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Inelastic scattering time for conductance fluctuations
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We revisit the problem of inelastic times governing the temperature behavior of the weak localization
correction and mesoscopic fluctuations in one- and two-dimensional systems. It is shown that, for dephasing by
the electron electron interaction, not only are those times identical but the scaling functions are also the same.

DOI: 10.1103/PhysRevB.65.115317 PACS nunider73.23—b, 73.63.Nm, 72.15.Rn, 73.20.Fz

[. INTRODUCTION whereg(L,) is the dimensionless conductan@e units if
e?/7h) of the d-dimensional disordered sample of the size
In 1982, Altshuler, Aronov, and KhmelnitskyAAK) L,=(D/w)? whereD is the diffusion constant of the me-

establishell that electron-electron scattering in metals istallic sample. For more details on origin of E®), see, e.g.,
characterized byhree (generally, distingttime scales. These Refs. 6,7. . _
scales are phase-relaxation timg, energy-relaxation time ~ Substituting Eq(2) into Eq. (1), one estimates
7, and out-scattering time, (see Table)l The former one .
: ) . . Sf(e) h €
is quantum-mechanical and has no classical analog, while the SH{f(e)l~— . —= , 3
two latter have a semiclassical interpretation in terms of TE TE  g(Lex)

Boltzmann equation. The three scales differ in the case Whe\pvhere e =max(e,T). Equations(2) and (3) are applicable

the energy transferred between electrons in one collision ig,, systems in the metallic regimg(L)>1. In this regime

small as compared to the temperature of the system e* re>1, i.e., quasiparticles are well defined. Notice that,
One can understand the difference betwegrand 7. by eyen though the kernéd is divergent, the energy relaxation

considering the inelastic collision integral in Boltzmann rate(3) is finite because of the two energy integrations in Eq.

equation (1). Therefore, for the study of the phenomena governed by
the Boltzmann equation, the infrared divergence of the ma-
SHf(e)} trix elements(2) does not cause any problems. These phe-
nomena include, for instance, electron distribution function

measured via tunneling spectroscbpy crossover from 1/3

:f de;doK(w) to \/3/4 shot noise in metallic wires.

It is not the end of the story, though. If we estimate only

X{—f(e)[1-f(e—w)]f(e))[1—f(e1+w)] (oup) one(“out” ) term from the collision integrall), we encoun-

ter an infrared divergence in two- and one-dimensional cases

+[1-f(e)]f(e-w)[1-f(e)]f(e1t w)} (in), (1)
s h T fT dw(T)(z‘d)’z

wheref(e) is the electron distribution function, and the ker-  Sbuttf(€)}~~ e | 7o gLDJ)ur @ @
nel K(w) characterizes matrix elements of the interaction, 4

with the energy transfew. In clean two-dimensional2D)  \yhere w* is the low energy cutoff to be found, arid;

and 3D systemsK(w) is independent on the transmitted _ D/T is the temperature lenatiThe same result mav be
energyw, K(w)=1/eg . This results in a Fermi liquid behav- P gt y

. . . 5 1 =77 obtained from the calculation of the first loop correction to
ior of the inelastic rate ¥{,=max(,T)“/e-. The situation in

, S F the self-energ$)) This divergence of only one contribution to
disordered systems, however, is d|ffer%_rﬁthe kerneK(w)  the collision integral is a simple consequence of the fact that
grows with the decrease of the transmitted frequency each term in collision integral is not a gauge invariant quan-
tity, and only both terms taken together have a physical
meaning(3), which is not cut-off dependent. One can argue,
however, that, has its own observable consequences for the
quantum interference processes. Indeed, naive argument is
that the “out” processes completely suppress the interfer-

_ TABLE I. Temperature dependence of electron-electron scattefaoq - \yhereas “in” processes are incoherent. Inclusion of
ing time scales for different dimensiods We assumé& > e. some of the higher order proces‘é%sures the divergence

and makes the expression forrdfinite. One may naively

K(w): OCC()d/272, (

lwlg(L,,)

d hilme ATy hire expect thatr, found from such procedure is, indeed, respon-
1 (T/DA)Y2~Y  (T?DvPR%)Ye (T?ID V218 Y3(pgl) 23 sible for the temperature behavior of quantum correcti8ns.
2 (T/IDA)»™ Y  (TIDwh)In(pel/h) (TIDvh)IN[(pel/h)e: /T] AAK showed that it is not correct for the temperature
3 (T/IDR)¥%~r  (TID#)¥%p~1 (T/ID#H)¥2p~ 1 behavior of weak localization correction, because the inelas-

tic excitations with energy transfer smaller than decoherence
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rate itself do not suppress this correction, see Sec. 2.2.2 of a)

Ref. 7 and our Sec. Il for the corresponding physical argu- 2
ment. This leads to the infrared cutabf* =1/7, in Eq. (4)

and to the self-consistency equation for the dephasing rate 1,2

f T
gLy T VPTe © v
However, there is a prejudice, see, e.g., Ref. 6, that the in-
elastic time governing the magnitude of the conductance b)
fluctuation is given byr.<7,, so thatr, has its own ob- 2
servable effect.

In this paper we revisit this problem. We will show that 1,2
the inelastic rate governing the mesoscopic fluctuations is
precisely the same as for the weak localization, see(&q.
Moreover, the scaling functions governing the magnetic field
and the temperature behavior of conductance fluctuations are 1
found to be identical to their weak localization counterparts, 2

see Secs. lIl, IV. FIG. 1. (a) Example of classical paths between pointnd f

'The remainder of the paper 1S .arrang'ed as follows. SeCtIOQontributing to the weak localizatiorib) The same paths with the
Il is devoted to the qualitative discussion of the role of the,, .itation of one electron-hole pair with energy

effect of the real electron-hole pair excitations on the weak

localization and mesoscopic conductance fluctuations. The A. Weak localization correction

main point of this section is to explain why the singlet exci- g4, generic pairsr, 3, the product A% oscillates as the
tations with transmitted frequency smaller thamglaffect  fynction of impurity configurations, see Fig(a. This is
neither weak localization nor mesoscopic fluctuations. Inyecause the lengths of pathsand 8 are substantially dif-
Sec. Il we eXpI|C|t|y CaICUIate the effect of interactions on ferent_ As the resu't, Contribution Of SUCh paths iS not rel_
mesoscopic fluctuations of conductance in one dimensiorsyvant for disorder averaged quantities but contributes to the
using the same approach as AAKVe will also identify the  mesoscopic fluctuations of the conductance.

diagrammatic contributions which are missed in the argu- There are pairs of paths, however, which preserve the
ments for the role of.< 7, in the conductance fluctuations. same phase, with the change of the disorder configuration.
Section IV generalizes the calculation to two dimensionsAn example of such paths is shown in Figall These paths

Our findings are summarized in Sec. V. almost coincide everywhere except the loop segniiaB
[see Fig. )] which is traversed by trajectories 1 and 2 in
IIl. QUALITATIVE DISCUSSION the opposite directions. In the absence of the magnetic field

and spin-orbit interactions, the phases of the trajectories 1
The purpose of this section is to explain interference proand 2 are equal. Therefore, the contribution of these paths to
cesses, taking into account possibility of excitations of reathe probabilityw becomes
electron-hole pairs, see also Ref. 12. For the weak localiza-
tion correction, similar arguments were used in Ref. 7. a)
A qualitative physical interpretation of quantum correc- 1
tions is usually based on the following arguments, see, e.g.,
Ref. 13. Consider an electron diffusing in a good conductor
pel>#. Probabilityw for the electron to reach, say, point
starting from poinff, see Figs. @), 2(a), can be obtained by
first finding the semiclassical amplitudes, for different 2
paths connecting the points, and then, calculating the abso-
lute value of their sum

2
w= =2 AL+ X AAY. (6)
@ aF B

> A,

The first term in Eq(6) is nothing but the sum of the clas-
sical probabilities of the different paths, and it may be found
from the classical Boltzmann equation. The second term is
the quantum mechanical interference of the different paths. FiG. 2. (a) Example of classical paths between pointsnd f

In what follows, we will discuss the contribution of this term contributing to the mesoscopic conductance fluctuatidms The

to transport and how it is affected by the electron-electrorsame paths with the excitation of one electron-hole pair with energy
interaction. o.
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|AL+AL2= A2+ | A2+ 2RAAS =4|A%, (7 |AY+ AL+ AD+AL2

i.e., twice larger than the classical probability. Thus, in order =2|A|2+ 2| A Py+ Picosw(t§™—t5™].
to evaluate the weak localization correction to the conductiv-
ity, one has to determine the classical probability to find such
a self-intersecting trajectory.

Let us now consider the main effect of electron-electron,[(,]lt
interactions on the weak localization—excitation of soft o
electron-hole pairs. We consider processes involving eithei
one excitationprobability P;) or no excitationgprobability
Po=1-P,), see Fig. tb). Allowing for the excitation of an
electron-hole pair, one obtains

(12

The last term in Eq(12) describes the effect of the exci-
ion of an electron-hole pair in the system on the weak
calization correction. One can readily see that not each
helastic process destroys the interference. For instance, for
w—0, Eqg. (12) reproduces Eq(7) exactly. On the other
hand, the timet™ is shorter thanr,. Thus, we may con-
clude that inelastic processes with energy tranaferl/z,

A, A +AL (8) do not destroy the interferen¢see, e.g., Refs. 14),Awhich

“ gives the physical reason for the low energy cuteff

where the superscripts 0 and 1 correspond to the amplitudes /74 in Eq. (4).
involving emission of no electron-hole pairs or one electron-

hole pair, respectively. o o B. Mesoscopic conductance fluctuations
Because the states with different number of excitations ) ) )
are orthogonal to each other, we obtain, instead of(&y. Effect of inelastic processe$he arguments of the previ-
ous subsection are easily generalized for the effect of inelas-
|A+ AL+ A+ AL2=|AD12+ | AJ %+ |AT2+ | AL tic processes on mesoscopic conductance fluctuations. We
can still talk about a pair of two paths, but now we will take
+2ReAY Ad]* + 2ReAI AL, those paths to be generic, see Fig. 2. The interference con-

) tribution from those paths

where the last two terms correspond to the interference cor- 5G~2ReAA; (13

rection. It is important to emphasize that the interference ¢ affect th duct b £ rand
persists even if the final state contains an electron-hole excfjoes not aftect the average conductance because of random

tation (last term. phases of those amplitudes, but it gives rise to the mesos-

We now notice that the emission of a soft electron-hole®°P'¢ fluctuations of the conductance
pair does not alter the geometrical form of the trajectory, 5G2~ 2(| A2\ | A, |2 14
thus, it does not change the classical probability correspond- (069 ~2(| AN [Al- (14

ing to patha. As the result, we have Let us now consider the effect of the excitation of an
012 2 112 2 electron-hole pair of energy. To do so, we use the quali-
[Aal*=PolAdl®,  |ALI*=PalAdl% (10 tative argument of previous subsectifstarting from Eq.

where amplitudes without superscript correspond to those iff)] and substitute Eq11) into Eq. (13). It yields

the absence of the interaction. What the emission of the _ em e
electron-hole pair may change, however, is the phase of the 5G~2REAA% (Py+Pyel @l =™ )] (15
guantum amplitude.

Indeed, denote the point of emission of electron-hole pair Once again, we arrive to the conclusion that the excita-
of energyw on a classical trajectory bj™—time it takes for ~ tions of frequencies smaller than the inverse times to traverse
the electron moving along the trajectagywith energyer to  the trajectories 1/, do not change the interference correc-
reach the emission point, see Fig. 1. Denote the total timdon- Similarly to the weak localization the lengths of paths
along the pathr ast,. Then the electron moves tint€™ e limited py 74. Thus, we may conclude that inelastic
with the energye and timet,,— t™ with the energye— o. As processes with energy transfers1/7, do not affect meso-

a result, the geometrical phase, accumulated by electrOI§c0pic fluctuations, which gives the physical reason for the
changeé as ' I6w energy cutoffw* =1/7, in Eq. (4). Thus, inelastic time

entering the weak localization and mesoscopic fluctuations
argAi=argA2—w(ta—t§m). should be approximately the same. The exact equality of
those times will be proven in the next section by a direct
Thus, calculation, however, this result is definitely model depen-
o 0 . dent. Namely, it implies that the contribution of the quasi-
ALALI* =PoAAL, static fluctuations in the systems does not overwhelm the role
of the inelastic processes, and we discuss such fluctuations
ALAZT* =P1A A} gloltp=ta g g (11)  now.
Effect of quasistatic fluctuationsn the linear response
Substituting Eqs(10) and (11) into Eq. (9), we obtain  theory, a many-body system in its stationary state is excited
[instead of Eq(7)] for paths contributing to the weak local- at some timet; and then the behavior of some observable
ization correction quantity is studied at times>t;. If the temperature is finite,

115317-3



I. L. ALEINER AND YA. M. BLANTER PHYSICAL REVIEW B 65 115317

the initial stationary state of the system can be not only itdemperatures larger than the Kondo temperaflite It is
ground statdc, but also any of many-body eigenstates,; well known that even the elastic scattering of the electrons
the probability that the system is initially in such a state ison magnetic impurities lifts time-reversal symmetry, thus
xe Ea/T_If there were no interaction, it would result only in suppressing the weak localization correction. Naively, one
the thermal average of the mesoscopic fluctuations. Howeould think that such scattering only gives rise to the unitary
ever, electron-electron interaction leads to the effective desymmetry, thus suppressing the mesoscopic fluctuations by a
pendence of the disordered potential for electrons. The simfactor of 2. However, the spins are a dynamical system, and
plest, and the most effective example of this mechanism igluring the time between the measurements the spin configu-
the dependence of the Hartree potential of the electrons oration changes completely, thus suppressing the mesoscopic
the electron configuration. Since the measurable conductandeictuations similarly to weak localizatioi:*® The rate of
is the result of the large number of measurements, each timecently considered impurity mediated electron-electron
the initial state may be different. interactiort® is small in comparison with the one of elastic

In principle, one could expect that the averaging over dif-scattering as 1/f§T/T,), and this mechanism cannot be in-
ferent configurations of the self-consistent potential may leadlependently revealed from studies of either weak localiza-
to an effect stronger than the excitations of the electron-holéion or mesoscopic fluctuations.
pairs. This is possible, when there is an additional slow de-
gree of freedom such as magnetic impurit@snoving
defects'! or slow fluctuations of the gauge fieltiHowever, IIl. CONDUCTANCE FLUCTUATIONS IN QUASI-ONE-
this is not the case for the Coulomb electron-electron inter- DIMENSIONAL SYSTEMS

action, as we explain below. _ _In this section, we consider a quasi-one-dimensional wire
To find the magnitude of the effect, we first have to esti-4¢ lengthL and the number of transverse chanréls. The

mate the characteristic value of possible fluctuations, the@iatic conductance of the wirG is expressed through the
evaluate the effect of such fluctuations on the mesoscopigoniocal conductivityo(x; ,X,) as follows:

fluctuations of conductance, and then compare this effect

with effect of 7, coming from the inelastic processes. Ac-

cording to Nyquist noise formula, the amplitude of the elec- 1

tric field SE(L) fluctuating on the spatial scaleis given by G= Ff dxydXo0yx(X1,X2), (18)

(L) =~ &
gq

T (16)  wherex; and x, label the coordinates along the wire. To
L

simplify the expressions, we disregard first inelastic pro-

whereoy is the conductivity of the system ith dimensions, cesses and lnclude_them later on. We exerzss the_ symmetric
part of the conductivity in terms of Green’s functions and

and w<1/7, is the high-energy cutoff above which fluctua- ¢ pstitute it in Eq(18). We find®
tions cannot be considered as quasistatic.

To have a strong effect on mesoscopic fluctuations, the
electric field should change significantly the wave functions drqdr, [ de df,
of the electrons on the scale,, which translates into the :f L2 f?&lxl
conditiont’

GR(r1,12;€)]x,G (2 115 6),
(19
e[ 6E|L 4= ﬁ_Dzi (17)  Where the integration is performed over all the sample, the
L(Zb T spin degeneracy is taken into accounis the Fermi distri-

] bution function, and the current operatpr is defined as
On the other hand, we estimate from E#6) follows:

2, 2—d —
&2/ SE(L ) PLE = Tar. Ly Thoe . e

oy g(Ly) glegzzﬁ(gzaxgl—glaxgz)-
whereg(L) is the dimensionless conductance on the linear

scaleL. Taking into account Eq5) and the conditionnr,  For the rest of the article, we employ the system of units with
<1 we conclude that for the dephasing by the Coulombi=1, and restoré in the final results.
interaction the condition(17) can be never satisfied, and In the following, we consider only high-temperature limit,
therefore the quasistatic fluctuations are negligible in comT>D/L2, because it is the only case when the inelastic pro-
parison with the inelastic processes. We reiterate that thisessegrather than sample size) are controlling the mag-
result does not hold for the scattering on the collectivenitude of the fluctuations. In this case the main contribution
modes, which have peak in their spectral density on frequerto the conductance fluctuations is given by two-diffuson and
cies much smaller than 4. two-cooperon diagrams, Fig. 3. The resulting correlation
Closing this section, we discuss in more detail the role offunction for the conductance fluctuations at different mag-
the magnetic impurities. We restrict ourselves only to thenetic fieldsH,,H, is expressed in the time domain as
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FIG. 3. Diagrams with two diffuson&) and two cooperonéb)
contributing to the conductance fluctuations. Dashed lines represent
impurity scattering, interaction is not yet taken into account. A, B

y

S
=

FIG. 4. CF diffusonP2?. Zigzag lines represent random fields
5G(Hy) G (H,) (ZeZD)Zfd d fdt #
' 2 gaTLd) TR

function is described by the Keldysh component of the

X[|PE(Xq,%2,0) |2+ | PE(x1,%2:1)|2], propagator of the screened Coulomb interaction
(20 2T (dg 1 . ,
. . (e (X D @P(X 1)) =8,50(t—t) = | =— — 90X
where the overbar stands for the disorder averaging. Derlv-w (D))= dapl )Dvl 2 q2e
ing Eqg.(20), one makes use of the approximation (23
de, de, 1 where v, is the thermodynamic density of states per unit
- i(er=e(t-t) e~ s(t—t’ length. Equation(23) is nothing but a space-time version of
5 5 0afdcfe oo o=t gth. Equation(23) g p
— : 2T Do~ i
justified at time scale larger thanTl/ (ep)(q,w)=—Im— ¥
Semiclassical retarded diffuson and cooperon propagators @ DQ°ry
entering into Eq(20) are solutions of the equations and we assumeli= w. This assumption is justified, because
the main contribution to the dephasing rate is coming from
i the energy transfe much smaller tharl. (The diagrams
, T PE(x,x";t) explicitly showing cancellation of all the processes with
dy—Das+ 12 L[ =0(x=x") (1), >T can be found, e.g., in Refs. 20,Because we also dis-
1 Pexxht) regard all effects due to finite size of the sample, this implies
7(1:2 the following hierarchy of energy scales
(21) T>7,'>E=D/L? (24)
whereD is the diffusion coefficient, and the symmetry break- o
ing parameters}fD are defined agsee Ref. ¥ (here Ty stands not only for the phase—relaxatlon' time, but
‘ for all time scales due to electron-electron scatterihythe
1 e%a?D(H;—H,)? 1 e?a?D(H,+H,)? following, we assume that the conditio(@4) are satisfied.
= , = , The factoré, 4 in the right-hand side of Eq23) explicitly
T 1242¢? T2 1272¢? indi ; i ;
D C 22 indicates that the fields attached to outer and inner rings of

the diagram Fig. 4 are uncorrelated, i.e., no interaction lines,
with a being the transverse dimension of the sample. It igndeed, can be drawn between the rings. The momentum
worth mentioning that the numerical coefficient here is ge-integral in Eq.(23) diverges, but our final result will contain
ometry dependent. well-defined differences of integrals of this type.

So far, we merely followed a standard aven(gee, e.g., Introduction of the fluctuating fields modifies the equa-
Ref. 20. Now we are prepared to introduce electron-electroriions for the diffuson and cooperd@l), see Fig. 4 and Ref.
interactions. On the language of diagrams, we must add td, which now become the functionals of the fluctuating fields
Fig. 3 all of the possible interaction lines. Since inner and

outer rings represent the measurement at significantly differ i
ent times, the interaction linedo not connect these two , 2P
rings, and only may be drawn within the same ring, connect-| d:—Ddx+i(e“(x,t) = ¢P(x,t)) +

ing GR with GR, GR with G*, andG* with G* for the same 1
impurity configuration. Following Ref. 1, these lines are con- TSB

veniently represented by external time-dependent random PEBx X"t L 0¥(x.1) oP(X t

fields ¢*(x,t), where the indexa assumes valuesr=1 «{ P (XL, (D)
(outer ring and a=2 (inner ring. These fields are assumed PPt {e(x,0), 0P (x,1)})
to be Gaussian distributed with zero average. The correlation (25)

=8(x—x")4(1).
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(a)

(b)

FIG. 5. Examples of diagrams with interactihown as zigzag
lines) contributing to conductance fluctuations. The diagr@nis
reduced to the CF diffuson, while the diagréloy is not. Conclusion

PHYSICAL REVIEW B 65 115317

PEfe(x.x it {e(x,H)})

::9“)ethg1fymx
Z y(0)=x'

y2(7)

Dy(r)exp< f;dr| -

+iso“[y(r),f]—icp[’[y(r),r])), (27)
whered(t) is the step functionZ is the normalization factor,
that will be included in the measure of the functional inte-
gration in all of the subsequent formulas. Substituting this
expression into Eq(26), and averaging over Gaussian ran-

about the differences of inelastic rates for weak localization andjom fields (ei“’):e’<‘*’2>/2), we obtain with the help of Eq.

conductance fluctuation is a consequence of missing the diagrar(\?;;)

(b).

0G(H1)6G(H,)

The correlation function of conductances is given by the
equation similar to Eq(20), but all the interaction lines in
Eq. (25) are connected by the propagat@n)

X10X
3 TI4 1YA2
X[<|‘ 12(X11X21t)|2>(p

+<|P (X11X21 |2>KP]!

6G(H1)6G(Hp) =

(26)

where (- -
field @12
Before we perform actual calculation in E(R6), we
pause for a moment to discuss a relation of this formula with
the other theoretical workWe observe that the propagator

(2e D)
3aTL?

y1(t)=xq
Xf Dy, (1)
y1(0)=x3
‘2
Yi Y2
Xexp{—f dt’ LD T5)

fdxldxzf dt(e~ 27 + e~ 2/7c)

yo(t)=x

"Dy,(t)

y2(0)=xz

2T , .
+5, yi(t") —y,(t")

)¢ stand for the averaging over the fluctuating Following Ref. 1, we introduce new variables

y1(t) £y, (t)

V2

Zy5(t)=

<P§>q, contains all possible interaction lines drawn betweenThis yields

GR andGR, and also betwee@” and G*, but not between
GR andG". This is exactly an objediet us call itCF diffu-
son, which determines the out-scattering term in the colli-
sion integral in the Boltzmann equation, and it was studied in
detail in Ref. 6. In contrast to the “ordinary” diffuson, which
is insensitive to electron-electron interaction due to Ward'’s
identity (charge conservationthe CF diffusion(P¢?),, ac-
quires a massive pole, real part of which is identified with
the out-scattering time,. One can thus imaginé@nd this
was, indeed, conjectured in Ref) that the temperature de-
pendence of conductance fluctuations is governed by the
time 7o, which is parametrically different from,. The cal-
culation presented below shows that this conjecture is not
correct. The resolution of this fallacy is that the averaging in
Eq. (26), which is essentially coupling of all random fields
¢ according to the rule&3), produces not only a contribu-
tion which contains averageéP*?) |2 [Fig. 5@], but also
diagrams where interaction lines connect upper and lower
Green’s functions within the same rifgig. 5b)]. Both con-
tributions diverge in the infrared limitand have to be regu-
larized in order to extract sensible resfitbut their sum is
well behaved.

To proceed with the evaluation of E(6), we write P “#
as a functional integraf:*

115317-6

5G(Hy) 8G(H,) (2e2D)Zfd d rdt
- X, d X
! 27 zart) T o

X J1(\2x1,12x2;1)3,(0,03t)
X (e 2t/ T]|j2+ el Téz

21(0=x tzZ
Jl(xl,xz;t)zf Dz, (t)ex —f dt’'—
21(0)=x, 0 4D
2p(t)=xq
J2(x1,x2;t)=f Dz,(t)
75(0)=x,

2\/;Te2|22 |“

froe
XeX _Otﬁ'f'

where g is the one-dimensional conductivity, and we used
Einstein relations;=e?v,D.
Now we represent these functional integrdjs as solu-
tions of differential equations. The integrl solves

(=D 3y )3y = 8() 8(x, = Xp).
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Integrating both sides of Eq30) over x; and x,, and ne-
glecting the boundary term &t /D, we obtain

L
f dxdxpd1(V2X1, V2%, )= —=6(t). (3D
2
Similarly, J, obeys the equation
2\2T€?
<0t—D&)2<1+ oy |Xl| J2:5(t)5(X1_X2) (32)

Substituting Eq(31) into Eq. (29), and using Eq(32), we
find

(H1)6G(H>) 32771 3[Qp(x=0)+Qc(x=0)],
(33

andQp c(x) obeys the equation

2 22T¢€?
— —Dé% \/; |X|)QC,D(X):5(X)- (34)
TC,D 1

Equation(34) has been previously considered in Ref. 1, and

it has the solution in terms of the Airy function Aqd,

Ty \/§|X|)

7'%:2,[) DL,

T i)
wr| ]
7c,p

where the dephasing time, and the dephasing length,

Al
Ly

Qcp(X)=~— 22D

(39

have exactly the same form as for the weak localizatio

correctiort® (numerical coefficient is corrected in Ref), 7

1 (eZT\/B

hz(fl

2/3

y L¢: \/DT¢.

(36)

T¢

Substituting Eq(35) into Eq. (33), one finally obtains

ez)z D L,

5G<H1>5G<H2>=(g S

n(X)=— (37

[INAI(x)]"

Equation(37) with entries(22) and(36) is the main quan-
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dow(H1) .

oGwL(Hy) = L ,

T¢
Sow (H)=——=n|

to the form free of geometrical uncertainties well as un-
certainties in the value of the diffusion coefficignt

5G(H1)6G(H _(€) D 3Gy, | =2
(Hyp) (2)—gm w5

+ Gy, (39)

Hy+Hsp
2

This result gives the relation between two measurable quan-
tities, and thus may serve as a test for the dephasing mecha-
nism. Equations(37) and (38) are valid providedf/ 15 ¢

<T. Itis also assumes that there is no spin-orbit interaction.
It may be shown that in the case of strong spin-o(BiD)
interaction, the result38) still holds up to a numerical factor

of 1/2:

0G(H1)86G(H,)= | D
(H1)6G(Hz) = % laLet
Hl_H2 H1+H2
. 5GWL(T w\ =7

In the case of the crossover between strong and weak SO
interaction one has to identify the singl#® and tripletsG;
contributions to the weak localization correctiofGyy,
=36G;— 6G4 by corresponding fits and replac®syy, in
Eq. (38) with [ 6Gy +26G4]/2=[35G;+ 6G¢]/2.

Now, for conceptual clarity, we employ the res(87) to
extract the relaxation time associated with conductance fluc-
tuations. It is important that this time is unphysical by itself,

Tnd only has a meaning when explicitly linked to E§7).

For this purpose, we takd,=H,=0 and define the time
71 a@s a mass in the pole in the CF di1‘fusa‘?r%)2 and CF
cooperonP & which enter Eq(20). Writing

dgdo gia(x—x") it 1
(2m)?

PEH(XX' )= m
T

substituting this expression into E@0) and performing the
integration, we obtain for conductance fluctuations

(ZGZD)Z ( TT) 1/2
6mATL3\ D/

5G2= (39

Comparing this to the resu(B7), we identify the inelastic
relaxation timer; responsible for the temperature depen-
dence of conductance fluctuations

TT= 7]2(0)7'(#%0537'(!), (40)

titative result of the present section. It shows that the dephasvherer,, is defined in Eq(36), i.e., it is precisely the same

ing rate governing temperature and magnetic field depertime one obtains if one considers weak localization by intro-
dence of the mesoscopic fluctuationseisactlythe same as ducing a finite mass in the pole of the cooperon. Thus, the
in weak localization. Moreover, this result can be combinedemperature dependence of conductance fluctuations does

with the expression for the weak localization correction

not produce a new time scale as compared to(86).and is
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certainly not determined by the out-scattering time The

PHYSICAL REVIEW B 65 115317

Transformations leading to Eq&26) and (25) are pretty

numerical coefficient 0.53 reflects the behavior of the scalingnuch the same as in 1D provided we make obvious changes

function (37) in low magnetic fields.

IV. TWO-DIMENSIONAL CASE

X—Tr, q—a, a —V,. Writing again the CF diffusons and

cooperonsP as functional integral$27) and performing
an averagmg over Gaussian fields', we obtain a two-

. dimensional analog of Eq28)

Equation(38) can be readily generalized to the two di-

mensional sample, and we outline the main steps of thecor-—______ (2e
responding derivation. Consider a two-dimensional systen@G(Hl)ﬁG(Hz)—
of the sizeL. Performing the same steps as in the derivation

of Eq. (26) one finds

(2e°D)?

T J dzrldzrzj dt
X[(|PBr1,r2,0[3),
+<|P (rl’rZ t)|2><p]

0G(H1)0G(H,)=

(41)

where two-dimensional integrations are performed within the

sample( -),, stand for the averaging over the fluctuating
field ¢ with correlation function analogous to E@3),
dzq eiq(rfr’)
271_)2 q2
(42

2T
(D )= 00t |

with v, being the thermodynamic density of states per unit

area. In Eq.(42), the integration is limited from above by
|g|=(T/D)¥2. Such an accuracy of the ultraviolet cutoff is
sufficient for the logarithmically divergent integral.

Diffuson and cooperon propagators entering &) are
the solutions of the two-dimensional analog of E2f)

1
Vap) 2 I
at—D[Vaﬁ +ile(r,t) = @P(r,t)]+ 1
C
Y
C
><[P%ﬁ[r,r’;t;{so"(r,t),cpﬁ(r,t)}] R
PErr t{e(r), ¢f(r,n}] '

(43

where times My ¢, see Eq(22), describe the effect of the

magnetic field component parallel to the film plane. The ef-

fect of the magnetic field perpendicular to the plane is de-
scribed by

B ie B
Vy EV-I-?A),, a,p=1,2 v=D,C,

AFP=A“—AP  AZP=A*+AP (44)

where the vector potentials are such that

VX AT=HY,

andH? is the component of is the magnetic field perpendicu-

lar to the plane.

2)2

E e 2t/7’}y2

=D,C

jdzrldzrzf dt
yi(t)=ry

X f Dy (t
y1(0)=r3
o] - |2

X [Aiz()ﬁ))./l_ A}YZ(Y2))./2] +

4TJ
Dv

1
Xg{l—COS[Q(Yl(t')—W(t'))}]] -

4D+4D

dq
(2m)?

(45
Introducing new variables
t)+yo(t
ry=200 -y,

and reducing the functional integrals back to differential
equations, we obtain the result

(2e

2)2

8G(H;)8G(H,) = 1)+ Qc([r|=Lp]T,

(46)

[QD (Ir=L

whereQp (r) obeys the equation

—D(V3 C)2+U(r)+

]Qc p(r=24(r), (47
c

D

and the potential is given by

2T
U(ry=—=—

T

%va

Ly+r
Lt

dg 1-cogqr)
(2m?

(48)

where the last expression and Eg6) are written with the
logarithmic accuracy and we take into account the high-
momentum cutoff ag~L; !, Ly=(D/T)*2

Equations(46)—(48) should be compared with the corre-
sponding expression for the weak localization correction in
two dimensions®

ez
50(H1)=—ﬁ0(rzl),
1
D(v11)2+U(r)+ 1|C(n=4(r), (49)

C
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where the logarithmic divergence should be cut at the elastiments of dependence of conductance fluctuations on tem-

mean free patth. perature and magnetic field and comparing it with the weak
Therefore, we conclude that the relation similar to Eq.localization data obtained on the same sample may give in-
(38) should hold, formation on the nature of inelastic interactions in disordered
metals.

0G(H=0)6G(H=0)—6G(H;)6G(H>) We are not aware of attempts to make such a comparison

5 between inelastic times directly. However, recently Hoadley,

:(e_)ﬁ_D s (Hl_HZ) McConville, and Birge(HMB)?*?* presented very careful
f)3L2T TwL 2 measurements of the magnetic field dependencefofidise

in silver films. A standard assumption in the theory of 1/
Hi+H; noise in metalgfor review, see Ref. 24is that it is produced
2 — 250w (0)). (50 by low-frequency motion of impurities. Mathematically, the
magnitude of 1f noise in such a model is given by a set of
It is important to emphasize that the relati®0) holds  diagrams identical to those for conductance fluctuations
even before one starts an approximate solution of (B@.  (Figs. 3, § with the only difference that external and internal
Note, however, that the result similar to E®8) does not  rings are described by different impurity configuratiéng®
hold, since both6GSG and oy, diverge logarithmically ~As the result the field dependence and the temperature de-
with different cutoffs. This is why in Eq(50) we had to pendence of the noise should be given by the parametric
subtract zero-field contributions, which cancels logarithmicderivative of Eq(50), i.e., it should be expressed through the
divergences. The effect of the spin orbit interactions on ouderivatives of the parallel field dependence of the weak lo-
final result(50) is the same as for one-dimensional geometrycalization.
see discussion after E(38). HMB compared the time scale defined as a pole in the
We write here the explicit expressibhfor the weak lo-  diffuson (in our notations,r7), with the phase relaxation
calization correction in two dimensions for the reference purtime 74, extracted from their own measurements of the weak

+ 50—WL(

2
o 4

In

pose localization correction on the same films. Their procedure
results inty=r7,/2.6, which was interpreted to be consistent
e 1 1 with the theory of Ref. 6. Our result&0) contradict that
50'W|_(H,T):_ > -+ y . : nZ7
2m2% 2 0, interpretatiort.
_ _ . To our opinion, the only possible reason of this discrep-
whereW () is the digamma functiorf);=4eDH, /cfi, and  ancy is the electron-electron interaction in the triplet channel

TQH

7, Is determined by the equation which we did not take into account. This interaction can be
5 singled out in experiments with the materials with stronger
1 1 TeRy T spin-orbit scattering. Other sources of hbise seem to be
Bl .= . . ! :
™ Ta h2Tmh Rl RO, excluded, since the functional form of the experimentally

measured by HMB magnetic field dependence perfectly fits

Similarly to one dimension, we can also extract the inelastheoretical predictions. Dephasing on slow moving impuri-
tic time 71, defined as a pole of CF diffuson in zero mag- ties itself, see discussion in Sec. Il B, would give a tempera-
netic field. An explicit calculation givesr~7,. This rela-  ture dependence different than that in experiment and may be
tion contains a numerical coefficient of order one, which carruled out. We believe that the contradiction between the
only be determined by going beyond the logarithmic accutheory and the experiment revealed in our paper indicates
racy. We do not attempt such a calculation in this paper. that the quantitative study of inelastic processes in mesos-
copic samples remains an interesting topic and deserves fu-

V. DISCUSSION AND CONCLUSIONS ture investigation.

Equationg(38) and(50) are the main results of our paper.
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