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Centralized management of power systems is becoming more challeng-
ing due to the increased introduction of distributed renewable energy re-
sources, along with demand increase and aging infrastructures. To address
these challenges, this paper proposes new mechanisms for decentralized
energy management. Based on self-organization of consumers, prosumers
and producers into virtual groups, called clusters, supply and demand of
electricity is locally matched. Distributed multi-agent systems are used
as a way to represent virtual cluster members. The mechanisms are illus-
trated, and static and dynamic virtual clusters are compared. Dynamic
reconfiguration is achieved by varying the time periods for which clus-
tering is performed. The proposed clustering mechanisms demonstrate
that large-scale centralized energy systems can operate in a decentralized
fashion when only local information is available.

1 Introduction
Power systems are large scale, complex socio-technical systems that provide society with one of
its most valuable assets: electricity. Electricity is not only an irreplaceable asset in households,
but is also vital for day-to-day operations of today’s critical infrastructures. The main objective
of power systems [3] is to constantly ensure that there is enough electricity supply to meet the
demand of consumers. This is also known as supply and demand matching or balancing. In
a traditional power system, this matching is centrally controlled, with big power plants with
centralized generation still as the main electricity suppliers [19]. As power systems increase in
size and complexity, centralized control becomes more challenging [3]. This is particularly the
case due to the increased introduction of distributed renewable energy resources (DER) [9]. As
a consequence of increased flexibility of the demand-side for choosing supply sources, traditional,
centrally controlled nature of energy systems management is changing to coordination among a
large number of supply sources and responsive loads [19]. Thus, the complexity of an already
highly complex system is increasing.

To handle this complexity, different types of decentralized organization of power systems that
enhance local control with respect to power supply and demand [4, 5, 15] have been proposed.
Methods for minimizing centralized control are proposed in [4, 5, 9]. These methods use complex
adaptive systems to represent power systems, and intelligent agents as their components. The
potential of a multi-agent approach to manage distributed energy resources is assessed in [19,20,28],
where residential combined heat and power units are represented by individual groups acting as a
type of a virtual power plant. While these papers envision power systems as decentralized, they
do not propose mechanisms for enabling this decentralization.
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Key concepts such as microgrids and virtual power plants (VPPs) have been introduced in the
past to facilitate decentralized power system organization, and to support the increased introduc-
tion of distributed renewable energy resources into power systems [7, 16]. Microgrids are subsets
of existing power systems that can operate together with the main power system, or run indepen-
dently in an islanded mode. The latter is considered one of the main beneficial characteristics of
microgrids. However, microgrids require sophisticated physical infrastructure for their operation
and are tied to specific geographic regions, making them static (non-reconfigurable) [7,24]. Future
microgrids are envisioned as being able to dynamically meet changing objectives in real-time. This
requires the change in power systems management, as well as the change in system infrastructure.
One of the main motives for enabling real-time, dynamic reconfiguration is to improve system
resilience and quality of service for consumers [27].

Unlike microgrids, virtual power plants do not require a dedicated infrastructure. Their main
aim is to group several types of power sources, and allow them access to the energy market as
a group for economic and other reasons [7]. VPPs are typically organized as fixed groups. As
such, the composition of a VPP does not change over time. In contrast with microgrids, VPPs
are not designed for islanding during outage periods, thus they are always grid-tied. However, an
advantage of VPPs is that they are not geographically limited and do not require new, sophisticated
infrastructures [7].

Both microgrids and VPPs are promising developments in the move towards a more decentral-
ized power system. However, both typically assume prior full knowledge of a power system, focus
on long term relationships with their members and lack the flexibility required for near real-time
dynamic supply and demand matching in changing group compositions, see e.g. [10].

The rest of the paper is organized as follows: Section 2 gives an overview of clustering and
explains the concept in context of this paper, Section 3 explains the proposed decentralized clus-
tering mechanism in detail, Section 4 describes the conducted experiments, and Section 5 discusses
the obtained results. Finally, Section 6 summarizes the main conclusions and gives suggestions for
future work.

2 Clustering as the enabling mechanism of decentralization
In this paper, the concepts of microgrids and VPPs are further extended with clustering techniques
for enabling the formation of dynamic, virtual groups in power systems. These virtual groups
locally perform electricity provisioning and are able to adapt to changes in supply and demand.

Clustering is a technique used to organize objects into groups according to a specified crite-
ria [14,17]. Depending on its operation, clustering can be distributed or centralized. In centralized
clustering methods, such as K-means, a central repository contains the information about the en-
tire system and performs clustering. In contrast, in a distributed approach, nodes have only local
information and obtain aggregate information about other nodes by communicating [22, 23, 26].
Depending on the changes in their composition, clustering can be static or dynamic. In dynamic
clustering, clusters adapt to changes in the environment by changing their composition, whereas
in static clustering, clusters are initially formed and do not change during their lifetime [12].

In this paper, consumers, prosumers and producers organize themselves into local commu-
nities [4, 5, 15], which are referred to as virtual clusters. Geographical distance, and load and
production profiles are the main clustering criteria, whereas the main objective is to locally, i.e.
within a cluster, minimize supply and demand mismatch. Autonomous organization into clusters
based on local information is referred to as self-organization. Self-organized clusters enable more
flexibility in matching local demand and supply [8]. Clusters reconfigure to adapt to changes in
the dynamic environment. This paper proposes mechanisms that do not assume full knowledge of
a power system and rely only on local information of every system member.

The main objective of developing the mechanism for dynamic self-organization is twofold,
namely (i) to demonstrate that large-scale centralized systems can operate in a decentralized
fashion when only local information is available, and (ii) to study the effects of changing the time
period for which clusters stay the same, thus, to observe the differences in outcomes of static and
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dynamic clustering.

3 Clustering algorithm for decentralized supply and demand
balancing

The proposed mechanisms abstract from the physical layer of power systems. Clustering is per-
formed on the virtual level, relying on external communication, e.g., using telecommunication
networks, to create the grouping.

Figure 1: The proposed clustering mechanism

Cluster members are represented by autonomous agents with a local view of the system that
exchange information with other agents. This paper assumes that every consumer, prosumer and
producer in a power system has a computational device on which an autonomous agent (a software
component) is installed that acts on their behalf. Thus, a consumer is represented by a consumer
agent (CA), a prosumer by a prosumer agent (PSA), and a producer by a producer agent (PDA).
Devices which agents are installed on are distributed across the network and can communicate
with each other, regardless of the geographical distance. Every agent contains information such
as its own geographic location, load and production profile for a period of time (usually a daily
profile), energy type produced, and the cluster which it belongs to. Load and production profiles
of every agent are sampled every hour, and these sampled profiles are then used to match supply
and demand with other agents or clusters. Agents are reconfigurable, enabling individuals they
represent to change their settings at any time. They negotiate membership in clusters, and can
send and receive membership offers. Each agent can belong to only one cluster and each cluster
has a coordinator which monitors it, and manages and facilitates the negotiation. Agents can
accept or reject cluster membership offers. Negotiation results in a formed service level agreement
(SLA), that specifies the terms and conditions of electricity service provisioning [11]. Negotiation
can be performed using one of the standard negotiation protocols for SLAs, such as Web Services
Agreement [6, 21]. In this paper, SLAs contain information about the membership offer, and are
as such used as a means to fix cluster boundaries.

As seen on Fig. 1, the process starts by building a local view containing the geographically
closest neighboring agents of every agent. In this work, geographic proximity is taken as the
distance measure, more advanced distance measures are left for future research. To build this
local view, a distributed information exchange algorithm (gossiping) is used. This algorithm
assumes that every agent is reachable by any other agent in the system, either directly or through
alternative paths (via other nodes) [13,18]. After building the local view, the distributed clustering
phase begins. Each agent has a local objective function, which differs based on the agent’s type.
For PSAs and PDAs, the initial objective is to provision electricity to those CAs whose demand is
the highest. PSAs and PDAs ask CAs which match their objective function to join their clusters.
This step results in membership offers sent to CAs. CAs assess every offer received, and choose
the best one. In this case, the best offer is the one which minimizes CA’s mismatch. The process
is repeated until all the CAs are clustered. This phase results in initial clusters, formed by local
objectives of its members. Cluster coordinators of the generated clusters are the PSA or the PDA
that initially sent the offers.
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The next phase refines the clusters by letting the coordinators communicate and send offers to
merge clusters. In this stage, the objective of every cluster is to minimize its supply and demand
mismatch. Coordinators (PSAs or PDAs) send offers for merging to neighboring (geographically
closest) clusters (see Algorithm 1). Offers are sent only to those clusters whose mismatch, when
combined with that of the cluster sending the offer, is closest to zero. The number of offers sent
is parametrized. Clusters that receive an offer can either accept or reject it, depending on how
good it is. In this case, a good offer means that the mismatch will be decreased. The output
of this phase are the final clusters. The number of rounds for which this process is repeated
is controlled by parameters such as maximum cluster size, and maximum number of iterations.
Clustering is performed for different time periods, observing the changes in cluster numbers, sizes
and composition in dynamic environments.

Algorithm 1 Decentralized supply and demand matching
1: procedure Refine clusters
2: for all Clusters do
3: CN ← N best neighboring clusters
4: for all CN do
5: Send membership offer On

6: end for
7: for all Clusters do
8: if received offers ≥ 0 then
9: Ob ← best offer

10: if Ob mismatch < cluster mismatch then
11: Accept Ob

12: end if
13: Reject pending offers
14: Send Accept/Reject to clusters
15: end if
16: end for
17: for all Clusters do
18: if accepted offers ≥ 0 then
19: Ob ← best accepted offer
20: Add the agent A(Ob) to the cluster
21: Recalculate cluster mismatch
22: end if
23: end for
24: end for
25: end procedure

The main objective is to minimize the supply and demand mismatch on the local level (i.e.
on the cluster level). The mismatch of an agent a at time t is calculated using Equation 1.
Accordingly, the mismatch of a cluster c (containing N agents) at time t is calculated using
Equation 2. In this paper, a positive mismatch denotes overproduction (surplus), while a negative
mismatch represents underproduction (shortage of supply). Zero mismatch means that the cluster
is in perfect balance. Surplus of electricity in a cluster is fed into the backbone grid, while lack
of supply is covered by drawing the electricity from the main grid. Clusters can reconfigure based
on changes in supply and demand, e.g. cluster composition can change every hour or every day,
depending on the determined time period for which it is performed. Thus, the generated clusters
are virtual groups of consumers, prosumers and producers, which are able to dynamically change
their group composition according to changes in the (external) environment or their (internal)
preferences.

agent mismatch = Supply(t) −Demand(t) (1)
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cluster mismatch(t) =

N∑
n=1

Supply(n,t) −Demand(n,t) (2)

To join another cluster, the absolute mismatch between an agent and members of a cluster
is calculated using Equation 3. For every sample at time t, supply and demand mismatch of all
N agents is calculated. Then, the absolute values of all the mismatches are summed to obtain
the total absolute mismatch between N agents. Absolute values are used so that the amount of
overproduction or underproduction per hour is preserved. The agents join clusters that are closest
to their profiles, i.e., with the minimum absolute and cluster mismatch. This approach ensures
that agents join the cluster that most closely matches their profiles.

absolute mismatch =

T∑
t=0

∣∣∣∣∣
N∑

n=1

(Supply(n,t) −Demand(n,t))

∣∣∣∣∣ (3)

This mechanism can be used to encourage demand to follow supply, since consumers can shift
their load to join a cluster which meets their objective at a given time period. This is more realistic
in a more dynamic scenario, where clustering is performed every 8 hours or on hourly basis.

Clustering in this way gives local empowerment to every agent, and allows flexibility in adapting
to changes in supply and demand, without rerunning the process for the entire system. Thus, nodes
entering or leaving the system can use the local view of the neighborhood to decide which cluster
to join.

Currently, the same simple, local objective functions (per agent type) are used to form initial
clusters. However, due to its configurability, different (individual) objective functions can be used
per agent, allowing the objectives to include preferred type of electricity supply, cost functions,
duration of service provisioning, or priority level as clustering criteria.

4 Experiments
This section studies the outputs of the proposed clustering mechanism by assessing supply and
demand mismatches of generated clusters, as well as the number of clusters obtained. To demon-
strate the ability of generated clusters to reconfigure based on changes in the environment (changes
in supply and demand), time periods for which clustering is performed are varied, and static and
dynamic clusters are compared.

4.1 Experiments assumptions
The daily load profile data used for the experiments is obtained from NEDU [2], the Dutch
energy data exchange, and represents an average load profile of a Dutch household consumer.
To diversify household profiles, the load profile data is varied for a sampling period applying a
normal distribution, generating variations of maximum +

−20%. Prosumers with solar production
are modeled. Solar power production of prosumers is calculated as in [25], using the Dutch solar
irradiance data [1]. The data from July 1, 2015 is used in the experiments. To ensure that there
is enough supply to meet the demand for a period of a day, diesel generators with capacities of
10 kW which run constantly for the period of a day, are modeled as production units. Clustering
is performed for a maximum period of a day (24 hours). This work assumes that every agent has
perfect information of their own demand and/or supply for the clustering period. Future work
will explore how forecasting mechanisms can be used to deal with partial information about both
energy demand and supply.

4.2 Key performance indicators (KPIs)
As the main objective of power systems is to match supply and demand of electricity [3], supply
and demand mismatch is taken as the main clustering criteria, with the main objective being to
minimize the mismatch within clusters.
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The key performance indicators (KPIs) used for evaluation of obtained clusters are the follow-
ing:

1. Supply and demand mismatch of a cluster: Total supply and demand mismatch of
cluster members is calculated by summing up all the members’ mismatches.

2. Average supply and demand mismatch of all the clusters for a given period:
Supply and demand mismatches of all the clusters are summed at every hour, and an average
is taken.

3. Average negative supply and demand mismatch of all the clusters for a given
period: Supply and demand mismatches of all the clusters with negative mismatches are
summed at every hour, and an average is taken.

4.3 Experimental setup
The experiments are run with 500 agents, each with full knowledge of its own production, con-
sumption, and geographic location.

To ensure that there is enough total supply to meet the demand for a period of a day, exper-
iments varying the percentage of consumer, prosumer, and producer agents are conducted. The
system configuration which gives the average mismatch closest to zero is chosen.

The experiments use three case studies to assess the outcomes of the proposed clustering
mechanism, namely: (i) daily clustering (static), (ii) clustering every 8 hours (dynamic), and (iii)
hourly clustering (dynamic). In this work, dynamism refers to how frequently clusters reconfigure
within the longest time period for which clustering is performed.

The first set of experiments observes the behavior of static clusters with the chosen system
configuration in terms of mismatches and number of clusters obtained. Clustering is performed for
a full-day period, where supply and demand of each agent for a period of 24 hours is aggregated.
The percentage of prosumers is varied from 10% to 90%, while the percentage of producers (diesel
generators) is varied from 0% to 4%.

The next set of experiments aims at observing the reconfiguration of clusters when adapting
to changes in supply and demand. For this purpose, the original clustering timespan (full day)
is divided into two sets of experiments, namely (i) 8 hours, where clusters are reconfigured every
third of the day (8 hour period is chosen to reflect a typical household load profile), and (ii) 24
hours, where clusters are reconfigured every hour.

The comparison in outcomes of static (daily) and two types of dynamic clustering (8 hours
and hourly) is made in terms of average mismatches, average negative mismatches, and number of
clusters. Average negative mismatches served as the main means of comparison, as these indicate
in which cases there is underproduction of electricity.

5 Results and discussion
The obtained results indicate that self-organization based only on local information is feasible,
and that using the proposed mechanisms, supply and demand can be to an extent locally satisfied.
In terms of dynamism, static and dynamic clustering follow similar trends in terms of average
mismatches (Fig. 2a), but differ significantly in terms of number of clusters generated (Fig. 2c).
As seen in Fig. 2b, hourly clustering generates the overall lowest underproduction compared to
both daily and clustering every 8 hours. This is due to the ability of clusters to rapidly adapt
to sudden changes. Consequently, hourly clustering results in the highest level of fluctuations in
terms of number and sizes of clusters. Thus, more dynamic clustering results in overall lower
mismatches, but requires more frequent changes in number and sizes of clusters. The results in
Tables 1 and 2, as well as the figures Fig. 2a–d, are based on 100 algorithm runs. Tables 1 and 2
show the obtained clusters’ parameters for static (daily) and dynamic (8 hours) clustering. As
shown, static clusters generate an overall low average mismatch. Clustering every 8 hours shows
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(a) Average mismatches (b) Average negative mismatches

(c) Number of clusters (d) Hourly clustering

Figure 2: A comparison of static (daily) and dynamic (every 8 hours and hourly) clustering (based
on 100 algorithm runs)
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average mismatches that follow the standard load and (solar) production profiles. In the first part
of the day, there is enough supply to meet the low demand, while in the second part there is a high
level of overproduction due to relatively low demand compared to high solar irradiation. However,
in the last part of the day, when the demand increases, there is not enough supply to meet the
demand, indicated by the negative average mismatch.

Time period Average mis-
match (kW)

Number of
clusters

Average clus-
ter size

Smallest clus-
ter size

Largest clus-
ter size

0-24 4.25 128 3 2 56

Table 1: Static daily clustering (based on 100 algorithm runs)

Time period Average mis-
match (kW)

Number of
clusters

Average clus-
ter size

Smallest
cluster size

Largest clus-
ter size

0-8 1.54 137 3 2 35
8-16 7.64 149 3 2 33
16-24 -4.58 176 2 2 34

Table 2: Dynamic clustering every 8 hours (based on 100 algorithm runs)

Fig. 2a compares average mismatches for three types of clustering, namely (i) daily, (ii) hourly,
and (iii) every 8 hours, while Fig. 2b compares average underproduction at every hour. Both
figures indicate that static clustering generates clusters with overall highest mismatches and most
underproduction at every hour of the day, compared to those in dynamic clustering. This is due
to more flexibility to adapt to sudden changes in supply and demand. Even though both types
of dynamic follow similar trends, hourly clustering generates overall less underproduction. Fig. 2c
shows how the number of clusters changes rapidly when the granularity of the period for which
the clustering is performed is increased. As indicated by the graphs, the more dynamic clustering
mechanism, the higher the number of clusters and its variation.

Fig. 2d shows the relation between total supply, total demand, and generated number of clusters
for hourly clustering. When both supply and demand are low, the number of clusters is relatively
low. As the demand increases, the number of clusters increases. This is the most evident when the
supply starts decreasing in the last part of the day, indicating that the agents organize in smaller
groups to try to compensate for the lack of supply. Since the prosumers do not generate enough
electricity in this period, there are fewer rounds of cluster merging.

6 Conclusions
This paper proposes mechanisms for decentralization of supply and demand matching by letting
consumers, prosumers and producers organize themselves into clusters that locally match electric-
ity. The main motivation is twofold, namely (i) to demonstrate that supply and demand matching
can be decentralized when only local information is available, and (ii) to assess the outcomes of
static and dynamic clustering. The results show that the techniques developed can provide mecha-
nisms for enabling self-organization based on local information. In terms of dynamism, the results
show that the more dynamic clustering methods produce overall better clusters with lower nega-
tive mismatches. However, more dynamism means more communication, frequent reconfiguration
and changes in cluster sizes and numbers. Thus, there is a tradeoff between overall reduction of
mismatches and the burden on the infrastructure itself. The developed mechanisms can be used
to decide where to place alternative sources of power generation, storage units, or to decide when
to turn the generators on.

Besides the aforementioned extension of the model with supply and demand forecasting tech-
niques, other extensions left for future work are to explore the effect of storage on the formation of
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clusters and to explore the potential of the proposed mechanisms as a means of achieving a more
reliable power supply and a more resilient power system. The main idea here is to let consumers,
prosumers and producers in an area affected by a power outage, temporarily organize themselves
in (dynamic) clusters that distribute available supply to preferred consumers.
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