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Skirt Decomposition Method for the Identification of
Linear Time-Varying Human Joint Admittance

Gaia Cavallo. Delft University of Technology, The Netherlands.

Abstract—Human joint admittance changes with numerous
factors constituting the operational point. For large changes
of the operational point, joint admittance can be identified
using Linear Time-Varying methods on torque and angular
position signals measured on human joints. Out of the available
methods, the Skirt Decomposition method was selected due to
its nonparametric structure and the limited number of a priori
assumptions it makes. Its employment on the identification of
human joint admittance was completely novel. The method was
applied to a simulation model representing joint admittance and
on experimental data measured from the wrist joint. In the
experiment, the subjects were changing the applied torque to
follow a desired trajectory, while the angle of the wrist was
perturbed by the manipulator. With a properly designed multisine
input, taking into consideration the speed and complexity of the
time variation, a variance accounted for (VAF) close to 100 %
was obtained in the simulation study on all the tested conditions.
From the experiment, it was seen that the contribution of the time
variation in the frequency domain was partially masked by the
output noise. The noise level could be decreased by lowering the
amplitude of the desired torque, and by removing the voluntary
torque from the analyzed data. With a desired torque level
ranging between 5% and 20%, and considering the bandwidth
between 2 Hz and 20 Hz, the mean power of the output residuals
in the frequency domain ranged between 16.2 and 27.1 for all
the tested conditions. Furthermore, the time-varying dynamics
retrieved from the system function showed a clear correlation
with the desired torque trajectory.

I. INTRODUCTION

A. Identification of nonlinear joint admittance
In everyday tasks, the mechanical properties of the human

body are in constant change to guarantee stability, optimality
and effort minimization [42]. For instance, if a person hits
an obstacle on the floor while walking, the person’s reflexes
will be activated to adjust the compliance of the lower limbs’
joints and prevent falling [39]. The dynamic compliance of
a joint is represented by joint admittance, a measure which
explains how a joint reacts to external disturbances [12]. For
different medical purposes it is useful to have a represen-
tation of joint admittance during motor activities. Knowing
how joint admittance changes during functional tasks can be
useful to design powered prosthetic joints that adjust their
properties by mimicking the dynamic behavior of human
joints [35]. The incorporation of artificial components with
variable admittance would improve the mobility of prosthetic
devices, rendering motor tasks more stable and more natural

Alfred Schouten: Supervisor from the BME department of TU Delft;
Jan-Willem van Wingerden: Supervisor from the DCSC of TU Delft;
Mark van de Ruit- Daily Supervisor from the BME department of TU Delft.

for the users [10], [35]. Furthermore, the realization of a
model of joint admittance could be used for the diagnosis
of motor disorders. It is believed that impairments such as
dystonia, tremors and bradykinesia [32], [34], [36], [39] are
related to abnormal control of the reflexive component of
joint admittance. The comparison of the behavior of impaired
and unimpaired subjects could provide a tool to understand
the pathophysiology of the disorders and to diagnose them
analytically [31].

To build a model of joint admittance, System Identification
(SI) methods can be used, starting from torque and position
measurements obtained experimentally from human joints.
Traditionally, a small amplitude input is applied around a
fixed operational point, and joint admittance is identified using
Linear Time-Invariant (LTI) methods [29], [34], [43]. The
resulting model only provides a local approximation, since
in reality joint admittance is nonlinear and varies with the
operational point. There are in fact several physiological and
mechanical factors that affect joint admittance nonlinearly
[14], [15], [41]. Joint angle, activation level, and muscular
fatigue are a few known examples:
• In a multibody system, a change in the joint angle can

alter the inertia perceived at the joint, since a change of
geometrical configuration affects the apparent mass [8].

• A change in the joint angle alters the level of stretch of
the surrounding tissues, causing a nonlinear change of
their viscous and elastic properties [47].

• A change in the activation level results in a different
probability of cross-bridges (microscopic elements in a
muscle that determine its level of contraction (Appendix
A-B), resulting in altered viscous and elastic properties
of the joint [39], [47].

• During prolonged muscular contractions fatigue occurs,
which reduces the maximal force that can be produced
by a muscle.

To obtain a representation of joint admittance during func-
tional tasks, the dependence on the operational point should be
considered. Nevertheless, it is not feasible to have a white box
representation of joint admittance and to understand how it is
affected by changes in the operational point. The neuromuscu-
lar system is highly nonlinear, and each component of the op-
erational point interacts with the others in unpredictable ways.
A SI strategy to tackle the modeling problem is to assume that
the changes of joint admittance are caused by the passage of
time, rather than by alterations of the operational point. Under
this assumption, joint admittance can be linearized with respect
to time, which is a readily available, known measurement, and
joint admittance can be represented by a Linear Time-Varying
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(LTV) model.

B. Problem definition
In literature there exist multiple methods that can be applied

to LTV models, and they can be broadly classified as subspace,
[30], [44] prediction error [4] and nonparametric methods
[20], [23], [25]. In the first group, the system is represented in
state-space form, and the fundamental dynamics are retrieved
starting from Henkel matrices containing the measured data.
In the second group, a predetermined parametric model is fit
to the system by means of minimization of a cost function.
In the last, the measured signals are used to retrieve non-
parametrically the LTV Frequency Response Function (FRF)
or the Impulse Response Function (IRF) of a system. The
LTV methods have been mostly applied to the identification
of LTV physical systems such as wind turbines, compressors,
and motion platforms [18], while the identification of LTV
joint admittance has received less attention.

In LTV human experiments there are four main limitations:
1) It is not possible to have full control on the dynamics

of the time variation [26].
2) There is a high level of noise in the system [45].
3) The experimental time is limited.
4) There is limited a priori knowledge on the system

dynamics.
Previous studies on the identification of LTV human joint

admittance neglected at least one of these limitations. In [16],
[17], [28] the ankle of the subjects was attached to a rotational
manipulator, which applied position disturbances while the
subjects were requested to change their torque with a prede-
termined pattern. Multiple repetitions of the same condition,
with the same determined pattern for the torque, were obtained.
With a procedure known as ensemble averaging, the time-
varying IRF was calculated by averaging over the repetitions. It
was assumed that each repetition was collected under the same
time-varying conditions, neglecting the first limitation. In [21],
[26] the first limitation was neglected as well; both studies
applied nonparametric estimation and required the application
of ensemble averaging. In [21], the averaging was performed
over data collected on a motion platform, while in [26] the
collection was obtained during large range motions of the knee
joint. In [17], [28], a second-order linear model was fit to
the IRF to obtain a parametric model. Similarly, a parametric
identification with a fixed model was applied in [4], [40]. The
mentioned studies neglect the fourth limitation.

A promising LTV method in the literature that is compatible
with the first and fourth limitations is the Skirt Decomposition
method [18]. The method applies nonparametric identification
procedures to retrieve the FRF of a LTV system. The main
advantages of the method are that it employs nonparametric
techniques, does not require ensemble averaging, and makes no
assumptions on the system dynamics. Nevertheless, it makes
different assumptions, such as the fact that the time variation
should be smooth and slow. The Skirt Decomposition has
been successfully applied to the identification of LTV electric
circuits, yet it is not clear how well it would perform on LTV
joint admittance.

Transferring the identification procedures from inanimate
objects to humans can be challenging, in particular since hu-
man behavior is less predictable and less repetitive, leading to
high variability within the system. Furthermore, other intrinsic
differences are present that might hinder the applicability of
the Skirt Decomposition method on joint admittance. First of
all, electric circuits operate on a much wider bandwidth than
joint admittance does. Secondly, electric circuits are modular
systems, in which it is explicit how the time-variation enters
the system and how to describe it. Finally, the Signal-to-Noise
ratio (SNR) of the considered electric circuits (around 80 dB
[19]) is higher than for joint admittance (around 18 dB in [45]).

C. Thesis objective

Two main limitations of the application of LTV methods
on the identification of LTV human joint admittance are the
lack of control of the dynamics of the time variation and
the limited a priori knowledge on the system dynamics. In
literature, attempts have been made to identify LTV human
joint admittance; however, the methods neglected either one
of the two limitations. The fundamental motivation of this
study is to tackle both limitations by utilizing a LTV method
that requires neither the repeatability of the time variation
nor a parametrization of the system’s dynamics. Although the
proposed method has been already utilized on electric LTV
systems, its application on the identification of LTV human
joint admittance is completely novel.

First, the selected method is explained in order to provide
the readers with the background required to understand the
remaining of the paper and to present the employed notation.
Secondly, a simplified model of LTV human joint admittance
is introduced. The model is used in simulations to validate
the method on a system with dynamics similar to those of
LTV human joint admittance. The results from the simulation
are discussed to gain understanding on the effects that different
parameters have on the identification of the model. Thirdly, the
method is applied on human data obtained experimentally from
the wrist joint. The results are analyzed and compared with the
simulation results. Finally, the benefits of the application of
the selected method on the identification of LTV human joint
admittance are discussed and conclusions are drawn.

II. SKIRT DECOMPOSITION METHOD

A. Modeling of LTV systems

The dynamics of a linear slowly time-varying system can be
represented by its system function: a 3-dimensional mapping
which expresses how the frequency-domain properties of the
system evolve over time (Appendix B, [20]). The system
function can be modeled as the series expansion of LTI
components Gp(jω) multiplied by user-defined basis functions
bp(t), (p = 0, 1, .., Np−1). When an arbitrary input is applied
to the system, each ”branch” of the series expansion affects
the input separately, and the overall response of the system is
determined by the sum of the outputs of each branch (Figure
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Figure 1: Decomposition of the input u(t) into Np branches. In
each branch, the input in the frequency domain is multiplied by
a LTI component Gp(jω), and the resulting signal is multiplied
in the time domain by a basis function bp(t). The sum of each
branch determines the output y(t).

1). The steady-state output can be expressed as:

yss(t) =

Np−1∑

p=0

[F−1(θp(jω))bp(t)] (1)

where:
• yss is the steady-state output in the time domain;
• F−1 is the inverse Fourier transform operator;
• U(jω) is the input in the Fourier domain;
• θp(jω) = 1

2π (Gp(jω)U(jω)).
In each branch of the equation, F−1(θp(jω)) represents a
LTI response in the time domain which gets multiplied by
a basis function in time. If the same expression is reported to
the frequency domain, the multiplication to the basis function
bp(t) becomes a convolution to Bp(jω), the equivalent in the
frequency domain:

Yss(jω) =

Np−1∑

p=0

[θp(jω) ∗Bp(jω)] (2)

If the input applied to the LTV system is a multisine, i.e.
a signal composed of the sum of sinusoids with different
frequencies, then the output spectrum presents peaks at the
excitation frequencies but also power at the non-excited fre-
quencies. The shape of the amplitude spectrum results in the
repetition of peaks and valleys; the portion of the spectrum
between two valleys is defined as a ”Skirt”.

The presence of the Skirts in the output spectrum is related
to the time variation in the system. In Figure 2, it is explained
how Skirts appear in the output spectrum when a multisine
input is applied to one branch of Equation 2. The LTI response
θp(jω) of a multisine signal presents peaks at the excitation
frequencies only. Since the Fourier transform of the basis
function bp(t) is typically a Skirt centered at the origin, when
Bp(jω) is convolved with θp(jω), the output spectrum results
into multiple Skirts centered at each excitation frequency.

Figure 2: Steps representing Equation 2 for a single branch
and a fixed Np. a. The spectrum of a multisine input presents
peaks only at the excited frequencies. b. For a multisine input
through a LTI system, the output spectrum contains peaks at
the frequencies contained in the input. The magnitude of each
peak depends on the LTI transfer function that shaped it. c.
The frequency spectrum of a slow and smooth basis function
is typically shaped like a Skirt of variable width. d. The output
spectrum of a LTV system is the convolution of the Skirt with
the LTI output spectrum. (Picture edited from [3])

B. Main identification steps

The Skirt Decomposition method is a nonparametric SI
approach which fits predetermined functions onto the fre-
quency spectra of a LTV system. The aim of the method is to
reconstruct the LTV system function. The Skirt Decomposition
method is formulated assuming that the time variation of the
target system can be represented in the frequency domain by
smooth decaying functions with power concentrated at low
frequencies (Assumption 1). The assumption is equivalent to
stating that the time variation of the target system is slow and
smooth [20]. Under Assumption 1, Bp(jω) are Skirts centered
at the origin and the output spectrum is composed by the
repetition of Skirts (Figure 2.d).

It is possible to discern the contribution of each Skirt by
using linear least-squares regression on the measured output
signal and the predetermined basis functions [20]. For the
application of the linear least-squares regression, the expres-
sion in Equation 2 is rewritten in matrix form in function
of the discrete frequencies jωk. To reduce the computational
time, it is assumed that at each non-excited frequencies the
power of the output is determined by the time variation of
the three closest excitation frequencies (Assumption 2). The
contribution of the neglected excitation frequencies is modeled
as a smooth polynomial of order Ntr in function of the dis-
crete frequencies jωk (Appendix C). The smooth polynomial
also captures the transient dynamics, and the coefficients are
estimated in least-squares regression together with the LTI
coefficients. For notational simplicity, the matrix multiplication
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can be written as:

Y (jωk) = B(jωk)Θ(jωke) (3)

in which B(jωk) contains the Fourier transform of the relevant
basis functions and different powers of jωk, while the vector
Θ(jωke) contains the LTI responses θp(jωke) and the coeffi-
cients of the smooth polynomial. The LTI responses are non-
zero at the excitation frequencies only. Θ(jωke) is estimated
using linear least-squares regression (Appendix C-C). It is
assumed that the matrix B(jωk) is nonsingular and invertible
(Assumption 3). From the vector Θ(jωke) and the basis
functions bp(t), the output in the time domain and the system
function can be reconstructed.

III.SIMULATION STUDY

A. Simulation method
1) Simulink model
A mass-spring-damper model with the stiffness varying in

time was implemented in Simulink (The Mathworks inc.) to
represent LTV joint admittance. The dynamics of the model
are represented by the following equation:

Ic
d2θ(t)

dt2
=[T (t)−Bc

dθ(t)

dt
−K(t)θ(t)] (4)

In Equation 4, the imposed torque T (t) and the angular po-
sition θ(t) are the input and output of the system, respectively.
The scalars Ic and Bc are the inertia and viscosity constants,
while the function K(t) represents the changing stiffness. The
transfer function representing the system in Laplace domain
is:

Θ(s)

T (s)
=

1

Ics2 +Bcs+K(t)
(5)

in which s is the Laplace variable, and Θ(s) and T (s) are the
input and the output in the Laplace domain. Zero-mean white
noise was added to the output.

In LTI conditions, it is common practice to represent joint
admittance with a linear mass-spring-damper model [9],
[27], [38]. The time variation was introduced by imposing a
change of stiffness in time, following the structure used in [26].

Table I: Model and identification parameters varied in the four
case studies.

Case study ∆fexc [Hz]
Stiffness [ Nm

rad ]
Np

Function Kmin Kmax

1: 0.2, 0.8, 1.4 Linear 0.5 6 1,2,..,20

2: 0.2, 0.8, 1.4
Reciprocal of

a linear function
0.4 6 1,2,..,20

3: 0.2, 0.8, 1.4 Sinusoidal 0.5 6 1,2,..,20

4: 0.8 Linear 1/6 0.2, 4.2,..,12.2 1,2,..,20

2) Model and identification parameters
Three key design parameters were varied within the simu-

lation and their combined effect on the accuracy of the Skirt
Decomposition method was analyzed over four case studies.
The first parameter is the distance between the excitation
frequencies in the multisine signal. The distance between con-
sequent excitation frequency was kept constant and expressed
with ∆fexc (Hz). The design of ∆fexc has an influence on both
the frequency resolution and the distance between the Skirts in
the output spectrum. The second parameter which was varied
is Np, representing the number of basis functions employed.
The parameter influences the shape of the predetermined Skirts
used to fit the output spectrum. The last parameter is K(t),
representing the change of stiffness in time. The complexity
and the rate of change of the stiffness were changed in the
case studies, with effects on the shape of the Skirts in the
output spectrum. The stiffness K(t) was defined in terms of the
mathematical function representing it, the minimal amplitude
(Kmin) and the maximal amplitude (Kmax). To vary the
complexity of the time variation, mathematical functions with
different smoothness were used. To vary the rate of change of
the time variation, the maximal amplitude was varied, while the
minimal amplitude was kept invariant. The values for ∆fexc,
Np and K(t) tested over the four case studies are summarized
in Table I. The relevance of a proper design of ∆fexc and the
basis functions with respect to the time variation is reinforced
by the limited bandwidth of the system when compared to that
of electric circuits. The number of frequency points available
is constrained by the bandwidth of the system, limiting the
options for ∆fexc.

The other simulation parameters were kept constant and
are summarized in Table II. The inertia and damping of the
model are representative of the dynamics of wrist admittance
[37]. The basis functions utilized are the Legendre polynomials
(Figure 3), which have been shown to provide a good approx-
imation of arbitrary time variation [20]. The multisine signal
was defined over a period Tm of 10 seconds. The simulation
time lasted 200 seconds, hence the multisine was repeated 20
times to generate the perturbation signal.

3) Performance analysis
For every combination of the tested model parameters, the

simulation was run twice. In this manner, two data sets were
obtained which were successively divided into a test and a
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Table II: Model and identification parameters considered as
constant in the Simulation, including the notation used, a brief
description and the units.

Name Description Value Unit

Amax Max Amplitude multisine signal 1.5 [Nm]
Bc Damping 0.05 [ Nms

rad ]

bp(t) Basis functions Legendre pol. []
fexc1 Smallest excitation frequency 1

Tm
[Hz]

fexcM
Highest excitation frequency 20 [Hz]

fs Sample frequency 200 [Hz]

Ic Inertia 0.02 [ Nms2

rad ]

Ntr Order Transient polynomial 3 [−]

SNR Signal-to-noise ratio of the output signal 20 [dB]

Tm Period of the multisine signal 10 [s]

Tsim Length of the simulation 200 [s]

validation dataset. The test dataset was used to build a model of
the system. The input from the validation dataset was applied
to the model to obtain an estimate of the output (Appendix
C-E). The accuracy of the estimation is expressed in form
of the Variance Accounted For (VAF) between the noiseless,
measured output and the estimated output of the validation
dataset. The expression of the VAF is:

V AF = max

{
1− var(y(tk)− ŷ(tk))

var(y(tk))
, 0

}
·100% (6)

Another indicator that was used to determine the goodness
of fit is the Root-Mean-Square-Error (RMSE) between the es-
timated resonance frequency and the real resonance frequency
of the model in time. The estimated resonance frequency was
extracted from the retrieved system function, while the system
resonance frequency was obtained by solving fn = 1

2π

√
K(t)
Ic

.

B. Simulation results

1) Case studies 1,2,3
The estimation accuracy of case studies 1, 2 and 3 is

depicted in Figure 5. The accuracy was expressed in terms
of the VAF and RMSE of the resonance frequency in timw.
In the first row, the VAF for different combinations of ∆fexc
and number of basis functions are shown. For the three case
studies, a common trend can be recognized: regardless of
∆fexc, the VAF for Np = 1 started at a minimum value
and it increased progressively with the order of the Legendre
polynomial, reaching a maximum threshold around 100%. On
the other hand, if a small ∆fexc (∆fexc = 0.2 Hz) was
combined with a large Np (Np ≥ 14/Tm ) then the VAF
was reduced, dropping up to 0%. A similar trend can be
recognized in the second row, where the RMSE is plotted. The
increment of Np decreased the estimation error; nevertheless,
if a large Np was combined with a small ∆fexc the error
started increasing.

Despite the common trend, the performance assumed differ-
ent numerical values depending on the shape of the stiffness

imposed in the case study. It can be seen that for Np = 1,
the VAF relative to case study 3 (sinusoidal stiffness) was
around 30%, while the VAF relative to case study 2 (reciprocal
stiffness) was about twice as big. The VAF assumed an
intermediate value of around 40% in case study 2 (linear
stiffness). Furthermore, in case study 1 the maximum threshold
of the VAF was reached for Np = 10, in case study 2 for
Np = 6 and in case study 3 for Np = 16. The value for ∆fexc
had a visible effect on the RMSE of case study 1: for ∆fexc of
0.2 Hz the RMSE reached a minimum around 0.1 Hz, while
for ∆fexc of 1.4 Hz it reached a minimum around 0.5 Hz.
Finally, it can be seen that for every case study, there existed
at least one combination of Np and ∆fexc that corresponded
to a VAF higher than 90% and a RMSE lower than 0.1 Hz.

In Figure 6, the condition number of the regression matrix
B(jωk) (Equation 3) is shown for difference choices of Np
and for different values of ∆fexc. The figure shows a positive
correlation between the number of basis functions Np and the
condition number. For Np = 1, the condition number was
equal to 1, regardless of the value of ∆fexc used in the input.
The condition number grew by increasing Np and the growth
was faster for smaller ∆fexc. The condition number reflects the
significant figures that can be lost in accuracy due to inversion.
The higher the condition number, the closer the matrix to being
ill-conditioned. For example, the plot indicates that for Np =
20 and ∆fexc of 0.2 Hz there can be a loss of accuracy of
almost 5 significant digits.

2) Case study 4
A case study with a varying rate of change of the stiff-

ness was performed. The purpose of this investigation was
to quantify the assumption on the speed of time variation.
To introduce a gradually increase of the time variation, the
identification accuracy was tested for multiple values of Kmax,
proportional to the rate of change of the stiffness function.
In Figure 7, the results from Case study 4 are depicted. The
figure shows the estimation accuracy obtained by varying the
maximum amplitude of the stiffness Kmax and the number
of basis functions Np. The plot shows that the estimation
accuracy, indicated by the VAF and the RMSE on the estimated
stiffness, decreased with an increase of the rate of change of
the stiffness function. When Kmax was set to 0.2 Nm/rad
the VAF was around 100 % and the RMSE of the resonance
frequency was around 0.15 Hz. Instead when Kmax was set to
12.2 Nm/rad the VAF ranged between 20 % and 90 % and
the RMSE ranged between 0.25 Hz and 2.5 Hz. Generically,
the accuracy increased with the value of Np.

C. Discussion on simulation study
1) Effects of design parameters on simulation accuracy

a) Number of basis functions.
The number of basis functions employed in the Skirt Decom-

position method was varied in the four case studies. In Figures
5 and 7, a general proportionality between the number of
basis functions Np and the performance was pointed out. The
beneficial contribution that Np has on the estimation accuracy
can be related to the fact that a higher number of branches is
used for identification. In other words, more basis functions are
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Figure 4: Representation of the stiffness used in the three different case studies. The continuous black line represents the stiffness,
while the dotted line represents the reciprocal of the stiffness.
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Figure 5: Performance of the simulation on a validation dataset for case studies 1, 2 and 3. The figure represents the results for
several, distinguished identification procedures. Each result is labeled with a marker, which was obtained through a SI procedure
with a different value for Np and ∆fexc. All the remaining parameters are kept the same. Markers of the same type and color
correspond to an identification performed by using the same value for the ∆fexc. The markers are interconnected by a line
of the same color for graphical clarity. The horizontal axis represents Np, the number of Legendre polynomials used for the
identification. The calculations are done for Np ranging from 1 to 20 and for ∆fexc from 0.2 Hz to 1.4 Hz. In the first row, the
vertical axis represents the VAF between the estimated output and the noiseless output on a validation set. In the second row,
the vertical axis represents the RMSE between the imposed stiffness and the calculated stiffness on the same validation set.
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Figure 7: Performance on a validation dataset for case study
4. The horizontal axis is defined by the rate of change of
the time variation, expressed by Kmax, while the vertical
axis represents the VAF between the noiseless output and
the estimated output (first row) and the RMSE between the
estimated resonance frequency and the system’s resonance
frequency Hz (second row). The plot is obtained for Kmax

ranging from 0.2 to 12.2 Nm/rad, for ∆fexc of 0.8 Hz and
for Np ranging from 1 to 20.

employed in the procedure, enhancing the Degrees of Freedom
(DOF) for the approximation. It follows that increasing Np
generally enhances the approximation power of the Skirt
Decomposition method.

b) Complexity of the time variation.
The complexity of the imposed stiffness was changed be-

tween case studies 1, 2 and 3 and the results are presented in
Figure 5. To understand the outcomes of the identification, it

is important to keep in mind a key concept: in the simulation,
the time variation is inversely proportional to the value of
the stiffness. In fact, K(t) guides the time-varying properties
into the system although its effect is shaped by the system
dynamics. According to the transfer function in Equation 5,
the stiffness appears in the denominator, rendering the time
variation inversely proportional to it. In particular, it can be
deduced that the DC gain, obtained for s=0 Hz, is exactly
equal to 1/K(t). The stiffness imposed in the case studies was
designed to result into different levels of complexity of the time
variation. Since in case study 2 the stiffness was defined as the
reciprocal of a linear function, the resulting time variation was
a linear function. The case study has the lowest complexity of
the time variation among the tested ones, as it can be confirmed
by looking at the dotted lines in Figure 4. The design choice
reflects in the estimation accuracy. In fact, it was seen in Figure
5 that for low values of Np the performance of case study 2
was the highest. It can be deduced that the optimal number of
basis function for the Skirt Decomposition method increases
with the complexity of the time variation. The result can be
explained by the fact that the Skirts in the output spectra are
wider for higher complexity time variations. Therefore, the
number of Legendre polynomials required to approximate the
output spectrum increases.

c) Speed of the time variation.
Case study 4 was performed to give a representation of the

effects that an increase of time variation has on the accuracy
of the method. The results depicted in Figure 7 showed an
expected trend: an increase in the rate of change in the stiffness
resulted in a poorer performance. The trend is related to
Assumption 3. When the rate of change of the time variation
increases, the power of its spectra gets more spread throughout
the frequencies, losing the Skirt-like shape. However, also in
this case the performance could be enhanced by employing a
higher number of basis functions.

d) Condition number.
The results in Figure 6, reporting an increase of the con-

dition number with the model order, were predictable. The
Skirts of higher order polynomials are wider than lower order
polynomials, whilst a small ∆fexc limits the bandwidth in
which each Skirt is expressed. When a small ∆fexc is utilized
in combination with a large Np, the Skirts become less
distinguishable from each other, entailing a decrease in the
apparent order of the matrix B(k). The consequence is a loss
of accuracy due to inversion. The loss of accuracy reflects
on the identification results. For example, it was seen that
for Np = 20 and ∆fexc=0.2 Hz the loss of accuracy due to
inversion could be up to 5 significant digits. In Figure 5, the
accuracy for the same combination of parameters was minimal.

e) ∆fexc.
In all the case studies, multiple values for ∆fexc were

used. From Figure 5, it can be extracted that the effects of
∆fexc on the identification accuracy are related to the order
of the Legendre polynomial used for the identification. In
particular, it was seen that a large Np cannot be combined with
a small ∆fexc. The incompatibility can be partially attributed
to the increase of the condition number for this combination
of parameters. The presence of noise is an additional cause.
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When ∆fexc is small, there are not enough data points to
discern the smooth contribution of the output spectra from the
random contribution of noise. On top of this, if two excitation
frequencies are too close to each other, there might be an
overlap of the contribution of the relative Skirts onto the
neighboring frequencies. Discerning the individual Skirts can
become more challenging. It was seen as well that a larger
∆fexc is necessary when there is an increase of either the
complexity or the speed of the time variation. However, as
it was shown in Figure 5 for case study 1, a large ∆fexc can
visibly reduce the accuracy in the approximation of the system
function. In fact, having excitation frequencies further away
reduces the frequency resolution and the number of points in
which the system function is calculated.

D. Sub-conclusions on the simulation study
From the Simulation study, it can be concluded that the Skirt

Decomposition method can be used to identify a LTV system
with dynamics similar to those of joint admittance. However,
the application of the method requires a careful choice of the
parameters, especially when either the complexity or the speed
of the time variation is high. To allow the approximation of
Skirts with a larger bandwidth, the number of basis functions
should be kept high; nevertheless, the maximum number of
basis functions is constrained by the detections of Skirts in
the output spectrum. From a computational time perspective,
there are no restrictions on the order of the basis functions,
since the Skirt Decomposition method uses simple algebraical
tools on a limited set of points (Assumption 2). Furthermore,
it was seen that a high Np increases the approximation power
of the method. On the other hand, ∆fexc should be increased
accordingly to Np to allow the formation of Skirts in the output
spectra and to prevent an increase of the condition number.
When the excited frequencies are too far apart, the frequency
resolution drops and the properties of the system cannot be
approximated accurately. It follows that a trade-off between
the order of the basis functions and the excitation frequencies
design should be found. In the simulation study, it was possible
to find the right combination of Np and ∆fexc to obtain a VAF
approaching 100% and a RMSE of the resonance frequency
lower than 0.1Hz for each one of the tested time variations.

IV.EXPERIMENTAL STUDY

A. Experimental method
1) Subjects
Three young healthy subjects, two males and one female,

participated in the pilot experiment. The subjects are denoted
in the paper by the Roman numerals I, II and III.

2) Setup
The experimental apparatus that was used in the pilot study

is the PoPe, a one degree-of-freedom robotic wrist manipulator
[37], [46]. The right forearm of the subjects was strapped
into an armrest secured to the device. The axes of rotation
of the manipulator and the wrist were aligned, allowing only
for flexion and extension of the wrist on the horizontal plane.
The subjects interacted with the manipulator via a handle and

Figure 8: Picture of the PoPe setup. 1: Screen, showing the
desired torque trajectory in blue, allowing for a error of
around ±2%, and the applied torque in red. 2: Handle of the
manipulator. 3: Armrest around the forearm of the subject.

were asked to hold it firmly with their right hand (Figure 8).
The device was configured as a stiff position servo, and the
angular position of the handle was imposed to the wrist. The
torque applied by the subjects on the handle was measured by
the device, together with the angular position of the wrist.
The signals were measured with a sampling frequency of
2.5kHz and a 16-bins resolution. Electrical and mechanical
safety stops were preventing harmful flexion/extension of the
handle beyond the wrist’ range of motion.

The subjects were seated in front of a screen, displaying
a low-passed version of the exerted torque (cut-off frequency
of 1 Hz) and a trajectory in time, expressing a desired torque
level. The subjects were instructed to vary the applied torque
to track the desired trajectory, minimizing torque deviations.
The margins of the desired torque trajectory were increased
to allow for an error between the desired trajectory and the
measured torque around ±2%. The subjects were requested to
use only the flexor muscles to perform the task.

3) Task
At the beginning of the experiment, a preliminary measure-

ment was performed. In this preliminary step, the subjects were
asked to flex the wrist to a maximal level. The maximum
torque applied was used to determine the subject-specific
Maximum Voluntary Contraction (MVC) , necessary for the
design of the desired torque trajectory. The minimal and the
maximal amplitude of the desired trajectories were indeed
expressed in the form of a percentage of the measured MVC .

In the main experiment, four different conditions were
tested, varying among each other for the shape of the desired
torque trajectory. Each trajectory was composed by the signal
of interest and a transitory part. The transitory part was
required by the controller and was necessary to allow the
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subjects to adjust to the tasks. For each trial, the transitory
part lasted for a total of 10 s.

The conditions tested were the following:
• Sawtooth Condition: The signal of interest was rep-

resented by two consequent ramps of equal length
Tramp = 40 s. Zero-gradient transitory parts were added
before the first ramp (4.4 s), in between the ramps (4.5 s),
and after the second ramp (0.1 s). The trajectory lasted
for 90 s.

• Slow Sine Condition: The signal of interest comprised
two repetitions of a sine with a period of 40 s and no
phase shift. A complementary part of 9.9 s, composed by
half period of a sinusoid, was added before the sine and
a zero-gradient part of 0.1 s afterward. The trajectory
lasted 90 s.

• Intermediate Sine Condition: The shape was similar to
that of the slow sine condition, although the period of
the sine was of 30 s. The trajectory lasted for 70 s.

• Rapid Sine Condition: The signal of interest was com-
posed by four repetitions of a sine with a period of 20
s. The complementary part was the same as for the slow
and intermediate sine conditions. The trajectory lasted
for 90 s.

Finally, a Relax Condition was considered. The subjects
were asked to relax the muscles without reacting to the
perturbations. The condition represented a LTI case [43] and
it lasted for 70 s.

For each condition, 3 trials of equal length were recorded.
The observation time of the trials was adjusted to the length
of the desired trajectory. The trials were presented in random
order to the subjects. Subject I and II performed trials for
the relax and intermediate sine conditions, while subject III
performed trials for the relax, slow sine, intermediate sine,
and sawtooth conditions.

The percentage of the MVC that defined the minimal and
maximal amplitude of the desired torque trajectory was also
varied between subjects. For subjects I and II, the amplitude
ranged between 10% and 50% of the MVC , for subject III it
ranged between 5% and 20%. A summary of the conditions
and specification for the three subjects is provided in Table
III, while a visual representation of the sawtooth, fast sine and
slow sine conditions applied on subject III is given in Figure
9.

4) Perturbation design
The perturbation input comprised a sequence of multiple

realizations of the same multisine signal, each with a period
of 10 s. The input excited frequencies ranging from 0.1 Hz
to 20.0 Hz, with a fixed distance ∆fexc of 0.8 Hz. The value
of ∆fexc selected provided a good trade-off in the simulation
study. The power at the excited frequencies was equal until 6
Hz and decreased afterward of 20dB\decade, following the
indications in [45]. The imposed angular perturbation was
designed to generate an RMS wrist angular excursion of 0.02
rad [46].

The multisine perturbation was applied in correspondence
to the signal of interest. For the transitory part, a supplemen-
tary perturbation was implemented to guarantee a continuity
of the perturbation throughout the trials. The supplementary
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Figure 9: Representation of the trajectories for the desired
torque for the conditions tested on subject III. (The relax
condition was tested as well, but is not represented.)

perturbation was essentially a shorter reproduction of the
primary multisine perturbation. The portion of the input and
output signals that was measured during the transitory part was
discarded from the analyzed data.

5) Pre-processing of the data
In this paper, the measured output is considered as the sum

of two signals, yv(t) and yθ(t) (Figure 10). The voluntary
output yv(t) is the torque which is applied by the subject to
track the desired torque trajectory. The signal yθ(t) represents
the output of the system in response to the application of
the perturbation signal θ(t). The time-varying behavior of the
joint dynamics is expected to be triggered by yv(t). On the
other hand, the signal that is of interest for the application of
the Skirt Decomposition method is solely yθ(t). To obtain a
representation of the signal yθ(t), an estimate of the voluntary
torque yv(t) was subtracted from the measured output. It
was assumed that there was a linear relationship between
the voluntary torque yv(t) and the desired torque trajectory
y∗v(t). Therefore, the measured output was expressed as in
Equation 7.1. The constant a was retrieved by solving linear
least-squares between the measured output and the desired
torque trajectory (Equation 7.2). The multiplication between
the constant a and the desired torque trajectory was then
subtracted from the measured output, providing an estimate
of yθ(t) (Equation 7.3).

1. ym(t) = yθ(t) + a · y∗v(t)

2. â = min
a
‖ym(t)− y∗v(t)‖22

3. ŷθ = ym(t)− â · y∗v(t)

(7)

The second step of the pre-processing was to subtract the
mean of the input and the output to remove the DC gain.
Finally, the signals from each trial were divided into segments
of equal length. The partition was performed ensuring that the
duration of each segment was an integer multiple of the period
of the multisine signal. For the relax condition, a segment
lasted for 60 s. For the sawtooth conditions, the segments had
the same duration of a single ramp, while for the sinusoidal
conditions, each segment was equal to the period of the sine.
Finally, for the slow sine condition, segments equal to half the
period of a sine were considered as well. The segments are
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Table III: Summary of the specifications for the different
conditions tested. The first column expresses the shape of the
torque trajectory used. The second column expresses the ob-
servation time. The third column the minimum and maximum
torque level of the desired trajectory, expressed in terms of
percentage of the MVC . The fourth column expresses the
subjects on which the condition is tested. The last column
reports additional specifications on the duration of the signals
of interest.

Torque
Trajectory

Observation
time [s]

Min.- Max. Torque
[%MVC]

Subjects
Additional
Specifications

Relax 70 10-50 I, II, III None
Slow Sine 90 5-20 III period= 40 [s]
Intermediate Sine 70 10-50 I, II period= 30 [s]
Rapid Sine 90 5-20 III period= 20 [s]
Sawtooth 90 5-20 III Tramp : 40 [s]

Skirt Decomposition Method

Manipulator Human Joint

yv*

yv
ym

yθ

θθ*

yθ
^

e

Figure 10: Block diagram of the setup. The subject is requested
to follow a desired trajectory, and receives visual feedback on
the applied torque and on the desired torque level yv∗. To track
the desired torque trajectory, the subject changes the value of
joint admittance. On top of this, the manipulator applies a small
range angular perturbation θ to the joint. The effects that the
perturbation have on the applied torque yθ is dependent on
joint admittance, which is changed by the tracking task. The
overall measured output ym is composed by the signals yθ
and yv . The signal θ and yθ are used as input and output
signals for the application of the Skirt Decomposition method.
An estimate ŷθ of the output is obtained.

labeled with a letter and a subscript number, the first indicating
the trial, the second the segment number in the trial.

6) Data and performance analysis
The Skirt Decomposition method was applied to the mea-

sured angular position (input) and the pre-processed measured
torque (output). The accuracy in the time domain was ex-
pressed in terms of VAF between the output and the estimated
output. In the frequency domain, the accuracy was calculated
in terms of residuals. The residuals represent the difference
between the absolute values of the measured torque and of the
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Figure 11: Raw data from subject I, trial b, for an intermediate
sine trajectory condition. The light blue line corresponds to
the desired torque, with a margin of ±2% and the dark blue
corresponds to the torque measured from the subject. The
Figure is obtained for an MVC of 10 Nm, and the desired
torque ranges from 10% to 50% of the MVC . The dotted
lines demarcate the segments used for identification, the letter
on top b is used to labeling the trial number, and the subscript
indicates the segment number.

estimated torque in the frequency domain. The Root-Mean-
Square (RMS) of the residuals in the bandwidth 0.1-20 Hz
was calculated. The bandwidth corresponded to the range of
frequencies excited by the multisine.

A comparative analysis was performed to assess the effects
that the different experimental conditions and identification
parameters had on the accuracy of the Skirt Decomposition
method. The VAF and the RMS residuals were computed
for each segment. The segments measured from subjects I
and II were analyzed using eight basis functions, while for
the segments from subjects III five basis functions were
implemented. Furthermore, the segments were analyzed using
a zeroth order basis function (Np = 1). The zeroth order
analysis corresponded to an identification performed at the
excitation frequencies only. The results were compared to the
higher order analysis to assess the contribution of the non-
excited frequencies on the accuracy.

The data measured from subjects III were analyzed further
in a validation study. For each condition and subject, a random
segment was selected and used as test dataset. The remaining
segments constituted the validation dataset. The VAF and
residuals for the test and validation datasets were computed.
The residuals were calculated as well in the bandwidth 2-20
Hz, where the variability of the output was supposed to be
lower than for the frequencies until 2 Hz. Successively, the
distribution of the residuals over the excited bandwidth on
an representative segment was analyzed. Finally, the system
function was obtained, and from it, the resonance frequency
was extracted.

B. Experimental results
1) Input and output data
An example of the raw data obtained from the experiment

is provided in Figure 11. The figure shows the desired and
measured torque obtained for the intermediate sine condition
on subject I. The dark blue line, representing the torque exerted
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Figure 12: Spectra of the input (black) and output (blue) after pre-processing from different subjects and conditions. Panel a
represents the spectra from the relax condition, obtained using segment a1 from subject III. Panel b represents the spectra from
the intermediate sine, obtained using segment b2 from subject I. In the condition, the desired torque trajectory ranged between
10% and 50% of the MVC . Panel c represents the spectra for the slow sine condition and is obtained using data from segment
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Figure 13: Spectra of the input (black) and output (blue) from the sawtooth condition from subject III, segment a2. Panel a
represents the spectra after pre-processing. Panel b represents the spectra obtained by using the pre-processed input and the full
measured output.

by the subject, is within the desired boundaries throughout
the observation time. It can also be observed that the mean
trajectory applied by the subject was not a pure sinusoid, and
presented some discontinuities.

Figures 12 and 13 show the magnitude of the input and
output spectra for different subjects and conditions. In both fig-
ures, it is possible to recognize the input spectra, represented in
black, the output at the excitation frequencies, corresponding to
the peaks in blue, and the output at the non-excited frequencies,
corresponding to the blue lines at lower power. Additionally, it
can be seen that the power at the non-excited frequencies in the
frequency band 0-2 Hz is higher than at the other non-excited
frequencies. In Figure 12, the spectra from the relax condition
is compared to the spectra from the intermediate sine and the
slow sine conditions. The difference in power between the
excitation peaks and the non-excited frequencies varied among
the conditions. For the relax task (panel a) the difference was
about 30 dB at all frequencies, while it decreased for the other
conditions. It can be noticed that for the intermediate sine
condition (panel b) the peaks at some excitation frequencies

are barely recognizable. The slow sine condition (panel c)
represented a midway case; for this condition, the Skirts
around the excitation frequencies can be detected. In Figure
13, the spectra for the sawtooth condition using the overall
measured output (panel b) is compared to the spectra using
only yθ(t) (panel a). Comparing the two plots, a difference
in the shape of the spectra can be observed. In panel a, the
spectra presents typical peaks at the excitation frequencies and
a skirt-like decay of power at the neighboring frequencies. In
panel b, the spectra presents a high-bandwidth Skirt centered
at the origin and with power up to 10 Hz. The high-bandwidth
Skirt overshadows the Skirts around the excitation frequencies.
Only the peaks at the excitation frequencies remain evident.

2) Estimation accuracy
In Table IV, the mean VAF and RMS residuals for all the

tested subjects and conditions are reported, and the number
of basis functions utilized for the analysis is mentioned. For
subjects I and II, Np = 8 was selected, while the number of
basis functions was decreased to 5 for subject III. Additionally,
the accuracy obtained by utilizing a zeroth order basis function
(Np = 1) is reported, and expressed as V AF0 and RES0.
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Table IV: Mean and standard deviation of the VAF and the RMS residuals (RES) for different subjects and conditions. The value
selected for Np is displayed in the corresponding column. The length of the individual segments is reported, together with the
number of segments over which the averaging is performed. For the slow sine condition, segments of 40 s and 20 s were used.
Additionally, the mean and standard deviation of the VAF and the RMS residuals obtained using a zeroth order basis function
(Np = 1) are reported with the subscript 0.

Relax Slow Sine Intermediate Sine Rapid Sine Sawtooth

Subjects(s): I-II-III III III I II III III
Np: 1 5 5 8 8 5 5
Length of each segment: 60 s 40 s 20 s 30 s 30 s 20 s 40 s
Tot. N. of segments: 9 6 12 6 4[1] 12 6
V AF [%]: n.a. 78.2 (8.8) 93.6 (2.8) 81.5 (1.4) 57.4 (9.2) 90.5 (6.2) 86.1 (5.7)
V AF0[%]: 95.9 (1.6) 73.3 (9.4) 80.9 (8.8) 61.2 (7.7) 32.5 (7.9) 62.5 (9.6) 76.7 (14.1)
RES: n.a. 65.0 (10.5) 32.7 (12.6) 170.5 (16.8) 430.8 (112.0) 46.8 (18.0) 87.9 (48.1)
RES0: 23.3 (10.9) 113.4 (15.0) 66.6 (14.5) 254.9 (16.0) 640.6 (132) 89.0 (23.7) 164.0 (112.5)

mean (sd)

[1]: only two trials were recorded due to a technical problem. n.a.= not available.

Table V: Validation results from segments measured on subject III. The VAF and RMS residual of a randomly chosen segment,
representing a test set, are expressed. The residuals are computed in the bandwidth 0.1-20 Hz, and in the bandwidth 2-20 Hz.
The random segments obtained for the different conditions are b1, c2, a1, c1. The mean VAF and RMS residuals of the other
segments, used in validation, are depicted as well. The value in brackets represents the standard deviation. For the analysis, Np
was set to 5.

Rapid Sine Slow Sine Sawtooth
20 s 40 s 20 s 40 s

VAF % RES RES VAF% RES RES VAF% RES RES VAF% RES RES
0.1-20 Hz 2-20 Hz 0.1-20 Hz 2 -20 Hz 0.1-20 Hz 2-20 Hz 0.1-20 Hz 2-20 Hz

Test Set 96.3 36.8 6.7 85.2 59.6 13.3 92.9 43.4 7.7 88.7 49.6 8.2
Validation Set mean (sd) 63.9 (14.6) 107.6 (44.5) 18.0 (10.8) 71.0 (8.7) 188.9 (59.3) 27.1 (11.0) 62.8 (12.0) 77.7 (30.8) 16.2 (5.7) 70.1 (11.4) 103.6 (29.9) 17.5 (6.9)

It can be seen that the zeroth order V AF0 was maximum
for the relax condition (95.9%), while it decreased for all
the other conditions, reaching a minimum for the intermediate
sine condition (32.5%). A similar trend is recognized for the
zeroth order RMS residuals. The value was equal to 23.3
for the relax condition, and reached a maximum around 640
for the intermediate sine condition on subject II. For every
condition, the V AF and the RMS residuals calculated using
higher order basis functions (Np = 5, 8) resulted in higher
accuracy than for the zeroth order analysis. From Table IV it
can be observed that the performance from the three sinusoidal
conditions varied between subjects. The results from subject II
show the poorer performance, with a mean VAF of 57.4% and
a mean RMS residuals of 430.8. The best performance was
obtained for the slow sine condition using 20 s long segments,
with a mean VAF of 93.6% and a mean RMS residuals of 32.7.
In Table V, the validation results from subject III are depicted.
For the different conditions, the mean VAF was between 62.8%
and 70.1%, and the mean RMS residuals between 77.7 and
188.9. A net decrease in the RMS residuals can be observed in
the bandwidth between 2 Hz and 20 Hz. The minimum RMS
residuals equaled 16.2 for the slow sine condition and 20 s
segments, while the maximum was 27.1 for the 40 s segments
from the slow sine condition.

3) Estimated signals
In Figure 15, the estimated output in the time domain is

plotted together with the measured output. The figure was
obtained using data from subject III performing a slow sine
condition. In the figure, it can be observed that the estimated
output overlaps with the measured output. As it can be seen in
the magnified window on the top of the figure, the estimated
output can track the behavior of the measured signal.

The fit in the frequency domain is given in Figure 15. The
residuals ranged from around -45dB to 68 dB. The residuals
were the highest at the low frequencies (0-2 Hz) and were
the lowest in correspondence to the excitation frequencies. As
it can be seen in the magnified window at the top of the
figure, the error dropped as well at the frequencies close to
the excitation peaks. Here the residuals ranged between -6 dB
to 6 dB.

Figure 16 represents the system function, obtained using
data from the slow sine condition measured from subject III.
By looking at the figure in the magnitude-frequency plane, a
common behavior can be recognized regardless of the time
instance at which the plane is located. At the origin, the
magnitude starts at a high value around 15 dB, then gradually
drops until reaching a minimum at a frequency around 5 Hz
and increases again until reaching a plateau of around 30 dB at
the high frequencies. The phase shows a common trend as well:
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Figure 14: Fit in time domain from subject SIII, Slow Sine condition and segment c2. The measured output in time (after
pre-processing) is represented by the blue diamonds and the estimated output is represented by the light blue continuous line.

0 2 4 6 8 10 12 14 16 18 20
Frequency [Hz]

-40

-20

0

20

40

60

80

100

120

M
ag

ni
tu

de
 [d

B
]

Estimated and Measured Output: Frequency domain
Y∧ Y∧(f

exc
) Y

m Residuals

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6

0

20

40

60

Figure 15: Fit in frequency domain from subject SIII, Slow Sine condition and segment c2. The blue diamonds represent the
spectra of the pre-processed output Y , the light blue continuous line represents the estimated output spectra Y ∧, and the black
crosses the residuals.

it starts at 0◦ and reaches 180◦ at the high frequencies, with a
transitory phase between 3 Hz and 5 Hz. The black lines in the
figure, representing the evolution of the magnitude/phase of the
excitation frequencies in time, show a varying behavior until
around 8 Hz. Afterward, the lines are more or less constant. In
Figure 17, the resonance frequency extracted from the system
function is plotted over time. The resonance frequency has the
appearance of a sinusoid with a period of 40 s, ranging from
4.1 Hz to 5.7 Hz. The shape of the sinusoid is fragmented,
with a resolution of 0.9 Hz.

C. Discussion on experimental study

1) Effects of design parameters on experimental accuracy
a) Percentage of MVC

Initially, the desired torque trajectory was selected to vary
between 10% and 50% of the MVC. The choice was made
to ensure a visible change of the operational point and the
creation of well recognizable Skirts in the output spectrum.
However, as it was seen in Figure 12, the output spectrum
contained noise at the non-excited frequencies. The noise was
masking the formation of the Skirts, hindering the application
of the Skirt Decomposition method. It was hypothesized that
the noise was partially related to badly posed experimental
conditions, requesting a maximum percentage of the MVC
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Figure 16: System function obtained from subject SIII, Slow
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Figure 17: Resonance frequency in time for subject III, slow
sine condition, segment c2. The property is retrieved from the
system function.

that was too elevated. In fact, previous studies have reported
a positive correlation between the force variability and the
percentage of the MVC during isometric contractions in human
joints [6], [7]. Therefore, for subject III the extreme percent-
ages of the MVC were reduced to 5% and 20%.

The beneficial results brought by the decrease of the ex-
treme values could already be noted in Figure 12, where the
Skirts started to emerge around the excitation frequencies.
Furthermore, positive effects on the estimation accuracy were
observed in Table IV. The excursion between the minimum and
maximum torque was reduced from 40% to 15%. Nevertheless,
lowering the extreme percentages of the MVC was beneficial
for the appearance of Skirts in the spectra and the application
of the Skirt Decomposition method.

b) Subtraction of voluntary torque from the measured
output

The output signal utilized in the data analysis was yθ(t). The
signal was obtained by subtracting an estimate of the voluntary
torque from the measured output (Figure 10). The removal
of the voluntary torque was crucial for the occurrence of the
Skirts in the output spectrum. As it was seen in panel b of
Figure 13, for the sawtooth condition the spectrum computed
directly from the measured output presented a large Skirt
centered at the origin. The large bandwidth Skirt covered the
individual Skirts centered at the excitation frequencies, which

instead appeared when only yθ(t) was used. The Skirt centered
at the origin was interpreted as being caused by the contribu-
tion of the voluntary torque. Indeed, the shape corresponded
to the Fourier transform of a ramp in the sawtooth trajectory.

The subtraction of the voluntary torque made sense under a
physiological point of view. The two signals yv(t) and yθ(t)
are determined by two different physiological mechanisms [24]
(Figure 10). The first mechanism is related to the tracking
of the desired torque trajectory. The subjects received visual
feedback on the desired output trajectory and the applied
torque. To minimize the error between the signals, the subjects
voluntarily changed the muscular activation level, with effects
on joint admittance. During the tracking task, a position
perturbation was applied to the joint. The related output yθ(t)
was determined by the value of joint admittance. Under this
perspective, the output yθ(t) can be considered as being LTV
. The value of admittance was indeed modified in time by
the voluntary tracking of the desired trajectory. The voluntary
torque was required for the presence of time variation in the
system, albeit it should not be considered for the identification.

c) Number of basis function
The method was applied by employing both a zeroth

order basis function and higher order basis functions. In the
simulation study, it was explained that the width of the pre-
determined Skirts is related to the number of basis functions
adopted. When only one basis function is used, the relative
Skirt in the frequency domain is reduced to a single peak at
the origin. Therefore, the implementation of the Skirt Decom-
position method with Np = 1 corresponded to performing the
identification at the excitation frequencies only.

In Table IV, it was seen that a high estimation accuracy
was obtained using a zeroth order analysis with data from
the relax condition. The outcome was expected since for
the relax condition the subjects were completing a LTI task.
Performing the identification only at the excitation frequencies
was sufficient to retrieve the dynamics of the system. For the
other conditions, the 0th order analysis resulted in a drop of
accuracy, while the performance stayed high for Np > 1. The
result shows that it was advantageous for the identification to
include the non-excited frequencies. The outcome supports the
interpretation of joint admittance as being LTV and emphasizes
the importance of considering the non-excited frequencies in
the identification of LTV systems.

To best consider the non-excited frequencies, the number
of basis functions should be selected taking into consideration
the time variation. For subjects I and II, the desired torque
trajectory ranged from 10% to 50% of the MVC , entailing an
elevated rate of change for the time variation. Consequently,
to enhance the approximation power, the value of Np should
be kept high. On the other hand, to avoid over-fitting of the
noise and ensure the recognition of the Skirts, the maximum
threshold was constrained to 8. For subject III, the amplitude
of the desired torque trajectory was decreased, lowering the
rate of change of the time variation. Therefore, the number of
basis functions was reduced to 5.

2) Model interpretation
A common behavior in the frequency-magnitude plane of the

system function could be extracted from Figure 16. The curve
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that was obtained expressed how the system would behave
if the properties were constant and ’frozen’ at the relative
time instance. Essentially, the curve represents a LTI response.
For frequencies until around 16 Hz, the shape obtained corre-
sponded to the response of a second-order LTI system, with
resonance frequency around 5 Hz, and the phase was going
from 0◦ to 180◦. The plateau at the higher frequencies can
be explained by the effects of the hand grip on the handle of
the manipulator. As it was expected, the plot represents the
inverse of the admittance, e.g. impedance. Indeed, conversely
to the simulation study, the input and output were position
and torque signals, respectively. The extracted dynamics are
comparable to previous studies on LTI wrist impedance during
force tasks [33]. In Figure 16 it was observed that the black
lines, representing the evolution of the amplitude/phase of
the frequencies in time, were varying until around 8 Hz.
The outcome was predictable since for higher frequencies
the constant inertia is dominant. The resonance frequency
extracted from the system function was depicted in Figure 17.
The resolution of the retrieved property was limited by the
value of ∆fexc

since the system function was obtained at the
excitation frequencies only. However, it was possible to see
a change of the resonance frequency in time. Particularly, the
sinusoidal shape retrieved has an evident match with the shape
of the imposed torque trajectory. The outcome confirms that
the tracking task had a strong effect on the time variation.

3) Accuracy of the method
As it was seen in Figures 12, in the output spectra of the

tracking tasks the power at the non-excited frequencies was at
times as high as the power at the excitation frequencies. For
example, for the intermediate sine condition, the power at the
non-excited frequencies had an average value around 40 dB,
almost 20 dB higher than for the relax condition. The power at
the non-excited frequencies was interpreted as being partially
due to noise and variability in the output. To reduce the level of
the variability, the extremes values of the MVC were lowered.
The change of the parameter was beneficial for the accuracy;
in Table IV a net increase of the performance for subject III
was observed.

The difference in the performance between the conditions
tested on subject III can be partially explained by the diversity
in complexity and speed of the time variation. When the
speed/complexity of the time variation is low, the power of
the Skirts is concentrated over a limited bandwidth. Therefore,
the power of the Skirts at the individual frequencies becomes
more dominant than the power of the noise. For the slow
sine conditions, segments of 40 and 20 s were considered.
The 40 s segments corresponded to a full period of the
sinusoidal trajectory, and the 20 s segments to half a period.
The complexity of the first case was higher, explaining the
lower performance with respect to the 20 s segments.

In the time domain, a clear fit of the estimated output was
observed in Figure 14. However, in the frequency domain, the
fit was heterogeneous, displaying unevenly distributed resid-
uals throughout the bandwidth (Figure 15). The distribution
of the residuals can be partially explained by the shape of
the output spectra. The considerable power at the non-excited
frequencies in the bandwidth between 0 Hz and 2 Hz was

probably due to the discontinuities of the generated torque.
Since the Skirts only model smooth contributions, the residuals
at the low frequencies were large. From the output spectra, it
was also pointed out that the noise was dominant at frequencies
far from the excitation frequencies. Similarly, in these points,
the residuals stayed high. Furthermore, the residuals might
have been determined as well by unmodeled nonlinear dy-
namics. Finally, it was noticed that Skirts were visible around
the excitation frequencies. In this limited bandwidth, the time
variation was indeed dominant, and predetermined Skirts could
be fitted to the output spectra. The relative residuals dropped
consequently.

The drop in accuracy in the validation study was expected.
Even for trials in which the desired trajectory was the same,
it is likely that the tracking behavior of the subjects was not
consistent over trials. As stressed in the introduction, humans
are unpredictable, and their behavior has little repeatability. It
follows that the operational point in time might be inconsistent
over the trials. The LTV system function obtained for one
trial might be different than for a different trial. The VAF
was affected by the variability since the discontinuities of the
voluntary torque were still present. Similarly, the residuals
had a considerable increase with respect to the test set.
However, when the residuals in the bandwidth 0.1-2 Hz were
excluded from the calculation, it was noticed that the residuals
dropped almost fivefold. From the validation results, it can be
concluded that the model of joint admittance could describe
the time-varying dynamics of the system for frequencies
between 2 and 20 Hz.

D. Sub-conclusions on experimental study
Different conditions were tested to assess the performance of

the Skirt Decomposition method on the identification of LTV
joint admittance from human data. The comparison between
the conditions provided important information regarding the
design of a suitable experiment. It was seen that the variability
within the system increased with the percentage of the MVC.
When the desired torque trajectory was set to vary between
5% and 20%, it was possible to see a time variation in the
system, while limiting the variability of the output. For future
studies, it would be interesting to assess the performance of
the Skirt Decomposition for different extremes of the MVC.

The role of the voluntary torque was discussed. The signal
was required for the presence of the time variation within the
system, yet it should be removed from the analyzed output. The
signal might indeed overshadow the relevant Skirts around the
excitation frequencies.

Finally, the accuracy of the method was analyzed. It was
seen that the method could reconstruct the output in the
time domain with a high accuracy. In the frequency domain,
unevenly distributed residuals were observed. The estimation
accuracy was high around the excitation frequencies, where
the Skirts could form in the output spectra. Even though only
a limited amount of point was used to reconstruct the smooth
time variation of the system, this was sufficient to retrieve the
time-varying dynamics of the system for frequencies higher
than 2 Hz.
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V. DISCUSSION

A. Time variation in the simulation and the experimental study
An essential difference between the simulation and the

experimental study is that the simulation model was de facto
LTV, while the joint dynamics were only modeled as being
such. The time variation of the simulated model was indeed
directly introduced by a change of the stiffness in time. Con-
trarily, in the experiment, the time variation was introduced by
a change of the operational point. Time was used as a fictitious
variable to explain the change of properties; considering the
dynamics of the joint as being LTV was only a modeling trick.

In this study, the artifact used to introduce a time variation
was to request to the subjects to track a desired torque
trajectory. The relative voluntary torque was also part of
the measured output. An estimate of the voluntary torque
had to be obtained and subtracted from the measured output
before applying the Skirt Decomposition method. Therefore,
assumptions had to be made on the nature of the voluntary
torque. The signal was considered as being linearly correlated
to the desired torque trajectory. It was possible to estimate
frequencies accurately above 2 Hz. Also, the task required to
the subject was quite straightforward [31].

In literature, other factors of the operational point have been
used to induce a time variation. In [17], the subjects were
requested to maintain a constant torque level of their ankle,
while a large amplitude angular perturbation was applied. The
advantage was that the imposed joint angle could be measured
exactly by the manipulator. However, the underlying task was
quite challenging. In fact, it required a complex control of
the activation level to guarantee a tracking of the desired
torque trajectory for large variations of the angle. In [26], the
subjects were requested to follow a predetermined trajectory
for a desired angular position. In the studies, the manipulator
applied a torque perturbation to the knee joint, while the output
was the position of the joint in time. The task resulted as being
more natural for the subjects [39]. However, the drawback was
that the configuration between the manipulator and the humans
was closed-loop. The identification method had to be modified
accordingly.

To sum up, there exists no perfect experimental setup to
study the time-variation of human joint dynamics. In this
study, a force task was performed in which the subjects were
asked to track the desired torque trajectory. Even though the
voluntary torque was part of the measured output, it was
possible to obtain an estimate of the signal and remove it from
the analyzed data. Furthermore, the task resulted into an open-
loop configuration between the joint and the manipulator and
was intuitive for the subjects.

B. LTV identification of human joint admittance
The Skirt Decomposition belongs to the class of LTV

identification methods. The aim of LTV methods is to build a
model of the underlying system which takes into consideration
the change of properties in time. For instance, in the Skirt
Decomposition method, the non-parametric system function is
built. The limitation of LTV methods is that, since the change
of properties is expressed in function of time, it is not possible

to extrapolate the dynamics for a condition different than the
one under test.

An alternative to LTV identification would be the use of
Linear Parameter-Varying (LPV) methods. Conceptually, there
is a strong similarity between LTV and LPV method: in both
cases, time is the primary cause of the change of properties.
However, in LPV methods, the dynamics are expressed in
function of parameters that change in time, rather than time
itself. The parameters introducing the time variation are known
as scheduling functions. An important difference with the LTV
cases is that the behavior of the underlying system can be
extrapolated for novel trajectories of the scheduling functions.
This property of LPV systems could be of great use for the
application on the design of biomimetic prostheses.

For the simplified model tested in the simulation study,
it would be possible to describe the system as being LPV.
The time variation was introduced by the change of stiffness
in time, and the stiffness could be selected as a scheduling
function. On the other hand, the time variation of the human
joint dynamics is more complex. With the current knowledge,
it is still not possible to fully understand how the operational
point affects human joint admittance [26]. Therefore, it is
not possible to select the scheduling functions without risking
modeling errors, and LPV methods cannot be applied.

In the presented study, a relation between the voluntary
muscle torque and the joint dynamics was found. However,
the results obtained were only for simple movements in which
a small amplitude joint angle was imposed to the subjects.
More research could be done for a wider set of movements
to confirm the dependence of the dynamics on the voluntary
torque. The Skirt Decomposition method could provide a tool
for the research.

C. Skirt Decomposition method on human joint admittance
The Skirt Decomposition is a system identification method

which applies nonparametric techniques for the identification
of LTV systems. Due to the nonparametric structure, no a
priori assumptions are made on the system’s structure or order.
Contrarily to the existing nonparametric LTV methods applied
on human joint admittance, the Skirt Decomposition method
does not require ensemble averaging over multiple realizations.
Instead, it seizes the distinctive shape of the spectrum of linear
slowly time-varying systems to fit predetermined Skirts. Essen-
tially, the method reports the time variation properties onto the
frequency domain, decreasing the number of unknowns in the
system. Compared to the existing nonparametric methods, the
Skirt Decomposition method does not require multiple trials
with the same underlying time variation to build a LTV model.
As it was seen from the experimental results, even for cases
in which the tested condition was the same, the measured
torque showed some variability. Assuming the repeatability of
the time variation might result into less reliable identification
outcomes. An added value to the use of a method that does
not require ensemble averaging is that the experimental time
is reduced.

Even though the Skirt Decomposition method has been
previously applied to the identification of electric circuits,
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its application on LTV human joint admittance was entirely
novel. Transferring the method to this new application was
not straightforward, particularly because joint admittance is
less predictable, has more noise and has a lower bandwidth
than electric circuits.

In the simulation study, it was seen that the difference in
bandwidth was not a constraining factor. In fact, for each
tested condition, it was possible to find the proper input and
identification parameters to obtain a VAF greater than 90%
and an RMSE of the resonance frequency lower than 0.1
Hz. The application of the method on human data proved
challenging, especially due to the presence of noise at the
non-excited frequencies. Nevertheless, close to the excitation
peaks, it was possible to detect the Skirts. The fitting of a
limited portion of the Skirts was sufficient to retrieve the time
variation. The properties recovered from the system function
showed plausible levels. The residuals had power between 16
and 27 for frequencies in the bandwidth between 2 and 20 Hz.

VI.CONCLUSIONS

A nonparametric approach for the identification of LTV
joint admittance was proposed in this paper. Contrarily to the
existing methods applied on LTV joint admittance identifi-
cation, the Skirt Decomposition method did not require the
control of the time variation and the parametrization of the
LTV dynamics. From the simulation study, it was seen that
the method was suitable for the identification of systems with
dynamics similar joint admittance. In the human experiment,
the method proved to be able to recognize the time variation,
when an appropriate task was imposed and a proper bandwidth
selected. The resonance frequency extracted from the system
function showed a plausible time variation, following the shape
of the desired torque trajectory.
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Appendix A
Nonlinear Joint Admittance and Identification

A. Physiology of joint admittance
1) Intrinsic and reflexive properties
The admittance of a joint shows both intrinsic and reflexive properties. The intrinsic properties are related

to the inherent physiological characteristics of the structures that compose and mobilize the joint and
are mainly determined by inertial, viscous and elastic contributions. The inertial effect is linked to the
geometrical configuration and to the mass distribution of the structures that are distal to the joint, while
the viscous and elastic effects are associated with the mechanical characteristics of the muscles and of the
passive tissues that cross the joint [43]. The intrinsic properties can be modulated to counteract the action of
external disturbances with a mechanism known as co-contraction. It consists in the voluntary contraction of
both the antagonist and the agonist muscles of a joint, resulting in an augmented visco-elasticity [43], hence
in an increase in the admittance of the joint. The reflexive properties of joint admittance emerge from an
unconscious mechanism to counteract disturbances. The initiators of the mechanism are the proprioceptive
sensors, located in the muscles and the tendons. When disturbances are present, the sensors perceive a
change of state (position, velocity, force) of the fibers to which they are attached, and they send a neural
signal in response. The signal is transmitted to the brain and/or to the spinal cord, and again back to the
muscles, where it can either activate or inhibit the target muscles. These two mechanisms can simultaneously
affect admittance and therefore distinguishing their discrete effect might remain undetermined.

The contraction of sarcomeres is triggered by an action potential along the neural fibers, which is
propagated in the muscular fibers, determining the release of calcium ions into the cells. The presence
of the calcium ions induces a configurational change of the cross-bridges, allowing the relative sliding of
the rows of actin and myosin, and resulting in a shortening of the sarcomeres, hence in a shortening of the
overall muscle.

The force generated during contraction is dependent on the activation level, determined by the amount
of calcium ions released into the muscular cell: the higher the activation level, the greater the probability
that the cross-bridges undergo the configurational change necessary for contraction [31]. Given a constant
activation level, the active force of a muscle also depends on the initial length of the muscle and the velocity
of muscular contraction, as depicted in Figure 2. The force of the muscle changes with its initial length as
the number of cross-bridges available for binding is different according to on the degree of overlap between
the parallel fibers of actin and myosin. Furthermore, if the fibers completely overlap there is not sufficient
room for the relative displacement of the fibers and the contraction cannot occur. The contractile force
depends as well on the rate of change of muscular length. It is believed that the unbinding of cross bridges
is facilitated when the muscle is shortening [13], [39]. For small deviations around a fixed operational
point, the force-length-velocity relationship of Figure 2 can be linearized, and the force can be expressed
as a linear function of a viscous and elastic constant [31]. Additionally, the force generated depends on the
precedent muscular contractions. If in a short time lapse a muscle is contracted for the second time, the
maximal force that it can generate is higher than the maximal force for the first contraction. The effect is
known as Treppe effect, and it is caused by the fact that some calcium ions are still present in the cell from
the previous action potential. On the other hand, for prolonged muscular contractions, muscular fatigue
occurs, which reduces the maximal force that can be produced. Muscular fatigue is probably caused by the
exhaustion of the available nutrients necessary for contraction [11].
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2) Muscular contraction
The cells in a muscle are composed by multiple, consecutive sarcomeres which are the fundamental

contractile units of a muscle. A sarcomere is composed of proteic filaments of actin and myosin, which
form parallel, alternate rows connected by structures named cross-bridges, as shown in Figure 1.

Figure 1: Schematic representation of the actin and myosin filaments in a sarcomere [2].

Figure 2: Graphical representation of the force-length-velocity relationship of a muscle [39].

B. Identification of joint admittance
1) Experimental setup
Joint admittance can be estimated by applying system identification procedures on joint measurements. The

measurements can be obtained experimentally by the utilization of robotic devices, named manipulators.
The manipulators should perturb the joint of the human subjects and be equipped with sensors for the
measurement of the joint response. The signal that the manipulator imposes to the joint is known as
perturbation signal. The interaction between the human subjects and the manipulators for the estimation of
the joint admittance is schematized in Figure ??. The manipulator traces a pre-defined angle and generates
an angular perturbation, which is measured by sensors and used as input for the identification procedure.
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The manipulator acts as a position servo which controls the angular position of the joint. The resulting
torque generated by the joint is measured and used as output for the identification. The measurements
of the input and output signals are noisy and do not exactly correspond to the actual ones; the error
is modeled as random, additive noise, named input/output measurement noise respectively. The input and
output measurement noises are assumed to be statistically independent of the output of the system [47]. The
variability within the system is modeled as additive, process noise. The manipulator has a stiffness which is
much higher than the stiffness of the joint of the human subject. Consequently, the torque produced at the
joint does not affect the position of the manipulator, and it is only measured by the device. Accordingly,
the interaction between the human and the manipulator is an open-loop one. Oppositely, if the manipulator
is designed as being compliant, the torque generated by the subject had an effect on the manipulator, and
the relationship is no longer in open-loop.

There are three main types of tasks that the subjects can perform in an experiment for joint admittance
identification: position tasks, force tasks, and relax tasks [31]. In position tasks, the subjects are asked
to keep the joint at a fixed angle, while the joint is perturbed by the manipulator. To minimize position
deviation, the subjects increase their admittance level. In force tasks, the subjects are asked to exert a
constant force regardless of the position. In this case, the joint is kept compliant to minimize the force
deviations. Finally, in relax tasks the subjects are asked to remain passive, and the only component of
admittance that can be identified are the passive properties of the muscles and the other tissues.

2) Challenges
There are some challenges that are present when identification procedures are performed on human

subjects:
• The control behavior of a human is susceptible to several changes, dictated for instance by a different

planning, a change in external conditions or task demands. Humans adjust their control behavior and
the central nervous system can learn the optimal control setting to apply to a certain motor task.

• The muscular system of humans is redundant, and it is possible to perform the same movement by
engaging different muscles. For the same experimental conditions, different muscles can, therefore, be
employed.

• For experiments that are physically challenging or that require a long recording time, it is likely that the
behavior of the subject changes due to fatigue and boredom. If muscular fatigue occurs, the maximal
speed of muscular contraction and the maximal contraction level decrease [5]. To avoid fatigue, the
experimental time should be constrained.

• Human neuromuscular system is composed of several elements that cooperate for an optimal
functioning. When a component of the system is studied, it is possible that more or less predictable
effect by adjacent structures can affect the behavior of the component. The lack of modularity renders
the study of the neuromuscular system more complex since it is not straightforward to split up the
problem in smaller ones.

• The force generated by a muscle is nonlinear, and it is affected by multiple factors, which have to be
considered during the identification procedures.
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Appendix B
LTV systems

A. Definition
By definition, a system is time-varying when a time-shifted version of the response does not correspond

to the response to the input shifted by the same amount [1]. In mathematical form, a time-varying system
is such that [47], given:

y(t) = f(u(t))

then:
y(t− τ) 6= f(u(t− τ)) (8)

where:
• t is the time vector;
• τ is the time-shift factor;
• y(·) is the output (response) of the system and u(·) is the input of the system;
• f(·) is a generic function expressing the dynamics of the system.

Figure 1: Example of the response (right) of a time-varying system to two consecutive impulses of equal magnitude (left) [18].

In other words, a system is time-varying if its response depends on the time instance in which the input
is applied. An example is given by Figure 1, which represents the response of a system to two consequent
impulses of equal magnitude. The first impulse is applied at t̄ = t̄1, and the response resembles that of a
second-order system with fixed parameters. The second impulse is applied at t̄ = t̄2, when the response to
the first input has virtually completely vanished [18]. Again, the response resembles that of a time-invariant
second-order system, although it is different from the response to the impulse applied at t̄1.

1) Cause of the time variation
There are two distinct ways in which time variation can occur in a system. There are systems which

are intrinsically time-varying and for which the cause of the change of the properties in time lies in the
random nature of the system. Examples are chemical processes or pitting corrosion in metals [22]. In other
systems, the time variation is externally induced and is caused by the change in time of one or more
external factors that influence the system [22]. An example is an electric circuit in which the battery of
the external power supply is progressively decaying, affecting the properties of the circuit. For both the
intrinsic and the externally induced case, the passing of time is the driving variable that causes, directly or
indirectly, the change of properties. Moreover, it is possible to treat a nonlinear time-invariant system as
a linear time-varying system so that linear methods can be applied for identification. The translation from
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nonlinear time-invariant system to linear time-varying system can be done by linearizing the system around
time itself. Time is not the driving variable for the change of properties, although it can be considered as a
fictitious variable of the system and the nonlinear time-invariant systems can be treated as a LTV in which
the time variation is externally induced.

B. Response
1) Impulse response function
When building the impulse response function of a LTV system, the dependence to time is taken into

consideration, resulting in a function of two variable: gv(t, t̄). The variable t̄ represents the time instance
in which the impulse is applied, while the variable t represents the time elapsed from the beginning of the
measurements. The variable t̄ is defined in an absolute reference frame; for instance, it could be the clock
time or the time of a stopwatch started at the beginning of the measurements. The variable t is defined
on a relative time frame, in which the zero is correspondent to the time in which the signal has started
being measured. The variable t̄ is named absolute time, and it is defined by the black axes in Figure 1, the
variable t is named observational time, and it is defined by the blue axes in Figure 1. For computational
simplicity, it is common practice to have the origin of the axes for the absolute time coincide with the
origin of the axes for relative time, which results into t̄ = t and gv(t, t).

The time-varying (causal) impulse response represents the dynamics of the system and can be used to
reconstruct its output using convolution with the system input as following:

y(t) =

∫ t

0

gv(τ, t)u(t− τ)dτ (9)

where:
• y(t) and u(t) are the respectively the output and input signals.
• The begin of measurement is considered as zero for the absolute frame and t̄ is taken as = t.
• gv(τ, t) is the time-varying impulse response at observation time τ and absolute time t.

.
An important consequence of the variation in time of the impulse response is the fact that the characteristics

of the system, such as the rise time and the settling time, depend on the dynamics of the system and also
by the time instance in which the input is applied.

2) Sinusoidal response
By applying a co-sinusoidal input u(t) = cos(ωt) with angular frequency ω to a LTV system, described

as in Equation 9, the output becomes:

y(t) =

∫ ∞

0

gv(τ, t)cos(ω(t− τ))dτ −
∫ ∞

t

gv(τ, t)cos(ω(t− τ))dτ (10)

where:
• The first integral represents yss(t), the steady-state response to the co-sinusoid signal;
• The second integral represents ytr(t), the transient response.

.
It is possible to rewrite Equation 10 using Euler formula for cosine signals. If, for the sake of simplicity,

the formula is only applied to yss(t), the resulting expression is:
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yss(t) =
1

2

∫ ∞

0

gv(τ, t)e
jω(t−τ)dτ +

1

2

∫ ∞

0

gv(τ, t)e
−jω(t−τ)dτ =

=
1

2
ejωt

∫ ∞

0

gv(τ, t)e
−jωτdτ +

1

2
e−jωt

∫ ∞

0

gv(τ, t)e
jωτdτ =

=
1

2
ejωtGv(jω, t) +

1

2
e−jωtGv(−jω, t) =

= <(Gv(jω, t))cos(ωt)−=(Gv(jω, t))sin(ωt)) =

=| Gv(jω, t) | cos(jωt+ ∠Gv(jω, t))

(11)

where:
• G(jω, t) is the Fourier transform of the time-varying impulse response gv(τ, t), | G(jω, t) | is its

absolute value and ∠G(jω, t) its phase ;
• The input is rewritten using the Euler formula u(t) = ejωt+e−jωt

2
.

Contrarily to LTI systems, applying a sinusoidal input with a fixed frequency to a LTV system does
not result in a pure sinusoidal steady-state response. As it can be seen in Equation 11, the response is
instead a multiplication of a function dependent on time | Gv(jω, t) | with a co-sinusoidal function with
variable phase cos(jωt + ∠Gv(jω, t)). For a constant Gv(jω, t), the output is a co-sinusoidal signal with
fixed amplitude and phase, getting back to a LTI system. If there is no noise in the system, the LTI output
spectrum has power only at the frequency excited by the input, and its magnitude only has a peak at the
excitation frequency. For a slowly varying Gv(jω, t), the output is a cosine signal with an amplitude and
a phase that slowly change over time. The resulting output spectra still has most of the power at the input
frequency; yet, the neighboring frequencies are also excited. The resulting spectrum has a ’Skirt-like’ shape,
and this property will be used for identification using the ’Skirt decomposition method’.

3) Response to a multisine signal
The expression Gv(jω, t) is linear in its argument, and if the sum of N co-sinusoidal signals with angular

frequency ωk and amplitude ak is applied to the system, then the resulting output is:

yss(t) =
N∑

k=1

(| Gv(jωk, t) | cos(jωkt+ ∠Gv(jωk, t))) (12)

C. Nonparametric model
1) LTV system function
As seen in Equation 11, by taking the Fourier transform of the time-varying impulse response in Equation

9, the time-varying system function Gv(s, t) is obtained as following:

Gv(jω, t) =

∫ ∞

0

gv(τ, t)e
−jωτdτ (13)

The system function represents the dynamics of a LTV system under both a time-domain and frequency-
domain profile. In Figure 2 the magnitude of a time-varying system function is represented. By looking
at the figure at a fixed time instance, a typical frequency response of a LTI second-order system can
be recognized. By looking at the picture in the time-magnitude plane, the evolution of the properties of
the system in time is represented. For example, it is possible to see how the resonance frequency changes
throughout the response. The output in time-domain can be rewritten by taking the inverse Fourier transform
of the system function multiplied by the inverse spectra, as following:
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Figure 2: Graphical example of the magnitude of a LTV system. The green line shows the evolution of the resonance frequency
in time, the blue line shows the frequency response at a fixed time instant.

yss(t) = F−1(Gv(jω, t)U(jω)) (14)

2) Polynomial decomposition
The system function Gv(jω, t) can be decomposed as a series expansion, in which the time-domain and

frequency-domain profiles are represented by distinguished functions:

Gv(jω, t) =

Np−1∑

p=0

Gp(jω)bp(t) (15)

where:
• The frequency dynamics are represented by the LTI functions Gp(jω), and the time variation is

represented by the polynomials bp(t), known as basis functions;
• Np represents the number of basis functions used, while Np − 1 represents the order of the series

expansion;
• It is assumed that the system function can be approximated by a finite number of smooth basis

functions of time bp(t);
By combining Equations 14 and 15 the output of a time-varying system becomes:

yss(t) =

Np−1∑

p=0

F−1(Gp(jω)U(jω))bp(t)

=

Np−1∑

p=0

F−1(θp(jω))bp(t)

(16)
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where:
• F−1 is the inverse Fourier operator;
• θp(jω) is a LTI variable introduced to substitute 1

2π
Gp(jω)U(jω).

The expression can be interpreted as a LTI Multiple-Input Single-Output (MISO) system. Each of the Np

inputs is determined by the Fourier transform of (θp(jω)), each subsystem is represented by a multiplication
of the input with the polynomial bp(t) retrieving the steady-state LTV output yp(t). Finally, the steady-state
LTV outputs of each subsystem are summed together to obtain yss(t).

The expression in time domain in Equation 16 can be written in frequency domain:

Yss(jω) =
1

2π

Np−1∑

p=0

θp(jω) ∗Bp(jω) (17)

where:
• Bp(jω) is the Fourier transform of bp(t);
• The multiplication operator in Equation 16 has become a convolution.
In Equation 17 the decomposition of the system as an LTI MISO output can still be recognized.
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Appendix C
Skirt Decomposition Method

A. Multisine Input signal
The input utilized for the Skirt Decomposition method is a multisine signal, a continuous signal composed

by the sum of Nexc co-sinusoids. The signal is defined as:

ums(t) =
∑

ke=Kexc

A(ke)cos(ωket+ Φke) (18)

The multisine signal is composed by the sum of Nexc co-sinusoids, each one with a given amplitude A(ke),
a random phase Φke , and exciting an angular frequency ωke . The multisine is defined over a period Tm. The
excitation frequencies are designed such that the period of each individual co-sinusoid is a integer divisor
of Tm. The set of excited angular frequencies is:

ωke =
2πke
Tm

, for ke integer and ∈ Kexc

The multisine signal allows for a higher power at the excitation frequencies compared to a signal with a
flat spectrum. The SNR at the excitation frequencies is improved [45]. Furthermore, the multisine signals
have the advantages of being a continuous, yet unpredictable signal. The multisine is particularly suitable
for human experiments due to these properties [39]. Finally, the application of the multisine as input gives
the possibility of selecting the frequencies to excite. The property is important for the Skirt Decomposition
method since it requires a significant number of unexcited frequencies between two excited ones [20]. The
Fourier transform of the multisine signal is expressed as Ums(jωke).

1) Properties of the multisine
The input signal is windowed, meaning that it is multiplied in the time domain by a rectangular window

of length T, rendering the signal equal to zero for time points outside the window. The signal is sampled
with a sample frequency fs and it is band-limited. The set of discrete frequencies over which the signal is
defined are:

ωk =
2πk

T
, for k ∈ Kw = [0 :

Tfs
2

) ∩ Z (19)

For a sample frequency fs, defining the multisine signal as above is required to avoid aliasing and leakage.
Furthermore, as required by the Skirt Decomposition method, not all the frequencies in Kw are excited

by the multisine signal.

B. Rewriting the formula
For the application of the Skirt Decomposition method, the convolution in Equation 17 has to be rewritten

in the form of matrix multiplication. First of all, the signal is discretized over the frequencies ωk ∈ Kw and
the transient part of the response is added, obtaining:

Y (jωk) =

Np−1∑

p=0

θp,k′ ∗Bp(jωk) + Itr(jωk) (20)

where:
• The transient response is modeled by the polynomial Itr(jωk),
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• θp, k
′ represents the LTI component 1/(2π)Gp(jωk)Ums(jωke). Since the multisine Ums is null at the

non-excited frequencies, the multiplication with Gp(jωk) results into an expression which is defined
only over the excitation frequencies.

Lets only considered Yp(jωk), the output from a single branch of the equation. Transforming the
convolution into multiplication, the following expression is obtained:

Yp(jωk) =
∑

k′∈Kexc

θp,k′Bp(jωk−k′) (21)

where:

• Bp(jωk−k′) is a Skirt centered at the frequency ωke .

For the application of the Skirt Decomposition method, the equation has to be rewritten in matrix form.
To minimize the computational effort, Equation 21 is split up into Kexc frequency bands composed by
Nc − 1 elements. Each frequency band is centered around an excitation frequency ωke and considers only
the excitation frequency before ωk−e and the excitation frequency after ωk+

e . The frequency band is defined
over the following points:

ωk ∈ Fke = [ωk−e −
ωke − ωk−e

2
, ωk+e +

ωke − ωk+e
2

] (22)

For each frequency band, only the Skirts centered at ωk−e , ωke and ωk+
e are considered. The contribution

of the neglected Skirts is modeled as a smooth polynomial, in function of jωk. The expression obtained is:

Yp(jωk, ke) =
∑

k′=ke−,ke,ke+

θp,k′Bp(jωk−k′) + Ism(jωk) (23)

where:

• Yp(jωk, ωke) expresses the output, for a fixed branch p, computed over the frequencies ωk ∈ Fke , with
central frequency ωke .

Finally, summing over the Np branches, the following expression is obtained:

Y (jωk, ke) =
∑

k′=ke−,ke,ke+

Np−1∑

p=0

θp,k′Bp(jωk−k′) + Itot(jωk) (24)

where:

• Itot(jωk) is a polynomial of order Ntr + 1 and in function of jωk. The polynomials models both the
transient part Itr(jωk) and the smooth contribution from the neglected Skirts Ism(jωk). The polynomial
is represented as : Itot(jωk) =

∑Ntr

l=0 trl(jωk)
l

For each frequency band, composed by Nc − 1 elements, of order Np − 1 and an order of the transient
Ntr + 1 the equation can now be written in matrix form, as:

Y (jωk) = B(jωk)Θ(jωke) (25)
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B(jωk) =




B0(jωk1−ke−) B0(jωk1−ke) B0(jωk1−ke+) · · · BNp−1(jωk1−ke+) jωk
0
1 · · · jωk

Ntr
1

B0(jωk2−ke−) B0(jωk2−ke) B0(jωk2−ke+) · · · BNp−1(jωk2−ke+) jωk
0
2 · · · jωk

Ntr
2

...
...

...
...

...
...

...
...

B0(jωNc−ke−) B0(jωNc−ke) B0(jωNc−ke+) · · · BNp−1(jωNc−ke+) jωk
0
Ntr

· · · jωk
Ntr
Ntr




Θ(jωke) =
(
θ0,ke− θ0,ke θ0,ke+ · · · θNp−1,ke+ tr0 · · · trNtr

)T

(26)

C. Linear least-squares regression
For every frequency band, centered at the excitation frequency ωke a linear least-squares regression is

applied to retrieve the vector Θ(jωk) from Equation 25. The equation solved is:

Θ̂(jωke) = min
Θ
‖Ym(jωk)−B(jωk)Θ(jωke)‖2

2 (27)

where:
• The value Ym(jωk) represents the measured output in the frequency domain.
• The frequencies considered are ωk ∈ Fke.
By solving the linear least-squares regression for each frequency band, a set of Nexc vectors Θ̂(jωke) is

obtained. From each vector Θ̂(jωke), only the terms relative to the central frequency ωke are retained. The
LTI response at the excitation frequencies is obtained. The vector is equal to:

θke = [θ0,ke1, θ1,ke1, .., θNp−1,ke1, θ0,ke2, θ1,ke2, .., θNp−1,ke2, .., θNp−1,keNexc ] (28)

The vector contains Np ·Nexc elements. For a fixed branch, the vector is expressed as θp,k′e.

D. Reconstruction of the LTV system function
The system function can be reconstructed from the LTI response, the input signal and the basis functions.

As stated in Equation 15, the system function is the series expansion of the LTI functions Gp(jωk) and the
basis functions. Gp(jωk) can be obtained by dividing the LTI response by the multisine input, giving the
following expression for the system function:

Gv(jωke, t) =

Np−1∑

p=0

θp,k′e
Ums(jωke)

bp(t) (29)

E. Reconstruction of the output
The output can be estimated starting by multiplying the LTI response θp,k′e, expressed in the time domain,

by the basis functions. To express the LTI in the time domain, the vector is made of the desired dimension
N/2, corresponding to the number of points up to the Nyquist frequency. To change the dimension, zeros
are added at the non-excited frequencies. The vector is expressed in the time domain by performing an
inverse Fourier transform, obtaining a time vector θp(t). The output equals (̂y)(t) =

∑Np−1
p=0 θp(t) · bp(t).

When a validation set is used, a similar procedure can be followed to retrieve the estimate of the output.
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The LTI response is retrieved in the frequency domain as:

Gp(jωke) =

Np−1∑

p=0

θp,k′e
Ums(jωke)

Ums2(jωke) (30)

where Ums2(jωke) is the input applied in the validation dataset. The estimated output is computed with the
same procedure as above.

F. Assumptions
The main assumptions made by the Skirt Decomposition method are:
1) The basis functions bp(t) are smooth functions of time, and their Fourier transform have the power

highly concentrated at low frequencies (Skirt shape).
2) The transient part of the response and the contribution of the Skirts that are not in the considered

frequency band can be approximated by a polynomial in jωk of order Ntr.
3) The matrix B(k) is non-singular.
4) The LTI systems G1, .., GNp are asymptotically stable;
5) The input signal is bandlimited, and the excited frequencies are integer multiples of 2π/Texp, with

a maximum excitation frequency of fs/2, where Texp is the experimental time, and fs the sampling
frequency.

6) The output is corrupted by random, circular complex, normal distributed, white noise.
7) There is no input noise.
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Appendix D
Additional Figures and Tables

Figure 1: Bode plot of the implemented mass-spring-damper model in the simulation for K = Kmax = 6Nm/rad (black line)
and K = Kmin = 0.5Nmrad (blue line). The inertia Ic is equal to 0.02 Nms2

rad and the damping Bc is equal to 0.05 Nms
rad
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Figure 2: Resonance frequency from the Simulation on Case Studies 1, 2 and 3. The black line represents the resonance frequency
of the system, while the colored lines represent the resonance frequency retrieved for different values of ∆fexc
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