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A B S T R A C T

Nonzero transverse spin density, which describes phenomenon in which the electromagnetic fields of localized
light spin in a plane containing its wavenumber vector, has gained enormous interest recently because of its
useful applications like spin-direction coupling and routing. In this Letter, using the Richards–Wolf vectorial
method for standard full Poincaré beams, we present an analytical model for the high-numerical-aperture
focusing system to calculate all components of the electric and magnetic field strength vectors as well as spin
density and Poynting vector. The role and contribution of the optical degrees of freedom including ellipticity,
handedness, and orientation when the transverse spin density is present, are revealed based on this analytical
model. Ellipticity affects the localization and magnitude of the transverse spin density for both transverse and
longitudinal components. In contrast, handedness only affects the longitudinal component whereas orientation
only affects the transverse component. Furthermore, the energy flux in the focal plane are also studied in
detail for the standard full Poincaré beams. These findings may be help in spin-controlled directive coupling
and optical tweezers.

1. Introduction

The spin density is a quantity describing the spin angular mo-
mentum of light field within paraxial approximation, which usually is
parallel or antiparallel to the direction of propagation. However, when
light fields are analyzed in a three-dimensional confined region, for
example, near field radiation [1], strongly focused field [2], surface
plasmon polaritons [3–5], two-wave interference [6], and wave-guide
modes [7–11], the spin density cannot be treated as scalar because it
may have arbitrary orientations. In particular, the local spin density
that is perpendicular to the corresponding direction of propagation,
is called transverse spin density (TSD) [3] or alternatively a photonic
wheel [12].

Most recently, TSD has attracted tremendous interest because of
its extraordinary properties [1–19], especially under objective-focusing
conditions of high numerical aperture (NA) [20–29]. Many practical
applications ranging from storage to microscopy, as well as optical
trapping and manipulation of particles, require strong focusing. For
example, it has been shown that [21], with a vector beam in an
azimuthally varying and locally linear state of polarization (SoP), trap-
ping multiple particles simultaneously and manipulating the particles’
spin along the azimuthal direction is possible because of the presence
of the TSD. Moreover, the spin torque on the particle may be varied

∗ Corresponding author at: School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
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by changing the polarization mode of the input field. When another
input field in a SoP described by the square of the azimuthal angle are
introduced, the trapped Rayleigh particle may be spun asymmetrically
because of the asymmetrical TSD [23]. Not only is spin-to-orbital angu-
lar momentum conversion possible, but the converse process, namely,
orbital-to-spin conversion, has also been reported. In this optical pro-
cess, orbital angular momentum can induce a localized spin angular
momentum in the strong focusing of spin-free linearly, radially, az-
imuthally, and higher-order cylindrically polarized beams [22,25–28].
The structured spin angular momentum of the focused field is trans-
ferred to the optical torque for the absorptive particle, resulting in
the spinning of the trapped particles around its own axis [22,28]. In
addition, for the TSD of various kinds of polarized beams in a single-
lens high NA focusing system, the performance of structured input
fields consisting of radially and azimuthally polarized beams in the 4𝜋
focusing system have also been investigated [24]. Most importantly, the
spin density of an electromagnetic field near focus is now physically
measurable [30,31]. However, when the input field is spin-free, the
other optical degrees of freedom (DoFs) including ellipticity and hand-
edness of the polarization are not considered and exploited. Therefore,
revealing the roles and contributions of these two polarization DoFs
in the modulation of the TSD is warranted. Moreover, as another DoF,
orientation should also be explored when TSD is present.
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In this Letter, we analyze the effect of input ellipticity, handedness,
and orientation on the local spin and energy flux distributions within
a tightly focused field of the standard full Poincaré beams. Using the
Richards–Wolf vectorial method for the standard full Poincaré beams,
we establish an analytical model for a high-numerical-aperture focusing
system and evaluate all components of the electric and magnetic field
strengths, as well as the spin density and Poynting vector near focus.
The role and contribution of the optical DoFs including ellipticity,
handedness, and orientation of the TSD when present are studied based
on this analytical model. Ellipticity affects the localization and magni-
tude of the TSD for both transverse and longitudinal components. In
contrast, handedness only affects the longitudinal component whereas
orientation only affects the transverse component. Furthermore, the
energy flux in the focal plane are also studied in detail for the standard
full Poincaré beams. These findings may be help in implementing a
spin-controlled directed coupling and optical tweezers.

2. Standard full Poincaré beams and corresponding tight-focusing
analytical model

To describe all possible SoPs of a polarized plane-wave, the Poincaré
sphere (PS) provides a prominent geometric representation, pioneered
by Poincaré in 1892, where the SoP is represented by a point on
the surface [32]. The three variables, 𝑠1, 𝑠2, and 𝑠3, represent the
Stokes parameters of any point in the Cartesian coordinate system,
and 2𝛷 and 2𝛩 denote, respectively, the longitude and latitude of
the point in spherical coordinate system. The north and south poles
correspond to right- and left-handed circular polarization, the equator
linear polarization, and intermediate points between the poles and
equators elliptical polarization. The northern and southern hemispheres
separate right- and left-handed ellipticity. For arbitrary meridian circles
[Fig. 1(a)], the orientations of the SoPs produce no change although
changes in ellipticity from the south to the north poles are seen in
Fig. 1(b) where positive and negative values represent left-handed and
right-handed SoPs, respectively

For any given polarized optical field, its corresponding SoP in theory
may be described by a combination of a pair of orthogonal base
vectors. Mathematically, all SoPs on the standard PS [Fig. 1(a)] may
be described in the Cartesian coordinate system as a unit vector given
by [33–41]

𝐕 = 1
√

2

[

exp(𝑗𝑎)
(

cos 𝑏𝐞𝑥 + sin 𝑏𝐞𝑦
)

+ exp(−𝑗𝑎)
(

− sin 𝑏𝐞𝑥 + cos 𝑏𝐞𝑦
)]

, (1)

where both a and b are constants, controlling the ellipticity and orien-
tation, respectively. The unit vectors, 𝐞𝑥 and 𝐞𝑦, are directed along the
x and y axes, respectively.

Consider an aplanatic high-NA focusing system with focal length f
and geometric focus located at the origin of a cylindrical coordinate
system in the image space. When the input field with polarization
distribution represented by Eq. (1) is incident upon this focusing sys-
tem, then based on the Richards–Wolf vectorial diffraction theory, the
electric field at any point P(𝑟𝑃 , 𝜙𝑃 , 𝑧𝑃 ) near focus can be expressed
as [42]

𝐄(𝑟𝑃 , 𝜙𝑃 , 𝑧𝑃 ) =
⎡

⎢

⎢

⎣

𝐸𝑥(𝑟𝑃 , 𝜙𝑃 , 𝑧𝑃 )
𝐸𝑦(𝑟𝑃 , 𝜙𝑃 , 𝑧𝑃 )
𝐸𝑧(𝑟𝑃 , 𝜙𝑃 , 𝑧𝑃 )

⎤

⎥

⎥

⎦

= −
𝑖𝑘𝑓
2𝜋 ∫

𝛼

0 ∫

2𝜋

0

√

cos 𝜃𝑙0(𝜃)𝐾(𝜑, 𝜃)𝐌𝐸 sin 𝜃d𝜑d𝜃. (2)

Here k is the wavenumber in the image space and equals 2𝜋∕𝜆, 𝜆 being
the wavelength; the semi-aperture angle is 𝛼 = arcsin(NA/n), NA being
the numerical aperture of the objective lens and n the refractive index
in the image space. For our focusing system, we chose NA = 0.95 and
𝑛 = 1. The angles 𝜑 and 𝜃 denote, respectively, the azimuth with respect
to the x axis in the objective space and the polar angle with respect

to the z axis; the function 𝑙0(𝜃), which represents the input amplitude
distribution, has the form [43]

𝑙0(𝜃) = exp
[

−𝛽2
( sin 𝜃
sin 𝛼

)2]

𝐽1
(

2𝛽 sin 𝜃
sin 𝛼

)

, (3)

where 𝛽 is the ratio of the pupil radius to the beam waist, which we
take as unity in our configuration, 𝐽1 the first-order Bessel function of
the first kind, and K(𝜑, 𝜃) is the focusing propagation factor given by

𝐾(𝜑, 𝜃) = exp(𝑖𝑘𝒔 ⋅ 𝒓𝑃 ) = exp
{

𝑖𝑘
[

−𝑟𝑃 sin 𝜃 cos
(

𝜑 − 𝜙𝑃
)

+ 𝑧𝑃 cos 𝜃
]}

, (4)

where s = (−sin𝜃cos𝜑, −sin𝜃sin𝜑, cos𝜃) is the unit vector of the wave
vector, and 𝒓𝑃 = (𝑟𝑃 cos𝜙𝑃 , 𝑟𝑃 sin𝜙𝑃 , 𝑧𝑃 ) is the unit polar vector of
point P near focus; 𝑟𝑃 , 𝜙𝑃 , and 𝑧𝑃 are the radial, azimuthal, and
longitudinal coordinates, respectively, in the cylindrical coordinate
system employed in the image space.

In Eq. (2), 𝐌𝐸 is the electric polarization vector in the strongly fo-
cused field and stems from the polarization contribution of the incident
light field. When the input SoP is denoted by Eq. (1), the corresponding
focusing electric polarization vector is

𝐌𝐸 =

⎡

⎢

⎢

⎢

⎣

M𝑥
𝐸

M𝑦
𝐸

M𝑧
𝐸

⎤

⎥

⎥

⎥

⎦

, (5)

M𝑥
𝐸 = 1

√

2
{[cos (𝑏 − 𝜑) cos 𝜃 cos𝜑 − sin (𝑏 − 𝜑) sin𝜑] exp(𝑖𝑎)−

[sin (𝑏 − 𝜑) cos 𝜃 cos𝜑 + cos (𝑏 − 𝜑) sin𝜑] exp(−𝑖𝑎)} ,
(6a)

M𝑦
𝐸 = 1

√

2
{[cos (𝑏 − 𝜑) cos 𝜃 sin𝜑 + sin (𝑏 − 𝜑) cos𝜑] exp(𝑖𝑎)−

[sin (𝑏 − 𝜑) cos 𝜃 sin𝜑 − cos (𝑏 − 𝜑) cos𝜑] exp(−𝑖𝑎)} ,
(6b)

M𝑧
𝐸 = 1

√

2
{cos (𝑏 − 𝜑) sin 𝜃 exp(𝑖𝑎) − sin (𝑏 − 𝜑) sin 𝜃 exp(−𝑖𝑎)} . (6c)

The integrations over 𝜑 can be accomplished using the identity:

∫

2𝜋

0
𝑒−𝑖𝑘𝑟𝑃 sin 𝜃 cos(𝜑−𝜙𝑃 )𝑒𝑖𝑚𝜑d𝜑 = 2𝜋𝑖𝑚𝐽𝑚(−𝑘𝑟𝑃 sin 𝜃)𝑒𝑖𝑚𝜙𝑃 , (7)

where 𝐽𝑚 is the Bessel function of the first kind of order m. The electric
fields near focus then have the following form:

𝐸𝑥(𝑟𝑃 , 𝜙𝑃 , 𝑧𝑃 ) = −
𝑖𝑘𝑓

2
√

2 ∫

𝛼

0

√

cos 𝜃𝑙0(𝜃) sin 𝜃⋅
{[

cos 𝑏 (cos 𝜃 + 1) 𝐽0(−𝑘𝑟𝑃 sin 𝜃) + cos
(

𝑏 − 2𝜙𝑃
)

× (1 − cos 𝜃) 𝐽2(−𝑘𝑟𝑃 sin 𝜃)
]

𝑒𝑖𝑎

−
[

sin 𝑏 (cos 𝜃 + 1) 𝐽0(−𝑘𝑟𝑃 sin 𝜃) + sin
(

𝑏 − 2𝜙𝑃
)

× (1 − cos 𝜃) 𝐽2(−𝑘𝑟𝑃 sin 𝜃)
]

𝑒−𝑖𝑎
}

𝑒𝑖𝑘𝑧𝑃 cos 𝜃d𝜃,

(8a)

𝐸𝑦(𝑟𝑃 , 𝜙𝑃 , 𝑧𝑃 ) = −
𝑖𝑘𝑓

2
√

2 ∫

𝛼

0

√

cos 𝜃𝑙0(𝜃) sin 𝜃⋅
{[

sin 𝑏 (cos 𝜃 + 1) 𝐽0(−𝑘𝑟𝑃 sin 𝜃) − sin
(

𝑏 − 2𝜙𝑃
)

× (1 − cos 𝜃) 𝐽2(−𝑘𝑟𝑃 sin 𝜃)
]

𝑒𝑖𝑎
[

cos 𝑏 (cos 𝜃 + 1) 𝐽0(−𝑘𝑟𝑃 sin 𝜃) − cos
(

𝑏 − 2𝜙𝑃
)

× (1 − cos 𝜃) 𝐽2(−𝑘𝑟𝑃 sin 𝜃)
]

𝑒−𝑖𝑎
}

𝑒𝑖𝑘𝑧𝑃 cos 𝜃d𝜃,

(8b)

𝐸𝑧(𝑟𝑃 , 𝜙𝑃 , 𝑧𝑃 ) =
𝑘𝑓
√

2 ∫

𝛼

0

√

cos 𝜃𝑙0(𝜃) sin
2 𝜃𝐽1(−𝑘𝑟𝑃 sin 𝜃)⋅

[

cos
(

𝑏 − 𝜙𝑃
)

𝑒𝑖𝑎 − sin
(

𝑏 − 𝜙𝑃
)

𝑒−𝑖𝑎
]

𝑒𝑖𝑘𝑧𝑃 cos 𝜃d𝜃.
(8c)

Obviously, all three mutually perpendicular polarization components
are nonzero, which means that the local polarization ellipse of the
focused field is not purely in the transverse plane or longitudinal plane.
We shall systematically explore the spin density evolution characteris-
tics, especially the TSD of the standard full PS beams, in the following
sections.

3. Spin density

Aided by the analytical model, we now investigate the spin density
of the electric field, which is defined as [14,18]

𝒔 = 𝜀
4𝜔

Im
(

𝐄∗ × 𝐄
)

, (9)

2
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Fig. 1. (a) Standard Poincaré sphere representation for plane waves with arbitrary ellipticity, orientation and handedness. (b) Changes in ellipticity along arbitrary meridian from
the south pole to the north pole, where positive and negative values represent the helicity, i.e., left- and right-handed, respectively.

where 𝜀 and 𝜔 denote, respectively, the permittivity and angular fre-
quency in the image space, the asterisk denotes complex conjugation
and Im signifies the operation of extracting the imaginary part from its
argument in parentheses. Actually, the spin density is the normal vector
of the local polarization ellipse. The direction specifies the handedness
(or helicity) of the local ellipse, whereas the absolute value reflects
the shape of the polarization ellipse [44,45]. The three orthogonal
components in Cartesian coordinate system are given by

𝒔 =
⎡

⎢

⎢

⎣

𝑠𝑥
𝑠𝑦
𝑠𝑧

⎤

⎥

⎥

⎦

, (10)

𝑠𝑥 = 𝜀
4𝜔

Im
(

𝐸∗
𝑦𝐸𝑧 − 𝐸∗

𝑧𝐸𝑦

)

, (11a)

𝑠𝑦 =
𝜀
4𝜔

Im
(

𝐸∗
𝑧𝐸𝑥 − 𝐸∗

𝑥𝐸𝑧
)

, (11b)

𝑠𝑧 =
𝜀
4𝜔

Im
(

𝐸∗
𝑥𝐸𝑦 − 𝐸∗

𝑦𝐸𝑥

)

. (11c)

Now, we can calculate the spin density of tightly focused standard full
PS beams using Eqs. (8a)–(11c); 𝜆 = 532 nm, and 𝑓 = 1.6 mm are used
in the following calculations.

First, we explore the effect of two optical DoFs in terms of ellipticity
and handedness on the spin density distribution, in particular, the TSD.
As examples, we choose five different input beams with SoPs located
at the points V1, V2, V3, V4, and V5 on the standard PS [Fig. 1]; they
correspond to 𝑎 = 0, 𝜋/12, 𝜋/6, 𝜋/4 and −𝜋/4 and b = −𝜋/4 in Eq. (1).
The calculated spin densities in the focal plane for the x, y, and z com-
ponents are presented in the upper, middle, and lower rows in Fig. 2.
All distributions are normalized by their maximum values of the total
spin densities for each input field, to enable a direction comparison
of the results. When the SoP changes from V1 to V4, the direction of
the long axis of the polarization ellipse and handedness remains the
same, but the ellipticity changes from 0 to −1 [Fig. 1(b)]. For V4 and
V5, they have the same ellipticity but opposite handedness. Obviously,
both ellipticity and handedness affect the spin density distributions. To
be specific, no spin density distribution is obtained for the z component
[see Fig. 2(c)] when the input field is spin-free [𝑎 = 0 and b = −𝜋/4];
in contrast, they are patterns with four weak lobes [Fig. 2(a)] and two
strong lobes [Fig. 2(b)] for the corresponding x and y components,
respectively. With increasing ellipticity, the spin density grows for the x
and z components but decreases for the y component. Further, the four-
lobe pattern evolves into a two-lobe pattern (see first row in Fig. 2).
Handedness, however, has no effect on the spin density for both the x
[Fig. 2(j) and (m)] and y [Fig. (k) and (n)] components, because they

maintain the opposite handedness [a = ±𝜋/4 and b = 𝜋/4] shown in
the two far-right columns in Fig. 2. However, a reversed direction for
the z component [Fig. 2(l) and (o)], and these directions are actually
in line with the input circular polarization.

To better understand the effect of ellipticity and handedness on
the TSD, Fig. 3 depicts the normalized cross-sectional spin density
distributions on the focal plane of strongly focused input fields with
a = 0, 𝜋/36, 𝜋/18, 𝜋/12, 𝜋/9, 5𝜋/36, 𝜋/6, 7𝜋/36, 2𝜋/9, 𝜋/4, and
−𝜋/4 when b = −𝜋/4 for the x component along the y axis direction,
the y component along the x axis direction, and the z component
along radial direction. All distributions in each image are normalized
to their common maximum values. In Fig. 3(a), when 𝑎 = 0, there is
no spin density distribution. However, double peaks of opposite values
are obvious for other values of a. Moreover, the peak rise rapidly with
increasing a. In contrast, the distributions with opposite value for all
values of a as illustrated in Fig. 3(a), there is no electric spin density
distribution when 𝑎 = 0 for the z component shown in Fig. 3(c),
and only one peak arises for other values of a, in contrast to that in
Fig. 3(a) and (b). Most importantly, we find the peak exhibits opposite
orientation for the opposite handedness.

Next, we study the effect of orientation of the TSD on the high-
NA focusing system. As examples, another five input fields with SoPs
located at points H1, H2, H3, H4, and H5 on the standard PS (Fig. 1)
were chosen, corresponding to b = −𝜋/4, −𝜋/8, 0, 𝜋/8, and 𝜋/4 when
a = −𝜋/8 in Eq. (1). With SoP changing from H1 to H5, the handedness
and ellipticity retain unchanged but the angle between the long axis of
the polarization ellipse and the x axis changes from 0 to 𝜋/4, implying
that the orientation of the SoP changes. The corresponding calculated
spin density in the focal plane for the x, y, and z components are shown,
respectively, in the upper, middle, and lower rows in Fig. 4. Again, all
distributions are normalized by their maximum values of the total spin
densities for each input field to enable a direct comparison between
the results obtained from the five beams. Obviously, the optical DoF of
orientation mainly affects the TSD but has no effect on the longitudinal
spin density distributions. Although they are always two-lobed patterns
for both the x and y components of the spin density for arbitrary
values of b when a = −𝜋/8, the strength and location are different with
different input orientations. Therefore, the DoF of orientation may be
used to control the rotation of the spin density for both the x and y
components. Here, two rotational angles in terms of 𝜙𝑥 and 𝜙𝑦 with
meaning illustrated in Fig. 4(d) and (e) are introduced to present a
detailed study of the rotational properties of the TSD. The x component
of spin density first rotates clockwise and then counterclockwise when
b increases from −𝜋/4 to 𝜋/4. The y component, in contrast, first
rotates counterclockwise and then clockwise. These trends are evident

3
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Fig. 2. Theory-derived spin density distributions of the electric field in the focal plane of five tightly focused input fields with 𝑎 = 0, 𝜋/12, 𝜋/6, 𝜋/4 and −𝜋/4; b = −𝜋/4. The
input field is linearly polarized when a = 0 and circularly polarized when a = 𝜋/4 and −𝜋/4. For a = 𝜋/12 and 𝜋/6, it is elliptically polarized. The upper, middle, and lower
rows depict the x, y, and z components of the spin density, respectively. All distributions are normalized by their maximum values of the total spin densities for each input field
to enable a direction comparison between the five beams.

Fig. 3. Normalized cross-sectional electric spin density distributions on the focal plane of strongly focused input fields with a = 0, 𝜋/36, 𝜋/18, 𝜋/12, 𝜋/9, 5𝜋/36, 𝜋/6, 7𝜋/36,
2𝜋/9, 𝜋/4, and −𝜋/4 when b = −𝜋/4 for (a) x component along y axis direction, (b) y component along x axis direction, and (c) z component along radial direction. The
distributions in all plots are normalized by their common maximum values.

4
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Fig. 4. Same as for Fig. 2 but with b = −𝜋/4, −𝜋/8, 0, 𝜋/8, and 𝜋/4 when a = −𝜋/8.

Fig. 5. Rotational angles 𝜙𝑥 and 𝜙𝑦 with meaning illustrated, respectively, in Fig. 4(d)
and (e) versus parameter b when a = −𝜋/8.

in Fig. 5. The inflection points of the directional rotation for the x and
y components are calculated to be about (b, 𝜙𝑥,𝑦) = (−0.4909, 0.8023)
and (0.4909, 0.7685), respectively.

4. Energy flux

The TSD can be used to control the trapped particles to spin around
its own axis. In contrary, the energy flux in the focal plane of the optical
field is also useful, because it can be used to control the transport of
absorptive particles along certain paths. Similarly, the corresponding
magnetic field at any point P(𝑟𝑃 , 𝜙𝑃 , 𝑧𝑃 ) near focus can be expressed

as [42]

𝐇(𝑟𝑃 , 𝜙𝑃 , 𝑧𝑃 ) =
⎡

⎢

⎢

⎣

𝐻𝑥(𝑟𝑃 , 𝜙𝑃 , 𝑧𝑃 )
𝐻𝑦(𝑟𝑃 , 𝜙𝑃 , 𝑧𝑃 )
𝐻𝑧(𝑟𝑃 , 𝜙𝑃 , 𝑧𝑃 )

⎤

⎥

⎥

⎦

= −
𝑖𝑘𝑓
2𝜋 ∫

𝛼

0 ∫

2𝜋

0

√

cos 𝜃𝑙0(𝜃)𝐾(𝜑, 𝜃)𝐌𝐻 sin 𝜃d𝜑d𝜃, (12)

where 𝐌𝐻 is the magnetic polarization vector in the tightly focused
field given by

𝐌𝐻 =

⎡

⎢

⎢

⎢

⎢

⎣

M𝑥
𝐻

M𝑦
𝐻

M𝑧
𝐻

⎤

⎥

⎥

⎥

⎥

⎦

, (13)

M𝑥
𝐻 =

√

𝜀
2𝜇

{[− sin (𝑏 − 𝜑) cos 𝜃 cos𝜑 − cos (𝑏 − 𝜑) sin𝜑] exp(𝑖𝑎)−

[cos (𝑏 − 𝜑) cos 𝜃 cos𝜑 − sin (𝑏 − 𝜑) sin𝜑] exp(−𝑖𝑎)} ,
(14a)

M𝑦
𝐻 =

√

𝜀
2𝜇

{[− sin (𝑏 − 𝜑) cos 𝜃 sin𝜑 + cos (𝑏 − 𝜑) cos𝜑] exp(𝑖𝑎)−

[cos (𝑏 − 𝜑) cos 𝜃 sin𝜑 + sin (𝑏 − 𝜑) cos𝜑] exp(−𝑖𝑎)} ,
(14b)

M𝑧
𝐻 =

√

𝜀
2𝜇

{− sin (𝑏 − 𝜑) sin 𝜃 exp(𝑖𝑎) − cos (𝑏 − 𝜑) sin 𝜃 exp(−𝑖𝑎)} , (14c)

where 𝜇 represents the permeability in the image space. The integra-
tions over 𝜑 can be accomplished as before, yielding

𝐻𝑥(𝑟𝑃 , 𝜙𝑃 , 𝑧𝑃 ) = −
𝑖𝑘𝑓

√

𝜀∕𝜇

2
√

2 ∫

𝛼

0

√

cos 𝜃𝑙0(𝜃) sin 𝜃⋅
{[

− sin 𝑏 (cos 𝜃 + 1) 𝐽0(−𝑘𝑟𝑃 sin 𝜃) − sin
(

𝑏 − 2𝜙𝑃
)

× (1 − cos 𝜃) 𝐽2(−𝑘𝑟𝑃 sin 𝜃)
]

𝑒𝑖𝑎

−
[

cos 𝑏 (cos 𝜃 + 1) 𝐽0(−𝑘𝑟𝑃 sin 𝜃) + cos
(

𝑏 − 2𝜙𝑃
)

× (1 − cos 𝜃) 𝐽2(−𝑘𝑟𝑃 sin 𝜃)
]

𝑒−𝑖𝑎
}

𝑒𝑖𝑘𝑧𝑃 cos 𝜃d𝜃,

(15a)
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Fig. 6. Theory-derived Poynting vector in the focal plane of tightly focused input fields with 𝑎 = 0, 𝜋/12, 𝜋/6, 𝜋/4 and −𝜋/4 when b = −𝜋/4. The upper and lower rows depict
the transverse and longitudinal components of the energy flux, respectively. All distributions of the energy flux are normalized to their maximum values of the total energy flux
for each input field to enable a direct comparison between the five beams.

Fig. 7. Same as for Fig. 6 but with b = −𝜋/4, −𝜋/8, 0, 𝜋/8, and 𝜋/4 when a = −𝜋/8.

𝐻𝑦(𝑟𝑃 , 𝜙𝑃 , 𝑧𝑃 ) = −
𝑖𝑘𝑓

√

𝜀∕𝜇

2
√

2 ∫

𝛼

0

√

cos 𝜃𝑙0(𝜃) sin 𝜃⋅
{[

cos 𝑏 (cos 𝜃 + 1) 𝐽0(−𝑘𝑟𝑃 sin 𝜃) − cos
(

𝑏 − 2𝜙𝑃
)

× (1 − cos 𝜃) 𝐽2(−𝑘𝑟𝑃 sin 𝜃)
]

𝑒𝑖𝑎

−
[

sin 𝑏 (cos 𝜃 + 1) 𝐽0(−𝑘𝑟𝑃 sin 𝜃) − sin
(

𝑏 − 2𝜙𝑃
)

× (1 − cos 𝜃) 𝐽2(−𝑘𝑟𝑃 sin 𝜃)
]

𝑒−𝑖𝑎
}

𝑒𝑖𝑘𝑧𝑃 cos 𝜃d𝜃,

(15b)

𝐻𝑧(𝑟𝑃 , 𝜙𝑃 , 𝑧𝑃 ) =
𝑘𝑓

√

𝜀∕𝜇
√

2 ∫

𝛼

0

√

cos 𝜃𝑙0(𝜃) sin 2𝜃𝐽1(−𝑘𝑟𝑃 sin 𝜃)⋅
[

− sin
(

𝑏 − 𝜙𝑃
)

𝑒𝑖𝑎 − cos
(

𝑏 − 𝜙𝑃
)

𝑒−𝑖𝑎
]

𝑒𝑖𝑘𝑧𝑃 cos 𝜃d𝜃.

(15c)

In term of the three-dimensional electric and magnetic fields, the
energy flux is given by the time-averaged Poynting vector [46,47]

𝐏 ∝ Re
(

𝐄 ×𝐇∗) , (16)

where Re signifies the operation of extracting the real part of the
argument. We calculate the energy flux of the tightly focused standard
full Poincaré beams using Eqs. (8a)–(8c) and Eqs. (15a)–(16).

We next discuss the effect of the optical DoFs including ellipticity
and handedness on the energy flux. By calculation, we find that both
ellipticity and handedness mainly affect the transverse energy flow,

and the longitudinal energy flow remains almost unchanged regardless
of ellipticity and handedness. The Poynting vectors of the five tightly
focused electric fields mentioned in Fig. 2 are drawn in Fig. 6. We see
that the transverse energy flow is zero for a spin-free input field (𝑎 = 0),
whereas for other values of a this flow exists and always exhibits a
doughnut-shaped pattern [Fig. 6(c), (e), (g), and (i)], arising from the
spin-to-orbital angular momentum conversion [48,49]. Furthermore,
the magnitude of the transverse component of the Poynting vector,
compared with the longitudinal component [Fig. 6(b), (d), (f), (h),
and (i)], gradually increases as |a| increases. As a result, transporting
a particle in the transverse plane becomes easier. Moreover, we find
that the handedness of the input field only affects the direction of the
transverse energy flow and has no effect on the magnetic field [Fig. 6(g)
and (i)]. In contrast to the optical DoFs, i.e., ellipticity and handedness,
orientation has no effect on both the transverse and longitudinal energy
flows (see Fig. 7 depicting the energy flux in the focal plane of five
input fields mentioned in Fig. 4). Apparently, the transverse energy,
which has a ring-shaped pattern, always exhibits the same magnitude
and direction with a change of input orientation (upper row in Fig. 7).
Similarly, the longitudinal energy flow has a hot spot located on-axis
(lower row in Fig. 7).
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5. Conclusions

To summarize, we revealed the effect of input ellipticity, handed-
ness, and orientation on the local spin density and energy flux distribu-
tions within the tightly focused field of standard full Poincaré beams.
Using the Richards–Wolf vectorial method for standard full Poincaré
beams, we presented an analytical model for the high-numerical-
aperture focusing system to evaluate all vector components of the
electric and magnetic field strength, as well as the spin density and
Poynting vector near focus. By numerically calculating the spin density
and energy flux on the focal plane based on our analytical model,
we demonstrated that ellipticity affects the distributions of the spin
density for both transverse and longitudinal components. In contrast,
handedness only affects the longitudinal component whereas orienta-
tion only affects the transverse component. Furthermore, the magnitude
and shape of the transverse energy flux were determined using the
ellipticity whereas its direction is collinear with the input handedness.
All three DoFs including ellipticity, handedness, and orientation have
nearly no effect on the longitudinal energy flow. These findings may
help in applications involving spin-controlled directed coupling and
optical tweezers.
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