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ARTICLE INFO ABSTRACT
Keywords: The present work reviews the implementation of adaptive metamodeling for reliability analysis with emphasis in
Adaptive metamodeling four main types of metamodels: response surfaces, polynomial chaos expansions, support vector machines, and

Reliability analysis
Response surfaces
Polynomial chaos expansion
Support vector machines

Kriging models. The discussion presented is motivated by the identified spread and little interaction between
metamodeling techniques in reliability, which makes it challenging for practitioners to decide which one to
consider in a context of implementation. The conceptual problem of reliability analysis and the theoretical
description of the four models is presented, and complemented by a comparative discussion of applications with

riging identification of new areas of interest. The different considerations that influence the efficiency of adaptive
metamodeling are reviewed, with extension to applicability discussions for the four models researched. Despite
all adaptive techniques contributing to achieve significant gains in the amount of effort required for reliability
analysis, and with minimal trade-off in accuracy, they should not be expected to perform equally in regard to the
dependence on the reliability problem being addressed.

Cross application of methodologies, bridging the gap between methodology and application, and ensembles
are some of new areas of research interest identified. One of the major critical considerations for adaptive
metamodeling, and that has been target of limited research, is the need for comprehensive techniques that allow
a blind selection of the most adequate model with relation to the problem in-hand.

To conclude, the extensive and comprehensive discussion presented aims to be a first step for the unification of
the field of adaptive metamodeling in reliability; so that future implementations do not exclusively follow in-
dividual lines of research that progressively become more narrow in scope, but also seek transversal de-
velopments in the field of adaptive metamodeling for reliability analysis.

1. Introduction allowing cheap evaluation of Y(x) at any input value x, Fig. 1.
Hence, a metamodel is described as a function G(x) that surrogates a
One of the key challenges for engineers since the emergence of function g(x) and allows costless evaluation of the relationship between
computational methods has been the development of modelling tech- xCIR? and Y(x), the value of the output at a generic x given by G(x) and
niques that enable fast, cheap, and accurate evaluation of engineering that surrogates the true response given by g(x). d is the dimension of the
systems. Modeling engineering systems has become progressively more input space. The common approach to metamodeling is to define G(x)
accurate with the growth of computationl availability, but also complex. using a set of Xgp = [Xgp, , ..., Xgp,]Cx and Yep(xep) = [g(Xep, » - .-, XEp, )]C
In tandem with the development of high-ﬁdelity computational algo- g(x) observations, also called the experimenta] design (ED).
rithms that model engineering systems, greater data availability has It is known that reliability analysis pursues to find the few occur-
been continuously stressing the demand for approaches that rapidly rences that will result in the failure of an engineering system. That is, if a
solve problems that are critical to engineers, such as the problem of designer wants to study an engineering structure or system (described by
reliability analysis. g(x)) that has a 1 in N probability of failure in operation, he/she will
One of the approaches that showed a large potential in tackling en- need to search in [x;, g(x;);i = 1, ..., N] evaluations for the g(x;) that
gineering analyses that involve complex time-consuming problemsisthe  results in failure. As a result of aleatory uncertainty, he/she is bound and
application of metamodeling techniques. Metamodeling relies in con- mandated to repeat this procedure multiple times. The aforementioned
structing models that act as surrogates of complex problems. idea of applying metamodels in reliability analysis is that of creating a
In their most fundamental form, metamodels are easily understood surrogate G(x) of the performance function g(x). Since G(x) is virtually
as black-box functions that relate an input variable x to an output Y(x), costless to evaluate it is possible to avoid the evaluation of g(x). In this
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Fig. 1. Generic description of a metamodel as a black-box function defined on a support ED.

context, a crucial aspect of metamodels is that their interest is bounded
to how accurate they can act as representations of g(x). If an accurate
surrogate of g(x) is set, then it is expected to produce accurate reliability
estimations. Otherwise, its interest is limited. At the same time, it is of
interest to minimize the resources that are spent in building a meta-
model for a certain level of accuracy. This requirement to exploit the
characteristics of metamodeling in order to fully harness the benefits of
their application originated a research topic that has captivated signif-
icant interest, the adaptive metamodeling.

Adaptive metamodeling refers to the methods that in some way use a
measure of improvement to enhance the capability to surrogate g(x). In
these, the surrogate prediction is improved (in iteration i + 1) with basis
on the current (at iteration i) stage of the surrogate using a pre-
established target (e.g., accuracy). In computational experiments this
process of improvement in sequence is also frequently denominated as
the process of learning [1].

Because metamodels have showed that they can perform well to
solve the problem of reliability, their application as surrogates in this
field proliferated and distinct adaptive techniques for metamodeling
emerged. It is difficult in the present for a new practitioner of reliability
to grasp the existing adaptive metamodeling techniques to their full
extent. At the same time, little interaction has been identified between
fields of metamodeling [2]. It is expected that enabling practitioners to
overview the field of adaptive metamodeling and fomenting transversal
interaction in it, will have an important role in improving the current
state-of-the-art in metamodeling for reliability. In this context, the
present work pursuits to establish a comprehensive review of the
adaptive metamodeling in time-invariant reliability analysis for scalar
performance functions in order to provide practitioners with an over-
view, while not disregarding its contribution to the state-of-the-art. For
such goal, Section 2 frames the problem of time-invariant reliability and
introduces the theoretical basis of the different metamodels used. Sec-
tion 3 discusses adaptive implementations in reliability with particular
emphasis on aspects that influence the performance of adaptive meta-
modeling in reliability. Section 4 presents a comparative discussion with
basis on results from the literature, and discusses applicability for the
models studied. Section 5 discusses the contribution of the developed
analysis beyond the state-of-the-art, i.e., areas of further improvement.
Finally, the main conclusions of the work developed are drawn in Sec-
tion 6.

2. Metamodeling for reliability analysis

In the context of metamodeling for reliability analysis, [3] distin-
guishes two sub-disciplines of metamodeling, regression and classifica-
tion. The distinction is related to the definition of the variable Y(x). In
regression, the metamodel surrogates Y(x) as a continuous variable
within the x continuous space. In classification the x space is also
covered but attributing discrete labels to Y. In reliability analysis, even
considering that the ultimate goal is to perform a classification (ie.,
failure and non-failure), regression is more prevalent. In both cases
metamodeling can be further classified in subtopics, such as, global and
local approximation. In the local approximation the goal is to establish
an accurate predictor of g(x) for the region of interest, i.e., the region of
failure. The idea is mainly to characterize locally the boundary that will

separate failures and non-failures, and this is of interest when confined
regions of x dominate the estimation of Pf. For highly complex problems
this approach is not sufficient, and global approximation should be
pursued. In it, G(x) pursues to establish a global description of g(x) while
capturing also aspects enclosed by the local approximation.

In the present work the general framework for time-invariant reli-
ability analysis [4,5] is addressed, where the probability of failure (Py) is
expressed as the probability P[] of the performance function having
values smaller or equal than a threshold of 0. That is,

Py = Plg(x)<0] = fi(x)dx @
)<0

g)<

where f, (x) is the continuous' joint distribution of the d - dimensional
vector of x input variables. g(x), the performance or limit-state function,
divides x in two domains: the safe-domain, g(x) > 0, and the failure
domain, g(x)<0. An efficient strategy to evaluate the complex integral in
Eq. (1) is to classify the performance function g(x) in x as failure or non-
failure accordingly to,

Ir(x) = {(1)’

with Ir being a binary performance evaluator of failure that is, Ir(x) = 1
for failure and Ir(x) = O for non-failure. Accuracy in metamodeling for
reliability is related to how well the regressor or classifier represents the
true Ir(x) given by g(x).

One of the fundamental alternatives to solve the integral of Eq. (1) is
to use the Monte Carlo simulation (MCS). In MCS, the I; classification
supports the construction of a statistical estimator of the approximate
probability of failure, that is,

if g(x)>0
if 8(x)<0 @

1 Nucs

Z I (x) 3

Nucs 4=

i

Pr = Py

where Njcs is the total number of assessed x for reliability calculations.
The coefficient of variation (CoV) of this calculation is given by,

4

It is understandable that since it is common for Py to be of #/(1073),
©(107), or even smaller, evaluations of Nycs can become a burden.
This resulted in a need for developing alternative techniques to calculate
Py, such as, Importance Sampling (IS) [6], the First Order Reliability
Method (FORM) [7,8], or Subset Simulation (SS) [9]. Metamodels [10]
are just another tool that is used to solve this complex evaluation.

2.1. Types of metamodels
Common application metamodels for reliability analysis, Fig. 2, are:

response surfaces [11,12], support vector machines [13,14] (SVM),

1 It is noted that continuity is intrinsically related to metamodeling but it is
not inherent in the definition of reliability.
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polynomial chaos expansion [15,16] (PCE), Kriging models also known
as Gaussian process predictors [17,18], and artificial neural networks
(ANN) [19]. Applications of the first four in the context of reliability are
extensively discussed in the present work. It is important to highlight
that application in reliability of other metamodels not addressed here
can be identified, e.g. logistic regression [20]. In the present discussion
the interest is on adaptive implementations; a topic that has been most
widely discussed for these four models.

Artificial neural networks (ANN) are an alternative metamodel that
has been successfully implemented in reliability analysis [21,22]. These
are considered in the discussion but not extensively covered in the
present work. Implementations of adaptive ANN for reliability are
limited. While the concept of network is broad, most of the imple-
mentations identified consider sequential enrichment of the training
samples and/or definition of the best ANN configuration [23,19,24].
The complexity of the hidden layers of the network may be one of the
reasons that has hindered further applications of adaptive approaches
that fully exploit ANN in its most interesting form, with multiple layers.
The challenge of finding an adequate architecture for the network
commonly demands the usage of a training sample in addition to an ED.
From the perspective of the present analysis, which focuses on adaptive
approaches, most of the ANN works for reliability fall into a slightly
different category of implementation. Nevertheless, the interested
reader is directed to the recent comprehensive review of [19] that ad-
dresses the application of ANN in the context of reliability analysis.

The term Response Surfaces (RS) has been consistently used for
metamodels that use linear regression of polynomial functions since the
origins of the idea of metamodeling complex systems [10,25]. Later, the
term RS would be applied also to refer to other applications, such as SVM
[26], or ANN [19], but not consistently. In the present work, RS methods
describe metamodeling that uses linear regression in its simplest forms
with different basis functions. Other metamodels that can be also un-
derstood as RS are discussed separately, in particular due to the fact that
some of these originated extensive separate research trends (e.g., Poly-
nomial Chaos Expansions). The present discussion follows then the di-
agram of Fig. 2 in order to distinguish the different metamodels.
Additionally, Table 1 summarizes the definition and characterization of;
(i) RS in three of its main forms: using polynomial basis functions, radial
basis functions, and spline basis functions; (ii) PCE; (iii) SVM and (iv)
Kriging; and its complemented by a brief discussion on each model in the
following sections.

2.1.1. Response surfaces

The most widely established technique to metamodel g(x) using G(x)
uses a linear combination of basis functions, which gives form to the RS
method. RS have been applied to many different fields in reliability
engineering [27,28,25,29-34]. Despite widely applied with polynomial
basis functions, RS also appear constructed on radial basis functions
(RBF), spline functions, or other less common forms, such as the expo-
nential form proposed by [35]. Despite the appearance of more complex
alternatives, according to [36] polynomial basis RS are still the most
popular metamodeling technique for reliability.

In the application of polynomial regression RS, three major factors
that have large influence on the performance of G(x) as a surrogate of
g(x) can be highlighted; the order of the regression (number and degree
of basis functions, including mixed terms); the technique used to esti-
mate a; and the ED. Due to their wider establishment in different fields,
extensive literature covers the distinct problems that emerge in appli-
cation to reliability and that are frequently related to the polynomial RS
simplicity, such as biased or inaccurate predictions of Py due to saturated
designs [37] (ED has strictly the size necessary to define the vector a), or
ill-conditioned problems [38,39].

Structural Safety 89 (2021) 102019

When RBF are applied at least one hyperparemeter needs to be
adjusted to the ED. This demands additional cost in the RS definition.
Cross-validation has been previously implemented to adjust RBF
hyperparameters” in reliability problems [40]. Its intrinsic measure
relating to the ED points through a distance metric and an adjustable
hyperparemeter indicates a larger capability of RBF regressions to adapt
locally (due to the nature of their kernel, RBF act as interpolants, and are
expected to approximate other models that use the similar kernel).

When constructed with basis on spline functions, RS become piece-
wise functions defined using sub-functions in subset domains, and
divided by the so-called knots (E). Considering the range of definition |a,
b], this interval can be subdivided into Q subintervals denoted by [a,Z;],
[E1,82],...,[Eqg-1,b]. In each subinterval, different polynomials P;(x) (or
other basis) are used to fit the objective function, making the spline
function a set of Q pieces. Their interest emerged as a response to the
limitations of the polynomial RS to perform well for large intervals of x
and large ED. A comprehensive discussion on splines is presented in
[41-43]. Common RS that use splines, such as B-splines functions, can
be defined with the individual application of established techniques
such as least squares regression [44].

2.1.2. Polynomial chaos expansion

Polynomial chaos expansions (PCE) are a metamodel that is able to
expand finite variance g(x) processes using a combination of multivar-
iate basis functions that are orthogonal with respect to the joint prob-
ability density function f, of input variable x. For example, if x are
independent standard Gaussian variables, there is a multivariate poly-
nomial basis that is orthogonal with respect to f;.

In reliability they are implemented in their non-intrusive form. As f,
can take multiple forms, a common approach for reliability is to repre-
sent x in the standard normal space via a transformation of variable
[49], which makes a type of orthogonal, Hermite, polynomials partic-
ularly interesting. In order to estimate the q; coefficients popular
methods are the projection with quadrature methods or least-square
minimization. A discussion on these is presented in [50]. In PCE the
value of d poses a significant threat to its efficiency. As d increases the
size of the required ED explodes, making PCE highly susceptible to the
curse of dimensionality’ [2]. The orthogonal property of the PCE repre-
sentation is one of its most interesting merits. It allows for these to
perform efficiently in the capture of the global stochastic behaviour of
g(x) [2]. If a polynomial regression is applied using p order polynomial
functions i.e., [x;,x?,...,x}], as this polynomial basis is not orthogonal,
for x > 0 the prediction value considering the basis functions may in-
crease rapidly, while the same is not verified for x < 0. The approxi-
mation may highly depend on the estimated weights of the basis
functions. The interested reader is directed to the works of
[51,49,52,50,53] where the PCE theory and its merits are comprehen-
sively discussed.

2.1.3. Support vector machines
Support vector machines (SVM) is a kernel based metamodeling
technique initially formulated for classification problems, and later
extended to regression problems. These are frequently, and respectively
identified as SV Classifier (SVC) and SV Regressor (SVR). In reliability
they can be applied in both forms [54,13,55,5]. In binarySVC, g(x) is
classified in a ¢ + 1 category so that a boundary can be set in-between
the two classes such that G(x) > +1 for ¢ =+1 and G(x) < —1 for ¢ =
—1. This boundary is given by an hyperplane whose expression is G(x)
= 0. In SVR, the problem is formulated such that the SVR that defines
G(x) is found to have at most a deviation of ¢ from observed g(x)

2 Hyperparameters refer to the parameters that are not directly learnt from
the data and demand tuning to improve the metamodel performance.

3 Computational demand increases exponentially with the increase of the
number of dimensions, or variables in the present context.
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Metamodels for reliability analysis
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Fig. 2. Types of metamodels identified in reliability analysis for design.

Table 1

Summary of the main features of the different metamodels discussed in the present work in relation to their applicability to the reliability analysis.

Method | Model Characterization
£ | Definition of G(x). surrogate of g(x). with polynomial regression uses,
g »
5
2 Gx) = i fi . . .
= ) ?;" fit®) In their polynomial regression form, RS are fast to construct (they depend only on the
E weight factors a). As d increases the minimum size of ED increases, and for large d only a
E e ! ;
S | wherea=[ar,...,a,]" is aset of weight factors dependent on the pair [xz, g(xzp)] used to define G(x). In its most common form, p polynomial functions | Lmited set of basis functions may be feasible to consider. )
2 i Prediction on polynomial regression, or splines based on these, has little demand. New
K xfori=1,....d are applied.
i _ are evaluated on basis functions weighted with the polynomial coefficients
£ | Inregression RBF takes the form (sp]mcs based metamodels are not restricted to polynomial basis functions).
- Radial basis functions (RBF) demand the training of the kernel shape that increases the
g Glx) = ):. @ (k) demand to train a model. Depending on the kemel used, these interpolants are expected to
| 3 - other as surrogates of g(x), but not enclosing unique properties
= over a set of k size ED and where (.) relates the Euclidean norm (|.|) to a given support point ;. Different types of RBF kernel may be applied, such as | such as uncertainty in the Kriging, or sparsity in SVM. RBF demand the computation of
linear @(x) = ¢|lx —x;]|. or Gaussian @ (x) = exp(—ax—x;||). with c and & as positive shape parameters (hyperparameters) that need to be adjusted. While | distances, which is expected to increase the time and memory demand when the ED
the most conventional polynomial regression depends on the set of p parameters (under the consideration that p < k+ 1 for the problem to be well-posed) | increases. Distance metrics such as the Euclidean may also under-perform in very high
that is an input to the model characterization, RBF is adjusted to the size k. dimensional spaces [45].
A spline of degree p with 0 — 1 knots can be expressed in the form of,
o Main features: Simple. Fast computation.
£ F@)=Yax + ¥ -k, with (x—F,)} = .
= =0 = (=),
o
£
& | anda=[ag,ar....,ap),1=[l1.Lr....,lo_1] as the model coefficients. This form of splines is denominated the truncated power basis. [41] generalizes these
in the so-called B-splines.
Ttuses a regression that expands the fononan basis. Train-
Considering that x is characterized by its f,, the polynomial chaos expansion of g(x) (on a truncated basis) can be simply written as ing o fitting of the PCE uses simple and fast methods such as the least squares minimization.
It has no hyperparameters to train, however PCE are sensitive to d. And in their most ef-
- ficient form they demand some training of the orthogonal basis, which requires an iterative
. =Y ai(x) search
8 & search.
& After the basis functions are set, prediction involves only the evaluation of new points in the
where a; are a series of deterministic coefficients and &;(x) is a basis of multivariate orthogonal polynomials. These multivariate basis polynomials are | |Mivariate polynomials and only few additional calculations.
defined as a tensor of the univariate polynomials related to x =[xy, ....x,]. The order of the expansion is set to be function of the number of input variables Y .
and maximum order ot the ¢(x) basis, both define the minimum ED required for the PCE definition to be well-posed [16]. Main features: Efficient global prediction given by orthogonality characteristics. D
rect evaluation of statistical moments. y fast
In SVC, g(x) is classified in a ¢ £ | category so that a boundary can be set in-between the two classes such that G(x) > +1 for ¢ = +1 and G(x) < —1 for
¢ = —1. This boundary is given by an hyperplane whose expression is G(x) = 0, and that maximizes the margin between the points (minimizing the norm | It is virtually insensitive to the number of random variables [46, 47]. Tn the simplest form it
i of vector normal to the separating hyperplane w) . The SVC problem and the G(x) classifier are formulated as, has two hyperparameters to be tuned which may need to be adjusted for the dataset via
g grid-search and cross-validation. A third parameter may also require adjustment in the
@ SVC t c(wx)+b] > 1 and G(x) = (w.x)+b SVR form. Prediction demands the evaluation of a kernel matrix that for very large
data-sets can require costly calculations, nonetheless it only depends on a subset of the ED,
s with b being a constant bias term. th d.}l‘ly.)p(‘)rL vecul»rrs (terms with coefficient non-zero). Are versatile interpolants with access
% Tn SVR the problem fs formulated such that a G(x) is found {0 have at most a deviation of a € loss function from observed g(x) evaluations (or g(vzp))- to distinet kernel functions.
) P , Main features: They can be applied in the form of classification and regression, and are fast
] SVR 1 Y —(wx)—b<en (wx)+b—Y <& and G(x) = (w.x)+b to compute for small ED [48]. They have synergy with high-dimensional problems, and
@ their accuracy is expected to approach that of other metamodel that use similar kernel
As it is not always possible to solve the problem of optimization demanded by the SVR under the “rigid” constraint of €, slack variables (§,&*) are | (function of the optimization).
introduced to by-pass this limitation [46]. In addition to §,£*, a ion term C is also considered to further expand the flexibility of this problem.
The Kriging metamodel approximates the true responsc function g(x) as Tn the form commonly applied to reliability, with Gaussian correlation, have 6 hyperparam-
eters to be tuned. Other kernels can be applied and are of interest for involved problems (may
‘ ‘ add additional parameters to be adjusted). In high dimensional spaces and ED the number
flax) =ai fi(x) + ... +-ap fp(x) of hyperparameters is expected to increase the requirement to define the metamodel. [48]
o G(x) = f(a:x) +Z(x) with show that Kriging are inefficient when applied to relatively large ED (+2000 points).
g Z(x) = N(0.C(x)) Furthermore, they may not be stable in large ED. It is noted that this is hardly a limitation
£ ’ as in reliability analysis relatively low samples sizes are commonly used. Reliability appli-
2 ) . . o ) . . . - N cations are frequently set to depend on a distance measure, which may pose a challenge for
where f(a;x) is a polynomial regression in its standard form with p (p € IN") basis trend functions f,(x) and p regression coefficients a to be defined. large d and ED.
Z(x) is a Gaussian stochastic process with zero mean, defined with basis on a covariance matrix (C) that relates generic x points by using a constant process
variance (0?) and a correlation function R(x; ). A prediction for the true realisation g(u) in a point u in the space given by the Kriging has expected value | nrain fearures: They enclose an intrinsic measure of uncertainty. They perform as
Gy (u) and a variance G (u) component. interpolants without 10ss of ization

(See above-mentioned references for further information.)

evaluations, see Table 1.

One of the particularities of SVM is that the solution of the optimi-
zation that finds w uses Lagrange multipliers (a), which allows for w to
be represented as a linear combination of xgp and a. The solution to this
linear combination shows that only a subset of xzp is required to
generate G(x), the points that have on-zero value of the a multiplier.
Therefore, by construction there is sparsity in the resulting model (origin
of the name Support Vector). This is the most relevant property of the
SVM in its both forms, the definition of SVM has limited dependence on
the d dimension of the input space [47,46]. In SVC, « is non-zero in the
points that define the margin, whereas in SVR only the samples outside
the e-region will enclose relevant information to characterize w.

In common reliability problems, G(x) needs to metamodel highly
complex g(x). In SVM the approximation to complex classification and

regression is achieved by using a kernel trick [56], which projects the
support data in a feature space where the projection of x in a separable
inner product can be solved.

In their most fundamental form, SVM may use a tuning over kernel
parameter from the kernel function, the C parameter that controls the
complexity of the regression and the loss function. Common imple-
mentations for reliability analysis adjust these using cross validation
error with root-mean-squared-error [57,58]. A comprehensive discus-
sion on the parameter selection for classification and regression is pre-
sented in [59,60].

2.1.4. Kriging or Gaussian process models
Kriging models, or Gaussian process models, are a particular case of
metamodels that interpolate g(x) (and that in their stochastic form,
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approximate g(x)) considering that the model response follows a
Gaussian process indexed by input random variables, with the ED acting
as conditioning points. Because Kriging models enclose a measure of
uncertainty, they intrinsically perform as self-improving functions.

The application of Kriging is kernel based and demands the selection
of a correlation function and a polynomial basis. The correlation is
commonly assumed to be stationary and to take the separable form [61].
Nonetheless, other types of correlation can be applied [1]. In reliability
applications a Gaussian correlation function, or kernel, and constant
trend function are frequently used [62].

In the Kriging, G(x) predictions depend on a, ¢ and a correlation
R(x;0), which depend then on a series of § hyperparameters to be esti-
mated. In common kernel forms applied to reliability, one 6 needs to be
trained for each dimension, however, research on more advanced ker-
nels is of interest for reliability problems [63]. For a given sample of
support points the problem of prediction can then be solved through a
generalised least squares formulation, where the estimators for f and ¢2
depend uniquely on 6. In order to adjust G(x) to the ED, an optimization
is performed using a maximum likelihood search for 6. The final form of
G(x) is that of an interpolation function that encloses infinite possibil-
ities of curve predictions under the assumption that in the x points the
prediction follows a ./ (G,(x), G, (x)), with G, (xgp) = Yep and G, (xzp)
=0.

To conclude the present section, it is noted that implementations of
the presented metamodels are machine, algorithm and assumption
dependent. This is particularly relevant when readily available models
are used. The introduction of the different models shows that in meta-
modeling different decisions rely on the user. Selection of basis func-
tions, fitting techniques, kernels, hyperparameter optimization
algorithm, or parameter space constraints are some examples of vari-
ables that depend on the user, that may have large influence on the
performance, and that many times are not researched to the extent they
should. Depending on the codes, variations may be found depending on
the algorithm construction (e.g., comparative cases of the Kriging for the
00DACE [64] and UQLab [50]). The aim of the present paper is that of
reviewing adaptive approaches, therefore, despite of significant rele-
vance, no further discussion is pursued in relation to these important
assumptions. The interested reader is directed to the extensive literature
referred to in the present Section that discusses the fundamentals of
these models.

3. Adaptive approaches in metamodeling for reliability analysis

The progressive increase in applications of adaptive metamodeling in
reliability analysis resulted in a multiplication of singular or unique
research implementations that adaptively pursue to set accurate G(x)
surrogates of g(x). Four main general aspects can be highlighted to play
a major role in the metamodeling and adaptive implementations:

Initial Experimental Design (ED);

ED enrichment and stopping criterion;

ED size and domain;

Metamodel parameters (assumption and estimation);

The ED has large influence on the capability of G(x) to approximate g(x).
This influence is prevalent by means of the initial ED or the ED
enrichment, i.e., the process of enlarging the ED with new evaluations of
[x, g(x)]. It was seen that defining G(x) demands a sample of support
points, an initial ED that may be posteriorly enriched based on a spec-
ified criterion. ED enrichment uses criteria that select new candidates to
be added to the ED and a halting condition that balances the gains of
further ED enrichment. In addition to the ED, all metamodeling tech-
niques depend by construction on a set of parameters and assumptions
that are selected/fitted/adjusted to the ED (such as, correlation func-
tions or hyperparameters), and that can be exploited in adaptive
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approaches. The procedure of estimating and tuning the model param-
eters in machine learning language is frequently referred to as training.
Finally, the ED size and domain used to enrich, evaluate G(x) or to set
the ED also influences the efficiency of the metamodel approximation,
and recent works have exploited this fact in the rationale of adaptive
implementations. Fig. 3 presents four representative examples on how
these different considerations influence G(x) as a surrogate of g(x). Case
I presents how the choice of initial ED defines in a first instance G(x) (RS
in this case). II shows how an appropriate choice of the point to enrich
the ED contributes to improve the G(x) surrogate of g(x). In III the same
ED and enrichment approach are used considering two different candi-
date samples (a MCS and a Sobol Sequence), with direct influence on the
improvement attained in the G(x) capability to represent g(x). Finally, in
IV the same ED is fitted with two PCE, with different considerations on
model parameters, showing that an adequate choice of model assump-
tions substantially improves the approximation to g(x).

It is important to highlight that what distinguishes adaptive ap-
proaches in metamodeling is that they enclose some notion of
improvement that pursues to enhance the performance of G(x) as an
accurate predictor of g(x) or as an accurate classifier of Ir(x). The origin
of the term adaptive is related to the ED enrichment. Nonetheless,
adaptivity may be possible with measures of adjustment such as, sparse
rationales [16,65,66], learning functions [18,67], sampling enrichment
[13], sub-framing of ED regions [68], and design space transformation
[69]. With the increasing interest on metamodeling in reliability anal-
ysis, several methods have started to combine multiple approaches that
cover more than one of the previous [70,36,71]. The following sections
review and discuss how the four aspects highlighted have been
addressed in the problem of adaptive metamodeling for reliability
analysis. And in order to facilitate the screening of different methods,
Table 2 summarizes adaptive implementations in reliability by type of
metamodel, its features and adaptive measures enclosed.

3.1. Initial Experimental Design (ED)

In the early days of metamodeling with RS, [25,72] rapidly identified
that the simple application of metamodels was not a guarantee of effi-
cient effort reduction for reliability analysis; hence, highlighting the
requirement for adequately approaching the ED. Such perception of
improvement generated an initial spectra of ED alternatives to define
G(x) [73,74,11,75,76].

Random sampling techniques, such as MCS, are the most funda-
mental techniques to define the initial ED, however, as these do not obey
any criterion other than the random description of x, they do not provide
the most efficient approach to it. Star-shaped designs would emerge as
an alternative technique for efficient RS metamodeling. Star shaped ED
consist in using a center point and two on-axis complementary points, a
pair for each dimension, with a distance of k standard deviations from
the center. It has synergies with the RS, however, their application lacks
generalization. With the requirement for progressively more complex
metamodeling techniques, the Latin Hypercube Sampling (LHS) became
the most widely implemented technique in adaptive metamodeling for
reliability analysis. LHS consists in sampling points in equal intervals of
probability guaranteeing a balanced coverage of the x space. In cases
where the ED is not adaptive, LHS have been preferred due to their
global description of the ED [77,78,16]. An initial LHS also allows to use
an iterative refinement of the initial sample while preserving the LHS
properties in what is frequently called a nested-LHS [65]. In order to
meet the demand for more comprehensive approaches to the ED,
[79,69] recently proposed the usage of uniform ED, and [80] of Sobol
Sequences. The uniform ED allows for a global coverage of x, while
relaxing the probability constraints of the LHS. The Sobol Sequence is a
low discrepancy sequence that also pursues a uniform distribution of
points. [81,82] show, based on the works of [83,84], that optimum ED
considerations can be found for the initial ED and its improvement in
PCE implementations. Nevertheless, the rationale and relevance of
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Fig. 3. Example of the influence of the four considerations discussed. I - Example of the influence of the initial ED in a quadratic RS approximation, showing that the
initial sample of support points is of relevance for further enhancement of the surrogate. II - Example of the influence of ED enrichment with a learning function that
uses Kriging, and its contribution to improve G(x) as a surrogate of g(x) in iteration i -+ 1. III - Example of the influence of the candidate sample, using a MCS and a
Sobol Sequence, and its influence in the sequential improvement of G(x) as a surrogate of g(x). IV - Example of the influence of the model parameter (considering
PCE) in the capability to surrogate g(x). g(x) represents the separation between the domains 0 and 1 of Is(x).

optimal ED considerations are yet to be researched to a larger extent in
adaptive metamodeling for reliability applications.

No practical guidance on the adequate size of the initial ED for
reliability applications has been systematically investigated yet. [36]
previously highlighted this fact, while discussing some alternatives for
initial sample sizes. [85] recommended a sample size of 4/3d in their
introductory works to LHS. In practice different literature works use
distinct initial ED sizes, and frequently with limited information on the
criteria for selection.

3.2. ED enrichment and stopping criterion

Despite the importance of the initial ED, the possibility of adaptively
enriching the initial ED is one of the main characteristics of adaptive
metamodeling. It consists in establishing a measure of improvement in
the capability of G(x) to surrogate g(x) in order to select the additional
ED points that are expected to improve this approximation. This occurs
iteratively until a stopping criterion halts the enrichment. Despite an
accessible concept, it was not until the work of [11] that its relevance
would start to be fully exploited. In the context of the literature
reviewed, four main approaches are discussed hereafter:

3.2.1. ED enrichment using interpolated ED

The idea of using interpolated ED is related to a redefinition or up-
date of the ED in a region of interest where the new ED point or the
redefined ED is selected or interpolated within the present metamodel.
Interpolated ED have been mainly used, and are of interest, in local
regression (approximate the limit-state function locally).

In the influential work of [11], the authors proposed an adaptive
scheme that seeks to improve a RS with basis on its current iteration (e.
g., updating a new star-shaped ED centre) in order to improve the
characterization of the failure region. [12,34] later exploited the in-
sights given by the former highlighting the need for an iterative update

of G(x) and a criterion to halt the search, i.e., a stopping criterion. [86]
further elaborated on this approach using a gradient-projection tech-
nique to rotate the interpolated ED. Ref. [87] adapted this gradient
technique, combining it with the first order reliability method (FORM),
higher-order polynomial functions, and highlighting the interest of
using selective information about previous iterations. In order to deal
with more complex g(x), [88] applied interpolated ED on shifted axis for
multiple failure region identification; and, [89] proposed an iterative ED
complemented on projection points. This rationale of iteratively (re)
interpolating ED influenced a large spectra works in adaptive meta-
modeling for reliability with distinct metamodels
[90-92,57,26,93,94,69].

3.2.2. ED enrichment with multi-stage algorithms

Multi-stage algorithms emerged from the initial need to tackle the
inherent limitations of the relative simplicity of RS, and to deal with
increasing demand for methods capable of addressing complex reli-
ability problems. Multi-stage algorithms use different stages of
improvement obeying distinct enrichment conditions and halting
criteria, which result in efficient surrogates. When improvement of the
metamodel is fulfilled in a given stage, it passes to the following one
until all the stages are progressively fulfilled.

[87] proposed one of the first multi-stage algorithms with increasing
metamodel and ED complexity as an alternative to enhance the perfor-
mance of RS for reliability estimation. [68] also pioneered this idea with
a multi-stage algorithm with framed domains. Ref. [5] applies a multi-
stage approach using SVC. [95] implemented a multi-stage adaptive
Latin Hypercube Sampling (LHS) ED inspired by the implementation of
[96], using three stages of convergence. [36] further elaborated on
multi-stage refinement of an initial LHS.

The main drawback of multi-stage algorithms is related to their
relative complexity. In each stage multiple parameters may need to be
selected, and this may decrease their generalization capability.
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Table 2

Relevant adaptive metamodeling approaches applied in structural reliability analysis. ED - uses adaptive enrichment. Stop — refers to the usage of a stop criterion, other
than max i. Model — uses model parameter or assumptions. Par. — Uses parallel computation. Cand. — Adaptivity in candidate sample or candidate domain. + — Star-
shaped design [11]. VC — Voronoi cells. LDS — Low-discrepancy sample. U — Uniform sample. Rand — Random sample. f(xp) — Method uses design point identified on
metamodel/FORM to estimate Py.

Measures of improvement implemented

Ref. Approach Initial ED Iterative ED Stop Model Par. Cand. P 5
Adaptive RS metamodeling

[11] Re-interpolated centre. + v Blxp)
[12] Proposed an iterative approach to [11]. + v v v Blxp)
[34] Proposed an iterative approach to [11]. + v v v Blxp)
[86] Gradient-perturbed ED near g(x) = 0. + v v v v B(xp)
[87] Multi-stage approach based on [86]. + v v v v Blxp)
[68] CQ2RS method. U v v v v B(xp)
[88] k-shifted axis re-interpolation. k-+ v v MCS
[91] ADAPRES method. half-+ v v B(xp)
[92] Adaptive weighted interpolation. half-+ v 4 v B(xp)
[89] ED projected enrichment. + v v v v B(xp)
[153] Adaptive RS order. Uniform v v MCS
[144] Double weighted adaptive interpolation. half-+ v v v B(xp)
[145] FORM re-centred ED half-+ v v v v B(xp)
[154] Re-centred rotated ED. half-+ v v v MCS/IS
[95] Adaptive LHS in region of interest. LHS v v v MCS/1S
[69] Re-centred ED, RS fitted in spline space. U v v v B(xp)
[36] Adaptive LHS in region of interest. LHS v v v v v IS
[40] Radial basis RS and optimization search. LHS 4 v v MCS
Adaptive SVM metamodeling

[13] Margin based ED enrichment. (2)+1 ED v 4 MCS
[14] Method of [13] combined with IS (8)+1 ED v v v IS
[97] Explicit-Design-Space-Decomposition (EDSD) SVC. vC v v v v MCS
[5] Adaptive SVC combined with SS. Rand v v v v SS
[57] Re-centred SVM comparision. + v v v Blxp)
[26] Re-centred SVM with FORM gradient. + v v v Blxp)
[124,155] Adaptive Metropolis search SVR. Rand 4 v v v MCS/IS
[99] Adaptive SVC with virtual samples. LHS/VC v 4 v MCS
[93] Re-centred SVM with FORM gradient. —+ v v v Pxp)
[24,156] Adaptive LHS multi-wavelet kernel SVR. LHS v v v MCS
[157] SVC with directional sampling. LS v v v MCS
[101] SVR with SS in a 3-stage algorithm. MCS v v v v SS
[100] SVC distance-based ED enrichment. LHS v v v MCS
[158] SVC with division of the search space. LHS/U v v v MCS
[80] SVC of [97] applied to interval variables. Sobol v v v MCS
Adaptive PCE metamodeling

[15] RBDO with PCE fixed-variables. + v MCS
[16] Sparse-PCE. LHS v v v MCS
[65] Sparse-PCE and nested-LHS. LHS v v v v v 1S
[151] Sparse PCE with adaptive ED. 0) v v v v MCS
[66] Least-Angle-Regression (LAR) PCE. LHS v v v v IS
[150] Bootstrapped PCE order selection. LHS v v v MCS
[81] Optimal ED for PCE. LHS/MCS v v v MCS
[118] Hybrid saprse PCE-SVR. Rand v v v -
[108] Bootstrapped sparse-PCE (bPCE) e.g. LHS v v v v MCS
[120] PCE with d reduction. vC v v v v MCS
[109] PCE with BIP learning. LDS v v v v MCS
[159] Bayesian sequential PCE. Rand v v v v IS
Adaptive Kriging metamodeling

[18] Expected Feasibility Function (EFF) in AKMCS. LHS v v v MCS
[102] Margin of uncertainty+IMSE AK. LHS v v v MCS
[67] U-function AKMCS. LHS v v v MCS
[103] Margin k-centres AK. Rand v v v MCS/SS
[125] Quasi-optimum IS density AK. MCS/LHS v v v 1S
[123] AKMCS with IS. LHS v v v I
[127] meta-AK-1S2. LHS v v v v v IS
[160] AK to system reliability. LHS v v v IS
[105] LS and H-function AK. MCS v v v LS
[2] PC-Kriging (hybrid PCE and Kriging). LHS v v v MCS
[70] PC-Kriging and AK-MCS of [67]. LHS v v v v v MCS
[130] ISKRA method. MCS v v v v v MCS
[126] AKMCS with SS. LHS v v v v SS
[161] Complementary candidate update. LHS v v v MCS

(continued on next page)



R. Teixeira et al.

Table 2 (continued)

Structural Safety 89 (2021) 102019

Measures of improvement implemented

Ref. Approach Initial ED Iterative ED Stop Model Par. Cand. P o
[106] Least-Improvement-Function (LIF) AK. LHS v v v MCS
[122] AKMCS and IS with trust region. LHS v v v v IS
[129] AK-ARBIS procedure. Rand v v v v MCS
[140] AKMCSi. LHS v v v v v MCS
[107] General learning function applied to AK. LHS v v v MCS
[114] Failure-pursuing sampling (FPS) AK. LHS v v v MCS
[110] REIF and REIF2 AK. LHS v v v v MCS
[132] REAK. LHS v v v v MCS
[136] AK with biased randomisation. LHS v v v MCS
[162] AKEE-SS algorithm. LHS v v v v SS
[131] AKMGS-IS with y adaptation. LHS v v v v IS
[133] AKOIS method. LDS v v v v I
[115] Density-based parallel enrichment. LHS v v v v v MCS
[163] AK with Bayesian Updating (BUAK). LHS v v v v MCS/ SS
[135] Adaptive candidate PAK-Bn method. LHS v v v v MCS
[164] SALK for system reliability in RBDO. LHS v v v v MCS

Moreover, multi-stage algorithms may use one or more enrichment
techniques, which may generate convoluted applications.

3.2.3. ED enrichment using the margin of classification

The pioneer work in SVM of [13] proposes an adaptive ED that
sequentially enriches an initial SVC using the random samples within the
SVC margin. ED points that fall within the margin in SVM are the points
of interest that are expected to have larger uncertainty in classification,
and reducing the margin is expected to improve the G(x) capability to
surrogate g(x). Despite intrinsically related to SVC, the concept of
margin was, and can be further, extended to other implementations.
[97,5,98-100] use margin considerations in SVC as a measure to set a
notion of improvement in G(x). [101] further elaborated on ED
enrichment of [5], but instead using SVR. According to the authors SVR
(and consideration of absolute output values) is more informative about
the problem in-hand. [57] had highlighted earlier the more informative
character of SVR.

Inspired by the concept of margin in SVM, [102,103] would later
extend the application of the margin in enrichment to other metamodel,
with the usage of a margin of uncertainty in order to select new points
for ED enrichment and evaluation of convergence. A margin of uncer-
tainty can be built using estimators of uncertainty in the metamodel
implementation, e.g. resampling or leave-one-out estimators. Usage of
the margin to select new points in the ED is of interest because it gua-
rantees that the selected points will have an explicit relation to the
problem of reliability analysis (approximating the region of G(x) = 0 to
g(x) = 0), however, it is bound to the accuracy with which g(x) is rep-
resented by G(x). It is noted that the margin rationale is also related to
the idea of framing the ED, discussed in the following section.

3.2.4. ED Enrichment using learning functions

Learning functions are convenient mathematical functions that
weight the metamodel properties to seek for the best candidate to
improve the ED. They evaluate a set of candidates with criteria that are
essentially built on considerations of uncertainty in the model approx-
imation and proximity to the failure region, and select the new most
promising to enrich the ED. Learning functions are the present state-of-
art technique for ED enrichment.

Learning functions became popular due to their efficiency in the so-
called Adaptive Kriging (AK) applications, and then progressively
extended to other metamodeling techniques. [18,67] introduced two of
the most relevant works in this context. [18] introduced the Efficient
Global Reliability Analysis (EGRA), proposing the Expected Feasibility
Function (EFF) to enrich the ED. And [67] the AKMCS that uses the so-
called U-function, which uses the probability of misclassifying a candi-
date to enrich the ED. [104] also used the misclassification error. [105]

introduces the H learning function, built on entropy considerations.
[106] proposed the Least Improvement Function (LIF), that uses
misclassification, but that also considers the influence of neighbour
candidates. [107] proposes three new learning functions of universal
application (i.e., applicable to all metamodels), built on distance and
uncertainty considerations. [108] proposed the bPCE for reliability that
iteratively enriches the ED using a learning function built on boot-
strapping. [40] proposes the SSRM that uses an optimization learning
function to enrich the ED. [109] proposes a learning function in PCE that
models uncertainty with a Bayesian approach. Recently, [110] proposed
the Reliability Expected Improvement Function (REIF), which relates to
the expected improvement (EI) of [111]; while [112] proposed yet
another search function fo AK, the Most Probable Learning Function
(MPLF). All the discussions on adaptive implementations have been
accompanied and benefited from research on stopping conditions that
can be adapted for different adaptive metamodeling techniques
[62,113-115].

In general, adaptive implementations pursue one of two: an accurate
surrogate of g(x), or a confident prediction of P;. In this context, learning
functions perform well even with complex g(x). To approximate these,
learning functions to be robust need to enclose global and local con-
siderations in the enrichment. This is commonly differentiated in the
literature as exploration and exploitation. The first is related to global
identification of trends and description of g(x), while the second is
related to the local characterization of sub-areas of x and g(x).

3.3. ED size and domain

In the definition of the initial and posterior ED there is interest in
considering the number of x variables that are strictly necessary to
define an accurate metamodel. High dimensional spaces demand addi-
tional effort in the analysis. Sensitivity analyses are an effective method
to reduce the ED to the variables of interest. Adaptive reduction of the
ED random variables, such as applied in the PCE-RBDO of [15], is an
efficient method to address dimensionality in complex problems. Recent
research works of [116-120] are an indicative of the relevance that
dimensional dependence still has in metamodeling implementations in
reliability.

An important consideration in relation to metamodeling, and that
largely influences the performance of adaptive methods, is related to the
fact that metamodels can be constructed in different spaces. Examples of
commonly used spaces are the initial space of x and the standard normal
space (if a transformation is assumed [121]). It is usually convenient to
work in the standard normal space. When applying PCE it simplifies the
definition of the basis, or if a learning function that depends on distances
is applied, e.g, [107], it mitigates the influence of the relative
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description of the x variables. Nonetheless, other spaces may be used to
construct metamodels, and such feature is expected to be of interest in
implementations of adaptive metamodeling. [69], for reference, im-
proves the RS implementation by fitting the metamodel in a transformed
spline space.

3.3.1. Framing of the ED domain

Research on adaptive implementation has shown that significant
gains could be attained with framing the initial and iterated domains in
regions of interest. [92] highlights the importance of the ED to be
realistic. [68] frame the ED in their search for the design point in reli-
ability. [122] improve the methodology of [123] by using a trust region
that efficiently searches for the design point. [36] were able to achieve
efficient results using screening to identify a promising domains for
implementation.

In ED enrichment, new points can be directly interpolated from the
surrogate model or from a sample of x € R. In the present, most adaptive
implementations use a random pool or batch of candidates (y) that frame
the learning space. The usage of appropriate samples is also an efficient
technique to define realistic ED and improve adaptive metamodeling
implementations, in particular when learning functions are applied.

3.3.2. Adaptive candidate sample

MCS is the most common technique to define the batch of candidates
to be used in the enrichment of the ED. MCS does not discriminate on a
priori knowledge about g(x) other than using the adequate sample size
for a reliable estimation of P;. Despite being of general application, MCS
is not always the most efficient methodology to generate samples of
candidates. Importance sampling (IS) [14,124,123,125], Subset Simu-
lation (SS) [5,126], or Line Sampling (LS) [105] are examples of
implemented methods to improve the generation of an adequate batch
of candidates in adaptive metamodeling. Other methods further elabo-
rate on the strategies presented in these by combining one or more of
these approaches or improving the sampling strategies [127-129].
Global sampling techniques, such as low discrepancy samples of can-
didates, have also been applied as an alternative to mitigate the large
cost of handling MCS samples [110].

Adaptivity in metamodeling may also use an adaptive batch of can-
didates (y) for the ED, since there is always a sample of candidates that
produces the best implementation performance. This sample can also
perform as efficient stopping criterion for the adaptive implementation.
IS, SS or DS already use this rationale to some extent, however, even
within these an improvement sample can be attained. [130] identified
this fact and proposed an adaptive y size for AK in reliability. [71] ad-
dresses the influence of y by proposing adaptivity with dependence on
the i P prediction. [131] uses a re-sampling y technique (with updated
centre for the sample). [132] proposes an adaptive y that uses the
candidate sample error-rate influence in P;. [133] uses discrepancy
samples and local subsets for enrichment. In [134], y is sequentially
partitioned depending on the estimated Py and radial spheres that adapt
it, and [135] use uniform samples in a radial domain. [136] weight the
choice of y with a randomised bias. This idea, called biased random-
isation, is that of using a filter function in order to weight on the
adaptive approach with a priori knowledge about the problem
[137,138].

Despite pioneered for Kriging, the techniques discussed have trans-
versal interest in future implementations of adaptive metamodeling.
Recent research has shown that adaptive candidates have a relevant
contribution to significantly improve the efficiency of adaptive
approaches.

3.3.3. Parallel computation

While most of the works seek to iteratively improve the ED, research
for this effect originated innovative complementary ideas of imple-
mentation, such as parallel g(x) evaluation. Parallel g(x) evaluation uses
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a division of the candidate space or sample to select more than one
candidate to enrich the ED. With larger computational availability, it is
expected for the reduction of the number of iterations in adaptive
metamodeling to gain leverage in the search for efficient metamodel
implementations. [5] introduced this idea of parallel processing in
reliability, using k-means. [130,70] extended parallel computations to
AK (with k-means and the Kriging believer of [139]). [70] uses the
concept of margin for parallelization. [140,141] further elaborated on
the application of k-means in AK. A drawback of parallel processing is
the requirement of additional g(x) evaluations. Recently, [115] tackled
this issue in parallel g(x) evaluations by using density-based partitions.

3.4. Metamodel parameters

It was seen in Section 2 that all metamodels have a priori assumptions
and parameters to be estimated and that these are expected to have a
large influence on the performance of a surrogate of g(x). This fact
originated a spectra of techniques to improve metamodel parameter
estimation in reliability. Notwithstanding, [142] highlight that the
relevance of model assumption and parameter estimation is still to a
large extent underestimated and overlooked in the application of met-
amodels in engineering. Some alternatives for model estimation were
presented, in the present work the analysis is explicitly extended to the
context of reliability analysis.

3.4.1. Weighted parameter estimation

The idea of weighted parameter estimation is related to using some
measure of randomized bias in order to improve the fitting of the model
parameters in a region of interest. The resulting metamodel fitted with
this technique is expected to approximate better this region of interest, i.
e., in reliability, the failure region.

Weighted regression has been extensively used to improve the RS
approximation in the failure region [143,91,144-146,94], and recently
it was extended to other models in reliability. [147] weighted the PCE in
a region of interest, however, not exploiting an adaptive scheme to its
full extent. It is noted that the techniques identified in weighted
parameter estimation do not explicitly pursue a notion of improvement
(frequently only minimize a quantity), nonetheless, their widespread
application and efficiency is of relevance to be potentially researched in
adaptive schemes that also enclose a notion of improvement in weighted
parameter estimation.

3.4.2. Sparse implementation

The rationale behind sparse implementations consists in iteratively
searching for the metamodel parameters (e.g. basis functions) that are of
interest for its efficiency; discarding the ones that are identified as non-
relevant. This approach is different from optimizing metamodel pa-
rameters because there is a sequential notion of improvement by
reconstructing the metamodel.

[16] pioneered sparse implementations in reliability by proposing an
iterative approach that selects the adequate number of PCE coefficients.
A similar rationale had been previously implemented in [148,149]. [65]
would improve sparse implementation by using nested-LHS ED. And,
[66] would extend this rationale using Least-angle-regression (LAR).

Due to the aforementioned limitations of PCE in high dimensions,
significant research on sparsity has involved these models
[150-152,117]. However, other metamodels have benefited from
enclosing sparse rationales in their implementation, such as the expan-
sion of sparsity in SVR [24], or the sparse RS in [36].

3.4.3. Hierarchical implementation

[142] recently discussed the importance of metamodel parameters
and assumptions, and proposed a procedure that iteratively searches for
the most appropriate model from a batch of fitted models with different
model parameters and assumptions. This procedure was motivated by
the identification in the literature of a lack of comprehensiveness in



R. Teixeira et al.

metamodel construction.

The idea of a hierarchical implementation is therefore a level of
complexity above the sparse implementation. In the hierarchical
implementation, improvement is not only related to selected model
parameters, but instead, it is extended to model assumptions, such as,
correlation functions or set of basis functions.

Table 3
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In metamodeling, it is frequent to find works that consider a limited
number of basis functions or parameters primarily justified by the need
to avoid the risk posed by more involved surrogates (e.g. higher order
functions); than by the lack of gains that may be achieved by higher or
different order functions. [153,98] showed that a more involved anal-
ysis of these in RS and SVC can be an efficient measure of improvement.

Comparative results for distinct AK implementations in literature. g.,q refers to the number of g(x) evaluations. x; and x, are standard normal variables. For rep-
resentation purposes, black horizontal bars are illustrative of a g, that is much larger than the other results.

21(%) = qa+0.1(x; —x2)% — x'\gz
. ) &(x) =q.+0.1 Xl*XZ)ZJFXI\jEX2
g(x) = min a
&%) = —x)+ %
ga(x) = (2 —x1)+ %
Method/Reference P;(1073) (mean) e,(%) (reported) Leval
9.=3: 4, =6
MCS 167,2] A : I
RS
IS + RS [67] 4.90 1.53 1469
SVM
ASVM-MCS of [100] 4.46 1.36 ™
PCE
PC-Kriging (stop uses U > 2) [70] 4.471 0.24 s
PC-Kriging (Stop uses P; margin) [70] 4458 0.07 s,
P?.rallel PC-Kriging (Stop uses P; mar- 4.458 0.04 - 08.4
gin) [70]
PC-bootrap of [165] 4.460 - b
A-bPC [108] 4.62 3.59 e s
Kriging
AK-MCS+U [67] 4416 = s
AK-MCS+EFF [67] 4416 0.004 s
AK-MCS+U with criterion of [2] 4.440 0.45 e s ;
Fast candidate AKMCS+LIF of [106] [4.27, 4.54] [0.8,3.3] Bl 26, 511
FPS of [114] [4.411, 4.497] [0.05,0.97] B (563, 64.7]
9,=3:9,=7
MCS [67, 36] [2.23,2.24] - I
RS
iRS of [36] 224 0.12 B
SVM
ASVM+MCS [100] 215 0.93 s
Kriging
AKMCS+U of [67] 223 ; ™
metaAK-IS? of [127] 222 1.7 s s
AKSS of [126] 223 0 P
meta-IS-AK of [166] 222 1.38 e ¢,
AKEE-SS of [162] 2.20 0.949 Wy

* estimate from different initial ED

** Reported as part of the variance of the Py estimation
(See above-mentioned references for further information.)
* estimate from different initial ED.
** Reported as part of the variance of the Py estimation
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Other effective use of model construction and assumptions can be
identified in the PC-Kriging [2,70], where PCE orthogonality performs
as a global trend that supports the Kriging local interpolation with
uncertainty.

4. Comparative application results

Reference examples of application of the methodologies discussed
are presented in Tables 3-6. These cover, respectively, an example with
multiple regions of failure (a series system), a high-dimensional
example, and two engineering examples (non-linear oscillator and
truss structure) with a medium number of random variables, and distinct
probability of failure (relatively low and high Py). These examples are
only illustrative of literature comparison in adaptive metamodeling for
reliability. In one hand, it is noted that real engineering examples can be
significantly more complex than these (e.g. multiple failure regions in
high d), and complementary analyses are necessary to understand
applicability with extension to more involved examples. On the other
hand, the efficiency and generalization for each case is bounded to the
assumptions and algorithms used, which is a limitation. Nonetheless,
comparative analyses such as this one have been an effective mean of

Table 4

Structural Safety 89 (2021) 102019

understanding new developments in the field.

A series system is discussed in the first example in its variable g, and
qp dependent-form. This function is many times described as the four-
branch reliability function due to its four main regions of failure. It is
a complex example that is globally non-linear, but with relatively weak
local non-linearity; and that only involves two random variables.

It is common in the literature to report accuracy in relation to the
number of evaluations of the true function g(x) evaluations (g.) in
order to evaluate the efficiency of an adaptive metamodel application in
reliability analysis. Evaluation of g(x) is expected to dominate the
adaptive implementation efforts. Hence, efficiency in the present case is
discussed in relation to the metrics of Py prediction accuracy and geyq.

Table 3 presents the results for the series system. For g, =3, ¢, = 6
it is possible to infer that the adaptive methods using Kriging have
proven to be highly efficient. The pioneer works using AK-MCS already
produced a very efficient trade-off of accuracy with the number of g,q.
Works that use PCE, RS and SVM just recently had the breakthrough
from this reference baseline set in AK. Efficient application of PCE have
converged to the adaptive Kriging in the form of the PC-Kriging, which is
closer to an AK implementation. [109] does not report the results for this
particular example. Nonetheless, the authors show that by using a

Comparative results for distinct adaptive metamodeling implementations for a high dimensional function with n normal variables (u = 0 and ¢ = 0.2). a = 3. For
representation purposes, black horizontal bars are illustrative of a g, that is much larger than the other results.

G(x) = (nJraO'ﬂn)) =YX

Method/Reference P(1077) e, (%) Zeval

MCS (n = 20) [117] 2.23 - I,
MCS (n = 40) [67, 40] [1.81, 1.98] - I : . (o5
MCS (n = 100) [67, 40] [1.65, 1.73] - I, - . o
MCS (n = 250) [40] 159 - I - .
RS

SSRM (n = 40) of [40] 1.93 253 s

SSRM (n = 100) of [40] 1.72 0.58 T s

SSRM (n = 250) of [40] 1.53 3.77 734

SVM

2SMART (n =40 ) of [3] 1.95 - L P
2SMART (n = 100 ) of [5] 1.74 - T 036
2SMART (n = 250 ) of [5] 1.61 - 10707
SVR (n = 100) of [101] 170 173 e 16

SVR (n = 250) of [101] 1.56 1.88 T e
ASVM-MCS (n=40) of [100] 1.78 2.20 Ty

ASVM-MCS (n=100) of [100] 1.72 0.58 s 10
ASVM-MCS (n=250) of [100] 1.57 0.63 e o363
PCE

Cubature PCE (n = 20) of [117] 2.11 5.38 463

Proposed (n = 20) in [120] 246 (B =2.8122) 0.79in B s

Proposed (n = 100) in [120] 2.08 (B = 2.8656) 0.53in B T 300
Kriging

AK-MCS+U (n = 40) of [67] 1813 : D

AK-MCS+U (n = 100) of [67] 1.647 + . s

AK-MCS+EFF (n = 40) of [67] 1.813 * e,

AK-MCS+EFF (n = 100) of [67] 1.647 + [ s

* Reported as part of the variance of the Py estimation.
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Table 5
Non-linear Oscillator results. For representation purposes, black horizontal bars are illustrative of a g, that is much larger than the other results.

Single degree-of-freedom non-linear oscillator presented in [68], [67], [100].

Method/Reference Pf(10’2) e,(%) (reported) Leval

MCS [67, 40] 2.83 - I, . 10
RS

CQ2RS of [68] 332 - M.

P-LS of [69] 273 37 s

P-PLS of [69] 2.52 11.1 s

UD-BP-PLS [69] 2.85 0.6 M.

iRS! of [36] 2.83 0.03 s

iRS? of [36] 2.82 0.55 s

SSRM of [40] 2.88 1.623 I

SVM

ASVM-MCS (n=40) of [100] 279 278 5

Kriging

AKMCS + U of [67] 2.834 * s

AKMCS + EFF of [67] 2.851 * M 5

AKSS of [126] 2.83 0.035 — 10
REAK of [132] [2.84,2.86] [0.004,0.161 | Ml 30, 40)

! and 2 are results for respectively 0 and 20% thresholds of the dimension reduction relative measure of sensitivity.

Table 6
Truss structure with low probability of failure. For representation purposes, black horizontal bars are illustrative of a g, that is much larger than the other results.

Truss structure with serviceability limit state with reference to a maximum & deflection of 14cm adopted in [65], [95], or [106].

Method/Reference Pr(107°) e, (%) (reported) | geval

MCS [70] [3.6] - I, | ¢

IS [65, 106, 36] [3.30, 3.45] - I ; . o
RS

ARSM of [95] 3.69 03in B b

iRS! of [36] 3.30 0.25 e s

iRS? of [36] 3.06 7.32 s

PCE

Full PCE of [65] 2.67 1.5in B L P
Sparse PCE of [65] 3.93 23in B 7

PC-Kriging of [70] 37 278 -

PC-Kriging (parallel enrichment with 6

centers) of [70] - 11 - 78

Kriging

AKMCS+LIF of [106] 331 4.06 o

Fast candidate AKMCS+LIF of [106] (3.39, 3.55]* [0.9,2.9] N i35 170

AKEE-SS of [162] 3.5 3.67 s

Tand  are results for respectively 0 and 20% thresholds of the dimension reduction relative measure of sensitivity.
* estimate from different initial ED
! and ? are results for respectively 0 and 20% thresholds of the dimension reduction relative measure of sensitivity.
* estimate from different initial ED.

12



R. Teixeira et al.

learning function, the BIP, in a sparse PCE implementation, accurate
G(x) can be attained with a relatively small number of function evalu-
ations (= 40), in-line with some of the most efficient results presented.

For the case of g, = 3 q, = 7, [36] showed that a polynomial basis
function RS could outperform other more complex methods. RS have the
major advantage of a low implementation demand. However, their
application to more involved examples is commonly achieved with
multi-stage algorithms that are user-case-sensitive. In this case the weak
local non-linearity may be related to the efficiency achieved by this
multi-stage RS.

The errors reported were for all the cases lower than 4%, being, in
most cases, of the same order of magnitude as the variance of the esti-
mation (sample variance). It should be noted that newer methods in the
four cases presented are expected to reduce the required g, as they
proceed to improve from a different reference value. The relative
number of g, to produce accurate estimation decreased to such an
extent with adaptive methods that more recent works discuss im-
provements in g, comparing small gains.

The following comparative problem is a failure reference function
with a high number of random variables, Table 4. This problem involves
a very large number of random variables but where each one has equal
influence in a smooth g(x). It is noted that such balanced division rarely
occurs in real engineering problems. Results from this high-dimensional
example show that AK outperforms the other adaptive metamodels by a
large margin. Kriging computational demand is expected to increase in
high dimensional spaces when g(x) is more involved (optimization of
parameters will occur in a non-linear space with different weights).
[115] highlights the significant cost of computing the Kriging of [64]
when studying a more involved problem in complexity, but with only 11
random variables. Recent works, such as [110,134] tackle the efficiency
of AK implementations under the assumption that they may not be al-
ways negligible in comparison with the g(x) evaluation. It is highlighted
that with the increasingly complexity of computational codes, such as
Finite-Element-Methods, the requirements to evaluate g(x) are still ex-
pected to comprise most of the effort of a reliability analysis.

The PCE results are, even considering the limitations of PCE for large
d, comparable to the other methods but being slightly less accurate.

SVM have synergy with large d problems, however, their accuracy in
large d has been a concern [5]. Variant SVM approaches have pursued to
tackle limitations of performance in high d spaces [167]. In the present
example, SVM demands more g, than the other alternatives method-
ologies considered, and this may justify further investigation on the
different assumptions used in their implementation (e.g., if the stopping
condition is conservative). Due to the similarity with Kriging in kernels,
results of SVM for reliability are expected to be able to approach those of
AK in accuracy, see [63]. Methods such as the SVM can benefit to a large
extent from their wider application as machine learning tools, which
fomented the development of techniques that accelerate their charac-
terization and accuracy for a specified ED size.

The third and fourth reference examples discuss the application of
medium number of variables with distinct orders of P, which are more
representative of engineering applications of structural reliability (a
non-linear oscillating mass and a truss structure), Tables 5 and 6. Both
g(x) functions are smooth in the standard normal space, being initially
introduced to research on simpler metamodeling approaches [11,86].

For the non-linear oscillator problem, all the metamodels produce
comparable results. Apart from the SSRM of [40], the number of g(x)
evaluations is recurrently around 50. The SSRM of [40] in this particular
example was seen to largely outperform the remaining metamodel al-
ternatives. The AK-MCS performance was recently improved for this
example in the REAK approach of [132]. When g(x) is smooth further
investigation on the assumed stopping conditions is of interest.

In the example of the truss structure, Py was in the order of 10~°. All
the discussed metamodels were reported to accurately estimate this
lower Py with similar performance.

13
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In general, when compared with traditional sampling techniques, all
the methods in the presented examples have a significant impact in the
reduction of g,,,. Moreover, application of adaptive metamodeling in a
reliability analysis problem is generally robust, but it may be problem
dependent in relation to the metamodel used.

In the presented discussion, the four examples presented did not
cover the case of locally highly non-linear g(x) that depend on more than
one region of failure, such as the modified Rastringin function studied by
Refs. [67,140], or the non-linear limit-state studied in [110,115]. This
was due to the fact that only Kriging works were identified in the
literature to tackle the reliability estimation for these types of functions.
It is noted that real engineering examples are expected to be on the
complex side, justifying further need to explicitly discuss the limits of
application for different methods in future research; in particular when
simpler models are used. Few applications to real engineering examples
were identified in the review of applications, which indicates that
further research needs to be performed in relation to issues such as,
generalisation in applicability.

Nonetheless, it is important to highlight that despite this fact, all the
metamodeling approaches are viable alternatives for reliability analysis.
Examples can be found in; [62], where the authors showed that in
general the Kriging as a metamodel is more robust than RS, however,
when correctly applied, (e.g., RS centred at xp) RS produced more effi-
cient results (similar accuracy and number of g, but with lighter
computational and analysis requirements); or in [108] where it was
shown that bootstrapped PCE could perform significantly better than the
AK-MCS in reliability analysis for a truss structure, emphasizing the
relevance of model assumptions and algorithms. In the case of the
Kriging and non-linear functions, it is highlighted that by construction it
is expected for other interpolators with similar kernel, such as RS with
RBF or SVM, to be able to at least produce comparable results in respect
to robustness in relation to g(x).

The following section discusses some of the ideas that are beyond the
state-of-the-art and are of interest to exploit in future implementations.

5. Beyond the state of the art and areas of interest in research

The present section highlights areas of interest in the field of adap-
tive metamodeling to further enhance their applicability. It is noted that
in adaptive metamodeling research for reliability the main concern in
recent years has been the reduction of g, without compromising ac-
curacy, which resulted in methodologies that have remarkable effi-
ciency. However, when applied to other fields of knowledge (e.g.,
nuclear, marine engineering), adaptive metamodeling is not always
considered and its advantages not fully exploited (e.g. recent applica-
tions of [168,58,169]). There is a gap between application and method
yet to be filled.

5.1. High dimensional problems and reduction of high-dimensional spaces

High dimensional problems are challenging. It was highlighted that
metamodeling in reliability analysis could benefit from the usage of a
combination of sensitivity and reliability analysis in order to reduce
implementation efforts. [170] highlighted previously that in a high
dimensional problem it is common for only a few random variables to
enclose most of the sensitivity of an output. Works such as [171],
showed that these considerations were held even in high-complexity
problems. Therefore, it is of interest for future implementations to
investigate to which extent using a method that performs for high
dimensional spaces and pursues low ED should be balanced or priori-
tized in detriment of using dimension reduction techniques that may
accelerate the application of adaptive metamodels; in particular when
involved engineering examples are studied. PCE have proved to be
efficient metamodels that suffer from the increase in d, but that enclose
intrinsic measures of sensitivity [49]. The demand in time and memory
for Kriging applications increases significantly when the ED and
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d increases [172]. Moreover in the case where the ED encloses many
input variables, the learning algorithms are more likely to spend time
exploring and exploiting points that enclose limited relevance for the
estimation of Py [122]. The analysis presented in previous sections also
indicates that some learning approaches rely on Euclidean distances,
and as such, the effects of applying these in large d should be further
discussed (their performance is expected to be affected by d, and other
measure of distance may be of interest in large d). It is then of interest to
use a metamodel for reliability implementations with the minimum
number of input random variables possible, without loss of accuracy.
Previous works successfully merged these ideas, e.g., [172,36].

5.2. Hierarchical implementations, model assumptions and parameter
consideration

With relation to the previous topic, the importance of model as-
sumptions, which is a field largely unexploited in SVM [101], Kriging
[142] or RS implementations [36], is a topic that needs to be further
researched in the future. It is noted that some metamodels, such as PCE,
have benefited from a larger discussion on this regard.

[142] highlighted the limited importance that is given to general
model assumptions and parameters when discussing application of
Kriging to replace multi-fidelity codes. This same disregard for model
assumptions can be identified in many applications to reliability.
Despite the range of adaptive SVM implementations, and their inherent
sparsity, [101] also emphasised before the need for a comprehensively
parameter selection to a further extent than what is currently performed.
Previous research indicate that some model parameters are expected to
have limited influence [62]. Nonetheless, for some metamodeling
techniques, only limited research has been produced in improvements
that use model assumptions, or model parameters with specific ties to
the problem of reliability. The implementation of [142] is representative
of the gains that can be achieved with a more detailed analysis and
understanding of these.

SVM have synergy with high d problems, but reliability analysis
implementations showed that this may not be always the case [5].
Nonetheless, by construction their performance should approach other
models that use similar kernel, see [63]. SVC and its concept of margin is
of relevance. Since SVR are informative, and SVC have this particularity,
it may be of interest to exploit classification margin considerations in
SVR enrichment.

[63,142] showed that gains could be achieved analysing the Kriging
model assumptions (e.g., correlation). If large ED are used, Kriging
models can become unstable [2], and computing cost is still a limitation
for these [172]. These characteristics are indicative that further research
and guidance in their definition is of relevance.

For RS, usage of larger basis of polynomials functions and order
should be further investigated in the future. [153] showed that higher
order functions can be of interest, but little research was conducted in
this regard in posterior works. Combining some measure of sparsity in
the coefficients and higher order polynomials is expected to contribute
for the improvement of the RS methods [36].

It was also seen that further gains in model implementation to reli-
ability could be achieved by researching the potential of using feature
spaces, such as in [69], and this may allow further research on model as-
sumptions (e.g., fitting simpler metamodels to more involved problems).

5.3. Application of alternative basis functions and hybrid models

In line with the previous topic, when different metamodeling tech-
niques were established as fundamental viable alternatives for reliability
analysis, research on adaptive metamodeling started to expand in order
to tackle different limitations. New research in adaptive metamodeling
indicates that the emergence of alternative basis functions, such as RBF
[40,173] exponential RS [35], B-spline considerations [69], and hybrid
models, such as the PC-Kriging [2], are areas of high added value for
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further assessment in adaptive metamodeling.

[174] shows that this improvement can be also attained when the
metamodel adaptivity is coupled with g(x) assumptions for involved
problems, which is a field of potential interest in future research.

5.4. Initial ED

No comprehensive guidance was identified on the selection of the
initial ED, and on its relation to g(x). Even considering that initial ED
commonly involves a low number of g(x) evaluations, a well selected
initial ED may contribute to alleviate the number of posterior adaptive
g(x) evaluations. Recent research in this regard in PCE can be found in
[81], nevertheless, further research may contribute to enhance the un-
derstanding of the initial ED relevance in different metamodeling
techniques.

5.5. ED Exploration and exploitation

In ED adaptivity, exploration and exploitation considerations are
intrinsically enclosed in the implementation (e.g. learning function have
a balance of both). Nonetheless, limited explicit discussion has been
developed in relation to them. Recent works with Kriging show that
explicitly discussing these concepts improves the performance of the
adaptive implementations [162]. Both of them play an important role in
the generalization of adaptive metamodeling implementations. The
recent benefits attained with Kriging and innovative techniques, such as
clustering the candidates in regions of interest with sensitivity measures
in x [114], or the improvements of the U and EFF functions
[161,132,115] are indicative of the interest on this explicit discussion,
which is a field of implementation from which all adaptive methodol-
ogies, regardless of metamodel, could benefit from.

5.6. Non-deterministic ED

One of the fields of interest for future implementations is related to
noise or non-deterministic responses of g(x). This is the case where a
single value of x, generates a random response. Models and adaptive
metamodeling implementations for non-deterministic ED have been
studied and proposed before [175-177]. Non-deterministic ED may be
measured by means of a random variable, therefore it may depend on
the reliability problem conceptualization, however, it may be of interest
(as characterizing the non-deterministic responses is expensive, and may
be even condition on x [178,179]) if the metamodel is able to also
enclose and interpolate or predict it in the regions of interest when
assessing reliability for multi-fidelity codes.

5.7. Adaptive metamodel selection

It was seen before that each metamodel has assumptions. If a RS is
suitable for a certain problem, there is little justification to use a more
complex model. At the same time, application of simpler metamodels or
methods is expected to lack generalisation, which is a characteristic that
is rarely addressed in the literature. No research was found to compre-
hensively discuss the concept of hierarchy or adaptivity in relation to
different metamodels.

An example of the influence of the metamodel choice can be iden-
tified in the example used in Fig. 3, Section 2, where the PCE (in IV), for
an equal size of ED, accurately approaches g(x) when compared with the
Kriging (in II). As metamodeling techniques progressively develop and
new methods appear, an important demand can be identified in the need
to set methodologies that allow an engineer to decide what type of
metamodel is more suitable to his/her application. This may be achieved
by adaptive selection of model with relation to a measure of complexity
of g(x) (as g(x) knowledge increases) and is notoriously significant due
to the black-box character of metamodeling. For example, when d in-
creases it may be hard for the reliability engineer to understand what is
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the form of the reliability problem, and thus, selecting the most efficient
metamodel without any prior information is challenging. Moreover if the
lime function is implicit.

5.8. Ensembles

In the line of transversal implementations that consider different
models, application of ensembles of metamodels is a field that only
recently started to be studied in reliability. It addresses the need for a
black-box hierarchy that uses or selects different models. [180] suc-
cessfully improves the efficiency of adaptive metamodeling applying an
ensemble. Ensembles take advantage of the best properties of each
metamodel simultaneously. Their application to reliability can benefit
from the extensive research performed up to date in the field of
computational experiments [181,182]. However, [182] shows that
further research is required to improve the extent that ensembles benefit
the analysis when compared with the selection of an adequate
metamodel.

Other models addressing the problem of classification or regression
can be highlighted in the present case as alternative for the problem of
metamodeling in reliability. In some cases application of these to reli-
ability analysis is yet to be researched, e.g., logistic regression [20].

6. Conclusions

The presented work reviewed adaptive metamodeling in reliability
analysis. Adaptive metamodeling has gained significant leverage in
reliability analysis in recent years. The idea of adaptive metamodeling is
that of using some notion of improvement to sequentially increase the
efficiency of static metamodel approaches. Due to their proved effi-
ciency, research on adaptive metamodeling increased substantially in
the last decade. This originated a diverse number of techniques and
concepts that use different metamodels.

The objective of the developed discussion was then to address this
diversity, in order to create a baseline for further development of
adaptive metamodeling techniques. On one side it is challenging for new
practitioners to cover the extensive literature already existing in the
topic, and on the other, significant gains are expected with the crossing
of information from traditionally individualised fields of research. [2]
highlighted before this little interaction that exists between fields of
metamodeling. The purpose of the present work is therefore the one of
fomenting this type of transversal, whole picture, overview that is ex-
pected to foment further developments in the field.

Four main metamodels were discussed, response surfaces, poly-
nomial chaos expansion, support vector machines and kriging models.
Adaptivity in metamodeling with these appears in different forms, the
most common and influential is related to the experimental design, but
adaptivity can be also applied in model parameters, sampling schemes,
or space definition. A description of these four metamodels was devel-
oped, and the adaptive implementations of each extensively discussed.
This allowed to identify new areas of interest and unexploited areas for
future research in adaptive metamodeling. In the light of the discussion
presented, some of the features of each metamodel and its relation to
reliability applications can be highlighted:

e RS that use polynomial basis functions may be suitable when the
problem of reliability is local (failure is confined to a region of x) and
g(x) is weakly non-linear, being therefore implemented on low order
polynomial basis. The recurrent application of RS, see Table 2, that
estimate f(xp) is indicative of the synergy of RS with reliability
problems where P; is local. Higher complexity applications are
possible, but with involved procedures. RS are fast to compute in
their polynomial form. Other RS forms, such as RBF, allow tackling
higher complexity problems and should have comparative
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interpolation performance with other models that use similar kernels

(e.g. Kriging).

PCE perform well in the capture of global behaviour of g(x), and

when g(x) is globally smooth (which is common in reliability prob-

lems) [53]. They also perform locally. No evidence was found of

methodologies applied to very complex g(x) (e.g. non-linear g(x)

[67,110]). This may be possible, but with multi-stage algorithms.

They are of interest to use higher-order basis with lower risk of

producing ED specific models. Their challenging application in high

d spaces is mitigated by sparsity, and PCE enclose by construction the

potential to be merged with inherent sensitivity considerations.

e SVM and Kriging share similar properties (e.g. both of them are
interpolation models and use similar kernels). SVM are of interest for
involved problems in high d, however, further research needs to be
performed in relation to their accuracy in high d [101]. The simi-
larity between SVM and the Kriging (in kernel) indicates that they
should at least achieve comparable accuracy, and this is an indicator
of the potential of SVM for reliability. Kriging are overall performers
in relation to the complexity or smoothness of g(x), which makes
them robust. They perform as interpolators and enclose an inherent
measure of accuracy, but can be costly to use, in particular when
d and the ED increase (it is noted that this cost should still be
negligible in relation to the cost of evaluating multi-fidelity codes).
Kriging were the only models that were identified to be researched
for strongly non-linear g(x) (locally and globally) applications.

Further discussion in relation to model assumptions, bridging the gap in
methodology and application, hybrid models, or ensembles were some
of the highlighted areas. One of the crucial topics to be addressed is the
need for hierarchical techniques for a blind selection of the adequate
metamodeling approach, and model assumptions. In the literature,
model selection and assumptions are rarely addressed to the extent they
should. There are various methods, and with comparative performances
in certain circumstances. It is not uncommon to find the application of a
complex technique when a simple model would equally suit the appli-
cation, and vice versa. Finally, apart from creating a baseline, the pre-
sent analysis was motivated by a need of unity in the field, to set a
reference for discussion on relevant topics related to adaptive meta-
modeling in reliability.
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