I + Ip.
In Fig. 2.8(b), I¢squip(®) dependences are shown for I;; = 1nA and I, taking the
values 1nA, 2nA and 6nA. If the SQUID is symmetric (I = I2), the critical current
of the SQUID can drop to zero and its flux dependence is non-sinusoidal with
cusps (red curve). As the SQUID becomes more asymmetric (Ic2 > I¢1), Ic,sQuip(P)
dependence gradually becomes sinusoidal and ultimately for I, > I;; resembles
the CPR of the junction with the smaller critical current. This is because, for
a highly asymmetric dc-SQUID, the phase difference over the junction with large
critical current remains constant in order to maximize the total supercurrent, and an
external flux thus effectively modulates only the phase over the junction with small
critical current. This is conveniently used in experiments to investigate the CPR of a
JJ by embedding it in the SQUID architecture with another (reference) junction that
has much larger critical current.
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Figure 2.8: (a) Schematic of a dc-SQUID with two Josephson junctions JJ1,2
with critical currents I and phase drops ¢, inside the superconducting loop
penetrated by the flux ®. (b) Dependence of the SQUID critical current on ® for
different I.,/1.; ratios.

2.5. TOPOLOGICAL SUPERCONDUCTIVITY

Topological superconductors are unconventional superconductors which bulk band
structure has an inverted superconducting gap. Consequently, due to the bulk-edge
correspondence, a topological superconductor hosts zero-energy excitations at
its boundaries and at topological defects. @ Such mid-gap states are known
as Majorana zero modes (MZMs). Topological superconductivity occurs when
p-wave superconducting pairing is introduced into a spinless Fermi liquid. Such
scenario has so far not been conclusively established in currently known materials
[39]. However, there are proposals how such conditions can be reached through
engineering by putting together different materials and combining their properties.
In this section, we focus on creating topological superconducting phase in hybrid
semiconductor-superconductor nanowires.

2.5.1. MAJORANA NANOWIRE MODEL

The proposals for creating MZMs in hybrid nanowires [40, 41] rely on introducing
s-wave superconducting pairing into a Rashba nanowire inside a parallel magnetic
field (Fig. 2.9(a)). The Rashba nanowire has already been introduced in the first
section of this chapter, and the influence of the parallel magnetic field on its band
structure E(k) is shown in Fig. 2.1(b). There, we show how the field removes the
degeneracy at k=0 and how this results in an effective spinless scenario. Here, we
introduce conventional s-wave superconducting pairing into the Rashba Hamiltonian
(Eq. 2.3) by adding a term with the induced superconducting gap that couples the
states below and above the Fermi energy. The Hamiltonian of a Majorana nanowire
then reads:

K2 k2
2m*

HNW=( —p) (T:800)+ak(t,;®0))+Ez(To®0;)+ AT ®00) (2.27)
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Figure 2.9: (a) Schematic of a hybrid semiconductor-superconductor nanowire
formed by coupling a Rashba nanowire (blue) to an s-wave superconductor (red),
inside a parallel magnetic field B (Zeeman energy Ez) and on top of a gate (grey)
setting the electro-chemical potential y. Majoranas y;» are present at the hybrid
nanowire ends in the topological phase. (b) Energy dispersion of a single band of
the hybrid nanowire before (left), at (middle) and after (right) the topological phase
transition at the critical Zeeman energy E7,. The black and red dots mark the energy
gap Eg at small wave vector ko and large wave vector kr. (c) Single band phase
diagram in the (u, Ez) parameter space with the topological phase in grey and the
phase boundary E% =A?+p? in red. (d) The bulk gap at ko (full red line) and kg
(full blue line) as a function of Ez. Eg(kr) is also shown for a stronger spin-orbit
interaction (blue broken line).

where 7 and o are the Pauli matrices in the particle-hole and spin space, respectively.
The basis is the Nambu spinor ¥ = (¢y, c|, CI, —c}r)T for a single spin-degenerate band.
All other terms have already been defined in Eq. 2.3.

The superconducting term opens the gap A at the Fermi energy in the particle-hole
symmetric spectrum. Since the degeneracy at k=0 is already removed by the
combined effect of the Zeeman and spin-orbit interaction, the coupled electrons
and holes have finite k and their spins have parallel and anti-parallel components.
Therefore, the resulting superconducting pairing has an effective p-wave component.
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Energy gaps open at small k (ko) and large k (kr) (black and red dots in Fig. 2.9(b).
The gap at ko closes for a critical Zeeman energy Ef, =\/A?+pu?. As Ez further
increases, the gap at k =0 reopens and the band inversion takes place. At this point
the nanowire enters into a topological superconducting phase and two MZMs y; and
Y2 appear at the ends of the hybrid (Fig. 2.9(a)). The topological phase occurs in the
entire parameter range beyond the red phase boundary E% = A%+ p? in Fig. 2.9(c).

In an infinitely long nanowire, the MZMs have exact zero energy and they are
protected by the topological gap that corresponds to the minimum between the
gaps Eg at ko =0 and kr. We show the E; dependences on Ez in Fig. 2.9(d). It
can be seen that Eg (ko) exhibits closely linear dependence on Ez before the phase
transition — as the spin-orbit interaction is small due to small ky. For Ez > ES, this
dependence is fully linear as ky =0 and the spin axis is parallel to the Zeeman field.
For Eg(kp), the evolution with Ez is non-linear due to the spin-orbit interaction
being larger at kr. Also, the stronger spin-orbit interaction protects the topological
gap at kg for large Ez (broken line in Fig. 2.9(d).

For the MZMs v, the self-conjugate operator relations for Majorana fermions
hold - 71,2 :7’4{,2- Therefore, they are purely real and correspond to the real and
imaginary part of a single fermionic mode ¢y at zero energy:

d=ri+ir

Co=Y1-1iY2
As the MZMs are present at the nanowire ends, this fermion has the non-local nature
and, due to its zero energy, its two occupations correspond to a double-degenerate
ground states of the system. The length scale at which the MZMs wavefunction
extend from the hybrid ends into the hybrid bulk is the Majorana coherence length
&M The non-locality of the mid-gap fermionic mode is quantified by the overlap
between the y;» wavefunctions, and this overlap quantifies the susceptibility of the
system to sources of local noise. In the limit of an infinitely long nanowire (L — co)
the two MZMs have a zero overlap and the non-local fermionic mode is topologically
protected against local noise.

If L is finite, the MZMs exhibit a finite overlap and a finite splitting Ej; from the
zero energy. These oscillate with £z and p via an effective Fermi wave vector kle:ff
that describes the oscillations of the Majorana wavefunctions [42]. In this case, the
finite energy Ejs reads:

(2.28)

K2 feff o
Ey = 2m*§ — cos (k§'L)e 2! (2.29)

The amplitude of the oscillation increases with E; and p, and since neither the
overlap nor the energy are fixed at zero anymore, the non-local fermionic mode
is not perfectly protected from local noise. However, this sensitivity to noise is
exponentially suppressed by increasing the hybrid length L (as visible in Eq. 2.29).

2.5.2. CONSIDERATIONS BEYOND THE MINIMAL MODEL

When the realistic configuration of a hybrid nanowire is considered, the calculations
of energy spectrum and topological phase give results that are much more complex
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Figure 2.10: Effects of the smooth potential: (a) Electro-chemical potential ¢(x) and
superconducting (S) gap A(x) along the nanowire (x-axis). Smooth variations are
caused by a tunnel barrier (B) at the nanowire end (x =0). (b) Evolution of the
spectrum with the Zeeman field with three distinct regions: 1 (no states at zero
energy, non-topological), 2 (quasi-Majoranas at zero energy, non-topological) and 3
(MZMs with finite splitting, topological). The nanowire length is L. The Majorana
wavefunctions are plotted along the nanowire [0, L] for each region 1-3. The figure
has been taken from [43]

than those of the minimal model of a Majorana nanowire. In the following
paragraphs, we briefly list the main critical aspects beyond the minimal model by
following a recent review [44].

While the superconducting pairing enters the minimal model as a fixed value,
in realistic hybrid nanowires it is reduced while the parallel magnetic field drives
the system into the topological phase. This is a consequence of the parallel field
penetrating the superconductor that proximitizes the nanowire and thus reduces
the parent superconducting gap in the system. Consequently, subgap states in the
nanowire spectrum can be pinned to zero energy and mimic MZMs by causing
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zero-bias peaks (ZBPs) in tunneling-conductance measurements. This can happen
simply because the decaying induced gap pushes subgap states to zero energy as the
field is increased.

By considering the three-dimensional nanowire geometry, multiple subbands and
orbital effects of the parallel magnetic field reduce the topological gap and make the
shape of the topologcal phase much smaller and more irregular than shown by the
parabolic phase boundary in Fig. 2.9(c).

The electro-chemical potential inside hybrid nanowires is controlled by electric
fields set by gates in experiments. However, unified self-consistent Schrédinger-
Poisson studies of realistic nanowires have shown that these electric fields also
influence the coupling strength between the semiconductor and the superconductor.
Namely, the electric fields influence the cross-sectional distribution of electron
wavefunctions. The electric fields can tune the hybridization from a superconducting-
like limit - with a hard induced gap, small g factor and weak spin-orbit interaction -
to a semiconducting-like limit - with a soft induced gap, large g factor and strong
spin-orbit interaction. Importantly, this means that the parameters of the system
are neither fixed nor independently tunable. The uniformity and control of the
parameters is additional complicated by disorder that can make the parameters vary
also longitudinally.

More detailed modellings of hybrid nanowires have found that smooth profiles of
the electrostatic potential along the nanowires occur due to the mutual presence
of the superconducting shell on the nanowire and local gates. An example of
the smooth potential due to a gate-defined tunnel barrier at the nanowire end is
depicted in Fig. 2.10 [43]. The smooth variations of the electro-static potential ¢(x)
and gap A(x) at the nanowire end give rise to subgap states that are pinned to
zero energy in a broad range of the Zeeman energy before the topological phase
transition (region 2). When decomposed into the Majorana basis, such states are
shown to consist of two Majoranas localized at the nanowire end with the smooth
potential. Although the state is at zero energy, its Majorana components are not
spatially separated and they have a finite overlap in space. Such states are known as
partially-separated ABSs, or non-topological MZMs, or quasi-Majoranas. The latest
name comes from the fact that these states can locally give experimental signatures
compatible with the true MZMs - in the form of even quantized ZBPs (2€%/h) in
tunneling spectrosopy measurements. The quasi-Majoranas ultimately evolve into
true MZMs at sufficiently large Zeeman fields (region 3). The Majoranas are then
localized at two nanowire ends and the nanowire is in the topological phase..

Based on all the aspects above, the creation of a topological phase in hybrid
nanowires turns out to be much more challenging than what has been predicted
by the minimal model. Local signatures of MZMs have been shown to occur
in various non-topological scenarios and are, therefore, considered insufficient
to conclusively establish the evidence of Majoranas in hybrid nanowires. For
an unambiguous detection of MZMs, detecting the Majorana non-locality or the
bulk-edge correspondance is needed.
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2.6. HYBRID NANOWIRE ISLAND

The ground-state degeneracy of an infinitely long topological Majorana nanowire
implies that a single electron can be added to the system without costs of energy.
However, this means that the electron-parity of a hybrid nanowire is sensitive
to the quasiparticle poisoning that can switch the electron parity. To have a
control on the parity, systems with Coulomb interaction are studied — as in such
systems the degeneracy is lifted by a finite charging energy. An example is a
hybrid nanowire which superconducting shell is not connected to a reservoir with
electrons and, therefore, represents an island with charges. Hybrid islands based on
semiconductor-superconductor nanowires provide a platform in which the interplay
between superconductivity and Coulomb interaction can be studied.

A schematic of a hybrid island is shown in Fig. 2.11(a). A gate is coupled to the
island and induces a continuous charge nge, while the charge ne on the island is
discrete. The total energy of the system is:

Etor = Ec(n—ng)*+Ey (2.30)

The first term corresponds to the Coulomb interaction that is parabolic with ng and
characterized by a charging energy Ec = e?/2C, C being the total capacitance of the
island. The second term appears due to the superconductivity. If n is even, all
electrons in the ground state form Cooper pairs at zero energy and the total energy
has only the Coulomb term. If n is odd, the Coulomb term remains, but there is
an electron that does not have a partner to pair up and, therefore, this electron has
to occupy the lowest single-electron energy state Ey. If there are no subgap states,
this electron has to be added to the gap-edge, giving Ey = A. This means that the
states with odd n are lifted by at most A with respect to those with even n. This

() 2e (Ec <A) even-odd (0 < Eg < E¢) le (Eo=0)

Figure 2.11: (a) Schematic of a hybrid semiconductor(blue)-superconductor(red)
nanowire island with n electrons and coupled to a gate with charge nge. The
charging energy of the island is E¢ and the lowest quasiparticle state has energy Ej.
(b) Energy dispersion of the island as a function of ng. Ground state Eg; is marked
by the thick dashed black lines.
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is visible in Fig. 2.11(b), where parabolas for different n are plotted as a function
of ng. The ground-state energy Eg is plotted in thick black. Note that in the left
panel neighbouring parabolas cross at E = Ec. If Eg > Ec, Egs(ng) only includes the
parabolas with even n and it is 2e-periodic. If 0 < Ey < Ec, in some intervals of
ng the parabolas with odd n have the lowest energy and Egs(ng) has an even-odd
pattern. Finally, if Ey =0, Egs(ng) equally includes both parities and it is 1e-periodic.

Transport through the island takes place at the degeneracy points in the ground
state. When two parabolas cross, either a Cooper pair (2e-periodic case, n — n+2) or
a single electron (even-odd or le-periodic, n — n+1) is added/removed to/from the
island. At these points, both the supercurrent and the zero-bias conductance through
the island are enhanced (Coulomb peaks). They are both suppressed between the
degeneracy points as the charge there is fixed (Coulomb valleys). Besides these
generic properties, signatures of topological superconductivity have been proposed
in the zero-bias conductance when a topological island is coupled to normal leads
[45], and in the supercurrent when coupled to superconducting leads [46].
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SUPERCURRENT PARITY METERIN A
NANOWIRE COOPER PAIR
TRANSISTOR

We study a Cooper-pair transistor realized by two Josephson weak links that enclose a
superconducting island in an InSb-Al hybrid nanowire. When the nanowire is subject
to a magnetic field, isolated subgap levels arise in the superconducting island and, due
to the Coulomb blockade, mediate a supercurrent by coherent co-tunneling of Cooper
pairs. We show that the supercurrent resulting from such co-tunneling events exhibits,
for low to moderate magnetic fields, a phase offset that discriminates even and odd
charge ground states on the superconducting island. Notably, this phase offset persists
when a subgap state approaches zero energy and, based on theoretical considerations,
permits parity measurements of subgap states by supercurrent interferometry. Such
supercurrent parity measurements could, in a new series of experiments, provide an
alternative approach for manipulating and protecting quantum information stored in
the isolated subgap levels of superconducting islands.

The work in this chapter has been published as: J.-Y. Wang*, C. Schrade*, V. Levajac, D. van Driel,
K. Li, S. Gazibegovi¢, G. Badawy, R. L. M. Op het Veld, J. S. Lee, M. Pendharkar, C. P Dempsey, C.
J. Palmstrem, E. P A. M. Bakkers, L. Fu, L. P Kouwenhoven and J. Shen "Supercurrent parity meter
in a nanowire Cooper pair transistor", Science Advances 8 (16), eabm9896 (2022)
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3.1. INTRODUCTION

When two superconducting (SC) leads couple via a Coulomb-blockaded quantum
dot (QD), the isolated energy levels on the dot mediate a supercurrent by coherent
co-tunneling of Cooper pairs [1]. For the case of a single-level QD, a control knob for
the supercurrent direction is given by the charge parity of dot electrons [1]. Such a
parity-controlled supercurrent has been observed in a nanowire (NW) QD Josephson
junction (JJ) [2, 3]. It is described by the Josephson relation, I = (—1)"1.sin(¢p),
where 1. is the critical current, ¢ is the SC phase difference, and ng is the number
of dot electrons. In general, the Josephson relation can also acquire a phase offset,
@ — @+ @y with @o #0,7, when time-reversal and mirror symmetry are broken
[4]. This breaking occurs, for example, if a spin-orbit coupled QD is subject to a
magnetic field [4-7].

A different possibility of coupling two SC leads is via a SC island with finite
charging energy: a ‘Cooper-pair transistor’ (CPT) [8-14]. Unlike in the QD JJ, the SC
island carries, within its parity lifetime, an even number of electrons in the ground
state, as signified by a charging energy that is a 2e-periodic function of the island
gate charge (e, elementary charge) [9, 11, 13]. In particular, since the odd charge
states are energetically unfavorable for a conventional CPT, the Josephson relation is
not expected to exhibit a parity-controlled phase offset.

Recently, a CPT has been realized with an Indium Arsenide-Aluminium (Al) hybrid
NW [12, 13]. In this case, upon increasing a magnetic field parallel to the NW, a
transition from a 2e-periodic switching current to a switching current with even-odd
pattern has been observed [13]. The interpretation is that a low-energy subgap state
arises in the SC island, and, depending on its occupancy, the charge ground state
carries an even or an odd number of electrons. An open question is if the Josephson
relation of a NW CPT exhibits in the presence of subgap states a parity-controlled
phase offset?

Here, we address this question with a NW CPT integrated in a superconducting
quantum interference device (SQUID). We investigate the previously described
situation when the NW CPT is subject to a parallel magnetic field so that subgap
levels arise in the SC island and mediate a supercurrent by coherent co-tunneling of
Cooper pairs. We show that supercurrent resulting from Cooper pair co-tunneling
exhibits a phase offset, which distinguishes even and odd charge ground states on
the SC island. This phase offset persists when a subgap state approaches zero energy
and, based on theoretical considerations, may enable parity readout of low-energy
subgap states. Such supercurrent parity readout could provide a new approach for
manipulating [15-20] and protecting [21, 22] quantum information stored in the
isolated subgap levels of SC islands [23-27].

3.2. RESULTS

The device geometry of our experiment is shown in Fig. 3.1. For realizing the CPT,
we use a shadow-grown Al SC island on an Indium Antimonide (InSb) NW, which
couples to two SC Al leads via gate-tunable tunneling barriers. A plunger gate is
used for controlling the electron number on the SC island. As we intend to study the
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Figure 3.1: Sketch of the SQUID device. (A) False-color micrograph of the measured
NDbTiN (green) SQUID device comprising an InSb-Al NW CPT in the right arm and an
InSb nanowire reference junction in the left arm. Top gates (L, R, REF) define tunable
JJs, and a plunger gate (P) controls the electron number on the hybrid island. The
InSb nanowires are ~100 nm in diameter, Al shell is ~10 nm in thickness, three
junctions are ~150 nm in length, and the InSb-Al hybrid island is ~1 ym in length.
(B) Cross-sections along the lines shown in (A).

full Josephson relation of the NW CPT, we integrate our setup in a SQUID loop made
of niobium-titanium nitride (NbTiN) and a second InSb NW reference junction. The
tunnel coupling of the reference junction is adjustable by a local gate electrode.
Concrete fabrication steps are discribed in the Supplementary Material section.

Initially, we pinch off the reference junction and characterize the NW CPT by
measuring the differential conductance dI/dV versus the source-drain voltage V and
the plunger gate voltage Vp. Our results are shown in Fig. 3.2A for zero and finite
parallel magnetic fields Bj.

At zero magnetic field, we observe a pattern of Coulomb diamonds with sharp
edges due to the weak island-lead coupling. Besides the Coulomb diamonds, which
signify the importance of charging effects on the SC island, the zero-bias differential
conductance exhibits 2e-periodic oscillations, which implies the transport of Cooper
pairs (see the insert curve in Fig. 3.2A). Furthermore, above an onset voltage Vyser,
a le-periodic modulation of the differential conductance appears, which marks the
onset of quasiparticle transport. The charging energy, Ec, is estimated to be ~20 peV
from the 2e—charge diamond at Bj=0, and the induced gap, A;,4, is extracted to be
~50 peV from onset of quasiparticle transport. The relation Ec < A;j,4 is consistent
with the condition for 2e-periodicity of the Coulomb diamonds at zero field [28-30].

At finite magnetic fields, the aforementioned onset voltage for quasiparticle
transport persists. However, below the onset voltage, the Coulomb diamonds split,
resulting in an even-odd pattern. We attribute the appearance of this even-odd
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Figure 3.2: Parity control with magnetic field. (A) Differential conductance, d1/dV,
versus source-drain voltage V and plunger gate voltage Vp. At zero parallel
magnetic field, the differential conductance shows a Coulomb diamond pattern with
a 2e-periodicity. At Bj =100mT, the 2e-periodicity of the Coulomb diamonds is
lifted due to the appearance of an odd-parity charge ground state on the SC island.
Inset curves show the differential conductance at zero bias. Black dotted lines
mark the boundary of a 2e-charge Coulomb diamond at By =0 and the boundary
of an even-parity Coulomb diamond at By =100mT. (B) Top panel: Switching
current, Iy, versus parallel magnetic field B and plunger gate voltage Vp. Bottom
panel: Magnetic field dependence of the normalized even and odd peak spacings,
Sel(Se+Sy) and S,/(Se+S,), showing a transition from a 2e-periodicity to an
even-odd pattern.

pattern to low-energy subgap states that form on the SC island. More specifically, the
magnetic field induces a Zeeman splitting of spinful, odd-parity states and, thereby,
reduces the minimum single-particle excitation energy in the NW CPT. As a result,
odd-parity states can detach from the quasiparticle continuum and, because of their
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enhanced effective g-factor in comparison to the Al shell, form isolated levels below
the SC gap [13, 31].

Next, we investigate the subgap levels on the SC island in more detail. We lower
the island-lead tunneling barriers and, with the reference junction still pinched off,
measure the switching current I, as a function of the parallel magnetic field B
and plunger gate voltage Vp. Our results are given in Fig. 3.2B. At zero magnetic
field, the switching current exhibits a 2e-periodic peak spacing implying that the SC
island always carries an even number of electrons in its charge ground state (see
also Fig. 3.6A in the Supplementary Material section). The situation changes upon
applying a parallel magnetic field. The magnetic field induces a splitting of the
2e-periodic peaks, and, as a result, the switching current exhibits a peak-spacing
with an even-odd pattern (see also Fig. 3.6B in the Supplementary Material section).
Similar to the differential conductance, we attribute the appearance of this even-odd
pattern to charge ground states with even and odd fermion parity on the SC island.
Moreover, as shown in Fig. 3.2B, the extracted peak spacings oscillate as a function
of applied magnetic field, as well as the plunger gate voltage, indicating either the
anticrossing or the crossing of the lowest-energy subgap state with a second subgap
state at higher energy [29, 30].

We now open the reference junction and measure the NW CPT’s full Josephson
relation in the presence of low-energy subgap states. For the results presented here,
we focus on the magnetic field strength B =170mT, and adopt a highly-asymmetric
SQUID configuration so that the phase drop occurs primarily across the NW CPT.
Under these conditions, we apply a bias current I; and measure the voltage drop
V across the SQUID as a function of the plunger gate voltage Vp and the flux ¢
piercing through the SC loop. Fig. 3.3 shows our measurement data, which we will
now discuss in more detail:

Our main finding is that the Josephson relation of the NW CPT exhibits a
substantial relative phase offset ¢o between Coulomb valleys of opposite charge
parity. To determine this phase offset for the Coulomb valleys marked in Fig. 3.3A,
we fit the switching current I, as a function of the flux ¢. The fitted curves, shown
in Fig. 3.3B, allow us to extract ¢¢ ~ —1.247 and ¢g ~ —1.31x for the first and second
pair of Coulomb valleys, respectively. For the remaining pairs, we find similar values
for the phase offset, as summarized in Fig. 3.3C. Notably, the leftmost pair of data
points in Fig. 3.3C shows that phase offset persists when the Coulomb peaks are
close to a le-spacing (see detailed analysis in Fig. 3.7 in supplementary materials).
Therefore, the phase offset facilitates charge parity readout even if a subgap state is
close to zero energy.

Next, we discuss a possible mechanism for a parity-dependent phase offset. We
introduce a model for the NW CPT, which comprises a mesoscopic SC island
coupled to a pair of s-wave SC leads. In our model, we focus on the two lowest
isolated subgap levels in the SC island, +¢, and +¢, indicated by the peak spacing
oscillation as a function of magnetic field and plunger gate in Fig. 3.2B. Here, we
consider two types of co-tunneling sequences:

(1) In the first type of sequence, shown in Fig. 3.4A, the Cooper pair splits so that
one electron tunnels via +&, while the other electron tunnels via +¢;,. For such a
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Figure 3.3: Parity control with magnetic field. (A) Differential conductance, d1/dV,
versus source-drain voltage V and plunger gate voltage Vp. At zero parallel
magnetic field, the differential conductance shows a Coulomb diamond pattern with
a 2e-periodicity. At Bj =100mT, the 2e-periodicity of the Coulomb diamonds is
lifted due to the appearance of an odd-parity charge ground state on the SC island.
Inset curves show the differential conductance at zero bias. Black dotted lines
mark the boundary of a 2e-charge Coulomb diamond at B; =0 and the boundary
of an even-parity Coulomb diamond at By =100mT. (B) Top panel: Switching
current, I, versus parallel magnetic field B and plunger gate voltage Vp. Bottom
panel: Magnetic field dependence of the normalized even and odd peak spacings,
Sel(Se+Sy) and S,/(Se+Sy), showing a transition from a 2e-periodicity to an
even-odd pattern.

two-level sequence, the corresponding supercurrent contribution acquires a prefactor
given by the SC island charge parity, (—1)". This parity prefactor is analogous to the
parity prefactor appearing in the Josephson relation of a QD JJ, where Cooper pairs
tunnel via two dot levels with opposite spin polarization [1].

(2) In the second type of sequence, shown in Fig. 3.4B, both Cooper pair electrons
tunnel via either te, or +g,. For such a single-level sequence, each of the two
electrons contributes a prefactor given by the parity of +e, or +e,. In particular,
since the same parity prefactor appears twice in the sequence, it squares to one.
Consequently, in the single-level supercurrent contribution a parity prefactor is
absent.

If we collect all sequences, we obtain the Josephson relation (see details in the
Supplementary Material section),

I= (=)™ Ipsin(@+@ap)+ Y. Irsin(@+g@p). (3.1)
(=a,b

B V(uVv) 0_21
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Figure 3.4: Energy diagrams illustrating Cooper pair transport via subgap levels.
(A) A typical sequence of intermediate states in which a Cooper pair tunnels
between the SC leads (left, right) via the two lowest isolated subgap levels a,b
in the intermediate SC island (center). Such a sequence yields a contribution to
the supercurrent proportional to the joint parity of the two subgap levels. In the
illustration, numbers indicate the sequence of tunneling events, and solid/empty
dots represent filled/empty subgap levels. The occupation numbers of the subgap
levels (124,13 in the sequence are (1,0) = (0,0) = (1,0) = (1,1) = (1,0). The energy of
the initial odd parity (1,0) configuration is (-=1)"«*le, + (~1)"»*1e, = £, — €, which
corresponds to the ground state provided that &, >¢e,. (B) A typical sequence of
intermediate states that involves Cooper pair transport via a single subgap level
yielding no parity-dependent prefactor. The occupation numbers for this sequence
are (1,0) L (0,0) 2 1,0) 3 (0,0) 4 (1,0). In (A) and (B), subgap levels are displayed in
an ‘excitation picture’ representation [32].

Here, I,, and I, are amplitudes, which are le-periodic in the gate charge if the
lowest subgap level is at zero energy. Furthermore, the phase offsets ¢y, ¢, arise
if the subgap states couple inequivalently to the SC leads (see the Eq. (3.18) in the
Supplementary Material for the detailed condition on the tunneling amplitudes) and
if, due to time-reversal symmetry breaking, the tunnel couplings acquire complex
phase factors.

We now highlight two differences between the NW CPT and a QD ]JJ: First, the
island which mediates the Josephson current is in a SC state, not a normal state as
for a QD JJ. Consequently, not only conventional tunneling events can occur, but
also anomalous tunneling events in which an electron is created/destroyed on both
the SC island and the leads. Second, for a QD ]JJ, the wavefuntions on the dot
are highly localized which justifies a point-like tunneling contact. In comparison,
for a NW CPT, the subgap level wavefunctions can be extended, which induces
longer-range island-lead tunnel couplings. In particular, such longer-range couplings
can break the mirror symmetry, due to the combined effect of spin-orbit coupling
and magnetic field in the tunneling region, and lead to additional contributions to
Pab, Pe- ) )

Returning to Eq. (3.1), the total phase offset is ¢,, = arg[(—1)"0I,,e' P + Y, I,e'?!]
and the relative phase offset between the parity sectors is @g = @41 — @n,. In these
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Figure 3.5: Tunable phase offset. (A) Phase offset ¢ versus plunger gate voltage Vp
for various parallel magnetic fields Bj. The dashed lines do not represent data, but
are merely used for improving data visibility. The phase offset is sensitive to both
plunger gate voltage and magnetic field variations. (B) Voltage drop V as a function
of the applied bias current I;, and the SQUID flux ¢ for a parallel magnetic field
B =160mT. The switching current I, (yellow) displays a phase offset ¢ between
even (e) and odd (o) Coulomb valleys of the SC island that is tunable by the plunger
gate voltage Vp.

expressions, the parity prefactor flips upon tuning the gate charge of the SC island
between different charge parity sectors. As a result of these parity-flips, the phase
offset does not exhibit a le-periodicity in the gate charge even if one of the subgap
states is at zero energy. Instead, if I, #0, ¢¢ is always 2e-periodic and permits the
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measurement of the parity of the lowest subgap level. To practically enable such
parity measurements, the two-level contribution should be sizable, I,, > I,. Also,
to avoid thermal excitations, the temperature T should be small compared to the
level separation |e, — €. Interestingly though, if |e,— €| 2 T, the parity prefactor
measures the joint parity of +&, and +&,. Such joint parity measurements could be
leveraged for entangling qubits stored in the subgap levels of SC islands [15-20].

So far, we have discussed a regime with substantial ¢, for parity read-out with
maximal resolution. However, such an ideal situation is not always realized. In
Fig. 3.5A, we display the phase offset versus plunger gate voltage for multiple
magnetic field values. For a selection of data points, we also show the fitted
switching current Iy, in Fig. 3.5B. Detailed analysis is shown in Fig. 3.8-Fig. 3.10 in
the Supplementary Material section. In comparison, there is another regime in which
NW CPT exhibits phase independence on its parity (see details in Fig. 3.11-Fig.
3.12 in the Supplementary Material). In Fig. 3.5, our findings are two-fold: First,
we observe that the phase offset for subsequent Coulomb valley pairs is tunable by
the magnetic field and the plunger gate voltage. Such a tunability arises because
both control parameters change the support of the subgap level wavefunction and,
thereby, alter the lead-island Josephson couplings. Second, we find that the phase
offset decreases upon increasing the magnetic field. This decreasing suggests that
the level seperation between the lowest-energy and higher-energy subgap states
increases so that the supercurrent contribution with the parity-dependent prefactor
becomes energetically unfavorable. As a result, in this regime, the NW CPT exhibits
a phase dependence that is only weakly dependent on its parity.

3.3. CONCLUSION

We have studied the Josephson relation of an InSb-Al NW CPT. We have demonstrated
that upon applying a magnetic field, subgap levels arise in the SC island and
mediate a supercurrent with a parity-dependent phase offset. We have shown that
the phase offset persists when the subgap state approaches zero energy and enables
parity readout of the lowest energy subgap state. Such a supercurrent parity readout
could be useful for the manipulation [15-20] and protection [21, 22] of qubits stored
in the isolated subgap levels of SC islands [23-27].
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3.4. SUPPLEMENTARY MATERIAL

3.4.1. METHODS
DEVICE FABRICATION

The InSb NWs used in the experiment were grown on an Indium phosphide substrate
by metalorganic vapor phase epitaxy. In the molecular beam epitaxy chamber, Al
flux was deposited along a specific direction to form Al shadows on InSb NWs by
neighboring NWs. InSb-Al NWs with shadows were transferred onto a doped Si/SiOy
substrate using a nano-manipulator installed inside an SEM. NbTiN superconductor
was sputter deposited right after Ar etching dedicated to removing the oxidized layer.
Subsequently, 30 nm SiN, was sputter deposited to work as a dielectric layer, and
10/120 nm Ti/Au was used as a top gate.

TRANSPORT MEASUREMENT

The sample was measured at a base temperature of ~20 mK in an Oxford dry
dilution refrigerator equipped with a vector magnet. Differential conductance was
measured by applying small AC lock-in excitation superimposed on a DC voltage and
then measuring AC and DC current through the device. Typically, low frequency of ~
27 Hz and AC excitation amplitude of ~10 uV were used for lock-in measurement. In
current bias measurement, current was applied through the device while monitoring
voltage drop on device. The direction of the magnetic field was aligned with respect
to the InSb-Al island arm by detecting the supercurrent of Cooper-pair transistor
while rotating the magnetic field direction.

COULOMB VALLEY EXTRACTION

We note that the measured current-voltage I,-V curves of Cooper-pair transistor
exhibit a finite slope for all voltages, see Fig. 3.7A- 3.10A. The possible reasons are
(1) at finite magnetic field, Josephson energy in the Cooper-pair transistor junctions
is suppressed and thermal fluctuation results in resistive electron transport [33, 34];
(2) In our device, the leads of Cooper-pair transistor are made from NDbTiN/Al
and NDbTiN is able to push quasiparticles into Al, softening Al gap [35]. Coulomb
valleys could still be addressed via resistance peak around zero-bias voltage, albiet
smeared IV curve resulting from above mentioned two mechanisms, because electron
transport is most resistive at Coulomb valleys in both scenarios. Furthermore, both
aforementioned mechanisms would not affect superconducting phase measurement
results with the reference arm turned on. When reference arm is turned on, total
supercurrent (as well as Josephson energy) becomes much larger. Then, thermal
fluctuation plays much less of a role and quasiparticle transport is completely
suppressed, which is reflected by very sharp transition from superconducting to
resistive regime in superconducting phase measurement.
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DISCUSSION ON THE SELF-INDUCTANCE OF THE SQUID LOOP

According to the Tinkham’s book [36], a superconducting loop subjected to an
external magnetic flux can generate screening current to expel the external flux,
which could distort the measured current-phase relationship and make precise
extraction of superconducting phase difficult. In order to eliminate the doubt,
we quantitatively estimate the amplitude of self-generated flux resulting from
inductance. In thin superconducting film, the total inductance, L comprises of
kinetic inductance, L; and geometric inductance, Lg. NbTiN film properties have
been systematically studied [37]. A typical 100 nm film thick has a T, of 14 K, a
resistivity of 123 uQ-cm, and Ly/(Lg+Lg)~0.3. In our device, NbTiN has thickness of
80 nm and we adopt the T, and resistivity from 100 nm film, and Ly /(Lx+Lg) is ~ 0.5
by interpolating the data of Ly/(Lx+Lg) versus film thickness. Kinetic inductance Ly
can be calculated from Eq. (6) in reference [38]. We suppose that the critical current
I, of the loop is 10 nA (actual measured switching current of Cooper-pair transistor
is always below 2 nA in our measurement), and the value of I.-L ~ 4 x 10~%®,, where
D is flux quantum. Thus, self-inductance is negligibly small compared with external
flux and was not taken into account in the data analysis.

3.4.2. SUPPLEMENTARY FIGURES
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Figure 3.6: Current-bias measurement results at different magnetic fields. Current-
bias characteristics of the NW CPT at different magnetic fields with the reference
arm pinched off. (A) Left panel: Voltage drop V across the NW CPT as a function
of current bias [ and plunger gate Vp at B|=0 mT. Right panel: Linecuts at three
different plunger gate values. (B) Left panel: Voltage drop V across the NW CPT
as a function of I, and Vp at B;=100 mT. Right panel: Linecuts at three different
plunger gate values. Black arrows mark the switching current I;,,, where the NW
CPT transitions from the SC state to the normal state.
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Figure 3.7: Transport characteristics of the NW CPT for even and odd charge
parity sectors at B;=170 mT. (A) Voltage drop across the NW CPT as a function
of current bias I, and plunger gate Vp with reference arm pinched off. Labels ‘¢’
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