BREAKING GROUND WITH BAMBOO

Jasmine Wong | 5628849 Mentors: Dr. Serdar Asut and Dr. Stijn Brancart Delegate of the Board of Examiners: Dr. Arie Romein

> AR3B025 2022/23 Q4 Building Technology Graduation Studio

ROBOTIC ADDITIVE MANUFACTURING OF A SELF SUPPORTING WALL WITH BAMBOO

P5104.07.2023

made bamboo

breaking ground

To do something completely different from what has been done before.

BUILDING INDUSTRY

BUILDING INDUSTRY

40% GREENHOUSE GAS EMISSIONS

8 BILLIONS IN 2022

MATERIAL EXTRACTION DEMAND

CARBON STORAGE

Bio-based materials

Centre Pompidou Metz, Shigeru Ban. Source: Archdaily

Nest We Grow, Kengo Kuma. Source: Archdaily

Macquarie University Incubator, ARUP. Source: Arup

Community Church Knarvik, Reiulf Arkitekter. Source: Archdaily

TIMBER

The Farmhouse, Studio Precht. Source: Dezeen

Timber House, KUHNLEIN Architektur. Source: Archdaily

TIMBER LIMITATIONS

NATURAL REGENERATION

TIMBER LIMITATIONS

DEFORESTATION

affordable

BAMBOO

BAMBOO AS A CONSTRUCTION MATERIAL

Community Church Knarvik, Reiulf Arkitekter

QUICK GROWTH CYCLE

Growing time (day)

Height (meters)

QUICK HARVEST

Growing time (years)

WHY ISN'T IT USED ON A LARGE SCALE?

BAMBOO DISADVANTAGES

short lifespan

anisotropic material

different species = different properties

lack of building codes

dust

BYPASSING DISADVANTAGES

INCREASING THE UPTAKE

fibers

dust

ADDITIVE MANUFACTURING

fibers

ADDITIVE MANUFACTURING = 3D PRINTING

layer by layer on top of each other

ADDITIVE MANUFACTURING ≠ TRADITIONAL MANUFACTURING

cost effective

flexible design

minimize waste

formative process

subtractive process

WASTE MATERIALS

formative process

subtractive process

ADDITIVE MANUFACTURING PROCESSES

Directed energy deposition processes (DED)

Material extrusion based systems (ME)

Material jetting (MJ)

Powder bed fusion processes (PBF)

Sheet lamination processes (SL)

Binder jetting (BJ)

INTRODUCTION &

MOST USED IN THE BUILT ENVIRONMENT

Directed energy deposition processes (DED)

Vat Photopolymerization (VP)

Material extrusion based systems (ME)

Powder bed fusion processes (PBF)

Sheet lamination processes (SL)

Binder jetting (BJ)

ADDITIVE MANUFACTURING IN THE BUILT ENVIRONMENT

Deep Facade, ETH Zurich

Concrete Choreography, ETH Zurich

Structural joint, ARUP

Material extrusion based systems (ME)

Smart Slab, ETH Zurich

Radiolaria, Shiro Studio

Tecla house, Mario Cucinella

Binder jetting (BJ)

PROCESS EMPLOYED

Deep Facade, ETH Zurich

Concrete Choreography, ETH Zurich

Structural joint, ARUP

Radiolaria, Shiro Studio

Material extrusion based systems (ME)

Smart Slab, ETH Zurich

Tecla house, Mario Cucinella

Binder jetting (BJ)

BIO-BASED MATERIAL

Eggshells

Calcite

Material extrusion based systems (ME)

Mycelium

Salt

Cellulose

Sawdust

STATE OF THE ART OF ADDITIVE MANUFACTURING WITH BAMBOO

Images of the 3D printed species: ABS, ABS-bamboo, ABS-bamboo modified.

Extrusion of mycelium-enriched bamboo fibres-chitoan pastes.

Premixing bamboo powder with PLA and comparison of different adding proportion.

Bambooder 3D printed vase with bamboo short fibers and PLA. Nozzle 0.18 mm.

DESIGN OBJECTIVE

design a building component created with additive manufacturing by using bamboo dust and fibers as a **proof** of concept

RESEARCH QUESTION

what is the workflow to develop a building component made of bamboo with additive manufacturing?

RESEARCH SUB-QUESTIONS

MATERIAL EXTRUSION

+

•	
•	FILLEDS
•	IILLLNJ
•	• • • • • • • • • • • • • • • • • • • •

BINDERS

Bamboo dust

Bamboo fibers 1-3 mm

Bamboo fibers 6-25 mm

Bamboo "green dust"

BIO-BASED

BIO-BASED

agar agar

alginate

corn starch

FITLANE

AGAR AGAR

ICU% VEGAN LVEGETABLEJ GELA Gélatine 100% végétalienne (végét

tapioca starch

potato starch

rice flour

MANUAL EXTRUSION

SYRINGE

ROBOTIC ARM

negative	indifferent	positive
-1	0	1
	Homogeneity	
	Viscosity	
	Adhesion	
	Extrudability	
	Bio-based	
	Shrinkage	
	Brittleness	
	Curing time	
	Aesthetics	

EVALUATION

RESULTS

SECOND MATERIAL EXPERIMENTATION

binders

MATERIAL EXPLORATION S-S

SECOND MATERIAL EXPERIMENTATION

COMPARISON

Filler Binder	Bamboo dust	Bamboo green dust	Dust + Fibers	Green Dust + Fibers
Corn starch				
Potato starch				
Tapioca starch				
Gelatin				
Xantham gum				
Collagen Peptides				
Eco-glue				
Wood glue				

Filler Binder	Bamboo dust	Bamboo green dus
Corn starch		
Potato starch		
Tapioca starch		
Gelatin		
Xantham gum		
Collagen Peptides		
Eco-glue		
Wood glue		

RESULTS

FAULTS DURING DRYING PROCESS

Filler Binder	Bamboo dust	Bamboo green dust	Dust + Fibers	Green Dust + Fibers
Corn starch				
Potato starch				
Tapioca starch				
Gelatin				
Xantham gum				
Collagen Peptides				
Eco-glue				
Wood glue				

MECHANICAL TESTING

MECHANICAL TESTING

BROKEN SPECIMENS

Filler Binder	Bamboo dust	Bamboo green dust	Dust + Fibers	Green Dust + Fibers
Corn starch				
Potato starch				
Tapioca starch				
Gelatin				
Xantham gum				
Collagen Peptides				
Eco-glue				
Wood glue				

REMAINING SPECIMENS

Filler Binder	Bamboo dust	Bamboo green dus
Corn starch		
Potato starch		
Tapioca starch		
Gelatin		
Xantham gum		
Collagen Peptides		
Eco-glue		
Wood glue		

POTENTIAL MIXTURES

Filler Binder	Bamboo dust	Bamboo green dust	Dust + Fibers	Green Dust + Fibers
Corn starch				
Potato starch				
Tapioca starch				
Gelatin				
Xantham gum				
Collagen Peptides				
Eco-glue				
Wood glue				

BIO-BASED

Filler Binder	Bamboo dust	Bamboo green dust	Dust + Fibers	Green Dust + Fibers
Corn starch				
Potato starch				
Tapioca starch				
Gelatin				
Xantham gum				
Collagen Peptides				
Eco-glue				
Wood glue				

Filler Binder	Bamboo dust	Bamboo green dust	Dust + Fibers	Green Dust + Fibers
Corn starch				
Potato starch				
Tapioca starch				
Gelatin				
Xantham gum				
Collagen Peptides				
Eco-glue				
Wood glue				

CONCLUSION

PRINTING EXPLORATION

SYRINGE

ROBOTIC ARM

PRINTING EXPLORATION

CONTROL •••••

MOVEMENT

PRINTABILITY EXPLORATION & S-S-S

WASP LDM extruder

PRINTING EXPLORATION

•••••• CONTROL MOVEMENT

UR5

water + potato starch

mix and boil

binder

pour

green bamboo dust

add and mix

MATERIAL SETUP

add and mix

printing paste

mix

cartridge

fill

EXPLORATION SETUP

height

overhang

overlap

20 mm

50 mm

30 mm

HEIGHT

50 mm

80 mm

100 mm

HEIGHT

50 mm

120 mm

38,82 mm

50 mm

80 degree

OVERHANG

75 degree

50 mm

58,87 mm

4 mm

4 mm

OVERLAP

6 mm

6 mm

CONCLUSION

()

DESIGN OBJECTIVE

design a building component created with additive manufacturing by using bamboo dust and fibers as a **proof** of concept

DESIGN CRITERIA

DESIGN

gif

PRINTING DIRECTION

PRINTING DIRECTION

PRINTING DIRECTION

TRADITIONAL PROCESSES COMPARISON

3,48 m³

2,14 m³

10,58 m³

TRADITIONAL PROCESSES COMPARISON

3,48 m³

material compared to AM

2,14 m³

10,58 m³

+ 132% material compared to AM

DESIGN S S

FLEXIBILITY

ONE OF THE MANY

FOCUSED AREA

without infill

STABILITY

with infill

SPECIMENS

honeycomb

rhombic

MECHANICAL TEST

load capacity

MECHANICAL TEST

load capacity

MECHANICAL TEST

geometry behaviour

COMPRESSION TEST

Mixture Geometry	Dust + Fibers	5	
Curved		Specimen 1 2000 1500 1000 500 0 500 0 500 0 500 0 500 0 15 20 25 100 15 20 25	
Honeycomb		Specimen 2	
Rhombic		Specimen 3	

RHOMBIC

Mixture Geometry	Dust + Fibers	
Curved	<figure></figure>	
Honeycomb		
Rhombic		

CURVED

Mixture Geometry	Dust + Fibers	}		
Curved		2000 2000 1500 500 0 0	Specimen 1	
Honeycomb		2000 N 1500 1500 1000 500 0 0	Specimen 2	
Rhombic		2000 N 1500 ppp 1000 500 0 0	Specimen 3	

DESIGN S S S

HONEYCOMB

Mixture Geometry	Dust + Fibers	
Curved		
Honeycomb		
Rhombic	Specimen 3	

OPTIMIZED GEOMETRY

optimized geometry

DESIGN S-S-S-S

DESIGN

DESIGN

CONCLUSION

()

N OPTIMIZATION	
data-driven & omputational tools	
efficiency	functionality

UNIFORMLY DISTRIBUTED LOADS

DESIGN OPTIMIZATION & S S S S

DESIGN GOAL

optimize the use of the material by creating a mechanically informed infill tailored to the loads on **specific parts** of component

VARIABLE THICKNESS

AUTOMATED MECHANICALLY INFORMED INFILL

AUTOMATED MECHANICALLY INFORMED INFILL

 $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ 4 .+ .+ . + 4

support and loads

AUTOMATED MECHANICALLY INFORMED INFILL

variable thickness

SCRIPT VERSATILITY

HOMOGENEOUS INFILL

MECHANICALLY INFORMED INFILL

MATERIAL OPTIMIZATION

homogeneous infill	
0,47 m²	

 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \frown \bigcirc \bigcirc

......... mechanically informed infill

0,34 m²

- 32% material used

DESIGN OPTIMIZATION S S S S

113

CONCLUSION

()

PROTOTYPE

PROTOTYPE LIMITATIONS

FRAGMENT 1:1 SCALE

FRAGMENT 1:1 SCALE

prototype s-s-s-s 118

TOOLPATH

TIME FRAME

material

tool

printing

cleaning

TIME FRAME

material

tool

printing

cleaning

two working days

PROTOTYPE PRINTING PROCESS

LAYER - REFILL - LAYER - REFILL

over extrusion

1 layer

1 layer

cartridge refill

CONTROLLED PRINTING PROCESS

prototype <u>s</u><u>s</u><u>s</u><u>s</u><u>s</u><u>s</u><u>124</u>

HEIGHT ACHIEVED

1 layer

7 layers

12 layers

16 layers

PRINTED PROTOTYPE

DRIED PROTOTYPE

WORKFLOW

material

fabrication

design

component

SCIENTIFIC RELEVANCE

design

component

optimized material usage

advancement in interdisciplinary research

conclusion sosses 130

SOCIAL RELEVANCE

FUTURE RESEARCH

green bamboo dust

fiber 200400 SF

FILLERS

dust 0100

fiber 4001000

CORN STARCH LONG FIBERS

dust 0100+ fiber 200400 SF

green dust + fiber 200400 SF

fiber 200400 SF

fiber 4001000

WHY NOT DUST 0100

dust 0100

less adhesion

REUSABLE PRINTED COMPONENT

soaked

dissolved

COMPUTATIONAL WORKFLOW

library input

create program

program simulation

DIGITAL GEOMETRY

plane conversion

MECHANICAL TEST

Mixture Geometry	Dust + Fibers Sasa tsuboiana + 200400 SF	
Curved	Weight72 gF max2177 NL at F max12,6 mmF break435 NL at F break21,8 mm	Wei 2A F m dL a F br dL a
	<figure></figure>	2000 X 1500 Dup 1000 500 0 0 5
Honeycomb		2B Fm 2B Fbr dL a Fbr dL a
Rhombic	Weight $62,2 g$ Imax $1641 N$ Imax $12,9 mm$ Fbreak $327 N$ Imax $15,6 mm$ Imax $15,6 mm$ Imax $15,6 mm$ Imax $15,6 mm$ Imax $100 mm$ <	2C Fm dL a 2C Fm dL a 500 500 0 500

MECHANICAL TEST INSIGHTS

curved

honeycomb

rhombic

MIXTURE LUMPS

