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Summary 

Due to increasing urbanisation rates worldwide combined with growing transportation demand, 
liveability of the urban environment is under pressure (UN, 2018). In response, many 
governments worldwide have set goals for increasing the share of trips made using sustainable 
modes of transport, such as walking and cycling. The use of active modes (i.e. walking and 
cycling) provides health benefits for individuals due to increased activity levels, and on a 
network level these modes (standalone or in combination with public transport) can potentially 
reduce traffic jams and the associated externalities (including air and noise pollution) when 
substituting the car. To achieve the desired increase in active mode shares, targeted policies 
need to be implemented. This requires a better understanding of who currently uses these 
modes, who could be persuaded to switch to active modes, and which determinants are driving 
active mode choice.  
 This intended change towards active modes requires an adequate representation of 
walking and cycling in the transportation planning models in order to assess the effect of active 
mode policies on modal shares and distribution over the network. However, this is often not the 
case. Moreover, integration of active modes in these models occurs very slowly. Walking and 
cycling are often missing in transportation planning models, treated as a ‘rest’ category, or 
combined into slow/active modes, all of which result in incorrect estimates of the active mode 
shares, making it impossible to correctly identify the impact of potential policy measures on 
active mode shares. Examples of these policy measures are introduction of new infrastructure 
or changes to existing infrastructure, which impact route choice and distribution over the 
network, and reimbursement of using the bicycle to go to work, which impacts the mode choice 
of individuals.  
 Investigating mode and route choice of active mode users increases the knowledge on 
active mode choice behaviour. By bridging this gap, the transportation planning models can 
potentially be improved. The objective of this thesis is ‘to understand and model mode and 
route choice behaviour of active mode users’. We identify six topics that are imperative to 
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achieve this objective that are related to mode choice, route choice, and the integration of both 
travel choices. First, we investigate the daily mobility patterns of individuals in relation to 
attitudes towards modes, because attitudes are considered to influence travel behaviour 
(Chapter 2). Afterwards, we zoom in on individual trips. We aim to understand which 
determinants drive the choice to walk or cycle (Chapter 3). In this topic we define the mode 
choice set as all feasible modes per individual and trip. However, not all feasible modes are 
used by individuals. Therefore, the third topic focuses on modes used over a long period of 
time, which we coin the experienced choice set. We investigate which determinants are relevant 
for including or excluding modes in this choice set (Chapter 4). Regarding cyclists’ route 
choice, we investigate the determinants influencing this choice (Chapter 5). This research is 
based on the experienced choice set. Accordingly, we compare this method to frequently used 
choice set generation methods to identify the added value of the experienced choice set (Chapter 
6). Finally, we perform a literature review on how mode and route choice can be modelled 
simultaneously (Chapter 7). The following paragraphs detail the findings of this research with 
respect to these six topics. 

The relationship between daily mobility patterns and attitudes towards modes 
The daily mobility pattern of individuals is investigated in relation to their attitude towards 
modes, which can represent their satisfaction with using a mode in terms of for example 
comfort, safety, and fun (Chapter 2). Data of the Netherlands Mobility Panel (MPN) is used to 
perform a latent class cluster analysis on the daily mobility patterns. We identify five classes: 
1) car and bicycle users, 2) exclusive car users, 3) car, walk, and bicycle users, 4) public 
transport+ users, and 5) exclusive bicycle users.  

We found that individuals are more positive towards the modes they use on a daily basis 
compared to unused modes, which results in significant differences in attitudes between classes. 
Individuals that perceive their used mode(s) most positive (consonant users) are potentially less 
inclined to switch modes. However, some individuals have a better perception of modes they 
currently do not use (dissonant users). The classes of exclusive car users and car and bicycle 
users have relatively high shares of dissonant users. These individuals can potentially be 
persuaded to change to other sustainable modes, for example via reimbursement by employers 
for cycling or public transport to work. The multimodal classes (1, 3, and 4) already incorporate 
active modes of transport, which could potentially be further increased. Finally, a large share 
of the exclusive bicycle users does not use their best perceived mode and 7% uses their least 
perceived mode. This can trigger an undesirable change in their mobility pattern, because the 
car is often perceived best by these dissonant users.  

Determinants of the active mode choice behaviour 
We zoom in on individual trips and investigate the determinants that are relevant for active 
mode choice. These relevant determinants have been identified by means of discrete choice 
modelling using data from the MPN (Chapter 3). Contrary to findings from literature, individual 
characteristics, specifically socio-demographics, and season and weather are of limited 
influence for active mode choice in the Netherlands. This might be due to respectively the very 
diverse cycling population and the relatively mild climate in the Netherlands. The most 
important categories of determinants for cycling are trip characteristics, built environment, and 
employment conditions. Being reimbursed by the employer for using the bicycle to go to work 
has a strong positive association with cycling in general. For walking the most important 
determinants are trip characteristics, built environment, and household characteristics. Both 
active modes are influenced by different determinants and if they are influenced by the same 
determinants, the impact of these determinants differs. Consequently, these modes should be 
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considered independently. Policy measures should thus target either walking or cycling when 
the aim is to increase the modal share of either, but not both modes simultaneously.  

The experienced mode choice set and its determinants 
A feasible mode (like in Chapter 3) is not necessarily a used mode, because an individual might 
own a mode but not use it for a trip. Consequently, when the aim is a modal switch over an 
enduring period of time, it is instead more relevant to know the likelihood of including or 
excluding a mode in the mode choice set. We propose to evaluate this by investigating the 
experienced choice set, which is the set of modes used over a long period of time (Chapter 4). 
This choice set might differ for different trip purposes, therefore we focus on commuting trips. 
Many individuals only use one mode for their work trip (83.5%), suggesting habitual and/or 
captive behaviour, which will not be captured when specifying the feasible choice set. We 
estimate a discrete choice model to identify which determinants are relevant for the formation 
of the experienced choice set.  

We find that the probability for including the bicycle in the experienced mode choice 
set increases for higher education, owning a bicycle, and being reimbursed by the employer for 
using the bicycle. It decreases for low urban density, working fulltime, or when the car or public 
transport is reimbursed by the employer. The probability for including walking (for the full 
commute) increases with the presence of children under the age of 12 in the household or when 
an individual lives in a one- or two person household. It decreases when the individual owns a 
bicycle, and when the individual is reimbursed for using the car. The inclusion of cycling in the 
mode choice set is thus affected by different determinants compared to walking. Furthermore, 
the inclusion of these modes in the choice set depends on more determinants than ownership 
and availability, which are generally used to identify the feasible choice set. 

Determinants of cyclists’ route choice 
To improve the representation of cyclists’ route choice in existing transportation planning 
models, it is important to know which determinants influence this choice. Using GPS data from 
the inner-city of Amsterdam, the relevant network-related and context determinants are 
identified (Chapter 5). Distance is valued negatively, which is in line with findings in literature. 
However, often the impact is higher elsewhere, potentially due to the mixed land use of 
Amsterdam. Furthermore, the number of intersections per kilometre is valued negatively and 
overlap between routes is valued positively. The share of cycle path has a different (positive) 
impact depending on the choice set identification method used. When using the experienced 
route choice set in the estimation of the route choice model, it is found to be insignificant. 
Because this method is based on observed routes of individuals, these routes are already 
optimised to a certain extent. It is likely that all routes include a relatively high share of cycle 
path, making them irrelevant for route choice. Furthermore, if this is not the case, the street 
design is such that it does not induce negative impacts for cyclists. Regarding the context 
determinants, we found that in the morning peak hour distance is valued more negatively 
compared to other times of the day. This might be due to scheduling constraints in the morning.  

The added value of the experienced route choice set 
The added value of the experienced route choice set, coined data-driven path identification 
approach (DDPI) is investigated in comparison to two frequently used choice set generation 
algorithms: breadth-first search on link-elimination and labelling (Chapter 6). The success of 
these two algorithms depends largely on the criteria used to generate routes (e.g. distance and/or 
share of cycle paths), the complexity of the network, and the quality of the network information 
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that is available. If any of these criteria is insufficient, the resulting generated choice set is not 
fully able to reproduce the observed behaviour, as is the case for Amsterdam.  
 A route choice model was estimated using the choice sets resulting from these three 
methods, using the same set of network-related attributes. On the whole, the signs of the 
parameters of the route choice models are similar between route choice generation methods. A 
downside of the model using the experienced choice set is that it has lower parameter values 
than the models using the other methods, which is mostly due to the limited variability in the 
choice set, resulting in lower elasticities and model fit. Furthermore, it has a very low 
performance when predicting using out-of-sample data, suggesting that it is not suitable for 
prediction. A positive aspect of the model using the experienced choice set is that it offers an 
advantage in case the dependent variables of the choice set generation algorithms are of 
insufficient quality (criteria, network complexity, or network information). This is because the 
experienced choice set is able to provide behavioural insights, while it does not depend on any 
of these issues. 

Integrating mode and route choice 
Many theoretical frameworks, such as the four-step model, assume relationships between travel 
choices. This thesis provides evidence that this is also the case for mode and route choice, for 
example because they are influenced by several similar determinants. Thus, ideally these two 
choices should be modelled simultaneously. A literature review is performed to study how 
previous research has handled this integration, because it is yet unknown how this can be 
adequately addressed (Chapter 7). We focus on discrete choice models. Because only four 
studies investigate mode and route choice we broadened the scope to include other travel choice 
dimensions (trip chaining, destination choice, and departure time choice).  

The literature study illustrates that very basic modelling structures are used in mode-
route studies, namely Multinomial Logit and Nested Logit (NL). The first modelling structure 
assumes a fully simultaneous choice between mode and route, where each of the joint 
alternatives are independent. The second modelling structure is used to introduce correlation 
between modes, meaning that routes are substituted before modes when changes are introduced, 
which already increases the realism. However, these models do not account for overlap between 
routes. Consequently, several advancements are imperative to allow for the simultaneous 
modelling of mode and route choice.  

Two requirements for integrating mode and route choice follow from the literature 
review. First, it is essential that overlap between routes can be accounted for (e.g. via Path-Size 
Logit). Substitution patterns can vary per person and per trip, as increasing evidence is found 
that decision-making is heterogeneous. Therefore, second, ideally the model structure 
incorporates a flexible correlation structure and is able to account for heterogeneity in the 
decision-making process. Several more advanced modelling structures are mentioned in 
literature, which could be applied to mode and route choice, such as Cross-Nested Logit, Probit, 
Mixed Logit (ML), and segmentation approaches. Currently only the segmentation approaches 
meet the latter of the two requirements. A combination of the segmentation approaches with 
ML or Probit could largely increase the behavioural realism of the modelled choice dimensions. 
A downside of these more behaviourally realistic models is that they are less applicable in 
practice, as increased complexity means reduced interpretability. This reduces the likelihood 
that these models are adopted in practice. Therefore, more research into behaviourally realistic 
and interpretable model structures is needed, to allow for adoption in practice.  
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Implications of this thesis 
This thesis extents the body of knowledge on mode and route choice behaviour of active mode 
users. The conclusions of this thesis imply the following:  

• Walking and cycling should be targeted separately via policy measures when the aim is 
to increase the modal share of either 

• The specification of the mode and route choice sets is non-trivial and requires more 
emphasis, both in research and practice  

o The composition of the mode choice set depends on more determinants than 
previously assumed, as it does not only depend on ownership and availability, 
but also on socio-demographics, employment conditions and urban density 

o Walking and cycling should be included as distinct alternatives in the mode 
choice set, as their inclusion depends on different determinants 

o The choice set generation method influences the relevance of determinants in 
route choice modelling phase 

• The choice set can be defined based on revealed behaviour, where it has most added 
value if insufficient information is available and when it is used in estimation of the 
choice set 

• Policy measures that target a mode switch towards active modes might not reach certain 
users, because they are already satisfied with their current mobility pattern 

• Both desired (from car to active modes) and undesired (from bicycle to other modes) 
mode switches are expected based on dissatisfaction with the current daily mobility 
pattern 

• Mode and route choice are related, therefore these travel choices should be investigated 
and modelled simultaneously 
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Samenvatting 

De leefbaarheid van de stedelijke omgeving staat onder druk, dit wordt veroorzaakt door de 
groeiende vraag naar vervoer in combinatie met de toenemende verstedelijking (UN, 2018). 
Wereldwijd hebben veel overheden daarom doelen gesteld om het aandeel verplaatsingen met 
duurzame modaliteiten, zoals lopen en fietsen, te vergroten. Het fysieke karakter van deze 
actieve modaliteiten biedt gezondheidsvoordelen voor het individu. Tevens kan het aantal files 
en de hoeveelheid lucht- en geluidsvervuiling worden verminderd wanneer men niet de auto 
nemen, maar er voor kiezen om te lopen of te fietsen, eventueel in combinatie met openbaar 
vervoer. Teneinde diverse gerichte beleidsmaatregelen te kunnen implementeren, is een beter 
begrip vereist van fietsers, voetgangers en de factoren die de keuze voor deze modaliteiten 
beïnvloeden.  
 Om het effect van gerichte beleidsmaatregelen te bepalen, dienen lopen en fietsen 
adequaat te worden opgenomen in transportmodellen. Vaak zijn deze modaliteiten hierin niet 
opgenomen, of worden ze gecombineerd (actief/traag/rest) opgenomen. Dit maakt het 
onmogelijk het effect van een beleidsmaatregel precies door te rekenen. De bouw van nieuwe 
infrastructuur of  het introduceren van een vergoeding door de werkgever voor fietsen naar het 
werk zouden mogelijk goede beleidsmaatregelen kunnen zijn die invloed hebben op routekeuze 
en modaliteitskeuze.  

Onderzoek naar modaliteits- en routekeuze voor lopen en fietsen vergroot de kennis 
omtrent het keuzegedrag van deze actieve modaliteiten. Met de overbrugging van dit 
kennishiaat kunnen transportmodellen mogelijk worden verbeterd. Het doel van deze thesis is 
‘het begrijpen en modelleren van modaliteits- en routekeuzegedrag van gebruikers van actieve 
modaliteiten’. We identificeren zes onderwerpen die hiertoe zijn onderzocht, gerelateerd aan 
modaliteitskeuze, routekeuze en de integratie van beide keuzes. Eerst, hebben we onderzoek 
gedaan naar dagelijkse mobiliteitspatronen in relatie tot attitudes naar modaliteiten, omdat 
attitudes worden gezien als belangrijke voorspellers van reisgedrag (Hoofdstuk 2). Daarna 
zoomen we in op individuele verplaatsingen en onderzoeken we welke factoren bepalend zijn 
voor actieve modaliteitskeuze (Hoofdstuk 3). In dit onderzoek is de keuzeset gedefinieerd als 
de set van beschikbare modaliteiten per individu. Maar niet iedereen overweegt om alle 
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beschikbare modaliteiten ook echt te gebruiken. Middels een longitudinaal onderzoek is 
vervolgens een set van gebruikte modaliteiten geidentificeerd die we de gebruikte keuzeset 
noemen. In het bijzonder is onderzocht welke factoren relevant zijn bij de formatie van deze 
keuzeset (Hoofdstuk 4). Tevens hebben we op basis van gebruikte routes onderzocht welke 
factoren de routekeuze van fietsers beïnvloedt (Hoofdstuk 5). Om de toegevoegde waarde te 
bepalen van een gebruikte keuzeset te kunnen bepalen, vergelijken we deze methode vervolgens 
met twee andere vaak gebruikte methodes om keuzesets te genereren (Hoofdstuk 6). Tot slot 
onderzoeken we middels een literatuuronderzoek hoe modaliteitskeuze en routekeuze 
tegelijkertijd kunnen worden gemodelleerd (Hoofdstuk 7). De volgende paragrafen beschrijven 
de belangrijkste bevindingen van deze thesis omtrent deze zes onderwerpen. 

De relatie tussen dagelijkse mobiliteitspatronen en attitudes naar modaliteiten 
Het dagelijkse mobiliteitspatroon van mensen is onderzocht in relatie tot hun attitude naar 
verschillende modaliteiten (Hoofdstuk 2). De attitude naar modaliteiten kan worden 
geïnterpreteerd als de mate van tevredenheid, gemeten in bijvoorbeeld: comfort, veiligheid en 
plezier van het gebruik van een modaliteit. Data van het Mobiliteitspanel Nederland (MPN) is 
gebruikt om een latente klasse clusteranalyse uit te voeren op de dagelijkse mobiliteitspatronen. 
We identificeren vijf klassen: 1) auto en fiets gebruikers, 2) alleen-auto gebruikers, 3) auto, 
loop en fiets gebruikers, 4) openbaar vervoer+ gebruikers en 5) alleen-fiets gebruikers.  
 Het onderzoek toont significante verschillen in attitudes van de vijf mobiliteitsklassen. 
Zo wordt bijvoorbeeld aangetoond dat mensen over het algemeen positiever zijn over 
modaliteiten die zij zelf gebruiken dan over modaliteiten die zij niet gebruikten. Mensen met 
een betere perceptie van de gebruikte modaliteit(en) (consonant gebruik) staan mogelijk minder 
open voor het wisselen van modaliteit. Sommige mensen hebben echter een betere perceptie 
van niet-gebruikte modaliteit(en) (dissonant gebruik). De alleen-auto gebruiker en auto en fiets 
gebruiker kennen een relatief hoog aandeel dissonante gebruikers. Deze mensen kunnen 
potentieel worden overtuigd te gaan lopen of fietsen, bijvoorbeeld middels een 
werkgeversvergoeding voor het lopen of fietsen naar werk. De mensen in multimodale klassen 
(1, 3 en 4) fietsen en/of lopen al, maar zouden dit aandeel kunnen vergroten. Tot slot is een 
groot deel van de alleen-fiets gebruikers niet het meest positief over de fiets, 7% is zelfs het 
meest ontevreden over de fiets. Omdat de auto binnen deze groep vaak de voorkeur geniet, kan 
dit leiden tot een onwenselijke verandering van het mobiliteitspatroon.  

Drijfveren van lopen en fietsen  
We zoomen in op individuele verplaatsingen en onderzoeken welke factoren bepalend zijn voor 
actieve modaliteitskeuze. Door middel van discrete keuzemodellen zijn de relevante factoren 
voor lopen en fietsen geïdentificeerd met data van het MPN (Hoofdstuk 3). In tegenstelling tot 
bevindingen in andere onderzoeken, zijn het weer, het seizoen en sociaal-demografische 
kenmerken in dit onderzoek weinig bepalend gebleken voor de actieve mobiliteitskeuze. 
Mogelijk is het relatief milde klimaat in Nederland en het algemene fietsgedrag van 
Nederlanders hier de reden van. De keuze voor fietsen wordt het meest beïnvloed door 
kenmerken van de verplaatsing, de omgeving en de werkcondities. Zo heeft het krijgen van een 
vergoeding van de werkgever om te fietsen naar werk, een sterke positieve invloed heeft op 
fietsen in het algemeen. Voor lopen geldt dat de kenmerken van de verplaatsing, omgeving en 
het huishouden het belangrijkst zijn. De verschillende modaliteiten worden beïnvloed door 
verschillende factoren, daarnaast verschilt het belang dat aan factoren wordt gehecht per 
modaliteit. Dit bevestigd dat lopen en fietsen onafhankelijke modaliteiten zijn, die 
onafhankelijk van elkaar onderzocht moeten worden. Effectieve beleidsmaatregelen teneinde 
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een toename van het aandeel verplaatsingen van voetgangers of fietsers, dienen gericht te zijn 
op lopen of op fietsen maar niet op allebei tegelijk. 

Invloedfactoren van de gebruikte modaliteitskeuzeset  
Een beschikbare modaliteit (Hoofdstuk 3) is niet per se een gekozen modaliteit, aangezien 
iemand een modaliteit wel kan bezitten maar niet hoeft te gebruiken voor een verplaatsing. Als 
het doel is om een modaliteitsverandering te realiseren is het relevanter om te weten wat de 
kans is dat een modaliteit wordt opgenomen in de modaliteitskeuzeset, dan de keuze per 
verplaatsing. We onderzoeken dit middels de gebruikte keuzeset, die we definieren als de set 
van gebruikte modaliteiten gedurende een lange periode (Hoofdstuk 4). Omdat deze keuzeset 
zou kunnen verschillen per reismotief, focussen wij op de woon-werkverplaatsing. Veel mensen 
gebruiken maar één modaliteit voor hun woon-werkverplaatsing (83,5%). Dit lijkt op een 
gewoonte of het niet hebben van alternatieven (gevangen gebruiker), wat niet kan worden 
gevangen met de beschikbare keuzeset. We schatten een discreet keuzemodel om te 
identificeren welke factoren relevant zijn voor de formatie van de gebruikte keuzeset.  
 De kans dat de fiets wordt opgenomen in de keuzeset neemt toe wanneer iemand een 
hoog opleidingsniveau heeft, zelf een fiets heeft en wanneer iemand een vergoeding krijgt van 
de werkgever voor het gebruiken van de fiets voor de woon-werk verplaatsing. Deze kans wordt 
echter kleiner wanneer iemmand in laag-stedelijk gebied woont, fulltime werkt, of de 
werkgever het gebruik van de auto of het openbaar vervoer vergoedt. De kans dat lopen 
onderdeel uitmaakt van de keuzeset, neemt toe wanneer kinderen jonger dan 12 jaar aanwezig 
zijn in het huishouden en wanneer iemand in een een of twee persoons-huishouden woont. Deze 
kans neemt af wanneer iemand zelf een fiets heeft of wanneer iemand een vergoeding ontvangt 
voor het gebruiken van de auto voor de woon-werk verplaatsing. Kortom, het opnemen van de 
fiets in de modaliteitskeuzeset wordt beïnvloed door andere factoren dan het opnemen van 
lopen. Daarnaast zien we dat meer factoren dan alleen eigenaarschap en beschikbaarheid van 
modaliteiten (beschikbare keuzeset) relevant zijn voor de gebruikte keuzeset. 

Drijfveren van routekeuze van fietsers 
Om de weergave van de routekeuze van fietsers in de bestaande transportmodellen te verbeteren 
is het belangrijk om te weten welke factoren relevant zijn voor deze keuze. Met gps-data van 
fietsroutes in het centrum van Amsterdam hebben we onderzocht welke netwerk- en 
contextfactoren belangrijk zijn (Hoofdstuk 5). Afstand heeft een negatieve relatie met 
routekeuze. De impact van afstand is echter kleiner dan in andere onderzoeken, mogelijk in 
verband met het gemengde ruimtegebruik in Amsterdam. Ook het aantal kruispunten per 
kilometer beïnvloedt routekeuze negatief, terwijl overlap van routes een positieve relatie heeft. 
De impact van het percentage fietspad is altijd positief maar verschilt per keuzesetgeneratie 
methode. Als de gebruikte routekeuzeset wordt gebruikt is deze factor niet significant. 
Waarschijnlijk omdat deze methode is gebaseerd op geobserveerd gedrag, wat betekent dat 
routes al tot op zekere hoogte geoptimaliseerd zijn. Het lijkt erop dat alle routes grotendeels via 
fietspaden gaan, waardoor deze factor onbelangrijk is. Ook zorgt het straatontwerp in Nederland 
ervoor dat er geen effect wordt gevonden van de aan- of afwezigheid van een fietspad. In de 
ochtendspits (contextfactor) wordt afstand negatiever gezien dan tijdens de rest van de dag, 
mogelijk door afspraken met vaste tijden in de ochtend.  

De toegevoegde waarde van de gebruikte routekeuzeset  
De toegevoegde waarde van de gebruikte routekeuzeset, ook wel de data-driven path 
identification methode (DDPI) genoemd, is onderzocht in vergelijking met twee vaak gebruikte 
keuzesetgeneratie algoritmes: de breadth-first search on link-elimination en labelling 
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(Hoofdstuk 6). Het succes van deze twee methodes hangt af van de criteria die gebruikt zijn bij 
het genereren van routes (bijvoorbeeld afstand of percentage fietspad). Daarnaast hangt het af 
van de complexiteit van het netwerk en de kwaliteit van de netwerkinformatie die beschikbaar 
is. Als een van deze criteria niet voldoet zullen de gegenereerde routes niet het geobserveerde 
gedrag reproduceren. Voor het network in Amsterdam waren deze methodes niet succesvol, 
doordat de kwaliteit van het network te laag was.  
 De drie gegenereerde keuzesets zijn gebruikt om routekeuzemodellen te schatten met 
dezelfde netwerkfactoren. De richting van de parameters in de routekeuzemodellen zijn gelijk 
bij gebruik van de verschillende keuzesets. Een nadeel van het model op basis van de gebruikte 
keuzeset is dat de parameterwaarden lager zijn, vooral doordat deze methode weinig 
variabiliteit kent in de netwerkfactoren. Dit resulteert in lagere elasticiteiten en lagere model 
fit. Daarnaast scoort de gebruikte keuzeset slecht in het validatieproces, wat indiceert dat het 
geen bruikbare methode is om mee te voorspellen. Een voordeel van de gebruikte keuzeset is 
dat het inzicht biedt in de voorkeuren van fietsers, wanneer netwerkcomplexiteit en 
netwerkinformatie een te laag kwaliteitsniveau hebben. In tegenstelling tot veelgebruikte 
keuzesetgeneratie algoritmes, is deze methode hier niet van afhankelijk.  

Integratie van modaliteits- en routekeuze 
Veel theoretische raamwerken nemen aan dat modaliteits- en routekeuze gerelateerd zijn. Deze 
thesis ondersteund deze aanname. Zo hebben wij een aantal factoren geïdentificeerd die zowel 
de modaliteits-, als de routekeuze bëinvloeden. Idealiter worden deze keuzes daarom 
tegelijkertijd worden gemodelleerd. Omdat nog niet duidelijk is hoe dit op een adequate manier 
kan worden gedaan, hebben wij een literatuuronderzoek uitgevoerd naar wijzen waarop deze 
integratie kan worden behandeld (Hoofdstuk 7). We focussen op de discrete keuzemodellen. 
Omdat er slechts vier studies zijn gevonden omtrent modaliteits- en routekeuze, hebben we ook 
andere reiskeuzes opgenomen (tourvorming, bestemmingskeuze en vertrektijdkeuze).  
 Het literatuuronderzoek toont aan dat simpele modelstructuren zijn gebruikt om 
modaliteits- en routekeuze te modelleren, namelijk Multinomial Logit en Nested Logit (NL). 
De eerste modelstructuur neemt aan dat keuzes volledige tegelijkertijd worden gemaakt, 
waarbij elk gecombineerd alternatief van een modaliteit en een route onafhankelijk is van de 
rest. De tweede structuur is gebruikt om correlatie tussen modaliteiten toe te laten, wat betekent 
dat eerder tussen routes wordt gewisseld dan tussen modaliteiten. Deze modellen houden echter 
geen rekening met overlappende routes. Daarom zijn een aantal verbeteringen in de huidige 
modellen noodzakelijk zijn om modaliteits- en routekeuze tegelijkertijd te kunnen modelleren.  
 Twee aspecten zijn belangrijk gebleken voor de mogelijke integratie tussen modaliteits- 
en routekeuze. Het is belangrijk dat overlap tussen routes wordt opgenomen (bijvoorbeeld via 
Path-Size Logit). Daarnaast is het belangrijk dat de modelstructuur in staat is om flexibele 
correlatie structuren op te nemen en om heterogeniteit in de beslissingsstructuur op te nemen. 
In recent onderzoek wordt steeds vaker aangetoond dat de beslissingsstructuur heterogeen is 
(verschillende substitutiepatronen per individu). Een aantal geavanceerdere modellen die 
worden genoemd in de literatuur kunnen worden toegepast op modaliteits- en routekeuze, zoals 
Cross-Nested Logit, Probit, Mixed Logit (ML) en segmentatie methoden. Op het moment 
voldoen alleen de segmentatie methoden aan de laatste eis. Modaliteits- en routekeuze in 
modellen kan realistischer worden via een combinatie van de segmentatie methoden met ML 
of Probit. Een nadeel van deze modelstructuren is dat deze minder makkelijk toepasbaar zijn in 
de praktijk, omdat toename in complexiteit ten koste gaat van interpretatie. Dit verlaagt de kans 
dat deze modellen worden geïmplementeerd in de praktijk. Er is meer onderzoek nodig naar 
modellen die zowel realistisch als interpreteerbaar zijn, om implementatie in de praktijk 
mogelijk te maken. 
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Implicaties van deze thesis 
Deze thesis verrijkt de kennis over modaliteits- en routekeuzegedrag van gebruikers van actieve 
modaliteiten. De conclusies in deze thesis leiden tot de volgende implicaties: 

• Lopen en fietsen moeten apart worden opgenomen in beleidsmaatregelen wanneer het 
doel is om een toename van het aandeel verplaatsingen van één van beide te realiseren 

• De specificatie van de modaliteits- en routekeuzesets is niet-triviaal en vereist meer 
aandacht, zowel in wetenschap als praktijk 

o De samenstelling van de modaliteitskeuzeset is afhankelijk van meer factoren 
dan voorheen gedacht. Het is niet alleen afhankelijk van eigenaarschap en 
beschikbaarheid van modaliteiten, maar ook van sociaal-demografische en werk 
gerelateerde factoren en de stedelijkheidsgraad van de woonplaats 

o Lopen en fietsen moeten als losse alternatieven worden opgenomen in de 
modaliteitskeuzeset, de opname van deze modaliteiten hangt af van andere 
factoren 

o De keuzeset generatie methode beïnvloedt de impact van factoren in 
routekeuzemodellen 

• De keuzeset kan worden gespecificeerd op basis van geobserveerd gedrag. Vooral 
wanneer te weinig informatie beschikbaar is en wanneer het keuzesets worden geschat 
heeft het speciferen op basis van geobserveerd gedrag toegevoegde waarde. 

• Beleidsmaatregelen die zich richten op een modaliteitsverandering zullen mogelijk niet 
de consonante reiziger bereiken, omdat deze tevreden is met het huidige 
mobiliteitspatroon 

• Zowel gewenste (van auto naar actieve modaliteiten) als ongewenste (van fiets naar 
andere modaliteiten) modaliteitsveranderingen worden verwacht op basis van de 
ontevredenheid met het huidige mobiliteitspatroon 

• Modaliteits- en routekeuze zijn gerelateerd, daarom worden deze keuzes idealiter 
gezamenlijk onderzocht en gemodelleerd 
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Chapter 1 – Introduction  

1 jdskfl 
Worldwide, urbanisation rates increased from approximately 34% in 1960 to 55% in 2017 
(TheWorldbank, 2018). The urban population is not equally distributed over the world, as for 
example North America and Europe have a relatively high share of the population living in 
urban environments (respectively 82% and 74%), while Africa has a much lower share (43%).  
The UN predicts that 68% of the world population will be living in urban environments by 2050 
(UN, 2018). This trend affects the liveability of the urban environment, as growing population 
also generally means growing transportation demand. Therefore, it is causing issues related to 
increasing congestion and resulting emissions.  

As a result of increasing urbanisation, governments worldwide aim to sustain or increase 
the liveability of urban environments by focusing on sustainable modes of transport, like active 
modes (i.e. walking and cycling). Due to the physical activity required for using these modes, 
they are known to benefit the health of individuals. Furthermore, if active mode travel, for 
example in combination with public transport, replaces car travel, congestion and emissions 
(including noise) can be reduced. As an example, the Pan-European region aims to double 
cycling in the region by 2030 and increase it in every country (UNECE, 2018). The individual 
countries have varying goals that help in achieving the aim to double cycling levels of the entire 
region, where for example France aims to increase from 3% in 2012 to 10% in 2020 and the 
UK aims to double their cycling share to 4% by 2025 (ECF, 2019). 

Currently, active mode shares vary largely across countries and also within countries, 
where generally active mode use in urban environments is higher than in rural areas (Heinen et 
al., 2010). Several countries have achieved relatively high cycling trip shares, such as the 
Netherlands (27%), Denmark (18%), and Germany (10%). However, large variations are 
observed between cities in these countries. For example, in the Netherlands Groningen has a 
larger bicycle trip share than Rotterdam (39% vs 16%), while in Germany Muenster has a larger 
share than Wiesbaden (27% vs 3%). Other countries, such as the USA, Australia, UK, and 
Canada have a very low cycling share (1-2%). Cities in these countries also show variation in 
the cycling share, however to a lesser extent compared to the cycling rich countries (Pucher and 
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Buehler, 2008). Consequently, the penetration rate of active modes is at different levels of 
advancement across the world.  

To achieve the desired increase in active mode shares, policies need to be implemented 
that aim at increasing active mode use. This requires a better understanding of who could be 
persuaded to cycle or walk and which determinants are relevant for choosing an active mode. 
Furthermore, additional requirements on the existing (and future) built environment and 
infrastructure are imposed, as the utilisation will change due to an increase in active mode use.  
 
Traditionally, transportation planners focus on motorised traffic. Due to for example, the size 
of infrastructure investments, the size of the time and thus economic losses caused by traffic 
jams, and the impact on traffic safety, the motorised modes were the logical point of attention. 
Their models are often based on either the four-step model, for example the Swedish national 
model (Beser and Algers, 2002) and the Dutch national model (Hofman, 2002; van 
Cranenburgh and Chorus, 2017) or the activity-based approach, for example the Tel Aviv model 
(Shiftan and Ben-Akiva, 2011) and the Portland model (Bowman et al., 1998), visualised in 
Figure 1.1. Due to the fact that shares of cycling and walking (standalone or in combination 
with public transport) are also related to the shares of the car and public transport, one would 
expect incorporation of active mode behaviour in the transportation planning models. 
Unfortunately, this is currently not the case and integration occurs very slowly. Active mode 
choice behaviour is often missing, treated as a rest category, or combined into slow/active 
modes, which results in incorrect estimates for the active modes and it makes it impossible to 
derive the impact of potential policy measures (De Jong et al., 2007). 

One could agree that one of the reasons why active modes have not been incorporated 
correctly into these models, is that data and thus information and knowledge on these modes, 
has been scarce. In recent years, developments in large-scale data collection tools, such as for 
example Wi-Fi and GPS, together with technological advancements such as smartphones, that 
enable GPS or data collection applications, have started to make it possible to collect (on a 
larger scale) revealed preference data concerning pedestrians and cyclists. In research, these 
tools are now increasingly explored for data collection of active modes, therefore increasing the 
knowledge on active mode behaviour.  
 

 

Figure 1.1: Conceptual frameworks of transport modelling and the scope of this thesis 

The modules of the four-step model and activity-based approach that are considered most 
relevant for active modes are mode choice (modal split) and route choice (assignment), because 
these approaches assume that departure time choice, destination choice, and activity scheduling 
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take place before choosing a mode and route. Some studies have investigated the preceding 
choices, for example destination choice for active modes  (e.g. Borgers and Timmermans, 1986; 
Hoogendoorn and Bovy, 2004) however the vast majority of research into active modes 
focusses on mode and route choice (Duives et al., 2018). Because of the aforementioned future 
goals for active mode shares and current issues in transportation modelling, this thesis aims to 
increase the knowledge of mode and route choice behaviour of active mode users (see Figure 
1.1). 
 
From a scientific point of view, walking and cycling are very different modes from the 
motorised modes that traditionally have received attention from research and practitioners alike. 
Both active modes have more degrees of freedom regarding their movement, e.g. a pedestrian 
can make a 180-degrees turn and make use of infrastructure and non-infrastructure (e.g. grass 
fields) alike, whereas a cyclist is less flexible compared to the pedestrian and more flexible than 
motorised traffic. Next to that, both walking and cycling require effort from the individual to 
move, making it again different from motorised modes. Consequently, it is expected that the 
behaviour of active mode users is different (more complex) from the behaviour of motorised 
modes and also that it is driven by different factors. 

The bicycle is comparable, in terms of speed and distance travelled, to motorised modes 
(public transport and car) in the urban environment. Walking, however, fulfils a different 
function compared to cycling, as it is mostly used locally. This has resulted in a different 
research focus for each active mode. For cycling, the mode and route choices described above 
are very relevant. The potential of the bicycle as competitor for motorised modes in urban 
environments, has resulted in increased investment budgets from governments (for example in 
the UK (Department for Transport, 2017)). Walking is mostly investigated on a local scale, e.g. 
an event terrain, city centre, or train station. This different scope for walking also results in 
investments taking place on a more local level. However, when policies are designed and 
investments plans are made, often walking and cycling are combined, for example in the UK 
(Department for Transport, 2017) and Australia and New Zealand (CWANZ, 2018). To 
understand whether it is valid to combine walking and cycling in the context of mode and route 
choices, more research is needed. 
 In this thesis, all modes (car, public transport, bicycle, and on foot) are investigated 
regarding mode choice, but the focus lies with better understanding the choice for walking and 
cycling. Due to the aforementioned scope differences between walking and cycling, this 
research addresses the route choice of cyclists only. The larger scale and competition with 
motorised modes, make this a more stringent topic to solve for research and practice alike. 
Various different types of bicycles are present, of which the normal bicycle and electric bicycle 
form the largest shares. In this research, the focus lies with normal bicycles, as these form the 
majority of the fleet.  

1.1. State-of-the-Art in Mode and Route Choice of Active Mode Users 
Before presenting in detail the research objective and questions, first the current state-of-the-
art in active mode choice research and cyclists’ route choice is briefly elaborated upon. This 
overview of the literature helps in identifying the research gaps that are relevant for this thesis.  

1.1.1. Active Mode Choice  

The growing interest of governments worldwide towards active modes, has led to a significant 
increase in research on active mode choice. Studies aim to identify what makes people walk 
and cycle, so that policy measures might be derived. To investigate this, both stated preference 
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and revealed preference studies are conducted. The stated preference studies are either 
interested in the effect of currently non-existing features on mode choice or want to capture 
attitudes and preferences of individuals or both. The evaluation of non-existing features 
generally takes place in environments where no or limited investments have been made to the 
active mode infrastructure, which is correlated with the presence of active mode use. Features 
of interest are bicycle path and side walk designs (dell’Olio et al., 2013; Kamargianni et al., 
2015; Wardman et al., 2007). Attitudes and preferences are supposed to be strong predictors of 
behaviour (Ajzen, 1991). Consequently, many studies aim to understand the choice for an active 
mode by relating this to attitudes or perceptions, so as to investigate potential willingness to 
cycle or walk (Fernández-Heredia et al., 2014; Lindelöw et al., 2014; Motoaki and Daziano, 
2015). The revealed preference studies examine the current behaviour and determinants of this 
behaviour, which can be categorised into socio-demographics, social surroundings, trip 
characteristics, built environment, and employment conditions (Heinen et al., 2013; Maley and 
Weinberger, 2011). Some of the revealed preference studies also address the perceptions of 
individuals but relate this to actual trips rather than hypothetical situations (Muñoz et al., 2016b; 
Sigurdardottir et al., 2013). 
 Many of these studies take place in environments where active mode use is rare, such 
as the USA (Motoaki and Daziano, 2015), Spain (dell’Olio et al., 2013; Muñoz et al., 2016b), 
or Cyprus (Kamargianni et al., 2015). A very limited number of studies on active mode choice 
originate from countries with high active mode use, such as the Netherlands (Heinen et al., 
2013) and Denmark (Sigurdardottir et al., 2013). In the editorial related to the special issue 
‘Cycling as Transport’ in Transport Reviews, Fishman (2016) states that the Dutch are blind to 
cycling, as it is such an ordinary activity that it is not warranted much attention. The situation 
in the Netherlands, and other cycling rich environments, is rather extraordinary, as the cycling 
culture has long been established, the environment is safe for cycling, the cycling population is 
very diverse, and infrastructure is well-connected. However, Fishman (2016) states that not 
much is known yet about active mode choice in such environments. Consequently, there is a 
need to understand the determinants that influence active mode choice in environments where 
active modes are dominantly present. 
 
Studies investigating active mode choice often apply discrete choice models. In this framework 
the choice between several alternatives is modelled, where the alternatives need to be identified 
by the researcher (i.e. the choice set). In case of stated preference data, the alternatives are 
decided on beforehand. However, in case of revealed preference data, assumptions need to be 
made regarding the choice set of each individual. In the literature a variety of methods is 
employed to deal with the choice set specification. Many studies investigate this on a binary 
level, which translates to walking or not (Maley and Weinberger, 2011; Rodriguez and Vogt, 
2009), or cycling or not (Emond and Handy, 2012; Heinen et al., 2013; Motoaki and Daziano, 
2015). This approach avoids the specification of the mode choice set, as all other modes are 
combined and used as a reference. Other studies have incorporated multiple modes when 
investigating active mode choice, requiring them to identify the choice set. In this situation a 
variety of methods has been applied, for example including all modes for everyone (Wardman 
et al., 2007), including only individuals that live within a certain distance from the destination 
of interest, such as a school, to make sure all modes are available (Kamargianni et al., 2015; 
Kamargianni and Polydoropoulou, 2013), using logical constraints related to availability of 
private modes and maximum distance/travel time covered by certain  modes (Gehrke and 
Clifton, 2014), or using a probabilistic method to introduce latent availability and consideration 
of modes (Calastri et al., 2017). Different compositions of the choice set is known to impact 
model estimation and is thus also consequential for the results of potential policy measures 



Chapter 1 - Introduction 5 

(Cantillo and de Dios Ortúzar, 2005; Swait and Ben-Akiva, 1987a). Hence, more knowledge is 
needed concerning the formation of the mode choice set. 

1.1.2. Cyclists’ Route Choice  

A combination of growing interest towards cycling by governments worldwide and 
developments in recent years on large-scale data collection methods, such as GPS, have resulted 
in a significant increase in cyclists’ route choice research in the last couple of years. At the start 
of the 21st century, research into route choice of cyclists was still mainly done using stated 
preference surveys, due to absence of these large-scale data collection methods (Hunt and 
Abraham, 2007; Sener et al., 2009; Stinson and Bhat, 2003). Since 2010, most studies have 
collected and used revealed preference data, with GPS-data being most commonly used 
(Bernardi et al., 2018; Ghanayim and Bekhor, 2018; Li et al., 2017; Zimmermann et al., 2017), 
while some still use stated preference studies, for example to identify attitudes or to measure 
other aspects that are not directly observable (Motoaki and Daziano, 2015; van Overdijk et al., 
2017).  
 Many of these studies take place in environments where cycling is relatively 
uncommon, such as the USA (Chen et al., 2018; Hood et al., 2011; Khatri et al., 2016), Canada 
(Casello and Usyukov, 2014; Li et al., 2017), Brazil (González et al., 2016), Switzerland 
(Menghini et al., 2010; Montini et al., 2017), and Israel (Ghanayim and Bekhor, 2018), where 
cycling trip shares range from 1% to 6% (Pucher and Buehler, 2008). When using revealed 
preference data in these situations, extra care needs to be taken regarding representativeness of 
the data, which in turn influences the potential effect of measures that aim for increasing the 
cycling share. Several very recent studies investigate route choice in a cycling-rich context, 
such as in Denmark (Prato et al., 2018; Skov-Petersen et al., 2018) and the Netherlands 
(Bernardi et al., 2018). The aim of cyclists’ route choice research differs between the cycling-
rich and low-cycling contexts. In the latter, the aim is to identify determinants of cyclists’ route 
choice, such that substantiated investments can be made regarding cycling infrastructure, 
whereas in the high-cycling these determinants are identified to investigate how to influence 
individuals’ route choice, such that for example bicycle traffic jams do not occur.  

Interestingly, research from countries with a large cycling share, is sparse (and all dating 
from 2018). Furthermore, cycling is not realistically incorporated in many transport planning 
models used in practice (e.g. De Jong et al., 2007). It can be altogether absent, be used as the 
‘rest’ category, treated similar to driving, or very simple assignment procedures are applied, 
such as the all-or-nothing assignment. Consequently, also in countries that have a high share of 
cycling trips, more knowledge is required on the determinants of cyclists’ route choice.   
 
Cyclists’ route choice modelling is mostly done using the discrete choice modelling framework. 
Various methods have been proposed for identifying the route choice set, which can be 
distributed into roughly four categories: deterministic methods, constrained enumeration 
methods, stochastic methods and probabilistic methods (Bovy, 2009; Prato, 2009). These are 
all path-based methods, which are most often applied in the cycling route choice context. An 
overview of the methods, based on when they were first introduced in route choice modelling, 
is presented in Figure 1.2.  

Most choice set generation methods belong to the deterministic methods, which are 
based on repeated shortest path searches in the network. These methods differ in the way they 
compute the choice set, by means of alteration of different input variables such as search 
criteria, route constraints and link impedance (Prato, 2009). This category of methods is 
computationally attractive due to the efficiency of shortest path algorithms. Within this category 
four main groups of methods can be identified: shortest paths, labelling, link penalty and link 
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elimination. The stochastic methods are also based on repeated shortest path searches in the 
network, but additionally the computation of optimal paths is randomised based on link 
impedances or individual preferences from probability distributions. Stochastic methods are 
mostly simulation based. The probabilistic methods generate a probability for each alternative 
in the choice set. This means that the computational complexity for these methods is much 
higher than for the other methods. The application of a full probabilistic method on a complex 
network is therefore prohibitive (Prato, 2009). The constrained enumeration methods are not 
only based on shortest routes, but rely on the assumption that individuals choose alternatives 
according to behavioural rules (Prato, 2009).  
 

 

Figure 1.2: Genealogy of route choice set generation algorithms 

In the cycling route choice context, a variety of these methods have been applied, where the 
deterministic methods are prevalent. Labelling is most common, followed by link elimination 
(mostly the breadth-first search on link elimination), shortest path, and link penalty. 
Furthermore, the doubly constrained stochastic generation and the branch and bound method 
are sometimes employed. Recently, a link-based approach has been introduced, which does not 
depend on identification of the choice set (Fosgerau et al., 2013). This method was applied by 
Zimmerman et al. (2017) for cyclists’ route choice. This method does not use any of the 
abovementioned discrete choice modelling structures, instead a specialised model, Recursive 
Logit, is introduced.  

Each of the choice set generation methods is prone to include irrelevant routes in the 
choice set (false positive). Furthermore, not all methods are equally capable of generating the 
observed route in the choice set, which results with falsely excluding routes from the choice 
set. This can also be due to not including the right optimisation criteria or a combination of 
these, which leads to the realisation that bicycle route choice is much more complex than car 
route choice (for which most methods were developed). In most cases, the observed routes are 
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added to the choice set, however this introduces issues with endogeneity (as observed behaviour 
is added to the choice set). Consequently, current methods for choice set generation might not 
suffice for bicycle route choice modelling.  

1.2. Research Objective and Questions 
Due to increasing interest towards active modes from governments worldwide and 
advancements in large-scale revealed preference data that benefit active modes, an increase in 
active mode research, especially related to the choice to use an active mode and route choice 
related to cycling, can be observed in the last decade. The overview of the current state-of-the 
art shows that several aspects related to these choices are currently still unknown. These gaps 
need to be investigated, before further steps in active mode research can be taken. All these 
issues combined result with the following objective for this thesis: 
 

‘To understand and model mode and route choice behaviour of active mode users’	
 
Six research questions are proposed to reach the objective of this thesis. First of all, given the 
aim to understand behaviour of active mode users, it is necessary to first know who these active 
mode users and potential active mode users are. This can be evaluated by investigating current 
behaviour and attitudes towards modes, where the latter reflects satisfaction with mode use. 
This results in the first research question: 
 

1. What are the mobility patterns and attitudes towards modes of active mode users? 
 
There is a need to model and understand active mode choice. According to the research gaps 
identified, it is not yet known which factors drive active mode choice in contexts where active 
modes are dominantly present. Next to that, the knowledge on how the choice set is build up is 
lacking. This can be explored by looking at the mode choice set which is experienced by 
individuals. This leads to the following research questions: 
 

2. Which determinants influence active mode choice of individuals in an environment 
where active modes are dominantly present? 

3. What are the determinants of the size and composition of the experienced mode choice 
set? 

 
Once someone decides to use an active mode, in this case the bicycle, a route needs to be chosen 
to get from origin to destination. Here, limited knowledge is available regarding which 
determinants drive this choice in an environment where the bicycle is dominantly present. 
Furthermore, the choice set generation methodologies that are often used, exhibit several 
shortcomings. Thanks to the large amount of new large-scale data available, it is possible to 
infer the choice set from observed data: the experienced choice set. This method needs to be 
evaluated against the currently used methods, to identify the added value. This leads to the 
following research questions: 
 

4. Which determinants influence cyclists’ route choice behaviour in in an environment 
where active modes are dominantly present? 

5. What is the added value of the experienced route choice set in comparison to 
frequently used choice set generation algorithms? 
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As shown in Figure 1, a relationship is assumed in the four-step and activity-based approaches 
between mode and route choice. Bhat (1998a) mentions that there are several arguments for 
simultaneously modelling multiple travel choices. One of these arguments is that the choices 
are influenced by the same determinants. Based on the literature and findings in this thesis, this 
is the case for (active) mode and route choice. This means that these choices influence each 
other to a certain extent and impacts of determinants might be different when incorporating 
both travel choices in a choice model. Consequently, ideally, they should be modelled 
simultaneously. However, currently it is still uncertain how this can be done best, which leads 
to the last research question: 
 

6. What are the approaches towards integrating mode and route choice decisions into a 
single behavioural model? 

 
Due to existing knowledge gaps regarding the individual choices (research question 1-5), these 
have to be first solved before the direction of simultaneous modelling can be explored. 
Consequently, this thesis focuses mainly on the individual choices, but investigates directions 
that can lead to combining these travel choice dimensions. The approach towards answering 
each of these research questions and reach the overall objective of this thesis is described in 
Section 1.3. 

1.3. Research Approach 
This section describes the approach towards reaching the objective of this thesis and answering 
the research questions. Figure 1.3 shows an overview of this approach, split up into the relevant 
body of the literature that is reviewed, data that is collected and processed, methodology that is 
used, and the analyses that are conducted.  

To answer research question 1, literature is explored regarding daily mobility patterns 
of individuals and the methods used to investigate these in combination with how attitudes 
towards modes relate to (daily) mobility patterns. Ajzen (1991) states that attitudes are strong 
predictors of behaviour, therefore potential active mode users can be identified by relating these 
two aspects. The data used for this research is the census data from the Netherlands Mobility 
Panel (MPN), consisting of a three-day travel diary and personal and household surveys. In 
addition, within the Allegro-project (see details in section 1.5) an extra survey was developed 
and distributed among the MPN panel members, which investigated perception, attitudes, and 
wayfinding strategies of active mode users (coined PAW-AM). The daily mobility pattern data, 
in terms of average trips made per mode per day, is deduced from the travel diary. This is 
clustered into different classes using a latent class cluster analysis. To compare the attitudes 
towards modes with these classes, factor analysis is applied to reduce dimensionality. The 
resulting attitudes and mobility pattern classes are analysed using statistics. 
 The determinants of active mode choice (research question 2) are identified using 
discrete choice models. All major modes are considered in this research, to allow the 
comparison between the determinants that are relevant for walking and/or cycling and other 
modes (public transport and car). The determinants that are found to be relevant in literature 
are identified and methods for composing the choice set are evaluated. From the MPN data 
(both travel diary and surveys) the trips and potential determinants are extracted. In this 
investigation the e-bike and normal bicycle are grouped together, due to similar behaviour 
found for both modes (e.g. in distance travelled). For the non-chosen modes in the choice set, 
information on the determinants is extracted from both the MPN data and Google Directions 
API. Several existing model structures are tested to identify a model with behavioural realism 
and good explanatory power.  
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Figure 1.3: Research approach 

 Based on a question in the PAW-AM survey related to the mode use of individuals in 
the last half year for different trip purposes, the experienced mode choice set can be identified 
(which is data-driven). To identify the size, composition and determinants of influence 
(research question 3), first potential determinants found in literature are evaluated. Data from 
the PAW-AM, personal, and household surveys is used for this research. The size and 
composition of the experienced choice set are analysed and compared to reported behaviour in 
the travel diary. Furthermore, discrete choice models are estimated to identify relevant 
determinants of the choice set, where different model structures are tested. 
 To answer research question 4, literature on the determinants relevant for cyclists’ route 
choice is reviewed. Furthermore, the currently used route choice set generation methods are 
evaluated. These methods have several shortcomings regarding false negatives and false 
positives, consequently the experienced route choice set (data-driven) is explored for this study. 
The bicycle counting week (‘Fietstelweek’ in Dutch) collected GPS data from cyclists’ in the 
Netherlands over the course of a week. The data from the city of Amsterdam is available for 
this research. The experienced choice set is based on observed routes during this seven-day 
period. Discrete choice models are estimated to identify which determinants are relevant for 
cyclists’ route choice.  
 Research question 5 relates to the evaluation of the experienced route choice set in 
comparison to current methods used for choice set generation. Consequently, route choice set 
generation methods are evaluated and two methods are chosen based on their computational 
efficiency and presence in the cycling route choice literature: the breadth-first search on link 
elimination (BFS-LE) and labelling methods. The GPS trajectories of the bicycle counting week 
are used as input for the experienced route choice set, whereas the network information from 
Open Street Map (OSM) is used to generate the choice sets based on the choice set generation 
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algorithms. The different choice sets are compared with respect to their composition and ability 
to reproduce observed choices (false positive and negative), and model estimation and model 
validation abilities. 
 Finally, the findings from research questions 2 and 4 show that similar determinants 
influence active mode and route choice behaviour. Consequently, the simultaneous estimation 
of mode and route choice models would both benefit and clarify the relationship between these 
choices. Therefore, a literature review on the current approaches to jointly model these choices 
is conducted (research question 6). Due to the very limited number of studies on the joint 
modelling of mode and route choice, the literature review includes multiple travel choices: trip 
chaining, departure time, destination choice, mode choice, and route choice.  

1.4. Research Contributions and Implications 
The research in this thesis is expected to contribute to both science and practice in several ways. 
The most important contributions to science (4.1) and implications for practice (4.2) are hereby 
discussed.  

1.4.1. Contributions to Science 

This thesis provides several contributions to science that are related to daily mobility patterns, 
identification of determinants of mode and route choice, specification of route and mode choice 
sets, and modelling approaches for simultaneous modelling of multiple travel choices. In this 
section the main contributions are discussed. 

Explicitly Researching the Relationship between the Total Daily Mobility Pattern and 
Attitudes towards Modes 
In this thesis, active mode users and potential users are evaluated by investigating the 
relationship between behaviour and attitudes. Instead of analysing this relationship at the trip-
level, as has been done in previous research, we investigate the daily mobility pattern, in terms 
of number of trips per mode per day. By explicitly investigating the relationship between 
behaviour and attitudes, we avoid endogeneity related to attitudinal variables, which would 
occur if attitudes are used to identify daily mobility patterns, as is done in previous research. 
This approach allows to provide insights into travel mode consonance and dissonance from a 
perspective of daily mobility patterns. Preferred mode(s) are thus reflected on in the light of the 
total daily pattern, instead of on a trip level, providing a complete overview of active mode use. 
We find a high correlation between mode use on a daily basis and the attitude towards modes. 
However, this relation was not found for all individuals, which shows potential for switching 
modes in the future, given the right incentives.  

Identification of Determinants of Active Mode Choice in a Cycling-rich Context 
A mode choice model is estimated for the Netherlands, which is characterised by its large share 
of active mode use. This allows for a comparison of relevant determinants for walking and 
cycling, with existing mode choice literature from environments where active modes are scarce. 
It provides insights into differences and similarities regarding mode choice determinants 
between these environments. In the mode choice model various different categories of 
determinants are included simultaneously, allowing for evaluation of importance of 
determinants in comparison to other determinants and for calculation of implications of 
potential policy measures. Travel time is one of the variables that is reported in the travel diary 
(MPN). We investigate the quality of the self-reported travel time in comparison to calculated 
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travel time, to identify the reliability of self-report data for mode choice research. We find that 
some explanatory variables are less important in a cycling-rich context compared to the low-
cycling context, such as socio-demographics and ownership. Furthermore, we find that walking 
and cycling are influenced by different explanatory variables and if they are influenced by the 
same variable, their impact differs.  

Identification of Determinants of the Experienced Mode Choice Set 
The experienced mode choice set, which consists of used modes that are observed over a longer 
period of time, provides a rich source of information regarding the size and composition of used 
modes of individuals. Instead of modelling the choice set in combination with the choice, which 
is often done in literature, a model is estimated that investigates the formation of the 
experienced choice set. The determinants that are relevant for the formation of this choice set 
related to commuting trips are identified in this research. This thesis identifies the relevance of 
significantly more determinants on the mode choice set, compared to previous research, which 
can benefit future mode choice research in the choice set specification. Relevant determinants 
include socio-demographics, ownership characteristics, urban density, and reimbursement by 
employer.  

Identification of Determinants of Cyclists’ Route Choice in a Cycling-rich Context 
A route choice model is estimated for cyclists in Amsterdam, the Netherlands, which is known 
for its high share of cycling trips. A comparison between determinants relevant for route choice 
in environments where cycling is dominant and in those where it is rare can be made. This 
comparison results in insights on differences and similarities between route choice determinants 
between both types of environments. We find that, in general, similar determinants are 
important. However, the impact of these determinants differs, especially related to the distance 
and percentage of cycle path on a route.  

Comparison between Experienced Route Choice Set and Choice Set Generation 
Algorithms 
The route choice model uses a data-driven approach for choice set identification. This 
experienced route choice set is based on revealed preference data of a large sample of 
individuals collected over a sufficiently long period of time. All chosen routes are included, 
resulting with no false negatives and limited false positives. This set is smaller than considered 
set, but potentially approximates it when observed over a long enough period of time. The data-
driven approach is evaluated against commonly used choice set generation algorithms on its 
added value. The comparison is based on choice set composition, model estimation and model 
validation. We find that the experienced choice set can be used in analysing composition of 
choice sets and model estimation, as it provides behavioural knowledge on route choice of 
cyclists. However, it cannot be used for model validation or prediction purposes. 

Systematic Methodology for Identifying Determinants of Active Mode and Route Choice 
In this thesis, active mode and route choice are studied by systematically investigating choice 
set formation and identifying determinants that are relevant for the choice behaviour. The 
results of these studies are region-specific and can be used there in applications and policy. 
However, the methodology is general and can be applied in other regions/cities.  
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Identification of Suitable and Applicable Approaches for Simultaneously Modelling 
Multiple Travel Choices  
A literature review study is performed on the discrete choice modelling structures that have 
been used to simultaneously model multiple travel choices. The identified structures are 
assessed with respect to their suitability, reflecting the behavioural realism, and applicability, 
reflecting the potential for adoption in practice. The review provides an overview of what has 
been done in the state-of-the-art, assesses the models on their usability given considerations on 
applicability and suitability, and provides future research directions regarding development of 
these model structures for the purpose of joint travel choice modelling. We find that the ‘ideal’ 
structure in terms of suitability and applicability does not yet exist, however by combining 
existing approaches, behavioural realism can be largely improved. 

1.4.2. Implications for Practice 

This thesis presents implications for practice by means of providing (i) insights to how 
practitioners working on transport planning models can improve the representation of mode and 
route choice behaviour of active mode users, and; (ii) input on active mode behaviour that is 
relevant for policy-makers aiming to increase active mode shares. The main implications are 
discussed in this section.  

Practitioners in Transportation Planning 
Practitioners working on transport planning models often evaluate policy measures to assess 
their impact, such as the construction of additional infrastructure or changes to lay-out of streets. 
Often, they work with the four-step model, consisting of trip generation, distribution, mode 
choice, and route choice. These models are (still) largely aimed at motorised traffic, 
consequently active mode choices are insufficiently represented. This thesis shows which 
determinants are relevant for active mode and cyclists’ route choice, which can help enhance 
the representation of active modes in the mode choice and route choice aspects of transport 
planning models. Furthermore, this thesis shows that the experienced mode choice set differs 
largely from choice sets resulting from commonly applied methods. Consequently, the 
specification of the mode choice set requires more care than previously assumed. Finally, this 
thesis provides an overview of all the model structures used for the joint modelling of multiple 
travel choices, that go beyond the currently employed structures in the four-step model. 
Practitioners can enhance their knowledge on the model structures used for this purpose, so that 
adoption in practice of more complex models might become a possibility in the future. 

Policy-makers  
Policy-makers aiming for an increase in active mode shares can benefit from this study in 
various ways. This thesis presents different classes of daily mobility pattern users that are 
analysed in combination with their attitudes towards modes, showing consonant or dissonant 
behaviour. The findings of this research can be used to identify which type of policy measures 
can be taken to increase the active mode shares. Furthermore, the findings of the mode choice  
(set) and cyclists’ route choice model can be used by policy-makers to create policies that aim 
for increasing active mode share, related to for example commuting allowances provided by 
employers or (street) design of new neighbourhoods.  
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1.5. Research Context 
This thesis is part of the ERC Advanced Grant Allegro (Unravelling active mode travelling and 
traffic: with innovative data to new transportation and traffic theory for pedestrians and 
bicycles), which has as an overarching research objective:  
 
“To develop and empirically underpin comprehensive behavioural theories, conceptual and 
mathematical models to explain and predict the dynamics of pedestrians, cyclists, as well as 
mixed flows at all relevant behavioural levels, including acquiring spatial knowledge, activity 
scheduling, route choice and operations, within an urban context, with a special focus on the 
role of ICT on learning, and choice behaviour.” – Hoogendoorn (2014) 
 
Allegro consists of eight PhD projects and three Postdoc projects that are part of three themes: 
an active mode mobility laboratory, transportation and traffic flow theory for active modes in 
an urban context, and theory and laboratory applications. This thesis is part of the second theme: 
transportation and traffic flow theory for active modes in an urban context. As discussed before, 
this thesis aims to understand and model mode and route choice behaviour of active mode users. 
This thesis has relations with two other projects within this theme, namely the project on 
analysing activity travel patterns of active mode users (performed by Florian Schneider) and 
the project on spatial cognition and exploration behaviour in urban environments (performed 
by Lara-Britt Zomer). This has resulted in collaborations on various topics, of which one is 
reflected in this thesis (see Chapter 2). 

1.6. Thesis Outline 
In order to reach the aim of understanding and modelling mode and route choice behaviour of 
active mode users, this thesis is split up into four parts and eight chapters, see Figure 1.4.  

The first part relates to the active mode users. Different modes are used by individuals 
over the day. To investigate who are current active mode users and who are potential active 
mode users, a segmentation can be made between user groups. Chapter 2 presents these classes 
of daily mobility patterns. To investigate the possibilities for changing these patterns towards 
active modes, the classes are investigated in relation to the attitude towards modes. This part 
addresses research question 1. This chapter is based on the following article: 
 
Ton D., Zomer L.B., Schneider F., Hoogendoorn-Lanser S., Duives D.C., Cats O., and 
Hoogendoorn S.P. (in press). Latent classes of daily mobility patterns: the relationship with 
attitudes towards modes. Transportation. https://doi.org/10.1007/s11116-019-09975-9 
 
The second part relates to mode choice and is split up in two chapters. In chapter 3, a mode 
choice model is estimated for the Netherlands, that includes all commonly used modes: car, 
public transport, bicycle, and walking. In this chapter, determinants are identified that influence 
walking and cycling. These findings are compared to environments where active mode use is 
scarce. Furthermore, the relationship between walking and cycling is tested, resulting in 
information on the (in)dependency between these modes. To get a better understanding of how 
the mode choice set of individuals is built up, the experienced mode set is evaluated (data-
driven). Chapter 4 investigates the size and composition of this choice set and investigates what 
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Figure 1.4: Thesis outline 

determinants are of this set. This part addresses research questions 2 and 3. Chapters 3 and 4 
are respectively based on the following articles: 
 
Ton D., Duives D.C., Cats O., Hoogendoorn-Lanser S., and Hoogendoorn S.P. (2019). Cycling 
or Walking? Determinants of mode choice in the Netherlands. Transportation Research Part 
A. 123:7-23. https://doi.org/ 10.1016/j.tra.2018.08.023 
 
Ton D., Bekhor S., Cats O., Duives D.C., Hoogendoorn-Lanser S., and Hoogendoorn S.P. 
(submitted). The experienced mode choice set and its determinants: commuting trips in the 
Netherlands.  
 
The third part pertains to route choice, which is split up in two chapters. In Chapter 5 
determinants relevant for cyclists’ route choice in Amsterdam, The Netherlands are identified 
using discrete choice models. The findings are compared against environments where cycling 
is rare. It uses the experienced choice set (data-driven), which was not previously applied. To 
evaluate the added value of this data-driven approach, it is compared to two commonly used 
methods in cyclists’ route choice in Chapter 6. The comparison is based on choice set 
composition, model estimation, and model validation. This part addresses research questions 4 
and 5. Chapters 5 and 6 are respectively based on the following articles: 
 
Ton D., Cats O., Duives D.C., and Hoogendoorn S.P. (2017). How do people cycle in 
Amsterdam, the Netherlands? Estimating cyclists’ route choice determinants using GPS data 
from an urban area. Transportation Research Record: Journal of the Transportation Research 
Board. 2662:75-82. https://doi.org/ 10.3141/2662-09 
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Ton D., Duives D.C., Cats O., and Hoogendoorn S.P. (2018). Evaluating a data-driven approach 
for choice set identification using GPS bicycle route choice data from Amsterdam. Travel 
Behaviour and Society. 13:105-117. https://doi.org/10.1016/j.tbs.2018.07.001 
 
The fourth part relates to the integration of choice dimensions. According to Bhat (1998) several 
reasons exist for jointly modelling multiple travel choices. One of these reasons is that both 
choices are influenced by the same determinants. Parts two and three showed that mode and 
route choice are both influenced by trip characteristics, such as travel time and distance. 
Consequently, ideally these two travel choices are also modelled jointly, as to reveal cross-
relations between these choice dimensions. To start this research, Chapter 7 provides a literature 
review of the currently used discrete choice modelling methods for jointly modelling multiple 
travel choices. Due to the absence of many studies on mode and route choice (only four), other 
travel choice dimensions are included in this literature review. This part addresses research 
question 6. Chapter 7 is based on the following submitted article: 
 
Ton D., Duives D.C., Cats O., and Hoogendoorn S.P. (submitted). Simultaneous modelling of 
multiple travel choice dimensions: Assessment of the suitability and applicability of different 
discrete choice modelling structures.   
 
Finally, Chapter 8 ends with conclusions and recommendations of this thesis. The main findings 
of the research are provided and answers to the research questions are given. Furthermore, we 
discuss several of the methodological decisions made in this thesis. Finally, implications for 
practice and recommendations for future research are provided.  
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Abstract 
Active modes (i.e. walking and cycling) have received significant attention by governments 
worldwide, due to the benefits related to the use of these modes. Consequently, governments 
are aiming for a modal shift from motorised to active modes. Attitudes are generally considered 
to play an important role in travel behaviour. Understanding the relationship between the 
attitude towards modes and the daily mobility pattern, can support policies that aim at 
increasing the active mode share. This paper investigates the daily mobility patterns of 
individuals using a latent class cluster analysis. The relationship between these classes and 
attitudes towards modes is investigated. Data of the Netherlands Mobility Panel (MPN) of the 
year 2016 is used, in combination with a companion survey focussing on active modes. This 
study identifies five classes of mobility patterns: 1) car and bicycle users, 2) exclusive car users, 
3) car, walk, and bicycle users, 4) public transport+ users, and 5) exclusive bicycle users. Eight 
factors of attitudes towards modes are identified: five mode related attitudes, two public 
transport related attitudes, and one related to the prestige of using modes. The results show that 
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the majority of the users exhibit a multimodal daily mobility pattern. Generally, individuals are 
more positive toward used modes, compared to unused modes. Furthermore, a high level of 
travel mode consonance is found. When this is not the case (dissonance), often active modes or 
sustainable modes are preferred. Consequently, when the goal is achieving a higher active mode 
share, some individuals need to be targeted to change their mobility portfolio (exclusive car 
users and car and bicycle users), whereas others should be encouraged to increase the use of 
active modes at the cost of car use (public transport+ users and car, walk, and bicycle users). 

2.1. Introduction 
Walking and cycling (i.e. active modes) have gained significant attention by governments 
worldwide. They foresee many benefits from high shares of active mode usage. Examples are 
increased health for individuals, but also reduced emissions and traffic jams if active mode 
usage replaces car usage.  Consequently, many governments have set goals for increasing the 
active mode share over the next decades (Pan-EuropeanProgramme, 2014). Ideally, this 
increase in active mode use would be paired with a decrease in car use, so that more sustainable 
mobility patterns emerge. Kroesen (2014) found that single-mode (habitual) users were less 
likely to change their mobility pattern over time compared to multi-mode users. Therefore, it is 
important to evaluate the overall daily mobility pattern of individuals and identify traveller 
types, as this can provide input for whom to target with policies designed to attain the desired 
shift towards active modes. 
 Attitudes are generally considered to play an important role in determining the mode 
choice and, more general, travel behaviour of individuals (Gärling et al., 1998). An attitude is 
broadly defined as an affective evaluation, regarding an object or behaviour, which can be 
positive or negative (Ajzen and Fishbein, 1977). The relationship between attitude and 
behaviour has been translated to theoretical frameworks, the most prominent being the Theory 
of Planned Behaviour (Ajzen, 1991), which has often been applied in the travel behaviour 
domain (e.g. Bamberg et al., 2003; Heinen et al., 2011; Muñoz et al., 2013). Furthermore, 
attitudes have been introduced into the discrete choice modelling theory, by developing models 
that can accommodate subjective latent constructs, like the hybrid choice model (Ben-Akiva et 
al., 1999). This model has also been applied in the travel behaviour domain (e.g. Habib et al., 
2014; Kamargianni and Polydoropoulou, 2013; Krueger et al., 2018; Vij et al., 2013). Two main 
approaches of investigating the relationship between attitudes and travel behaviour have been 
identified.  

The first approach focusses on quantifying the relationship between attitude towards a 
mode and the mode choice at a trip-level, while using the abovementioned theoretical 
frameworks and applying discrete choice modelling theory. Several studies investigate this for 
a single mode, as a binary choice (e.g. to cycle or not to cycle), while other studies research a 
broader spectrum of modes. Due to the increased interest in active modes, research has often 
explored walking and cycling, albeit in a binary fashion. Several studies have investigated the 
impact of the attitude towards walking on the choice to walk (e.g. Lindelöw et al., 2014; 
Rodriguez and Vogt, 2009). Similarly, past research quantified the impact of the attitude 
towards cycling on the choice to cycle (e.g. Fernández-Heredia et al., 2014; Heinen et al., 2011; 
Ma and Dill, 2015). Another body of literature has investigated this relationship for multiple 
modes, i.e. they investigate the one-on-one relationship but accommodate multiple modes (e.g. 
Akar and Clifton, 2009; Kamargianni et al., 2015; Maldonado-Hinarejos et al., 2014). 
Generally, findings suggest that if a person has a positive attitude towards a mode, the 
probability of using that mode increases. This approach investigates the mode choice at a trip-
level, thus ignoring that individuals have a mobility portfolio and use multiple modes on a daily 
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basis. Therefore, this approach does not show the relationship between mobility patterns and 
attitudes towards different modes. 
 The second approach focusses on mobility patterns of individuals. This approach also 
often applies the aforementioned theoretical frameworks. A common way to deal with the many 
different mobility patterns that can be present in the population, is to reduce the complexity by 
identifying segments or classes of individuals. In this, often attitudes are used to help classify 
individuals into classes or segments. Many different studies set out to identify classes of 
individuals based on mobility patterns, attitudes, and other aspects, which is often referred to 
as modality styles or mobility styles (e.g. Diana and Mokhtarian, 2009; Krizek and Waddell, 
2002; Krueger et al., 2018; Lanzendorf, 2002; Molin et al., 2016). These studies integrate 
attitudes and observed behaviour into one model, consequently assuming a relationship between 
attitude and behaviour. An issue arises when deriving input for policies from these segments, 
as it is argued that attitudes are endogenous to travel choices and should not be used as targets 
for policy design (Chorus and Kroesen, 2014). Consequently, it might be better to use only 
observable variables of the mobility pattern for the segmentation analysis, so that policy design 
can be tailored to population segments.  
 To overcome the issues related to trip-level research and endogeneity of attitudes, this 
study investigates the relationship between daily mobility patterns of individuals and the 
attitudes towards modes by including only observable variables in the segmentation analysis 
and by explicitly investigating the relationship between attitudes and mobility patterns. This 
paper presents the findings of a latent class cluster analysis on individuals’ daily mobility 
patterns, after which the individuals in each class are compared on differences and similarities 
in their attitudes towards modes. Furthermore, within each class the attitudes towards modes 
are compared to the observed behaviour to identify whether individuals travel using their most 
preferred mode. We use census data from the Netherlands. The Netherlands is characterised by 
a high share of active mode use, consequently we expect a diverse range of mobility pattern 
clusters. The findings provide insights into how the overall mobility pattern of individuals 
relates to their attitude towards modes. The results of this study can be used to identify which 
groups of individuals to target in order to achieve a higher share of active mode usage by means 
of policy interventions. 
 The remainder of this paper is organised as follows. Section 2.2 describes the data 
collected for this study and explains the data filtering process. Section 2.3 details the research 
methodology. In section 2.4 the results of the analysis are presented and discussed. Finally, 
section 2.5 concludes this study. 

2.2. Data Collection and Filtering 
The data that is collected for this research is introduced in section 2.2.1. Then, the data filtering 
procedure is described in section 2.2.2.  

2.2.1. Data Collection 

This study uses census data from the Netherlands Mobility Panel (MPN). This is a longitudinal 
household panel, which was commenced in 2013 with the goal of investigating the changes in 
travel patterns of individuals and households over a longer period of time. The panel is to a 
large extent representative of the Dutch population, although teenagers and low-income 
individuals are slightly underrepresented. Every autumn, panel members fill in a personal 
survey, household survey and three-day travel diary. The personal survey focuses on personal 
characteristics and asks questions regarding mode preferences for different activity purposes 
and the attitude of individuals regarding motorised modes and the bicycle. The household 
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survey contains questions regarding household characteristics and ownership or availability of 
modes. Finally, in the travel diary every individual is asked to write down all the trips made 
over the course of three days, including the mode of transport, the trip purpose and the distance 
covered. We refer the reader to Hoogendoorn-Lanser et al. (2015) for a detailed description of 
the MPN surveys.  
 In this study, we investigate the relationship between the daily mobility patterns and 
attitudes towards modes. The MPN survey contains questions on the attitudes towards 
motorised modes (i.e. car, train and local public transport) and the bicycle. It does not address 
walking, even though walking is often used as the main mode of transport in the Netherlands 
(19% of all trips (CBS, 2018)). In summer 2017, an additional survey on the perceptions, 
attitudes, and wayfinding styles towards active modes (coined PAW-AM) was distributed 
among the respondents of the MPN panel, with the goal of enriching the MPN dataset in relation 
to active modes. We distributed the survey among respondents of the MPN survey, who 
indicated that they walked or cycled at least once in the last year (consequently excluding 1.3% 
of the respondents of the MPN panel that did not walk or cycle and are assumed to be largely 
inactive).  

2.2.2. Data Filtering  

To perform this research, we need to have data on both the attitude towards modes and mobility 
patterns. As the attitude towards walking is only measured in 2017, we cannot make use of the 
longitudinal nature of the MPN dataset. The MPN data of the year 2016 is used, because this 
dataset contains the most recent travel diaries. Consequently, because we make use of cross-
sectional data, we cannot infer causality of the relationship between attitudes and mobility 
patterns, but only investigate its existence. Next, we merge the MPN surveys (personal, 
household, and three-day travel diary) and the PAW-AM survey, enabling a complete overview 
of attitudes towards modes, personal and household characteristics, and daily mobility patterns. 
Consequently, only individuals that have filled in both the MPN and PAW-AM surveys are 
included in this study, resulting in a total of 2,871 individuals.  

The MPN data collection took place in autumn 2016 (September through November), 
whereas the PAW-AM survey was distributed in summer 2017 (June). During the elapsed time, 
several major changes or life events could have occurred. The life events that drastically change 
mobility patterns, such as changing jobs or moving houses, need to be taken into account. We 
have therefore excluded individuals that have experienced such a life event. Consequently, the 
final dataset used in this study consists of 2,425 individuals. 

2.3. Methodology 
In this section the methodology for analysing the relationship between daily mobility patterns 
and attitudes towards modes is presented. Section 2.3.1 discusses the definition and 
classification of the daily mobility patterns. The approach for analysing the attitudes towards 
modes is described in Section 2.3.2. Finally, in Section 2.3.3 the methodology for analysing the 
relationship between the classified daily mobility patterns and attitudes towards modes is 
presented. The research methodology is depicted in Figure 2.1. 
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Figure 2.1: Research methodology 

2.3.1. Daily Mobility Patterns 

The daily mobility pattern can be defined in different ways; therefore, we start by providing the 
definition used in this study. Afterwards, we describe the approach for classifying the daily 
mobility patterns.  

Defining the Daily Mobility Pattern 
The definition of the daily mobility pattern, based on the three-day travel diary, should satisfy 
two conditions. First, it should reflect the mode choice of individuals. Second, it should take 
into account a mode use hierarchy of the individual towards different modes. Three possible 
indicators for defining the daily mobility pattern have been proposed in the literature (e.g. de 
Haas et al., 2018): distance per mode, travel time per mode, and number of trips per mode. 
Table 2.1 provides the mean and standard deviations of each of the definitions for the modes in 
our dataset: car, public transport (PT), bicycle, and walk.  

Table 2.1: Characteristics of the average daily mobility pattern of individuals in the data 

Mode 
Number of Trips 

Mean (std. dev) 
Distance 

Mean (std. dev) 
Travel Time 

Mean (std. dev) 

Car 1.5 (1.6) 27.9 (66.2) 34.8 (44.7) 

Public Transport 0.2 (0.5) 6.8 (25.9) 11.1 (38.2) 

Bicycle 0.9 (1.3) 2.8 (5.4) 13.4 (22.8) 

Walk 0.4 (0.9) 0.4 (1.2) 5.9 (16.4) 

 
The number of trips per mode is found to be the most reliable in self-report studies (de Haas et 
al., 2018). It also satisfies both conditions. The use of distance would result in the 
overrepresentation of the car and public transport in the mobility pattern, which might not 
correctly capture the mode use hierarchy of individuals for this study. It shows that for longer 
distances these modes are more attractive, but for shorter trips we cannot conclude anything on 
the mode use hierarchy of individuals. The use of travel time would improve the representation 
of the mode choices and mode use hierarchy, but here we see very large standard deviations. 
Especially for public transport this deviation is large, mostly because this mode encompasses 
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both inter-city (train) and intra-city (bus, tram, and metro) trips. Therefore, we define the daily 
mobility pattern based on the number of trips reported per mode. We average the number of 
trips per travel day as reported in the three-day travel diary, to identify the daily mobility 
pattern. 

In addition, we identify two other aspects that need to be addressed as part of the 
classification of the daily mobility pattern. First, trips that are marked as unreliable (e.g. detours, 
wrong mode assigned) (9.2%), exceptional modes (0.9%), and trips abroad (0.7%) are present 
in the dataset. Excluding these trips creates incomplete mobility patterns. Therefore, the 
category “other” is added to classify these trips. Second, on some days an individual does not 
travel. Non-travel is operationalised by the share of non-travel days out of the reported days.  

In sum, a total of six indicators define the daily mobility pattern of individuals: the 
number of trips by car, public transport (PT), bicycle, or walking, the number of “other” trips, 
and the share of non-travel days. In these indicators access and egress mode use is excluded, 
for example a PT trip with walking as access and egress is only counted as a PT trip. 

Daily mobility patterns during the week and weekend are very different. Generally, 
travel during the week is more structured due to work and school. In the weekend individuals 
travel less, and non-travel occurs more often (de Haas et al., 2017; Hoogendoorn-Lanser et al., 
2015). Therefore, we focus on the weekdays for the analysis of daily mobility patterns. This 
means that some individuals are left with a two- or one-day travel diary, as they have reported 
trips over (part of) the weekend. 

Classifying the Daily Mobility Pattern 
The daily mobility patterns are analysed by applying a latent class cluster analysis (LCCA) 
using Latent Gold (Vermunt and Magidson, 2005). This method assigns individuals to classes 
on a probabilistic basis. It is generally preferred over deterministic clustering techniques, 
because of the reduction in the misclassification bias (Vermunt and Magidson, 2002). 
Furthermore, LCCA allows for the use of statistical criteria to determine the optimal number of 
classes and the significance of model parameters can be assessed.  

The LCCA assumes that one latent variable can explain the associations between the 
indicator variables, which is a categorical variable. Each individual has a probability to belong 
to each class, based on its characteristics. These characteristics are called covariates and are 
represented by for example socio-demographics. The covariates are used to predict the 
probability of class membership. The LCCA model therefore consists of two parts: a structural 
part where the covariates are used to predict the class membership of individuals, and a 
measurement part where the latent classes explain the associations between the indicators 
(Vermunt and Magidson, 2005).  

The active covariates cannot be endogenous to the indicators. An example of a non-
suitable active covariate in our case is the possession of a driver’s license, which is largely 
endogenous to the number of car trips. Seven suitable active covariates were identified from 
literature (e.g. de Haas et al., 2018; Molin et al., 2016), namely urban density, occupation, 
education level, working hours, number of household members, gender, and age.  

Furthermore, inactive covariates are included in the model. These do not help in 
predicting class membership, but can afterwards help understand the composition of each class. 
In this study we include ownership (endogenous), distance, and the relevant excluded active 
covariates as inactive covariates.  

In the LCCA, the appropriate number of classes is determined by first estimating only 
the measurement part of the model, thus by only including indicators. This means that no 
covariates are used yet for determining class membership. The appropriate number of classes 
to model daily mobility patterns can be decided by using statistical criteria like the Bayesian 
Information Criterion (BIC) and the relative increase of log-likelihood per added class, which 
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should exceed a threshold of 4% (Nylund et al., 2007). Furthermore, as we want to statistically 
test the relationship between the daily mobility pattern classes and attitudes towards modes, we 
need sample sizes per cluster that allow us to do this. To ensure that differences between cluster 
sizes remain limited, we set the smallest cluster size to 8% of the data. We test models with 1 
to 10 classes, where the number of classes is determined based only on the six daily mobility 
pattern indicators. When the number of classes is decided upon, the model is estimated as a 
combined measurement and structural model, i.e. with both indicators and active covariates. 
The initial values of the model were examined; as local optima can be reached in the 
optimisation process. The best performing setting in the measurement model is used in the 
combined model, which is tested in terms of stability and performance. The best combination 
of active covariates, based on improvement in log-likelihood and stability, results in the final 
model. The combined model is then also estimated for n+1 and n-1-classes, to check if the n-
class model is still the best model. 

2.3.2. Attitudes towards Modes 

De Vos (2018) mentions that to measure the attitude towards modes, statements need to be 
presented to individuals, which are framed in a way that enables comparison between attitudes 
towards different modes. He argues that this is achieved by asking about aspects of different 
modes (e.g. fun) and asking individuals about their opinion on a Likert-scale (with five or seven 
answers). This method for asking about individuals’ attitudes towards modes has been applied 
by for example Anable and Gatersleben (2005), Molin et al. (2016), Kroesen et al. (2017) and 
Kroesen and Chorus (2018). 

The questions related to the attitudes towards modes in the MPN and PAW-AM surveys 
are framed according to the method mentioned by De Vos (2018). The respondents were asked 
seven attitudinal questions per mode. These questions pertain to comfort, relaxation, time 
saving, safety, flexibility, fun, and prestige related to using those modes. Each of these questions 
was asked in relation to the following five modes: car, bicycle, walking, train (inter-city PT), 
and bus/tram/metro (BTM – intra-city PT). Because all respondents answer the questions of 
attitudes towards modes, the public transport modes can be included separately. The 
questionnaire employed a five point Likert-scale ranging from ‘completely agree’ to 
‘completely disagree’ (Olde Kalter et al., 2015). 

To reduce the size of the analysis and examine whether latent variables underlie the 
responses to the attitudinal questions, the 35 attitudinal questions are categorised using a factor 
analysis. We include all questions in the factor analysis, to test if individuals have consistent 
attitudes towards a mode or consistent attitudinal aspects (e.g. fun) regardless of the mode. This 
provides insights into how attitudes are formed and also if and for which aspects there is 
potential for change. A person that has mixed attitudes towards a mode, for example riding a 
bicycle is fun but unsafe, might change his or her attitude based on changes to the bicycle 
infrastructure and its related safety (Ma and Dill, 2015). However, if a person is completely 
positive or negative across the board towards a certain mode,  this seems to suggest low 
potential for change.  

A principal axis factoring analysis is applied, which ensures capturing the shared 
variance of attitudinal questions with latent variables (Field, 2009). Furthermore, varimax 
rotation is used, which maximises the possibility of capturing each attitudinal question using 
one factor (Field, 2009). The variables are saved using the regression method. The resulting 
variables have a mean of zero, however when comparing them to the mobility pattern classes 
we expect that differences between classes will become visible.  
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2.3.3. Daily Mobility Pattern Classes versus Attitudinal Factors 

The latent classes of daily mobility patterns are compared to the latent attitudinal factors to 
investigate the presence of a relationship between mobility patterns and attitudes. As mentioned 
before, many studies include the attitudes in the clustering process (e.g. Diana and Mokhtarian, 
2009; Molin et al., 2016), which means that a relationship is assumed between attitudes and 
daily mobility patterns. Previous research has shown that this relationship is indeed present (e.g. 
Kroesen et al., 2017). Therefore, we investigate statistical differences and similarities in the 
attitudes of individuals belonging to different mobility pattern classes. Furthermore, within the 
latent classes of mobility patterns, a comparison with the attitudes towards modes is made. The 
goal is to identify to what extent individuals in each class travel with their best perceived travel 
mode. De Vos (2018) has previously researched this at the trip level and found a high degree 
of consonance, i.e. travel using the best perceived mode. However, he mentions that it remains 
unknown whether this also holds for the daily mobility pattern.  

As the data does not meet the requirements for performing parametric tests (Field, 
2009), the Kruskal Wallis test is used to test whether individuals in different classes have 
significantly different attitudes (per factor). If this is the case, the Mann Whitney-U test (with 
a Bonferroni correction, to control for Type 1 errors) shows which classes are significantly 
different from one another. Consequently, we can conclude on the presence or absence of a 
relationship between daily mobility patterns classes and attitudinal factors. Furthermore, we 
know which classes are significantly similar and different in their attitudes. 

The comparison within clusters is based on the latent factors towards different modes 
that arise from the factor analysis on the attitudinal questions. The best perceived mode is 
identified using the questions that load on the mode specific attitudes, by evaluating the average 
perception of each mode. It is possible that different modes are perceived equally positive by 
certain individuals. This is taken into account in the analysis. The goal of this analysis is to 
identify the extent to which individuals in each class use their best perceived mode, but also to 
identify the extent to which individuals use their least perceived mode.  

2.4. Results and Discussion 
This section describes and discusses the results of the LCCA for mobility patterns (2.4.1) and 
the factor analysis results with respect to attitudes towards modes (2.4.2). Finally, the results of 
the relationship between mobility patterns and attitudes towards modes are presented (2.4.3).  

2.4.1. Latent Classes of Daily Mobility Patterns 

A total of 10 models (1-10 classes) were tested for daily mobility patterns, based on the three-
day travel diary. The most suitable number of classes is the result of a minimisation of the BIC 
value, relative increase of log-likelihood of more than 4%, and minimum class size of 8%. Table 
2.2 shows the model fit of each of the estimated models. The BIC value decreases with every 
added class until the 9-class model, the log-likelihood reduction stagnates when exceeding six 
classes, and the minimum class size is smaller than 8% when more than five classes are 
introduced. Based on all considerations, we select the 5-class model as the most suitable.  
  



Chapter 2 – Mobility Pattern Classes and Attitudes towards Modes 25 

Table 2.2: Evaluation criteria for determining the number of classes of the LCCA 

# Classes # Parameters Log-likelihood BIC(LL) Smallest class (%) 

1 14 -18,196 36,502 100.0% 

2 26 -6,201 12,605 35.9% 

3 38 -1,297 2,891 12.3% 

4 50 664 -939 12.2% 

5 62 2,553 -4,622 9.9% 

6 74 3,654 -6,732 5.4% 

7 86 4,693 -8,715 5.2% 

8 98 5,742 -10,721 4.4% 

9 110 6,704 -12,551 4.3% 

10 122 6,388 -11,826 0.4% 

 
The 5-class model was expanded by identifying different combinations of active covariates. 
Some of the identified covariates are correlated (e.g. age and occupation), consequently we only 
included one of the correlated covariates in each model. The best combination of active 
covariates is occupation, urban density, number of household members, gender and education 
level (log-likelihood = 2,804, improvement log-likelihood = 9.9%). Table 2.3 shows the 
parameters of the estimated 5-class model, split up in the measurement model and the structural 
model.  

The measurement model consists of an intercept, which can be interpret as a constant 
that reflects the baseline preference regarding that indicator, while the effect of the classes is 
taken into account. Furthermore, class-specific parameters reflect the (un)attractiveness of the 
indicator variables. The intercepts show that bicycle and car trips are most attractive to all 
individuals. The non-travel ratio is a discrete indicator, that can take five values (as a result of 
only including weekdays in the analysis), ranging from zero (travel during all days) to one (no 
travel on any day). For each of the five levels an intercept is calculated which is used as the 
baseline to calculate the value for each specific class. Following expectations, travelling during 
all (week)days is preferred. When looking into the classes, several interesting observations are 
made. For some classes, the intercept is counteracted with the class-specific parameter, for 
example class 5 and car trips or class 1 and PT trips. This means that this mode is very 
unattractive for individuals in these classes. Some very positive parameters are also observed, 
such as bicycle trips for class 5 and walking trips for class 3. Consequently, individuals in those 
classes find trips using these modes very attractive. Finally, the non-travel ratio has a very 
positive parameter for class 2, which suggests that the share of non-travel is high for that class. 
 The structural model also shows an intercept, which reflects the general fit of the 
population for a class. The indicators show that class 1 has a better fit compared to class 5. The 
parameters of the covariates show how well each class fits for individuals with those 
characteristics. Regarding urban density, individuals living in high urban density are more 
likely to be associated with classes 4 and 5, whereas individuals in low density areas are more 
prevalent in classes 2 and 3. In many countries, living in a low density area means that one is 
forced to use the car. In the Netherlands, however, cycling is a very popular mode of 
transportation, with a modal share of 27% (CBS, 2018). Furthermore, many individuals own 
bicycles. This means that even in low density areas, bicycles are also available and used, next 
to the car. The number of household members of an individual influences the daily mobility 
pattern of individuals. An individual living in a household of 3+ members is more associated 
with class 1 than class 4, whereas an individual living alone is more associated with class 4. 
The gender covariate shows that in general more women are present in the population compared 
to men, however, class 2 and 4 are more associated with men compared to women. Regarding 
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occupation, study/school shows the highest (positive and negative) parameters, meaning that 
students have the strongest associations. Furthermore, the employed individuals only have a 
positive association with class 2. Finally, individuals with a high (completed) education level 
show strong associations with class 4, whereas individuals with a low level show a better fit 
with class 5.  

Table 2.3: Parameters of the LCCA model with 5 classes for weekday daily mobility patterns 

Prediction of indicators (Measurement model) 
 Values Intercept Wald C.1 C.2 C.3 C.4 C.5 Wald 
# Car trips  1.19 2,280.1* 0.41 1.03 0.35 -0.60 -1.19 2,470.4* 
# PT trips  0.28 1,177.2* -0.28 -0.28 -0.28 1.11 -0.28 1,178.1* 
# Bicycle trips  1.12 1,922.3* 0.09 -1.12 -0.07 -0.50 1.60 2,081.5* 
# Walking trips  0.38 909.4* -0.38 -0.38 1.15 0.00 -0.38 1,221.8* 
# Other trip  0.32 824.6* 0.54 -0.32 0.14 -0.05 -0.32 902.1* 
% of non- travel 0 2.61 2,026.1* -0.49 2.50 -1.08 -0.56 -0.38 298.0* 
days 1/3 0.15        
 1/2 -0.63        
 2/3 -1.30        
 1 -0.84        
 

Prediction of latent class membership (Structural model) 
 Values   C.1 C.2 C.3 C.4 C.5 Wald 
Intercept    0.48 0.14 0.34 -0.47 -0.48 127.85* 
          
Urban Density High   -0.09 -0.08 -0.08 0.16 0.10 32.66* 
 Medium   0.08 -0.22 -0.01 -0.01 0.15  
 Low   0.00 0.30 0.09 -0.15 -0.25  
# Household  1   -0.11 -0.14 -0.01 0.25 0.01 23.72* 
members 2   -0.09 0.02 0.06 0.03 -0.02  
 3+   0.20 0.12 -0.05 -0.28 0.00  
Gender Female   0.03 -0.13 0.09 -0.03 0.05 15.43* 
 Male   -0.03 0.13 -0.09 0.03 -0.05  
Occupation Study   -0.47 -1.11 -0.72 1.60 0.70 268.15* 
 Retired   0.49 0.13 0.33 -0.58 -0.37  
 Unemployed   0.03 0.51 0.45 -0.93 -0.06  
 Employed   -0.05 0.46 -0.06 -0.09 -0.27  
Education  Low   0.09 0.08 0.02 -0.36 0.17 21.04* 
Level Medium    0.01 0.06 0.03 0.04 -0.13  
  High   -0.10 -0.13 -0.04 0.31 -0.04   

*Significant at the 5% level 
 

When applying the models on all individuals in the dataset, profiles can be created for each of 
the classes. Table 2.4 shows a description of each class and provides the distribution for the 
population as a whole. The classes are named after the mode use characteristics in the daily 
mobility pattern. The classes are car and bicycle users (CB), exclusive car users (C), car, walk, 
and bicycle users (CWB), public transport+ users (PT+), and exclusive bicycle users (B). The 
CB and C segments together consist of more than half of the sample population. Class CWB is 
the third class and consists of almost a quarter of the sample population. Consequently, the last 
two classes are much smaller (PT+ and B). Three classes have a diverse mode use pattern 
(multimodal users), whereas two classes use on average one mode exclusively (unimodal, 
habitual users).   

Car and Bicycle Users 
The CB class is characterised by more than average trips by car, bicycle, and ‘other’ trips. 
Individuals in this class have a low share of non-travel days. Furthermore, the CB class has a 
relatively large share of retired individuals, which results in a higher share of individuals that 
are 65 and older. These individuals travel further than average by car and bicycle and car 
ownership is slightly higher than average. Furthermore, this class is comparable to the 
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population as a whole in terms of urban density, number of household members, education 
level, and gender. 

Table 2.4: Within-class distributions of the indicators and covariates 

    Class CB Class C Class CWB Class 
PT+ Class B Total 

Class size Percentage 27.5% 27.0% 23.7% 12.3% 9.5% 100% 
        
Indicators        
Car trips  Mean 1.6 2.2 1.5 0.6 0 1.5 
PT trips  Mean 0 0 0 1.4 0 0.2 
Bicycle trips  Mean 1.2 0 1.1 0.6 2.7 0.9 
Walking trips Mean 0 0 1.5 0.4 0 0.4 
Other trips  Mean 0.9 0 0.5 0.3 0 0.4 
Share of non-travel days Mean 6% 32% 4% 6% 6% 13% 
        
Active Covariates        
Occupation  Study/School 8% 3% 5% 34% 26% 11% 
 Retired 22% 12% 21% 9% 12% 16% 
 Unemployed 13% 15% 20% 4% 13% 14% 
 Employed 57% 70% 54% 53% 50% 59% 
        
Urban Density  High 49% 47% 50% 62% 57% 51% 
 Medium 23% 16% 21% 17% 22% 20% 
 Low 28% 37% 29% 22% 22% 29% 
        
# Household members  1 18% 15% 21% 26% 18% 19% 
 2 32% 32% 38% 26% 27% 32% 
 3 or more 50% 53% 42% 48% 54% 49% 
        
Education level Low 26% 22% 24% 23% 35% 25% 
 Medium 39% 42% 40% 36% 33% 39% 
 High 34% 36% 36% 41% 32% 36% 
        
Gender Female 55% 49% 60% 54% 58% 55% 
 Male 45% 51% 40% 46% 42% 45% 
        
Inactive Covariates        
Age 12 - 19 6% 2% 3% 15% 22% 7% 
 20 - 39  25% 34% 28% 48% 24% 31% 
 40 - 64  46% 52% 46% 27% 40% 45% 
 65+ 23% 13% 23% 10% 13% 17% 
        
Distance (km/day) Car 30.6 46.3 24.4 10.2 0 28.0 
 PT 0 0 0 55.2 0 6.8 
 Bicycle 4.1 0 2.7 1.7 9.0 2.8 
 Walk 0 0 1.5 0.4 0 0.4 
        
Ownership Car 78% 87% 75% 41% 48% 72% 
 Bicycle 75% 74% 78% 88% 88% 78% 
  PT (subscript.) 25% 19% 29% 83% 35% 32% 
CB: Car & bicycle users, C: Exclusive car users, CWB: Car, walk, & bicycle users, PT+: Public transport+ users,   
B: Exclusive bicycle users. Percentages per variable add up to 100%, Bold = highest shares for category of 
variable compared to other classes 

Exclusive Car Users 
Members of class C only use the car. Furthermore individuals in this class have a high share of 
non-travel days. Given other characteristics of this class, such as the relatively high share of 
employed individuals, males, ages between 40 and 64, and low urban densities, this most likely 
represents working at home days. The individuals in this class mostly live in households with 
three or more individuals. The individuals often own a car. Finally, they travel farthest (on 
average 46 km), which might be due to the fact that most live in low urban areas.   
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Car, Walk, and Bicycle Users 
The third class CWB travels by car, on foot, and by bicycle, but does not use public transport. 
Individuals in this class are relatively often retired or unemployed. Consequently, the 
population elderly (65+) is well represented in this cluster. Furthermore, a high share of females 
is present in this class, which are mostly unemployed (including those who are by choice out 
of the workforce). In this class there are more than average two-person households. Finally, 
individuals in this class walk further than average. Individuals in this class are comparable to 
the entire population in terms of the distribution over urban densities, education levels, and 
ownership levels.  

Public Transport+ Users 
The PT class users travel most often by public transport, however they also travel by car, 
bicycle, and on foot. The characteristics of the users in this class are very different from the 
first three classes. The individuals in this class are mostly studying or working, young (<40 
years), highly educated, live quite often alone, and live in high urban areas. The last is not 
surprising as it is known that the public transport services are more efficient and frequent in 
densely populated areas in the Netherlands. They travel relatively far by public transport, often 
involving train travel (inter-city travel). Furthermore, the PT+ users often do not own a car, but 
do own a bicycle and a public transport subscription.  

Exclusive Bicycle Users 
The last class are the exclusive bicycle users (B). This group travels frequently and only by 
bicycle. The users in this class are relatively often school going teenagers, which live with their 
parent(s). Consequently, they have a low education level (as they have not yet finished their 
schooling). They live in highly urban areas, where more facilities are reachable within short 
distances. Furthermore, they travel relatively long total distances by bicycle (9 km). Car 
ownership is low (also caused by age restrictions), but bicycle ownership is high. During the 
data collection period, the weather was relatively stable. Potentially, if data was collected for a 
longer period of time, with more variability in the weather, other modes would have been 
observed too (e.g. public transport).  
 
To compare the identified classes of daily mobility patterns to other studies, the differences in 
the research approaches need to be stressed. In other studies, attitudes have been used in the 
identification of the mobility patterns (Diana and Mokhtarian, 2009; Krueger et al., 2018; Molin 
et al., 2016) and the objective mobility pattern has been defined differently (de Haas et al., 
2018; Diana and Mokhtarian, 2009; Krueger et al., 2018; Molin et al., 2016). Furthermore, 
several studies have investigated different countries, enabling comparison between countries 
(Diana and Mokhtarian, 2009; Krueger et al., 2018). Consequently, a one-on-one comparison 
between the classes identified in different studies is not possible, notwithstanding we hereby 
identify the noteworthy differences and similarities.  
  Diana and Mokhtarian (2009) investigated datasets from two countries: USA and 
France. The modes included in their research differ for each country (the French dataset 
contained more modes). They identified four groups of users for the French dataset: unimodal 
car users, car-dominated but multimodal users, highly multimodal users with moderate travel 
intensity, and highly multimodal users with heavy travel intensity. Bicycle use is very low in 
this dataset and they did not include walking as a mode, therefore the multimodality is related 
to public transport and car use. For the USA dataset, they also identified four groups: unimodal 
car users, moderate travellers which are multimodal but car-dominated, light travellers which 
are multimodal but car-dominated, heavy travellers which are multimodal but car-dominated. 
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The first group corresponds to our class C. The other classes mostly show multimodality 
between car and walking, but the last group also contains a fair share of public transport use. 
Bicycle use is very low in the USA and was not included in the classification. As a result, both 
the classifications for France and the USA are very different from our study, because in most 
of our classes active modes play an important role. 

Krueger et al. (2018) investigated mobility patterns in Sydney, Australia. They 
identified three classes: car-oriented users, public transport-oriented users, and car- and bicycle-
oriented users. Class C in our study has large overlap with the car-oriented users, only this class 
is much larger (50.5%). Furthermore, the car- and bicycle oriented users overlap with our CB 
class, with the largest difference being that the bicycle is less frequently used. Finally, the public 
transport-oriented class overlaps with our PT+ class, but is again larger (20.9%). Consequently, 
all the classes reported by Krueger et al. (2018) have also been identified in our study, while 
we identify two additional classes and find smaller motorised traffic-dominated classes.  
Molin et al. (2016) used data from the Netherlands to classify mobility patterns. They identified 
five clusters: car multimodal, bicycle multimodal, bicycle and car, car mostly, and public 
transport multimodal. They did not incorporate walking as a separate mode, consequently their 
classes are mostly build upon bicycle and car use. Their classes to a large extent correspond to 
our classes with the exception that they find no bicycle only class.  
 De Haas et al. (2018) used data from the same panel as our study: the MPN dataset. 
They identified the daily mobility patterns differently by only including trips per mode, and 
excluding non-travel and other trips, where they summed the trips over the course of three days. 
They identified six classes: strict car, car and bicycle, bicycle, car and walk, low mobility, and 
public transport users. Most classes show good correspondence with the classes identified in 
this study. Their car and walk class is extended to also include bicycle in our study. Because 
we only include individuals that have used the bicycle or walked in the last half year, we exclude 
to a large extent the immobile population, consequently we do not identify a low mobility class.  
 In general, the results from this study are in line with the findings from other studies in 
the Dutch context (de Haas et al., 2018; Molin et al., 2016). Differences in the classes with other 
countries are mostly related to the fact that the Netherlands has a high share of active mode use. 
Most countries are more car-oriented and lack a high share of active modes to this date. 
Arguably, the Dutch situation may illustrate what the class distribution of daily mobility 
patterns could be after achieving a shift towards active modes. Next, we examine the relevance 
and importance of attitudes in this context using the original PAW-AM survey designed and 
collected for this study.   

2.4.2. Factors of Attitudes towards Modes 

For each of the five modes (car, bicycle, walk, BTM, and train) the respondents answered seven 
attitudinal questions. Figure 2.2 shows in a radar chart format the average scores of the 
population as a whole on each question for each mode, which provides a first insight into which 
factors might arise from the factor analysis. The two public transport modes are valued the least, 
where the train is valued over the urban modes. The Dutch population disagrees on average to 
the statement that the use of any particular mode relates to one’s prestige. Generally, the car is 
valued highest, followed by the bicycle. However, regarding relaxation during travel, both 
walking and cycling are valued more positively than the car.  
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Figure 2.2: Average score per attitude question per mode for the entire population 

The data is suitable for factor analysis with a score of 0.865 on the KMO test for sampling 
adequacy (>0.8) and total variance explained of 59.8%. Two questions related to walking 
(prestige and time saving) were excluded from the factor analysis, because they could not be 
captured by any of the factors (factor loading <0.4). The 33 attitudinal questions were reduced 
to eight factors; one factor for each mode, one related to the prestige of using modes and two 
related to PT attitude (combined train and BTM). The eight factors can be characterised as 
described in Table 2.5. The results of the factor analysis are in line with the expectations based 
on Figure 2.2. The loading represents how each of the variables load on the factor, where a 
higher value represents a better fit to the latent factor. Furthermore, the Cronbach’s alpha 
provides a measure of reliability of the resulting latent factors. A value higher than 0.8 is 
considered good and reflects high internal consistency. A value under 0.7 is questionable, which 
is observed for the ‘public transport safety’ factor. This might be attributed to the fact that only 
two questions are loaded on this factor, where generally at least three are expected. Therefore, 
the results of this factor need to be interpreted with care. 

All questions that are answered in a similar consistent fashion are combined into one 
latent factor. Interestingly, consistency in answers is exhibited for various attitudes towards a 
given mode rather than various modes for a given attitude (e.g. comfort). Hence, individuals 
have relatively strong overall opinions towards different modes and therefore it will be harder 
to change attitudes via, for example, promotional or information campaigns. This especially 
holds for the car and bicycle, because six out of the seven attitudinal questions are combined 
into the attitudinal factor. The train attitude includes only four attitudinal questions, meaning 
that individuals are more varying in their attitude towards the train. Consequently, the attitude 
towards the train could potentially be changed using promotional campaigns that focus on the 
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flexibility and time saving aspect (PT efficiency). The only latent factor that strongly represents 
an attitude covering different modes is the prestige of using modes. This latent factor includes 
statements on the perceived increase in status associated with using car, train, BTM, or bicycle. 
Individuals have answered these questions in a similar fashion for each of the modes, 
disagreeing with the statement that it induces prestige (see Figure 2.2). Consequently, the 
general tendency is that modes do not increase status for individuals and status is not part of the 
attitude towards each of the modes. 

Table 2.5: Results of the factor analysis on attitudinal questions related to the different modes 

Factor Variables  Loading Cronbach’s 
Alpha 

Car attitude Travelling by car is … Comfortable 0.803 

0.865 

  Relaxing 0.747 
  Time saving 0.622 
  Safe 0.659 
  Flexible 0.678 
  Fun 0.834 
     
BTM attitude  Travelling by BTM is …  Comfortable 0.794  
      Relaxing 0.800  
  Time saving 0.504 0.897 
  Flexible 0.513  
  Fun 0.828  
     
Bicycle attitude Cycling is… Comfortable 0.740 

0.827 

  Relaxing 0.808 
  Time saving 0.489 
  Safe 0.502 
  Flexible 0.621 
  Fun 0.833 
     
Walking attitude Walking is… Comfortable 0.757  
  Relaxing 0.794  
  Safe 0.437 0.816 
  Flexible 0.562  
  Fun 0.822  
     
Train attitude Travelling by train is… Comfortable 0.736 

0.849 
  Relaxing 0.759 
  Safe 0.454 
  Fun 0.761 
     
Prestige of using modes Travelling by …  Car 0.612 

0.812 
     increases status Train 0.831 
  BTM 0.734 
  Bicycle 0.745 
     
Public transport efficiency Travelling by train is… Time saving 0.654 

0.858 
  Flexible 0.638 
 Travelling by BTM is…  Time saving 0.609 
  Flexible 0.589 
     
Public transport safety Travelling by … is safe Train  0.583 

0.697 
    BTM 0.591 
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2.4.3. Attitudinal Factors versus Latent Mobility Pattern Classes 

The comparison between attitudinal factors and the latent mobility pattern classes is done in 
two parts. First, a comparison between classes is done, which identifies whether individuals in 
different classes indeed have different attitudes. Second, a within class comparison is done, 
which identifies the extent to which individuals use their (least) perceived modes in their daily 
mobility pattern.  

Comparison between Latent Mobility Pattern Classes 
A total of five different latent mobility pattern classes has been identified using a LCCA 
analysis. The attitudinal questions have been reduced in dimension to eight latent factors. In 
this section we test whether these five groups of individuals have different attitudes (towards 
various modes). Figure 2.3 shows the attitude scores on each factor for each of the classes. The 
dashed black line represents the average opinion of all respondents. This is used to reflect the 
differences in magnitude between factors, as the factors themselves have a mean of zero.   
 

 

Figure 2.3: Factors representing attitudes of the five classes 

Several observations can be made in relation to Figure 2.3. First, the car attitude is highest for 
the exclusive car users, which only use the car and lowest for the exclusive bicycle users, which 
do not use the car. Second, the exclusive bicycle users are most positive towards the bicycle, 
however the other classes that use the bicycle on a daily basis (CB and CWB) are also more 
positive than average towards the bicycle. Third, the only class that walks on a daily basis 
(CWB) is most positive towards walking. Fourth, the PT+ users are most positive towards the 
train. Class C is much less positive towards the train compared to the others. And finally, the 
PT+ users are respectively most positive and least negative towards PT efficiency and PT 
safety. In summary, these observations indicate that modes that are actively used by individuals 
are valued more positively compared to modes that are not or less frequently used. 

We test whether the differences observed in Figure 3 are statistically significant. Table 
2.6 shows which classes are significantly different from other classes on each of the eight 
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identified attitudinal factors. The Kruskal Wallis test indicated that no significant differences 
are found in relation to the BTM attitude, which is negative among all user classes. In contrast, 
statistically significant differences are found for all other attitudes. We then turn to test which 
classes differ in their attitudes.  

Table 2.6: Differences between classes on attitudinal factors 

  Class CB Class C Class CWB Class PT+ Class B 
 Factor differs from differs from differs from differs from differs from 
Car attitude C,PT+,B all C,B CB,C CB,C,CWB 
BTM attitude - - - - - 
Bicycle attitude C CB,CWB,B C,PT+ CWB C 
Walking attitude CWB CWB,B all CWB C,CWB 
Train attitude C CB,CWB,PT+ C C - 
Prestige of using modes - CWB C - - 
Public transport efficiency PT+,B PT+,B PT+ CB,C,CWB CB,C 
Public transport safety PT+,B CWB,PT+,B C,PT+ CB,C,CWB C 

 
Several observations can be made in relation to Table 2.6. First, the classes PT+ and B are not 
statistically different in their attitudes. This might be due to the fact that their socio-
demographic profiles are rather similar (young people in high urban areas). Second, the classes 
CB and CWB are only significantly different in their attitude towards walking, where CWB is 
more positive than CB. The first class also makes much more use of walking as mode of 
transport, signifying the largest difference between these two classes. Third, classes CWB and 
B differ in their attitude towards car and walking. Just like the previous case, this echoes the 
major difference in the mobility patterns of the two groups. Fourth, classes C and CWB are 
very different in their attitudes. They are only similar in their BTM attitude and PT efficiency. 
The multimodal mobility pattern of CWB is therefore generally related to a more positive 
attitude towards the non-used modes, compared to the unimodal C class. Fifth, the unimodal 
classes C and B are not significantly different in their BTM attitude, train attitude, and the 
prestige towards modes. Consequently, they have a similar opinion regarding PT modes, but a 
different opinion towards the other modes where they are more positive towards the mode they 
use. And finally, the classes C and PT+ have similar attitudes towards the modes they do not 
actively use in their daily mobility pattern, namely the active modes: cycling and walking.  

Comparison within Latent Mobility Pattern Classes 
The most positive attitudinal score for a mode is the best perceived mode for an individual. 
Ideally, this mode would be used by the individual in their daily mobility pattern. This would 
reflect travel mode consonance (De Vos, 2018) and would suggest an ideal match between 
attitudes and behaviour. If this is not the case, i.e. travel mode dissonance, other factors also 
influence both the daily mobility patterns and attitudes towards modes. This might stem from 
the fact that perception is not the same as preference. An individual can have comparable 
measured perceptions for two different modes, but prefer (and thus use) one over the other 
based on unmeasured characteristics (such as cost or health). Table 2.7 shows the use of the 
best and least perceived modes for each latent mobility pattern class.   

The use of the best perceived mode varies largely between different classes. The PT+ 
class uses all modes in their daily mobility pattern, consequently they also use their best 
perceived mode. The CWB class reaches a 91% travel mode consonance. Only 9% of the 
individuals in this class do not use their best perceived mode, in these cases the train is better 
perceived. BTM is the only other mode that is not used by the CWB users, however no one has 
BTM as their best perceived mode. Consequently, other influences drive these individuals to 
not use the train in the daily mobility pattern. The single-mode classes (B and C) have the lowest 
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levels of travel mode consonance. Potentially, the individuals that do not use their best 
perceived mode are captive users. Captive users are bound to one mode, meaning that they 
cannot or do not have the means to make use of another mode. The best perceived modes for 
class C are walk, bicycle, and train, whereas in class B these are car, walk, and train. Very few 
individuals have BTM as their best perceived mode.  

Table 2.7: Use of best and least perceived modes in the daily mobility pattern: travel mode  
consonance and dissonance 

  Best Perceived Mode Least Perceived Mode 
  Use Not use Top perceptions if not used Use Not use 
Class CB 74% 26% train walk train-walk 9% 91% 
Class C 62% 38% walk bicycle train 5% 95% 
Class CWB 91% 9% train    21% 79% 
Class PT+ 100% 0% -    100% 0% 
Class B 44% 56% car walk train 7% 93% 

 
If an individual uses the least perceived mode in the daily mobility pattern, this shows a larger 
discrepancy between attitudes and daily mobility patterns compared to not using the best 
perceived mode. In this case the single-mode classes show the smallest percentages, 5% for 
class C and 7% for class B. This means that only few people use a single mode, which they 
perceive least. As these individuals would most likely have deviated from these single modes, 
they are indeed likely to be captive users. Again, the PT+ class uses all modes in their daily 
mobility pattern, which means that the least perceived mode is also included in that pattern. The 
CWB class has a relatively large share of individuals using their least perceived mode, 
indicating that either car (5%), walk (6%) or bicycle (3%), or a combination of these (7%) is 
least perceived. However, these individuals are not captive users, as they also deviate from the 
least perceived mode. 
 Governments worldwide share the goal of increasing active and PT mode use 
(sustainable modes). To identify the potential of these modes, we investigate the active mode 
and PT perceptions of the individuals in each latent mobility pattern class. Table 2.8 shows the 
best perceived modes categorised in active and PT for the general population and the dissonant 
users in each class. The latter reflects users that potentially perceive active or PT modes best, 
but currently do not use these in their mobility pattern. These individuals are therefore potential 
future users of active or PT modes.   

Table 2.8: Active and PT mode perception for each mobility pattern class 

  Best perceived mode Best perceived by dissonant users 
  Active PT Dissonant users Active PT 
Class CB 36% 13% 26% 15% 11% 
Class C 30% 8% 38% 30% 8% 
Class CWB 43% 13% 9% 0% 9% 
Class PT+ 39% 19% 0% 0% 0% 
Class B 44% 15% 56% 16% 11% 

  
Class CB and C have a relatively low share of best perception for both active and PT modes 
(less than half), suggesting that it might be difficult to persuade the general CB and C users into 
using (more) active or PT modes. However, the shares of dissonant users are relatively large. 
These dissonant users perceive active modes (walking in case of CB) or public transport best. 
The majority of them have a higher perception of active modes than PT. For class CB this is 
15% (walking) versus 11%, while for class C it is 30% (cycling and walking) versus 8%. These 
users can potentially be persuaded to use (more) active modes or public transport, given the 
right incentives. Class CWB and B have the best perception of active modes. However, most 
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of these users already use active modes, resulting in the potential for more use of active modes, 
not necessarily switching modes. Class B has a large share of dissonant users, of which 27% 
has the best perception of walking or PT. Therefore, this class also shows potential for the use 
of other sustainable modes, besides the bicycle. Class PT+ perceives PT best. Besides all the 
potential shown for active or PT mode use, from the attitude perspective, it is striking to see 
how many individuals, across all classes, have the highest perception of the car (almost half).  

2.5. Conclusions  
This paper presents the findings of a latent class cluster analysis, applied on census data from 
the Netherlands, with the goal of revealing different daily mobility travel patterns. Furthermore, 
we explicitly investigate the relationship between the resulting daily mobility travel patterns 
and the attitudes towards (alternative) modes, to identify potential for increasing the active 
mode share across the population.  
 A total of five different daily mobility pattern classes was identified: 1) car and bicycle 
users, 2) exclusive car users, 3) car, walk, and bicycle users, 4) public transport+ users, and 5) 
exclusive bicycle users. These user types differ in their socio-demographics, ownership of 
modes, distance travelled per mode, household sizes, and urban densities. Active mode use is 
present in most classes, except for the exclusive car users. Furthermore, three classes exercise 
multimodality (over the days). Classes of individuals that already use active modes or that are 
multimodal, might be more inclined to use active modes of transport or to increase their active 
mode use in the future, as they are already familiar with these. It might be hard to convince the 
exclusive car users to switch to other, more sustainable, modes.  
 The attitude towards modes was identified by asking individuals seven questions about 
the comfort, relaxation, time saving, safety, flexibility, fun and prestige associated with using 
each of the travel modes. A factor analysis was used to reduce the number of dimensions and 
to identify likeminded attitudinal questions. A factor made out of statements related to one 
attitudinal question (e.g. fun) would mean that travel in general is seen as fun or not fun. 
Whereas, a factor made out of statements related to one mode (e.g. the car) would imply that 
an individual is generally positive or negative towards that mode regardless of the attitudinal 
aspect. We identified five mode related factors and three attitude related factors. Consequently, 
the population is generally positive or negative on all aspects for a given mode. This especially 
holds for the car and bicycle, where six attitudinal questions are included. Consequently, it will 
be difficult to influence the attitude of individuals, as all aspects are seen as positive or negative.  
 In this study we investigated the relationship between the attitudinal factors and the 
daily mobility pattern classes. The findings suggest that an individual is more positive towards 
the modes that are included the daily mobility pattern, compared to the modes that are not part 
of his or her mobility pattern. This is consistent with previous findings reported in the literature, 
which state that unimodal car drivers have a biased or more negative attitude towards public 
transport modes, compared to multimodal car drivers (Diana and Mokhtarian, 2009; Molin et 
al., 2016). In our research this statement is confirmed, but we see a much more negative attitude 
towards all other modes (it scores lowest on bicycle, local public transport and inter-city public 
transport). In contrast, the multimodal users are very positive towards the used modes and 
generally also positive towards the unused modes.  

We also investigated the degree of travel mode consonance (use of the best perceived 
mode) within each mobility pattern class. The single-mode classes (exclusive car and exclusive 
bicycle users) show the lowest shares of travel mode consonance. The individuals that do not 
use the best perceived mode are dissonant users. We expect that 5% of the exclusive car users 
and 7% of the exclusive bicycle users are captive users, as they use their least perceived travel 
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mode. A relatively large share of the exclusive car users has a higher perception of active modes 
and PT (sustainable), showing that there is potential for changing behaviour in all classes.  

When the goal is to achieve a higher active (or sustainable) mode share, these findings 
indicate that there is potential in each of the classes, however the approach towards reaching 
the goal differs. The car dominated classes (car and bicycle users and exclusive car users) show 
potential for switching modes towards more sustainable or active modes, as they have relatively 
large shares of dissonant users (26% and 38%). These mobility pattern classes include many 
employed individuals, therefore the employer could take a role in changing the behaviour by 
stimulating or enabling the use of sustainable modes to work. However, more than half of the 
individuals in these classes have a better perception of the car, which is consonant with the 
mobility pattern. Therefore, it is expected to be very challenging to change the behaviour of 
these individuals. However, they might be stimulated to become more sustainable through the 
use of car-based shared mobility services (for example by the employer). Ride-sourcing, ride-
sharing, and car-sharing are examples of car-based services that offer attributes associated to 
the car, but steer towards more efficient utilisation of vehicle fleets and thus reducing 
potentially related externalities. Furthermore, the exclusive car users might be unaware or not 
fully informed of the attributes, such as level-of-service, of active and sustainable modes. Short-
term targeted campaigns can be an effective policy measure to expose these users and 
potentially enlarge their mobility portfolio. The multimodal classes (car, walk, and bicycle users 
and public transport+ users) already show sustainable behaviour, which is mostly in line with 
their perceptions. These individuals can increase their active mode use and reduce car use, 
especially for shorter distance travel. Integration of the sustainable modes, via mobility-as-a-
service (MaaS), could help in providing more attractive services that increase the use of 
sustainable or active modes, at the cost of car use. Finally, the majority of the exclusive bicycle 
users shows dissonant behaviour. Potentially, this results in a change of behaviour in the future. 
To ensure active or sustainable mode use in the future, these individuals could also benefit from 
MaaS schemes, especially because the majority of these individuals lives in dense urban areas.  
 The data used for this research is cross-sectional. Consequently, we cannot identify how 
potential policies or campaigns have influenced the behaviour of individuals. Future research 
entails collecting another wave of data, and identify shifts in behaviour by executing a latent 
transition analysis (e.g. Kroesen et al., 2017). Also, if another wave of data is available the 
causality between attitude and behaviour can be investigated. Another interesting aspect that 
can be investigated when multiple waves of data are available, is the influence of life changing 
events on individuals’ mobility patterns and attitudes towards modes. Next to that, the results 
found in this study regarding classes of mobility patterns and attitudes towards modes could be 
used as input for choice models that aim to investigate potential impacts of policies on mode 
choices. Finally, in this study we regarded the attitudes towards modes in comparison to the 
latent mobility classes. It would also be interesting to investigate how the covariates of our 
model, e.g. socio-demographics, explain differences in attitudes towards modes.  
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Abstract 
Interest into active modes (i.e. walking and cycling) has increased significantly over the past 
decades, with governments worldwide ultimately aiming for a modal shift towards active 
modes. To devise policies that promote this goal, understanding the determinants that influence 
the choice for an active mode is essential. The Netherlands is country with a large and 
demographically diverse active mode user population, mature and complete active mode 
infrastructure, and safe environment. Mode choice research from the Netherlands enables a 
comparison on relevant determinants with countries that have a low active mode share. 
Furthermore, it can provide quantitative input for policies aiming at an active mode shift. This 
paper estimates a mode choice model focusing on active modes, while including a more 
comprehensive set of modes (i.e. walking, cycling, public transport and car). Based on data 
from the Netherlands Mobility Panel (MPN) in combination with an additional survey focused 
on active modes (coined PAW-AM), this study estimates which determinants influence mode 



38 Unravelling Mode and Route Choice Behaviour of Active Mode Users 

choice. The categories of determinants identified in the literature are individual characteristics, 
household characteristics, season and weather characteristics, trip characteristics, built 
environment, and work conditions. The results show that all categories of determinants 
influence both walking and cycling. However, the choice for cycling or walking is affected by 
different determinants and to a different extent. In addition, no active mode nest was found in 
the model estimation. Cycling and walking should thus be regarded as two distinguished 
alternatives. Furthermore, the results show that active mode use is most sensitive to changes in 
the trip characteristics and the built environment.  

3.1. Introduction 
In the past decades, interest into active modes (i.e. walking and cycling) has significantly 
increased. A high share of active modes in terms of the number of trips has many potential 
benefits. At the individual level it can provide health benefits due to increased activity levels, 
and at the network level it might reduce traffic jams and the associated emissions when 
substituting the car. Governments worldwide have set goals for increasing the active mode share 
(Pan-EuropeanProgramme, 2014). Ultimately, they are aiming for a modal shift from motorised 
to active modes. This transition could be achieved by designing effective policies. 
Understanding which determinants influence the choice for an active mode can serve as 
valuable input for these policies. 

Several countries already have a high share of active mode use, i.e. the Netherlands, 
Denmark, and Germany (Pucher and Buehler, 2008). In the Netherlands, the active mode share 
in the number of trips in the year 2017 was 44%, more than half of these are cycling trips (CBS, 
2018). Pucher and Buehler (2008) make a distinction between the cycling rich countries and 
other countries where cycling is uncommon, such as the USA, Canada, and the UK. They 
identify that even though more kilometres are cycled in the Netherlands, the fatality and 
accident rates are much lower compared to the cycling poor countries, indicating a very safe 
cycling environment. Fishman (2016) identifies the Dutch mature and complete cycling 
infrastructure as the main contributor to the safe environment. Furthermore, Fishman (2016) 
stresses that in the Netherlands the cycling population is much more diverse in terms of socio-
demographic compared to other countries. Women are known to cycle more than men (Heinen 
et al., 2010) and also elderly people are active bicycle users (Fishman, 2016). Fishman (2016) 
identifies that there is a knowledge gap concerning active mode choice from countries like the 
Netherlands, that are mature in terms of infrastructure, safe, and where cyclists’ demographics 
are diverse. This enables the possibility to make a comparison on relevant determinants for 
active mode choice between cycling rich and cycling poor countries. Furthermore, when 
investigating active mode choice in Netherlands there is no need to oversample the cycling 
population, because a representative sample of the population suffices to ensure a large enough 
sample of cyclists.  

Fishman (2016) argues that the Dutch are ‘blind to cycling’, meaning that cycling is 
such an ordinary activity that it has not been warranted much attention, both by practitioners 
and researchers. Only recently this has started to change. Dutch transport planning models, such 
as LMS (Rijkswaterstaat, 2018), are used by governmental authorities to assess the impact of 
policies. These models are tailored to the car and public transport. In line with Fishman’s (2016) 
argument, the active modes have not received much attention. Walking and cycling are 
combined into ‘slow modes’ and often evaluated as ‘rest-category’ (De Jong et al., 2007). In 
order to correctly estimate the impact of policies, it is essential to include behaviourally accurate 
mode choice models in these transport planning models. Consequently, research on active mode 
choice in the Netherlands would benefit both practice and research.  
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The objective of this study is to identify the determinants influencing the choice for an 
active mode of transport when considering a more comprehensive set of modes (i.e. car, public 
transport, bicycle and walking) in the Netherlands, which is characterised by high share of 
active mode use. This paper presents findings from a discrete mode choice model estimated 
using census data. We investigate the influence of different categories of determinants on the 
mode choice, e.g. trip characteristics, socio-demographics and the built environment. The 
results of this study can be used in two ways: first, the findings can facilitate planning and 
policy measures in other countries that aim for high active mode penetration and second, the 
model can improve the representation of active modes in the models that are part of the Dutch 
transport planning models.  

In this paper, Section 3.2 identifies and categorizes determinants influencing active mode 
choice, which serve as input for this study. Section 3.3 gives a description of the data collected 
for this research, and it explains the data merging and filtering process and provides an overview 
of the data in terms of descriptive statistics. In Section 3.4, the specification of the mode choice 
models is detailed, with focus on the identification of the individual mode choice set and the 
specification of the discrete choice model. In Section 3.5, the results of the model estimation 
are reported and discussed. Section 3.6 addresses a discussion of the results. Finally, Section 
3.7 provides the conclusions of this study. 

3.2. Determinants of Active Mode Choice 
In this study we focus on the determinants of active mode choice when considered as part of a 
more comprehensive set of modes. Therefore, this literature review focusses on the 
determinants that influence walking and cycling. We refer the reader to the literature review 
sections in for example Buehler (2011) and Paulley et al. (2006) for studies on public transport 
and car mode choice determinants.  

Many studies have investigated which determinants are of importance in active mode 
choice. It is possible to divide these determinants into six categories (Heinen et al., 2010; Hunt 
and Abraham, 2007). These are individual characteristics, household characteristics, trip 
characteristics, built environment, season and weather characteristics, and work conditions. 
This section briefly discusses the main findings from literature reviews that focus on cycling 
and walking, with respect to determinants from each category. 

Individual Characteristics 
The individual characteristics pertain to all determinants related to the person, e.g. socio-
demographics, ability to use a mode, and ownership or availability of modes. The socio-
demographics have often been investigated, however for both walking and cycling mixed 
results are found. Often, literature claims that men cycle more often than women (Fraser and 
Lock, 2011; Muñoz et al., 2016a). Heinen et al. (2010) confirm this for countries with low 
cycling penetration, however in countries with high cycling penetration, such as the Netherlands 
and Denmark, women are found to cycle more often than men. Regarding age, mixed results 
have been found for both walking and cycling (Handy et al., 2014; Heinen et al., 2010; Mitra, 
2013). Young people are often found to cycle more (Muñoz et al., 2016a) and old people to 
cycle less (Fraser and Lock, 2011), albeit the results are inconclusive. Often a higher education 
level is linked to lower cycling levels (Heinen et al., 2010), while again mixed results have been 
reported in the literature (Muñoz et al., 2016a).  

The availability of a car has a negative association with the probability to walk or cycle 
(Heinen et al., 2010; Mitra, 2013), whereas the availability of a bicycle has a positive 
association with cycling (Fraser and Lock, 2011; Handy et al., 2014; Heinen et al., 2010). The 
relationship between bicycle availability and walking has not been investigated insofar. 
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Household Characteristics 
The household characteristics relate to the other people in the household and their influence on 
the active mode choice. The size and composition of the household are known to relate to mode 
choice. For example, the number of children is negatively associated with the choice for 
walking to the supermarket (Maley and Weinberger, 2011). Hamre and Buehler (2014) confirm 
this negative association for both walking and cycling (the latter was not significant). Heinen 
et al. (2010) state that having no children increases the probability of cycling. Income is often 
identified as a determinant of active mode choice, however mixed results are reported regarding 
the directionality of the relationship (Handy et al., 2014; Heinen et al., 2010; Mitra, 2013; 
Muñoz et al., 2016a).  

Season and Weather Characteristics 
Cyclists and pedestrians are more exposed to the seasonal and weather conditions than a person 
travelling by car or using public transport. Generally, summer and autumn are mentioned as the 
most favourable seasons for cycling and walking (Böcker et al., 2013; Heinen et al., 2010). 
Winter is negatively associated with active mode travel. Wang et al. (2016) report that 
environments with cold winters and warm summers are less attractive for active mode users. 
Regarding the daily weather conditions, the impact of mostly rain and temperature have been 
studied (Böcker et al., 2013; Heinen et al., 2010). Temperature is found to have a non-linear 
effect, where cold and very hot weather are negatively associated with active mode use. 
Regarding rain, mixed results have been found (Böcker et al., 2013; Heinen et al., 2010). Other 
studies do not explicitly mention temperature or rain, but investigate the influence of extreme 
or adverse weather, which is negatively associated with active mode use (Fraser and Lock, 
2011; Wang et al., 2016).  

Trip Characteristics 
The most investigated trip characteristics are distance and travel time. They are highly 
correlated and sometimes considered equivalent, however in cycling research, distance is often 
investigated (Fraser and Lock, 2011; Handy et al., 2014; Heinen et al., 2010; Mitra, 2013; 
Muñoz et al., 2016a; Winters et al., 2017). Longer distances are found to be negatively 
associated with active mode use. Heinen et al. (2010) suggest a non-linear relationship between 
distance and bicycle use, penalising longer distances more adversely. Distance is related to the 
built environment, because land use and density of the built environment largely determine how 
far destinations are located in relation to residential areas (Handy et al., 2014). Other trip 
characteristics are less often investigated. The day of the week was found to influence cycling 
choice. During weekdays the bicycle has a larger probability to be chosen (Hansen and Nielsen, 
2014). Furthermore, a recreational trip purpose is found to have a positive association with 
cycling (Fraser and Lock, 2011).  

Built Environment 
The built environment pertains to road infrastructure (e.g. percentage of cycle path or sidewalks 
along the route), aesthetics (e.g. proximity to parks), and area characteristics (e.g. presence of 
shops and population density). The built environment is especially relevant for active modes, 
as they are more (directly) exposed to the surroundings compared to car and public transport 
users. The presence, density, and continuity of active mode infrastructure (e.g. bicycle lanes or 
paths and sidewalks) is positively associated with active mode usage (Fraser and Lock, 2011; 
Handy et al., 2014; Heinen et al., 2010; Mitra, 2013). Facilities related to cycling, such as 
bicycle parking, are also positively associated with cycling (Heinen et al., 2010). Regarding the 
aesthetics, the literature states that the presence of among others parks, street plantation, 
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playgrounds, benches and garbage bins are positively associated with both walking and cycling 
(Fraser and Lock, 2011; Heinen et al., 2010; Wang et al., 2016).  Traffic lights were found to 
have a mixed relationship with cycling and have not been studied in a broader mode choice 
context (Heinen et al., 2010). Land use is found to be strongly related to active mode use. A 
mixed land use environment encourages active mode use, whereas low residential density 
discourages active mode use (Fraser and Lock, 2011; Heinen et al., 2010; Mitra, 2013; Muñoz 
et al., 2016a; Wang et al., 2016; Winters et al., 2017). At a more aggregate level, small and 
medium size cities are positively correlated with bicycle use and the city centre is more 
attractive for cycling compared to the suburbs (Heinen et al., 2010). Furthermore, areas with 
high population density are attractive for active mode use (Fraser and Lock, 2011; Muñoz et 
al., 2016a; Wang et al., 2016).  

Work Conditions 
Finally, the work conditions relate to the facilities that are offered by the employer. This 
comprises for example facilities at the workplace, reimbursement for travelling to work using 
a certain mode, and working hours and flexibility thereof. Heinen et al. (2010) and Handy et al. 
(2014) state that the availability of facilities related to the car, for example (free) parking 
options, negatively relate to the choice for cycling. Furthermore, Heinen et al. (2010) identify 
a positive relationship between facilities that are beneficial for cyclists, such as lockers or 
showers and bicycle choice. Providing incentives or reimbursement for both the bicycle and 
public transport have a positive association with cycling (Handy et al., 2014; Muñoz et al., 
2016a; Winters et al., 2017). Public transport requires access and egress for which both walking 
and cycling are often used. The use of the bicycle as access and egress mode also boosts the use 
of the bicycle on other occasions. On the other hand, if the car is incentivised or reimbursed a 
negative association is found with bicycle use (Handy et al., 2014). Furthermore, if car usage 
is disincentivised, evidence suggests that this does not benefit bicycle use, but instead increases 
public transport use (Braun et al., 2016). Finally, regarding working hours, the literature 
suggests that having a part-time job is more positively associated with cycling compared to a 
full-time job (Heinen et al., 2010).    
 
Evidently, the significance of determinants belonging to each of the six categories has been 
previously investigated. Notwithstanding, the directionality and magnitude has not always been 
conclusive. Furthermore, there is a need to map and perform a more complete analysis of the 
determinants influencing mode choice (Handy et al., 2014; Heinen et al., 2010), so that trade-
offs among determinants and their relative importance can be established by performing a joint 
model estimation. This ensures that not only the influence of the individual determinants on the 
mode choice is quantified, but also their relative influence. The latter is essential to support 
policy makers in determining what to focus on when the goal is increasing the modal share of 
active modes. This study addresses determinants from all categories to investigate both the 
individual and relative importance of modal choice determinants. 

3.3. Data Collection and Preparation  
This section covers the data collection (3.3.1) and preparation of the data for this study (3.3.2). 
Furthermore, the selection and preparation of the determinants that potentially influence mode 
choice (3.3.3) is addressed. Finally, the final dataset is described in terms of individual 
characteristics (3.3.4) and reported trip characteristics (3.3.5). 
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3.3.1. Data Collection 

In this study census data from the Netherlands Mobility Panel (MPN) is used, which is a 
longitudinal household panel that has started in 2013 and is designed to investigate changes in 
travel patterns of a fixed panel of individuals and households over a longer period of time. This 
panel is to a large extent representative for the Dutch population, except for a slightly lower 
share of low-income individuals and teenagers. Every year, the members of the panel fill in a 
three-day travel diary, a household survey and a personal survey. In the travel diary they report 
among other things, the trips made, the modes used and the distances covered. The household 
survey relates to household characteristics and the ownership and availability of modes, 
whereas the personal survey focuses on mode preference for certain activities and their attitudes 
towards motorised modes. The panel comprises about 2,000 households, totalling 4,000 
individuals. For more information on the MPN surveys the reader is referred to Hoogendoorn-
Lanser et al. (2015).  

Even though the MPN census data is a very rich data source, capturing most of the 
influence categories of determinants identified in Section 3.2, it lacks data on the built 
environment. Previous research has established the importance of this category, for example 
positive association with cycling infrastructure (Fraser and Lock, 2011; Handy et al., 2014; 
Heinen et al., 2010; Mitra, 2013), positive association with presence of parks, street green, 
playgrounds, benches and garbage bins (Fraser and Lock, 2011; Heinen et al., 2010; Wang et 
al., 2016), and positive association with population density levels (Fraser and Lock, 2011; 
Muñoz et al., 2016a; Wang et al., 2016). Consequently, it is essential to also collect data on the 
built environment. In 2017 an additional survey (coined PAW-AM), which addresses among 
other things elements of the built environment that are present in the respondents’ 
neighbourhood, was designed to enrich the MPN dataset. Besides the elements of the built 
environment, the survey focuses on complementary information with respect to active mode 
use. This survey was distributed among respondents of the MPN survey, who indicated that 
they walked or cycled at least once in the last year. The goal was to target active mode users, 
consequently we excluded 1.3% of the respondents of the MPN panel that did not walk or cycle 
and are assumed to be largely inactive.  

3.3.2. Data Preparation  

To be able to investigate the influence of all categories of determinants on mode choice, the 
MPN surveys (household, personal and travel diary) and the PAW-AM survey need to be 
merged. Only respondents that have filled in both the MPN and PAW-AM surveys are included 
in this study, resulting in a total of 2,871 respondents.  

In the travel diary several filters are applied to identify which of the 26,192 trips (made 
by all respondents) can be used for this study. Trips are excluded in the following cases: 1) 
tours in which the origin is also the destination and no intermediate stop is made, 2) trips of 
which the reporting is unreliable or inconsistent (e.g. due to large detours, incorrect address 
information or uncertainty about the reported mode), 3) trips that are made as part of 
professional driving (e.g. truck drivers), 4) trips outside the Netherlands, 5) non-home based 
trips and 6) trips that are made by rarely chosen or available modes (e.g. skateboard or boat). 
The reason for excluding tours and professional driving trips is because the motivation for 
choosing a mode might be different from normal trips. Non-home based trips (i.e. not starting 
from home) are excluded because of the dependency on the mode of transport that was used 
before, for example if a person makes the first trip by car, he or she generally needs to return 
the car back home, which introduces a dependency that results in limited and/or fixed mode 
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choice set. Conversely, trips starting at home provide no limitations in choosing a mode other 
than the availability of the mode to the person. 

Furthermore, the data collection for the MPN surveys took place in autumn 2016 
(September – November), whereas the PAW-AM survey was distributed in June 2017. This 
means that life events (e.g. a new job, different working hours, a new house or the birth of a 
child) need to be taken into account. That is, if a respondent has experienced a life event, the 
data from the MPN survey should not be matched to the PAW-AM survey and these 
respondents are excluded. The reason is that their travel behaviour could have significantly 
changed due to these events, creating a mismatch in the data. The final dataset that is available 
for this study consists therefore of 6,368 trips and 1,864 individuals. 

3.3.3. Selecting and Processing Potential Determinants 

Based on the determinants identified in the literature reviews (Section 3.2) and the availability 
of data in the MPN and PAW-AM surveys, potential determinants that influence mode choice 
are selected for this study. Table 3.1 shows an overview of all the determinants selected for this 
study. Note that all categories of variables are represented in this list, enabling the comparison 
of the relative importance of various determinants.  

Table 3.1: Determinants that are known to influence mode choice in literature and are available  
in the dataset for inclusion in the model estimation procedure 

Individual characteristics   Trip characteristics 
Gender  No. trips on day of travel 
Age  Departure time 
Education  Trip purpose 
Ethnicity  No. individuals in travel group 
Ethnicity parents  Travel time 
Occupation   

Driver’s license  Built environment 
Body Mass Index (BMI)  Urbanisation level 
Transit subscription  Metropolitan area (Amsterdam, Rotterdam, 
Company car  Eindhoven, Den Haag, Utrecht) 
Bicycle/car in household  Nature in neighbourhood (green, water, park) 
Mode used for going to high school Street furniture in neighbourhood (garbage bins, playgrounds) 
Mode used in the last half year  Traffic related aspects in neighbourhood (speed bumps,  
  cycle paths, cycle parking spots, traffic lights) 
Household characteristics  Buildings in neighbourhood (shops, restaurants, schools, 
No. household members  public buildings, hospitals, sports centres, flats, offices, 
No. children in household  industry) 
Household income   

  Work conditions 
Season and weather  Working hours per week 
Extreme weather    Travel compensation (bicycle, public transport, car) 
Month of travel   

 
In the dataset both travel time and distance are known. These two determinants are highly 
correlated, therefore only one can be included in the model estimation. The distance and travel 
time are self-reported by the respondents. Regarding public transport, journey planners usually 
express the trip in travel time, therefore it is expected that the respondents are able to recall the 
duration of the trip, but they might not know the distance of the trip. Therefore, travel time is 
preferred over distance.  

The travel time is only available for the mode used to make the trip. This means that the 
travel times need to be calculated for the non-used modes. Furthermore, by analysing the 
differences between the reported time by the chosen mode and the calculated time for that mode, 
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the quality of reporting can be assessed. Based on this assessment, a decision can be made on 
whether the use of the reported travel time in the model estimation is valid.  

Calculation of the Travel Times for Non-used Modes 
Because only the reported mode is provided per trip, travel times of the alternative, non-chosen 
modes need to be calculated. These are calculated using the Google Directions API. This API 
does not allow for performing calculations for past events, therefore in order to create similar 
conditions for most trips, the calculations were made on a weekday during the day. This affects 
both public transport (PT) and car, as timetables usually change over the day, especially in the 
evening/night and traffic jams arise in morning and evening peaks. Therefore, regarding PT, all 
trips made between 22h and 5h were checked in a journey planner to see if there was a PT 
option available. If no PT option was available, the alternative was marked unavailable. For the 
car this validation is not possible, as the amount of traffic on the road differs per day and peak-
hour period, this means that some discrepancies can be expected in the calculated travel times.  

For 1,366 trips, the PT travel time was equal to the walking time, indicating that instead 
of providing an option to use train, bus, tram or metro, the journey planner advised to walk. 
Furthermore, in 57 occasions no PT route could be found (and the distance was not walkable). 
In these situations, PT is not an option and the alternative was marked as unavailable. Next to 
that, for one trip no car alternative was found (destination was on an island), for five trips no 
walking alternative was found and for five trips no cycling alternative was found. These 
alternatives are all marked as unavailable in the choice set. The reason for not finding routes is 
the availability of roads in the network of the Google Directions API. For active modes it 
searches for roads where active modes are allowed.  

Analysis of Travel Times for Used Modes 
To check whether the reported travel times are reasonable and can be used in the model 
estimation, the travel time of the chosen mode was calculated. Figure 3.1 shows the mean of 
the calculated minus the reported travel times, plotted against classes of the reported travel 
times.  

 

 

Figure 3.1: Mean and 95% confidence interval of difference between calculated and reported times 
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Figure 3.1 illustrates that people report shorter PT travel times compared to the calculated travel 
time, especially for short trips. This might be due to ignoring access and/or egress travel time, 
but only reporting the in-vehicle time. For the car the reported travel times are over reported, 
with increasing error for increasing travel time. This could be due to congestion, where the 
maximum speed cannot be reached. However, it is impossible to check this, because the traffic 
situation during the trips cannot be recalled. Travel time for cycling trips is also over reported 
(the extent of overestimation is comparable to the car, but with larger error bars). The calculated 
travel time is based on the shortest route, but literature suggests that the distance is not the only 
factor determining cycling route choice (e.g. Menghini et al., 2010; Ton et al., 2017). This 
indicates that the extent of over reporting could be less severe in reality. The same occurs for 
walking, although 97% of the trips are below 30 minutes in duration. Summarised, differences 
between reported and calculated travel times are generally low and can be explained. As the 
reported travel times also include potential traffic jams or delays, the reported travel time is 
used in the model estimations.  

3.3.4. Characteristics of the Respondents 

The final merged and filtered dataset contains 1,864 individuals from all over the Netherlands. 
The breakdown of their socio-demographics, household size, place of residence and ownership 
characteristics is described in Table 3.2. 

Table 3.2: Characteristics of the individuals in the dataset 

    Freq. Share    Freq. Share 
Gender Male 852 45.7%  Education  Low  477 25.6% 

 Female 1012 54.3%  level Medium  732 39.3% 
      High 655 35.1% 

Age 12-24 266 14.2%      
 25-34 257 13.8%  No. of household  1 333 17.9% 
 35-44 293 15.7%  members 2 640 34.3% 
 45-54 377 20.2%   3 256 13.7% 
 55-64 309 16.5%   4 426 22.9% 
 65-74 234 12.5%   5+ 209 11.2% 
 75+ 128 6.8%      
     Urbanisation  Urban 957 51.3% 

Professional  Employed 1054 56.5%  level Sub-urban 357 19.2% 
situation Unemployed 249 13.4%   Rural 550 29.5% 

 Retired 337 18.1%      
 Student 224 12.0%  Ownership Car 1359 72.9% 
      Bicycle 1696 91.0% 

Working  0-12 hours  772 41.4%    PT – subscr. 604 32.4% 
Hours  12-35 hours  524 28.1%      
 35+ hours  568 30.5%      

 
As mentioned before, the sample contains individuals who have cycled and walked at least once 
during the last year. The distribution of the individuals over age shows that many elderly people 
are present in the sample (almost 20% is 65 years or older), which indicates that elderly Dutch 
citizens still use active modes of transport. The surveys are distributed among individuals of 12 
years and older, therefore no individuals with a lower age are present in the dataset. The 
education level shows the highest completed level of education. Consequently, teenagers who 
are currently studying, have a lower level of education, compared to when they will finish their 
studies. The low level of education contains finished studies up to the level of pre-vocational 
secondary education (‘VMBO’ in Dutch), whereas the medium level of education contains 
finished studies up to the level of either secondary vocational education (‘MBO’ in Dutch) or 
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pre-university education (‘VWO’ in Dutch). The highest level of education includes university 
education. The result is that a relatively large part of the sample has completed a low level 
education. More than 82% of the individuals in the dataset live in a household consisting of 
multiple individuals, which is higher than average for the Dutch population. Furthermore, most 
individuals live in an urban environment. Finally, most people in the sample own a car and 
bicycle. The bicycle ownership is high (compared to other countries) with 91%, but in line with 
the national active mode share. Whereas, only 32% of the respondents in the sample have a type 
of PT subscription (e.g. travel with discount or travel for free on a fixed line). 

3.3.5. Characteristics of the Reported Trips  

The final dataset contains 6,368 trips made by car (passenger and driver), public transport (train, 
tram, bus and metro), bicycle (electric and normal bicycles) and on foot. Table 3.3 provides an 
overview of the characteristics of the trips made by all individuals in the dataset.  

Table 3.3: Characteristics of the trips in the dataset 

  

Share of 
trips 

Travel distance 
[km] 

Travel time 
[min.] 

Largest trip 
purpose 
category 

Trips in the 
weekend 

  Percentage mean (s.d.) mean (s.d.) Purpose (%) Percentage of 
total trips 

Car 51.6% 18.4 (27.4) 23 (22) Work (27.4%) 27.5% 

PT 5.3% 39.7 (41.1) 66 (39) Work (42.6%) 14.6% 

Bicycle 32.4% 2.9 (3.2) 13 (12) Leisure (22.6%) 19.0% 

On foot 10.7%  0.7 (0.7)  9 (9) Shopping (37.6%) 26.0% 
 
About 43% of all the trips in the dataset are made using active modes. In line with expectations, 
travel time and distance are on average higher for car and PT compared to active modes, as the 
latter are mostly used for short-range trips. On the other hand, the median distance for the car 
is much shorter with 8km, and for PT this is 27.8km. This shows that overall the car is chosen 
more often for short distances than PT. Consequently, the car can compete with cycling and 
walking for short distance trips. The standard deviations for travelled distance are higher than 
the mean values, which is due to the long tail for travelled kilometres (e.g. maximum travelled 
distance by car is 260km). PT consists of train, bus, metro and tram. The latter three are mostly 
found in cities and are generally used for shorter distances. The relatively high mean travel time 
for PT is therefore mainly due to the large share of train trips in the data, as people cover larger 
distances and consequently spend a longer time traveling by train. About half of the trips made 
by PT are work related, which is also reflected in the low percentage of trips made in the 
weekend. Cycling is mostly used for leisure activities. Notwithstanding, 21.5% of the cycling 
trips are work related. The relatively low percentages for the main trip purpose of car (27.4%) 
and bicycle (22.6%) indicate that compared to walking and PT, these modes are used for more 
diverse trip purposes.  

3.4. Specification of the Mode Choice Model 
This section describes the mode choice model specification for this study. The approach for 
identifying the mode choice set for each individual is described in Section 3.4.1. Furthermore, 
the specification of the discrete mode choice model is presented in Section 3.4.2. Finally, the 
model estimation process is elaborated upon in Section 3.4.3.   
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3.4.1. Identification of the Individual Mode Choice Set  

When using revealed preference data only the reported mode is known. In choice modelling, 
the non-chosen but alternative modes need to be identified too. This is a non-trivial task as not 
every individual has the same set of modes available. Several mode choice studies were 
identified from literature that focus on active modes, consider the full spectrum of modes, and 
use revealed preference data.  

These studies all use different heuristics for the identification of the individual’s mode 
choice set. Munshi (2016) did not apply any restrictions to the choice set and included all modes 
for every trip and person, regardless of availability of the modes. Wardman et al. (2007) also 
did not specify any restrictions in the model estimation, but for forecasting they distinguish 
between shorter trips (<12km) and longer trips (>12km) and car availability. Kamargianni and 
Polydoropoulou (2013) applied very strict reasoning as they excluded individuals living more 
than 2.1 km away from their destination (i.e. school in their case), due to the unavailability of 
walking for longer distances. So they excluded the individuals to make all alternatives available 
to the entire sample, with the goal of matching the revealed preference data to their stated 
preference survey (which included all modes). The most detailed heuristics were introduced by 
Gehrke and Clifton (2014), who stated that if a person travels alone, a driver’s license and car 
need to be available in the household for the car to be included in the choice set. If a person 
travels with others, this criterion is not effectuated as this person could travel as a passenger in 
a car that is not owned by anyone in the household. Regarding PT, they introduced a maximum 
allowable distance to the nearest stop criterion, which they set to 0.5 mile for bus and 1.0 mile 
for train. The bicycle also needs to be available in the household, but additionally they allowed 
for a maximum travel time of 2 hours, assuming that the cycling speed is 10 mph. For walking, 
they allowed for the same maximum travel time, with a speed of 3 mph.  

In this study, the heuristics introduced by Gehrke and Clifton (2014) will be applied and 
adapted to the Dutch situation. Consequently, the PT, bicycle and walking heuristics are 
adapted. Gehrke and Clifton (2014) exclude PT trips for individuals who live further than a 
certain distance. In the Netherlands, people use a variety of access modes and as a result thereof 
the one-mile boundary is considered too small. In order to avoid a false exclusion of PT from 
the choice set, we choose to set no distance boundary to PT travel, but as mentioned in Section 
3.3.1, the PT route should have been identified in the Google Directions API. For the active 
modes, a maximum travel time of 2 hours is too generous given the reported travel times in the 
data. The maximum reported travel time for cycling is 130 minutes, where 99% of the 
individuals have travel time lower than 60 minutes. For walking these values are respectively 
75 minutes and 50 minutes. Therefore, it seems most plausible to adjust to the 99% travel time, 
as this captures the potential choice for active modes for the vast majority of individuals. Similar 
to Gehrke and Clifton (2014) this study will use the an equal limit for both modes, which is set 
to 60 minutes. Summarising, the following heuristics are introduced for identifying the mode 
choice set: 

 
• Car: Driver (drivers’ license and car available), Passenger (travelling with other 

individual(s)); 
• PT: Route identified in Google Directions API; 
• Bicycle: Bicycle available and calculated travel time <= 60 minutes (mean speed = 16.7 

km/h); 
• On foot: Calculated travel time <= 60 minutes (mean speed = 4.8 km/h). 

 
The results of implementing these heuristics, in terms of the choice set sizes per trip are reported 
in Table 3.4. 1.9% of the individuals are captive users for their trip, which are mainly PT trips, 
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but also car and bicycle. These captive users do not influence the choice model, as they will 
have a 100% probability of choosing the only mode which is available to them. When not all 
modes are available to a person, mostly walking is excluded. This is due to the fact that the 
travel time on foot was longer than 1hr. For 31.9% of the trips all modes are available, which 
means that in these cases all of the above mentioned criteria are met. 

Table 3.4: Mode choice set size per individual per trip 

Mode choice 
set size Frequency 

Frequency of including mode in the choice set 

Car PT Bicycle Walk Total 
1 1.9% 14.3% 84.9% 0.8% 0.0% 100% 
2 21.5% 74.3% 81.3% 28.3% 16.1% 200% 
3 44.8% 84.9% 59.7% 99.1% 56.3% 300% 
4 31.9% 100.0% 100.0% 100.0% 100.0% 400% 

3.4.2. Discrete Choice Model Specification 

In this study, three different mode choice models are estimated with an increasing level of 
complexity. First, we start with a Multinomial Logit (MNL) model with the utility function for 
alternative ! and observation " at time	$ specified in the following way (Ben-Akiva and 
Bierlaire, 1999): 
 

%&'( = 	*&'( + ,&'(, ! ∈ /' (3.1) 
 
where *&'  is the deterministic utility for alternative ! (which is part of the choice set /') and 
observation " at time	$ and ,&'( represents the random error term, which captures uncertainty 
and is independent and identically (i.i.d.) Gumbel distributed.  

Second, since multiple trips per individual are observed, serial correlation can be 
expected in the error terms of one individual. We therefore test for a panel effect using a mixture 
of MNL models with a normal distribution of the panel effect error term 0&'~	2(0, Σ). The 
utility function for alternative ! and observation " at time $ is then adapted from Eq. 3.1 in the 
following way: 

 
%&'( = 	*&'( + 0&' + ,′&'(, ! ∈ /'( (3.2) 

 
where 0&'represents the panel effect and ,′&'( represents the random error term that is 
independent over observations and time and is i.i.d. Gumbel distributed.  

Finally, the population is likely to exhibit taste heterogeneity. Therefore, the third and 
final model that is estimated is the Mixed MNL (MMNL) model. The utility function for the 
MMNL is specified according to Eq. 3.2, due to the expected presence of a panel effect. In this 
model the 9’s that are part of *&'(  are not fixed (like in the MNL), but varied over all individuals 
according to a predefined distribution (mostly a Normal distribution). All models are estimated 
using the Python Biogeme package (Bierlaire, 2016). 
 

The MNL i.i.d. assumption may be violated in case unobserved variables in various 
alternatives are correlated. In mode choice literature this type of correlation is often found – for 
example in motorised versus active modes. This calls for the introduction of Nested Logit 
models (e.g. Barros et al., 2015). To identify whether this type of correlation is also present in 
the Dutch situation, we tested for the presence of an active mode nest using the Nested Logit 
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model. However, we found no significant results for the nest, indicating that these alternatives 
are not highly correlated based on unobserved variables in this model.  

In addition to MMNL, Latent Class Models (LCM) offer an alternative model structure 
for capturing taste heterogeneity. The reader is referred to Greene and Hensher (2003) and Hess 
(Hess, 2014) for a discussion and comparison of model properties and performance. MMNL, 
unlike LCM, requires Monte-Carlo simulations as part of the model estimation process. In 
contrast, in the LCM, each parameter needs to be estimated for each class, consequently 
significantly increasing the number of parameters and the computation time compared to the 
MMNL. Furthermore, LCM is more sensitive to data quality data, as potential limitations show 
faster (e.g. confounding, wrong signs or correlations). For this study, we experimented with 
both methods but experienced that the LCM model did not converge properly, therefore we 
adopt the MMNL model. 

3.4.3. Model Estimation Process 

In the estimation process, the significant variables identified in the best MNL model are used 
as input for the more complex models. The result of this process is that several parameters are 
found to be insignificant. Therefore, we have chosen to optimize the MMNL model with respect 
to model fit, by only including parameters that significantly increase the model fit (tested by 
means of a likelihood ratio test). This means that some insignificant parameters can be present 
in the model, but model fit decreases if these are fixed to zero.  

In the MMNL model the car is the reference alternative, i.e. whenever dummy variables 
are used in the model, the parameter for the car is fixed to zero. 

The comparison on model performance is tested by considering four criteria: the final 
log likelihood, the adjusted rho-square (compared to the equally likely model), the Bayesian 
Information Criterion (BIC), and the Akaike Information Criterion (AIC). The goal is to 
maximize the first two and minimize the latter two criteria. 

3.5. Model Estimation Results 
This section describes and discusses the results of the model with the highest performance, 
which is the MMNL model. Section 3.5.1 presents the results of the MMNL model, and 
compares the findings to general body of literature. The focus of the discussion is on the active 
modes. Section 3.5.2 addresses the performance of this model in and compares its performance 
to the other models that are estimated. Section 3.5.3 concludes with the most important findings 
in comparison to the already existing body of literature.  

3.5.1. Identifying the Determinants of Mode Choice Behaviour  

In this section, the determinants of mode choice behaviour, as identified in the model 
estimation, are presented and discussed. The results of the model estimation are presented in 
Table 3.5. Furthermore, model performance comparison is presented.  

Alternative Specific Constants 
The alternative specific constants capture the average influence on utility (compared to the 
reference) of the unobserved variables. The car is taken as the reference case. The bicycle 
constant is insignificant, which means that the unobserved variables do not favour the bicycle 
over the car. Public transport has a very negative constant, implying that unobserved 
characteristics favour the car over public transport. Furthermore, the constant for walking is 
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positive and significant. Consequently, the unobserved variables favour walking over the car. 
This means that the observed variables impact walking more negatively compared to the car, as 
the mode shares suggest that the car is favoured over walking. 

Table 3.5: Associations of individual, household, season and weather, trip, built environment, and work 
characteristics with the likelihood of choosing car, PT, bicycle, and walking (a = binary explanatory 
variable, b = reference alternative, - = not estimated, ** = significant at the 5% level, * = significant at the 
10% level) 

  Carb PT Bicycle Walk 
  coef. t-test coef. t-test coef. t-test coef. t-test 

9:;<=>?<> - - -46.30 -6.29** 0.08 0.16 5.35 6.57** 

@A?<BC - - -15.20 -5.8** 2.52 11.82** 2.27 8.09** 

 
        

Individual characteristics         

9D>EFB<>a - - 6.91 3.00** - - - - 
9GHIJ	BFEK?>H;< a - - - - 0.43 1.89* - - 
9LM?<=H>	=EN=KMHO>H;< a - - 10.80 6.29** 0.54 2.24** - - 
9:;PO?<Q	K?M a - - - - -3.22 -1.75* - - 
9R;FB	E=BF	H<	JHIJ	=KJ;;C a 2.04 3.72** - - - - - - 
9R;FB	E=B	C?=>	J?CS	QB?M a 2.10 8.09** 7.92 6.81** 2.18 9.79** 2.95 7.91** 

 
        

Household characteristics         

9G;E=BJ;CF	PBPNBM= - - 1.98 3.28** 0.21 2.42** -0.46 -3.66** 

9:JHCFMB<	H<	J;E=BJ;CF - - -4.01 -2.54** - - - - 
9RBFHEP	J;E=BJ;CF	H<K;PB a - - - - - - 0.44 1.09 
9GHIJ	J;E=BJ;CF	H<K;PB a - - - - - - 0.60 1.75* 

 
        

Season and weather characteristics       

9DBO>BPNBM a - - - - - - 1.02 2.73** 

 
        

Trip characteristics         

TLM?UBC	>HPB 0.70 11.36** 0.24 8.92** 0.12 7.29** -0.35 -6.97** 

@LM?UBC	>HPB -0.27 -10.51** 0.15 7.18** - - 0.15 5.76** 

9VBBWF?Q a - - - - 0.81 3.92** - - 
9AB?W	J;EM	FBO?M>EMB a - - - - - - -0.56 -2.39** 

9LM?UBC	IM;EO	=HXB - - -1.80 -2.16** -0.82 -6.62** 0.47 2.93** 

9YBH=EMB	>MHO	OEMO;=B a - - - - 2.49 6.68** 2.79 6.33** 

9V;MW	>MHO	OEMO;=B a - - 6.51 4.95** 2.29 5.65** 2.09 3.57** 

9DKJ;;C	>MHO	OEMO;=B a - - 10.80 4.95** 5.11 7.34** - - 
9DJ;OOH<I	>MHO	OEMO;=B a - - - - 1.10 3.31** 1.65 3.96** 

         

Built environment         

9ZP=>BMF?P a - - 5.95 2.84** - - 2.17 3.55** 

9[;>>BMF?P a - - - - -0.99 -2.18** - - 
9\MN?< a - - 4.61 3.51** - - - - 
9DENEMN?<	a - - - - 0.66 2.56** - - 
9]?MN?IB	NH<= a - - - - 0.69 2.76** 0.85 2.37** 

9AC?QIM;E<F= a - - - - - - -1.43 -3.16** 

9^HKQKCB	O?MWH<I a - - - - - - 0.80 2.53** 

9DJ;O= a - - - - 0.63 2.22** 0.99 2.65** 

9AENCHK	NEHCFH<I a - - 5.59 2.58** - - - - 
9G;=OH>?C/]A a - - - - -0.23 -0.87 - - 

         
Work conditions         

9LM?UBC	K;POB<=?>H;< a 1.27 4.97** 17.6 4.57** 0.97 2.56** - - 
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Individual Characteristics 
Previous research showed that gender and age are very relevant, especially in explaining bicycle 
mode choice (Fraser and Lock, 2011; Heinen et al., 2010; Muñoz et al., 2016a). Furthermore, 
Heinen et al. (2010) suggest that in cycling rich countries, such as the Netherlands, women 
cycle more often than men. In this study, we find that both gender and age are not explanatory 
variables. Cycling in the Netherlands is truly universal (Pucher and Buehler, 2008). Heinen et 
al. (2010) also mention that being native Dutch is positively associated with cycling. In this 
study we do not find a significant relationship between ethnicity and mode choice. The vast 
majority of our respondents is native Dutch (>95%), presumably this shows not enough 
diversity to distinguish between native and non-native Dutch citizens. Furthermore, we find 
that having completed a high level of education (college level) increases the utility for the 
bicycle, compared to having a lower education level. Regarding education, the general body of 
literature shows mixed results (Heinen et al., 2010; Muñoz et al., 2016a). Presumably, highly 
educated people in our sample are more aware of the health benefits related to cycling. A 
positive significant effect was expected for walking (e.g. Gehrke and Clifton, 2014), but was 
not affirmed. In line with the literature, being a student is positively related to cycling (Heinen 
et al., 2010). 

Contrary to the majority of active mode choice studies, we find no significant 
relationship between the availability of car and bicycle in the household and mode choice 
(Fraser and Lock, 2011; Handy et al., 2014; Mitra, 2013). Pucher and Buehler (2008) show that 
car ownership has increased sharply in the Netherlands over the past decades, but this has not 
affected the use of bicycles, potentially explaining the absence of a significant relationship in 
this study. However, if an individual has a company car available (very small share of the 
sample), a significant reduction in bicycle utility is found. Trips with the company car are likely 
to replace trips by bicycle. Next to that, having a PT subscription positively relates to both the 
PT and cycling probability. The latter could be the result of access and egress transport (Handy 
et al., 2014; Winters et al., 2017), for which the bicycle is often used (respectively 50% and 
10%) in the Netherlands (KiM, 2015). In this study we investigate the main mode choice for a 
trip. Consequently, the results suggest that the use of the bicycle as access and egress mode is 
positively associated with bicycle use in general.  

Two variables related to past use of modes are tested, referring to the last year of high 
school and the last half year. For the former only car use has a significant and positive 
association with car choice. Using a car at an early age (either as passenger or driver) is thus 
associated with car use at a later age, whereas the other modes do not show this effect. 
Consequently, whether someone has cycled or walked to high school does not affect the current 
active mode use. For the latter, all modes test significant and increase the probability of 
choosing the respective mode, suggesting the formation of habits (Heinen et al., 2010).  

Household Characteristics 
Previous research has established the relationship between the size and composition of the 
household and mode choice (Hamre and Buehler, 2014; Heinen et al., 2010; Maley and 
Weinberger, 2011). The results of this study are mostly in line with previous research. However, 
regarding the number of children (<12 years) in the household, previous research mentions a 
negative association with active mode use (Heinen et al., 2010). While we find a significant 
negative association with PT use, no significant association for the active modes is manifested. 
This might be due to the Dutch context, as children often cycle from an early age (Pucher and 
Buehler, 2008). An increasing number of individuals in the household decreases the utility for 
walking, but increases the utility for cycling and public transport. Pucher and Buehler (2008) 
state that in the Netherlands cycling is most popular among children and adolescents. More 
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individuals in a household generally means more children and adolescents, which can explain 
the positive association with bicycle use.  

The relationship between household income and walking is not significant at the 95% 
level, but only at the 90% level. For cycling we find no significant relationship. Previous 
research has found mixed results for the relationship between income and active mode choice, 
where positive, negative, as well as insignificant results are reported (Handy et al., 2014; Heinen 
et al., 2010; Mitra, 2013; Muñoz et al., 2016a). This study therefore adds to these inconclusive 
results. 

Season and Weather Characteristics 
The month of travel or seasonality is known to influence active mode choice, with summer and 
autumn being the most favourable seasons (Böcker et al., 2013; Heinen et al., 2010). The data 
for this study was collected between September and November, hence late summer and autumn 
in the Netherlands. We find that September is positively associated with walking, which is in 
line with previous research. For cycling no significant relationship is identified. The 
Netherlands has a relatively mild climate (cool summers and warm winters), consequently it is 
possible that cycling is attractive all-year-round (Wang et al., 2016).  

Furthermore, we find no relationship between extreme weather conditions and active 
mode use. Previous research has asserted that extreme or adverse weather is negatively 
associated with walking and cycling (Fraser and Lock, 2011; Wang et al., 2016). In the survey 
the respondents were asked if the weather conditions were extreme, therefore it reflects their 
subjective interpretation. The reason for not finding a relationship might again be due to the 
mild climate with frequent rain, which can be considered normal by the Dutch. Consequently, 
this study suggests that, in contrast with previous research, weather has limited impact on active 
mode choice. 

Trip Characteristics 
As mentioned above, most active mode choice literature investigates the impact of distance on 
active mode choice (Fraser and Lock, 2011; Handy et al., 2014; Heinen et al., 2010; Mitra, 
2013; Muñoz et al., 2016a; Winters et al., 2017). Few studies investigated travel time (Heinen 
et al., 2010; Muñoz et al., 2016a). These variables are highly correlated, so we include only one 
of them: travel time, which is significantly associated with mode choice. For walking, PT and 
the car, heterogeneity ($$P;FB	~	2(T, @))	towards travel time is identified. Furthermore, the 
travel time parameters for car, PT and the bicycle are positive. Hence, the longer a trip (time-
wise), the more likely that these modes are chosen. Generally, the literature finds negative 
associations between travel time and mode choice (Heinen et al., 2010; Muñoz et al., 2016a). 
However, Heinen et al. (2010) mention that travel times should always be considered in relation 
to other transport modes. Consequently, these positive values should be interpreted in the 
context of the modal share per travel time category (Figure 3.2). The shares of bicycle and 
walking decrease with higher travel times, whereas the shares of the car and public transport 
increase. Furthermore, as mentioned in Section 3.3.3 there are some differences between 
calculated and reported times. For example, for the car this means that delays are only present 
in reported travel time (traffic jams), which is the chosen alternative. The non-chosen 
alternatives do not register delays. Furthermore, an alternative model was estimated using only 
travel time and alternative specific constants. The estimation results are two positive travel time 
parameters (car and PT) and two negative (walking and cycling), which correspond to the modal 
shares as function of travel time. Finally, the travel time parameters can also stand in (proxy) 
for other unobserved variables (such as comfort), as suggested by Hess et al. (2005). 
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Summarising, these arguments explain the initially counterintuitive positive parameter values, 
but more research is needed to further underpin this finding.  

 

 

Figure 3.2: Modal share per travel time category 

The number of trips made on a day is not significantly related to the mode chosen. Previous 
findings suggest that if more trips are undertaken on a given day, the car will be preferred over, 
for example, PT (e.g. Bhat, 1997). Potentially, due to the high active mode share in the 
Netherlands our dataset does not confirm this relationship.  

The moment of travel is not mentioned in the walking and cycling mode choice literature 
reviews. We find that it has an explanatory power for both walking and cycling. Weekday travel 
has a positive association with cycling, but is not significant for walking. This is in line with 
findings from Denmark (Hansen and Nielsen, 2014). Peak hour travel relates negatively to 
walking, but does not relate to cycling. The latter might be due to time constraints (e.g. 
appointments or fixed work hours) for which walking is the least efficient mode in terms of 
speed.  

The walking and cycling literature reviews also have not identified a relationship 
between the number of fellow travellers and mode choice. Our findings assert that for PT and 
cycling this relation is negative, whereas it is positive for walking. Hence, walking seems to be 
a good option when traveling in a larger group, but cycling and PT are less appreciated when 
traveling with other people.  

Heinen et al. (2010) mention that the bicycle is more frequently used for recreational 
trips than for other trip purposes. In this study we investigate four trip purposes: work, school, 
leisure, and shopping. All trip purposes are associated with mode choice. For cycling all trip 
purposes are significant and positive, with the highest utility obtained for school trips, followed 
by leisure trips. For walking no effect is identified for the school purpose and the largest positive 
impact for leisure trips. Consequently, we can conclude that for the Netherlands more trip 
purposes are positively associated with active mode use other than only recreational trips.   
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Built Environment  
The respondents were asked about the presence of nature, street furniture, buildings and traffic 
related aspects in their neighbourhood. The general body of literature has confirmed the 
relevance of these aspects regarding active mode choice (Fraser and Lock, 2011; Handy et al., 
2014; Heinen et al., 2010; Mitra, 2013; Wang et al., 2016). Unlike previous studies, we do not 
find a relationship between nature and active modes for any of the tested elements (water, green, 
park). Note that we asked about the characteristics of the neighbourhood not the trip itself, 
which is mostly mentioned in the literature. Regarding street furniture both garbage bins 
(positive) and playgrounds (negative) are correlated with active mode choice. The first is in line 
with literature, however the second contradicts it. Playgrounds are generally found to increase 
walking and cycling. These variables presumably capture variables that are not directly 
included in the data (proxy). Playgrounds are more frequently located in sub-urban residential 
areas, where distances to for example the city centre are larger, consequently negatively 
correlated to walking. Playgrounds can also be used for walking around, which is mostly 
referred to in the literature, explaining the contradictory results found (Wang et al., 2016). In 
general, garbage bins are placed in areas where the streets are used as activity space, i.e. areas 
associated with a larger density of people passing by. Therefore, this variable could be 
positively associated with active mode choice. With respect to traffic related aspects, bicycle 
parking is significantly and positively correlated with walking. This relationship was previously 
identified for cycling, but not for walking (Heinen et al., 2010; Winters et al., 2017). Other 
traffic and infrastructure related aspects, such as cycle paths, traffic lights, and speed bumps for 
cars, do not exhibit explanatory power in this study. Previous research often emphasizes the 
need for infrastructure to boost active mode use (Fraser and Lock, 2011; Handy et al., 2014; 
Heinen et al., 2010; Mitra, 2013). In the Netherlands the density and continuity of active mode 
infrastructure is very high (Fishman, 2016; Pucher and Buehler, 2008). In line with these 
findings, previous bicycle route choice research in Amsterdam also identified no significant 
relationship with cycling infrastructure (Ton et al., 2017). Consequently, it is possible that in 
the Dutch context traffic related aspects are less important for mode choice compared to other 
countries. Finally, the presence of certain types of buildings (public buildings (e.g. library) and 
shops) is positively and significantly linked to the utility of the sustainable modes (PT, cycling 
and walking). This is in line with the literature, where mixed land use is described as one of the 
attractors of active mode use (Fraser and Lock, 2011; Heinen et al., 2010; Mitra, 2013; Muñoz 
et al., 2016a; Wang et al., 2016; Winters et al., 2017).  

Furthermore, the five largest urban agglomeration areas in the Netherlands are included 
in the model estimation. Residing in Rotterdam or Amsterdam contributes to explaining mode 
choice. Amsterdam exercises a positive parameter for walking. Especially the city centre is 
inviting for walking as distances are short. Rotterdam has a negative parameter for cycling.  It 
is a relatively car-oriented city, as it was reconstructed after the second world war (in the 70s) 
when the car was booming. Consequently, it is deemed logical that people cycle less, everything 
else being equal, in Rotterdam as it is less attractive compared to other locations.  

Previous research also mentions the importance of population density or urbanisation 
level (Fraser and Lock, 2011; Heinen et al., 2010; Muñoz et al., 2016a; Wang et al., 2016). We 
investigate a combination of these, as we measure the density of inhabitants per square 
kilometre at the municipality level. Consequently, the urban level reflects high population 
density, which is mostly found in larger cities. Small and medium sized cities are positively 
correlated with cycling (Heinen et al., 2010). In line with previous research, we find a positive 
suburban parameter for cycling.  
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Work Conditions  
Reimbursement for using a mode to work is associated with the mode choice in our sample. 
Receiving a compensation for traveling to work for a certain mode increases the probability of 
choosing that mode. The effect of the compensation is most pronounced for PT and smallest 
for the bicycle. This is in line with previous research (Handy et al., 2014; Muñoz et al., 2016a; 
Winters et al., 2017). Previous research also identifies cross-relationships, e.g. effect of car 
reimbursement on the use of bicycle (Handy et al., 2014; Winters et al., 2017), however we 
only investigate the direct relationship in this study.  

Previous research suggests that part-time workers are more inclined to cycle compared 
to full-time workers (Heinen et al., 2010). In this study, we find no relationship between 
working hours and mode choice. This might be related to the fact that, unlike Heinen et al. 
(2010), we investigate all trips, not only commuting trips. 

3.5.2. Model Performance Comparison 

The MMNL model, which includes heterogeneity and panel effects performs best out of the 
three models on all performance indicators identified in Section 3.4.3 (see Table 3.6). The 
MNNL model cannot be compared using the likelihood ratio test as some of the parameters in 
the MNL and Panel effect model were removed due to insignificant results. The removed 
parameters are BMI (bicycle), September and October (bicycle), number of trips (PT), sport 
centre (bike), student (bicycle) and industrial area (walk). The model has a relatively high fit 
compared to the equally likely model. A total of 54% of the proportion of information in the 
choice data is explained by the model. 

Table 3.6: Performance indicators of estimated models (** = significant at the 5% level) 

 MNL Panel effect MMNL 
Initial log likelihood -6,893.85 -6,893.85 -6,893.85 
Final log likelihood -3,535.89 -3,323.88 -3,110.15 
Parameters 61 64 60 
Sample size 6,368 6,368 6,368 
Adjusted rho-square 0.478 0.509 0.540 
BIC 7,606.08 7,208.35 6,745.85 
AIC 7,193.78 6,775.77 6,340.31 
Likelihood ratio test - 424.02** - 

3.5.3. Conclusions on Model Estimation Results 

The most important findings of this study that are contradicting the general body of literature 
are summarised here. These contradictions are often attributed to the context of the study, as 
most literature stems from countries with low cycling penetration (e.g. the USA). Consequently, 
it could be expected that different determinants influence the mode choice and that their impact 
differs.  

Socio-demographics variables are found less important in explaining active mode 
choice compared to literature. We find no significant relationship between gender, age, and 
ethnicity and active mode use. Car and bicycle availability on household level do not influence 
mode choice, whereas the existing body of literature identifies this as an important variable. 
Having children is not significantly related to active mode use, whereas other studies suggest a 
negative relationship. Weather characteristics are not relevant for active mode choice, which 
contradicts the general body of literature. It could be due to the way we formulated the 
characteristics (experience of extreme weather), but it could also be that in the Netherlands, due 
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to the mild climate with frequent rain, weather does not impact mode choice. Travel time has a 
positive association with cycling, which in comparison to the other modes could be explained 
by the relationship between modal shares in different travel time categories. We find that the 
travel group size and moment of travel are relevant for mode choice, which has not been 
identified insofar in the active mode literature. Active mode infrastructure was found to be of 
limited relevance in explaining active mode choice, whereas literature states this as important 
determinants for cycling and walking. Mixed land use is found important for active mode use.  

3.6. Discussion 
This section addresses the relative importance of determinants, discusses their impact on 
walking and cycling, and reflects on their market shares. 

The relative importance of mode choice determinants is displayed in the form of the 
mean and range of the product of a coefficient and the corresponding variable value. This 
enables the identification of where the potential lies for increasing the mode shares of walking 
and cycling. Table 3.7 presents the mean influence of each determinant on the mode choice and 
the range in terms of utility points. The mean influence for a dummy variable depends on the 
number of cases in which the value is one, if this is more than half of the cases, the mean is set 
to one, otherwise it is set to zero. For example, the interpretation of the results displayed in 
Table 3.7 for the impact of transit subscription on bicycle choice is the following: the range of 
[0.0,0.5] means that either there is zero impact (absence of transit subscription) or the impact is 
0.5 utility points (presence of transit subscription). Furthermore, the mean is zero implying that 
more than half of the population does not have a transit subscription and overall the impact is 
zero. In case of other (continuous) independent variables, such as the impact of household size 
on walking choice, the interpretation is the following: the range of [-4.1,-0.5] means that 
additional persons in the household influence the choice for walking negatively, where the 
potential impact ranges between -0.5 (1 person) and -4.1 (9 persons). On average the impact is 
-0.9, meaning that the average household size is just under two. The values reported in Table 
3.7 can thus be used for comparing the importance of each variable with respect to other 
variables for each mode alternative.  

The parameters associated with PT are all relatively high in comparison to the other 
modes. These high parameters are needed to compensate for the very low alternative specific 
constant (-46.30) so that it becomes attractive for certain trips and individuals. Most likely, this 
is the result of the very low share of PT in the sample (5.3%), which makes higher coefficients 
necessary. Consequently, the determinants that are related to PT have a high mean and range of 
impact on the PT choice. Potentially, studies investigating mode choice in a car and PT rich 
environment will find different results for the PT parameters, compared to our study in a context 
dominated by car and bicycle travel.  

Travel time is the most dominant determinant, given all determinants of all modes. The 
range of travel times for car and PT are larger compared to the active modes, due to their 
dominant role in long distance travel. This means that the range of impact for these modes is 
also higher. The impact on cycling and walking is comparable in size, albeit with different 
parameter signs. Almost all studies on active mode choice take distance or travel time into 
account (Fraser and Lock, 2011; Handy et al., 2014; Heinen et al., 2010; Mitra, 2013; Muñoz 
et al., 2016a; Winters et al., 2017). Most studies focus on distance, but as we have mentioned 
before, distance and travel time are highly correlated and should not be included 
simultaneously. Often, distance and travel time are related to built environment characteristics, 
such as mixing of land use and population density. Consequently, our finding of travel time 
being the most dominant determinant is in line with the general body of literature.  
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Table 3.7: Mean and range of influence of determinants on mode choice in terms of utility points  
(a = binary explanatory variable, - = not estimated) 

  Car PT Bicycle Walk 
  Mean Range Mean Range Mean Range Mean Range 

Individual characteristics         

Student a - - 0.0 [0.0,6.9] - - - - 
High education a - - - - 0.0 [0.0,0.4] - - 
Mode used – high school a 0.0 [0.0,2.0] - - - - - - 
Mode used – last half year a 0.0 [0.0,2.1] 0.0 [0.0,7.9] 0.0 [0.0,2.2] 0.0 [0.0,3.0] 
Transit subscription a - - 0.0 [0.0,10.8] 0.0 [0.0,0.5] - - 
Company car a - - - - 0.0 [-3.2,0.0] - - 

         
Household characteristics         
Household size - - 4.0 [2.0,17.8] 0.4 [0.2,1.9] -0.9 [-4.1,-0.5] 
No. children - - 0.0 [-20.1,0.0] - - - - 
Medium household income a - - - - - - 0.0 [0.0,0.4] 
High household income a - - - - - - 0.6 [0.0,0.6] 

         
Season and weather characteristics         
September a - - - - - - 0.0 [0.0,1.0] 

         
Trip characteristics         

Travel time 13.6 [0.0,213.4] 7.9 [0.0,109.9] 2.3 [0.0,15.3] -5.5 [-56.4,0.0] 
Weekday a - - - - 0.8 [0.0,0.8] - - 
Peak hour departure a - - - - - - 0.0 [-0.6,0.0] 
Travel group size - - 0.0 [-9.0,0.0] 0.0 [-4.1,0.0] 0.0 [0.0,2.4] 
Leisure trip purpose a - - - - 0.0 [0.0,2.5] 0.0 [0.0,2.8] 
Work trip purpose a - - 0.0 [0.0,6.5] 0.0 [0.0,2.3] 0.0 [0.0,2.1] 
School trip purpose a - - 0.0 [0.0,10.8] 0.0 [0.0,5.1] - - 
Shopping trip purpose a - - - - 0.0 [0.0,1.1] 0.0 [0.0,1.7] 

         
Built environment         

Live in Amsterdam a - - 0.0 [0.0,6.0] - - 0.0 [0.0,2.2] 
Live in Rotterdam a - - - - 0.0 [-1.0,0.0] - - 
Live in Urban area a - - 4.6 [0.0,4.6] - - - - 
Live in Suburban area a - - - - 0.0 [0.0,0.7] - - 
Garbage bins a - - - - 0.7 [0.0,0.7] 0.9 [0.0,0.9] 
Playgrounds a - - - - - - -1.4 [-1.4,0.0] 
Bicycle parking a - - - - - - 0.0 [0.0,0.8] 
Shops a - - - - 0.6 [0.0,0.6] 1.0 [0.0,1.0] 
Public buildings a - - 5.6 [0.0,5.6] - - - - 
Hospitals/GP’s a - - - - -0.2 [-0.2,0.0] - - 

         
Work conditions         
Travel compensation a 0.0 [0.0,1.3] 0.0 [0.0,17.6] 0.0 [0.0,1.0] - - 

 
The impact of determinants on active modes is generally comparable in size, albeit each mode 
is influenced by a different set of determinants. Very often, in literature, either cycling or 
walking is investigated (Buehler and Dill, 2016; Fraser and Lock, 2011; Handy et al., 2014; 
Heinen et al., 2010; Muñoz et al., 2016a) or cycling and walking are treated as being very 
similar (e.g. active mode travel or physical activity) regarding for example policy development 
purposes (Mitra, 2013; Wang et al., 2016; Winters et al., 2017). Importantly, this study shows 
that walking and cycling are influenced by different determinants. Consequently, in policy 
development it is wise to separate both modes, as otherwise the desired effect might not be 
reached. In model estimation, this means that both the active modes should be distinguished. 
When going into more detail in the categories of determinants that influence each mode, we see 
that the impact of individual characteristics is much stronger for cycling than for walking. 
Although literature assigns more importance to the individual characteristics, compared to our 
findings (Handy et al., 2014; Heinen et al., 2010). Moreover, household characteristics are more 
important in explaining the choice to walk than to cycle. Consequently, it is deemed plausible 
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that the cycling literature reviews did not find household characteristics to be mode choice 
determinants (Fraser and Lock, 2011; Handy et al., 2014; Heinen et al., 2010; Muñoz et al., 
2016a). Trip characteristics influence both walking and cycling, and we find similar impact 
sizes. Only trip purpose affects cycling more than walking, as more trip purposes seem to be 
relevant for cycling. Finally, even though different characteristics related to the built 
environment influence walking and cycling, the overall impact seems comparable in size.  

The categories of determinants that have the largest influence on cycling are trip 
characteristics, individual characteristics and built environment. For walking, the respective 
categories are trip characteristics, built environment and household characteristics. 
Consequently, policy measures aimed at increasing the level of walking and cycling are most 
likely to influence modal usage by targeting trip characteristics. Directly targeting trip 
characteristics is unfortunately not possible. However, based on our findings, investing in a 
more liveable built environment may benefit active modes too. For example, by creating a 
mixed land-use environment with residential and recreational areas, which are equipped with 
street furniture. Finally, the individual and household characteristics cannot be influenced by 
means of active mode policy. However, they can provide insight into which segments of the 
population to target, for example large families or people with high education, which are most 
prone to response to changes in cycling and walking attributes. The two categories of 
determinants that have the most limited effect on active mode choice are season and weather 
characteristics and the work conditions. However, this could be due to the way we define these 
characteristics and may differ in contexts which exhibit conditions that are not prevalent in the 
Dutch context (Böcker et al., 2013; Heinen et al., 2010; Muñoz et al., 2016a).  

When calculating the impact of altering some of the variables (e.g. as the result of policy 
measures or campaigns) on the market shares, we see that the trade-off is mostly between the 
car and active modes. PT shares mostly remain consistently low. The base scenario for this 
population predicts the following market shares: 44.8% car choice, 1.6% PT choice, 43.5% 
bicycle choice, and 10.0% walking choice. When altering variables, these shares change. As a 
first example, if everyone would get a company car, all else being equal, the market shares of 
the car and walking would increase by 13.5 and 7.8 percentage point respectively, while it 
would reduce the share of cycling by 21.3 percentage point and not affect PT use. If, as a second 
example, everyone would be reimbursed for cycling to work, all else being the same, the market 
shares would change as follows: the share of the car and walking would decrease by 4.1 and 
2.2 percentage point respectively, while increasing the bicycle share by 6.3 percentage point 
and again no effect on the PT share. A third example is providing a transit subscription for 
everyone, all else being the same. The market share for PT remains again unaffected. The 
bicycle share increases by 2.8 percentage point, while the share of the car and walking decrease 
by respectively 1.9 and 0.9 percentage point. Winters et al. (2017) state that literature suggests 
that promoting PT results in higher bicycle share, which is confirmed in this exercise. These 
market share calculations suggest that the car and walking act as complementary modes, 
whereas the car and bicycle are competing modes. Literature often finds that the car and PT are 
competitors (e.g. Ye et al., 2007). Braun et al. (2016) find that providing incentives not to use 
the car to work increases PT use instead of active mode use. These studies often use data from 
countries with low bicycle shares, consequently the two modes with the highest market shares 
are the car and PT, making them competitors. This also shows that policy measures and 
incentives, taken from studies in low bicycle countries or cities, cannot be directly transferred 
to other contexts, such as the Netherlands.  
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3.7. Conclusions and Future Research Directions 
This paper presents the findings of a mode choice model for the Netherlands, focusing on active 
modes while including a more comprehensive set of modes (i.e. car, public transport, bicycle, 
walk), aimed at understanding the determinants of choosing a mode in relation to the other 
modes. The Netherlands has a very high active mode penetration, a safe environment for 
walking and cycling, mature and complete active mode infrastructure, and a demographically 
diverse population of active mode users (Fishman, 2016). Consequently, investigating mode 
choice in the Netherlands can enrich active mode choice literature, which mostly refers to 
contexts where cycling is an uncommon mode of transport. We compared our findings in terms 
of  the determinants of influence on active mode choice and their relative importance. Choice 
models were estimated based on travel diary and survey data of the Netherlands Mobility Panel 
enhanced with a survey that addressed among other things the built environment (coined PAW-
AM) comprising of 6,368 trips performed by 1,874 individuals in the year 2016.  

Based on a review of the literature on the determinants that influence active mode 
choice, a total of six categories of determinants were identified: individual characteristics, 
household characteristics, season and weather characteristics, trip characteristics, built 
environment and work conditions. In line with previous studies, our findings suggest that 
determinants belonging to all categories are relevant for explaining modal choices while the 
extent of their influence varies for the different modes. Contrary to the existing body of 
literature, we find that the socio-demographic determinants are less important in explaining 
active mode choice. We do not find significant relationships for gender, age, and ethnicity. This 
most likely stems from the diverse cycling population in the Netherlands, whereas in other 
countries often young males are most likely to cycle (Fishman, 2016; Heinen et al., 2010). 
Furthermore, we find that weather is a less important determinant than suggested in the 
literature. While previous research reported that rain, high and low temperatures, and hot and 
cold climates negatively affect active mode use, we do not find a significant relationship 
between weather and active mode use. This might be due to the definition of our weather 
variables (i.e. perceived extreme weather), however even the extreme weather does not seem to 
affect Dutch active mode users. Finally, we conclude that active mode infrastructure, such as 
bicycle paths, does not influence active mode choice. This contradicts the main body of 
literature, however given that the active mode infrastructure in the Netherlands is already 
mature and complete (Fishman, 2016), it is possible that this does not anymore affect the choice 
among travel alternatives.  

Even though all categories of determinants are included in this research, not all potential 
explanatory variables are included in this study. Especially, determinants related to the work 
conditions could be enriched in future studies. Furthermore, determinants that are related to the 
social surroundings of individuals, thus opinions/attitudes and behaviour of the people around 
the individual, could be investigated, as previous research has showed the potential of these 
factors (Heinen et al., 2010; Muñoz et al., 2016a). However, if attitudes and opinions are 
included, different models need to be estimated that can accommodate subjective variables 
(such as hybrid models (Vij and Walker, 2016)). Furthermore, the built environment is now 
related to the neighbourhood of the respondent. This could be enriched with information about 
the neighbourhood of the destination or along the trip.  

In most mode choice studies walking and cycling are conjoined. In this study, the 
presence of an active mode nest was investigated, which represents correlations between modes, 
suggesting a hierarchical choice structure. No such structure could be identified. Furthermore, 
the determinants that influence walking and cycling are distinctive. The individual 
characteristics mostly affect cycling, whereas the household characteristics mostly influence 
walking. Roughly the same trip characteristics influence both active modes, however their 
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overall impact is different. Besides, regarding the built environment both active modes are 
influenced, but by different determinants. Both the absence of an active mode nest and the 
identification of different parameters for walking and cycling suggest that cycling and walking 
should be considered and treated as two independent alternatives. 

From a policy perspective, several of the categories of determinants can be directly or 
indirectly influenced. If the goal is to stimulate the use of active modes, the trip characteristics 
and built environment are the most relevant categories. The trip characteristics can only be 
influenced indirectly. For example, by adapting the infrastructure in such a way that travel time 
savings are generated (e.g. more crossing locations for pedestrians, so that waiting time is 
reduced; more passages for pedestrians between street blocks, reducing walking distances, 
especially in suburban areas). The built environment can be influenced directly, for example by 
creating mixed land use environment where residential and recreational areas are combined, 
which are equipped with street furniture. Because walking and cycling are influenced by 
different determinants, different policy measures might be needed to influence each of the 
modes. Consequently, targeting active modes might not provide the desired result. Furthermore, 
this study suggests that the car and bicycle are competitors, whereas in cycling poor countries 
it is likely that the car and public transport are competitors. Transferring the results to other 
countries should thus be done with care, also because both this study and the already existing 
body of active mode choice literature suggest that different determinants are important and to a 
different extent, for cycling rich and cycling poor countries.  

From a modelling perspective, the use of revealed preference data seems promising, 
given the results that show that there is sufficient variability in the data (otherwise more 
parameters would have been insignificant). Furthermore, individuals show clear preferences 
towards modes that are influencing their decision (homogeneity of choice within the individual) 
based on the panel effect estimates. Finally, the mixed multinomial logit model shows a 
significant improvement compared to the most commonly used multinomial model, allowing 
to capture taste heterogeneity towards determinants.  

Additional future research directions entail collecting longitudinal data for all identified 
determinants, so that the causal relationship can be identified. This helps policy-makers by 
ensuring that investments are most impactful in achieving policy goals. Moreover, longitudinal 
data can be instrumental in modelling more explicitly how previous experiences with each 
mode influence current behaviour, e.g. by using Markov chains, which capture the dependency 
towards previous choices. Next to that, the inclusion of a cost variable in the model could help 
understand trade-offs between modes in monetary terms. Furthermore, this study only covers 
trips consisting of a single mode. For a better and more complete picture of the entire mode set 
also multimodal trips should be included.  

Acknowledgements 
This research was supported by the Allegro project (no. 669792), which is financed by the 
European Research Council and Amsterdam Institute for Advanced Metropolitan Solutions. 
The data was made available by the Netherlands Mobility Panel administered by KiM 
Netherlands Institute for Transport Policy Analysis.  



 
 

 

Chapter 4 – Determinants of the Experienced Mode 
Choice Set 

This chapter is based on the following submitted manuscript: 
 
Ton D., Bekhor S., Cats O., Duives D.C., Hoogendoorn-Lanser S., and Hoogendoorn S.P. 
(submitted). The experienced mode choice set and its determinants: commuting trips in the 
Netherlands.  
 
 
 

4 sdf 
 

Abstract 
Active modes take up an increasingly important place on the global policy-making agenda. In 
the Netherlands, a country that is well-known for its high shares of walking and cycling, the 
government aims at achieving a modal shift among 200,000 commuting car drivers towards 
using the bicycle. To this end, policy measures need to be introduced. When the aim is to 
achieve a modal switch over an enduring period of time, it is more relevant to know the 
likelihood of including or excluding a mode in the mode choice set, compared to choosing a 
mode for a single trip. Therefore, we investigate the formation of the experienced choice set 
(set of modes used over a long period of time), where the aim is to identify determinants that 
influence the inclusion or exclusion of a mode in this set. We estimate discrete choice models, 
based on survey data from the Netherlands Mobility Panel (MPN) and a complementary survey, 
where individuals were asked to report the frequency of using certain modes of transport for 
commuting trips over the course of half a year. This study shows that the experienced choice 
set for commuting is unimodal for the majority of the individuals, and remains constant over 
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time for most individuals. Reimbursement by the employer for using a certain mode is the most 
important determinant influencing the experienced choice set, followed by ownership 
characteristics and urban density. We show that the mode choice set formation depends on more 
determinants than previously assumed.  

4.1. Introduction 
Due to increasing urbanisation rates accompanied by growing transportation demands, 
governments worldwide have been increasingly interested in active modes of transport, i.e. 
walking and cycling. These modes can reduce congestion and emissions when replacing the car 
(standalone or in combination with public transport). Furthermore, these modes provide health 
benefits for the individual. The Netherlands has a very high share of active mode use, with 27% 
of trips made by bicycle and 17% on foot (CBS, 2018). Notwithstanding, the Dutch government 
aims at achieving a mode switch from the car to the bicycle for 200,000 commuters 
(Rijksoverheid, 2018). This aim is supported by the fact that about half of the commuting trips 
currently travelled by car are shorter than 7.5 km. Consequently, these could be travelled by 
bicycle. To ensure this aim can be reached, policy measures need to be developed that lead to 
mode switches among commuters.  
 Investigating mode use requires observing individuals over a period of time. Kuhnimhof 
et al. (2006) investigated mode use in Germany using a 7-day travel diary. They found that 
during the first three to four days the number of modes used increased significantly and 
thereafter stabilised. Heinen and Chatterjee (2015) investigated the mode use variability of 
individuals in the UK using a 7-day travel diary. They found that 44% of the respondents were 
unimodal, the other 56% used a variety of modes over the course of seven days. Ralph (2017) 
used three years of information from a 1-day travel diary in the USA and clustered young adults 
based on their mode use. She found that 86% were unimodal car user, of which 4% used the 
car for long distances. Only 3% of the individuals were multimodal, meaning that they used 
both car and public transport. A further 11% were car-less, meaning they relied on public 
transport when they travelled. Ton et al. (2019b) investigated the mode use of individuals in the 
Netherlands using a 3-day travel diary, where they clustered the individuals based on their 
frequency of using each mode per day into five clusters. Two clusters were unimodal, namely 
car only (27%) and bicycle only (9.5%). One cluster (12.3%) used all modes (car, public 
transport, bicycle, and walking) on a daily basis. The other two multimodal clusters were car 
and bicycle (27.5%) and car, bicycle, and walking (23.7%). In sum, the number of modes used 
increases with the number of days for which a travel diary is available, but generally only a 
selection of modes is used.  
 When zooming in to the commuting trip purpose, even less variability in the mode use 
over time has been observed. Kuhnimhof (2009) found that for commuting most individuals 
repeatedly uses the same mode (72%) over the course of 7-days This is supported by Hensher 
and Ho (2016), who found that use of a mode increases the likelihood of using that mode again. 
However, the variation in modes between individuals is higher for commuting compared to 
other trip purposes (Kuhnimhof et al., 2006). Lavery et al. (2013) investigated commuting trips 
to McMaster University in Canada. They asked individuals for their primary commuting mode 
and alternatively asked which modes the respondents considered available/feasible for their 
commute. When considering both used and available modes, the unimodality varies between 
9% for active modes to 55% for public transport. A total of 51% of the individuals states that 
two modes are used and/or available, 37% mentions three modes, and 4% mentions four modes. 
Many of these results show routines or habitual behaviour regarding commuting trips. 
 When the aim is to identify individuals that might switch modes for their commute trips 
it is essential to understand the composition of their experienced choice set (modes used over a 
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long term) and which determinants drive the inclusion or exclusion of modes from this set. In 
common mode choice research, discrete choice models are estimated to identify which 
determinants are associated with mode choice and predict the likelihood of using a mode for a 
certain trip. Here, the choice set (i.e. between which modes a commuter chooses) is often 
defined based on deterministic rules, related to travel time, distance,  ownership or availability 
of modes (De Jong et al., 2007; Gehrke and Clifton, 2014; Hamre and Buehler, 2014; 
Kamargianni and Polydoropoulou, 2013). However, for example Kuhnimhof (2009) and 
Lavery et al. (2013) show that these assumptions in both science and practice, might not cover 
all observed behaviour. Consequently, we propose to use discrete choice models to estimate the 
determinants of the experienced choice set that predict the likelihood of including or excluding 
a mode for commuting purposes.  
 In this study we investigate the experienced choice set of individuals in the Netherlands, 
by observing their mode use for commuting trips over the course of half a year. The data used 
for identification of the experienced choice set is the Netherlands Mobility Panel (MPN) survey 
data featuring Dutch-speaking individuals from the Netherlands. This dataset contains personal 
and household data, and is enriched with a survey that investigates, among others, the modes 
used by the respondents for commuting trips over a time period of half a year. We identify 
determinants that are relevant for inclusion of a mode in the experienced choice set by applying 
discrete choice models. These determinants can be used to identify policy measures that aim to 
realise a mode switch from the car to the bicycle. Furthermore, we show that more determinants 
are relevant in the estimation and prediction of the mode choice set than often assumed in mode 
choice models.  

The remainder of this paper is organised as follows. Section 4.2 details the literature on 
determinants used for identifying the mode choice set. In Section 4.3 the methodology is 
discussed, together with the modelling approaches applied. Section 4.4 describes the data and 
shows an overview of the dataset. Then, in Section 4.5 the experienced mode choice set is 
elaborated upon. Section 4.6 covers the model estimation and validation results. Section 4.7 
discusses the experienced choice set in relation to past research and potential applications. 
Finally, the paper is concluded in Section 4.8 and recommendations are provided. 

4.2. Determinants of Mode Choice Sets 
In literature, various determinants are used for the specification of the mode choice set. 
Sometimes studies rely on self-reported availability of modes as perceived by respondents  
(Lavery et al., 2013; Whalen et al., 2013), thus not relying on determinants for the formation of 
the choice set. Table 4.1 presents an overview of the determinants that are used to specify the 
mode set and identifies the operationalisation of these determinants as mentioned in the 
literature. 

Table 4.1 shows that determinants can roughly be divided into four categories: 
availability of modes, trip characteristics, network characteristics, and individual 
characteristics. The first two categories are most common in the literature. Contrary to the trip 
characteristics, the determinants related to availability can be regarded both at the trip- and 
individual level. Travel time and distance, both trip characteristics, are operationalised in 
various ways, for example per mode, as aspect of the complete trip or in general. Some studies 
have incorporated individual characteristics to determine mode availability (Calastri et al., 
2017; Vij et al., 2017, 2013). These studies have applied latent class models, where the 
individual characteristics are used to determine mode availability based on class membership. 
Calastri et al. (2017) showed that including individual characteristics significantly improves the 
model fit. Consequently, we expect that also individual and household characteristics are 
relevant determinants of the experienced mode choice set.  
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Table 4.1: Operationalisation of determinants used to specify the mode choice set for individuals 

Determinant Operationalisation Studies 
Availability of modes  Car available  

 
 
 
 
Driver’s license 
 
Bicycle available  
 
PT available 
PT subscription (e.g. season pass) 
 

(Ben-Akiva and Boccara, 1995; Gehrke and 
Clifton, 2014; Hensher and Ho, 2016; 
Kamargianni, 2015; Kamargianni et al., 2015; 
Rodríguez and Joo, 2004; Ton et al., 2019a; Vij 
et al., 2017, 2013) 
(Gehrke and Clifton, 2014; Habib et al., 2011; 
Kamargianni et al., 2015; Ton et al., 2019a) 
(Gehrke and Clifton, 2014; Kamargianni et al., 
2015; Ton et al., 2019a; Vij et al., 2017) 
(Hensher and Ho, 2016) 
(Vij et al., 2013) 

Maximum distance  General maximum distance 
 
PT stop within walking distance 
 
PT distance 
Walking distance 
 
 
Bicycle distance 

(Bhat, 1995; Kamargianni and Polydoropoulou, 
2013; Wardman et al., 2007) 
(Ben-Akiva and Boccara, 1995; Gehrke and 
Clifton, 2014) 
(Rodríguez and Joo, 2004) 
(Calastri et al., 2017; Habib et al., 2011; 
Kamargianni, 2015; Kamargianni et al., 2015; 
Rodríguez and Joo, 2004)  
(Calastri et al., 2017; Habib et al., 2011; 
Kamargianni, 2015)  
 

Maximum travel time  Walking time 
 
Bicycle time 
Car time 
PT time 
Threshold for inclusion of mode 

(Gehrke and Clifton, 2014; Swait and Ben-
Akiva, 1987a; Ton et al., 2019a) 
(Gehrke and Clifton, 2014; Ton et al., 2019a) 
(Swait and Ben-Akiva, 1987a) 
(Swait and Ben-Akiva, 1987a) 
(Cantillo and de Dios Ortúzar, 2005) 
 

Cost 
 

Threshold for inclusion of mode (Cantillo and de Dios Ortúzar, 2005)  
 

Network connection Route available using a mode 
PT stops in neighbourhood 
 

(Swait and Ben-Akiva, 1987a; Ton et al., 2019a) 
(Habib et al., 2011; Kamargianni et al., 2015)  

Individual characteristics as 
input for mode availability 

Gender 
Age 
Education level 

(Calastri et al., 2017; Vij et al., 2017, 2013) 
(Calastri et al., 2017; Vij et al., 2017) 
(Calastri et al., 2017) 

 Income (Vij et al., 2017, 2013) 
 Employment (Vij et al., 2017, 2013) 
 Household size (Vij et al., 2017, 2013) 
 Children in household (Vij et al., 2017) 
 Marital status (Vij et al., 2017, 2013) 
 Parenthood status (Vij et al., 2017, 2013) 
 Home ownership (Vij et al., 2017, 2013) 

4.3. Methodology 
The experienced choice set is defined as the set of modes used over an enduring period of time. 
In Section 4.3.1 we present the methodology for retrieving the experienced choice set and 
identifying the relevant determinants. The model structures used for estimation and validation 
of the experienced choice set are discussed in Section 4.3.2.  

4.3.1. The Experienced Mode Choice Set and its Determinants 

The experienced choice set can be retrieved in different ways. One can, for example, observe 
an individual over a long period of time using a GPS device or a travel diary, which is time 
consuming and largely impacts the privacy of the individual. This has been done before to study 
mobility patterns of individuals, where the duration of these data collection efforts range 



Chapter 4 – Determinants of the Experienced Mode Choice Set 65 
 

between one day (Ralph, 2017) and six weeks (Vij et al., 2017, 2013). Another method, which 
is less demanding on the individual, is to use a survey to ask questions related to the mode use 
of an individual over a long period of time. This method has previously been applied to study 
mobility patterns of individuals (Lavery et al., 2013; Molin et al., 2016). We apply the latter 
method and use a survey to collect data (see Section 4.4). The question posed to the respondents 
is: which modes have you used at least once in the last half year for commute trips? Where they 
could choose multiple modes from a list of the most prominent modes in the Netherlands, 
namely car, train, bus/tram/metro (BTM), bicycle, and walking. Access and egress modes are 
not included here. This question provides insights in the modes used by the respondents over a 
long period of time. By focusing on commuting, i.e. one trip purpose, it is easier for individuals 
to retrieve their mode use. This question collects aggregated data, consequently the experienced 
choice set reflects the general experienced choice set and does not directly represent trip-level 
variations.  

The experienced choice set reflects actual observed behaviour. Therefore, it provides a 
rich source of information, both in terms of choices made by individuals and the composition 
and size of their experienced mode choice set. We propose to apply discrete choice models to 
identify determinants that influence the experienced choice set of an individual. The alternatives 
of the experienced choice set are constructed by combining all historically observed modes into 
a single alternative. The respondent then chooses between sets of modes, e.g. car-train-walk 
and bicycle-car. This results with 31 potential experienced choice sets. Given that, for example, 
individual and household determinants are previously applied and found relevant for choice set 
specification, we will test the relevance of a number of determinants belonging to ownership, 
socio-demographics, household characteristics, urban density, and work conditions.  

4.3.2. Model Structures Used for Estimation and Validation 

The determinants influencing the experienced choice set are revealed by estimating a number 
of discrete choice models. We start simple by estimating Multinomial Logit (MNL) models. 
Due to the way in which alternatives are constructed, we expect shared unobserved variables 
(captured in the error term). This cannot be captured in the MNL model, thus requiring the use 
of various more complex model structures such as Nested Logit (NL), Cross-Nested Logit 
(CNL), and Mixed Logit (ML). The utility function for experienced choice set / and individual 
" is specified according to Eq. 4.1 (Ben-Akiva and Bierlaire, 1999): 
 

%`' = 	 *̀ ' + ,`', / ∈ a'	 
 

(4.1) 
 
where *̀ '  is the deterministic utility for individual " and experienced choice set /, which is 
part of the feasible choice set of that individual	a', and where ,`' represents the random error 
term capturing the uncertainty. The deterministic part of the utility is composed in the following 
way for the experienced choice set (the index of individual n is omitted for simplicity): 
 

*̀ = bc/` + d 9efe	
e∈`

 (4.2) 

 
where the alternative specific constant (ASC) is defined per experienced set, and where the 
parameters are estimated for each mode g that is a member of the experienced set /. As an 
example, if the alternative is bicycle-walk, this means that for each variable f two parameters 
are estimated, one for the bicycle and one for walking. A model with alternative specific 
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parameters was estimated, but yielded many insignificant parameters, consequently losing 
explanatory power for various alternatives.  

As mentioned before, the MNL model is only able to capture similarities between 
alternatives via the observed variables. The NL allows correlations between the unobserved 
variables of some alternatives, by grouping (nesting) them. In case of the experienced mode 
choice set, several of these nesting structures can be identified, related to for example size and 
composition of choice sets. An example of a nesting structure based on composition is shown 
in Figure 4.1a, where alternatives that contain active modes, motorised modes, or a mixture of 
these are distinguished (note that this representation does not imply hierarchy). All alternatives 
can be assigned to one nest. Alternatively, a nesting structure based on size represents the 
number of modes that are combined into the experienced choice set (Figure 4.1b). A variety of 
different nesting structures are tested and judged on model fit and behavioural interpretation.  
   

              

(a)        (b) 

Figure 4.1:  Example of NL structures based on composition (a) and size (b) of the experienced choice set 

Due to the way the alternatives are bundled, i.e. combining all used modes into one experienced 
choice set, it seems plausible that alternatives that have modes in common share correlation in 
the unobserved variables. For example, the car-train and car-bicycle alternatives might exercise 
correlations due to the common car-mode. It is not possible to capture this structure in a NL 
model since nests are mutually exclusive. The CNL model relaxes this assumption by including 
alternatives as members of multiple nests (Vovsha, 1997). An example of a structure based on 
mode-nests is shown in Figure 4.2. Often, the membership of a nest is predefined (Bierlaire, 
2006), but can also be estimated together with the nesting parameters. This optimises the CNL 
model further as the degree of membership can vary between alternatives and nests. Again, a 
variety of different nesting structures was tested and judged on model fit and behavioural 
interpretation.  
 

 

Figure 4.2: Example of a CNL structure based on mode-nests 
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ML with error component structure has a flexible error structure, and is theoretically able to 
reproduce the same structure as both the CNL and NL models (McFadden and Train, 2000). It 
has as extra advantage that it is able to incorporate heterogeneity and heteroscedasticity that can 
be present in the population. 

In the model estimation process, first all variables and parameters are introduced for all 
alternatives. Afterwards, non-significant parameters were excluded iteratively, so that the 
model fit (adjusted rho-square compared to the equally likely model, log-likelihood, AIC, and 
BIC) is optimised. This optimisation is done for the MNL model, the other models are all based 
on this specification. All models are estimated using the Python Biogeme package (Bierlaire, 
2016). 

In order to test the predictive power of the best model for the experienced mode choice 
set, a k-fold cross-validation is performed with five groups. This means that the dataset is 
randomly distributed into five groups of 20% each. Accordingly, the model is estimated using 
80% of the sample and the remaining 20% is used to predict the experienced choice set, given 
the estimated model. The stability of the parameters is tested, based on model estimations from 
the different samples. Furthermore, the predictive power is tested by calculating how often the 
model assigns the highest probability to the actual experienced choice set (hit rate) and the 
extent to which errors are made. Regarding the latter, if for example the experienced set is 
bicycle-walk and the predicted set is bicycle only, this is considered a less significant error than 
predicting train only as the experienced set. 

4.4. Data Description 
For this study, the data obtained via the Netherlands Mobility Panel (MPN) is used. This is a 
longitudinal household panel, which commenced in 2013, with the goal of investigating how 
travel patterns of individuals change over a long period of time. Two surveys focusing on 
personal and household characteristics and a three-day travel diary are distributed among panel 
members every autumn. This panel is to a large extent representative of the Dutch population. 
We refer the reader to Hoogendoorn-Lanser et al. (2015) for a detailed description of the MPN 
surveys and travel diary. 
 A companion survey on the perceptions, attitudes, and wayfinding styles towards active 
modes (coined PAW-AM) was distributed among the MPN panel members in June 2017. This 
survey addressed among other things the experienced mode choice set of individuals (see 
Section 3). To identify different determinants that influence the composition of the experienced 
choice set, we use data from the personal and household surveys. Consequently, the data from 
the MPN surveys (2016) and the PAW-AM survey (2017) are merged. This study focuses on 
commuter trips, as such respondents were required to have a job and commute towards their 
work location. 2,775 respondents fulfilled these requirements. A total of 31 alternatives can be 
experienced, of which one was never chosen and 18 were rarely chosen (less than 20 times). 
Therefore, a final filtering was performed to include only experienced choice set alternatives 
that contain sufficient respondents, which leads to a dataset of 2,652 respondents. A total of 12 
experienced mode choice set alternatives are included for model estimation and cross-
validation: 
 

1. Car 
2. Bicycle 
3. Train 
4. BTM 

5. Walk 
6. Bicycle-Train 
7. Bicycle-BTM 
8. Bicycle-Walk 

9. Car-Train 
10. Car-Bicycle 
11. Car-Bicycle-Walk 
12. Car-Bicycle-BTM 
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Based on the determinants used to specify mode choice sets in literature and the availability of 
data in the MPN, potential determinants of the experienced mode choice set are selected for this 
study. Table 4.2 shows an overview of the selected determinants and their operationalisation in 
the models. Due to the aggregated nature of the experienced mode choice set in this data 
collection effort, trip-level characteristics are not included. Five categories of determinants are 
identified, namely socio-demographics, ownership characteristics, work conditions, urban 
density, and household characteristics. This information is collected in the MPN surveys of the 
year 2016.  

Table 4.2: Potential determinants of the experienced mode choice set 

Socio-demographics Urban density 
Gender (m/f) Level of urbanisation (low/medium/high) 
Age (-49/50+)  
Education level (low/medium/high) Household characteristics 
 No. of individuals (1-2/3+) 
Ownership characteristics Children (y/n)  
Driver’s license (y/n) Household income (low/medium/high) 
Car ownership (y/n)  
Bicycle ownership (y/n) Work conditions 
Public transport subscription (y/n) Working hours (part-time/full-time) 
 Reimbursement for car, public transport, or bicycle (y/n) 
 
The characteristics of the respondents in the dataset are presented in Table 4.3. The surveys are 
only distributed to individuals of 12 years and older. The education level represents the highest 
completed level of education. Consequently, the younger population that have not finished 
studies yet, ends up in a lower level of education. The education levels represent the following: 
low (completion of secondary education), medium (completion of higher secondary education, 
pre-university education, or secondary vocational education), and high (completion of higher 
professional education or university education). Many respondents have a medium or high 
education level, potentially due to the focus on commuting trips. Furthermore, ownership and 
availability percentages are high. A large share of the respondents lives in a highly urban 
environment, which represents municipalities of 1,500 inhabitants/km2 or more. A moderate 
urban environment is defined as a municipality of 1,000-1,500 inhabitants/km2 and a low urban 
environment is defined as less than 1,000 inhabitants/km2.  

Table 4.3: Characteristics of the respondents (N=2,652) 

    Percentage (%)     Percentage (%) 
Gender Male 46.8  Children in household No 76.4 

 Female 53.2   Yes  23.6 
       

Age <=34 years 41.0  Persons in household 1 14.7 
 35-49 years 29.3   2 23.2 

 50<= years 29.8   3 18.5 
     4+ 43.7 

Education level Low 19.9     
 Medium 40.8  Reimbursement Car 35.0 

 High 39.3   PT 7.5 
     Bicycle 10.5 
Ownership Drivers' license 89.7     

 Car 75.5  Urban density Urban 52.2 
 Bicycle 87.9   Sub-urban 18.6 

 PT -  subscription 30.5    Rural 29.3 

 
Most respondents have no children (under the age of 12) and live in a four or more-person 
household. This means that most households have children (over the age of 12) or other 
inhabitants. Finally, more than half of the respondents are reimbursed by their employer for 
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travelling by a certain mode, where the largest share is reimbursed for the car (e.g. in the form 
of a company car or kilometre compensation). 

4.5. The Experienced Mode Choice Set 
This section investigates the experienced mode choice set for commuting trips, using the dataset 
described in the previous section as derived from the MPN and PAW-AM surveys. In Section 
4.5.1 the size and composition of this set are discussed. Section 4.5.2 compares the experienced 
choice set with a choice set defined based on ownership and availability. Finally, Section 4.5.3 
investigates consistency in this experienced set over time. 

4.5.1. Size and Composition of the Experienced Mode Choice Set 

In the Netherlands, the car and bicycle are the most commonly used modes (CBS, 2018). When 
analysing the occurrence of different experienced mode choice sets for commuting purposes 
(Table 4.4), we see that car and bicycle are dominating. Note that access and egress modes are 
excluded here. The most common sets consist of single-mode alternatives, with the exception 
of the car-bicycle choice set. Thus, individuals have a relatively small choice set for commuting 
trips, where most individuals only use one mode for their commute over a period of half a year. 
This was also found by Kuhnimhof (2009) and Kuhnimhof et al. (2006), however they explored 
the mode use behaviour over only seven days. Our findings suggest that this unimodality is still 
largely present over a period of half a year, providing a first indication that individuals are 
habitual in their mode use for commuting trips. 

Table 4.4: Ranking of the experienced mode choice sets 

No. Rank Alternative Share (%) Frequency 
1 1 Car 47.1 1248 
2 2 Bicycle 26.6 706 
3 3 Car-Bicycle 9.8 260 
4 4 Train 5.4 142 
5 5 Walk  2.2 59 
6 5 BTM 2.2 59 
7 6 Car-Train 1.8 49 
8 7 Bicycle-BTM 1.3 34 
9 8 Bicycle-Walk 1.1 29 
10 9 Car-Bicycle-Walk 1.0 26 
11 10 Bicycle-Train 0.8 20 
12 10 Car-Bicycle-BTM 0.8 20 

 
Table 4.5 visualises the modal shares per mode and shows how each mode is part of choice sets 
of different sizes. When investigating the experienced mode choice sets from this perspective, 
several observations can be made. First of all, it is confirmed that car and bicycle are the most 
common modes for commuting trips among individuals in the sample. The other modes; train, 
BTM, and walking, are used much less for commuting trips. Furthermore, BTM and walking 
are, relatively, more often part of multimodal choice sets (about 50% of the occurrences) 
compared to the other modes. Conversely, the car is most often used unimodally. Finally, the 
majority of the respondents have reported using a single mode for commuting trips in the last 
half year (83.5%), compared to 14.8% of the respondents that used two modes and 1.7% of the 
respondents that used three modes. The share of unimodal commuters is higher than the 72% 
found by Kuhnimhof (2009). One might expect that this percentage decreases when the 
observation period increases, however our findings show the opposite. Potentially, this is 
related to the context, i.e. Germany versus the Netherlands. The unimodality that we observe 
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for commuting trips, does not necessarily mean unimodality in general, as for other trip 
purposes more or different modes can be used. 

Table 4.5: The experienced modes in the past half year depicted against the choice set size 

  No. of modes in choice set  
Mode 1 2 3 Total 
Car 47.1% 11.7% 1.7% 60.4% 
Train 5.4% 2.6% 0.0% 8.0% 
BTM 2.2% 1.3% 0.8% 4.3% 
Bicycle 26.6% 12.9% 1.7% 41.3% 
Walk 2.2% 1.1% 1.0% 4.3% 

4.5.2. Comparison between Choice Set Definitions 

Both in research and practice, the mode choice set is often defined based on deterministic rules 
(de Jong et al., 2007; Hamre and Buehler, 2014; Gehrke and Clifton, 2014; Kamargianni and 
Polydoropoulou, 2013). These deterministic show large variations in their rigorousness 
between studies, which results with different choice sets when applying them on the same data. 
As an example, for the inclusion of public transport in the choice set, Gehrke and Clifton (2014) 
state that a bus or train stop should be present within respectively 0.5 and 1.0 mile from the 
home location and Habib et al. (2011) state that a stop should be available within the 
neighbourhood. On the other hand, Ton et al. (2019a) use the Google Directions API to identify 
whether a public transport route is available from home to destination. The nearest stop is not 
necessarily the best suitable stop for the entire trip, therefore one can argue whether including 
only the nearest stop will be accurate for a trip. Consequently, these deterministic rules will 
result with different choice sets, as they are based on different logic and (network) information. 
In this section we compare the experienced choice set with a choice set defined based on 
deterministic rules, in this case based on availability and ownership, to identify differences and 
similarities between rule-based and behaviour-based choice sets.   
 To define the commuting availability/ownership choice set, we assume that the mode 
needs to be available to an individual on a daily basis. Therefore, the car and bicycle are 
included only if the respondent owns the mode. This means that no distinction is made between 
driver and passenger. Furthermore, public transport is only included if the individual has a 
subscription (e.g. discount, ticket for a specific line). This seems a plausible assumption for 
daily commuting trips, because not having this subscription and using it on a daily basis is 
expensive in the Netherlands (either for the individual or employer). Regarding walking we 
define no availability assumptions. This will not always hold for commuting trips (see Table 
5), because people might not be able to walk or consider is too far to walk. The same applies 
for the inclusion of bicycle. However, because of the aggregated nature of the data no 
information on distance or travel time is available for many individuals (47%). Based on the 
above definition eight different choice set combinations can be identified. Four modes are 
distinguished in the deterministic choice set: car, public transport, bicycle, and walk. In the 
experienced choice set public transport is divided into BTM and train, therefore the comparison 
is not completely one-to-one. 

Table 4.6 shows the comparison between the deterministic choice set and experienced 
choice set, with three exact matches between both sets: walk only, bicycle-walk, and car-
bicycle-walk. The total of exact matches (dotted) is 22 out of 2,652 (0.8%). Consequently, when 
defining a choice set based on availability and ownership many differences are found in 
excluding and including relevant modes compared to the observed behaviour. The horizontal 
stripes show the mismatches between the two sets. We found a total of 171 mismatches (6.4%). 
The largest mismatch in number of respondents is between the car only experienced set and 
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bicycle-walk ownership/availability set (38 out of 2,652). These individuals do not own a car 
(only a bicycle), but solely use the car as commuting mode. This means that these individuals 
borrow the car from someone else, are a passenger, or use it via a sharing system. For the 
majority of the respondents the experienced set is a subset of the ownership/availability set or 
vice versa (diagonal stripes). For example, in case of the car only experienced choice set and 
the car-bicycle-walk ownership/availability set (832 out of 2,652), individuals also own a 
bicycle, but do not use it. Some respondents show a mixture of the ownership/availability and 
experienced set (white), for example car-bicycle is experienced, whereas car-walk is 
owned/available. In that case the bicycle was borrowed from someone else or used via a sharing 
system. Consequently, ownership and availability are not the only explanatory variables for the 
experienced choice set. As mentioned before, different deterministic rules will result with 
different choice sets. As these rules are all based on logic and network information, they are 
likely to mismatch to a certain extent with observed behaviour (experienced choice set).  

Table 4.6: Availability/Ownership choice set compared to the experienced choice set. dotted = exact 
match, diagonal stripes = subset, horizontal stripes = mismatch, white = mixture. w=walk, l= local transit 

(btm), t=train, b=bicycle, c=car, pt=public transport. 

  Availability/Ownership Choice set 

   w pt-w bw b-pt-w cw c-pt-w cbw cb-pt-w Tot.  

Ex
pe

ri
en

ce
d 

ch
oi

ce
 s

et
 

w 0 0 10 11 7 2 25 4 59 
l 0 4 6 31 0 1 7 10 59 
t 1 1 2 74 0 11 14 39 142 
b 4 5 134 184 27 9 273 70 706 

bw 1 0 6 10 2 1 7 2 29 
bl 0 1 4 22 0 1 1 5 34 
bt 0 0 1 5 1 2 1 10 20 
c 17 1 38 37 162 20 832 141 1,248 
ct 0 0 0 4 3 5 14 23 49 
cb 2 0 17 9 21 3 172 36 260 

cbw 0 0 1 2 5 0 16 2 26 
cbl 0 0 2 4 0 0 8 6 20 

 Tot. 25 12 221 393 228 55 1,370 348 2,652 

4.5.3. Consistency in the Experienced Mode Choice Set over Time  

In the PAW-AM survey, the respondents were asked to recall which modes they have used over 
the past half year. To investigate consistency over time we compare the experienced choice set 
from the PAW-AM survey with the choice set containing all reported commuting modes in the 
three-day travel diary (MPN). In the travel diary, individuals were asked to report all the trips 
(and modes) made in the course of three days. By filtering the commuting trips from this diary, 
the experienced choice set based on the three-day travel diary is composed. It is uncertain 
whether this three-day period captures the whole spectrum of modes used, regardless it will 
help in identifying (in)consistency over time. The travel diary data was collected in Autumn 
2016, whereas the PAW-AM survey covers the first half year of 2017. 

Of the 2,652 individuals that filled in the PAW-AM survey, only 1,280 filled in the 
three-day travel diary and made at least one commuting trip. Approximately two-thirds (67.3%) 
of these respondents report the same choice set during both periods and are thus considered 
consistent in their experienced choice set over time. The choice sets that show consistency are 
the unimodal choice sets and two-mode sets, such as bicycle-walking and car-bicycle. The lack 
of consistency in the three-mode choice sets, might stem from the fact that only three days were 
observed. A total of 22.7% of the population reports a subset, either of the experienced set 
(13.6%) or of the three-day diary set (9.1%). Furthermore, a total of 9.3% of the respondents 
report a different choice set during the three days compared to the half year. Noticeably, 22.2% 
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of this group has experienced a life event related to moving jobs or moving homes. One other 
reason of this shift in behaviour could be the seasonality: autumn versus winter and spring. 

Table 4.7: Experienced choice sets of the survey (2017) and the three-day travel diary (2016) compared. 
dotted = exact match, diagonal stripes = subset, horizontal stripes = mismatch, white = mixture. w=walk, 

l= local transit (btm), t=train, b=bicycle, c=car. 

  2016                     
2017 w l wl t tw tl b bw blw  bt btlw c cw cl ct ctw ctl cb cbw cbl cbt Tot. 

w 11 0 0 1 0 1 1 0 0 0 0 2 2 0 0 0 0 0 1 0 0 19 
l 0 14 4 0 0 1 4 0 0 0 0 0 0 4 0 0 0 1 0 0 1 29 
t 0 1 0 39 4 1 8 0 0 3 0 8 2 0 2 0 1 1 0 0 0 70 
b 3 1 1 2 0 0 213 10 2 2 0 43 1 1 0 0 0 34 3 3 1 320 

bw 1 1 0 0 0 0 7 6 0 0 0 0 0 0 0 0 0 0 1 0 0 16 
bl 0 2 1 0 0 0 11 0 1 1 0 0 0 0 0 0 0 0 0 0 0 16 
bt 0 0 0 10 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 13 
c 3 4 1 5 0 2 16 0 0 2 0 553 12 5 4 1 0 13 0 1 0 622 
ct 0 0 0 8 1 0 0 0 0 0 1 5 1 1 2 0 0 0 0 0 0 19 
cb 0 0 0 2 0 0 44 0 0 0 0 62 1 0 0 0 0 23 0 1 0 133 

cbw 0 0 0 0 0 0 5 0 0 0 0 6 1 0 0 0 0 2 0 0 0 14 
cbl 0 3 0 0 0 0 4 0 0 0 0 2 0 0 0 0 0 0 0 0 0 9 

Tot. 18 26 7 67 6 5 314 17 3 8 1 681 20 11 8 1 1 74 5 5 2 1,280 
 
When investigating the (in)consistency over time more thoroughly for the 1,280 individuals 
that are part of both datasets, several observations can be made (see Table 4.7). First, 
consistency over time occurs most for the unimodal choice sets (96% of the matches). 
Consequently, the patterns that were uncovered in the half year survey were already present in 
the year before, confirming the habitual behaviour. The individuals that have a wider spectrum 
of modes in their experienced set are often partially consistent over time (e.g. expanding the set 
or shrinking the set). Second, several respondents have (partially) shifted from motorised modes 
to active modes, which might (again) be due to change in season. For example, 43 individuals 
shifted from car to bicycle, 34 shifted from car-bicycle to bicycle only, 62 shifted from car to 
car-bicycle, and 2 shifted from car-walk to walk only. Finally, when a subset of the travel diary 
set is reported in the survey, the data often suggests habit formation. For example, in case of 
bicycle-walk, 10 out of 17 individuals shift to bicycle only, for the car-bicycle-walk alternative 
all individuals become unimodal users, and the car-bicycle alternative shows that the majority 
of the individuals become either unimodal car or bicycle users.   

4.6. Modelling Results  
The determinants that are relevant for the experienced choice set are uncovered using discrete 
choice models. This section details the results of this exercise. Section 4.6.1 describes the 
overall results of the estimated models. Section 4.6.2 discusses the determinants that are 
relevant for the experienced mode choice set. Finally, Section 4.6.3 reflects on the suitability 
of choice sets based on historical data for prediction purposes. 

4.6.1. Overall Model Estimation Results  

In this study four different model structures are tested: MNL, NL, CNL, and ML. The NL, CNL, 
and ML models did not produce significantly superior results compared to the MNL model. All 
the nesting parameters that are estimated for each of the NL models (based on both size and 
composition) are not significantly different from one, consequently suggesting that the 
alternatives do not share unobserved variables. The CNL model (based on mode-nests) with 
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variable membership did not converge properly, consequently an iterative process was used to 
find the best membership for each alternative to the nests. This iterative process consisted of 
alternately estimating the nesting parameters and attributes, while fixing the alphas, and 
estimating the alphas, while using the results of the previous iteration as fixed input. This model 
significantly improved the log-likelihood compared to the MNL, however no significant nesting 
parameters were found. The ML model reproduces the CNL model with fixed membership, 
thus performing worse than the CNL model with flexible membership. Consequently, we have 
to conclude that the MNL model produces the best results. This seems plausible, because we 
include a relationship in the utility function between alternatives that contain the same modes 
via the estimation of mode-specific parameters (Eq. 4.2). Consequently, the car-bicycle and 
unimodal bicycle alternatives contain partially the same parameters. The other model structures 
did not find a significant effect of shared unobserved variables between alternatives. Table 4.8 
shows the overall model fit results. The MNL model is estimated on a random draw of 80% of 
the data. It has a model fit of 0.542. 

Table 4.8: Model fit results 

  MNL 
Initial log-likelihood (equally likely) -5307.761 
Final log-likelihood -2383.285 
# parameters 45 
Likelihood ratio test - 
AIC 4856.6 
BIC 5111.5 
Adjusted rho-square (compared to the initial model) 0.543 
# observations 2,136 

4.6.2. Determinants of the Experienced Mode Choice Set 

In this section we discuss the different determinants that are relevant for explaining the 
experienced mode choice set according to the MNL model (see Table 4.9). The utility function 
consists of alternative specific constants and mode specific parameters. Regarding the first, we 
have fixed the parameter for car to zero, so that a comparison based on the relative utility can 
be made. Regarding the second, the model specification implies that if the alternative is car-
bicycle, the parameter values for car and bicycle need to be summed up (linear in parameters) 
to find the combined parameter. We discuss the parameter coefficients per category of 
variables.  

Constants 
The constants are alternative-specific and provide information on the average influence of the 
unobserved variables on the utility (relative to the reference alternative: car-only). The car-only 
alternative is most frequently chosen, which explains why the parameters values related to most 
other mode choice alternatives are negative. The constants for walk and cycle are positive, 
suggesting that these have unobserved variables that favour walking and cycling over the car. 
This might be due to the shorter distances for which these modes are used, which is not captured 
in the model (unobserved). Most parameters are significant, which indicates that the mode-
specific parameters do not capture all the information in the data. Thus, other influences are 
present in the experienced mode choice set choice that are currently not observed.   
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Table 4.9: Determinants of the experienced mode choice set for the MNL model 

Determinant Level Mode Coefficient Robust t-test 
Alternative-specific parameters       
Constant Car 0 - 

 Bicycle 2.60 7.65* 
 Bicycle-BTM -0.81 -1.71 
 Bicycle-Train -2.48 -5.33* 
 Bicycle-Walk -0.16 -0.33 
 BTM -0.23 -0.52 
 Car-Bicycle -1.21 -6.10* 
 Car-Bicycle-BTM -3.62 -8.05* 
 Car-Bicycle-Walk -2.96 -7.15* 
 Car-Train -4.69 -13.64* 
 Train -0.62 -1.52 

  Walk 0.79 1.84 
Mode-specific parameters       
Education level Medium Car 0.42 2.50* 
(ref=Low) High  Bicycle 0.28 2.12* 

  Car 0.49 2.63* 
  Train 0.59 2.70* 

Age (ref=<50 years) 50=< years BTM -0.64 -2.09* 
  Car -0.24 -1.71 

  Train -0.87 -3.27* 
Gender (ref=Female) Male Car 0.42 3.31* 
Household size (ref=3+ pers.) 1-2 pers. Walk 0.51 2.08* 
Children (ref=No) Yes Car 0.37 2.20* 
    Walk 0.76 2.39* 
Urban density Low Bicycle -0.44 -3.57* 
(ref=High)  BTM -0.75 -2.32* 

  Train -0.88 -3.18* 
 Moderate BTM -0.70 -1.84 

Driver's License  Car 1.71 5.59* 
Ownership Bicycle Bicycle 0.31 1.83 

  Walk -0.77 -2.48* 
 Car BTM -0.61 -2.09* 
  Car 1.10 6.72* 
  Train 0.46 1.95 
 PT sub. BTM 0.97 3.35* 
  Car -0.54 -3.74* 

    Train 1.63 6.49* 
Working hours  Fulltime  Bicycle -0.58 -5.12* 
Reimbursement Bicycle Bicycle 2.04 7.39* 

  BTM 0.67 1.79 
  Car -0.78 -3.77* 
 Car Bicycle -0.89 -6.07* 
  Car 1.67 7.96* 
  Walk -1.55 -2.99* 
 PT Bicycle -0.48 -1.75 
  BTM 2.93 8.44* 

    Train 3.08 9.95* 
*=significant at the 5% level. 

Socio-demographics 
Three socio-demographic variables are tested: age, gender, and education level. All are found 
to be significant. This is in line with the research of Vij et al. (2017, 2013) and Calastri et al. 
(2017), who used among others, these three variables to identify the availability of several 
modes. The older commuting population (50=< years) is associated with a lower utility for the 
BTM, car, and train modes compared to the young population (<50 years). The active modes 
are thus more attractive to the 50+ population than the motorised modes, all else being equal. 
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Men are more likely to have car included in their experienced mode choice set than women, 
which is also found by Vij et al. (2013). Furthermore, the education level parameters show that 
if an individual has a medium and high education level, they are more likely to include the car 
mode in the experienced choice set compared to an individual with a low education level. The 
bicycle and train also become more attractive for an individual with a high education level. 

Household Characteristics 
The household characteristics exhibit a limited association with the experienced mode choice 
set. The household income does not yield a significant relationship. The salary of the combined 
household members does not make it more or less likely that a mode is included in the 
experienced choice set, contrary to Witlox & Tindemans (2004), who found a positive 
relationship between income and car use. The size and composition of the household do explain 
the inclusion of walking and using the car in the experienced mode choice set. The presence of 
children under the age of 12 in the household increases the probability of including walking 
and the car in the experienced choice set. This is in line with the results found by Vij et al. 
(2017), as they found that having children increases likelihood that one is dependent on a car. 
Furthermore, an individual living in a household consisting of one or two persons is more likely 
to include walking in the experienced choice set compared to an individual living in a larger 
household.  

Urban Density 
Low urban density represents municipalities that contain mostly villages and rural areas, 
moderate density represents municipalities with medium-sized cities, such as Groningen, and 
high density represents municipalities with large cities, such as Amsterdam and Rotterdam. We 
took the high urban density as a reference point. With moderate density it is less likely that 
BTM is included in the choice set. Generally, the density and frequency of BTM is very high 
in high urban areas, but less so in moderately urban areas. In low urban areas, the bicycle, train, 
and BTM are less likely to be included in the experienced mode choice set. This finding shows 
that the experienced choice set is not only related to individual specific determinants, but also 
to where they live.  

Ownership 
The ownership variables are all significantly associated with the experienced mode choice set. 
This concurs with the use of ownership variables in many mode choice studies to identify the 
mode choice set (Ben-Akiva and Boccara, 1995; Gehrke and Clifton, 2014; Habib et al., 2011; 
Kamargianni, 2015; Kamargianni et al., 2015; Rodríguez and Joo, 2004; Vij et al., 2017, 2013).  
Having a driver’s license is positively associated with the inclusion of the car in the experienced 
choice set. It does not have a significant impact on the inclusion of other modes. In contrast, 
ownership of a certain mode positively relates to inclusion of that mode and at the same time 
negatively relates to inclusion of other modes in the experienced mode choice set. Owning a 
bicycle positively relates to including the bicycle in the choice set, which is in line with 
literature (Heinen et al., 2010; Muñoz et al., 2016a). Moreover, it also reduces the utility of 
walking for inclusion in the choice set. Owning a car increases the utility of inclusion of car in 
the choice set, furthermore it increases the utility for including train in the choice set. This 
suggests that train users often own a car. On the other hand, it reduces the utility of the BTM. 
Ownership of a public transport subscription results with the expected results: having a 
subscription increases the probability of including BTM and train in the choice set and reduces 
the probability of using the car. This suggests that train users are affected differently by car 
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ownership, compared to car users and the ownership of a public transport subscription. The first 
yields a positive relation, whereas the second yields a negative relation.  

Work Conditions 
For commuting trips, the work conditions are important determinants. Both the working hours 
and reimbursement are relevant for the experienced mode choice set, where the latter proves to 
be more important. Working full-time (more than 35 hours per week) decreases the probability 
of including the bicycle in the choice set, which is in line with literature (Heinen et al., 2010). 
This does not hold for the other modes of transport. Regarding the reimbursement, similarly to 
the trend observed for the ownership of modes: being reimbursed for using a mode to commute 
to work increases the probability of including that mode in the experienced choice set, whereas 
it decreases the probability of including another mode in the experienced choice set. One 
exception is the reimbursement for bicycle, which positively relates to inclusion of BTM in the 
choice set. Both the bicycle and BTM can be used for similar distance ranges and can thus be 
used as substitutes. Reimbursement of the car decreases the inclusion of walk and bicycle in 
the choice set. Finally, a public transport reimbursement increases the utility for BTM and train 
and reduces the utility of the bicycle.  

4.6.3. Using the Experienced Mode Choice Set for Out-of-sample Predictions  

To test the performance of the model for predictions, we have partitioned the data into five 
segments of approximately 20% each. One of the segments is used as the default case to 
calibrate the parameters involved. The other segments are used for validation. In this validation 
we investigate several aspects: model performance, stability of the parameters, and prediction 
accuracy for out-of-sample data.  
 

 

Figure 4.3: Coefficient of variation (mean standard error divided by mean absolute parameter value) 

The models perform well for the different segments. The default model produced an adjusted 
rho-square of 0.542, whereas the validation models show a model fit ranging from 0.526 to 
0.541. This means that for all segments between 52% and 54% of the variation of the data can 
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be explained using this model. The AIC and BIC values also show promising results, with some 
segments showing better results than the default model.  

The stability of the parameters is investigated by calculating the coefficient of variation 
(CV) for each parameter. This is done by dividing the average standard error of the parameter 
by the average parameter value. If the CV is over 0.5, the parameter is considered less stable. 
Figure 3 visualises the CV for all parameters. Left of the orange line the CV is over 0.5 and 
thus less stable. We exclude the constants in this comparison, because these capture the 
unobserved variables for each model and are therefore different per model. Eight parameters 
are considered less stable: high education – bicycle, medium education – car, 50+ years – BTM 
and car, own car – train, low urban – BTM, moderate urban – BTM, and reimbursement bicycle 
– BTM. These parameters show large variation in their parameter values and standard errors, 
where the last parameter is the least stable. The majority of the parameters, however, are stable 
over the different runs.   

For investigating the prediction accuracy, we apply the model on out-of-sample data. 
This results with a probability for every alternative to be chosen. When summing these 
probabilities over individuals for each alternative, we can calculate what the probability is that 
the prediction is correct or not. In some cases, the model predicts a choice set that is too small, 
too large, or mixed. In this case, the prediction is considered better than when the wrong 
mode(s) are predicted, as it is able to identify part of the choice set. An example is if the 
prediction is bicycle and the actual choice set was bicycle-car. If the predicted choice set is a 
total mismatch, we consider it wrong. For example, the predicted set is BTM, whereas the actual 
choice set is bicycle-walk.  

Table 4.10: Predictive power of the experienced mode choice set model on out-of-sample data 

  Correct Too small Too large Mixed Wrong 
Run 1 48% 12% 12% 1% 27% 
Run 2 50% 11% 12% 1% 27% 
Run 3 50% 12% 12% 1% 26% 
Run 4 49% 13% 12% 1% 25% 
Run 5 49% 12% 11% 1% 27% 
Average 49% 12% 12% 1% 26% 

 
Table 4.10 shows the prediction accuracy based on the above-mentioned situations for each of 
the model runs. The models predict the correct experienced choice set on average 49% of the 
time. Three alternatives are especially well predicted: car, bicycle, and train. These alternatives 
are observed most frequently in the dataset, consequently the model aims to predict these 
alternatives correctly. In 25% of the cases a choice set is predicted that is smaller, larger, or 
mixed compared to the observed choice set and in 26% the model produces a wrong choice set. 
All in all, around 74% of the observations the experienced mode choice set is predicted with 
sufficient accuracy. This suggests that the relevant determinants are, to a large extent, able to 
capture the experienced choice set of individuals for commuting purposes. Consequently, these 
determinants can also be used for the specification of mode choice sets in future mode choice 
studies.  

4.7. Discussion on the Experienced Mode Choice Set 
This section discusses our findings of the experienced mode choice set in relation to past 
research. In particular, we discuss the determinants of the choice set, the unimodal choice sets, 
and potential applications of the experienced choice set.  
 In the literature, we identified that most studies specify the mode choice set based on 
ownership/availability and trip characteristics (e.g. Ben-Akiva and Boccara, 1995; Gehrke and 
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Clifton, 2014; Hensher and Ho, 2016; Vij et al., 2013). Some studies have investigated the 
influence of individual characteristics on the availability/inclusion of modes in the choice set 
(Calastri et al., 2017; Vij et al., 2017, 2013). In this study, we tested both ownership and 
individual characteristics and found that both influenced the experienced choice set. Our 
comparison between the ownership/availability choice set and the experienced choice set shows 
that these sets are very different. A specification based on ownership would falsely exclude 
alternatives such as car and bicycle, which can also be used as shared modes. This discussion 
also showed that different deterministic rules result with different choice sets, and that these 
somewhat ‘arbitrary’ rules are different from observed behaviour. Furthermore, we found that 
the urban environment is also relevant for the experienced mode choice set. This means that 
regardless of the characteristics of an individual, certain modes have a higher or lower 
probability to be used depending on the type of environment in which one lives. This finding is 
confirmed by research on mode use and mobility patterns (Kuhnimhof et al., 2006; Ton et al., 
2019b). Furthermore, the work conditions prove to be important explanatory variables of the 
experienced mode choice set for commuting trips. This means that the employer plays an 
important role in the mode use of its employees. Consequently, more individuals may start 
cycling when the system of reimbursement for commuting given by the employer is changed to 
benefit cyclists (Heinen et al., 2013). In sum, a wider variety of characteristics is relevant for 
the identification of the mode choice set compared to what has been previously assumed. 

The majority of individuals has a unimodal experienced choice set for commuting trips. 
Many of these individuals show habitual behaviour that is consistent over time. This is in line 
with findings from Lavery et al. (2013) and Kuhnimhof (2009). However, this study offers 
evidence to suggest that there might be ways to influence travellers in ways that will lead to an 
increase of the mode set or even a modal shift. The employer can, for example with support 
from the government, choose to provide reimbursement for sustainable or active modes instead 
of car use. This increases the probability of including the bicycle or public transport in the 
experienced choice set. Unimodality is higher in low density urban areas (86.8%) than in 
moderate (83.8%) or high density urban areas (81.5%). Stimulation of the bicycle use may 
increase the use of the bicycle in high density urban areas, potentially increasing the 
experienced choice set size. Consequently, this study shows that several determinants can be 
used to develop policy measures that might increase the number of modes used by commuters.  

A potential application of the experienced choice set lies in the mode choice domain. 
When embedding this method in the probabilistic approach proposed by Manski (1977), a 
probability is assigned to each experienced choice set. In a simultaneous model the mode choice 
is then estimated such that it incorporates the probabilities for the experienced choice sets as 
shown in equation 4.3.  
 

h	(!|j,k, l') = 	 d h	(!|/, j, l') ∙ 	h	(/|a', k, l')
`∈no

 (4.3) 

 
where h	(!|j, k, l') is the probability that an individual " chooses alternative !, given the 
parameters j and k and explanatory variables l'. This depends on the probability of a choice 
set being chosen by the individual and the choice from this choice set. The set a' includes all 
non-empty deterministically feasible modes for individual ". a' is a subset of the master choice 
set p that comprises all possible alternatives available for the choice context and population 
(a' ⊆ p). Eq. 3 thus consists of three parts (Swait and Ben-Akiva, 1987b); 1) a mode choice 
aspect given a choice set, 2) a deterministic choice set generation aspect to define p', and 3) a 
probabilistic choice set generation aspect that expresses the probability that choice set / is the 
actual consideration choice set. Among others Ben-Akiva and Boccara (1995) and Cantillo and 
Ortúzar (2005) have applied variants of this method. This application has to be thoroughly 
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tested with respect to potential endogeneity and bias, as the experienced choice set is based on 
mode use. Furthermore, this method needs to be benchmarked against commonly used mode 
choice set specification methods (such as those based on deterministic rules), to adequately 
identify the (potential) added value of this method.    

4.8. Conclusions and Recommendations 
This paper presents the findings of an analysis of the experienced mode choice set and identifies 
the determinants that impact this set. The experienced choice set is the set of modes that is used 
over a long period of time. We focus on commuting trips in the Netherlands, using data from 
the Mobility Panel Netherlands (MPN) and a companion survey, in which we ask respondents 
for their used modes for commuting trips in the past half year. We evaluate the experienced 
choice set by analysing the size and composition, comparing this set with a choice set based on 
ownership and availability, and by investigating its consistency over time. The determinants are 
identified by means of estimation of discrete choice models. 
 The analysis of the experienced mode choice set for commuting purposes shows that 
the size of this set is limited. The majority of the respondents only uses one mode in the course 
of half a year, which indicates habitual behaviour. We investigated which determinants are 
relevant for the formation of the experienced choice set. Determinants belonging to socio-
demographics, household characteristics, urban density, work conditions, and ownership of 
modes are relevant for choice set formation. The work conditions, especially the reimbursement 
by the employer for using a specific mode, is particularly important for the experienced mode 
choice set of commuters. The second group in terms of importance is ownership or availability 
of modes. We show that more determinants are relevant in the choice set formation than 
previously assumed. While many studies specify the mode choice set based on ownership and 
trip characteristics, only some have extended this to including individual characteristics to 
identify availability of modes. The results are, to a large extent, transferable to out-of-sample 
data. According to our findings, future research into mode choice could benefit from including 
a wider variety of variables in the choice set specification.  
 New modes can potentially be added to the individual’s experienced choice set given 
the right incentives. Policy measures could focus on the reimbursement provided by the 
employer as this can be used to increase the probability of including the bicycle in the choice 
set, if this mode is reimbursed and others are not.  

Future research may aim to estimate a probabilistic integrated choice set and mode 
choice model using the experienced choice set. The method needs to be benchmarked against 
often-used methods to identify its added value in performance and computational effort. This 
study showed that habitual behaviour is present for the majority of the individuals regarding 
their commuting trips. When data is available on the experienced choice set over multiple years, 
the impact of habit formation and life cycle can be investigated in relation to the experienced 
choice set. Furthermore, it is interesting to investigate if habit formation also arises for other 
trip purposes or in general in the mobility pattern of the individuals. Next to that, given the 
increasing evidence that the social environment (i.e. household members and friends) 
influences mode choice behaviour of individuals (e.g. Pike and Lubell, 2018), additional 
research could investigate the impact of the social environment on the experienced mode choice 
set. Furthermore, a potentially interesting addition to the experienced choice set is the way in 
which the modes are used, i.e. as private mode or via shared systems (and types thereof).  
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Abstract 
Nowadays, the bicycle is seen as a sustainable and healthy substitute for the car in urban 
environments. The Netherlands is the leading country in terms of bicycle use, especially in 
urban environments. Yet route choice models featuring inner-city travel that include cyclists 
are lacking. This paper estimates a cyclists’ route choice model for the inner-city of Amsterdam, 
based on 3,045 trips collected with GPS data. The main contribution of this paper is the 
construction of the choice set using an empirical approach which uses only the observed trips 
in the dataset to compose the choice alternatives. The findings suggest that cyclists are 
insensitive to separate cycle paths in Amsterdam, which is a city characterised by a dense cycle 
path network in which cycling is the most prominent mode of travel. In addition, cyclists are 
found to minimize travel distance and the number of intersections per kilometre. The impact of 
distance on route choice increases in the morning peak where schedule constraints are more 
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prevalent. Furthermore, overlapping routes are more likely to be chosen by cyclists given 
everything else being the same. 

5.1. Introduction 
Governments worldwide nowadays acknowledge the advantages of cycling as mode of 
transport. First, there are health benefits for individual cyclists. Second, the bicycle can help 
reduce emissions when substituting the car (Pan-EuropeanProgramme, 2014). Cycling is most 
attractive in urban areas without large changes in altitude (e.g. the Netherlands or Denmark), 
where distances covered are relatively small and car usage is often discouraged and associated 
with greater travel impedance. Furthermore, most European governments have set goals of 
increasing the modal share of cycling over the next years (Kuester, 2015).  

The Netherlands is the leading country in terms of bicycle use, with 27% of all trips 
performed by bicycle (Pucher and Buehler, 2008). When focusing on the urban environment, 
the modal share for bicycles increases further, for example in Amsterdam this was 37% in 2011 
(OViN, 2011). Other cities such as Groningen, Delft and Leiden have a comparable share of 
bicycle trips (Harms et al., 2016; Pucher and Buehler, 2008). Despite the fact that so many 
people cycle in the Netherlands, models aiming at understanding and predicting cyclists’ choice 
behaviour are lacking (Verkeersnet, 2015).  

This shift towards cycling, combined with a lack of models incorporating cycling, calls 
for the development of models to assess related policy implications. Many cities use forecasting 
models to estimate if, when and where changes to infrastructure or policy are needed. However, 
these models are still mainly focused on motorised traffic (Hood et al., 2011). The cycling 
component is either missing, walking and cycling are combined or the model assumes that cars 
and cyclists behave similarly. Ideally, in forecasting models mode specific activity and route 
choices are incorporated. Since both choice processes are currently underdetermined, this study 
starts out by estimating the route choice determinants for cyclists. Before choosing a route, the 
traveller has already decided to cycle and which activity to perform, therefore the implications 
of researching route choice first are expected to be minimal. 

Recently, a number of studies have estimated bicycle route choice models for locations 
where bicycle modal shares range between 1% and 6% (Pucher and Buehler, 2008). Arguably, 
the determinants of route choice behaviour and their impact might be different from a city such 
as Amsterdam, where cycling is prominent. These studies used revealed preference (RP) data, 
more specifically GPS data for estimating the route choice model (Broach et al., 2012; Casello 
and Usyukov, 2014; Hood et al., 2011; Menghini et al., 2010). Before, most of the data used 
for model estimation came from stated preference (SP) surveys where the respondents were 
asked what they would do in a hypothetical situation or route recall surveys where researchers 
relied on the respondents’ ability to recollect chosen routes (e.g. Howard and Burns, 2001; Hunt 
and Abraham, 2007).   

This study aims at estimating cyclists’ route choice determinants in a context where 
cycling is the primary mode of transport. Furthermore, the inner-city of Amsterdam is 
characterised by a densely built area with well-developed cycling infrastructure. This paper 
presents the findings from a cyclists’ route choice model estimated for the inner-city of 
Amsterdam, using GPS data to identify the determinants influencing route choice in a network 
dominantly used by cyclists.  

This study contributes to the previous cyclists’ RP route choice models by introducing 
a new approach for choice set identification. Previous RP studies have used choice set 
generation algorithms to identify the feasible choice set from which the cyclist chooses a route. 
This approach does not guarantee that the chosen route is generated and may include a large 
number of alternatives that are not selected by any cyclist. Conversely, an empirical approach 
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is proposed which uses only the observed routes to identify the considered choice set. This 
implies that the chosen route is by definition included in the choice set. Because all routes in 
the choice set are chosen at least once, it is likely that the alternative routes are considered by 
the cyclists in the sample. Furthermore, a behavioural comparison can be made with 
environments where cyclists make a small minority, because the data is collected in an 
environment dominantly used by cyclists.  

In this paper, Section 5.2 details the data processing phase, going from GPS data to route 
alternatives and characteristics. In Section 5.3, the processed data is analysed and the results of 
the estimated route choice models are reported and discussed. Finally, Section 5.4 provides the 
conclusions of the paper. 

5.2. Determining Route Alternatives and Characteristics 
This section describes the collection (5.2.1) and map matching (5.2.2) of GPS trajectory data. 
Furthermore, an empirical approach for identifying the route choice set is proposed (5.2.3), 
which requires clustering (5.2.4) and filtering (5.2.5) of the data. Finally, the potential 
determinants for cyclists’ route choice are discussed (5.2.6). 

5.2.1. Collection of GPS Data 

GPS data was collected during a nationwide initiative called the ‘Bicycle Counting Week’ 
(BCW), which took place on 14-20 September 2015. The event was organised as a joint 
initiative of national agencies and companies with the goal of gaining a better insight into the 
cycling behaviour of Dutch cyclists. Nationwide, a total of 38,000 cyclists participated in this 
initiative (opt-in sample). Participants’ cycling patterns were tracked using an App. In addition, 
they once filled in a socio-demographic and travel habit survey to complement the GPS data. 
Several bicycles were put up for raffle under the participants (FietsTelweek, 2015).  

During the initiative, data of 377,321 cycling trips was collected nationwide. The 
respondents’ sample includes equal shares of male and female participants. The majority of the 
participants are in the age group 31-65 (80%), while young people (18-) and old people (65+) 
are underrepresented. This probably stems from the need for using a smartphone to work with 
the App and the requirement to have consent from ones’ parents if younger than 18 years. Most 
trips registered are work related (69%), explaining why the group of participants aged 31-65 is 
overrepresented. Participants could mention multiple reasons for cycling. The most dominant 
reasons mentioned are health (80%), speed (47%) and comfort (46%) (FietsTelweek, 2015). 

As mentioned before, this research focusses on the cycling trips within the city of 
Amsterdam, where a total of 12,413 trips performed by approximately 5,000 participants were 
recorded. The Amsterdam sample is similar in terms of gender and age composition to the 
national sample. However, the share of commuting is higher in Amsterdam (77%). The majority 
of the cyclists’ cycles between 25 and 100km a week (72%), while only 3% cycles less than 
10km a week, suggesting that most participants cycle at least to and from their work on a daily 
basis (FietsTelweek, 2015). All the cycling trips included in this research are superimposed on 
the map depicted in Figure 5.1a. 

5.2.2. Map Matching the GPS Trajectory Data 

The map matching is executed by the organizers of the BCW, for a more detailed description 
on this procedure the reader is referred to Van de Coevering et al. (2014). In the GPS trajectory 
data, most consecutive GPS data points are measured with an accuracy of 3-4 meters with 
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respect to the infrastructure network. However, outliers up to 50 meters are observed, mainly 
in dense urban areas. To reduce the impact of these outliers on the analysis, the speed between 
each two consecutive GPS points is calculated and compared to the actual GPS speed 
determined by means of Doppler techniques. If the discrepancy between the actual speed and 
the computed speed is too large, the GPS records are removed from the dataset (van de 
Coevering et al., 2014).  
 

 
.  (a)               (b) 

Figure 5.1: (a) The network of Amsterdam used for cycling trips. In the centre lies the historical city, 
surrounded by the ring canal streets and the radial roads heading to and from the city. To the North lies 
the river IJ, with two ferries connecting its shores. (b) All origin and destination cluster centres resulting 
from the K-means clustering algorithm.  

The remaining GPS trajectories are matched to the OpenStreetMap network. The map matching 
algorithm deployed by the BCW organizers generates all possible routes from origin to 
destination and selects the best match for the GPS records. If no match is found, it could be that 
links are missing (for example in case of desire lines). In that case the route is partitioned and 
the same procedure is repeated for the sub-routes (van de Coevering et al., 2014).  

5.2.3. Identifying the Considered Route Choice Set 

In literature, several approaches for choice set identification have been used, with most studies 
focused on cycling applying a choice set generation algorithm (e.g. Hood et al., 2011; Menghini 
et al., 2010). The aim of these algorithms is to obtain feasible choice sets (Hoogendoorn-Lanser, 
2005), consisting of attractive alternatives. These algorithms however do not guarantee that the 
chosen route is generated and may include a large number of alternatives that are not chosen by 
any individual.  

An alternative approach for constructing the route choice set is to compile it based on 
the trips and routes observed in the data. This empirical approach assures that the chosen route 
is per definition part of the choice set. While the choice set from which each individual cyclist 
eventually chooses his route (considered choice set (Hoogendoorn-Lanser, 2005)) cannot be 
observed directly, it is assumed that the observed alternative routes in the data for a given OD 
pair are included in this set. Unlike the algorithm approach, the empirical approach implies that 
not all feasible routes are included in the choice set, but rather only routes that are all actually 
used by the cyclists in the collected dataset. Consequently, the choice set depends on the 
observed choices and might thus vary for different samples.  

<20	trips
20	<	trips	<	50
50	<	trips

Legend
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A discrete choice model estimated using the realised routes (empirical approach) is 
expected to have lower explanatory power than a model estimated based on possible routes 
(algorithm approach). The first approach identifies alternatives that are chosen by at least one 
cyclist in the data, whereas the second approach also identifies alternatives that are not chosen. 
As a result, the offset between the chosen route and the alternatives is smaller when estimating 
a model using only the realised routes. 

Two prerequisites exist for applying the empirical approach: each OD pair considered in 
the analysis should contain multiple trips and at least two distinct routes. For this study a 
maximum of 19 realised routes for one OD pair is identified. 

5.2.4. Clustering of the Origin and Destination GPS Data  

Since trip origin and destinations are not likely to be recorded at the exact same geographical 
location when using high-resolution GPS data (approximately 50% in the BCW database), the 
GPS origin and destination data points are clustered into larger OD pairs, resulting in more trips 
and possibly more routes per OD pair.  

The k-means clustering method is applied, based on the distance between GPS locations 
of the origins and destinations (Harrington, 2012). The algorithm minimizes the intra-cluster 
distances and maximizes the inter-cluster distances. Two downsides of this method are that the 
solution can get stuck in a local minimum (Harrington, 2012), which results in a suboptimal 
distribution of GPS locations over the clusters. Furthermore, in case the number of clusters is 
set too low, the routes in one OD pair cannot be compared, because the origin or destination 
points are too far apart. The first downside can be (partially) mitigated by setting multiple 
starting points for the algorithm. This way it is less likely to converge into a local minimum.  

This method was applied for different k-values; 150, 200, 250 and 300 clusters. If the 
number of clusters is set too high, the number of trips per cluster becomes too low and the 
advantages of clustering the trips diminish. As mentioned before, if the number of clusters is 
set too low, routes in one OD pair cannot be compared. We find that defining 200 clusters 
provides the best balance between intra-cluster distance and number of trips per OD pair for the 
BCW dataset. The number of random starting points is set to 20. Figure 5.1b shows the 
geographical distribution of the cluster-centres over the inner-city of Amsterdam.  

The 200 clusters result in a maximum intra-cluster distance (i.e. diameter) of 444 meters, 
while the average is 168 meters. The cluster with the largest diameter is located around a park, 
however the routes chosen are still comparable. Therefore, this is an acceptable diameter for a 
rather dense network. After clustering, only 30% of the OD pairs consist of one trip, instead of 
50% before clustering.  

5.2.5. Data Filtering Process 

Not all trips in the dataset can be used, mostly because of how the choice set is composed. 
Therefore, several filtering steps are necessary (see Figure 5.2). In the BCW dataset many 
cycling trips are made in the inner-city, whereas the density of cycling trips in the suburbs is 
very low. Therefore, only the trips (partially) traversing the inner-city are used, which limits 
the available trips to 7,984. Not all trips are included completely, because the boundaries of the 
inner-city are specified on GPS coordinate level and not on trip level. It is, for example, possible 
that one trip crosses the inner-city more than once. In this case the trip is split into multiple 
trips. This demarcation means that some cyclists are observed during the entire trip, whereas 
others are only observed during part of the trip. We assume that the route choice for a section 
of the route is not fundamentally different from choosing the complete route.  
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Due to splitting trips some very short routes are created, for which it is unlikely that 
route choice is possible. Therefore, a filter is applied on the possibility for route choice, which 
is defined here as crossing at least two intersections during the trip, resulting in 8,847 trips. 
When applying the empirical approach to identify the choice set, it is necessary to filter out all 
OD pairs with only one trip, resulting in 6,208 trips. Also, more than one route needs to be 
chosen per OD pair. The result is a final dataset of 3,045 trips (see Figure 5.1a). Since other 
GPS based route choice models have been estimated using less trips (Broach et al., 2012; 
Casello and Usyukov, 2014; Hood et al., 2011; Menghini et al., 2010), the filtered data set 
seems large enough to estimate a route choice model for cyclists in inner-city areas. 
Furthermore, the initial dataset and the final dataset show similar patterns with respect to time 
of departure and day of travel. The distances covered are slightly larger in the initial sample, 
due to the geographical demarcation of the inner-city. However, no structural behavioural issues 
are expected due to the filtering process. 

 

 

Figure 5.2: Data filtering process 

5.2.6. Potential Determinants of Cyclists’ Route Choice  

Previous research has identified a wide range of attributes that might influence the route choice 
behaviour of cyclists, where the attributes selected for research mainly depend on the type of 
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data used (RP or SP) and the availability of the data (in case of RP). Both Hunt and Abraham 
(2007) and Sener et al. (2009) have reviewed many (mostly SP) studies to find attributes that 
potentially influence bicycle route choice. Based on these reviews (Hunt and Abraham, 2007; 
Sener et al., 2009) and previous RP studies (Broach et al., 2012; Casello and Usyukov, 2014; 
Hood et al., 2011; Menghini et al., 2010) three categories of explanatory variables are identified: 
individual, network and contextual attributes. Table 5.1 shows an overview of all attributes, 
including how they influence route choice for cyclists. 

Table 5.1: Attributes and their influence on cyclists’ route choice, based on findings in (Broach et al., 
2012; Casello and Usyukov, 2014; Hood et al., 2011; Hunt and Abraham, 2007; Menghini et al., 2010; 

Sener et al., 2009)  

Individual attributes 
Attribute                   Influence 

Network attributes 
Attribute                                       Influence 

Contextual attributes 
Attribute                               Influence 

Gender +/- Distance Negative Sunset and Sunrise times +/- 
Age +/- % on cycle path Positive Weather (rain) +/- 
Cycling experience +/- Gradient Negative Crime rate / Safety +/- 
Income +/- Travel time Negative Aesthetics (Canal / Park) +/- 
Household size +/- Travel speed Positive Sweeping / Snow ploughing +/- 
    Maximum speed (cars) Negative Cycling season +/- 
    # Stop signs Negative Trip purpose +/- 
    # Intersections Negative     
    # Bridges Positive     
    # (Left) turns Negative     
    % Wrong way Negative     
    Pavement surface quality Positive     
    Continuity of cycle paths Positive     
    Traffic volume (cars) Negative     
    On-street parking Negative     

    # Traffic lights Positive (8), 
Negative (9)   

+/- Not estimated as a separate attribute 
 
Individual attributes are commonly incorporated in SP studies, mainly as interaction terms, to 
identify differences in attitude between individuals with respect to network attributes. Looking 
at RP studies, this means that next to observing actual behaviour, a questionnaire for socio-
demographics is necessary. Although, the privacy of the respondent needs to be preserved. In 
the RP studies, Hood et al. (2011) have included gender and cycling experience in their model, 
but for example Menghini et al. (2010) did not have these personal attributes at the individual 
level.   

The network attributes that were found to be most influential on route choice behaviour 
are distance, gradient and cycle path percentage (e.g. Broach et al., 2012; Menghini et al., 2010). 
Regarding gradient different approaches are applied in literature. For example, Broach et al. 
(2012) divided sections of the route into different categories of up-slope, whereas Menghini et 
al. (2010) adopted the maximum gradient of the route. With respect to cycle paths, Furth (2012) 
identifies four categories: shared streets and lanes, cycling lanes, separate cycle paths and 
standalone paths. Menghini et al. (2010) only take into account the third category, whereas 
Hood et al. (2011) take the first, second and fourth category into account. 

Contextual attributes are mostly found in SP studies, however also in RP studies trip 
purpose is found to be influential (e.g. Broach et al., 2012; Hood et al., 2011). Commuting 
cyclists tend to value distance more negative compared to other purposes.  

Based on the literature and the constraints on the availability of information, the 
following attributes are selected for this study: distance, percentage on separate cycle path (third 
category in Furth, 2012), number of intersections, rain, sunset and sunrise times and trip 
purpose. Due to privacy issues, the BCW dataset does not contain any personal information at 
the individual level. 
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5.3. Estimating a Cyclists’ Route Choice Model  
This section provides the analysis of the data collected for the inner-city of Amsterdam. First 
the descriptive statistics for the trips collected in the inner-city are presented (5.3.1). Then, the 
specification of the estimated models is described (5.3.2) and the results of the model 
estimations are discussed (5.3.3).  

5.3.1. Analysis of the Trips Cycled in Amsterdam 

For this study the selected network attributes are distance, percentage of separate cycle path 
and number of intersections per km. Table 5.2 shows the range, mean and standard deviation 
of these attributes for all alternatives. As can be expected from the restriction of the case study 
area to the inner-city, the average route distance is relatively small. However, the longest route 
is relatively long as it exceeds 6km. Separate cycle paths are only encountered on roads with a 
speed limit of 50 km/h or higher. In the inner-city cyclists share roads with motorised traffic 
and large volumes of pedestrians (Furth, 2012). Therefore, on average, a low percentage of a 
route’s length falls onto a separate cycle path (36%). The number of intersections crossed per 
km also varies largely and is, as can be expected in a dense urban area, fairly high.  

Table 5.2: Descriptive statistics of cycling trips in Amsterdam 

Attribute Description Range Mean Standard 
Deviation 

Distance (km) Route length 0.13 – 6.69 1.96 1.02 
Percentage on separate 
cycle path 

Percentage of the route with a cycle path which 
is separated from motorised traffic 

0% – 100%  36.2% 25.5% 

Number of intersections per 
km 

Average number of intersections crossed per 
km (straight and turn) 

1.75 – 50.8  16.8 5.8 

 
The selected contextual attributes are translated into dummy variables. Even though the trip 
purpose is unknown, two proxy variables can be derived. Firstly, the time of day at which the 
trip has started is an indicator for commuting to or from work or school (peak hours) versus 
recreational or social trips (off-peak hours). Secondly, the trip type can be an indicator for 
cycling only trips or access and egress as part of a multimodal trip. Two train stations are 
situated within the inner-city boundaries; Amsterdam Centraal and Amsterdam Muiderpoort. 
Trips starting at one of these stations are considered egress and the trips ending at these stations 
are considered access, relative to the multimodal trip.  

Only 14% of the trips are undertaken in darkness. Most trips are cycled (28%) during 
the morning peak hours from 7AM to 10AM, followed by trips during daytime from 10AM to 
5PM (27%). Almost half of the trips experienced rain showers (46%). Access and egress are 
equally represented in the dataset (each 9%), implying that most trips in the dataset are cycling 
only (not directed to or from a train station).  

5.3.2. Specification of the Route Choice Models 

The most commonly used model to estimate cyclists’ route choice, like estimated by Casello 
and Usyukov (2014), is the MNL model. This model assumes that unobserved variables that 
influence the utility of a given route are uncorrelated across routes, which is an assumption that 
is unrealistic when routes overlap. The routes included in this study exercise some degree of 
overlap, therefore violating this assumption.  

To account for overlapping routes, multiple solutions have been proposed in literature. 
The model structure applied in other cyclists’ route choice studies is the PSL model (e.g. Broach 
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et al., 2012; Hood et al., 2011; Menghini et al., 2010), which introduces a similarity measure in 
the utility function to account for the overlap. This approach maintains the MNL structure, 
making it easy to compute. For the calculation of the path size (PS) factor, different approaches 
have been put forward, however no straightforward answer can be provided to the question 
which performs best. For example, the PS factors developed in a later stage can have illogical 
route probabilities (Frejinger and Bierlaire, 2007), whereas the earlier versions of the PS factor 
do not take large differences in route length into account (Ben-Akiva and Bierlaire, 1999). In 
this study the path size factor put forward by Ben-Akiva and Bierlaire (1999) is adopted, 
because no large deviations in route lengths are present in our study: 
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where Γ& is the set of links in route !, st is the length of link ~, u& is the length of route ! and 
ytz	the link-route incidence variable which equals one if link	~ is on route � and zero otherwise. 
The probability of choosing route ! given choice set /' is specified the following way (Ben-
Akiva and Bierlaire, 1999): 
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where 	9ãå equals 0 when estimating a MNL model and hc is the path size factor calculated in 
Equation 1. hc lies between 0 and 1, where 1 means no overlap and 0 full overlap. The latter is 
not possible, as fully overlapping routes are excluded on beforehand. The natural logarithm of 
hc is then negative. In this study both the MNL and PSL modelling structure are adopted in 
order to determine the effect of overlap on the route choice of cyclists. The models are estimated 
using the Biogeme package (Bierlaire, 2003). 

5.3.3. Estimated Cyclists’ Route Choice Models 

Both a MNL and PSL model are estimated, in order to test for the effect of overlap in the model. 
To come to these models, all network attributes have been included in the model estimation, 
and insignificant attributes have been removed to find the most efficient model. For the third 
model, a stepwise approach is used to add context attributes to the model as interaction terms 
when a significant and interpretable result is found, resulting in the extended PSL model. 

Discussion of the Modelling Results 
The results of three model estimations are summarised in Table 5.3. In the MNL model both 
distance and the number of intersections per km have a significant influence on route choice. 
Increasing the average distance with one percent results in a 0.50% decrease of being chosen 
(ceteris paribus) and increasing the average number of intersections per km with one percent 
results in a decrease of 0.53%. Cyclists prefer fewer intersections per km, our hypothesis is that 
either they want to reduce interaction with other road users and avoid delays or they want to 
reduce the cognitive effort during the trip. Translating this to the network of Amsterdam, 
cyclists avoid the historical city centre and dense residential areas due to the presence of many 
intersections per km and they prefer the ring streets because of fewer intersections per km. 
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Cyclists in Amsterdam are willing to cross 7.73 more intersections for a one kilometre shorter 
route, which is fairly high but reasonable for an urban environment.  

Table 5.3: Estimated cyclists’ route choice models. *Significant at the 10% level, **Significant at the 5% 
level, EL = equally likely model 

 MNL model 
 

Coef.           t-stat 

PSL model 
 

Coef.         t-stat 

Extended PSL 
model 

Coef.          t-stat 
Distance (km) 
        Morning peak 
# Intersections/km 
Ln (Path Size) 

-0.255         -2.36** 
     -                   - 
-0.033         -4.84** 
     -                   -  

 -0.182       -1.65* 
     -                - 
 -0.029      -4.00** 
 -0.252      -2.13** 

  -0.057       -0.48 
  -0.525       -1.77* 
  -0.029       -4.09** 
  -0.248       -2.11** 

Adjusted rho-square (compared to EL) 
Likelihood ratio 
Initial Log-likelihood 
Final Log-likelihood 
# Observations 
Number of parameters 

0.003 
31.165 

-4,167.376 
-4,151.794 

3045 
2 

0.005 
43.809 

-4,167.376 
-4,145.472 

3045 
3 

0.005 
48.694 

-4,167.376 
-4,143.030 

3045 
4 

 
In the PSL model, the path size term is added. As this term is calculated based on overlap in 
terms of distance, this factor decreases the impact of distance on the total utility, which is now 
only significant on a 90% confidence level. Increasing the number of intersections by one 
percent reduces the probability of being chosen by 0.43%, while one percent increase in 
distance reduces this probability by 0.36%. The impact of the path size factor depends on the 
degree of overlap. One percent increase for nearly unique routes increases the probability of 
being chosen by approximately 0.3%, whereas for routes that are almost identical to other routes 
this is 2.7%. For a route that is one kilometre shorter, cyclists are willing to cross 6.28 
intersections, which is slightly lower than in the MNL model. 

The PSL model has been extended to include context attributes as interaction terms. The 
time of day, in particular the morning peak, was found the only significant explanatory variable. 
The other contextual attributes (rain, sunset and sunrise times and access/egress) did not yield 
any interpretable significant influence on the network attributes. Morning peak hours (7AM-
10AM) are characterised by commuters heading to work, where schedule constraints are more 
likely. Model estimates show that morning trips are characterised by a significantly greater 
repelling effect for distance compared to other times of the day. One percent increase in the 
average distance results in a decrease in the choice probability of 3.4% for cyclists travelling in 
morning peak and only 0.1% for other times. In this model, cyclists travelling during morning 
peak are willing to cross 20.07 more intersections for a one kilometre shorter route, whereas 
during other times this is only 1.97 intersections. The differences in the trade-off clearly show 
the aversion towards distance of cyclists during morning peak hours.  

The path size parameter for the PSL models is significant and negative, indicating that 
paths that have a high degree of overlap are more likely to be chosen than others (ceteris 
paribus). Previous studies estimating cyclists’ route choice models found a significant positive 
path size parameter (e.g. Broach et al., 2012; Hood et al., 2011). Therefore, this finding may 
seem counterintuitive at first, as it does not penalize the routes that overlap but rather increases 
their choice probability. However, there is evidence that overlapping routes are sometimes 
valued higher than non-overlapping routes. This because overlap can reduce the uncertainty of 
the route followed, as was for example found by Lam and Xie (2002) in the context of public 
transport. Cyclists might prefer routes that offer more downstream decision points to improve 
route choice robustness. In addition, this might be a result of the characteristics of this case 
study. In Amsterdam the radial routes provide the backbone of many attractive routes, causing 
overlapping routes to be valued positively. More behavioural research is needed in order to 
draw more general conclusions.  
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Comparison of Model Structures 
The PSL model performs significantly better than the MNL model at the 5% level based on the 
log-likelihood ratio test (12.64 > èê). Furthermore, the model fit for the PSL model is higher 
(compared to the equally likely model). This indicates that including the path size factor to 
incorporate overlap in the model is beneficial for the interpretation of the results and the 
prediction of route choice for cyclists. The PSL modelling structure is therefore considered 
more suitable for estimating route choice models than the MNL structure. Furthermore, the 
extended PSL model performs significantly better than the PSL model at the 5% level (4.88 > 
èê), meaning that interaction term increases the model fit. The extended PSL model is therefore 
the best of the three models. 

Model Fit 
The model fit for all models is very low. In previous studies, where choice set generation 
algorithms were applied, model fit varied between 23 to 28 percent, significantly better than in 
this study (Broach et al., 2012; Hood et al., 2011; Menghini et al., 2010). As mentioned before, 
our hypothesis is that estimating discrete choice models using the empirical approach for 
composing the choice set, results in a low model fit. Experiments with adding fictional route 
alternatives that are inferior to the one most commonly selected confirm that model goodness-
of-fit improves substantially by artificially enlarging the choice set. This indicates that the 
application of a generation algorithm leads to over fitting of the data. Furthermore, variance 
over the alternatives is low in the dataset, most likely due to the fact that cycling costs effort. 
For example, the shortest route is chosen in 32.6% of the cases, and in 41.4% of the cases the 
distance of the chosen route is only 10% more than the shortest route, which means on average 
only 0.2km difference. This implies that it is more difficult to estimate a distance coefficient in 
the model estimation when constructing the choice set using the empirical approach compared 
to the algorithm approach.  

5.4. Conclusions  
This paper presented the findings of a cyclists’ route choice model estimated for the inner-city 
of Amsterdam, aimed at identifying the determinants influencing route choice in a network 
where cycling is the primary travel mode. Choice models were estimated based on detailed GPS 
data comprising more than 3,000 trips performed over the course of one week in September 
2015. 

It is possible to estimate a route choice model for cyclists based on only GPS trajectory 
data. The results of the estimated route choice models are mostly in line with literature (Broach 
et al., 2012; Casello and Usyukov, 2014; Hood et al., 2011; Menghini et al., 2010). However, 
previous cyclists’ route choice studies that have used GPS data found that the percentage of the 
route lying on a separate cycle path is a very important factor for route choice (Broach et al., 
2012; Casello and Usyukov, 2014; Hood et al., 2011; Menghini et al., 2010), whereas this study 
finds no such significant relation. This is presumably due to guidelines for Dutch infrastructure, 
where cyclists are specifically taken care of. For example, cyclists and motorised traffic are 
only mixed on streets where the speed limit is 30 km/h and the traffic volume is under 4000 
vehicles/day, mitigating the safety risks (Furth, 2012). This finding suggests that when cycling 
is indeed well-established, separate cycle paths do not necessarily attract cyclists. This might 
however be due to the location of the cycle paths in the network, which is on the ring streets 
and not in the centre of the city. More research is necessary for studying how an increasingly 
dense network of bike paths might lead to a reduction in their importance as route choice 
determinant. Our results for distance are overall in line with previous studies, although the 
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impact of distance is less pronounced than in other studies (Broach et al., 2012; Casello and 
Usyukov, 2014; Hood et al., 2011; Menghini et al., 2010). Previous studies calculated more 
specific attributes related to the number of intersections per km, like number of turns per km, 
number of signalised intersections per km and number of stop signs per km (e.g. Broach et al., 
2012; Hood et al., 2011), they were all found to influence the route choice behaviour of cyclists 
negatively, however a proper comparison cannot be made. Distance and the number of 
intersections per km are evidently important regardless of the level of penetration of the cycling. 
During the morning peak, when people cycle to work or school, distance looms more negatively 
than during other times of the day, which is consistent with the findings reported by Broach et 
al. (2012).  

In this study both the MNL and PSL modelling structure are adopted in order to 
determine the effect of overlap on the route choice of cyclists. The effect of taking overlap into 
account in the model estimation is large as it increases the explanatory value of the model. 
Routes that are overlapping are valued higher than non-overlapping routes, several explanations 
can be found for this phenomenon. First of all, an empirical approach for choice set 
identification is adopted in this study instead of the often used path generation algorithms. This 
approach allows us to overcome the common shortcomings of not generating the chosen route 
and having a large number of non-chosen alternatives, by using only the observed routes per 
OD pair in the dataset in constructing the choice set. Some links are attractive to all cyclists, 
probably because they form the most direct path to the destination (Bovy and Stern, 2012) or 
they could have some non-observed advantage. Consequently, it is likely that cyclists choose 
routes that include these links and because the observed routes form the basis of our choice set, 
routes with a higher degree of overlap are common and preferred. Another explanation is that 
the uncertainty of the chosen route is lower when routes overlap and alternatives are present, 
this can be especially helpful when for example road works are encountered. This explanation 
also relates to the physical effort needed for cycling. The alternatives available near overlapping 
routes are usually similar in terms of physical effort, whereas a non-overlapping route might 
require more physical effort (e.g. longer distance).  

The use of the empirical approach for identifying the choice set has its limitations. In 
particular, the choice set depends on the observed choices and might thus vary for different 
samples. Filtering is required in data processing, which can be natural in case the circumstances 
are useful (like here), but this can also be restrictive on generalisability of the results. In 
addition, the low model fit of the estimated models is attributed to the use of the empirical 
approach as confirmed by experimenting with the addition of fictive routes. Finally, the positive 
value found for overlapping routes might be the result of adopting this approach, however this 
approach should be tested on other datasets in order to draw a more definitive conclusion.  

This study was the first to include data from a city where cycling is a well-established 
and prominent travel mode. Our findings suggest that there are noticeable differences between 
this case study area which has few comparable cases, and cities where cycling is almost absent.  

We recommend also including socio-demographic variables, such as gender, age and 
cultural background into future data collection and analysis in order to allow identifying their 
importance. Furthermore, we expect that including more network attributes will help improve 
interpretation, practical applicability and model fit. Also, for future research we would like to 
explore more modelling structures, as they might be better suitable for modelling cyclists’ route 
choice. Possible interesting structures are latent class, nested logit and mixed logit. Next to that, 
we want to explore the sensitivity of the estimation results to the generated choice sets using 
the empirical approach. Furthermore, we are interested in testing how individual knowledge 
and familiarity with the network influences route choice when cycling, we expect that this will 
help understanding the relationship with overlapping routes. Moreover, nowadays more and 
more people use mobile devices to plan activities and routes, potentially influencing how they 
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travel. Finally, cycling route choice models can be integrated into an activity scheduling and 
mode choice model, in order to assess their inter-relation with other modes in transport demand 
forecasting.  
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Abstract 
Specifying the choice set for travel behaviour analysis is a non-trivial task. Its size and 
composition are known to influence the results of model estimation and prediction. Most studies 
specify the choice set using choice set generation algorithms. These methods can introduce two 
types of errors to the specified choice set: false negative (not generating observed routes) and 
false positive (including irrelevant routes). Due to increased availability of revealed preference 
data, like GPS, it is now possible to identify the choice set using a data-driven approach. The 
data-driven path identification approach (DDPI) combines all unique routes that are observed 
for one origin-destination pair into a choice set. This paper evaluates this DDPI approach by 
comparing it to two commonly used choice set generation methods (breadth-first search on link 
elimination and labelling). The evaluation considers the three main purposes of choice sets: 
analysis of alternatives in the choice set, model estimation and prediction. The conclusion is 
that the DDPI approach is a useful addition to the current choice set identification methods. The 
findings indicate that in analysing alternatives in the choice set, the DDPI approach is most 
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suitable, as it reflects the observed behaviour. For model estimation the DDPI approach 
provides a useful addition to the current choice set generation methods, as it provides insights 
into the preferences of individuals without requiring network-data for additional information or 
generating routes. In terms of prediction, the DDPI approach is not suitable, as it is not able to 
perform well with out-of-sample data.  

6.1. Introduction 
In the context of travel behaviour, many choices must be made by an individual before a trip is 
made, e.g. destination, mode and route choice. These choices are all discrete in nature, meaning 
that only one option can be chosen at a time. The choice set from which an individual chooses 
one, forms an important aspect in the analysis of travel behaviour. Three different purposes of 
choice sets can be identified. First, it is essential in analysing different travel options in the 
network (e.g. number of alternatives, characteristics or composition of the alternatives), second 
it is used for demand model estimation (estimating behavioural parameters), and third it is 
instrumental in predicting choice probabilities and thereof flow distribution over 
alternatives/the network (Bovy, 2009). The size and composition of the choice set influence the 
results of the model estimation and prediction, and consequently the interpretation of the 
estimated behavioural parameters (Bovy, 2009). This issue is for example relevant in route 
choice analysis, as many possible alternatives can be identified by the researcher, but only few 
will be known to the individual, leading to possible mismatches in the choice set identification.  
Route choice sets are often specified using choice set generation algorithms (e.g. k-shortest 
paths or labelling), which compute a set of routes based on characteristics of the network(-links) 
(e.g. distance or travel time). The use of these algorithms can introduce two types of errors in 
the choice set: false negative and false positive errors. False negative errors arise when the 
algorithm is not able to reproduce the chosen alternatives. The generated alternatives might not 
match the behaviour and preferences of the individual, and as a result the chosen route is not 
reproduced. The impact of this error decreases when the ability of the choice set generation 
algorithm to capture the individuals’ behaviour and preferences increases. False positive errors 
occur when a choice set generation algorithm also generates routes that are not considered by 
the individual, resulting in a too large choice set. In conclusion, the use of choice set generation 
algorithms potentially comes with several flaws. 

In recent years, large improvements have been made in revealed preference data 
collection methods. New data sources, such as GPS data that contain detailed spatial and 
temporal information on the movement pattern of individuals, help creating insights into the 
individuals’ choice behaviour. By combining the GPS records belonging to one individual into 
separate trips, the observed trips can be used for route choice research (e.g. Hood et al., 2011; 
Menghini et al., 2010). Next to generating the choice set based on a set of assumptions on 
network properties, it is then also possible to use the observed trips from GPS data to identify 
the choice set directly. Every trip between an origin and destination follows a certain route, the 
unique routes that are observed can then be combined into one choice set. Consequently, the 
potential false negative error associated with choice set generation algorithms cannot occur and 
the potential false positive error is negligible because all the routes included in the choice set 
have been chosen by the individual. 

Governments worldwide have shown increasing interest in promoting and 
understanding cycling usage, due to the potential health, congestion and emissions benefits. 
Consequently, goals have been set to increase the cycling modal share (Pan-
EuropeanProgramme, 2014). Several studies investigated bicycle route choice using GPS data, 
primarily in areas where cycling is relatively scarce, with the goal of identifying determinants 
that influence route choice, so that substantiated infrastructure investments can be made 
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(Broach et al., 2012; Casello and Usyukov, 2014; Chen et al., 2018; Ghanayim and Bekhor, 
2018; Hood et al., 2011; Li et al., 2017; Menghini et al., 2010; Montini et al., 2017; 
Zimmermann et al., 2017). Other studies have taken in place in urban environments with a 
larger share of cyclists, like Copenhagen (Halldórsdóttir et al., 2014; Prato et al., 2018; Skov-
Petersen et al., 2018). These studies have applied different types of choice set generation 
algorithms, such as labelling, stochastic methods, link elimination, and link penalty. However, 
none of the studies has applied a data-driven method for choice-set identification as proposed 
and examined in this study. This approach is applied to a bicycle route choice study for the city 
of Amsterdam, the Netherlands (Ton et al., 2017). Amsterdam is known for its well-developed 
bicycle infrastructure and high share of bicycling trips (37%) (OViN, 2011). To evaluate the 
potential of this data-driven method for choice set identification, we compare the method using 
the dataset from the city of Amsterdam, to other choice set generation algorithms previously 
applied in the cycling route choice literature. 

This paper evaluates the use of a data-driven approach for choice set identification in 
travel behaviour analysis. The goal is to investigate whether a data-driven approach can be a 
valuable addition to the current choice set identification methods. Bicycle GPS data from 
Amsterdam, the Netherlands, is used to identify the choice set and this choice set is used in the 
estimation and validation of a route choice model. The evaluation of the data-driven approach 
is done by means of a comparison study, where it is compared to two commonly used choice 
set generation methods, to assess and compare their performance and results. Based on 
computation time, sensitivity to false negative errors and, number of applications, two 
approaches have been selected: the breadth-first search on link elimination (BFS-LE) 
introduced by Rieser-Schussler et al. (2013) and the labelling approach introduced by Ben-
Akiva et al. (1984). The evaluation is performed on the three abovementioned purposes of 
choice sets; 1) analysing the composition of the choice set, 2) understanding behaviour (model 
estimation) and 3) application of the model on out-of-sample data (model validation). 

The rest of the paper is outlined as follows. Section 6.2 reviews contemporary choice 
set generation procedures. In section 6.3, the data-driven approach is elaborated upon in terms 
of requirements of data, opportunities, limitations of the method, and sensitivity with respect to 
data collection duration. Section 6.4 describes the methodology for evaluating the specified 
choice sets as well as the route choice model estimation and validation. Section 6.5 provides 
background on the data that was collected and prepared for this study. Section 6.6, then details 
the evaluation of the generated choice sets in comparison to the observed routes and section 6.7 
covers the evaluation of the route choice model estimation and validation. Finally, section 6.8 
concludes the paper and provides directions for future research.  

6.2. Choice Set Generation Methods  
This section discusses different choice set generation methods that have been proposed in the 
past and selects two methods as reference for the evaluation of the data-driven approach. 

Many different methods have been proposed for identifying route choice sets (for 
detailed reviews see Fiorenzo-Catalano (2007) and Ramming (2002)). Bovy (2009) and Prato 
(2009) identify four categories of choice set generation methods: deterministic methods, 
stochastic methods, probabilistic methods and constrained enumeration methods. Most choice 
set generation methods belong to the deterministic category and consist of repeated shortest 
path searches in the network. These shortest path methods have different input variables such 
as search criteria, route constraints and link impedance (Prato, 2009). They are computationally 
attractive due to the efficiency of shortest path algorithms. Stochastic methods are also based 
on repeated shortest path searches, but additionally the computation of optimal paths is 
randomised based on link impedances or individual preferences drawn from probability 



98 Unravelling Mode and Route Choice Behaviour of Active Mode Users 

distributions, mostly done using simulation. These methods have been applied in the bicycle 
route choice context by Hood et al. (2011), Halldórsdóttir et al. (2014), Ghanayim and Bekhor 
(2018), and Prato et al. (2018). Constrained enumeration methods are not only based on shortest 
routes, but also make additional behavioural assumptions (Prato, 2009). These assumptions 
reflect different behavioural thresholds that can be specified, e.g. excluding loops and only 
including links that bring the individual closer to the destination. These methods have been 
applied in the bicycle route choice context by Halldórsdóttir et al. (2014), but did not prove to 
outperform the deterministic or stochastic methods. Probabilistic methods assign a probability 
for each alternative to be included in the choice set. A fully probabilistic approach, as proposed 
by Manski (1977), which includes the choice set generation and selection in the utility function, 
is often deemed infeasible due to its computational complexity. As a consequence, these 
methods have not yet been applied in the bicycle route choice context. 

Recently, two alternative approaches have been proposed that address the choice set 
identification implicitly (i.e. no need for explicit enumeration of alternatives). The first is the 
sampling approach (Flötteröd and Bierlaire, 2013; Frejinger et al., 2009), that assumes a 
universal choice set and by means of importance sampling selects a subset of these routes. The 
second approach is the link-based approach (Fosgerau et al., 2013), which assumes that 
individuals make successive choices at each node. The link-based approach was applied in the 
bicycle route choice context by Zimmerman et al. (2017).  

Due to its prevalence in the general and bicycle route choice literature, computational 
efficiency and deterministic nature (which relates more to the cognitive aspects of the decision-
maker rather than being conceived as a computational instrument), deterministic methods are 
selected as reference methods for comparison in this study. Four categories of deterministic 
methods are identified: shortest paths, link elimination, labelling and link penalty. Previous 
findings suggest that the shortest path methods have the lowest performance in terms of 
reproducing the observed routes (Bovy, 2009). Furthermore, the link penalty methods are 
known for their large computation times (Bekhor et al., 2006). Therefore, the focus lies with 
the link elimination and labelling methods. 

The link elimination method iteratively removes links that are on the shortest path and 
finds new shortest paths (Bellman and Kalaba, 1960). Prato and Bekhor (2007), Bekhor et al. 
(2006), and Ghanayim and Bekhor (2018) evaluated this approach and found that in about 40% 
of the cases false negatives are produced. Azevedo et al. (1993) proposed an alternative 
approach, where the entire shortest path is eliminated, after which a new shortest path is 
calculated. This approach is more drastic, as it eliminates overlap but can result in an unrealistic 
choice set (e.g. large detours). Rieser-Schüssler et al. (2013) adapted the link elimination 
method by applying a breadth-first search technique on link elimination (BFS-LE), meaning 
that one starts eliminating links closest to the origin, repeats the shortest path search and moves 
stepwise towards the destination, before going one level deeper and eliminating two links at 
once (the one removed in the first level and again the first link of the new shortest route). They 
found lower error percentages compared to previous implementations of the link elimination 
method. Furthermore, this method appears to be computationally efficient and is suitable for 
high density networks (Rieser-Schüssler et al., 2013). It has been applied in different contexts, 
e.g. cars (Dhakar and Srinivasan, 2014; Montini et al., 2017; Prato et al., 2012; Rieser-Schüssler 
et al., 2013), bicycles (Halldórsdóttir et al., 2014; Menghini et al., 2010; Montini et al., 2017), 
heavy goods vehicles (Hess et al., 2015), and public transport (Montini et al., 2017).  

Ben-Akiva et al. (1984) introduced the labelling approach which searches for the most 
optimal alternative given a certain label (e.g. distance, time, number of turns etc.). Prato and 
Bekhor (2007) applied this method to an urban network for cars in which they minimise for 
distance, free-flow time, travel time and travel delay. They report a false negative rate of 60%. 
Bekhor et al. (2006) specified and examined 16 different labels in their study. They found that 
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each individual label generates only between 8% and 34% of the observed alternatives, while 
combined they can reproduce 72% of the observed routes. This method has been applied in the 
bicycle route choice context by Chen et al. (2018), Li et al. (2017), and Skov-Petersen et al. 
(2018). Unfortunately, none of them evaluate the performance of this method. Dial (2000) 
proposed a generalised approach of the labelling method for generating efficient paths. This 
method minimises a linear combination of labels. Broach et al. (2010) extended the labelling 
approach by generating multiple optima for one label by varying the label cost function 
parameter. They applied the method to bicycle traffic and identified eleven different labels, 
among others the distance of upslope travel and the number of turns. Their method generated 
more observed alternatives than the labelling method, however, the computation time also 
increased manifold. They also applied this method in a later study (Broach et al., 2012). 

Table 6.1 provides an overview of the performance of the discussed methods in terms 
of producing false negatives in comparison to the number of alternatives generated. Note that 
the studies mentioned before are only included in the table if these numbers were provided. In 
general, when generating more alternatives, the false negative error percentage should decrease 
(where the false positive error potentially increases). Next to that, computation time of the 
methods is compared. 

Table 6.1: Performance of applied deterministic choice set generation algorithms 

Deterministic  
category 

Method Study Data Mode False 
negative 

error 

Max no. 
alternatives 

Comp. 
time 

Link 
elimination 
method 

Link 
elimination  

(Bekhor et al., 
2006) 

Boston, USA Car 40% ? Medium 

(Prato and 
Bekhor, 2007) 

Turin, Italy Car 42% 10 - 

(Ghanayim and 
Bekhor, 2018) 

Tel-Aviv, 
Israel 

Bicycle 40% 10 - 

Breadth-
first search 
on link 
elimination  

(Rieser-
Schussler et al., 
2013) 

Zurich, 
Switzerland 

Car 37% 
27% 

20 
100 

- 

(Hess et al., 
2015) 

United 
Kingdom 

Trucks 26% 15 - 

(Halldorsdottir 
et al., 2014) 

Copenhagen, 
Denmark 

Bicycle 34% 20 Medium 

Labelling 
approach 

Labelling  (Bekhor et al., 
2006) 

Boston, USA Car 28% 
61% 

16 
3 

Low 

(Prato and 
Bekhor, 2007) 

Turin, Italy Car 60% 4 - 

(Broach et al., 
2010) 

Portland, 
USA 

Bicycle 80% 9 Low 

Calibrated 
labelling  

(Broach et al., 
2010) 

Portland, 
USA 

Bicycle 78% 20 Medium 

	 	
Because the studies use different datasets, it is hard to objectively compare the results. Most 
studies have resulted with a relatively high number of alternatives in the choice set, indicating 
that both relevant and irrelevant alternatives are included in the choice set. The different studies 
have also addressed different modes; the false negative error percentage is higher for the non-
motorised modes compared to the motorised modes for each algorithm. This is most likely due 
to the higher complexity of the network for bicycles compared to cars and trucks. 

From the link elimination methods, the BFS-LE approach introduced by Rieser-
Schüssler et al. (2013) is most promising and therefore selected as a reference method in this 
paper. Several other studies have applied this method and found decent computation times and 
a lower share of false negatives compared to the original link elimination approach. 
Furthermore, the original labelling approach introduced by Ben-Akiva et al. (1984) is included 
as a reference method, because it outperforms the later proposed method of Broach et al. (2010) 
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in terms of computation time and performs only slightly worse in terms of producing false 
negative errors.  

6.3. Introducing the Data-Driven Path Identification Approach (DDPI) 
Due to the increased availability of (passively) collected revealed preference data and the issues 
associated with current choice set generation algorithms, the opportunity arises to identify 
choice sets using a data-driven approach. In this section, the data-driven approach coined Data-
Driven Path Identification (DDPI) which is introduced in a previous study by the authors (Ton 
et al., 2017), is elaborated upon.  

The DDPI approach is based on revealed preference data, like Wi-Fi, Bluetooth or GPS 
data of a large sample of individuals collected over a longer period. The idea behind this 
approach is to combine all observed routes from one origin to one destination into a single 
choice set at the origin-destination level (OD Pair). Using this method, the false negative error 
(not reproducing the observed route) is resolved. Furthermore, all routes that are included have 
been chosen by an individual, this means that these routes are optimised to a certain extent. 
Consequently, it is likely that these routes have been considered by an individual and from this 
set one route has been chosen. Therefore, the proposed method is expected to be less prone to 
false positive errors (including routes that are not considered) than choice set generation 
algorithms. However, because the choice set contains only chosen routes, it is possible that 
other routes that were considered but not chosen, are excluded, consequently potentially 
resulting in a choice set that is too small. A counterargument is that if data is collected over a 
long enough period of time, all relevant and considered routes are part of the data-driven choice 
set, therefore reducing this issue. 

Several requirements need to be met for the DDPI approach to be applicable. First, the 
data should be collected over a sufficiently long period of time to allow multiple observations 
per OD pair. Second, it is necessary to have at least two routes per OD pair to facilitate the 
estimation of a route choice model. However, because of issues with endogeneity, it is 
preferable to have more than two routes per OD pair. Because the observed routes are optimised 
to a certain extent by the individual, the variability of the routes is low. By including more 
routes, the variability of the routes increases and the issue with endogeneity will be less severe. 
If this is not accounted for, the estimated models will be biased. If there is an OD pair which 
does not meet these requirements, it needs to either be deleted or aggregated by applying a 
spatial clustering technique. Clustering of OD pairs can be useful in case of, for example, two 
neighbours heading for the same destination. It can prevent loss of data, but should be carefully 
addressed, because the OD pairs still need to be comparable. The impact of these requirements 
can be small, if they are taken into account in the design phase of the data collection. 

The requirements of the method also point to the limitations of the DDPI approach. It 
imposes additional requirements to the data collection, because if the data is already collected 
and requirements are not adequately met, a (severe) loss of data and an endogeneity issue can 
be the result. The endogeneity is the result of including all chosen alternatives in the choice set. 
The issue is larger if the alternatives are more similar and there are only few. In that case, the 
method should not be used, as it imposes a bias in the choice model. Similar to other methods, 
another limitation is found in the generalisability of the results: data is collected for a certain 
group of people and for a certain region. Consequently, it is per definition uncertain whether 
the results (modelling or choice set) can be transferred to other groups of people or other 
regions, similarly to the generalisability issues associated with other methods. 

The data collection duration (for example a week versus several months) suitable for 
the application of the DDPI method depends on the local network and demand properties. It is 
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important to ensure a long enough period so that the routes observed exhibit a sufficient degree 
of variation. 

6.4. Methodology for Evaluating Choice Set Specification Methods 
The methodology for assessing the usefulness of the DDPI approach and comparing the 
different choice set generation methods is presented in this section. Section 6.4.1 details the 
methodology for comparing the generated choice sets to the observed data. Furthermore, section 
6.4.2 discusses the evaluation methodology for estimation and validation of the route choice 
model. Section 6.4.3 then provides a synthesis of the evaluation methodology. 

6.4.1. Evaluating the Specified Choice Sets 

The specifications of the algorithms to which the DDPI approach is compared are discussed, 
and the methodology for comparing the generated choice sets to the observed routes is provided. 

Selected Choice Set Generation Algorithms 
The BFS-LE and labelling approach have been selected for comparison. Both algorithms use 
calculations of the shortest path. The algorithm used to calculate the shortest path is Dijkstra 
(Dijkstra, 1959). The input for Dijkstra’s algorithm is a (distance)matrix, which can grow very 
large, especially when considering bicycles. To decrease the computation time and increase the 
spatial diversity among routes, a topologically equivalent network reduction is adopted in this 
study. This means that nodes that connect only two other nodes (i.e. a node degree of two) are 
removed from the network and the two links are merged into one. Consequently, the network 
(or matrix) consists of fewer nodes and the resulting shortest path consist of fewer links, thus 
significantly reducing the computation time.  

These choice set generation algorithms can utilise several input variables. Mostly, the 
algorithms are applied based on travel distance. In the bicycle route choice context, several 
studies have considered alternative variables. Broach et al. (2012) used an approach that 
optimised criteria like percentage on designated cycle paths, subject to distance constraints. 
Haldórsdóttir et al. (2014) search for the shortest route in terms of road type, bicycle paths, and 
land use. Finally, Chen et al. (2018) used a combination of speed limits, distance, and bicycle 
facilities to generate routes. Due to limited data availability for the inner-city of Amsterdam 
(see section 6.5.4), we rely largely on travel distance in the choice set generation algorithms. 
The two algorithms are specified below. 
 
Breadth-first Search on Link Elimination (BFS-LE) 
The BFS-LE algorithm, introduced by Rieser-Schüssler et al. (2013), was developed 
specifically for high-density networks, e.g. urban networks. The idea behind the approach is to 
calculate the shortest path (in this paper we adopt calculation based on distance, like in the 
original study) between an origin and destination, add this path to the choice set and then 
remove the links of this shortest path step-by-step, starting from the origin node. In each step a 
new shortest path is calculated and added to the choice set, given that it is unique. A tree 
structure is adopted to keep track of the removed links and the resulting adapted networks, this 
means that in the second tree level two links are eliminated (the link that was deleted from the 
shortest path and the link from the new shortest path).  

Maximum computation time, tree-depth, and choice set size can be used as termination 
measures for the BFS-LE algorithm. In this study, we applied a mix of these measures. Because 
an individual is not able to remember or consider many routes, we have set the maximum to 20 
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routes. This seems adequate given the findings from Hoogendoorn-Lanser (2005) indicating 
that different individuals only know seven alternatives. Since we only search for 20 unique 
routes, we have applied a tree-depth of one, with a random draw of 20 routes in case more 
routes are generated. The second level sometimes generated over 1,000 routes, and induced an 
exponential growth in computation time. The unique routes found in tree-depth one, are added 
to the choice set resulting from tree-depth zero. 
 
Labelling Approach 
The labelling approach proposed by Ben-Akiva et al. (1984) searches for the most optimal route 
based on different network-related search criteria, e.g. distance, travel time or number of left 
turns. This method facilitates the composition of a very diverse choice set, given the available 
data. The number of labels encoded, sets the maximum value of the number of alternatives 
included in the choice set. The input-matrix required for the Dijkstra’s algorithm is adapted for 
each of the labels considered. In this study, we have identified three labels, resulting in a 
maximum choice set size of three.  

The three labels are the shortest path based on distance, the highest percentage on 
separate cycle paths and the least amount of intersections on the route. The matrix that serves 
as input for the Dijkstra algorithm is node-based. Consequently, each link is presented as a 
connection between two nodes. The algorithm then searches in this matrix to identify the 
shortest path. Regarding separate cycle paths, each link that has a separate cycle path or a 
protected lane, has a weight of zero, all other links have a weight of one. The ideal route found 
by the algorithm consists of 100% separate cycle path, thus maximising the amount of cycle 
path. Furthermore, regarding intersections, each link is assigned with the same weight, therefore 
the algorithm searches for the shortest path in terms of the number of links traversed. In the 
absence of more detailed information, all intersections (with a node degree of at least three) are 
treated equally.  

Evaluation Methodology for Specified Choice Sets 
The DDPI approach directly uses the observed routes to identify the choice set, consequently 
there is no difference between the DDPI approach (after data preparation) and the observed 
routes, and it is not evaluated separately. The performance of the algorithms is evaluated by 
comparing the generated choice sets to the observed routes. First, a qualitative analysis is 
performed, in which two OD pairs are selected and visually compared. This gives an indication 
on the spatial distribution of the generated routes and potential differences and similarities 
between the choice sets. Second, a quantitative analysis provides descriptive statistics of three 
network related variables, based on previous work on bicycle route choice (Ton et al., 2017): 
percentage on separate cycle paths, distance and number of intersections per kilometre. This 
analysis shows the general characteristics of the different choice sets compared to the observed 
routes. 

Furthermore, the heterogeneity of the generated choice sets is investigated, 
quantitatively showing how spatially different the generated routes are. This is done by 
calculating the path size (PS) factor for each route in the choice set, which is an indicator for 
overlap between routes (Ben-Akiva and Bierlaire, 1999). 
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where hc&'is the path size factor, Γ& is the set of links in route !, st is the length (distance) of 
link ~, u& is the length of route ! and ytz	the link-route incidence variable which equals one if 
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link	~ is on route � and zero otherwise. This means that the PS factor depends largely on the 
size and composition of the choice set (i.e. including many irrelevant routes affects this factor). 
The path size factor ranges between zero and one, where one indicates an independent route 
and zero indicates complete overlap with other routes in the choice set.  

The main objective of choice set generation algorithms is to reproduce all observed 
routes, i.e. resulting with zero false negative errors. False positive errors are mostly considered 
less important. To test to what extent the algorithm can reproduce the observed routes, the 
following formula for the reproduction rate is adapted from Prato and Bekhor (2007): 
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where ëëí is the reproduction rate for algorithm	ô. ì	(∙) is the reproduction function, which is 
equal to one if the argument is true and zero otherwise; î'í is the overlap rate for algorithm ô 
for observation ", and y is the overlap threshold, which can be set from no overlap (0%) to full 
overlap (100%). î'í is calculated in the following way: 
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where u'í is the common distance between the generated route and the observed route for 
algorithm	ô and observation ". u' is the total distance of the observed route for observation ". 
The reproduction rate (Eq. 6.2) yields how many observed routes are generated when allowing 
for a certain overlap threshold.  

In addition to the reproduction rate, the behavioural consistency of both methods is 
assessed. The consistency index compares the algorithms to the ideal algorithm that would 
reproduce all the observed routes, and calculates how well the algorithms perform. The formula 
used to calculate this index is the following (Prato and Bekhor, 2007): 

 

/ìí = 	
∑ î'í,etöñ
'óò

2
	 (6.4) 

 
where /ìí is the consistency index for algorithm ô; 	î'í,etö is the maximum overlap percentage 
obtained for observation " using algorithm ô, i.e. the best matching generated route to the 
observed route "; 2 is the total number of observations in the sample.	 		

6.4.2. Evaluating the Model Estimation and Validation 

The specifications of the route choice model that is estimated; the Path-Size Logit (PSL) model 
is discussed and the methodology to evaluate the model estimation and validation is provided. 

Specification of the Route Choice Model 
A wide variety of discrete choice models, varying in computational complexity, have been 
developed that are suitable for route choice. Examples are Cross-Nested Logit (CNL), Paired 
Combinatorial Logit, C-Logit and PSL. Bliemer and Bovy (2008), Prato and Bekhor (2007) and 
Bekhor et al. (2006) have compared these models for route choice. They concluded that the 
CNL and PSL model perform best. Since the CNL model is more complex, requires specialised 
code and has a higher computation time, we apply the PSL model in this evaluation (Bekhor et 
al., 2006).  
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To account for potential correlation among path alternatives (e.g. route overlapping), 
the PSL model introduces a similarity measure in the utility function. In this study, the path size 
(PS) factor proposed by Ben-Akiva and Bierlaire (1999) is adopted (Eq. 1). The probability of 
choosing alternative ! given choice set /' is specified as follows (Ben-Akiva and Bierlaire, 
1999): 
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where based on previous work, three explanatory variables are included per alternative	! and 
observation ": percentage on separate cycle paths (%	sep.		cycle	path&'), distance (dist&') and 
number of intersections per kilometre (<_int

WP &'
). hc is again the path size factor calculated in Eq. 

6.1, it ranges between zero and one, where one means no overlap and zero implies complete 
overlap between routes. The models are estimated using the Python Biogeme package 
(Bierlaire, 2016). 

Evaluation Methodology for Model Estimation and Validation  
Three route choice models are estimated and validated, using the two generated choice sets and 
the choice set that is identified using the DDPI approach. Because for each OD pair routes are 
generated using the two generation algorithms and multiple routes are observed per OD pair, a 
union of the observed and generated routes is created for the Labelling and BFS-LE choice sets. 
Figure 6.1 shows this merging of observed (6.1a) and generated (6.1b and 6.1c) routes for the 
BFS-LE and labelling method. All observed and generated routes for one method per OD pair 
are merged into one choice set (6.1d and 6.1e), corrected for the reproduced observed routes.  
 

 

Figure 6.1: Formation of choice sets for labelling and BFS-LE algorithms 

The model estimation and validation are done by splitting the data sample into two parts 
(80/20). The models are estimated using 80% of the observed OD pairs and validated using the 
remaining 20%. This way, the predictive power of the models can be tested and potential errors 
can be detected. The model estimation and validation is done for five random draws to test 
stability of the models. Note that the sampling is done on the OD pairs that result from the DDPI 
approach, so that the variability in the OD pair remains for the model estimation and the issue 
with endogeneity is less severe. 
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Since the models are estimated using different choice sets, a standard comparison based 
on log-likelihood ratio or model fit (adj. rho-square) cannot be done. The initial log-likelihood 
is different due the different sizes of the choice sets. Therefore, the comparison is based on the 
point elasticities of the model’s explanatory variables, calculated using the following formula:  

 
¨ö|
ão(&) = 	

≠h'(!)
≠f&

	
f&
h'(!)

 (6.6) 

 
where h'(!) is the probability that observation	" chooses alternative	! and f& is an attribute 
(defined in Eq. 6.5) for alternative	!. The mean elasticity is then obtained by probability 
weighting the elasticities for every individual "	, where the probability weights relate to the 
probability of choosing an alternative in the choice set. In the validation phase, the probability 
for each alternative to be chosen is calculated for the remaining 20% OD pairs. To make a fair 
comparison between all models, a union of all generated and observed alternatives is generated 
for each OD pair (in essence a union between Figure 6.1d and 6.1e, corrected for unique routes). 
The union choice sets for each OD pair are used to assess the predictive power of all models, 
using three measures. First, the number of times the model assigns the highest utility to the 
chosen alternative for all observations. This gives an indication about the extent to which the 
model is able to predict the correct choice. Second, the RMSE value is calculated, which gives 
an indication of the error that arises between observed probabilities (based on observed routes) 
and modelled probabilities per OD pair. This value is calculated using the following formula: 
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where hØ& is the vector of probabilities that is predicted by the model for OD pair ! and h& is the 
vector of observed probabilities of OD pair	!	. Finally, the log-likelihood is calculated on the 
out-of-sample data. As a union of all generated and observed routes is used to define the choice 
sets, the input is the same for all models. Therefore, a comparison based on log-likelihood is 
possible. It is calculated using the following formula:  
 

Log − Likelihood	 = 	dπd ∫&' lnh(!|/')
&	∈`o

ª
ñ

'óò

 (6.8) 

 
where ∫&'  is one if " chooses alternative !	in choice set /', and zero otherwise, and h(!|/') is 
the probability of choosing alternative !	in choice set /'. 

6.4.3. Synthesis of the Evaluation Methodology 

A concise overview of all the methods introduced for analysis and evaluation of the choice sets, 
model estimation and model validation is presented in Figure 6.2. 

6.5. Data Description and Preparation  
The dataset that is used to assess the usefulness of the DDPI approach and benchmark the 
approach against the BFS-LE and labelling algorithms is a bicycle GPS dataset. This dataset 
was collected during a nationwide initiative in the Netherlands called the ‘Bicycle Counting 
Week’, which took place on 14-20 September 2015. A total of 38,000 cyclists participated using 
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a smartphone application that tracked their cycling movements, recording more than 370,000 
trips nationwide. Additionally, a survey was distributed among the participants that used the 
smartphone application. 
	

 

Figure 6.2: Analysis and evaluation methods for analysing the alternatives in the choice set, model 
estimation and model validation	

Section 6.5.1 describes the dataset that is used in this study. Furthermore, section 6.5.2 describes 
the map matching procedure for matching the GPS trajectory data to the network. Section 6.5.3 
provides insights on the clustering procedure applied to the origins and destinations of all the 
trips made in the dataset. Finally, section 6.5.4 addresses the preparations needed related to the 
data and network for the choice set generation methods.  

6.5.1. GPS Dataset from the Inner-city of Amsterdam 

In this evaluation, the focus lies on the inner-city of Amsterdam, which is a densely-built area 
with well-developed cycling infrastructure. The dataset was used in previous work, where the 
DDPI approach was applied to estimate a bicycle route choice model for this specific area (Ton 
et al., 2017). Figure 6.3 shows the network of the inner-city of Amsterdam. In total, 3,045 trips 
were recorded in the inner-city of Amsterdam. Not all trips could be used in this case study, as 
some trips were too short to be included and some could not be matched to the topologically 
equivalent reduced network, resulting in a total of 2,819 trips. The respondents sample consists 
of equal shares of male and female participants. Most respondents are 31-65 years of age (80%). 
Most trips are made for commuting purposes (77%). Furthermore, most respondents cycle 
between 25 and 100 kilometres a week (72%) (FietsTelweek, 2015). The individual 
characteristics are only available on an aggregate level, due to privacy regulations, therefore it 
is impossible to link the GPS trajectories to individual travellers. This has two major 
consequences: (1) individual characteristics cannot be used in the model estimation, whereas 
several cycling route choice studies have identified the relevance of such variables (Broach et 
al., 2012; Hood et al., 2011) and (2) it is impossible to identify which trips have been made by 
which individuals, thus we need to treat each trip as if it was made by a unique individual and 
cannot therefore test for panel effects in the model estimation. 
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Figure 6.3: Road network of the inner-city of Amsterdam 

6.5.2. Map Matching the GPS Trajectory Data 

The map matching procedure was conducted by the organizers of the Bicycle Counting Week 
(van de Coevering et al., 2014). The following is an account of the procedure that has been 
performed. GPS data points in a trajectory have a maximum accuracy of around 5 meters with 
respect to the infrastructure. However, outliers are observed in dense urban areas or high 
building areas, reducing the accuracy by up to 50 meters. In urban areas, this means that the 
next street can be mistakenly identified. To reduce the impact of these outliers on the observed 
trajectories, van de Coevering et al. (2014) have calculated the speed between each two 
consecutive GPS data points and compared it to the actual GPS speed, which was determined 
by means of Doppler techniques. If a large discrepancy between the actual speed and the 
calculated speed has been identified, the outlier and two preceding and following GPS data 
points from the dataset were removed.  

The corrected GPS trajectories can afterwards be matched to the network. The entire 
network is split up in nodes, after which links were divided into smaller segments to determine 
local differences in network speeds, which helps in determining whether a cyclist was able to 
cycle on a link. The map matching algorithm they applied generates all possible combinations 
of origin and destination points in the network, which is necessary because of the inaccuracy of 
the GPS data points. Routes were then plotted between all the identified combinations of origins 
and destinations. The goal is to minimise the distance between the GPS trajectory and the 
network route, which results in routes that best resemble the GPS trajectories. If a match could 
not be found, this may stem from missing links. In those cases, the route is partitioned and the 
same procedure is repeated for the sub-routes. For a more detailed description of the map 
matching procedure, the reader is referred to van de Coevering et al. (2014). 

6.5.3. Clustering of the Origins and Destinations of the GPS Trajectories  

We applied a clustering method on the observed origins and destinations, to ensure that multiple 
trips and routes are observed for each OD pair. A k-means clustering approach was applied 
which minimises the intra-cluster distance and maximises the inter-cluster distance. Different 
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numbers of clusters were tested (150, 200, 250, and 300) to find a good balance between having 
enough trips per OD pair (high number of clusters) and ability to compare routes in an OD pair 
(low number of clusters). Finally, a total of 200 clusters provided the best results. For a more 
detailed description of the clustering, the reader is referred to a previous study by the authors 
(Ton et al., 2017). 

6.5.4. Data and Network Preparations for the Choice Set Generation Methods 

As mentioned in section 6.5.1, we cannot identify which individual made which trip, 
consequently we have to treat every trip-maker as a unique individual. Ideally, the DDPI 
method would have been applied per individual and OD pair. Given the mentioned restriction 
in the data, it is not possible to identify individual choice sets. Therefore, this study uses all 
trips that are observed per OD pair and combines them to form choice sets. Furthermore, data 
is collected over the course of one week. Consequently, we are not able to test how sensitive 
this dataset is with respect to the duration of data collection versus the diversity of observed 
routes. Data would need to be collected over a longer period of time (multiple weeks) in order 
to test the sensitivity of model performance to the data collection duration.  

The choice set generation algorithms use the network of Amsterdam (Figure 6.3) to 
generate the routes, therefore the network is extracted from OpenStreetMap (OSM). In the road 
network of OSM the two bicycle/pedestrian ferries crossing the river IJ are not included, 
therefore two bidirectional links are added to the network with origins and destinations at the 
ferry landings. Furthermore, the inner-city of Amsterdam contains many one-way streets. Tests 
with the choice set generation algorithms show that the generated routes contain many detours 
and illogical routes if these links are not considered to be bi-directional. Therefore, we have 
converted the entire network into a bi-directional graph. Furthermore, in the OSM network 
many links that are mainly used by non-motorised modes are not incorporated in the network. 
Tests with the choice set algorithms show that this affects many OD pairs, therefore these have 
been added to the network when possible. Still, many links that are used by cyclists, are not 
included in the network. These links could for example be shortcuts or pedestrian areas, where 
other modes are not allowed, both of which are not included in the network. Consequently, 
network-related issues could arise when generating routes. A total of 19,375 nodes is identified 
in the network. Due to applying topologically equivalent network reduction (as mentioned in 
Section 6.4.1), the number of nodes decreased to 7,628 nodes (-61%) with a total of 25,135 
links.  

The insertion of local knowledge regarding the network, to make sure that the majority 
of the illogical routes will not be generated using the choice set generation methods, 
underscores a major advantage of the DDPI method. This method relies only on the data that is 
collected from observed trips and thus does not require any network-information. 
Consequently, local knowledge is not required for using this method for analysing alternatives, 
model estimation, and model prediction. Furthermore, the DDPI method can be used as a 
reference set in adjusting the specification of currently adopted labelling approaches. Next to 
that, the algorithms use the information from the network or any other data source that is 
available, which is especially relevant for the labelling algorithm. As mentioned before, only 
three labels can be identified for this study, due to the limited data availability on the network.   

6.6. Generated Choice Set Evaluation 
The choice sets that are generated using the BFS-LE and labelling approach are compared to 
the observed routes according to the methodology described in section 6.4.1. The qualitative 
analysis for two selected OD pairs is covered in section 6.6.1. Section 6.6.2 details the 
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quantitative analysis on the complete choice sets. Section 6.6.3 provides the results of the 
analysis on reproduction rate and behavioural consistency of the choice set algorithms. Finally, 
section 6.6.4 concludes the choice set evaluation. 

6.6.1. Qualitative Analysis of the Choice Sets 

The observed routes of the two selected OD pairs are plotted on the map in Figure 6.4. Cyclists 
in the first OD pair (upper OD) travel from the west of the inner-city of Amsterdam to the north 
side of the central train station and cyclists in the second OD pair (lower OD) travel from the 
centre (Waterlooplein) to the Vondelpark in the south-west of the inner-city.  
	

 

Figure 6.4: Observed routes from two selected OD pairs, plotted on the map of Amsterdam	

The routes generated for the first OD pair using the BFS-LE and labelling approach are 
visualised in Figure 6.5, together with the observed routes. The observed routes (Figure 6.5.1) 
show a diverse set of routes. The north of the station can only be reached by one of the tunnels 
underneath the tracks, furthermore the cyclists face the canals that form a ring around the city 
centre, resulting here in roughly four main routes. The BFS-LE approach (Figure 6.5.2) 
provides a set of shortest routes, showing less diversity in this case. This approach only shows 
spatial diversity in the city centre. It avoids following the canals, which is different from the 
observed behaviour. This indicates that the cyclists are not necessarily aiming for the shortest 
route. The labelling approach (Figure 6.5.3) shows a more diverse choice set, that mimics the 
observed behaviour better. It does not provide exact matches, but provides routes that are more 
spatially different and makes use of the direction of the canals. This first comparison indicates 
that the labelling approach mimics the observed behaviour better in terms of spatiality and 
behaviour. 
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Figure 6.5: Routes generated for a given OD pair from the West of Amsterdam to the central train station, 

for (1) observed routes, (2) BFS-LE approach and (3) Labelling approach. 

The generated choice sets for the second OD pair are visualised in Figure 6.6. The observed 
routes (Figure 6.6.1) again show a spatially diverse image. For most routes, the number of turns 
is minimised. The cyclists start northwards, then follow one of the ring roads and continue 
north, with different turning points. The BFS-LE approach (Figure 6.6.2) shows similar 
behaviour for the shortest route, however this route turns later than any of the observed routes. 
The northbound route that is generated is very different from the observed routes. Again, this 
approach generates a less spatially diverse choice set, that is unable to find all the observed 
routes. The labelling approach (Figure 6.6.3) is again more spatially diverse than the BFS-LE 
approach, but shows different routes than to the observed routes. Two of the three generated 
routes are comparable to the observed routes, in terms of turning. The third route turns often, 
which is very unlike the observed behaviour. The comparison of the second OD pair shows 
again that the labelling approach mimics the observed routes better than the BFS-LE approach, 
however the differences between the choice sets are still large. This qualitative analysis 
indicates that behaviour of cyclists is not captured based on one objective/label.  
 

	
Figure 6.6: Routes generated for a given OD pair from Waterlooplein to Vondelpark, for (1) observed 

routes, (2) BFS-LE approach and (3) Labelling approach. 

6.6.2. Quantitative analysis of the choice sets  

In this section, the choice sets that are generated by the BFS-LE and labelling approach are 
compared to the observed routes based on a quantitative analysis. The descriptive statistics are 
calculated for distance, percentage on separate cycle path and the number intersections per 
kilometre. Furthermore, the path size factor (Eq. 6.1) is calculated, which is an indicator for 
heterogeneity of the choice set. Table 6.2 shows the results of the quantitative analysis.  

The observed routes show that the mean distance travelled is 1.9 kilometres, whereas 
the entire area included in the research covers about 6 kilometres. This indicates that the average 
cyclist does not cross the entire inner-city. Furthermore, the percentage of separate cycle paths 
encountered on the routes and the amount of intersections per kilometre (all types of 

Observed routes (1) BFS-LE approach (2) Labelling approach (3)

Observed routes (1) BFS-LE approach (2) Labelling approach (3)
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intersections) are rather low, the latter was expected from the qualitative analysis. Finally, the 
path size factor is on average 0.67, which indicates a relatively heterogeneous set of routes, 
matching the results from the qualitative analysis. The routes chosen by all cyclists are spatially 
diverse and have a low degree of overlap. 

Table 6.2: Descriptive statistics of the explanatory variables and heterogeneity indicator for each choice 
set identification approach 

  Observed routes 
(N=2,819) 

BFS-LE approach 
(N=12,361) 

Labelling approach 
(N=2,034) 

Variable Mean Median St.Dev Mean Median St.Dev Mean Median St.Dev 
Distance (km) 1.93 1.85 1.01 1.92 1.85 0.78 2.82 2.47 1.66 
Separate cycle path % 37.9% 34.7% 26.4% 8.3% 6.6% 8.2% 19.4% 9.7% 22.8% 
Intersections per km 14.8 14.5 5.0 32.2 32.1 6.9 19.9 15.9 10.5 
Path Size factor 0.671 0.704 0.232 0.135 0.090 0.126 0.833 0.864 0.136 
	
The BFS-LE approach optimises for distance, which is reflected in the lower mean distance and 
standard deviation. However, the difference with respect to observed routes is negligible, which 
seems to imply that the cyclists prefer shorter routes. As mentioned before, several of the links, 
found in observed routes, are not included in the network. Inspections of the OD pairs crossing 
the city centre, showed that 25% of the trips cross these areas even though the network does not 
include these, indicating that the true shortest path cannot be found by the algorithms. It shows 
that the true mean distance might be lower than shown in Table 6.2, indicating that the 
preference for the shorter routes might be less straightforward than appears now. The BFS-LE 
approach also shows a low percentage of separate cycle paths and a high amount of intersections 
per kilometre compared to the observed routes. Most likely because the algorithm does not 
optimise for these variables. Due to the nature of the algorithm, it finds a low variety of routes, 
leading to a relatively homogeneous set of routes, reflected in the qualitative analysis. 

The labelling approach generates a route that optimises for each variable in the 
descriptive statistics, therefore the standard deviations are large. The mean distance is larger 
than both other choice sets, whereas the percentage of separate cycle path and number of 
intersections per kilometre are in between the observed routes and BFS-LE algorithm. 
Furthermore, due to the optimisation on different variables, the choice set is very heterogeneous 
and spatially diverse (as was also found in the qualitative analysis). 

6.6.3. Reproduction of Observed Routes  

This section covers the reproduction rate and behavioural consistency of both the BFS-LE and 
labelling approach. The reproduction rate is calculated for different levels of overlap between 
generated and observed routes, varying from 70% to 100%. Table 6.3 shows the results of these 
analyses.  

Table 6.3: Number and percentage of observed routes generated by each choice set generation approach 
for different threshold levels 

 100% Overlap 90% Overlap 80% Overlap 70% Overlap  
Algorithm # trips % trips # trips % trips # trips % trips # trips % trips CI 
BFS-LE approach 26 0.9% 53 1.9% 92 3.3% 175 6.2% 0.2701 
Labelling approach 38 1.4% 65 2.3% 110 3.9% 183 6.5% 0.3024 

Note: the total number of trips is 2,819. 
	
The false negative error for both methods is about 99%, implying that the overwhelming 
majority of observed routes are not included in the generated choice-sets. The labelling 
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approach is slightly better at reproducing the observed trips and has a higher behavioural 
consistency compared to the BFS-LE approach. The qualitative analysis showed that the 
labelling approach could partially reproduce the observed routes, however the overlap between 
the observed and generated routes is lower than 70%. The BFS-LE approach performs even 
worse, as was also visible in the qualitative analysis. As mentioned before, network-related 
issues could impact the choice set generation. This dependency of choice set algorithms on the 
network shows one advantage of the DDPI method, as this method does not rely on network 
information.	

6.6.4. Conclusions regarding the Evaluated Choice Sets 

The choice sets resulting from the BFS-LE and labelling approach differ largely from one 
another, and they differ largely from the observed routes. The labelling approach is better than 
the BFS-LE approach in terms of mimicking the observed routes, but shows very large false 
negative errors (not generating the observed alternative). The quality of the network 
representation (topology and available label information) that serves as input for the choice set 
generation methods, which is poor in the bicycle-context, influences the routes that are 
generated, especially when generating routes based on individual network characteristics. In 
this case, the observed behaviour is not captured by these characteristics. The differences 
indicate that cyclists optimise based on more than one network-related objective. Ehrgott et al. 
(2012) proposed a method for bi-objective optimisation, as they found that cyclists do not 
optimise based on one objective, like car drivers might do with distance or travel time. Two 
other methods that might be able to overcome this issue are the link-based approach introduced 
by Fosgerau et al. (2013) and importance sampling approaches like the Metropolis-Hastings 
approach (Flötteröd and Bierlaire, 2013), as they approach the choice set generation from the 
universal choice set.  

6.7. Evaluation of Model Estimation and Validation 
This section covers the evaluation of the model estimation (6.7.1) and validation (6.7.2). Three 
route choice models are estimated using the choice sets resulting from the labelling approach, 
BFS-LE approach and DDPI approach (as shown in Figure 6.1). The evaluation takes place 
according to the methodology proposed in section 6.4.2. Section 6.7.3 concludes this evaluation 
section. 

6.7.1. Route Choice Model Estimation 

When observed routes are not generated using the BFS-LE and labelling approaches, there are 
no good remedies. Eliminating the entire OD pair would leave very few pairs remaining 
(approximately 1% of the trips). In practice, the observed routes that have not been generated 
are added to the choice set (e.g. Broach et al., 2010). Consequently, a union of routes is created 
based on network characteristics and observed behaviour (like depicted in Figure 6.1). 
However, this method entails that information/observed behaviour is added to the choice set, 
which will increase the performance of these choice sets in model estimation and consequently 
introduces an issue with endogeneity (by including chosen alternatives). The comparison in the 
model estimation is therefore skewed, due to this poor performance in terms of reproducing 
observed alternatives. 
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Five models are estimated for each choice set, every time using a different random 
sample of 80% of the OD pairs, to investigate the stability of the models. Table 6.4 shows the 
estimation results for one of the model runs.  

Table 6.4: Estimated PSL models using the identified choice sets from data, BFS-LE and labelling 

 
Variables 

DDPI model 
Coef.              t-test 

BFS-LE model�
Coef.              t-test 

Labelling model�
Coef.             t-test 

Distance (km)     -0.225             -1.72*      -0.341            -2.84**     -1.840             -21.88** 
% separate cycle path      0.153               1.00        1.34               9.47**      1.53                11.45** 
Intersections/km     -0.018             -2.11**     -0.159            -23.90**     -0.118             -21.61** 
(Ln) Path Size      -0.380             -3.94**        1.03             17.11**      0.291               3.77** 

N 
Null log likelihood 
Final log likelihood 
Likelihood ratio test 
Adj. rho square 

2,249 
-3,059.718 
-3,044.254 

30.928 
0.004 

2,249 
-6,921.409 
-3,539.881 
6,763.057 

0.488 

2,249 
-4,419.422 
-3,627.528 
1,538.788 

0.178 
** significant at the 5% level, * significant at the 10% level 

 
The signs of distance, separate cycle path percentage and intersections per kilometre are as 
expected and are the same for each model. However, the parameter and t-test values are 
different. The DDPI model has lower t-test values compared to the other models, which is due 
to the endogeneity issue that plays a role in the DDPI choice set. It has the tendency to make 
attributes less significant. Furthermore, the sign of the path size factor is different for the DDPI 
model. In this case a route that has more overlap with other routes receives a higher utility. In 
the context of public transport, Lam and Xie (2002) also found a negative parameter. They 
argue that overlapping routes can reduce uncertainty by allowing more en-route rerouting 
possibilities and hence contribute to the robustness of the route taken, which could also hold 
for the bicycle route choice situation. In case of the BFS-LE and labelling model, adding the 
observed routes results with a positive PS factor. The generated alternatives overlap with each 
other, but often the observed alternatives are very different, resulting in a higher utility for the 
non-overlapping routes. Consequently, the interpretation of the negative PS sign is different 
from the positive PS sign, showing a difference between observed and generated choice sets. 

To compare these models, the average point elasticities for all explanatory variables are 
calculated (Table 6.5). The elasticity provides information on the impact of marginal changes 
in each of these variables on the probability of being chosen.  

Table 6.5: Mean point elasticities for each explanatory variable for all models 

 
Variable 

DDPI model 
Elasticity 

BFS-LE model 
Elasticity 

Labelling model 
Elasticity 

Distance -0.289 -0.440 -2.577 
% separate cycle path 0.042 0.350 0.426 
Intersections/km -0.188 -1.702 -1.316 

  
The interpretation of the elasticities is such that 1% increase in distance results in a decrease in 
the probability of being chosen of 0.29% for the DDPI model, whereas the BFS-LE model 
shows a 0.44% decrease and the labelling model shows a decrease of 2.58%. The relative 
difference between the impact of the BFS-LE model and DDPI model is 52%, but is around 
790% with the labelling model. In the labelling model, the impact of marginal changes to all 
variables, is much higher compared to the other models. The routes generated by the labelling 
algorithm are very diverse and optimised for different criteria, which indicates that increasing 
the variability in attributes of the alternatives (labelling routes plus observed route), induces a 
higher elasticity. This could be confounding the effect of the different parameters on the 
elasticities with the effect of different attributes. 
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6.7.2. Route Choice Model Validation 

The model validation provides insight into the predictive power of the models. The 20% 
remaining OD pairs are used to validate the models. For the validation, the alternatives of all 
three choice sets are combined for each OD pair to make the comparison fair (resulting in a 
maximum of 41 alternatives for 695 OD pairs, which is the same input for all models). For five 
random draws the models are estimated and validated. Table 6.6 shows the results of the 
validation.  

Table 6.6: Average validation measures for all 5 estimated models per choice set 

	 Correct choice 
predicted 

RMSE 
OD pair 

Log-likelihood 

DDPI model 1.3% 0.6264 -2,057.083 
BFS-LE model 21.1% 0.5677 -1,206.231 
Labelling model 27.8% 0.4728 -1,188.331 

	
The DDPI model has lower parameter values compared to the other models. This means for the 
validation that it does not punish the less attractive alternatives as much as the other models. 
Consequently, the maximum utility for one alternative is low and similar for all alternatives. 
This results in a very low percentage of correctly predicted choices. The BFS-LE and labelling 
models score higher on this validation measure, and are on average able to predict at least one 
choice correct per OD pair. In terms of prediction per alternative, the two models that were 
estimated on a generated choice set that has a higher variability and includes both good 
(observed) routes and bad (generated) routes, perform better.  

In terms of the RMSE that is weighted over the OD pairs, the models perform similar 
(although the BFS-LE and labelling model outperform the DDPI model). This measure gives 
an indication on the average error that would occur when for example predicting the flows on 
the network. The DDPI model assigns a rather equal probability to all alternatives, resulting in 
an average error that is similar to the RMSE of the two other models. These models on the other 
hand, provide a low probability to the worse (generated) alternatives and a very high probability 
to the good (observed) alternatives.  

The null log-likelihood for this set of alternatives (calculated using uu(0) =
−∑ ln	(º')' , with º'being the number of alternatives in choice set /') is -1,740.149. The closer 
the final log-likelihood is to zero, the better the out-of-sample performance is. Both BFS-LE 
and labelling models improve significantly compared to the null log-likelihood. The DDPI 
models, which are estimated using only observed information, perform worse on the out-of-
sample data in terms of its added value compared to providing equal probabilities to all 
alternatives (null log-likelihood). Consequently, we can conclude that the DDPI method should 
not be used for prediction purposes.  

6.7.3. Conclusions regarding Model Estimation and Validation 

Due to the small number of matches of generated routes with observed routes, the choice sets 
are enriched with observed routes. Consequently, the choice sets have more information 
compared to purely generated choice sets, introducing endogeneity. The models that are 
estimated using the different choice sets differ in their parameter values, t-test values and 
elasticities. This is in line with expectations as the size and composition of choice set are known 
to influence the model estimation (Bovy, 2009).  

The DDPI model has lower parameter values and t-test values due to small variability 
in the choice set and issues with endogeneity. Due to the inclusion of the observed alternatives 
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in the BFS-LE and labelling choice set, where they were not generated, these models perform 
very well as an artefact. The large variability between alternatives (especially in the labelling 
choice set) and inclusion of both relevant and irrelevant alternatives (especially in the BFS-LE 
choice set), increases the model fit compared to only using observed routes (DDPI method). 
The effect of explanatory variables on route choice is higher for the labelling model compared 
to the other models. The BFS-LE model is a less extreme version of the labelling model, with 
relatively high parameter and t-test values but elasticities that are more similar to those obtained 
using the DDPI approach. The reason for this might be the number of alternatives that is 
included in the BFS-LE approach, which is generally 17 more than the labelling approach.  

In terms of predictive powers, the DDPI model was expected to perform less as it is 
data-driven and might therefore react different to out-of-sample prediction than the labelling 
and BFS-LE models, which was confirmed by all validation measures. The DDPI method is not 
suitable for out-of-sample prediction. 

6.8. Conclusions and Future Research Directions 
This paper presents the findings of an evaluation of a data-driven approach (DDPI) for choice 
set identification in travel behaviour analysis, performed by comparing the DDPI method to 
two choice set generation methods: BFS-LE method introduced by Rieser-Schussler et al. 
(2013) and the labelling approach introduced by Ben-Akiva et al. (1984). Bicycle GPS data 
from the city of Amsterdam was used a case study. The comparison was based on three aspects. 
First, an analysis of the choice sets that are identified, which was evaluated by means of a 
qualitative (visual) analysis, a quantitative analysis, and the reproduction of observed routes. 
Second, estimation of a route choice models using the three identified choice sets, which were 
evaluated by means of calculating elasticities. And third, validation these models on out-of-
sample data, which were evaluated by means of correctly predicted choices, RMSE per OD pair 
and the log-likelihood.   

In conclusion, the data-driven DDPI method is useful when evaluating or analysing the 
alternatives in the choice set and can help in understanding the preferences of individuals (using 
model estimation). The DDPI is not suitable for prediction on out-of-sample data.  

The ability of choice set generation algorithms to reproduce observed paths largely 
depends on the correctness of the underlying network. In this study, the network was intended 
for motorised traffic (i.e. not validated for bicycle traffic), resulting in choice sets that are not 
suitable for analysis of the alternatives for cyclists (e.g. in terms of composition and 
characteristics). Generally, cyclists are allowed to cycle against one-way streets, however this 
is not included in the network. Furthermore, cyclists do not necessarily comply to the traffic 
rules in the Netherlands, as exhibited in using links in the network that are not identified for 
cyclists (e.g. short cuts or pedestrian areas). The first can be incorporated in the network by 
making all links bi-directional; however, the latter is harder to incorporate. Consequently, a 
discrepancy arose between the observed routes and the generated routes. The number of 
generated routes that could be matched to observed routes was very low, partially due to 
network incompleteness. However, we tested the significance of this shortcoming by removing 
the affected OD pairs, and found that the number of matched routes was still very low, 
indicating that generating routes based on single network characteristics (as is done in these 
algorithms) does not match with the observed behaviour. In conclusion, the choice set based on 
observed behaviour provides a better source for analysing the alternatives than a generated 
choice set based on network characteristics. 

Given the differences and similarities between the estimated choice models, we 
conclude that the DDPI method provides useful insights into behaviour. In terms of model fit, 
it performed worse than the generated choice sets, mostly due to lower variability between 
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routes and their respective attributes. However, no additional network information is required 
for the DDPI method. Hence, it does not rely on the quality of the underlying network for 
information or routes that need to be generated. Mostly because of that reason this method is a 
valuable addition to the existing choice set generation methods, as it does provide insights into 
preferences of individuals regarding attributes.   

The case study analysed in this paper gives first insights into the usefulness of the data-
driven DDPI approach for travel behaviour analysis. In this study the data-driven choice set has 
been applied to bicycle route choice. Future research can test the usefulness of the proposed 
DDPI method for other types of choice set generation, for example activity scheduling and 
destination choice, and for route choice models of other modes, for example the car, which 
potentially exhibits a larger degree of diversity of routes within a shorter time period, due to 
congestion and traffic lights. Next to that, the model is now estimated on data from one week. 
It would be very useful to test on a dataset that covers a longer period of time (e.g. a month), 
because this potentially increases observed variability and thereof reduces the risk of 
endogeneity. Furthermore, the performance of choice set generation methods depends on the 
quality of the underlying network. Future studies may match the observed routes and links to 
the existing network prior to the choice set generation so that missing links can be added to the 
network. This will potentially result in a higher reproduction of observed routes. Also, this will 
provide more routes per unique OD pair, therefore reducing the need for clustering. Finally, the 
methods in this study were tested using random utility theory (specifically the PSL models). A 
direction for future research could be to apply the method within the random regret framework 
and test its performance. 
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Abstract 
Accurate modelling of simultaneous travel choice dimensions is becoming more important due 
to the increasing behavioural complexity that is identified in literature regarding the 
relationships between choice dimensions. Currently, mostly Multinomial Logit and Nested 
Logit are applied in activity-based and four-step models. These model structures entail some 
strong assumptions and are found to be largely unrealistic in capturing the relationships between 
choice dimensions. Consequently, more advanced models are required to capture behavioural 
realism. In this literature review, we assess the discrete choice modelling structures that have 
been proposed in literature for simultaneously modelling a combination of trip chain, 
destination, departure time, mode, and route choices. The assessment relates to the suitability, 
in terms of flexibility in correlation of model structures, heterogeneity in the decision-making 
process, and model specification of each choice dimension, and applicability, in terms of 
computational effort and ease of interpretation, of the model structures. The findings of the 



118 Unravelling Mode and Route Choice Behaviour of Active Mode Users 

review show that the ‘ideal’ model structure, which is deemed both behaviourally suitable and 
practically applicably, does not exist yet. The model structures that are most suitable are less 
applicable and vice versa. Consequently, directions of future research are increasing suitability 
of model structures, without ignoring the applicability. A compromise of these two aspects 
might lead to the adoption of more behaviourally realistic model structures in the activity-based 
and four-step models.   

7.1. Introduction 
Travel behaviour encompasses various travel choices made by individuals, such as departure 
time choice and mode choice. When individual choice outcomes are aggregated, they result in 
travellers’ distribution over modes, time, and the network. Consequently, they are important 
inputs for demand forecasting and the development of efficient policies. It is widely 
acknowledged that the travel choice dimensions are inter-related (e.g. Bhat, 1998b; Richards 
and Ben-Akiva, 1974). According to Bhat (1998a) there are three main reasons for 
simultaneously modelling these choices. First, the considered choice alternatives are a 
combination of multiple choice dimensions. Second, observed determinants that influence 
choice behaviour are related to multiple choice dimensions. And third, the joint choice 
alternatives share unobserved determinants that influence travellers’ sensitivity to changes 
related to policy measures.  
 The four-step model and the activity-based model are the best known models that 
address the modelling of multiple travel choice dimensions (McNally and Rindt, 2007). These 
models generally cover (a subset of) the following choices: trip chaining, destination, departure 
time, mode, and route choice. Various modelling approaches can be applied in the four-step 
and activity-based models, but often discrete choice models are used (Ben-Akiva and Bowman, 
1998; de Dios Ortúzar and Willumsen, 2011). Examples of discrete choice modelling in 
activity-based models are the Portland model (Bowman et al., 1998), the Jakarta model (Yagi 
and Mohammadian, 2010), and the Tel-Aviv model (Shiftan and Ben-Akiva, 2011). Four-step 
models using discrete choice modelling are, for example, the Swedish national model (Beser 
and Algers, 2002) and the Dutch national model (van Cranenburgh and Chorus, 2017;Hofman, 
2002).  

Discrete choice models can provide behavioural insights into the choice dimension(s) 
and can be used for forecasting purposes. The most common theoretical framework underlying 
discrete choice models is random utility theory, which assumes that individuals maximise their 
utility in the decision-making process (Ben-Akiva and Bierlaire, 1999). Within this framework, 
a broad range of discrete choice models has been developed. Two of these models, i.e. the 
Multinomial Logit (MNL) and the Nested Logit (NL) models, are most frequently applied in 
the activity-based and four-step models. These are relatively simple models which involve some 
strong assumptions. For example, the MNL model assumes that alternatives are independent of 
one another, which might not be realistic in the context of multiple choice dimensions (Ben-
Akiva and Lerman, 1985). Generally, MNL is used to simultaneously model choice dimensions, 
for example destination and mode, which then entails that one mode and destination alternative, 
for example car - supermarket “A”, is independent from another, for example car - supermarket 
“B”. The NL model relaxes the independence assumption, by accommodating correlation 
within part of the alternatives (Williams, 1977), which can be used to calculate substitution 
patterns, that are often, but need not be, interpreted as implying hierarchy (de Dios Ortúzar and 
Willumsen, 2011). For example, when the situation changes and an individual changes the route 
before changing the mode for a trip. However, it is plausible that the substitution pattern holds 
the other way around (change mode before route), or that it is better to incorporate cross-
correlations to reflect a bi-directional relation (Hess et al., 2007b). Especially the latter is not 
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employed in the current four-step and activity-based models. Therefore, these findings suggest 
that the assumptions in the MNL and NL models prevent to include relationships between 
choice dimensions realistically. 

Furthermore, increasing evidence is found in literature that choice behaviour is 
heterogenous (e.g. Hensher and Reyes, 2000; Krygsman et al., 2007). Heterogeneity can be 
found within choice dimensions, where individuals show different preferences. Next to that, it 
can be found between choice dimensions, where individuals show different decision-making 
processes. This increasing identified complexity of choice behaviour cannot be accurately 
captured using the discrete choice models currently adopted in the four-step and activity-based 
models. Together with the conclusion that currently, relationships between choice dimensions 
fail to reflect realistic behaviour, this finding leads to the realisation that more advanced discrete 
choice models are needed in the simultaneous modelling of multiple travel choice dimensions.  
Many advancements in discrete choice models have been made since the introduction of MNL 
and NL (e.g. Mixed Logit (McFadden and Train, 2000)). These advancements are aimed at 
increasing the level of realism of the choice behaviour modelled. In the context of 
simultaneously modelling multiple travel choice dimensions, this translates to for example, 
increasing the flexibility of the correlation structure or by allowing a different model 
specification per choice dimension. Consequently, these more advanced model structures might 
be more suitable for modelling multiple travel choice dimensions.  

On the other hand, MNL and NL are relatively easy to use and require limited 
computational effort in estimation and forecasting. Especially in practice, these are important 
determinants of model applicability. Hess et al. (2007a) state that the estimation process of 
large-scale Mixed Logit models can last 100 days. When the goal is to estimate the effect of 
different policy measures, it is generally preferred to get an answer within a short period of 
time. Consequently, advancements in discrete choice models need to be measured against their 
applicability, if they are to be used and applied in practice.  

The objective of this literature review is to assess the suitability and applicability of 
discrete choice modelling structures for the simultaneous modelling of multiple travel choice 
dimensions. By assessing the suitability of model structures that are currently in the context of 
multiple travel choice dimensions, the model structures are judged on their behavioural realism 
in capturing multiple travel choice dimensions. This helps in understanding what are 
possibilities and challenges. By also assessing the applicability, it is investigated what is 
required before adoption of model structures in practice. Suitability is identified via the 
following key aspects: flexibility of the correlation structure, correlation between choice 
dimensions, inclusion of heterogeneity in decision-making processes, and model specification 
of different choice dimensions. Applicability refers to the ease of interpretation and 
computational efficiency.  

The contribution of this review is therefore three-fold: 1) establish which discrete choice 
modelling structures have been used for modelling multiple travel choices (besides the activity-
based and four-step models), 2) provide support regarding which model structure(s) can be used 
in estimation and forecasting, given suitability and applicability considerations, 3) identify 
directions for future development in model structures, given the findings of this review.  

The remainder of the paper is organised as follows. Section 7.2 details the research 
scope and describes the literature search methodology. Section 7.3 discusses all modelling 
approaches and explains how they have been applied. Section 7.4 discusses which choice 
dimensions have been modelled simultaneously and which model structures have been applied. 
Then, section 7.5 describes the model assessment indicators, after which section 7.6 provides a 
discussion on the assessment of the modelling structures. Finally, section 7.7 concludes the 
review and identifies future research directions.  
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7.2. Scope and Methodology 
In this literature review study, discrete choice modelling structures that are based on the random 
utility framework and have been used for simultaneously modelling multiple travel choice 
dimensions are reviewed. We do not intend to provide an extensive review on random utility 
theory, but rather provide a brief context to support the discussions of different model 
structures. The interested reader is referred to Ben-Akiva and Lerman (1985) or Ben-Akiva and 
Bierlaire (1999) for a thorough discussion of random utility theory. Random utility theory 
acknowledges that the researcher is not aware of the entire decision-making process of 
individuals. To account for this uncertainty, utility is modelled as a random variable %&' 
(Manski, 1977). The utility that an individual " associates with alternative ! is expressed as 
follows:  
 

%&' = *&' +	,&'				∀	! ∈ /' (7.1) 
 
where *&'  is the deterministic part of the utility representing observed attributes and ,&' 
represents the random error term. The probability that alternative ! is chosen by individual " 
from choice set /' is (Ben-Akiva and Bierlaire, 1999): 
 

P(!|/') = Pø%&' ≥ %z'		∀� ∈ /'¡ = h ¬%&' = max
z∈`o

%z'≈ (7.2) 

 
In this review, the focus is on studies addressing the simultaneous modelling of multiple 

travel choice dimensions. We specifically target studies that model two or more travel choice 
dimensions, using the above mentioned framework. By targeting two or more choice 
dimensions, also partial activity-based or four-step models are included. Furthermore, the focus 
lies on random utility theory as this is the most widely known and applied method in practice 
and research. We consider disaggregate models that represent individuals as decision-makers 
in the models. The focus lies with the following travel choice dimensions: trip chain, 
destination, departure time, mode, and route choices. These choice dimensions are commonly 
modelled in the activity-based and four-step models. 

This review examines studies that are published in peer-reviewed articles. The search 
engines Google Scholar and Scopus are used to identify the studies that fall within the research 
scope. All possible combinations of the five identified travel choices were used in combination 
with the term ‘choice model’, for example ‘route mode choice model’. These search 
combinations resulted with 24 studies. The snowballing method was applied to identify other 
relevant studies. In total, 31 different studies (32 applications) have been identified which fulfil 
our selection criteria.   

The most common combinations of choice dimensions, which are simultaneously 
modelled using discrete choice models, are departure time and mode choice (15), trip chain and 
mode choice (7), destination and mode choice (6), and mode and route choice (4). In contrast, 
no studies investigating a combination of the following choice dimensions were found: trip 
chain and destination choice, trip chain and departure time choice, and trip chain and route 
choice. These combinations might, however, have been investigated using out-of-scope 
modelling approaches. 

7.3. Model Structures 
This section introduces the discrete choice modelling structures and discusses how they are 
adapted to model multiple travel choices simultaneously. In this study the model structures are 
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reviewed in this context, therefore we provide only a small introduction to the concept of each 
model structure. For reviews on model structures the reader is referred to e.g. Ben-Akiva and 
Lerman (1985), Ben-Akiva and Bierlaire (1999), and de Dios Ortúzar and Willumsen (2011).  

The literature search revealed 31 studies (and 32 applications of model structures) 
within the defined scope, which can be divided into eight model structure categories, based on 
similarities and differences between the applied approaches. The categories are Multinomial 
Logit (7.3.1), Nested Logit (7.3.2), Cross-Nested Logit (7.3.3), Probit (7.3.4), Mixed Logit 
(7.3.5), discrete-continuous models (7.3.6), segmentation approaches (7.3.7), and 
miscellaneous approaches (7.3.8). The last category captures the studies that could not be 
assigned to any other category. Appendix 7.A provides an overview of the studies. To better 
understand the relationships between all the model structures and where they originate from, 
Figure 7.1 describes the genealogy, which is further elaborated upon in each sub-section.  

 

Figure 7.1: The genealogy of model structures, matched to the year of the first mathematical introduction 

7.3.1. Multinomial Logit (MNL) 

Four studies are identified that applied the MNL structure to model multiple travel choices 
(Broach and Dill, 2016; Montini et al., 2017; Richards and Ben-Akiva, 1974; Vrtic et al., 2007). 
The MNL model is the first model in the Generalised Extreme Value (GEV)-family of models. 
MNL assumes that the error terms ,&' introduced in Eq. 7.1 are identically and independently 
(iid) Gumbel distributed. The model introduced by McFadden (1974) is expressed as follows: 
 

h(!|/	) =
Ä∆|

∑ Ä∆éz∈ 	̀
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where the utility of alternative ! is set against the utility of all other alternatives � belonging to 
choice set /, resulting in the probability h of choosing	!. An important property of MNL is 
independence from irrelevant alternatives (IIA), which means that error terms are not correlated 
(Ben-Akiva and Lerman, 1985). Due to the simple closed-form mathematical expression, 
computation effort is low. 

Two different MNL approaches have been identified for simultaneously modelling 
multiple travel choices. The first approach combines all identified alternatives for each of the 
choice dimensions into joint alternatives (/òê = 	/ò ∗ /ê). Hence, introducing a simultaneous 
choice for the two decisions, also called Joint Logit (Ben-Akiva and Lerman, 1985). This results 
in a similar modelling approach for different choices. Richards and Ben-Akiva (1974) have 
applied this method to destination and mode choice. Furthermore, Montini et al. (2017) 
modelled route and mode choice.  

The second approach only identifies alternatives for one choice and represents the other 
choice as attributes in *&, which implies a hierarchy in the choices (e.g. *̀ « =
	∑ 9»f» + 9`…/ê	 ). This results in individual treatment of different choices, and requires one 
extra parameter in the utility function. One example in the case of mode and route choice is the 
inclusion of the attributes of the predicted (or shortest) routes in the mode choice model (Broach 
and Dill, 2016). Consequently, the route choice is known beforehand. Another example, related 
to mode, route, and departure time choice is presented by Vrtic et al. (2007). They have 
identified two mode alternatives, and included for example late and early departure as 
parameters for the departure time choice.  

7.3.2. Nested Logit (NL) 

NL is one of the most widely known extensions of the MNL model (Williams, 1977). This 
model structure is applied most for modelling multiple travel choices, i.e. in eleven studies 
(Bajwa et al., 2008; Bhat, 1998b; Debrezion et al., 2009; Eluru et al., 2010; González et al., 
2016; Hess et al., 2007a; Lizana et al., 2013; Newman and Bernardin, 2010; Paleti et al., 2014; 
Shakeel et al., 2016; Yang et al., 2016). NL allows for a bundle of alternatives (a nest) to have 
correlated error terms (e.g. red bus/blue bus paradox), therefore relaxing the IIA property of the 
MNL model by allowing partial correlation. The model is derived as follows: 
 

h(!|/	) = h(!|g)h(g|/	) = 	
Ä À∆|

∑ Ä À∆éz∈`À	
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 À
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 û
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 (7.4) 

 
where h(!|g) is specified according to Eq. 7.3 (there Te = 1), and h(g|/	)	represents the 
partial correlation within nests g in the choice set. The scaling parameters T and Te need to be 
estimated, where generally T is normalised to 1 and Te is estimated for each nest. Because 
correlation is non-negative, in this case Te ≥ 1. Due to the closed-form mathematical 
formulation, computational effort is low.  
 With respect to modelling multiple travel choices, the nests in NL often represent one 
choice, with the alternatives being a combination of the two choices. For example, in case of 
mode and route choice, the modes are represented in nests and the mode-route alternatives are 
assigned to these nests (Shakeel et al., 2016). Therefore, allowing for correlation between the 
routes of the same mode. Consequently, the choice for a route is dependent on the choice for a 
mode and one can argue that switching routes is easier than switching modes. Debrezion et al. 
(2009) used this approach for mode and destination choice, where they represented mode choice 
in nests. Three studies applied NL on the mode and departure time choice (Hess et al., 2007a; 
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Lizana et al., 2013; Paleti et al., 2014). They all represented mode choice in nests. Finally, a 
single application to mode choice and trip chaining was found, where different nesting 
structures were identified for holidays (mode nests) and normal weekdays (trip chain nests) 
(Yang et al., 2016).  

Five studies have advanced the NL approach, by applying different underlying model 
structures per choice (alternate NL). First, Bhat (1998b) applied a MNL-OGEV (Ordered GEV) 
model to mode and departure time choice. In this study, mode choice is represented in nests and 
the time periods are ordered realistically (Small, 1987). Second, Newman and Bernardin (2010) 
applied a NL-MNL nesting structure for mode and destination choice, with mode choice nests. 
Within the mode choice, another nest was introduced. Third, Bajwa et al. (2008) applied a RPL-
RPL (Random Parameter Logit, Section 7.3.5) model for mode and departure time choice, 
where modes are modelled as nests. RPL requires simulation, therefore computation effort is 
high. In this study, the modelling of multiple travel choices is determined via the NL model 
structure, therefore it is allocated here. Fourth, Eluru et al. (2010) applied a MDCEV (Multiple 
Discrete-Continuous Extreme Value) – MNL model to mode, departure time and destination 
choice. Mode and departure time (nests) are modelled in the MDCEV framework (Bhat, 2005) 
where they are distributed into episodes that can be assigned to multiple activity times during 
the day. Finally, a MNL-PSL (Path-Size Logit) model was specified for destination and route 
choice (González et al., 2016). The destinations are modelled in nests and a path size factor is 
identified in the utility for the route choice, that corrects for overlap between routes (Ben-Akiva 
and Bierlaire, 1999).  

7.3.3. Cross-Nested Logit (CNL) 

Two applications of CNL are identified for simultaneously modelling multiple travel choices 
(Ding et al., 2014; Yang et al., 2013). The CNL is a direct extension of the NL model, which 
allows each alternative to be a member of different nests. Therefore, it does not only allow for 
correlation within a nest but also between nests, resulting full correlation between the 
alternatives of travel choices (Vovsha, 1997). The model is expressed as follows: 
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where it builds upon the NL derivation of Eq. 7.4 by introducing a membership parameter 0 
into the model, which needs to sum up to 1 per alternative. Furthermore, T is normally 
constrained to one, and Te ≥ 1. The non-concave objective function results in medium 
computation effort. Often, 0 is predefined in CNL (Bierlaire, 2006).  
 The first application to multiple travel choices relates to destination and mode choice, 
where the nests are defined for both destination and mode choices (Ding et al., 2014). The 
degree of membership is fixed: ½ to a destination nest and ½ to a mode nest. The second 
application focuses on residential location, mode and departure time choice (Yang et al., 2013). 
They also modelled each alternative as a nest and also predefined the membership.   
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7.3.4. Probit 

Probit models are different from Logit models in the assumed distribution of the error terms: 
normal distributions instead of iid Gumbel distributions. Two applications of the Probit 
structure are found for modelling multiple travel choices (Jou, 2001; Ye et al., 2007). Probit is 
more flexible than Logit (McFadden, 1989). The utility function in Eq. 7.1 is adapted, to include 
vector notation for all components of the utility function: 
 

÷&' = ◊&' +	ÿ&'				∀	! ∈ /' (7.6) 
 
where ÷&', ◊&'  and ÿ&' are (º' × 1) vectors, with º' being the number of alternatives in /'. The 
error term for Probit models is normally distributed: ÿ&'~	2(0, Σ), and for º' = 2, Σ is given in 
Eq. 7.7:  
 

Σ = ¬
@ò
ê @òê

@êò @ê
ê ≈		 (7.7) 

 
For Probit models the variance-covariance matrix needs to be estimated. Because of 

identifiability restrictions, the binary Probit example in Eq. 7.7 results with no freely-estimable 
parameters. The difference in the error terms between the two alternatives is what matters 
(difference must also be fixed) and individual variance and covariance parameters cannot be 
uniquely specified. The covariance represents the correlation between alternatives. Probit does 
not have a closed-form mathematical formulation, requiring simulation or numerical 
integration, which results with high computational effort.  

In the simultaneously modelling of multiple travel choices two different applications of 
Probit were found. First, a study by Jou (2001) applies this model for departure time and route 
choice. He introduces four alternatives, resulting in the estimation of 16 variance-covariance 
parameters. By estimating the complete variance-covariance matrix (given identifiability 
restrictions), he allows for full correlation between alternatives of travel choices. Additionally, 
he includes a parameter that accounts for unobserved heterogeneity:	‹	~	2(0, @), based on 
procedures described in Abdel-Aty et al. (1997).  

Ye et al. (2007) have applied a recursive bivariate Probit model to mode choice and trip 
chain complexity. The recursive model adds an additional element per choice dimension to the 
utility function in Eq. 6, that represents the second choice /ê (see Eq. 7.8).  

 
÷›fi,fl‡
	

	
= ◊·ò,&' + ‚/ê +	ÿ&'				∀	! ∈ /' (7.8) 

 
The parameter that is estimated for this dummy represents the impact of the second choice on 
the first choice. By allowing this for one choice only, basically stating that /ê is predetermined, 
a dependency of choices is implied (partial correlation), which could be interpreted as 
hierarchical decision-making (de Dios Ortúzar and Willumsen, 2011).  

7.3.5. Mixed Logit (ML) 

The ML is applied to five studies that simultaneously model multiple travel choices (Bhat, 
1998a; Börjesson, 2008; De Jong et al., 2003; Hensher and Reyes, 2000; Hess et al., 2007b). 
This model structure is introduced to bridge the gap between Probit and Logit models 
(McFadden and Train, 2000). ML introduces a new error term to the utility function described 
in Eq. 7.1: 
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%&' = *&' + ‚&' +	,&'				∀	! ∈ /' (7.9) 

 
where the random error ,&' is assumed to follow a iid Gumbel distribution and ‚&' is a random 
term representing one or more additional components of the unobserved part of the utility 
independent from ,&'. The model is expressed as follows: 
 

h(!|/	) = „”
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 (7.10) 

 
where ‰(9) is the probability density function, evaluated for all parameters 9. The model does 
no longer have a closed-form, requiring simulation or numerical integration as part of the 
estimation process which significantly increases the computational effort. ML can be applied 
in two different, but mathematically equivalent ways, namely as RPL or as Error Component 
Logit (ECL).  

RPL introduces random taste heterogeneity by estimating a distribution of parameter 
values, generally assumed to follow a normal distribution 9	~	2(T, @). In the context of 
modelling multiple travel choices, this approach does not allow for correlation among 
alternatives, therefore adopting the IIA assumption of MNL models. RPL was applied in a study 
that addressed mode choice and trip chaining (Hensher and Reyes, 2000). By applying RPL, 
they assume independence of travel alternatives and have the disadvantage of high 
computational effort, consequently missing out on the potential of ML for modelling multiple 
travel choices.  

ECL allows alternatives to share the random error term, thus allowing for correlation 
between alternatives. ECL can closely replicate NL (partial correlation) or CNL (full 
correlation), therefore it is flexible in its correlation structure. Furthermore, it has the advantage 
that it can also accommodate for random taste heterogeneity and heteroscedasticity 
(ECL+RPL). ECL estimates the error component ~	2(0, @) for a set of alternatives. It is applied 
in three studies on mode and departure time choice (Bhat, 1998a; De Jong et al., 2003; Hess et 
al., 2007b). All three studies allow for full correlation. Börjesson (2008) applies the ECL+RPL 
approach to mode and departure time choice, benefiting from the full potential of ML regarding 
heterogeneity and hierarchy.  

7.3.6. Discrete-Continuous Models 

Discrete-Continuous models are partially discrete choice and partially continuous. Three 
studies have applied this model structure for the simultaneous modelling of multiple travel 
choices (Habib, 2013; Habib et al., 2009; Shabanpour et al., 2017). Regarding travel choices, 
departure time is sometimes (but not always) modelled as a continuous variable. According to 
Bhat and Steed (2002) there are several issues when treating departure time as a discrete 
variable. First, it is difficult to identify the best time interval for discretisation. Second, the times 
at the boundaries of an alternative are also considered to be distinct alternatives. Third, 
evaluation of policies needs to be done based on the same discrete time periods. To overcome 
these issues, one could incorporate departure time as a continuous variable (Vickrey, 1969).  

Habib et al. (2009) and Shabanpour et al. (2017) apply the continuous-time hazard 
model for departure time choice (Bhat and Steed, 2002). It is a log-linear model, which 
recognizes the dynamics of activity duration via consideration of the conditional probability of 
termination of the activity. The model is described by the following expression: 
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ln	($&') = *&' +	0&' (7.11) 
 
where 0&'~	2(0, 	@&'(). Both studies apply a MNL model for mode choice, however their 
method for simultaneously modelling the two choices differs. Habib et al. (2009) estimate the 
joint model by transforming the random error terms of both individual models into equivalent 
standard normal variables and they describe the corresponding joint distribution as an 
equivalent bivariate normal distribution (BVN) (Lee, 1983). Shabanpour et al. (2017), on the 
other hand, use the copula approach to identify the joint model (Sklar, 1973). The so-called 
copula /Ê represents the joint probability distribution of random variables with predefined 
marginal distributions, which can be represented by several functions (Bhat and Eluru, 2009).  

The third study, Habib (2013), bases his approach on the MDCEV model (Bhat, 2005). 
In the MDCEV approach discrete and continuous variables are simultaneously modelled using 
one utility function with a clear interpretation per choice. He ‘loosens’ this description by 
introducing two separate utility functions and by explicitly modelling the correlation between 
the continuous and discrete choice. To do so, he translates the departure time choice, to the time 
spent at home before leaving for work. Mode choice follows the utility function introduced in 
Eq. 7.1 and departure time is defined as follows: 
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where k=1 indicates the before-departure at home activity, and k=2 is the rest of the day. 
Furthermore, 0»  is the satiation parameter and $»

ÍÁ represents the time expenditure on before-
work and rest-of-the-day activities. The joint model describes the correlation using a BVN to 
allow for full correlation between alternatives, like Habib et al. (2009). 

7.3.7. Segmentation Approaches  

Segmentation approaches have built upon the Logit models, but add an additional structure to 
these models that allow for different decision-making processes within the population. Two 
model structures have been identified that address multiple travel choices: the Co-Evolutionary 
Model (CEM) (Krygsman et al., 2007) and the Flexible Model Structure (FMS) (Ishaq et al., 
2013).  

Krygsman et al. (2007) introduce CEM, which combines MNL models for each travel 
choice with an iterative method that determines the order of decisions for each individual. The 
expected utility for each travel choice depends on perceived value of the attributes related to 
that choice. Furthermore, they assume that the availability of an alternative is dependent on 
other decisions (uncertainty in decisions). They use MNL for the individual decisions, and start 
their iterative procedure by fixing all probabilities to be equal for all alternatives. At the end of 
each iteration, the amount of uncertainty in a travel choice is calculated as the entropy of the 
travel choice and the level of convergence. The latter signifies the difference between calculated 
probabilities in the current and previous iteration. If the uncertainty of one of the travel choices 
is lower than an assumed threshold, the decision is fixed by setting the probability of the 
alternative with the highest utility to 100%. This iterative process continues until all choices 
have been made. Consequently, this approach introduces a hierarchy in the decision process, as 
all choices are assumed to be made sequentially. They apply CEM to trip chain and mode 
choice, where most individuals decide on the trip chain before the mode. Due to iteratively 
estimating MNL models, the computational effort of this approach is low. Their approach was 
also applied by Li et al. (2013) to trip chain and mode choice. 
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 FMS allows for more flexibility regarding heterogeneity in individuals’ decision-
making processes (Ishaq et al., 2013). The population is segmented based on the notion that 
segments differ in their decision-making processes. The general formulation of the model is as 
follows: 

h&' = ddh'

n

Îóò

(!|Ï)
å

Ìóò

h(Ï|Ó)h'(Ó|f, 0ö) (7.13) 

 
where h'(!|Ï)	is the probability that individual	" chooses alternative !, given model structure 
Ï, and where h(Ï|Ó) is the degree of membership of segment Ó in structure Ï, and where 
h'(Ó|f, 0ö) represents the probability that individual " chooses segment Ó, given their 
characteristics f and their weights. As this method is very flexible, each of these parts can be 
modelled using a different method. This method resembles the latent class model, where 
segments of individuals can have different model structures assigned (Greene and Hensher, 
2003). The authors suggest that the segmentation is modelled using the C-means algorithm, the 
assignment of segments using ML models, and the choice of alternatives using a NL model. 
The NL structure suggests that travel choices are partially correlated, with different nesting 
structures for different segments. They apply FMS to destination and mode choice.  Because of 
the different modelling aspects, one of which is modelled using the ML structure, the 
computational effort is high. 

7.3.8. Miscellaneous Approaches 

Two studies in this literature review could not be assigned to the model approaches described 
hitherto: Simultaneous Logit (SL) (Ye et al., 2007) and MNL-ordered response formulation 
(Bhat, 1997).   
 SL is introduced by Schmidt and Strauss (1975), where they assume that travel choices 
are made simultaneously. This model can be considered an extension of the MNL model. The 
SL model, for two binary choices, is formulated as follows: 
 

ln Ô
h&'(l' = 1|')
h&'(l' = 0|')

Ò = Ú′Û' + 0' 

ln Ô
h&'(' = 1|l')
h&'(' = 0|l')

Ò = 9′f' + ‚l'  
(7.16) 

 
where X and Y are travel choices, Ú′Û' and 9′f' the deterministic parts of the utility, and 0' 
and ‚l' represent the influence of this choice on the other choice. It is necessary to set 0 = ‚, 
leaving only 0 to be estimated (the joint dependence). Ye et al. (2007) applied this method to 
trip chain and mode choice. Computational effort is low. 
 Bhat (1997) introduces a joint model for trip chain and mode choice. The mode choice 
is represented by a MNL model and the trip chain choice is modelled using an ordered response 
formulation (ORF) (McKelvey and Zavoina, 1975). Trip chain choice is translated to the 
number of non-work commute stops (ordinal choice) presented in Eq. 7.17: 
 

Ï&'
∗ = ÚÙ&f&' + ‚&'	, Ï&'

	 = ı	 
if	y&,»˜ò < Ï&'

∗ ≤ y&,»,	Ï&'
	  observed for chosen mode i 

(7.17) 

 
where Ï&'∗  is the stop-making propensity of individual " when using mode !. ı is the number of 
stops and Ï&'	  is characterised by the stop-making propensity Ï&'∗  and thresholds y, in the 
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standard ordered response fashion. The error terms ‚&' are identically normal-distributed across 
modes ! and individuals ". The joint model can be estimated when the error terms assume the 
same distribution, requiring transformation of the iid Gumbel term into a standard normal 
variable. A BVN then allows full correlation between alternatives of choices. 

7.4. Simultaneous Modelling of Multiple Travel Choice Dimensions 
This review focusses on five travel choice dimensions: trip chain, destination, departure time, 
mode, and route. The studies identified, consider a combination of these choice dimensions. 
Table 7.1 provides an overview of the models applied for each combination of travel choice 
dimensions. Please note that in case three choices were modelled simultaneously (Eluru et al., 
2010; Vrtic et al., 2007), the model structure was assigned to each combination of these choice 
dimensions.  

Table 7.1: Model structures (and sub-category) applied to model different combinations of travel choice 
dimensions 

 
 
 From Table 7.1 several interesting observations can be made. First, some combinations 
of choice dimensions have been modelled using many different model structures. In activity-
based models, any combination of choices can occur, but often a certain sequence is assumed. 
For example in the Portland model (Bowman et al., 1998) the hierarchical order (imposed by 
NL models (de Dios Ortúzar and Willumsen, 2011)) is the following: trip chain, departure time 
(time-of-day), and combined mode and destination choice. Given this hierarchically imposed 
order of choice dimensions, which is similar for other activity-based models, it would make 
sense to find abundance of model structures that have been applied on travel choice 
combinations that are adjacent in this so-called hierarchy. Table 1 shows that this is the case for 
some of the adjacent travel choice combinations, such as destination-mode, departure time-

Trip Chain Destination Departure Time Mode Route

Trip Chain

NL (NL)
Probit (RBP)

ML (RPL)
Misc. (SL)

Misc. (MNL-ORF)
SA (CEM) 

Destination NL (MDCEV-MNL)

MNL (JL)
NL (NL)

NL (NL-MNL)
NL (MDCEV-MNL)

CNL (CNL)
SA (FMS)

NL (MNL-PSL)

Departure
Time

MNL (Vj)
NL (NL)

NL (MNL-OGEV)
NL (MDCEV-MNL)

NL (RPL-RPL)
CNL (CNL)
ML (ECL)

ML (ECL+RPL)
DC (BVN-time)

DC (Copula-time)
DC (‘loose’ MDCEV)

MNL (Vj)
Probit (Probit)

Mode
MNL (JL)
MNL (Vj)
NL (NL)

Route
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destination and departure time-mode. However, one abundantly modelled combination is not 
part of this so-called hierarchy, namely the trip chain-mode combination. There are, however, 
sound arguments for modelling this specific combination. Researchers are generally interested 
in the complexity of trip chaining patterns and how this relates to the modes chosen. For 
example, Ye et al. (2007) have investigated whether the choice for the car increases the 
complexity of trip chains in comparison to public transport. Their research focus excludes the 
need to include departure time in the model. In the four-step model, mode choice generally 
precedes route choice in the modelling workflow (de Dios Ortúzar and Willumsen, 2011), 
which is also a recurring combination in this review. Consequently, most combinations of travel 
choice dimensions that are simultaneously modelled are in line with the order implied by 
activity-based and four-step models. 

Second, a large variation of model structures is found in the departure time-mode choice 
combination, which is mostly related to the departure time choice dimension. There have been 
discussions on the representation of departure time as a discrete or continuous variable (Bhat 
and Steed, 2002). Some of the model structures include discrete departure time (e.g. MNL (Vj) 
and CNL (CNL)), whereas others model departure time as a continuous variable (discrete-
continuous structures). Several arguments were provided by Bhat and Steed (2002) that reason 
against a discrete representation. There are noticeable efforts to address these limitations, for 
example by introducing the OGEV model (Bhat, 1998b). In general, the discrete-continuous 
structures have been applied later than the discrete structures, i.e. before versus after 2010.  
 Third, the combination mode-route is often modelled at an aggregated level in 
assignment models (like the four-step model). Prato (2009) provides a thorough review on the 
different discrete choice models suitable for modelling route choice. Generally, routes partially 
overlap with one another, which cannot be captured using the MNL model, and is difficult to 
capture using NL or CNL structures. In the review, only MNL and NL applications are 
observed, meaning that the overlap of route choices is not (accurately) taken into account 
(Broach and Dill, 2016; Montini et al., 2017; Shakeel et al., 2016; Vrtic et al., 2007). 
Consequently, no satisfactory solution is provided for route choice overlap in these model 
structures. Debrezion et al. (2009) introduce PSL for the route choice (in the destination-route 
choice combination), which does provide a solution for overlap. Furthermore, the mode-route 
choice studies all date starting from the late 2000’s, suggesting that modelling the mode-route 
combination by means of discrete choice models, is gaining popularity.  
 Last of all, in activity-based models the mode-destination combination is often modelled 
simultaneously (using MNL). In the model structures assessed in this review not only MNL, 
but also NL, CNL, and a segmentation approach (FMS) are represented. The NL introduces 
substitution patterns, which imply a sequence in modelling the dimensions, where both 
hierarchical structures are found (Debrezion et al., 2009; Eluru et al., 2010; Newman and 
Bernardin, 2010). While CNL allows for correlation over both choice dimensions, results 
showed a higher substitution for destinations compared to modes (Ding et al., 2014). Ishaq et 
al. (2013) used the FMS framework and found both hierarchical structures among their 
population. These findings suggest that the decision might not be ‘fully’ simultaneous after all, 
as the substitution patterns suggest one dimension is changed before the other one does.  
 Summarising, for many combinations of travel choice dimension research has drifted 
away from the MNL and NL structures that are often applied in activity-based and four-step 
models. A wide variety of adaptations and improvements have been suggested for different 
combinations of travel choice dimensions.  
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7.5. Assessment Indicators 
This section discusses the indicators used for assessing the different discrete choice modelling 
structures. As mentioned before, both the suitability of the model structure for simultaneously 
modelling multiple travel choice dimensions as well as its applicability by researchers or 
practitioners are examined. The suitability indicators are discussed in section 7.5.1 and the 
applicability indicators are discussed in section 7.5.2. Figure 7.2 provides an overview of the 
indicators and the range of possible outcomes per indicator. 
 

 

Figure 7.2: Indicators for assessment of the model structures 

7.5.1. Suitability Indicators 

Four different indicators are identified for assessing the suitability of model structures. These 
indicators relate to the flexibility in the correlation structure of the model, correlation between 
choice dimensions, heterogeneity in the decision-making process of individuals, and the model 
specification of different choice dimensions. These indicators are chosen because they are able 
to capture the degree of realism in decision-making processes of individuals when regarding 
multiple choice dimensions. Furthermore, these indicators reflect the strong, and potentially 
unrealistic, assumptions of the MNL and NL models, which are often used in activity-based 
and four-step models. 
 First of all, the flexibility of the correlation structure in the model structure is assessed. 
A flexible correlation structure is defined by the possibility to identify different correlation 
structures. As an example, a flexible model structure is able to accommodate both full 
correlation between travel choice dimensions as well as partial correlation, whereas an 
inflexible model structure only accommodates full correlation. This flexibility allows the 
researcher to find the best correlation structure between the different choice dimensions for the 
data available. Consequently, a flexible correlation structure is preferred.  
 The second indicator, which is related to the first, represents the correlation structure 
applied by the researcher (,&' in Eq. 7.1). The difference between those two indicators is that 
the first shows the theoretical possibilities of the correlation structure, whereas the second 
reflects the application of the correlation structure. In case of modelling multiple travel choice 
dimensions, this reflects the correlation between alternatives of different travel choices. Three 
different correlation structures are possible: no correlation (independence), partially correlated, 
and fully correlated. Partial correlation means that, when the situation changes, alternatives of 
one choice dimension are substituted before alternatives of the other choice dimension. As an 
example, the substitution pattern might show that the mode is changed before the departure 
time. In the literature this is also referred to as hierarchy among choices (de Dios Ortúzar and 

Suitability Applicability

1. Flexible correlation structure 
Yes/No

2. Correlation between choice dimensions
No/Partial/Full

3. Heterogeneity in decision-making
Yes/No

4. Model specification of choice dimensions
Universal/Specific

1. Computational effort 
Low/Medium/High

2. Parameters related to model structure
e.g. !"1 for Nested Logit
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Willumsen, 2011). Fully correlated structures allow for calculation of substitution patterns but 
also emphasize the joint choice, therefore these structures are preferred.  
 Different correlations structures between travel choices have been found in different 
studies. Similarly, one can argue that one individual can have a different decision-making 
process compared to another, resulting in different substitution patterns per individual. The third 
indicator addresses the segmentation of the population regarding the decision-making process. 
It reflects whether the model structure allows for segmentation or differentiation within the 
population in the decision-making process. Due to evidence supporting existence of 
heterogeneity in decision-making processes (Ishaq et al., 2013; Krygsman et al., 2007), model 
structures should preferably be able to account for it.  
 The last indicator addresses the fact that different choice dimensions might need 
different model structures. For example, route choice ideally is treated differently than 
departure time choice, as different issues are encountered in determining the alternatives and 
their correlations. More specifically, in route choice, different paths are available which overlap 
spatially, whereas in departure time choice this type of overlap is not present. The fourth 
indicator reflects whether a universal model structure is imposed for all considered choices or 
a specific structure that is optimised for each choice dimension. For example, route choice and 
departure time choice are simultaneously modelled using the same model structure or they are 
modelled using different, more specific, model structures. Consequently, a specific model 
specification is preferred.  

7.5.2. Applicability Indicators 

Researchers and, especially, practitioners generally prefer a model structure that is easy to 
interpret and that is relatively fast to estimate and forecast (Hess et al., 2007a). To assess the 
practical applicability of the different model structures for modelling multiple travel choices 
simultaneously, we propose two indicators: computational effort and the additional parameters 
that need to be estimated due to the selected model structure.  

The first indicator is the computational effort. A differentiation between low, medium, 
and high effort levels is made. A model structure that has low computational effort, has a closed-
form mathematical formulation and is concave in its objective function. Lack of closed-form 
formulation in the model structure requires Monte Carlo simulations or numerical integration 
in the estimation process, which results in high computational effort for a model structure. At 
the intermediate level, some model structures have a closed-form formulation, but for example 
a non-concave objective function (medium). For practical application, low computational effort 
is preferred. For research purposes, computational effort is generally less of an issue, unless the 
model is developed for practical purposes.  

The second indicator represents the ease of interpretation and is operationalised by 
means of the number of additional parameters that are attributed to the choice for a model 
structure. The MNL can be considered a base case since it does not induce any additional 
parameters. Preferably limited extra parameters are imposed by the model structure, as these 
have to be estimated and can increase the computational effort as well as reduce the 
interpretability of estimation results. Furthermore, if many additional parameters need to be 
estimated, more data is required for model estimation which reflects lack of parsimony.  

7.6. Assessment of Model Structures 
In this section, the model structures introduced in section 7.3 are assessed with respect to the 
identified indicators related to suitability and applicability. Section 7.6.1 discusses this 
assessment related to the suitability indicators and Section 7.6.2 discusses the assessment in 
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relation to the applicability indicators. In Section 7.6.3 we provide a synthesis of the assessment. 
Appendix 7.A provides an overview of all the reviewed studies and how the applied model 
structures score on each indicator.  

7.6.1. The Suitability of Model Structures 

The suitability of the model structures (as implemented in the literature) is assessed using four 
indicators; flexibility of the correlation structure, correlation between choice dimensions, 
heterogeneity in decision-making process, and model specification of choice dimensions. Table 
7.2 provides an overview of each model structure’s score. Please note that some of the 
categories of model structures have sub-categories which may score differently. Several 
implementations of model structures are possible, which each have different abilities. For 
example, RPL (ML) has the power to reflect heterogeneity within a choice dimension towards 
several variables, but does not accommodate correlations between choice dimensions. ECL 
(ML), on the other hand, accommodates the latter.  

Table 7.2: Assessment of identified model structures based on suitability indicators: model structure (sub-
category) 

 
 

Given the definition of the indicators by the authors, the top-left quadrant represents model 
structures that have no flexible correlation structure and do not incorporate heterogeneity in the 
decision-making process of individuals. In general, model structures are developed for single 
choice dimensions, in that case the flexibility in correlation and heterogeneity of decision-
making are less (or not) relevant. Consequently, many model structures reside in this quadrant. 
Within this quadrant all MNL and NL structures are situated, which are often used in the 
activity-based and four-step models. Consequently, this means that flexibility in the correlation 
structure and heterogeneity in decision-making processes are generally not part of the activity-
based and four-step models and are, thus, often compromised.  

The lower half of the table refers to heterogeneity in the decision-making process of 
individuals (or segments of the population). Basically, one person or group of persons could 
have different substitution patterns of one travel choice compared to another. For example, one 
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group of individuals has a higher sensitivity towards mode changes compared to the destination 
for shopping. Consequently, this group will change their mode before changing their 
destination. This might be the reversed for another user group. These two groups can co-exist 
within the population. In the current activity-based and four-step models, this distinction is not 
made. Only two model structures are designed to incorporate this heterogeneity: the 
segmentation approaches CEM (Krygsman et al., 2007) and FMS (Ishaq et al., 2013). These 
two studies acknowledge that individuals or groups of individuals have different sensitivity 
levels towards different choice dimensions. Consequently, this indicator offers ample room for 
improvements in future research. 

The right side of the table pertains to model structures with flexible correlation 
structures. These consists of ML and Probit model structures (FMS incorporates ML in its 
model structure). FMS is flexible and is able to accommodate different model structures. 
Therefore, also ML and potentially Probit structures, can be included in FMS while allowing 
for heterogeneity in the decision-making process. In FMS this happens via a latent class 
component (Greene and Hensher, 2003). This shows that combining currently existing model 
structures, might improve the simultaneous modelling of multiple travel choice dimensions.  

The grey area in the right-bottom corner corresponds to the ‘ideal’ model structure in 
relation to the set of indicators employed in this study. This model structure would be flexible 
in the correlation structure, include heterogeneity in the decision-making process, and has a 
choice dimension specific model specification. This ‘ideal’ structure does not appear in any of 
the reviewed studies. The model structure that comes closest to it is the segmentation approach 
FMS (Ishaq et al. 2013). This model structure is flexible and, in theory, allows for different 
model structures to be used for different choice dimensions. However, it has not been applied 
in this way, therefore there is no evidence yet to support this claim. Consequently, when the 
aim is to simultaneously model multiple travel choice dimensions, there is room for 
improvement regarding the suitability of model structures. 

7.6.2. The Applicability of Model Structures 

To test the applicability of the model structures identified in this review, the models are assessed 
using two indicators: one related to the computational effort and one related to the ease of 
interpretation. The ease of interpretation is translated into an objective indicator: the number of 
parameters that are induced by the selected model structure.  
 The number of parameters imposed by the model structure is zero in the case of a MNL 
model. This model therefore serves as a baseline. Several types of parameters can be imposed 
by model structures. 9’s reflecting the impact of other choice dimensions on a particular choice 
are required by the MNL (Vj) and CEM models. Nesting parameters T are required in NL, CNL, 
and segmentation approach FMS (given the specification in the study by Ishaq et al. (2013)). 
Parameters representing the mean and standard deviations are used in ML and FMS structures. 
Finally, parameters related to the correlation between two choice dimensions are used in 
discrete-continuous approaches. Generally, the model structures related to MNL and NL require 
a limited number of additional parameters. Other structures require more parameters, which in 
turn makes it more difficult to interpret. The number of additional parameters to be estimated 
per model is indicated in the overview in Appendix 7.A.  
 The (qualitative) assessment of the computational effort is visualised in Table 7.3. As 
mentioned before, most MNL and NL model structures have a low computational effort. This 
is due to their closed-form formulation. Furthermore, SL and CEM also have a low 
computational effort, because they are based on the MNL structure. In the medium category, 
the model structures generally have non-concave formulation resulting with multiple local 
optima, instead of a global optimum. Consequently, they benefit from closed form formulation, 
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however there is no guarantee that the global optimum is found. All models based on ML or 
Probit require high computational effort, due to lack of a closed-form formulation, which means 
that numerical optimisation or Monte Carlo simulation is required to estimate these models. By 
simulating using a large enough set of draws (e.g. >1000), the global optimum can be found.  

Table 7.3: Assessment of identified model structures based on computational efficiency: model structure 
(sub-category) 

 
  
The applicability indicators largely favour the currently applied model structures (MNL and 
NL). Furthermore, our definition of interpretability of the model estimation is closely related to 
the computational effort. The model structures that have most parameters imposed, are the ones 
that are associated with the highest computational effort, but potentially also result with the 
global optimum (i.e. optimal solution). Consequently, the model structures introduced after 
MNL and NL seem to be less suitable for practical purposes.  

7.6.3. Synthesis of the Assessment of Model Structures 

Finally, we bring together the suitability and applicability indicators. This synthesis helps in 
understanding when a model structure can be used, given considerations on suitability and 
applicability. We do this by identifying the model structures that are most preferable according 
to each suitability indicator and assess them based on their applicability. Table 7.4 intersects 
the assessment of the most suitable model structures with respect to their applicability.  

Table 7.4: Assessment of most suitable model structures according to each indicator on computational 
effort: model structure (sub-category) 

 
 

Computational effort

Low Medium High

MNL (all)
NL (NL)

NL (NL-MNL)
NL (MNL-PSL)

NL (MNL-OGEV)
Misc. (SL)
SA (CEM)

NL (MDCEV-MNL)
CNL (CNL)

DC (all)
Misc. (MNL-ORF)

NL (RPL-RPL)
Probit (all)

ML (all)
SA (FMS)

Applicability

High Medium Low

Flexible 
correlation 
structure

Probit (Probit)
ML (ECL)

ML (ECL+RPL)
SA (FMS)

Full
correlation 

between choice 
dimensions

Misc. (SL)
CNL (CNL)

DC (all)
Misc. (MNL-ORF)

Probit (Probit)
ML (ECL)

ML (ECL+RPL)

Heterogeneity
in decision-

making process
SA (CEM) SA (FMS)

Specific model 
specification 

per choice 
dimension

MNL (Vj)
NL (MNL-OGEV)

NL (NL-MNL)
NL (MNL-PSL)

NL (MDCEV-MNL)
DC (all)

Misc. (MNL-ORF)
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Table 7.4 shows that multiple model structures are considered most suitable according to the 
individual indicators. Several interesting observations can be made. First, regarding the model 
structures with flexible correlation structures, we observe that all of them score low on 
applicability. This leads to the conclusion that currently flexibility of a model structure comes 
at a high computational cost. Second, the model structures that include full correlation between 
choice dimensions show a large variety in terms of their applicability (SL (based on MNL) 
versus the flexible ML and Probit structures). Third, only two model structures are 
heterogeneous in their decision-making process. FMS includes ML in its model structure, 
making it less applicable, but it is flexible and has high potential. CEM is based on MNL and 
thus efficient. Finally, the model structures that incorporate choice dimension specific 
specification are nearly all NL or discrete-continuous. These are low to medium in their 
computational effort, making them applicable.  
 Some model structures occur more often in Table 4. The ML and Probit model structures 
score high on flexible correlation structures and full correlation between choice dimensions. 
The FMS structure is flexible and allows for heterogeneity. In theory that model structure could 
also include full correlation between choice dimensions and potentially also differentiate 
between model structures per choice dimension. The discrete-continuous and MNL-ORF model 
structures allow for full correlation and dimension specific specification. All these more 
suitable model structures are less applicable as they have medium to high computational effort 
and require the estimation of several parameters that are imposed by the model structure. 
Consequently, there seems to be a large discrepancy between those model structures which are 
most suitable according to our indicators, i.e. are considered to be most behavioural realistic, 
and those most applicable. Activity-based and four-step models encompass the most applicable 
structures, but these are not necessarily the most suitable.  

7.7. Conclusions and Future Research Directions 
This literature review study assesses the suitability and applicability of different discrete choice 
modelling structures when simultaneously modelling of multiple travel choice dimensions. The 
best known examples of this type of models are the activity-based and four-step models. These 
models mostly use MNL and NL models, which rely on some strong assumptions and are found 
to lack the power to accommodate complex relationships realistically. Many advancements 
have been made in discrete choice models since the introduction of MNL and NL. We reviewed 
studies that apply discrete choice models to simultaneously model a combination of trip chain, 
destination, departure time, mode, and route choices. We have assessed the model structures 
used with respect to their suitability, reflecting the behavioural realism, and the applicability, 
reflecting the ease of implementation (in practice). 
 The studies identified for this review sometimes adhere to the hierarchy often introduced 
in activity-based and four-step models (de Dios Ortúzar and Willumsen, 2011). If they adhere 
to the order, they often find a variety of substitution patterns that is not always in agreement 
with the general application of the activity-based and four-step models. If they do not adhere, 
they do find significant relationships, again with varying substitution patterns. This suggests 
that a wider variety of relationships occurs between the travel choice dimensions than has been 
conventionally assumed in the activity-based and four-step models.  
 This literature review indicates that none of the model structures corresponds to the 
‘ideal’ model based on the identified suitability indicators, i.e. no structure is flexible in the 
correlation structure, introduces full correlation between choice dimensions, allows for 
heterogeneity in the decision-making process of individuals, and has specific model 
specification per choice dimension. Moreover, the models that are considered most suitable (on 
one or more indicator) are generally less applicable. Consequently, in terms of behavioural 
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realism, the model structures can be improved. Furthermore, this means that currently increased 
behavioural realism comes at the cost of hampering applicability.  
 The most promising path for improving the model structures is the latent class model, 
where several complex model structures can be included, for example ML. The latent class 
model is able to accommodate heterogeneity in the decision-making process of individuals by 
assigning individuals to different classes. The ML model is flexible and allows for full 
correlation between choice dimensions. Consequently, a combination of these models could 
potentially tackle the suitability component, as it will increase the behavioural realism of the 
model structure, albeit this does not contribute to its applicability.  
 Based on this literature review several directions for future research on the simultaneous 
modelling of multiple travel choices using discrete choice modelling structures are identified. 
First, heterogeneity in the decision-making process is insufficiently accommodated in current 
model structures. Research has shown the relevance of this aspect. Accommodating this 
heterogeneity will contribute to increased behavioural realism. Therefore, more research is 
needed on how to incorporate this heterogeneity into the model structures. Second, the models 
that are able to include a specific approach towards each choice dimension do generally not 
adhere to the other suitability indicators. Consequently, model structures need to be developed 
that allow to cater for individual choice dimensions while better adhering to the other indicators. 
Third, latent class models (Greene and Hensher, 2003) seem promising for improving the 
behavioural realism with respect to user heterogeneity. Finally, often gains made in terms of 
realism in behaviour come at a high computational cost. A trade-off is made in practice between 
computational efficiency and behavioural accuracy, resulting in the use of efficient but less 
nuanced models (like MNL and NL). Consequently, it is important to enable practitioners to 
use the potential of the current theoretical advancements, by developing models that satisfy or 
offer a good compromise between suitability on one hand, and applicability on the other hand. 
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Appendix 7.A: Overview of the analysis. TC=trip chain, D=destination, DT=departure time, M=mode, R=route, Cat.=category, spec.=specification, JL=Joined 
Logit, RBP=recursive bivariate probit, DC=discrete-continuous, BVN=bivariate normal distribution, SA=segmented approach, Misc.=miscellaneous 

 
   Choices modelled Modelling approach Suitability Applicability 

# Study TC D DT M R Cat. Sub Category 
Flexible 

correlation 
structure 

Correlation 
between 
choices 

Heterogeneity 
in decision-

making 

Model spec. of 
choice 

dimensions  

Comp. 
effort Required Parameters 

1 Richards & Ben-Akiva (1974) � � � � � MNL JL no no no universal low - 
2 Montini et al. (2017) � � � � � MNL JL no no no universal low - 
3 Broach & Dill (2016) � � � � � MNL in Vj no no no specific low {"#$} 
4 Vrtic et al. (2007) � � � � � MNL in Vj no no no specific low {"#$} 
5 Shakeel et al. (2016) � � � � � NL NL no partial no universal low {&#'} 
6 Debrezion et al. (2009) � � � � � NL NL no partial no universal low {&#'} 
7 Hess et al. (2007b) � � � � � NL NL no partial no universal low {&#'} 
8 Lizana et al. (2013) � � � � � NL NL no partial no universal low {&#'} 
9 Paleti et al. (2014) � � � � � NL NL no partial no universal low {&#'} 
10 Yang et al. (2016) � � � � � NL NL no partial no universal low {&#'}, {&#$} 
11 Bhat (1998a) � � � � � NL MNL-OGEV no partial no specific low {&#', )#$} 
12 Newman & Bernardin Jr (2010) � � � � � NL NL-MNL no partial no specific low {&#', &#'.'} 
13 Bawja et al. (2008) � � � � � NL RPL-RPL no partial no universal high +&#', &,-, .,-/ 
14 Eluru et al. (2010) � � � � � NL MDCEV-MNL no partial no specific medium {&#'} 
15 González et al. (2016) � � � � � NL MNL-PSL no partial no specific low +&#', "01,#$/ 
16 Ding et al. (2014) � � � � � CNL CNL no full no universal medium {&#', &#$} 
17 Yang et al. (2013) � � � � � CNL CNL no full no universal medium {&#', &#$} 
18 Jou (2001) � � � � � Probit Probit yes full no universal high +Σ#'$, .	4/ 
19 Ye et al. (2007) � � � � � Probit RBP no part no universal high {5#', )#'$} 
20 Hensher & Reyes (2000) � � � � � ML RPL no no no universal high +&,-, .,-/ 
21 Bhat (1998b) � � � � � ML ECL yes full no universal high {.#', .#$} 
22 De Jong et al. (2003) � � � � � ML ECL yes full no universal high {.#', .#$} 
23 Hess et al. (2007a) � � � � � ML ECL yes full no universal high {.#', .#$} 
24 Börjesson (2008) � � � � � ML ECL+RPL yes full no universal high +&,-, .,-, .#', .#$/ 
25 Habib et al. (2009) � � � � � DC BVN-time no full no specific medium {.#$, )#'$} 
26 Shabanpour et al. (2017) � � � � � DC Copula-time no full no specific medium {.#$, 6#'$} 
27 Habib (2013) � � � � � DC ‘loose’ MDCEV no full no specific medium {7#$, )#'$} 
28 Krygsman et al. (2007) � � � � � SA CEM no partial yes universal low {"#', "#$} 
29 Li et al., (2013) � � � � � SA CEM no partial yes universal low {"#', "#$} 
30 Ishaq et al. (2013) � � � � � SA FMS yes partial yes universal high +&#', &#$, &,-, .,-/ 
19 Ye et al. (2007) � � � � � Misc. SL no full no universal low {7#'$} 
31 Bhat (1997) � � � � � Misc. MNL-ORF no full no specific medium {8#$, )#'$} 
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Chapter 8 – Conclusions and Recommendations 

This thesis investigated mode and route choice behaviour of active mode users and aimed at 
understanding and modelling this choice behaviour. This final chapter summarises and 
discusses the main results of the thesis. First, the main findings of the thesis are presented. This 
is followed by a discussion on several methodological decisions made in this thesis. Next, 
implications for practice that are resulting from the research in this these are given. Finally, 
recommendations for future research are provided.  

8.1. Main Findings 
This section discusses the main findings of this thesis according to scientific contributions 
discussed in Chapter 1. In this discussion, the research questions are answered.   

The Relationship between the Daily Mobility Pattern and Attitudes towards Modes 
Walking and cycling are very prominent in the Netherlands, with approximately half of all trips 
using active modes of transport. However, of course, not everyone uses active modes. In this 
thesis, the total daily mobility patterns of individuals in the Netherlands is investigated and 
compared to their attitudes towards modes (Chapter 2). Five different classes of daily mobility 
pattern users are identified, two of which consist of single mode use (exclusive car and 
exclusive bicycle users) and three show multi modal use (car and bicycle, public transport+, 
and car, walk, and bicycle users). Only one of the classes does not include any active mode use 
(exclusive car users). The bicycle is included in four mobility pattern classes, whereas walking 
is only present in the two highly multimodal classes.  

Attitudes reflect how individuals’ think about a mode, based on comfort, safety, fun etc. 
For most modes, these attitudinal aspects are similar within that mode, i.e. if one aspect of a 
mode is found to be positive, the others are positive as well. This makes it harder to change 
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individuals’ attitudes towards a mode. The attitudes of individuals concerning walking and 
cycling are generally positive.  

We found that the modes used on a daily basis are regarded more positively compared 
to unused modes and between classes significant differences in attitudes arise (Chapter 2). 
Individuals that have a preference for their used modes (consonant users) are potentially less 
inclined to switch modes However, some individuals prefer modes they do not use (i.e. 
dissonant users). This research determines that the classes of exclusive car users and car and 
bicycle users have relatively high shares of dissonant users, where the preference lies with 
active modes of transport. This implies that these individuals might be persuaded to change to 
active modes via, for example, reimbursement by employers for using the bicycle to work, as 
this was found to be an important determinant in the choice to cycle (Chapter 3 and 4). The 
multimodal classes (1, 3, and 4) already contain a share of active mode use, which can be further 
increased. Finally, a large share of the exclusive bicycle users does not use their preferred mode 
and 7% uses their least preferred mode. This can trigger an undesirable change in their mobility 
pattern, because the car is often preferred by these dissonant users.  (answer Research Question 
1).  

Determinants of Active Mode Choice Behaviour in a Cycling-rich Context 
We zoom in on individual trips. Several categories of mode choice determinants are relevant 
for active mode choice in the Netherlands: individual characteristics, household characteristics, 
season and weather characteristics, trip characteristics, built environment, and employment 
conditions (Chapter 3). The individual characteristics entail for example socio-demographics. 
These variables have limited association with the choice for active modes in the Netherlands, 
contrary to findings elsewhere. This might be due to the fact that the Netherlands has a very 
diverse cycling population, which means that people cycle regardless of their gender and age. 
Household characteristics are mostly influencing the choice to walk, where the number of 
children under the age of 12, the number of household members, and household income are 
relevant determinants. Season and weather are of limited influence on walking and cycling in 
the Netherlands, which might be due to the relatively mild climate with frequent rain, which is 
considered normal to the Dutch. Trip characteristics are relevant for both walking and cycling, 
however the exact determinants and their impact differ. As an example, peak hour travel relates 
negatively to walking but is unrelated to cycling, whereas weekday travel relates positively to 
cycling but is unrelated to walking. Features of the built environment are explanatory variables 
of both walking and cycling, and again the exact determinants and their impact differs. For 
example, cycling is positively associated with suburban environments, whereas the level of 
urbanisation has no significant relationship with walking. The employment conditions, 
especially reimbursement for using a mode, has a positive association with cycling. The most 
dominant categories of determinants for cycling are trip characteristics, built environment, and 
employment conditions, whereas trip characteristics, built environment, and household 
characteristics are most dominant for walking. Walking and cycling are influenced by different 
determinants and if they are influenced by the same determinants, the impact of these 
determinants differs (answer Research Question 2). 

Determinants of the Experienced Mode Choice Set  
A feasible mode (like in Chapter 3) is not necessarily a used mode, because an individual might 
own a mode but not use it for a trip. Consequently, when the aim is a modal switch over an 
enduring period of time, it is instead more relevant to know the likelihood of including or 
excluding a mode in the mode choice set. We propose to investigate this using the experienced 
choice set, which is the set of modes used over a long period of time (Chapter 4). This choice 
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set might differ for different trip purposes, therefore we focus on commuting trips. The 
experienced choice set shows that many individuals only use one mode for their work trip 
(83.5%), suggesting habitual and/or captive behaviour, which will not be captured when 
specifying the feasible choice set. This could, of course, be different when considering multiple 
trip purposes. When using only one mode in the daily mobility pattern, which can be the case 
for the car and cycling, we identified that respectively 5% and 7% travel using their least 
preferred mode, which suggests that these are indeed captive users (Chapter 2).  We estimate a 
discrete choice model to identify which determinants are relevant for the formation of the 
experienced choice set. (Chapter 4).  

The relevant determinants for the experienced mode choice set for commuting can be 
categorised into individual characteristics, household characteristics, ownership, urban density, 
and employment conditions. In the dataset, 41% of the individuals has used the bicycle to travel 
to work, whereas only 4% has walked. The probability for including the bicycle in the 
experienced mode choice set increases for higher education, higher urban density, working part-
time, owning a bicycle, and being reimbursed by the employer for using the bicycle. The 
probability for including the bicycle decreases when the car or public transport is reimbursed 
by the employer. The probability to include walking in the experienced choice set (for the full 
commute) increases with the presence of children under the age of 12 in the household and 
decreases when more household members (over the age of 12) are present, when the individual 
owns a bicycle, and when the individual is reimbursed for using the car. The inclusion of cycling 
in the commuting mode choice set is affected by different determinants compared to walking. 
Walking is affected by household characteristics (like in Chapter 3), but also by ownership and 
employment conditions. Cycling is affected by individual characteristics, urban density, 
ownership, and employment conditions (largely overlapping with the findings in Chapter 3) 
(answer Research Question 3). Furthermore, the inclusion of these modes in the choice set 
depends on more determinants than ownership and availability, which are generally used to 
identify the feasible choice set. 

Determinants of Cyclists’ Route Choice Behaviour in a Cycling-rich Context 
In this thesis, route choice behaviour of cyclists’ is investigated in Amsterdam (the 
Netherlands), where cycling is a dominant mode of transport. The relevant determinants are 
categorised into network-related and context determinants. Concerning the network-related 
attributes, distance is valued negatively (Chapter 5). This is in line with findings elsewhere, 
however often the impact is higher elsewhere. This might be caused by the mixed land use of 
Amsterdam, which reduces the need to travel longer distances between destinations. 
Furthermore, the number of intersections is valued negatively and overlap between routes is 
valued positively (Chapter 5). The share of cycle path has a different impact depending on the 
choice set identification method used (Chapter 6). When using the experienced route choice set 
(coined data-driven path identification method (DDPI)) in the estimation of the route choice 
model, it is not found to be relevant. This method builds upon observed routes of individuals, 
consequently these routes are already optimised to a certain extent. It is likely that all routes 
include a relatively high level of cycle path, making them irrelevant for route choice. 
Furthermore, if cycle paths are largely absent from on a route, the street design is such that it 
does not induce negative impacts for cyclists. Regarding the context determinants, we found 
that in the morning peak hour distance is valued more negatively compared to other times of 
the day (Chapter 5). This might be due to scheduling constraints in the morning. Rain and 
darkness are not found to affect route choice. Furthermore, no significant relationship is found 
regarding whether the trip serves as access/egress to the train station versus a standalone trip 
(answer Research Question 4).  
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The Added Value of the Experienced Route Choice Set  
The added value of the experienced route choice set or DDPI method for route choice modelling 
is investigated in comparison to two frequently used choice set generation (CSG) algorithms: 
the breadth-first search on link-elimination (BFS-LE) and labelling algorithms. The DDPI 
method automatically captures all the chosen routes, because only observed routes are included 
in the choice set identification. The CSG algorithms generate routes that aim to capture the 
chosen routes. The success of these algorithms depends largely on the criteria used to generate 
routes (e.g. distance and/or share of cycle paths), the complexity of the network, and the quality 
of the network information that is available. If any of these criteria is insufficient, the generated 
resulting choice set that is generated does not reproduce the observed behaviour. In case of 
Amsterdam, these criteria could not be met, thus introducing issues concerning the CSG 
algorithms’ ability to capture the chosen routes.  

The choice sets from the DDPI method and CSG algorithms are used in a route choice 
model using the same network-related attributes. On the whole, the signs of the parameters were 
similar between methods. The only difference is the path-size factor, where the DDPI method 
produced a positive parameter and the other methods generate a negative parameter. A negative 
sign is expected based on literature. However, because all chosen routes are optimised to a 
certain extent it can occur that the most popular street segments are included in many routes 
(e.g. arterial streets), which results in a positive overlap factor. Consequently, this could be a 
characteristic of the DDPI method. Next to that, the parameter values for the DDPI method are 
lower than for the other methods, which is mostly due to the limited variability in the choice 
set. This makes it more difficult for the model to provide a clear idea of the importance of a 
determinant. This in turn results in lower elasticities and a lower model fit. The choice sets 
resulting from the CSG methods show a larger degree of variation per determinant, ensuring 
that the model is able to provide a clear weight for each determinant, which in turn results in 
higher explanatory power. To validate the models, out-of-sample data is used on the estimated 
models. The DDPI method has a very low performance (largely incorrect prediction of routes 
and low log-likelihood), which means that the DDPI method is not suitable for prediction. 

In sum, when the dependent variables of the CSG algorithms are of insufficient quality 
(criteria, network complexity or network information availability), the DDPI method offers an 
advantage, as it does not depend on any of these issues. Furthermore, in model estimation it 
generally shows similar parameter signs and a similar importance hierarchy of attributes as CSG 
algorithms. This implies that the DDPI method can provide insights into the behavioural 
preferences of individuals, which is useful for quick insights or when no sufficient network 
information is available. However, the DDPI method cannot be used for prediction purposes, 
as the method cannot handle out-of-sample data (answer Research Question 5). 

Suitable and Applicable Approaches for Simultaneously Modelling Mode and Route 
Choice  
In this thesis mode and route choice are investigated individually to get a better understanding 
of the determinants that influence these choices, as often done in active mode research. 
However, several arguments can be made as to why multiple travel choice dimensions should 
be investigated simultaneously (Bhat, 1998). One of these arguments, which relates to mode 
and route choice, is when determinants are related to multiple choice dimensions. This is the 
case in, for example travel time/distance. Therefore, active mode and route choice should also 
be investigated simultaneously. 

In this thesis, we started this investigation by performing a literature review on how 
previous research has handled the simultaneous modelling of multiple travel choices (Chapter 
7). The focus of the literature review is on discrete choice models. Due to the limited number 
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of studies that address simultaneous modelling of mode and route choice using discrete choice 
modelling (four studies), we broadened the scope to also include the other commonly 
investigated travel choice dimensions in the four-step and activity-based models: trip chaining, 
destination choice, and departure time choice.   

The mode-route choice studies all date from after 2010, showing that we start moving 
towards integrated choice modelling in the context of active mode travel research. However, 
these studies all used very basic modelling structures, such as Multinomial Logit and Nested 
Logit (NL). The first assumes a fully simultaneous choice between mode and route, where each 
of the joint alternatives are independent. The second introduces correlation between modes, 
meaning that routes are substituted before modes when changes are introduced, which already 
increases the realism. However, when comparing this NL method with state-of-the-art on route 
choice modelling, one can clearly see issues as for example, overlap between routes is not 
accounted for in any way. Consequently, many steps need to be made in the current state-of-
the-art on simultaneous modelling of mode and route choice.  
 In the literature review, also several more advanced modelling structures have been 
introduced that are used to simultaneous model multiple travel choice dimensions, such as 
Cross-Nested Logit, Probit, Mixed Logit (ML), discrete-continuous (not applicable to mode-
route choice), and segmentation approaches. To simultaneously model mode and route choice, 
it is imperative that overlap between routes can be accounted for (e.g. via Path-Size Logit 
(Chapter 5 and 6)). Furthermore, substitution patterns can vary per person and per trip, as 
increasing evidence is presented that decision-making is heterogeneous (Chapter 7). Therefore, 
ideally the model structure incorporates a flexible correlation structure and is able to account 
for heterogeneity in the decision-making process. Only the segmentation approaches are 
currently able to incorporate the latter. A combination of these segmentation approaches with 
ML or Probit could increase the behavioural realism of the modelled choice dimensions (answer 
Research Question 6). A downside of more behaviourally realistic models is that they are less 
applicable in practice, as increased complexity means reduced interpretability. This reduces the 
likelihood that these models are adopted in practice. 

8.2. Discussion  
In this section we discuss advantages and limitations of the methodological decisions 
undertaken in this thesis and what impact they have on our findings. The decisions that are 
discussed are the experienced choice set, trip-level choice behaviour, discrete choice modelling, 
and single travel choice research.  

The Experienced Choice Set 
In this thesis, we have studied two applications of the experienced choice set. Identifying 
determinants that explain the experienced mode choice set (Chapter 4) and using the experience 
route choice set, coined the data-driven path identification method (DDPI), to estimate a route 
choice model (Chapter 5 and 6). These two applications show several advantages and 
limitations for choice modelling in comparison to other CSG methods. Advantages are that the 
experienced choice set is less prone to falsely include or exclude alternatives and that it is less 
depended on other sources compared to other CSG methods. Limitations are the issue with 
endogeneity and bias and additional requirements in data collection compared to other methods. 
 Frequently employed methods to identify the choice set are prone to misspecifications, 
e.g. falsely excluding or including alternatives. In case of mode choice, we found for example 
that not owning a car does not mean not using it, however heuristic based methods might 
exclude this alternative from the choice set. Furthermore, in case of route choice, if irrelevant 
criteria are used in the CSG alternatives might be falsely included in the choice set. These 
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misspecifications have implications for model estimation and prediction. The experienced 
choice set, on the other hand, is based on (revealed) behaviour, reducing the probability of 
misspecification, as all chosen alternatives are per definition included and non-chosen 
alternatives (for that trip) are likely to be considered for that trip. 
 CSG methods rely, next to the collected data, on other sources for generating the choice 
set. In route choice these sources are related to the network (complexity and quality) and 
optimisation criteria, for mode choice these sources are often related to ownership and trip 
length/duration. The experienced choice set does not depend so heavily on other data sources, 
consequently it is able to provide insights even when other sources are unavailable or of 
insufficient quality. 
 One of the limitations of the experienced choice set is that because it is based on chosen 
alternatives, endogeneity is introduced. This issue is not present in CSG methods, given that 
non-generated but chosen alternatives are not included in the choice set. We apply the 
experienced choice set in two ways in discrete choice models, first to estimate the choice set 
and second to estimate the choice. The issue with endogeneity mostly affects the second 
application. We argue that the severity of endogeneity would reduce if more observations per 
person/trip/OD pair are made. However, this issue needs to be considered, as we show that it 
does indeed impact the model estimation and prediction. Therefore, it affects the usefulness of 
the second application of the experienced choice set.  
 When estimating a discrete choice model with a subset of the universal set, per 
definition a bias is introduced (both in case of CSG and experienced choice set). In case of the 
two applications of the experienced choice set, bias is introduced differently. In case of 
estimating the choice set, the potentially introduced bias is directly modelled. Therefore, the 
bias is included more consciously. In case of estimating the choice using the experienced choice 
set, bias is a similar issue as in CSG. However, the effect of bias of different choice sets on the 
modelling outcomes has not been investigated in this thesis.  

Finally, applying the experienced choice set imposes additional requirements on the 
data collection. There are multiple methods available that can result in this dataset. In this thesis 
two different methods were applied. First, in the route choice context we observed individuals 
over a longer period of time (one week) using the GPS-traces from the mobile phone. Second, 
in the mode choice context we asked individuals about the transport modes individuals used for 
different trip purposes over a longer period of time (half a year). The latter data gathering 
methodology is less imposing on the individual’s privacy and requires less effort, but potentially 
more prone to contain errors, e.g. in forgetting alternatives or reporting socially desirable 
behaviour. The first requires that the individual is followed over a sufficiently long period of 
time, as multiple alternatives need to be observed. In case of route choice, this means that 
multiple routes have to be observed per origin-destination pair and ideally multiple observations 
per route are found. If this is not the case, severe loss of data could be the result. When using 
CSG methods, these additional requirements in data collection are not imposed. 

These findings lead to two conclusions. First, using the experienced choice set to 
estimate the choice set instead of the choice, avoids many of the issues that are related to the 
latter (endogeneity, bias). Therefore, the choice set application shows higher potential compare 
to the choice application. Second, in case of applying the experienced choice set in the choice 
context, it shows added value compared to CSG when limited of insufficient network 
information is available, as it will help explain behaviour. However, it cannot be used for 
prediction. Consequently, if sufficient network information is available, it might be beneficial 
to use another method. Examples are CSG that are optimised for different criteria, sampling 
methods or a link-based method.   
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Trip-level Choice Behaviour 
The two best known frameworks in transport demand modelling are the four-step model and 
the activity-based approaches. The four-step model is a trip-based approach which investigates 
the production and attraction of different zones over time, for different modes and their impact 
on the network (route choice). In this approach, each of the trips is regarded as independent 
from the next or previous trip. The activity-based approach suggests that travel only occurs 
when an activity is performed at a different location, and thus has a strong emphasis on the 
relationships between activities. This results in viewing the entire agenda of individuals (in 
tours/days) to understand behaviour, in comparison to viewing one trip at a time to understand 
travel behaviour.   

This thesis investigates mode and route choice behaviour of active mode users using 
data from the Netherlands. In the Netherlands, the four-step model is applied on a national level 
(van Cranenburgh and Chorus, 2017; Hofman, 2002). It is imperative to have a match with the 
modelling framework, to be able to use the findings of this thesis in practice. Therefore, we 
investigate the mode and route choice behaviour of active mode users on a trip-level.  
 Several findings in this thesis suggest that adopting the activity-based approach could 
have produced more insights into the relation between trips, which cannot be captured given 
the current approach. Chapter 2 investigated the daily mobility patterns of individuals, where 
we show that for the majority of individuals a variety of modes is used over the day. This 
multimodal behaviour over the day is not captured when investigating individual trips. 
Furthermore, in Chapter 3 the previous use of modes largely influenced the current mode choice 
decision, which illustrates that one trip is related to the previous and the next trip. Thus, active 
mode research should adopt the activity-based approach, given that no practical implementation 
issues arise. A related PhD research of Florian Schneider (see Allegro-program, section 1.5) 
investigates how trips are organised in activity travel patterns. In that way his research provides 
insights into how active mode travel patterns are different from motorised modes.   

Discrete Choice Modelling  
In this thesis the discrete choice modelling framework is employed for investigating cyclists’ 
route choice and active mode choice. In recent years, machine learning methods (supervised, 
unsupervised, and reinforcement learning) have been increasingly applied to research travel 
behaviour. Both in route choice (albeit not related to active modes) and mode choice these 
methods have been applied (Hagenauer and Helbich, 2017; Park et al., 2007; Wang and Ross, 
2018). Both discrete choice modelling and machine learning have advantages and limitations 
for the investigation active mode choice behaviour. 
 Discrete choice modelling is a theory-driven approach, where the researcher imposes 
the model structure on the data (rich in assumptions), resulting with a model that can be properly 
interpret. The model produces parameter values, confidence intervals, and statistical measures 
that can test the model fit on the data. Furthermore, discrete choice models are transparent with 
respect to how the data is transformed from in- to output (i.e. no black box). On the other hand, 
machine learning is a data-driven approach, which does not require a priori model structures as 
it constructs the model structure from the data (very flexible). This means that there is no clear 
mathematical interpretation of the model in terms of how the data goes from in- to output. 
Machine learning models often function like a black box. Consequently, when the goal of the 
research is to understand and interpret the behaviour of decision-makers, discrete choice 
modelling is very suitable. When the goal of the research is to predict, machine learning is more 
suitable, because it does not rely on a priori assumptions on the model structure and the data. 
Furthermore, machine learning is (theoretically) able to achieve a higher performance in 
prediction. Besides these differences in suitability for reaching different goals, they also differ 
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in the amount of data that is required. Discrete choice models do not require very large amounts 
of data, whereas in machine learning more data is better.  
 The data sources employed in this thesis are not sufficient for machine learning 
applications. Furthermore, the goal of this thesis is to better understand mode and route choice 
behaviour of active mode users, consequently discrete choice modelling is employed in this 
thesis. If more data is available, active mode research could benefit from machine learning, 
especially when advantages of both methods are combined. 

Single Travel Choice Research 
In this thesis, mode and route choice behaviour of active mode users have been investigated 
separately. The main reason for doing so is related the lack of knowledge in research regarding 
these two choices. Active mode research is still in the starting phase, which means that the 
emphasis lies with understanding the individual travel choices of active mode users. 
Consequently, the identified research gaps, related to determinants of influence and choice set 
formation, need to be investigated first. We argue that one first needs to understand individual 
travel choices before jointly modelling multiple travel choices. 

Several arguments can be provided as to why travel choices should be modelled jointly 
(Bhat, 1998a). First, when the relevant choice alternatives are a combination of multiple travel 
choices. Second, when the observed determinants that influence the behaviour are related to 
multiple travel choices. Third, when the joint alternatives share unobserved determinants that 
influence the sensitivity of individuals to changes related to policy measures. This thesis shows 
that for example, travel time/distance influences both mode and route choice. Consequently, it 
seems compelling to jointly investigate these choices. 

In this thesis, a first step towards joint modelling of mode and route choice is provided, 
by investigating existing literature considering discrete choice modelling structures that can 
model multiple travel choice dimensions simultaneously (Chapter 7). However, several 
theoretical developments are required regarding discrete choice modelling structures, before 
mode and route choice behaviour of active mode users can be jointly modelled.  

8.3. Implications for Practice 
The research presented in this thesis has two main implications for practice. First, evidence is 
found that walking and cycling are affected by different determinants and to a different extent, 
resulting in the independent consideration of these modes (Chapter 2, 3, and 4). This has 
implications for transportation planners and policy makers that are concerned with active mode 
transport. Second, we show that individuals only use a limited set of modes throughout the day 
or for specific purposes, often even using a single mode (Chapter 2 and 4). This is not (fully) in 
line with current practice, resulting with implications for practice. 

Walking ¹ Cycling 
Governments worldwide have set goals to increase the active mode share. In their plans to 
promote active modes, walking and cycling are often jointly addressed. In this thesis, we show 
that walking and cycling are to be considered independently (Chapter 2, 3, and 4). Cycling and 
walking are mostly affected by different determinants and in the few cases where they are 
affected by the same determinants, their impact differs (Chapter 3 and 4). Furthermore, no 
correlation was found between the mode choice alternatives walking and cycling, suggesting 
independence (Chapter 3 and 4). Moreover, this thesis shows that these two active modes of 
transport are also used differently. For instance, while the bicycle competes with the car, 
walking is complementary with the car (Chapter 3). Finally, often only one active mode is 
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included in the daily mobility pattern of individuals (Chapter 2). These findings suggest that 
cycling and walking are to be considered independently.  
 These findings suggest that policies should be targeting either walking or cycling instead 
of both active modes of transport, in order to achieve the desired impact. If these modes are 
targeted in combination, undesired effects could arise. Different determinants need to be 
targeted to change the share of walking versus the share of cycling. Also, the potential for 
increasing active mode use or switching to active mode use varies largely across individuals. 
This thesis shows that individuals that are more car-oriented require different influencing 
strategies compared to individuals that already use active modes.  
 To derive more accurate insights regarding the walking and cycling mode share and to 
allow for the calculation of the effect of policy measures for walking and cycling separately, 
both (and independently) active modes should be incorporated in the transport planning models. 
It is essential that the mode choice models incorporate different factors for walking, mostly trip 
related, household related, and built environment, compared to cycling, mostly trip related, 
employment related, and built environment related.  

Limited Number of Modes Used per Individual 
This thesis shows that individuals generally use a limited set of modes. The majority of the 
individuals use only one or two modes in their daily mobility pattern (car and bicycle). 
Furthermore, a limited number of modes is observed in the experienced mode set of individuals, 
which targets specific trip purposes. Most people use the car to go to work, followed by the 
bicycle, and a very limited number of individuals uses multiple modes for the same trip purpose. 
Finally, many individuals have access to a small number of modes (limitations mostly show in 
car and bicycle). These findings provide implications regarding 1) the potential effect of 
policies that target an increase in walking and cycling mode shares and 2) the identification of 
the choice set in transportation planning models that are used to estimate the effect of policy 
measures.  
 First, a limited amount of modes is experienced by the individual, which means that it 
will be harder to change the behaviour of individuals. These individuals might not be aware of 
the level-of-service and other characteristics other modes are offering. In particular, this holds 
when the individuals are content with their mode choices (consonant travellers). When these 
individuals are not content (dissonant travellers), it will be easier to change the behaviour 
(Chapter 2). This means that they will be more open to explore different modes. As an example, 
within the group of exclusive car users, a relatively large share is unsatisfied with the car and 
very positive towards the bicycle, showing potential for change. However, some of these 
individuals are captive users, and can therefore not change to other modes due to financial 
reasons or other requirements (e.g. ownership). Consequently, the effectiveness of policy 
measures that target a switch towards walking or cycling depends on the group of individuals 
that is targeted. 
 Second, a limited amount of modes in the experienced choice set means that the 
specification of the mode choice set requires special attention. In practice, currently the 
specification of this set often does not receive much attention. Often, no restrictions or only 
availability restrictions are imposed. This thesis shows that mode availability is not the same as 
mode adoption (Chapter 4). Consequently, contemporary mode choice models, and the resulting 
policy measures, could potentially be overestimating the impact on changes in mode choice. 
Consequently, more refined methods should be employed in practice to generate the choice set. 
These methods should go beyond availability and ownership, but also consider the impact of 
for example, socio-demographics, urban density, and employment conditions.  
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8.4. Recommendations for Future Research 
This thesis investigated mode and route choice behaviour of active mode users. While doing 
this research several new research directions arose that are not addressed in this thesis. These 
research directions are divided into three topics, namely active mode and route choice (8.4.1), 
other active mode related choices (8.4.2), and methodological advancements (8.4.3). 

8.4.1. Advancements in Active Mode and Route Choice Research  

We are currently still in the starting phase of research featuring mode and route choice 
behaviour of active mode users. The importance of investigating these choices has been 
acknowledged worldwide and the body of research that focusses on active mode and route 
choice is growing rapidly. Three research directions are identified and elaborated upon below, 
that can advance the work presented in this thesis. First, route choice research should feature 
walking, as it is also considered a main (full-fledged) mode in the urban environment. Second, 
active mode and route choice behaviour should be studied simultaneously. Third, the impact of 
smartphones (and their information) should be investigated for active mode and route choice.  

Pedestrian Route Choice 
This thesis only covers the route choice behaviour of cyclists due to two reasons: 1) increased 
interest of governments worldwide concerning cycling, and 2) availability and potential of 
collecting detailed data on cyclists’ route choice. We show that cycling and walking should be 
considered independently (Chapter 2, 3, and 4), consequently we expect that the route choice 
of pedestrians is also affected by different determinants and to a different extent than the route 
choice of cyclists. Therefore, it would also be interesting to investigate the route choice 
behaviour of pedestrians. To perform this type of research, it is necessary that the large-scale 
data collection efforts that are currently devoted to cyclists, also take place for pedestrians. For 
example, a pedestrian counting week could be organised that tracks the routes of pedestrians. 
The information collected can then be used to identify the determinants of pedestrian route 
choice, where a comparison with other modes can be made. Furthermore, pedestrian route 
choice models can be integrated with the route choice models of other modes in transport 
planning models, so as to understand impact on the network of all modes combined. 

Integration of Route and Mode Choice Models 
In this thesis, we identified the need of integrating mode and route choice into a single model. 
In Chapter 7, potential suitable modelling approaches for the simultaneous modelling of 
multiple travel choices are identified. The findings of that review can serve as input for the 
development of a simultaneous integrated mode and route choice model. To achieve this 
integrated model, also the non-trivial task of CSG needs to be performed (see for example 
Chapter 4 and 6). Route choice sets need to also be generated for all modes. Car, bicycle, and 
walking are private modes that have no external dependencies (such as timetables), thus it might 
be possible to employ similar generation techniques for each mode, given that suitable criteria 
are employed for each mode. Public transport, on the other hand, is dependent on timetables 
with (generally still) fixed lines, which might require a different approach towards the 
generation of the route choice set. Furthermore, the mode choice set needs to be specified. The 
experienced choice set could be employed here (like in Chapter 4). In sum, several 
methodological issues (i.e. modelling approach and CSG) need to be investigated before a 
useful simultaneous mode and route choice model can be developed. 
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Influence of ICT on Active Mode and Route Choice Behaviour 
In this thesis we investigated how individuals are influenced in their decision-making by several 
determinants, related to the characteristics of individuals, their surroundings, and their trips. 
However, in the current era, smartphones are taking up increasingly important roles. Also, 
regarding mode and route choice behaviour, increasingly information is gathered via 
smartphones. It is unknown to what extent and how smartphone use influences the choice 
behaviour of active mode users.  Furthermore, it is unknown to what extent familiarity with the 
environment influences this information acquisition process. More research is required to fully 
understand this relationship.   

8.4.2. Advancements in Other Active Mode Related Travel Choices 

Next to mode and route choice, other travel choices, such as departure time and activity related 
choices, are relevant for walking and cycling. No knowledge is currently present as to what 
extent this behaviour is different for active modes compared to motorised modes.  

 Other travel decisions, such as departure time and activity related choices, are currently 
often excluded from the scope in active mode research. One can, however, imagine situations 
where these decisions are highly relevant. For example, departure time choice is increasingly 
relevant in environments where active modes are dominantly present. Bicycle traffic jams are 
already occurring in the Netherlands. Consequently, a better understanding of the departure 
time of cyclists and potentially changing it, could help resolve these issues. Furthermore, the 
activity scheduling of active mode users might differ significantly from the scheduling of 
motorised modes. In the literature, differences between scheduling of trips using public 
transport and the car have been studied (e.g. Hensher and Reyes, 2000; Ye et al., 2007), however 
this is not yet extended to involve active modes. Even though this is also a relevant topic for 
active modes.  

8.4.3. Methodological Advancements  

Several methodological aspects related to discrete choice modelling were addressed in this 
thesis, for example, the development of data-driven choice set formation (Chapter 4 and 6). 
First steps were taken towards understanding the added value of these methodological aspects. 
Notwithstanding, further research is needed in relation to the following three topics, which are 
elaborated upon below. First, it is yet unknown what a long enough observation period is to 
capture the considered choice set and what it depends on. Second, the potential of integration 
of the choice set and choice model (probabilistically) has not been identified. Third, 
heterogeneity in discrete choice models should include the decision-making process to capture 
choice behaviour more behaviourally realistic.  

Observation Period for Experienced Choice Set 
The experienced choice set uses observed choices to identify the choice set. In this thesis, the 
experienced route choice set is based on observations from one-week (Chapter 5 and 6), 
whereas the experienced mode choice set is based on recalled modes used in the course of half 
a year (Chapter 4). We hypothesise that when the choices have been observed over a sufficiently 
long period of time, this choice set approaches the considered choice set. What is currently 
unknown is what is a sufficiently long period of observation. This can be investigated through 
a data collection effort that tracks individuals for a long time with GPS, for example half a year. 
By splitting the observations in time periods (one week, two weeks, three weeks, etc), one can 
investigate when results become stable and could thus have approached the considered choice 
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set. Ideally, this data collection would take place in different environments as the complexity 
of the network and variety of mobility patterns will likely influence the satiation time.  

Integration of Choice Set and Choice Model 
This thesis investigated which determinants influence the experienced mode choice set, which 
reflects one aspect of the probabilistic method proposed by Manski (1977). This probabilistic 
method consists of a deterministic identification of feasible choice sets, a probabilistic choice 
set identification that estimates the probability that the choice set is the considered set 
(experienced mode choice set) from these feasible sets, and mode choice depended on the 
considered set. It would be very interesting to take the research of the experienced mode choice 
set to a next level by integrating it with a mode choice model, similar to the approach proposed 
by Manski (1977). The simultaneous modelling of the mode choice set and mode choice 
provides an interesting comparison to current mode choice research. The idea would be that 
this simultaneous modelling approach provides better model estimates and consequently, 
provides better predictions compared to frequently employed methods for mode choice 
modelling. The main concern regarding practical implementation would be the computational 
effort of such a model, as this will increase with more alternatives and thus choice sets.  

Heterogeneity in Decision-making 
This thesis provides evidence that heterogeneity should be accounted for in active mode 
modelling on different levels. Heterogeneity arises in the preferences of individuals towards 
walking and cycling (taste variation), which results in different attitudes towards modes. 
Furthermore, the importance of various determinants, such as travel time, varies over 
individuals regarding active mode choice. Based on Chapter 7, we expect heterogeneity in the 
decision-making processes of individuals regarding route and mode choice. However, the 
current discrete choice modelling approaches are largely unable to accommodate heterogeneity 
in the decision-making process. 
 
(Akgün et al., 2000; Catalano and der Zijpp, 2001; Hunt and Kornhauser, 1996; Johnson et al., 
1993; Lawler, 1976; Lombard and Church, 1993; Park and Rilett, 1997; Scott et al., 1997) 
(Bliemer et al., 2004; Bovy and Fiorenzo-Catalano, 2007; Cascetta and Papola, 2001; Frejinger, 
2007; Friedrich et al., 2001; Prato and Bekhor, 2006; Sheffi and Powell, 1982) 
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