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Inelastic scattering time for conductance fluctuations
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We revisit the problem of inelastic times governing the temperature behavior of the weak localization
correction and mesoscopic fluctuations in one- and two-dimensional systems. It is shown that, for dephasing by
the electron electron interaction, not only are those times identical but the scaling functions are also the same.

DOI: 10.1103/PhysRevB.65.115317 PACS number~s!: 73.23.2b, 73.63.Nm, 72.15.Rn, 73.20.Fz
is

t
o

h
n

n

r-
n

d
-

ze
-

at,
n
q.
by
a-

he-
ion

ly

ses

e
to
o
hat
an-
cal
e,
the
nt is
er-
of

n-
s.
e
las-
nce

tte
I. INTRODUCTION

In 1982, Altshuler, Aronov, and Khmelnitsky~AAK !
established1 that electron-electron scattering in metals
characterized bythree~generally, distinct! time scales. These
scales are phase-relaxation timetf , energy-relaxation time
tE , and out-scattering timete ~see Table I!. The former one
is quantum-mechanical and has no classical analog, while
two latter have a semiclassical interpretation in terms
Boltzmann equation. The three scales differ in the case w
the energy transferred between electrons in one collisio
small as compared to the temperature of the systemT.

One can understand the difference betweentE andte by
considering the inelastic collision integral in Boltzman
equation

St$ f ~e!%

5E de1dvK~v!

3$2 f ~e!@12 f ~e2v!# f ~e1!@12 f ~e11v!# ~out!

1@12 f ~e!# f ~e2v!@12 f ~e1!# f ~e11v!% ~ in!, ~1!

where f (e) is the electron distribution function, and the ke
nel K(v) characterizes matrix elements of the interactio
with the energy transferv. In clean two-dimensional~2D!
and 3D systems,K(v) is independent on the transmitte
energyv, K(v).1/eF . This results in a Fermi liquid behav
ior of the inelastic rate 1/t in.max(e,T)2/eF . The situation in
disordered systems, however, is different,2–5 the kernelK(v)
grows with the decrease of the transmitted frequencyv,

K~v!.
1

uvug~Lv!
}vd/222, ~2!

TABLE I. Temperature dependence of electron-electron sca
ing time scales for different dimensionsd. We assumeT@e.

d \/tE \/tf \/te

1 (T/D\)1/2n21 (T2/Dn2\4)1/3 (T2/Dn2\6)1/3(pFl )2/3

2 (T/D\)n21 (T/Dn\)ln(pFl/\) (T/Dn\)ln@(pFl/\)3eF /T#

3 (T/D\)3/2n21 (T/D\)3/2n21 (T/D\)3/2n21
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where g(Lv) is the dimensionless conductance~in units if
e2/p\) of the d-dimensional disordered sample of the si
Lv5(D/v)1/2, whereD is the diffusion constant of the me
tallic sample. For more details on origin of Eq.~2!, see, e.g.,
Refs. 6,7.

Substituting Eq.~2! into Eq. ~1!, one estimates5

St$ f ~e!%'2
d f ~e!

tE
,

\

tE
.

e*

g~Le* !
, ~3!

where e* 5max(e,T). Equations~2! and ~3! are applicable
for systems in the metallic regime,g(L)@1. In this regime
e* tE@\, i.e., quasiparticles are well defined. Notice th
even though the kernelK is divergent, the energy relaxatio
rate~3! is finite because of the two energy integrations in E
~1!. Therefore, for the study of the phenomena governed
the Boltzmann equation, the infrared divergence of the m
trix elements~2! does not cause any problems. These p
nomena include, for instance, electron distribution funct
measured via tunneling spectroscopy8 or crossover from 1/3
to A3/4 shot noise in metallic wires.9

It is not the end of the story, though. If we estimate on
one~‘‘out’’ ! term from the collision integral~1!, we encoun-
ter an infrared divergence in two- and one-dimensional ca

Stout$ f ~e!%'2
d f ~e!

te
,

\

te
5

T

g~LT!
E

v*

T dv

v S T

v D (22d)/2

,

~4!

where v* is the low energy cutoff to be found, andLT

5AD/T is the temperature length.~The same result may b
obtained from the calculation of the first loop correction
the self-energy.4! This divergence of only one contribution t
the collision integral is a simple consequence of the fact t
each term in collision integral is not a gauge invariant qu
tity, and only both terms taken together have a physi
meaning~3!, which is not cut-off dependent. One can argu
however, thatte has its own observable consequences for
quantum interference processes. Indeed, naive argume
that the ‘‘out’’ processes completely suppress the interf
ence, whereas ‘‘in’’ processes are incoherent. Inclusion
some of the higher order processes4,6 cures the divergence
and makes the expression for 1/te finite. One may naively
expect thatte found from such procedure is, indeed, respo
sible for the temperature behavior of quantum correction10

AAK showed1 that it is not correct for the temperatur
behavior of weak localization correction, because the ine
tic excitations with energy transfer smaller than decohere

r-
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rate itself do not suppress this correction, see Sec. 2.2.
Ref. 7 and our Sec. II for the corresponding physical ar
ment. This leads to the infrared cutoffv* .1/tf in Eq. ~4!
and to the self-consistency equation for the dephasing ra

\

tf
.

T

g~Lf!
, Lf5ADtf. ~5!

However, there is a prejudice, see, e.g., Ref. 6, that the
elastic time governing the magnitude of the conducta
fluctuation is given byte!tf , so thatte has its own ob-
servable effect.

In this paper we revisit this problem. We will show th
the inelastic rate governing the mesoscopic fluctuation
precisely the same as for the weak localization, see Eq.~5!.
Moreover, the scaling functions governing the magnetic fi
and the temperature behavior of conductance fluctuations
found to be identical to their weak localization counterpa
see Secs. III, IV.

The remainder of the paper is arranged as follows. Sec
II is devoted to the qualitative discussion of the role of t
effect of the real electron-hole pair excitations on the we
localization and mesoscopic conductance fluctuations.
main point of this section is to explain why the singlet ex
tations with transmitted frequency smaller than 1/tf affect
neither weak localization nor mesoscopic fluctuations.
Sec. III we explicitly calculate the effect of interactions o
mesoscopic fluctuations of conductance in one dimens
using the same approach as AAK.1 We will also identify the
diagrammatic contributions which are missed in the ar
ments for the role ofte!tf in the conductance fluctuations
Section IV generalizes the calculation to two dimensio
Our findings are summarized in Sec. V.

II. QUALITATIVE DISCUSSION

The purpose of this section is to explain interference p
cesses, taking into account possibility of excitations of r
electron-hole pairs, see also Ref. 12. For the weak local
tion correction, similar arguments were used in Ref. 7.

A qualitative physical interpretation of quantum corre
tions is usually based on the following arguments, see, e
Ref. 13. Consider an electron diffusing in a good conduc
pFl @\. Probabilityw for the electron to reach, say, pointi
starting from pointf, see Figs. 1~a!, 2~a!, can be obtained by
first finding the semiclassical amplitudesAa for different
paths connecting the points, and then, calculating the a
lute value of their sum

w5U(
a

AaU2

5(
a

uAau21 (
aÞb

AaAb* . ~6!

The first term in Eq.~6! is nothing but the sum of the clas
sical probabilities of the different paths, and it may be fou
from the classical Boltzmann equation. The second term
the quantum mechanical interference of the different pa
In what follows, we will discuss the contribution of this ter
to transport and how it is affected by the electron-elect
interaction.
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A. Weak localization correction

For generic pairsa,b, the productAaAb* oscillates as the
function of impurity configurations, see Fig. 2~a!. This is
because the lengths of pathsa and b are substantially dif-
ferent. As the result, contribution of such paths is not r
evant for disorder averaged quantities but contributes to
mesoscopic fluctuations of the conductance.

There are pairs of paths, however, which preserve
same phase, with the change of the disorder configurat
An example of such paths is shown in Fig. 1~a!. These paths
almost coincide everywhere except the loop segmentBEB
@see Fig. 1~a!# which is traversed by trajectories 1 and 2
the opposite directions. In the absence of the magnetic fi
and spin-orbit interactions, the phases of the trajectorie
and 2 are equal. Therefore, the contribution of these path
the probabilityw becomes

FIG. 1. ~a! Example of classical paths between pointsi and f
contributing to the weak localization.~b! The same paths with the
excitation of one electron-hole pair with energyv.

FIG. 2. ~a! Example of classical paths between pointsi and f
contributing to the mesoscopic conductance fluctuations.~b! The
same paths with the excitation of one electron-hole pair with ene
v.
7-2
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uA11A2u25uA1u21uA2u212ReA1A2* 54uA1u2, ~7!

i.e., twice larger than the classical probability. Thus, in ord
to evaluate the weak localization correction to the conduc
ity, one has to determine the classical probability to find su
a self-intersecting trajectory.

Let us now consider the main effect of electron-electr
interactions on the weak localization—excitation of s
electron-hole pairs. We consider processes involving ei
one excitation~probability P1) or no excitations~probability
P0512P1), see Fig. 1~b!. Allowing for the excitation of an
electron-hole pair, one obtains

Aa→Aa
01Aa

1 , ~8!

where the superscripts 0 and 1 correspond to the amplitu
involving emission of no electron-hole pairs or one electro
hole pair, respectively.

Because the states with different number of excitatio
are orthogonal to each other, we obtain, instead of Eq.~7!,

uA1
01A1

11A2
01A2

1u25uA1
0u21uA2

0u21uA1
1u21uA2

1u2

12ReA1
0@A2

0#* 12ReA1
1@A2

1#* ,

~9!

where the last two terms correspond to the interference
rection. It is important to emphasize that the interferen
persists even if the final state contains an electron-hole e
tation ~last term!.

We now notice that the emission of a soft electron-h
pair does not alter the geometrical form of the trajecto
thus, it does not change the classical probability correspo
ing to patha. As the result, we have

uAa
0 u25P0uAau2, uAa

1 u25P1uAau2, ~10!

where amplitudes without superscript correspond to thos
the absence of the interaction. What the emission of
electron-hole pair may change, however, is the phase of
quantum amplitude.

Indeed, denote the point of emission of electron-hole p
of energyv on a classical trajectory byta

em—time it takes for
the electron moving along the trajectorya with energyeF to
reach the emission point, see Fig. 1. Denote the total t
along the patha as ta . Then the electron moves timeta

em

with the energye and timeta2ta
em with the energye2v. As

a result, the geometrical phase, accumulated by elect
changes as

argAa
15argAa

02v~ ta2ta
em!.

Thus,

Aa
0@Ab

0 #* 5P0AaAb* ,

Aa
1@Ab

1 #* 5P1AaAb* eiv(tb2ta2tb
em

1ta
em). ~11!

Substituting Eqs.~10! and ~11! into Eq. ~9!, we obtain
@instead of Eq.~7!# for paths contributing to the weak loca
ization correction
11531
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uA1
01A1

11A2
01A2

1u2

52uA1u212uA1u2@P01P1cosv~ t1
em2t2

em!#.

~12!

The last term in Eq.~12! describes the effect of the exc
tation of an electron-hole pair in the system on the we
localization correction. One can readily see that not e
inelastic process destroys the interference. For instance
v→0, Eq. ~12! reproduces Eq.~7! exactly. On the other
hand, the timeta

em is shorter thantf . Thus, we may con-
clude that inelastic processes with energy transferv&1/tf
do not destroy the interference~see, e.g., Refs. 14,7!, which
gives the physical reason for the low energy cutoffv*
.1/tf in Eq. ~4!.

B. Mesoscopic conductance fluctuations

Effect of inelastic processes. The arguments of the previ
ous subsection are easily generalized for the effect of ine
tic processes on mesoscopic conductance fluctuations.
can still talk about a pair of two paths, but now we will tak
those paths to be generic, see Fig. 2. The interference
tribution from those paths

dG;2ReA1A2* ~13!

does not affect the average conductance because of ran
phases of those amplitudes, but it gives rise to the me
copic fluctuations of the conductance

^dG2&;2^uA1u2&^uA2u2&. ~14!

Let us now consider the effect of the excitation of
electron-hole pair of energyv. To do so, we use the quali
tative argument of previous subsection@starting from Eq.
~8!# and substitute Eq.~11! into Eq. ~13!. It yields

dG;2Re@A1A2* ~P01P1eiv(t22t12t2
em

1t1
em)!#. ~15!

Once again, we arrive to the conclusion that the exc
tions of frequencies smaller than the inverse times to trave
the trajectories 1/t1,2, do not change the interference corre
tion. Similarly to the weak localization the lengths of pat
are limited by tf . Thus, we may conclude that inelast
processes with energy transferv&1/tf do not affect meso-
scopic fluctuations, which gives the physical reason for
low energy cutoffv* .1/tf in Eq. ~4!. Thus, inelastic time
entering the weak localization and mesoscopic fluctuati
should be approximately the same. The exact equality
those times will be proven in the next section by a dire
calculation, however, this result is definitely model depe
dent. Namely, it implies that the contribution of the qua
static fluctuations in the systems does not overwhelm the
of the inelastic processes, and we discuss such fluctuat
now.

Effect of quasistatic fluctuations. In the linear response
theory, a many-body system in its stationary state is exc
at some timet1 and then the behavior of some observab
quantity is studied at timest.t1. If the temperature is finite
7-3
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I. L. ALEINER AND YA. M. BLANTER PHYSICAL REVIEW B 65 115317
the initial stationary state of the system can be not only
ground stateE0, but also any of many-body eigenstates,Ea ;
the probability that the system is initially in such a state
}e2Ea /T. If there were no interaction, it would result only i
the thermal average of the mesoscopic fluctuations. H
ever, electron-electron interaction leads to the effective
pendence of the disordered potential for electrons. The s
plest, and the most effective example of this mechanism
the dependence of the Hartree potential of the electrons
the electron configuration. Since the measurable conduct
is the result of the large number of measurements, each
the initial state may be different.

In principle, one could expect that the averaging over d
ferent configurations of the self-consistent potential may l
to an effect stronger than the excitations of the electron-h
pairs. This is possible, when there is an additional slow
gree of freedom such as magnetic impurities,15 moving
defects,11 or slow fluctuations of the gauge field.16 However,
this is not the case for the Coulomb electron-electron in
action, as we explain below.

To find the magnitude of the effect, we first have to es
mate the characteristic value of possible fluctuations, t
evaluate the effect of such fluctuations on the mesosc
fluctuations of conductance, and then compare this ef
with effect of tf coming from the inelastic processes. A
cording to Nyquist noise formula, the amplitude of the ele
tric field dE(L) fluctuating on the spatial scaleL is given by

dE2~L !.
T

sd

v̄

Ld
, ~16!

wheresd is the conductivity of the system ind dimensions,
and v̄!1/tf is the high-energy cutoff above which fluctu
tions cannot be considered as quasistatic.

To have a strong effect on mesoscopic fluctuations,
electric field should change significantly the wave functio
of the electrons on the scaleLf , which translates into the
condition17

eudEuLf*
\D

Lf
2

5
\

tf
. ~17!

On the other hand, we estimate from Eq.~16!

e2udE~Lf!u2Lf
2 5Tv̄

e2Lf
22d

sd
5

T\v̄

g~Lf!
,

whereg(L) is the dimensionless conductance on the lin
scaleL. Taking into account Eq.~5! and the conditionv̄tf
!1 we conclude that for the dephasing by the Coulo
interaction the condition~17! can be never satisfied, an
therefore the quasistatic fluctuations are negligible in co
parison with the inelastic processes. We reiterate that
result does not hold for the scattering on the collect
modes, which have peak in their spectral density on frequ
cies much smaller than 1/tf .

Closing this section, we discuss in more detail the role
the magnetic impurities. We restrict ourselves only to
11531
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temperatures larger than the Kondo temperatureTK . It is
well known that even the elastic scattering of the electro
on magnetic impurities lifts time-reversal symmetry, th
suppressing the weak localization correction. Naively, o
could think that such scattering only gives rise to the unit
symmetry, thus suppressing the mesoscopic fluctuations
factor of 2. However, the spins are a dynamical system,
during the time between the measurements the spin con
ration changes completely, thus suppressing the mesosc
fluctuations similarly to weak localization.15,18 The rate of
recently considered impurity mediated electron-elect
interaction19 is small in comparison with the one of elast
scattering as 1/ln2(T/TK), and this mechanism cannot be in
dependently revealed from studies of either weak locali
tion or mesoscopic fluctuations.

III. CONDUCTANCE FLUCTUATIONS IN QUASI-ONE-
DIMENSIONAL SYSTEMS

In this section, we consider a quasi-one-dimensional w
of lengthL and the number of transverse channelsN' . The
static conductance of the wireG is expressed through th
nonlocal conductivitys(x1 ,x2) as follows:

G5
1

L2E dx1dx2sxx~x1 ,x2!, ~18!

where x1 and x2 label the coordinates along the wire. T
simplify the expressions, we disregard first inelastic p
cesses and include them later on. We express the symm
part of the conductivity in terms of Green’s functions a
substitute it in Eq.~18!. We find20

G5E dr1dr2

L2 E de

p

d f

de
ĵ x1

GR~r1 ,r2 ;e! ĵ x2
GA~r2 ,r1 ;e!,

~19!

where the integration is performed over all the sample,
spin degeneracy is taken into account,f is the Fermi distri-
bution function, and the current operatorĵ x is defined as
follows:

g1 ĵ xg25
ie

2m
~g2]xg12g1]xg2!.

For the rest of the article, we employ the system of units w
\51, and restore\ in the final results.

In the following, we consider only high-temperature lim
T@D/L2, because it is the only case when the inelastic p
cesses~rather than sample size,L) are controlling the mag-
nitude of the fluctuations. In this case the main contribut
to the conductance fluctuations is given by two-diffuson a
two-cooperon diagrams, Fig. 3. The resulting correlat
function for the conductance fluctuations at different ma
netic fieldsH1 ,H2 is expressed in the time domain as
7-4
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dG~H1!dG~H2!5
~2e2D !2

3pTL4 E dx1dx2E dt

3@ uP D
12~x1 ,x2 ,t !u21uP C

12~x1 ,x2 ;t !u2#,

~20!

where the overbar stands for the disorder averaging. De
ing Eq. ~20!, one makes use of the approximation

E de1

2p

de2

2p
]e1

f ]e2
f ei (e12e2)(t2t8)'

1

12pT
d~ t2t8!,

justified at time scale larger than 1/T.
Semiclassical retarded diffuson and cooperon propaga

entering into Eq.~20! are solutions of the equations

S ] t2D]x
215

1

tD
12

1

tC
12
6 D HP D

12~x,x8;t !

P C
12~x,x8;t !

J 5d~x2x8!d~ t !,

~21!

whereD is the diffusion coefficient, and the symmetry brea
ing parameterstC,D

12 are defined as~see Ref. 7!

1

tD
12

5
e2a2D~H12H2!2

12\2c2
,

1

tC
12

5
e2a2D~H11H2!2

12\2c2
,

~22!

with a being the transverse dimension of the sample. I
worth mentioning that the numerical coefficient here is g
ometry dependent.

So far, we merely followed a standard avenue~see, e.g.,
Ref. 20!. Now we are prepared to introduce electron-elect
interactions. On the language of diagrams, we must ad
Fig. 3 all of the possible interaction lines. Since inner a
outer rings represent the measurement at significantly di
ent times, the interaction linesdo not connect these two
rings, and only may be drawn within the same ring, conne
ing GR with GR, GR with GA, andGA with GA for the same
impurity configuration. Following Ref. 1, these lines are co
veniently represented by external time-dependent rand
fields wa(x,t), where the indexa assumes valuesa51
~outer ring! anda52 ~inner ring!. These fields are assume
to be Gaussian distributed with zero average. The correla

FIG. 3. Diagrams with two diffusons~a! and two cooperons~b!
contributing to the conductance fluctuations. Dashed lines repre
impurity scattering, interaction is not yet taken into account.
11531
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function is described by the Keldysh component of t
propagator of the screened Coulomb interaction

^wa~x,t !wb~x8,t8!&5dabd~ t2t8!
2T

Dn1
E dq

2p

1

q2
eiq(x2x8),

~23!

where n1 is the thermodynamic density of states per u
length. Equation~23! is nothing but a space-time version o

^ww&~q,v!52Im
2T

v

Dq22 iv

Dq2n1

,

and we assumedT*v. This assumption is justified, becaus
the main contribution to the dephasing rate is coming fr
the energy transferv much smaller thanT. ~The diagrams
explicitly showing cancellation of all the processes withv
.T can be found, e.g., in Refs. 20,6.! Because we also dis
regard all effects due to finite size of the sample, this impl
the following hierarchy of energy scales

T@tf
21@Ec[D/L2 ~24!

~heretf stands not only for the phase-relaxation time, b
for all time scales due to electron-electron scattering!. In the
following, we assume that the conditions~24! are satisfied.

The factordab in the right-hand side of Eq.~23! explicitly
indicates that the fields attached to outer and inner rings
the diagram Fig. 4 are uncorrelated, i.e., no interaction lin
indeed, can be drawn between the rings. The momen
integral in Eq.~23! diverges, but our final result will contain
well-defined differences of integrals of this type.

Introduction of the fluctuating fields modifies the equ
tions for the diffuson and cooperon~21!, see Fig. 4 and Ref
1, which now become the functionals of the fluctuating fie

F ] t2D]x
21 i ~wa~x,t !2wb~x,t !!15

1

tD
ab

1

tC
ab
6 G

3HP D
ab~x,x8;t;$wa~x,t !,wb~x,t !%!

P C
ab~x,x8;t;$wa~x,t !,wb~x,t !%!

J 5d~x2x8!d~ t !.

~25!

nt

FIG. 4. CF diffusonP D
ab . Zigzag lines represent random field

wa,b.
7-5
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The correlation function of conductances is given by
equation similar to Eq.~20!, but all the interaction lines in
Eq. ~25! are connected by the propagator~23!

dG~H1!dG~H2!5
~2e2D !2

3pTL4 E dx1dx2E dt

3@^uP D
12~x1 ,x2 ,t !u2&w

1^uP C
12~x1 ,x2 ;t !u2&w#, ~26!

where ^•••&w stand for the averaging over the fluctuatin
field w1,2.

Before we perform actual calculation in Eq.~26!, we
pause for a moment to discuss a relation of this formula w
the other theoretical work.6 We observe that the propagat
^P D

12&w contains all possible interaction lines drawn betwe
GR andGR, and also betweenGA andGA, but not between
GR andGA. This is exactly an object~let us call itCF diffu-
son!, which determines the out-scattering term in the co
sion integral in the Boltzmann equation, and it was studied
detail in Ref. 6. In contrast to the ‘‘ordinary’’ diffuson, whic
is insensitive to electron-electron interaction due to War
identity ~charge conservation!, the CF diffusion^P D

12&w ac-
quires a massive pole, real part of which is identified w
the out-scattering timete . One can thus imagine~and this
was, indeed, conjectured in Ref. 6! that the temperature de
pendence of conductance fluctuations is governed by
time te , which is parametrically different fromtf . The cal-
culation presented below shows that this conjecture is
correct. The resolution of this fallacy is that the averaging
Eq. ~26!, which is essentially coupling of all random field
wa according to the rules~23!, produces not only a contribu
tion which contains averagesu^P 12&wu2 @Fig. 5~a!#, but also
diagrams where interaction lines connect upper and lo
Green’s functions within the same ring@Fig. 5~b!#. Both con-
tributions diverge in the infrared limit~and have to be regu
larized in order to extract sensible results6!, but their sum is
well behaved.

To proceed with the evaluation of Eq.~26!, we writeP ab

as a functional integral,21,1

FIG. 5. Examples of diagrams with interaction~shown as zigzag
lines! contributing to conductance fluctuations. The diagram~a! is
reduced to the CF diffuson, while the diagram~b! is not. Conclusion
about the differences of inelastic rates for weak localization
conductance fluctuation is a consequence of missing the diag
~b!.
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P D,C
ab ~x,x8;t;$w~x,t !%!

5
u~ t !

Z e2t/tD,C
ab E

y(0)5x8

y(t)5x

Dy~t!expS E
0

t

dtH 2
ẏ2~t!

4D

1 iwa@y~t!,t#2iwb@y~t!,t#JD, ~27!

whereu(t) is the step function,Z is the normalization factor,
that will be included in the measure of the functional int
gration in all of the subsequent formulas. Substituting t
expression into Eq.~26!, and averaging over Gaussian ra
dom fields (̂ eiw&5e2^w2&/2), we obtain with the help of Eq
~23!

dG~H1!dG~H2!

5
~2e2D !2

3pTL4 E dx1dx2E
0

`

dt~e22t/tD
12

1e22t/tC
12

!

3E
y1(0)5x2

y1(t)5x1Dy1~ t !E
y2(0)5x2

y2(t)5x1Dy2~ t !

3expH 2E
0

t

dt8F ẏ1
2

4D
1

ẏ2
2

4D

1
2T

Dn
Uy1~ t8!2y2~ t8!UG J . ~28!

Following Ref. 1, we introduce new variables

z1,2~ t !5
y1~ t !6y2~ t !

A2
.

This yields

dG~H1!dG~H2!5
~2e2D !2

3pTL4 E dx1dx2E
0

`

dt

3J1~A2x1 ,A2x2 ;t !J2~0,0;t !

3~e22t/tD
121e2t/tC

12!

J1~x1 ,x2 ;t !5E
z1(0)5x2

z1(t)5x1
Dz1~ t !expS 2E

0

t

dt8
ż1

2

4D D
J2~x1 ,x2 ;t !5E

z2(0)5x2

z2(t)5x1
Dz2~ t !

3expH 2E
0

t

dt8F ż2
2

4D
1

2A2Te2

s1
uz2~ t8!uG J ,

~29!

wheres1 is the one-dimensional conductivity, and we us
Einstein relations15e2n1D.

Now we represent these functional integralsJ1,2 as solu-
tions of differential equations. The integralJ1 solves

~] t2D]x1

2 !J15d~ t !d~x12x2!. ~30!

d
m
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Integrating both sides of Eq.~30! over x1 and x2, and ne-
glecting the boundary term att!L2/D, we obtain

E dx1dx2J1~A2x1 ,A2x2 ,t !5
L

A2
u~ t !. ~31!

Similarly, J2 obeys the equation

S ] t2D]x1

2 1
2A2Te2

s1
ux1u D J25d~ t !d~x12x2!. ~32!

Substituting Eq.~31! into Eq. ~29!, and using Eq.~32!, we
find

dG~H1!dG~H2!5
~2e2D !2

3A2pTL3
@QD~x50!1QC~x50!#,

~33!

andQD,C(x) obeys the equation

S 2

tC,D
12

2D]x
21

2A2Te2

s1
uxu D QC,D~x!5d~x!. ~34!

Equation~34! has been previously considered in Ref. 1, a
it has the solution in terms of the Airy function Ai(x),

QC,D~x!52
Lf

2A2D

Ai S tf

tC,D
12

1
A2uxu
DLf

D
Ai8S tf

tC,D
12 D , ~35!

where the dephasing timetf and the dephasing lengthLf
have exactly the same form as for the weak localizat
correction1,5 ~numerical coefficient is corrected in Ref. 7!,

1

tf
5S e2TAD

\2s1
D 2/3

, Lf5ADtf. ~36!

Substituting Eq.~35! into Eq. ~33!, one finally obtains

dG~H1!dG~H2!5S e2

\ D 2 \D

3pL2T

Lf

L

3FhS tf

tD
12D 1hS tf

tC
12D G ,

h~x!52
1

@ ln Ai ~x!#8
. ~37!

Equation~37! with entries~22! and~36! is the main quan-
titative result of the present section. It shows that the deph
ing rate governing temperature and magnetic field dep
dence of the mesoscopic fluctuations isexactlythe same as
in weak localization. Moreover, this result can be combin
with the expression for the weak localization correction
11531
d

n

s-
n-

d

dGWL~H1!5
dsWL~H1!

L
; dsWL~H1!52

e2Lf

p\
hS tf

tC
11D

to the form free of geometrical uncertainties~as well as un-
certainties in the value of the diffusion coefficient!

dG~H1!dG~H2!5S e2

\ D \D

3L2T
UdGWLS H12H2

2 D
1dGWLS H11H2

2 D U. ~38!

This result gives the relation between two measurable qu
tities, and thus may serve as a test for the dephasing me
nism. Equations~37! and ~38! are valid provided\/tD,C

12

!T. It is also assumes that there is no spin-orbit interacti
It may be shown that in the case of strong spin-orbit~SO!
interaction, the result~38! still holds up to a numerical facto
of 1/2:

dG~H1!dG~H2!5S e2

\ D \D

6L2T

3UdGWLS H12H2

2 D1dGWLS H11H2

2 D U.
In the case of the crossover between strong and weak
interaction one has to identify the singletdGs and tripletdGt
contributions to the weak localization correctiondGWL
53dGt2dGs by corresponding fits and replacedGWL in
Eq. ~38! with @dGWL12dGs#/25@3dGt1dGs#/2.

Now, for conceptual clarity, we employ the result~37! to
extract the relaxation time associated with conductance fl
tuations. It is important that this time is unphysical by itse
and only has a meaning when explicitly linked to Eq.~37!.

For this purpose, we takeH15H250 and define the time
tT as a mass in the pole in the CF diffusonP D

12 and CF
cooperonP C

12 which enter Eq.~20!. Writing

PC,D
12 ~x,x8,t !5E dqdv

~2p!2
eiq(x2x8)2 ivt

1

Dq22 iv1tT
21

,

substituting this expression into Eq.~20! and performing the
integration, we obtain for conductance fluctuations

dG25
~2e2D !2

6p\TL3 S tT

D D 1/2

. ~39!

Comparing this to the result~37!, we identify the inelastic
relaxation timetT responsible for the temperature depe
dence of conductance fluctuations

tT5h2~0!tf'0.53tf , ~40!

wheretf is defined in Eq.~36!, i.e., it is precisely the same
time one obtains if one considers weak localization by int
ducing a finite mass in the pole of the cooperon. Thus,
temperature dependence of conductance fluctuations
not produce a new time scale as compared to Eq.~36! and is
7-7
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certainly not determined by the out-scattering timete . The
numerical coefficient 0.53 reflects the behavior of the sca
function ~37! in low magnetic fields.

IV. TWO-DIMENSIONAL CASE

Equation~38! can be readily generalized to the two d
mensional sample, and we outline the main steps of the
responding derivation. Consider a two-dimensional sys
of the sizeL. Performing the same steps as in the derivat
of Eq. ~26! one finds

dG~H1!dG~H2!5
~2e2D !2

3pTL4 E d2r1d2r2E dt

3@^uP D
12~r1 ,r2 ,t !u2&w

1^uP C
12~r1 ,r2 ;t !u2&w#, ~41!

where two-dimensional integrations are performed within
sample,̂ •••&w stand for the averaging over the fluctuatin
field w1,2 with correlation function analogous to Eq.~23!,

^wa~r,t !wb~r8,t8!&5dabd~ t2t8!
2T

Dn2
E d2q

~2p!2

eiq(r2r8)

q2
,

~42!

with n2 being the thermodynamic density of states per u
area. In Eq.~42!, the integration is limited from above b
uqu.(T/D)1/2. Such an accuracy of the ultraviolet cutoff
sufficient for the logarithmically divergent integral.

Diffuson and cooperon propagators entering Eq.~41! are
the solutions of the two-dimensional analog of Eq.~25!

F ] t2DH ¹D
ab

¹C
abJ 2

1 i @wa~r,t !2wb~r,t !#15
1

tD
ab

1

tC
ab
6 G

3HP D
ab@r,r8;t;$wa~r,t !,wb~r,t !%#

P C
ab@r,r8;t;$wa~r,t !,wb~r,t !%#

J 5d~r2r8!d~ t !,

~43!

where times 1/tD,C , see Eq.~22!, describe the effect of the
magnetic field component parallel to the film plane. The
fect of the magnetic field perpendicular to the plane is
scribed by

“g
ab[“1

ie

c
Ag

ab , a,b51,2 g5D,C,

AD
ab5Aa2Ab, AC

ab5Aa1Ab, ~44!

where the vector potentials are such that

“3Aa5H'
a ,

andH'
a is the component of is the magnetic field perpendi

lar to the plane.
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Transformations leading to Eqs.~26! and ~25! are pretty
much the same as in 1D provided we make obvious chan
x→r, q→q, ]x→“ r . Writing again the CF diffusons and
cooperonsPD,C

ab as functional integrals~27! and performing
an averaging over Gaussian fieldswa, we obtain a two-
dimensional analog of Eq.~28!

dG(H1)dG(H2)5
~2e2D !2

3pTL4 Ed2r1d2r2E
0

`

dt (
g5D,C

e22t/tg
12

3E
y1(0)5r2

y1(t)5r1Dy1~ t !E
y2(0)5r2

y2(t)5r1Dy2~ t !

3expH 2E
0

t

dt8F ẏ1
2

4D
1

ẏ2
2

4D
1

ie

c

3[Ag
12(y1) ẏ12Ag

12(y2) ẏ2] 1
4T

DnE dq

~2p!2

3
1

q2
$12cos[q„y1(t8)2y2(t8)…%G J .

~45!

Introducing new variables

R~ t !5
y1~ t !1y2~ t !

2
, r~ t !5y1~ t !2y2~ t !,

and reducing the functional integrals back to different
equations, we obtain the result

dG~H1!dG~H2!5
~2e2D !2

3pTL2
@QD~ uru5LT!1QC~ uru5LT!#,

~46!

whereQD,C(r) obeys the equation

F2D~“D,C
12 !21U~r !1

1

tD,C
12 GQC,D~r!5d~r!, ~47!

and the potential is given by

U~r !5
2T

DnE dq

~2p!2

12cos~q•r!

q2
'

T

pDn
lnS LT1r

LT
D ,

~48!

where the last expression and Eq.~46! are written with the
logarithmic accuracy and we take into account the hig
momentum cutoff atq;LT

21 , LT5(D/T)1/2.
Equations~46!–~48! should be compared with the corre

sponding expression for the weak localization correction
two dimensions1,5

ds~H1!52
e2

p\
C~r 5 l !,

F2D~¹C
11!21U~r !1

1

tC
11GC~r!5d~r!, ~49!
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where the logarithmic divergence should be cut at the ela
mean free pathl.

Therefore, we conclude that the relation similar to E
~38! should hold,

dG~H50!dG~H50!2dG~H1!dG~H2!

5S e2

\ D \D

3L2T
UdsWLS H12H2

2 D
1dsWLS H11H2

2 D22dsWL~0!U. ~50!

It is important to emphasize that the relation~50! holds
even before one starts an approximate solution of Eq.~47!.
Note, however, that the result similar to Eq.~38! does not
hold, since bothdGdG and dsWL diverge logarithmically
with different cutoffs. This is why in Eq.~50! we had to
subtract zero-field contributions, which cancels logarithm
divergences. The effect of the spin orbit interactions on
final result~50! is the same as for one-dimensional geome
see discussion after Eq.~38!.

We write here the explicit expression1,5 for the weak lo-
calization correction in two dimensions for the reference p
pose

dsWL~H,T!52
e2

2p2\
F ln

1

tVH
2CS 1

2
1

1

t* VH
D G ,

whereC(x) is the digamma function,VH54eDH' /c\, and
t* is determined by the equation

1

t*
5

1

tH
1

T

\

e2Rh

2p\
ln

T

\/t* 1\VH

.

Similarly to one dimension, we can also extract the inel
tic time tT , defined as a pole of CF diffuson in zero ma
netic field. An explicit calculation givestT'tf . This rela-
tion contains a numerical coefficient of order one, which c
only be determined by going beyond the logarithmic ac
racy. We do not attempt such a calculation in this paper.

V. DISCUSSION AND CONCLUSIONS

Equations~38! and~50! are the main results of our pape
They give exact relations which must hold between two
perimentally observable results for the dephasing by
electron-electron interaction. The only reason for violation
such a relation is that other channels of dephasing with sm
frequency transfer are present. Thus, the systematic mea
C
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ments of dependence of conductance fluctuations on t
perature and magnetic field and comparing it with the we
localization data obtained on the same sample may give
formation on the nature of inelastic interactions in disorde
metals.

We are not aware of attempts to make such a compar
between inelastic times directly. However, recently Hoadl
McConville, and Birge~HMB!22,23 presented very carefu
measurements of the magnetic field dependence of 1/f noise
in silver films. A standard assumption in the theory of 1f
noise in metals~for review, see Ref. 24! is that it is produced
by low-frequency motion of impurities. Mathematically, th
magnitude of 1/f noise in such a model is given by a set
diagrams identical to those for conductance fluctuatio
~Figs. 3, 5! with the only difference that external and intern
rings are described by different impurity configurations.25,26

As the result the field dependence and the temperature
pendence of the noise should be given by the parame
derivative of Eq.~50!, i.e., it should be expressed through t
derivatives of the parallel field dependence of the weak
calization.

HMB compared the time scale defined as a pole in
diffuson ~in our notations,tT), with the phase relaxation
time tf , extracted from their own measurements of the we
localization correction on the same films. Their procedu
results intT.tf/2.6, which was interpreted to be consiste
with the theory of Ref. 6. Our results~50! contradict that
interpretation.27

To our opinion, the only possible reason of this discre
ancy is the electron-electron interaction in the triplet chan
which we did not take into account. This interaction can
singled out in experiments with the materials with strong
spin-orbit scattering. Other sources of 1/f noise seem to be
excluded, since the functional form of the experimenta
measured by HMB magnetic field dependence perfectly
theoretical predictions. Dephasing on slow moving impu
ties itself, see discussion in Sec. II B, would give a tempe
ture dependence different than that in experiment and ma
ruled out. We believe that the contradiction between
theory and the experiment revealed in our paper indica
that the quantitative study of inelastic processes in mes
copic samples remains an interesting topic and deserves
ture investigation.
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