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SUMMARY 
This thesis examines how information can benefit drought management decisions at the 
basin scale. Three perspectives are tested. The question is first approached from a data-
centric perspective, assessing the usefulness of remotely sensed datasets to detect early 
stages of drought and determining how much time can be gained to inform operational 
land and water management practices. A user-centric approach is then followed, 
identifying through semi-structured interviews the information use and needs voiced by 
farmers and reservoir operators to support water allocation decisions during droughts, and 
quantifying the value of (new) information to support these decisions through modelling. 
Lastly, the user-centric and data-centric perspectives are combined to assess the 
usefulness of seasonal forecasts of water availability to support water allocation decisions 
in irrigated agriculture through a risk-based approach and the factors that have an impact 
on that usefulness.  

The assessment from the user-centric perspective provided essential knowledge on the 
decisions, the courses of action available to decision makers, and the conditions that 
determine the selection of one of the available courses of action at each decision point. 
This knowledge is necessary to assess whether the information can change the decision 
outcome, which is a prerequisite for its usefulness. The user perspective also helped 
confirm there is a perceived need for additional information among the decision makers 
interviewed. The assessment from the data-centric perspective showed the ability of the 
selected datasets to provide key information required by the decision makers in a timely 
manner, while the combined perspective allowed to demonstrate the capacity of 
information available from seasonal forecasts to actually impact the outcome of the 
decision. These three perspectives show that there are multiple factors that need to be 
considered when assessing the usefulness of information. Notably, these are (i) the ability 
of information to provide either the observations or predictions that are needed by the 
decision maker at the time when they are needed, and (ii) the capacity of the decision 
maker to change the course of action as a result of the available information. The results 
show that both of these factors depend on the options available to the decision maker. 
These may differ for different individuals, depending also on the level of risk aversion 
decision makers have as well as their technical capacities, and the context of the decision. 
Changes in the market value of goods, or weather variability, may also impact the 
usefulness of information for the decisions analysed in this research.  

Bringing these perspectives and their respective methods together contributes to fill the 
gap between technical and human-centred approaches to assess the usefulness of 
information for drought management decisions.
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SAMENVATTING 
Dit proefschrift onderzoekt hoe bruikaar informatie is bij het ondersteunen van 
beslissingen in het beheer van droogte op stroomgebiedsschaal. Drie perspectieven 
worden getoetst. Eerst wordt het vraagstuk benaderd vanuit een perspectief waarbij de 
data die gebruikt wordt centraal staat. De bruikbaarheid van een geselecteerd aantal 
sattelietdataproducten bij het detecteren van droogte in een vroeg stadium is geëvalueerd 
en er is onderzocht hoeveel tijd hiermee gewonnen kan worden bij het nemen van 
beslissingen voor het inzetten van operationale maatregelen in de allocatie van water en 
de keuzes die boeren maken tussen geïrrigeerde en niet-geïrrigeerde gewassen. Het 
tweede perspectief benadert het vraagstuk vanuit een hoek waarbij de gebruiker van de 
informatie centraal staat. Middels semi-gestructureerde interviews met boeren en 
reservoirbeheerders is onderzocht wat de informatiebehoefte is en hoe ze die informatie 
gebruiken om de beslissingen te ondersteunen die zij nemen ten aanzien van het beheer 
van het beschikbare water. Hiermee wordt vervolgens met een model onderzocht wat de 
toegevoegde waarde van die (nieuwe) informatie is bij het nemen van die beslissingen. 
Het derde perspectief combineert de twee voorgaande perspectieven. De bruikbaarheid 
van seizoensvoorspellingen van waterbeschikbaarheid bij het nemen van beslissingen, ten 
aanzien van de allocatie van water aan geirrigeerde landbouw, wordt getoetst. Hierin 
wordt een risico-gestuurde aanpak toegepast bij het nemen van beslissingen, gegeven de 
(onzekere) seizoensvoorspellingen, en de factoren die de bruikbaarheid van die 
informatie beïnvloeden worden getoetst. 

Bij de evaluatie vanuit het perspectief van de gebruikers is essentiële kennis opgedaan 
over de beslissingen die worden genomen, de mogelijkheden die de besluitvormers tot 
hun beschikking hebben en de voorwaarden die zij daarbij gebruiken om op elk 
beslissingsmoment te kiezen tussen de beschikbare mogelijkheden. Deze kennis is 
onmisbaar bij het toetsen of nieuwe en/of beschikbare informatie de uitkomst van een 
beslissing kan bepalen, hetgeen een voorwaarde is voor de bruikbaarheid van die 
informatie. Bovendien kon de in de interviews geuite perceptie dat er additionele 
informatie nodig was om de beslissing te ondersteunen worden bevestigd. 

Kijkend vanuit het perspectief van de data, is in dit onderzoek aangetoond dat de 
geselecteerde satelietdatasets belangrijke informatie bevatten, die de gebruikers in de 
interviews als benodigd hadden geïdentificeerd. Bovendien kon worden aangetoond dat 
deze informatie tijdig beschikbaar is. Vanuit het derde, gecombineerde perspectief, kwam 
duidelijk naar voren dat de informatie die de seizoensvoorspellingen toevoegen inderdaad 
het vermogen hebben om de uitkomst van gemaakte beslissingen te beïnvloeden. Deze 
drie perspectieven laten zien dat er meerdere factoren zijn die moeten worden 
meegenomen bij het onderzoeken van de bruikbaarheid van informatie. Deze zijn met 
name: (i) het vermogen van de informatie, bestaande uit hetzij waarnemingen of 
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voorspellingen om toegenseden te zijn op de informatiebehoefte van de besluitvormer en 
om op het juiste moment voor het nemen van een beslissing beschikbaar te zijn; (ii) de 
mogelijkheden die de besluitvormer heeft om de uitkomst van de beslissing te kunnen 
bepalen aan de hand van de beschikbaar gestelde informatie. Resultaten van dit onderzoek 
tonen aan dat deze factoren bovendien afhankelijk zijn van de opties die een 
besluitvormer tot haar of zijn beschikking heeft. Voor verschillende individuen zijn deze 
verschillend en worden bovendien beïnvloed door een aantal factoren: hoe risicomijdend 
een beslisingnemer is, de technische capaciteiten en de context waarin de beslissing wordt 
genomen. Veranderingen in martkwaarde van goederen, of de variabileit van het klimaat, 
kunnen eveneens invloed hebben op hoe bruikbaar informatie is in het ondersteunen van 
de beslissingen die in deze studie zijn onderzocht. 

De perspectieven en de daarbij gebruikte methoden die in dit onderzoek worden 
samengebracht, dragen bij door een brug te slaan tussen de tot nu toe uiteenlopende 
benaderingen om de bruikbaarheid van informatie in het ondersteunen van beslissingen 
in het droogtebeheer te toetsen: die waarbij de bruikbaarheid vanuit een puur technisch 
perspectief wordt bekeken en die waarbij dat wordt gedaan vanuit het perspectief van de 
mens die de beslissing neemt. 
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1.1 DROUGHT INFORMATION IN WATER RESOURCES MANAGEMENT 

Droughts are natural hazards caused by a deficiency in precipitation over a prolonged 
period of time. Despite this apparently simple definition, droughts are notoriously 
difficult to characterise (Kiem et al., 2016; Wilhite et al., 2007) and different choices in 
the characterisation might result in different conclusions about the drought event (Hisdal 
et al., 2024). Droughts are a complex and recurring phenomenon that can occur practically 
anywhere, have multiple contributing factors, and affect the entire water cycle. They may 
lead to a wide range of negative environmental, economic, and social effects that vary 
from region to region. To help the characterisation of droughts, four drought types and 
definitions are commonly distinguished in the scientific literature (Mishra and Singh, 
2010; Wilhite and Glantz, 1985): meteorological drought, resulting from lower than 
average precipitation for an extended period; agricultural drought, better defined as soil 
moisture drought (Berg and Sheffield, 2018), resulting from reduced soil water levels 
associated with water stress for vegetation; hydrological drought, resulting from 
anomalous lack of water in one or more of the components of surface or subsurface water 
supply such as streamflow, reservoir storage or groundwater, and socioeconomic drought, 
that occurs when the demand for an economic good exceeds the supply as a result of a 
weather-related water deficit.  

In the same way that water deficits propagate through the hydrologic, agricultural, and 
social systems, drought impacts cascade through all natural and human systems that 
depend on water. Drought impacts are varied and far-reaching, affecting water supply for 
domestic and industrial use, agriculture, energy generation, and the natural environment 
among others. However, despite their importance, drought impacts are still understudied 
in the context of drought characterisation (Enenkel et al., 2020; Urquijo-Reguera et al., 
2022). 

Drought management plans aim at guiding the decisions water resources managers take 
to prepare for and mitigate these drought impacts. Their implementation requires reliable 
and timely information on the occurrence and characteristics of drought events (Vicente-
Serrano et al., 2012). Droughts are commonly characterised in terms of severity, duration, 
spatial extent, and frequency. However, as it is not possible to support this 
characterisation through a single observable variable, normally drought management 
plans rely on indicators and indices that combine different kinds of data to support 
managers in identifying the characteristics of ongoing or predicted droughts. Drought 
indicators may consider essential climate variables such as precipitation, temperature, 
streamflow, water levels, soil moisture, or evapotranspiration, that can help identify 
drought conditions, while drought indices are numerical characterizations of drought 
usually based on the data from one or more indicators (Svoboda and Fuchs, 2016). 
Threshold values of the indices are then typically defined in drought management plans 
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to classify a drought event into categories of severity and to identify decision points at 
which the managers should decide whether to apply the mitigation measures associated 
with each level of severity, as defined in the drought management plan. The selection of 
indicators and thresholds, as well as the uncertainties in the data sources used to establish 
the indicators, can have a significant impact on the outcome of the water resources 
management decisions in which they are used.  

There is an ongoing and continuous research effort into developing, assessing, and 
improving drought indices and information services to detect, monitor and predict 
droughts (Mishra and Singh, 2010; Yihdego et al., 2019; Alahacoon and Edirisinghe, 
2022). Numerous indices have been developed and used over the years to identify and 
characterise drought. Among the most widely used are the Standardised Precipitation 
Index (SPI, McKee et al., 1993), the Standardised Precipitation Evapotranspiration Index 
(SPEI, Beguería and Vicente-Serrano, 2013) and the Normalised Difference Vegetation 
Index (NDVI, Rouse et al., 1974) (See Zargar et al., 2011; Niemeyer, 2008; Mishra and 
Singh, 2010; Heim, 2002 for additional examples of drought indices). Each index has its 
own strengths and weaknesses, and is suited for a specific context, e.g. a type of drought, 
a climatic area, or an impacted sector (Svoboda and Fuchs, 2016).  

Despite drought indices and related information products having a clear potential to help 
drought management decisions, they are usually developed by researchers with little input 
from end users (Purdy et al., 2019). As a result, there is a gap between what scientists 
consider a useful information index or product and what decision makers recognize as 
usable (Lemos et al., 2012; Raaphorst et al., 2020; Jebeile and Roussos, 2023). This thesis 
aims to contribute to reducing that gap by researching the usefulness of information for 
drought management decisions from both the data and the user perspectives. 

1.2 KEY CONCEPTS IN DECISIONS AND INFORMATION ASSESSMENT  

A decision is the selection of one alternative from two or more different possibilities. A 
common approach to study decision problems consists of identifying all the possible 
actions that can be taken and the possible outcomes of those actions.  

Two levels can be distinguished in management decisions: planning decisions and 
operational decisions. Planning decisions involve the definition of plans and methods to 
achieve defined strategic objectives. In the case of drought management, these decisions 
may include the selection of indicators, thresholds, and mitigation measures. On the other 
hand, operational decisions are required to put the plans into action. These decisions are 
made on a regular basis and are usually informed by real-time data supported by 
indicators and thresholds. For example, the decision of whether to apply the mitigation 
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measures defined in the drought management plan once an indicator threshold is crossed, 
is an operational decision. 

Depending on the level of knowledge about the outcomes of the actions and their 
probability of occurrence, decision problems can be classified in the following categories 
(Hansson, 2005, 2022): 

i. Decisions under certainty: correspond to a situation of deterministic knowledge, 
in which the outcomes of actions are invariable and known. 

ii. Decisions under risk: correspond to a situation of complete probabilistic 
knowledge, in which the probability of occurrence of each of the possible 
outcomes for an action is known. 

iii. Decisions under uncertainty: correspond to a situation of partial probabilistic 
knowledge, in which the probability of occurrence of the possible outcomes for 
an action is only partially known. 

iv. Decisions under ignorance: correspond to a situation of no probabilistic 
knowledge, in which the probability of occurrence of the possible outcomes for 
an action is unknown. 

Water management decisions tend to fall in the category of decisions under uncertainty, 
as they depend on variable and uncertain water availability and demands. Sources of 
uncertainty in this field include lack of reliable data, unpredictability of the future state 
of the system both because of environmental and socio-political components, and the 
complexity and lack of understanding of some aspects of the hydrological systems 
(UNESCO, 2012). Information, such as that obtained from drought monitoring or 
seasonal weather forecasts, can contribute to reduce part of this uncertainty by helping to 
quantify and estimate the availability of water resources. 

The attractiveness for decision makers of each possible course of action in the decision 
depends both on the likelihood of the possible outcomes and their preferences for those 
outcomes (Keeney, 1982). In decisions under uncertainty, the latter also involves the 
decision maker’s attitude to risk (Cerdá Tena and Quiroga Gómez, 2008).  

1.2.1 Value of information 
One of the motivations for decision analysis is to compute the potential value of 
information (Wilks, 1997). Information can be defined as a set of data organised for a 
particular purpose with the potential to change the state of knowledge of the user. Two 
categories can be distinguished in relation to the practical value of information: value in 
use and the exchange value. The first is related to the benefits derived from the use of the 
data, while the second corresponds to the value of the information in the market (Repo, 
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1986). In this thesis we focus on the first category, and from that perspective, the value 
of information (VOI) is related to the potential of information to increase knowledge, 
which may lead to a change in the outcome of a decision. In the case of drought 
management, improved information about the characteristics of an event could contribute 
to the selection of more appropriate mitigation measures and therefore to reduce the 
impacts and/or optimise the cost of prevention measures. The potential of improved 
information to generate benefits, or savings, or reduced impacts makes it valuable. 

There are some essential conditions required for information to have value. A good 
overview of those conditions is presented by Macauley (2006), who reviews studies 
about the value of information derived from remote sensing in the context of 
environmental management and points out the need for a better understanding and 
assessment of the benefits of the operational use of earth science data. From her review, 
she observes that the value of information depends largely on: 

i. The potential contribution of the added information in reducing uncertainty or 
error. The value of information in reducing uncertainty is larger when the 
individual is more uncertain, while when there is a conviction about the 
occurrence or non-occurrence of an event, then the value of information is zero. 

ii. The potential earnings or savings that can be achieved with better information. 
When the making of a wrong decision has no cost, then value of information is 
also zero. 

iii. The capacity of the user to change the course of action as a result of new 
information. The value of information is lower when there are less available 
actions to take. 

iv. The cost of using the information, as well as the cost of using alternative sources 
of information. 

Usually, methods for VOI analysis begin by evaluating the Value of Perfect Information 
(VOPI). Perfect information corresponds to the situation where there is no uncertainty 
regarding the outcomes of the possible courses of action. VOPI serves as a reference of 
the maximum value of information in supporting a particular decision problem. However, 
new information will generally only reduce uncertainty. In some situations, new 
information may even increase the level of uncertainty. Therefore, methods for VOI 
analysis commonly include an evaluation of the Value of Imperfect Information as well, 
to estimate the worth of reducing uncertainty with additional or improved information.  

The VOI is used in this thesis as a helpful framework to quantitatively assess the 
usefulness of information, which allows to compare different information scenarios and 
users of information. 
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1.2.2 Usability 
Analysis of the value of information can help determine how useful information is for a 
particular decision. However, climate information considered potentially useful often 
ends up not being used for multiple reasons, calling for a need to understand the 
processes that takes information from being considered useful by the producers to being 
used by decision-makers (Kirchhoff et al., 2013; Lemos et al., 2012; Porter and Dessai, 
2017). Cash et al. (2003) indicate that to be usable by decision-makers, information 
needs to be credible (scientifically sound), salient (relevant to their needs) and 
legitimate (unbiased and respectful with different views and values) and argue that to 
achieve this, a two-way communication and mutual understanding between information 
producers and decision-makers is needed. The latter is sometimes hindered by the 
different language and views of the two groups. A widely supported strategy to ensure 
the salience of information and increase its uptake is the co-production between science 
and users (Bruno Soares and Dessai, 2016; Cash et al., 2003; Lemos et al., 2012; Porter 
and Dessai, 2017). 

Bruno Soares and Dessai (2016) investigate the barriers and enablers to the use of 
seasonal forecast in European organisations from different sectors through in-depth 
interviews (75). Their conclusions confirm the issues discussed by Cash et al. (2003); 
finding that the majority of organisations do not use information such as from seasonal 
forecast mostly because of the limited skill and reliability of the forecasts in Europe, but 
also because of the lack of salience (i.e. the data available not fitting in their way of 
work) and lack of awareness of the products and communication between producers and 
users. Not having enough resources or technical capacity available or unsuitable timing 
(information not available early enough to fit their planning) was also mentioned by a 
couple of organisations. 

1.3 RESEARCH OBJECTIVES AND AIM 

This thesis examines the interplay of information and decisions in the context of water 
allocation in drought prone areas, with a focus on assessing the usefulness of information 
that could be considered in addition to in-situ measurements, such as remote sensing 
products and seasonal forecasts. The thesis revolves around the questions of how 
information can benefit drought management decisions at the basin scale, and how its 
usefulness can be assessed. These are multifaceted questions that cut across different 
fields of study: drought management, which looks into plans and actions to reduce the 
impacts of drought and make the best use of scarce or irregular water resources; climate 
and water information, and the products that can be generated to inform decisions that 
depend on them; and the study of decisions and information usefulness, which is 
multidisciplinary in itself, ranging from mathematical models to social aspects.  
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Each of these fields of study has their own motivations, perspectives, and methods to 
investigate the role of information in drought management decisions, and addresses the 
concerns and questions of different stakeholders: 

• Managers: How can well-informed decisions help prepare for and reduce the 
impact of drought? 

• Climate and water information providers: Are available information products fit 
for drought management decisions? How can these be improved to better support 
the decisions? What is the value of the information to users to justify investment 
needed to develop the products? 

• Decision and information researchers: How to make better decisions? How can 
the value or usefulness of information be assessed?     

These questions span from the more specific to the more abstract. From assessing how 
information can support a given drought management decision, with its existing 
information needs, gaps and limitations, to assess more broadly how information products 
can fulfil the information needs of a certain type of decisions, to reaching general rules 
that help understand the role of information in drought management decisions.   

Although the multiple disciplines that deal with the usefulness of information for drought 
management all offer relevant concepts and methods to approach the question, each 
discipline normally works independently, focusing on specific aspects of the problem. 
However, understanding what makes information both useful and usable requires 
crossing the disciplinary boundaries and integrating their different methods to paint the 
whole picture of the role of information for drought management decisions. This thesis 
aims to bridge the gap between technical and human approaches by first exploring what 
insights a data-oriented perspective and a user-oriented perspective offer independently. 
Then a third perspective, resulting from the integration of the previous two approaches, 
is used to identify the overall factors that influence the usefulness of information for 
drought management decisions.  

The data-centred analysis is designed to determine whether available information is 
potentially useful to support drought management decision at the basin scale, while the 
user-centred perspective aims to identify the options available to decision makers and 
whether they perceive a need for additional or improved information. Combining the two 
perspectives, the thesis explores whether additional information has the capacity to 
change the outcome of the decision given the available options and decision constraints, 
which is one of the main conditions for information to be useful. Throughout the three 
perspectives, the thesis also investigates what aspects of the decision, its context or the 
information used influence the usefulness of the information.    
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In addition to identifying the types of results that each of the perspectives can provide and 
their contribution to the assessment of the usefulness of information to support drought 
management decisions, with the analysis conducted from the different perspectives, this 
thesis also aims to explore how to assess the usefulness of information, how the gap 
between technical and human approaches can be bridged, and how different aspects of 
the decision and its context impact the usefulness of information.  

1.4 OUTLINE 

This first chapter states the aims of the thesis and introduces the context and relevant 
concepts for the study of decisions and how these may benefit from information. 

The subsequent chapters (2-4) approach the question of how information can benefit 
drought management decisions at the basin scale from different perspectives. In this 
research, the Ebro basin in Spain is used as a case study for the three chapters. Detailed 
information on the basin can be found in Appendix A. 

Chapter 2 considers a data-centric perspective, assessing the usefulness of remotely 
sensed datasets to detect early stages of drought at the river basin scale and determine 
how much time can be gained to inform operational land and water management 
practices. 

Chapter 3 follows a user-centric perspective. The information use and needs of farmers 
and reservoir operators that make decisions within the context of water resources 
allocation during droughts are identified through semi-structured interviews and the 
value of information to these decisions is quantified by building a model of the 
decisions described in the interviews. 

The two approaches, data and user-centric, are combined in the analysis presented in 
Chapter 4 to assess the value of seasonal forecasts of precipitation to support water 
allocation decisions in irrigated agriculture through a risk-based approach. 

A final synthesis and overall conclusions are presented in Chapter 5. 
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2 THE PREDICTABILITY OF 

REPORTED DROUGHT 
EVENTS AND IMPACTS IN 
THE EBRO BASIN USING 
SIX DIFFERENT REMOTE 

SENSING DATASETS 
 

This chapter is based on: 

Linés, C., Werner, M., and Bastiaanssen, W.: The predictability of reported drought 
events and impacts in the Ebro Basin using six different remote sensing data sets, Hydrol. 
Earth Syst. Sci., 21, 4747–4765, https://doi.org/10.5194/hess-21-4747-2017, 2017. 

 

Abstract 

The implementation of drought management plans contributes to reduce the wide range 
of adverse impacts caused by water shortage. A crucial element of the development of 
drought management plans is the selection of appropriate indicators and their associated 
thresholds to detect drought events and monitor the evolution. Drought indicators should 
be able to detect emerging drought processes that will lead to impacts with sufficient 
anticipation to allow measures to be undertaken effectively. However, in the selection of 
appropriate drought indicators, the connection to the final impacts is often disregarded. 
This paper explores the utility of remotely sensed datasets to detect early stages of drought 
at the river basin scale and determine how much time can be gained to inform operational 

https://doi.org/10.5194/hess-21-4747-2017
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land and water management practices. Six different remote sensing datasets with different 
spectral origins and measurement frequencies are considered, complemented by a group 
of classical in situ hydrologic indicators. Their predictive power to detect past drought 
events is tested in the Ebro Basin. Qualitative (binary information based on media records) 
and quantitative (crop yields) data of drought events and impacts spanning a period of 12 
years are used as a benchmark in the analysis. Results show that early signs of drought 
impacts can be detected up to 6 months before impacts are reported in newspapers, with 
the best correlation–anticipation relationships for the standard precipitation index (SPI), 
the normalised difference vegetation index (NDVI) and evapotranspiration (ET). Soil 
moisture (SM) and land surface temperature (LST) offer also good anticipation but with 
weaker correlations, while gross primary production (GPP) presents moderate positive 
correlations only for some of the rain-fed areas. Although classical hydrological 
information from water levels and water flows provided better anticipation than remote 
sensing indicators in most of the areas, correlations were found to be weaker. The 
indicators show a consistent behaviour with respect to the different levels of crop yield in 
rain-fed areas among the analysed years, with SPI, NDVI and ET providing again the 
stronger correlations. Overall, the results confirm remote sensing products' ability to 
anticipate reported drought impacts and therefore appear as a useful source of information 
to support drought management decisions.
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2.1 INTRODUCTION 

Drought is defined as a temporary water shortage in part caused by anomalous climatic 
conditions but strongly influenced by socioeconomic factors (Kallis, 2008). The effects 
of drought propagate through all human and natural systems that depend on water directly 
or indirectly, producing substantial losses (Wilhite et al., 2007). Various economic sectors 
are adversely affected, in particular agricultural production, energy generation and water 
supply for domestic and industrial use. Habitat degradation, increased mortality of flora 
and fauna, and increased occurrence of wildfires are examples of the effects on the natural 
environment. Indirect impacts, such as increase of prices, unemployment or migration, 
arise as a consequence of the direct impacts and may be felt in a much wider area, even 
reaching the global scale (Wilhite and Vanyarkho, 2000). 

The occurrence and severity of drought impacts depend on the intensity and duration of 
the event but also on the vulnerability of the society and the environment (Wilhite, 2000). 
As a consequence, the conditions that produce negative socioeconomic impacts are not 
necessarily the same for the different sectors that may be affected (Redmond, 2002). The 
timing of the event also influences the severity of impacts. Soil moisture deficit during 
the flowering stage of a crop or reduced domestic water supplies during the tourist season 
are examples of situations in which the socioeconomic impact is aggravated due to the 
timing of the drought. The aim of the current paper is to identify Earth observation 
datasets that can be used to detect early stages of drought at the basin scale, as well as to 
determine the extent to which these datasets can anticipate drought impacts and be used 
to inform operational land and water management. 

The implementation of drought management plans by governing agencies can contribute 
to reducing the negative effects of drought by guiding decision-makers in taking 
appropriate mitigation actions. However, the effectiveness and cost efficiency of these 
actions rely on the selection of suitable indicators to monitor drought conditions and to 
detect events at an early stage, gaining valuable time for mitigation measures to be 
implemented effectively and impacts to be mitigated. Examples of actions that can be 
taken include retention of water; reallocation of available water resources; curtailment of 
current allocations; recommendations to plant less water-demanding or drought-resistant 
crops; or prohibition of certain water uses (e.g. watering gardens or washing cars). 

Indicator systems consist of drought indices with associated thresholds that allow 
classifying the event in categories of drought severity. A classic example is the division 
of river flow into several categories. When the value of the indicator crosses one of the 
thresholds, managers should decide whether to activate the corresponding responses 
defined in the drought management plan for that situation. Indicators and associated 
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thresholds should be problem, context and user-specific (Kallis, 2008), and therefore an 
integrated management of droughts in basins where there are multiple users requires 
advanced drought detection systems based on multiple indicators. 

Measurements from in situ networks and from remote sensing are complementary sources 
that can be used to build the system of indicators for early detection and monitoring of 
drought conditions. In situ data are generally collected at specific points only. The 
advantage is the high temporal frequency of observations and the availability of longer-
term records. Remote sensing techniques, on the other hand, offer cost-effective and 
spatially continuous information over extended regions. Satellites allow drought events 
to be categorised over a certain area, rather than at point locations (Famiglietti et al., 2015; 
Kogan, 2001). Several satellite datasets are now available at daily or at even shorter 
timescales, offering excellent potential to develop sound drought monitoring systems in 
real time and allowing to overcome the shortcomings of classical indicators based on in 
situ datasets that lack the spatial scale (e.g. Sheffield et al., 2014; Van Dijk and Renzullo, 
2011). 

Keyantash and Dracup (2002) analyse a set of criteria to assess the usefulness of drought 
indicators for the assessment of drought severity and point out that while the robustness 
of an indicator provides insight into its consistent behaviour across differing conditions, 
assessing the accuracy of the information provided by the indicator requires a standard or 
benchmark for comparison. This holds true for both remote-sensing-based and ground-
based indicators. A standard that offers an absolute metric of drought is not easily 
available and likely does not exist, and as a result a common approach to evaluating the 
performance of remote-sensing-based drought indicators is to assess their robustness by 
comparing them with other indicators such as flow, reservoir levels or widely used 
drought indices (e.g. Morid et al., 2006; Tsakiris et al., 2007; Vasiliades et al., 2011). 
Expert knowledge may also be used in practical applications as a benchmark to assess 
drought indicators such as in Steinemann et al., (2015), who rely on regional water 
managers, drought decision-makers and other stakeholders’ knowledge as a reference to 
develop, select and evaluate drought indicators. Expert judgement is also included, in 
combination with several indicators and model outputs, in the US drought monitor 
(Svoboda et al., 2002) to develop a weekly map of drought conditions in the US which 
itself is also frequently selected as a reference dataset in the evaluation of the performance 
of drought indicators in the country (e.g. Anderson et al., 2011; Brown et al., 2008). 

Since mitigating impacts is the purpose of drought indicators included in drought 
management strategies, impact data are especially suitable as a benchmark in this case. 
Drought impacts, however, are difficult to evaluate and are rarely monitored (Lackstrom 
et al., 2013; Wilhite, 2011). Several studies have analysed the connections of drought 
indices to quantifiable effects on agriculture, hydrology or forests (see Vicente-Serrano 
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et al., 2012, for a review), but very few have applied the impact data (mostly crop yields) 
as a benchmark to assess indicators for drought detection (e.g. Potop, 2011; Sepulcre-
Canto et al., 2012; Stagge et al., 2015). Recognising the potential of this kind of data for 
drought management, two large-scale initiatives have recently been launched: the US 
Drought Impact Reporter (DIR) (Wilhite et al., 2007) and the European Drought Impact 
Report Inventory (EDII) (Stahl et al., 2016). These have the objective to collect text-based 
impact records systematically with the aim to increase their availability and accessibility. 
Recent studies have explored the links of the EDII records to drought indicators 
(Bachmair et al., 2015, 2016; Blauhut et al., 2015), though these have focused on the 
national scale, and it is recognised that further development is required to allow analysis 
at the subnational scale (Bachmair et al., 2016). 

Despite their important role in mitigation of drought impacts, the selection and use of 
indicators and thresholds for decision-making often suffers from a lack of scientific 
justification: only a few studies have analysed the choice of drought indicators in relation 
to drought management in practice (Steinemann et al., 2015; Steinemann and Cavalcanti, 
2006). Moreover, the thresholds that have been selected to declare droughts are only 
rarely connected to the specific impacts that need to be avoided (Wilhite, 2000). In this 
paper, quantitative and qualitative drought impact information is applied as a benchmark 
in evaluating the utility of indicators derived from six different remote sensing datasets 
at river basin scale. This implies that the analysis is not based on a definition of drought 
as a statistical extreme but as the occurrence of certain conditions of meteorological origin 
that will lead to impacts in sectors depending on water. Two aspects are considered in the 
assessment of the indicators against the benchmark data: how well these indicators reflect 
reported drought impacts and to what degree these indicators can be used to anticipate 
drought conditions and consequent impacts. 

2.2 MATERIALS AND METHODS 

2.2.1 The Ebro Basin 
The Ebro Basin, with an extent of 85 600 km2, is the largest catchment in Spain. It is 
located in the north-east, bounded by the Pyrenees and Cantabrian Mountain ranges to 
the north and the Iberian system to the south. It is a highly regulated basin with 51 
reservoirs (> 1 Mm3) and a total storage capacity of more than 7500 Mm3, which supply 
water to more than 900 000 ha of irrigated agriculture and more than 450 hydroelectrical 
plants (Portal de CHEbro, 2017). Analysis of the impacts of a recent drought event (2005–
2008) revealed that agriculture and food production are the main sectors affected by 
drought in the area, but impacts to hydropower production, water supply to villages, food 
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industry, recreational activities and ecosystem functions were also identified (Hernández-
Mora et al., 2013; Pérez Pérez and Barreiro Hurlé, 2009). 

The period 2000–2012, selected for the analysis, encompasses a wide range of different 
conditions: the hydrological year 2004–2005 was characterised as one of the most intense 
droughts of the record in the Iberian Peninsula (García-Herrera et al., 2007), while 2003–
2004 is considered one of the wettest hydrological years of the country’s record (MMA, 
2005). 

The Confederación Hidrográfica del Ebro (CHE) is the organisation responsible for the 
management, regulation and conservation of water in the Ebro Basin. The basin is divided 
into 18 management units, each of which has a board constituted of representatives of the 
different water users as well as of the basin authority to coordinate the use of the hydraulic 
infrastructures and water resources in their area. 

A drought management plan for the basin was developed in 2007 to guide drought 
management actions (CHE, 2007). The plan defines a set of indicators to detect situations 
of hydrological drought in the Ebro Basin and evaluate their severity. The indicators are 
built using observations from a rich network of in situ automatic stations. In the areas in 
which the flow is regulated by dams, water stored in reservoirs is considered the most 
robust indicator, but other variables such as water flow, snow depths or head levels in 
aquifers may also be taken into account. For areas with a natural or an almost natural flow 
regime without reservoirs, the 3-month water flow measured at representative stations is 
selected as the main indicator. In one of the management units, where there is no 
regulation and no representative rivers, groundwater levels are used as indicators. 

The north-east of the basin, where the larger irrigation districts of the Ebro Basin are 
located, was selected to evaluate the set of drought indicators against the qualitative text 
reports (Figure 2-1). This area was also the most affected by the drought period 2005–
2006 (Hernández-Mora et al., 2013). It is composed of four management units 
(management units 12 to 15). Figure 2-1 shows the management units further subdivided 
according to the main drought indicators currently selected in each: 3-month water flow 
in the northern sectors (zones 120, 130, 140 and 150) and reservoir levels in the southern 
sectors. To differentiate non-irrigated agricultural areas, Corine Land Cover 2006 
(CLC06) map classes 211 (non-irrigated arable land), 242 (complex cultivation patterns) 
and 231 (pastures) have been used. The land cover class “irrigated agriculture” 
corresponds to the irrigation polygons provided by MAGRAMA (1997 version). The 
main irrigation districts are marked with dotted patterns and are identified by the name of 
the main canal that serves them. For the evaluation of quantitative crop yield data as a 
benchmark, only five of the districts within this area were selected: Hoya de Huesca (H), 
Somontano (S), La Litera (L), Monegros (M) and Bajo Cinca (B), including irrigated and 
rain-fed cropland. 
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Figure 2-1.  The north-eastern part of the Ebro Basin with selected agricultural land 
cover information. 

2.2.2 Input datasets 

Remote sensing data 

The analysis focuses on medium-resolution global remote sensing products that are 
related to land surface hydrological and vegetation growth processes. Six commonly used 
remote sensing parameters were investigated: precipitation (P), land surface temperature 
(LST), normalised difference vegetation index (NDVI), gross primary production (GPP), 
top soil moisture (SM) and actual evapotranspiration (ET). The selected datasets are the 
following: 

• Precipitation (P): The Climate Hazards Group InfraRed Precipitation with 
Station data (CHIRPS) is a gridded precipitation dataset based on satellite and 
station data, designed with the main objective to support agricultural drought 
monitoring. It is a daily, quasi-global product, with a resolution of 0.05°. The 
dataset is available from 1981 to the near present. It is based on top cloud 
temperature measured by geostationary satellites and the Tropical Rainfall 
Measuring Mission (TRMM) satellite with a rainfall radar aboard. A detailed 
description of the product can be found in Funk et al. (2015). In this study, 
monthly aggregated rainfall values have been converted into standard 
precipitation index (SPI) datasets. The SPI (McKee et al., 1993) is a normalised 
rainfall anomaly, computed by comparing the accumulated rainfall over a given 
period with the long-term record. The standardised precipitation–
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evapotranspiration index (SPEI) R package developed by Beguería and Vicente-
Serrano (2013) was used to calculate SPI for periods of 1, 3, 6, 9 and 12 months. 
The possibility to calculate the index for different periods is one of the strengths 
of SPI as it allows to explore the effects of rainfall anomalies of different duration. 
SPI values calculated for shorter periods are associated with meteorological 
drought, while those calculated for longer periods are often associated with 
hydrological drought (WMO, 2012). 

• Land surface temperature (LST): The MODIS (Moderate Resolution Imaging 
Spectroradiometer) product MOD11A2 offers day and night LST datasets, 
available at 1 km resolution as daily and 8-day products (http://modis.gsfc.
nasa.gov/data/dataprod/mod11.php). The daily daytime LST data have been used 
for the current study. LST is based on long-wave emissions in the thermal infrared 
range (10 to 12 μm). 

• Vegetation health (normalised difference vegetation index – NDVI): The 
MODIS vegetation indices product (MOD13) provides information on the active 
leaf chlorophyll and thus indirectly on the photosynthetically active process. 
NDVI describes the ratio of the difference and sum of reflected radiances in the 
red (0.65 μm) and near-infrared parts of the spectrum (0.9 μm). MOD13 is 
available at different resolutions: 16-day (250, 500 m and 1 km) and monthly 
(1 km) (http://modis.gsfc.nasa.gov/data/dataprod/mod13.php). The monthly 1 km 
data product has been used in the current analysis. 

• Gross primary production (GPP) and PsnNet: GPP describes the daily gross 
carbon flux as a result of the photosynthetic process and is thus suitable to detect 
the effects of drought on biomass production. The MODIS GPP product (MOD17) 
applies a light-use efficiency model based on MODIS FPAR (fraction of 
photosynthetically active radiation) data, meteorological data and biome-specific 
parameters. The product also includes net photosynthesis (PsnNet), which 
corresponds to the GPP minus the maintenance respiration for leaves and roots. It 
is available at 1 km spatial resolution as 8-day composites or annual values 
(http://modis.gsfc.nasa.gov/data/dataprod/mod17.php) and as monthly aggregates 
(Numerical Terradynamic Simulation Group – NTSG; http://www.ntsg.umt.edu/). 
Additional background information can be found in Running and Zhao (2015).  

• Soil moisture (SM): The soil moisture product considered is taken from the Soil 
Moisture Climate Change Initiative (CCI) project, which is part of the ESA 
Programme on Global Monitoring of Essential Climate Variables (ECV) (Liu et 
al., 2011, 2012; Wagner et al., 2012). Three daily products are available (datasets 
based on active, passive or merged microwave instruments) for the period 1978 
to 2014 at a spatial resolution of 0.25° (http://www.esa-soilmoisture-cci.org/). 

http://modis.gsfc.nasa.gov/data/dataprod/mod11.php
http://modis.gsfc.nasa.gov/data/dataprod/mod11.php
http://modis.gsfc.nasa.gov/data/dataprod/mod13.php
http://modis.gsfc.nasa.gov/data/dataprod/mod17.php
http://www.ntsg.umt.edu/
http://www.esa-soilmoisture-cci.org/
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Higher spatial resolution products are only available for certain areas. The product 
used in the current analysis is the merged CCI SM dataset. The data are based on 
C-band scatterometers and multi-frequency radiometers. 

• Evapotranspiration (ET): There are currently three global datasets of actual ET 
in the public domain. These are the MODIS ET product (MOD16; https://modis.
gsfc.nasa.gov/data/dataprod/mod16.php) developed by the University of Montana 
(Mu et al., 2007, 2011) and supported by NASA, the Surface Energy Balance 
System (SEBS) developed by Su (2002) and the Global Land Evaporation 
Amsterdam Model (GLEAM) developed by Miralles et al. (2011), which is 
available through www.gleam.eu. In addition, there are global ET products that 
are quasi-open-access, including the Atmosphere–Land Exchange Inverse Model 
(ALEXI) being developed by Anderson et al. (1997) from the USDA in 
conjunction with Hain et al. (2009) from NOAA; the Operational SEBS (SEBSop) 
of the USGS (Chen et al., 2016; Senay et al., 2013) and the CMRS 
evapotranspiration (CMRSET) published by Guerschman et al. (2009) from 
CSIRO in Australia. In this paper, an ensemble product based on these individual 
products with accumulated monthly ET values at a pixel resolution of 250 m × 
250 m is used. This ensemble ET product (ETens v1.0) is available from the Water 
Accounting Group of IHE Delft (www.wateraccounting.org). The six individual 
ET models considered all use different parts of the spectrum, which reinforces the 
power of this tool. 

In order to have one common time interval, precipitation data in mm day−1 were aggregated 
by a sum of the daily values for each pixel to obtain monthly data in mm month−1, and LST 
and SM data were aggregated by averaging the daily values for each pixel (Table 2-1). Part 
of the input data (LST, NDVI, SM, ET, GPP and PsnNet) present a seasonal trend. For 
these, monthly anomalies were obtained by subtracting the mean for the whole period from 
each monthly average value, using these anomaly time series as input for the correlation. 
The remote sensing data have been aggregated per management unit. Pixels with at least 
85 % of their area within the management unit (30 % in the case of soil moisture due to the 
coarse resolution) were considered in establishing the aggregate value for that unit. For the 
1 km resolution LST, NDVI and ET remote sensing products, the results are also analysed 
by land cover type. This relates to pixels where at least 85 % of the area consists of irrigated 
and rain-fed agriculture land cover classes (see Figure 2-1). 

In situ data 

In situ data of reservoir levels and inflow and river flow from the basin measurement 
network were used to calculate the status index (Ie), a normalised monthly index used by 
CHE to homogenise the different indicators (CHJ, 2007): 

https://modis.gsfc.nasa.gov/data/dataprod/mod16.php
https://modis.gsfc.nasa.gov/data/dataprod/mod16.php
http://www.gleam.eu/
http://www.wateraccounting.org/
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If   𝑉𝑖 ≥ 𝑉𝑎𝑣𝑔 → 𝐼𝑒 =
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If   𝑉𝑖 < 𝑉𝑎𝑣𝑔 → 𝐼𝑒 =  
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2(𝑉𝑎𝑣𝑔 − 𝑉𝑚𝑖𝑛)
 

 

(2.2) 

where Vi is the value of the indicator for month i, and Vavg, Vmax and Vmin are, respectively, 
the average, maximum and minimum values of the indicator derived from historical data. 
Based on this index (which is a value between 0 and 1), the situation under analysis is 
classified by the authority as normal (Ie > 0.5), pre-alert (0.5 > Ie > 0.3), alert (0.3 > Ie > 
0.15) or emergency (Ie < 0.15).  

The indicators selected by CHE for each of the management areas were used for the 
analysis presented here. These are the values of reservoir volume for the regulated areas 
(122, 123, 131, 132, 141, 151), inflow into the corresponding reservoir(s) for the upstream 
areas (120, 140, 150) and runoff at a selected station for management area 130. 

Table 2-1. Selected remote sensing products. 

Parameter Product Pixel size Original time interval 

P CHIRPS 0.05° Daily 

LST (day) MOD11A2 1 km Daily 

NDVI MOD13A3 1 km Monthly 

GPP and PsnNet MOD17 (NTSG) 1 km Monthly 

SM Merged SM product 
(CCI project) 

0.25° Daily 

ET Ensemble 250 m Monthly 

Benchmarking datasets 

Two different tests were carried out using drought impact datasets as a benchmark to 
assess the ability of remote-sensing-based indicators to provide early drought detection 
information during the period 2000–2012. The short length of the remote sensing data 
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series available was one of the reasons to base the definition of drought we use to build 
the reference not on a frequency analysis, in which drought is defined as an extreme event 
with respect to the historical series, but on the occurrence of drought impacts. The other 
reason is that managers need to identify the conditions that may lead to drought impacts 
in order to take mitigation actions. In the first test, text-based records of drought 
occurrence and impacts collected from a review of local news (i.e. qualitative information) 
were used to reconstruct the onset and evolution of drought conditions during the period 
of analysis and as a benchmark for the comparison of the remote sensing datasets. 
Newspaper records were selected as a data source because they allowed a systematic 
collection of impact occurrence data of all affected sectors with a monthly time step for 
the whole period of analysis. In the second test, the use of crop yield statistics (i.e. 
quantitative information) is considered as a benchmark of drought impact on agriculture. 
The correlation of remote sensing data, especially SPI and NDVI, to agriculture yield data 
has been widely researched and applied (see Bachmair et al., 2016, for a review). This 
second type of impact data was included to provide a comparison of the results obtained 
in the correlation to text-based impact data, and results obtained with the most commonly 
used type of impact data, and discuss the advantages and limitations of one with respect 
to the other. 

Text-based datasets were collected from a review of regional news. “El periódico de 
Aragón”, the second largest newspaper in average daily circulation in the Aragón region 
was selected for the review because it has an online record going back to September 2001. 
All news items containing the word “drought” were reviewed and relevant records of 
drought events and impacts referring to the area of study were tabulated. For each entry, 
the location, period, description and, in the case of reported impacts, the affected sector 
were noted. The affected sectors were labelled as “rain-fed agriculture”, “irrigated 
agriculture”, “livestock”, “water quality”, “fire”, “water supply”, “energy” and “others”. 
The records of drought occurrence are classified according to the source of the 
information, making a distinction between non-official sources such as journalists and 
water users, labelled “mention of drought occurrence” in Figure 2-2, and official sources 
labelled as “drought acknowledged by the authorities”, “ongoing mitigation measures” 
and “periods retrospectively defined as anomalously dry”. This last type corresponds 
mainly to news about the publication or communication of analysis performed by the 
scientific community or the water managers describing an ongoing or past drought. 

The limit between indicators and impacts is not always clear. For example, low flow or 
reservoir levels are considered an impact of meteorological drought in some analyses, 
while these serve as indicators of hydrological drought in others. Here, we limit the 
definition of drought impacts as the effects of drought on people, economy and/or the 
environment. 
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Crop yield data of winter cereals both for irrigated and rain-fed cropping systems were 
obtained for the five selected districts in Huesca (H, S, L, M and B). Winter cereals are 
the cereal crops that are planted in the autumn, and they are the crops that cover the largest 
surface area. Their importance for the region results in better data availability than for 
other crops, and for this reason this type of crops was selected for the analysis. Only 
winter cereal crops with larger cultivated areas were considered: two- and six-row barley 
(irrigated and rain-fed), wheat (irrigated and rain-fed) and rice (irrigated). The two- and 
six-row barley types refer to the number of fertile spikelets in the spike. 

 

Figure 2-2. Timeline of drought events (upper part) and impacts (lower part) for the 
north-eastern Ebro Basin during the period 2001 to 2012 

2.2.3 Correlation between remote sensing data and the bench-
marking datasets 

The correlation between each of the remote sensing parameters and both the timeline that 
aggregates all types of drought event records and the timeline that aggregates all types of 
drought impacts (Figure 2-2) was analysed in terms of strength of the relationship and 
anticipation. The strength of the relationship is a function of the predictability of the 
occurrence of drought and drought impacts provided by the remote sensing time series. 
Anticipation reflects the ability of the remote sensing datasets to provide early 
information and gain time to undertake actions. The aim of this analysis is to identify the 
datasets that can be useful for operational drought detection at the basin scale. Drought 
detection in this case is closely related to the predictability of impacts, as the conditions 
that need to be detected are those that may lead to impacts. However, these impacts do 
not necessarily occur immediately; their occurrence can be delayed as the effects of 
drought propagate through the different components of the hydrological cycle. To identify 
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the remote sensing parameters that represent conditions that anticipate the occurrence of 
drought impacts, and therefore have potential to support the prediction of drought, we 
explore the correlation between the remote sensing data and the drought events and 
impacts at different time lags. The benchmark datasets were compared to the variables 
represented by the remote sensing time series in the 24 preceding and following months. 
While using correlation in this way may say less about the long-term correlation of two 
time series, it does provide insight in the relationship between correlation and lag. 

The sample cross-correlation function (CCF), rx,y, was used for the analysis. The CCF can 
be expressed as (Chatfield, 2004): 

𝒄𝒙,𝒚(𝝉) = 𝐜𝐨𝐯(𝑿𝒕, 𝒀𝒕+𝝉) (2.3) 

𝒓𝒙,𝒚(𝝉) =
𝒄𝒙,𝒚(𝝉)

𝝈𝒙𝝈𝒚
 (2.4) 

Here, τ = ±1, ±2, . . . , where τ is the lag, and σx and σy are the standard deviations of the 
time series xt and yt. The set of cx,y coefficients corresponds to the cross-covariance 
function. The CCF as implemented in R (R Core Team, 2016) was used for the 
calculations. To detect possible issues related to the stationarity or ergodicity of the series, 
their time autocorrelation and partial autocorrelation plots were considered. 

The reference drought periods used for the correlation provide a binary record, indicating 
the occurrence or non-occurrence of drought events in each month, without quantifying 
their intensity. To obtain insight into the severity of the events, the use of annual crop yield 
data was explored. The correlation of each annual crop yield value to the monthly values 
of the remote sensing time series from the start of the hydrological year in September to the 
end of the following calendar year was analysed. This was done to detect the key months 
in which the occurrence of drought conditions led to impacts on the (annual) crop yield. 
The comparison was performed for three rain-fed areas and three irrigated areas. These 
were selected to correspond with the management units so that a relation could be 
established with the areas of influence of the reservoirs (Figure 2-1). The areas selected 
included the rain-fed agriculture areas of Hoya de Huesca (HH0, corresponding to 
management unit 140), Monegros–Bajo Cinca (MB0, corresponding to management unit 
141) and the five districts together (AA0), and the irrigated agriculture in Hoya de Huesca–
Monegros (HM1, corresponding to management unit 141), La Litera–Bajo Cinca (LB1, 
corresponding to management unit 131) and the five districts together (AA1). 
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2.3 RESULTS 

2.3.1 Drought events and impacts 
The timelines of drought events and impacts derived from the review of local news are 
illustrated in Figure 2-2. Three drought events can be distinguished in the Ebro Basin: a 
short drought event at the beginning of 2002, a multi-year drought from the end of 2004 
to the spring of 2008 and a shorter duration drought during 2011 and 2012. 

The first coloured row (yellow) in the figure represents the months in which drought was 
taking place according to the records found in the newspapers. The first line of the second 
block (red) reflects the occurrence of drought impacts described in the newspaper, while 
in the following rows these impacts are disaggregated by the affected sector. 

Based on the records gathered from the newspaper records, the following descriptions of 
the hydrological years affected by drought episodes were constructed. 

In 2002, after a dry winter, the availability of water in the reservoirs was low. A first 
reference to drought in the press appeared in February 2002. At the start of the spring, which 
is the beginning of the irrigation season, water curtailments were reported for the Bardenas 
irrigation system. In the beginning of April, agricultural associations reported losses of 20 
% of rain-fed cereal crops in Aragón and at the end of the month the impact of drought in 
the area was acknowledged by the ministry as well as by the local government. In July, the 
flow of the Ebro in Zaragoza was half of the minimum 30 m3 s−1 that has been set to warrant 
water quality. In September, a reduction of 40–70 % in olive oil production in the areas of 
Bajo Cinca, Cinca Medio and La Litera was reported in the news. General mention of 
impacts on pastures, hydroelectricity production and employment in the primary sector 
during that drought period appeared in retrospect, but these reports did not go into detail. 

The hydrological year 2004–2005 was depicted as the driest on record. The combination 
of cold and dry conditions during the first part of 2005 produced significant losses in the 
agriculture and livestock sectors. First impacts were reported in February 2005 (lack of 
pastures’ production after 5 months without rain). From then until September 2006, the 
newspaper reflected a succession of impacts in different sectors, including all crop types, 
pastures, forests, livestock production, water supply to the population, wildlife, economy, 
recreational activities, hydroelectricity, water quality, employment and politics. The 
drought was already acknowledged by the authorities in March 2005, and the first 
mitigation measures were announced shortly after. This was that the regional government 
increased to 50 % the area of land, rain-fed or irrigated, that could be set aside to remain 
fallow. In June, aid measures were approved by royal decree. 

Reservoir levels increased during the first half of the hydrological year 2005–2006, but 
the system failed to recover completely from drought before levels started decreasing 
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again in April 2006, and at the beginning of the summer levels were lower than the 
previous year. After a hot summer, storage started to recover again, and in December 
2006 the government considered the drought to have ended. Intense rains starting in 
February 2007 were followed by a period of precipitation deficit from May to February 
2008. A few problems of water supply to certain villages were reported in August 2007 
and flows were below the minimum required to warrant water quality in October. Impacts 
on agriculture and hydroelectricity started to be reported again in October. Abundant rains 
during spring 2008 constituted a first step towards the end of the drought episode. 

The hydrological year 2010–2011 was characterised by lower-than-average precipitation 
and high temperatures. In February 2011, the newspaper showed the first reference to an 
emerging drought and its impact on the sprouting of winter cereal. This drought especially 
affected the Bardenas irrigation district. The Riegos del Alto Aragón and Canal de Aragón 
y Cataluña districts were also affected. All the systems managed to reach the end of the 
irrigation season, but with restrictions of more than 60 % on water quotas. Grapes and 
olives were the most damaged crops, but in general the food production in the area was 
defined as satisfactory at the end of the season. The following hydrological year (2011–
2012) started with low reserves and a dry winter and spring, with the exception of 
November, which was a particularly wet month. In particular, the middle sector of Huesca 
revealed drought-affected areas. Extensive livestock farming, fodder and cereal 
production were the most impacted sectors. The risk of fire was reported to be high, even 
during the winter, which translated in a higher number of fires. 

2.3.2 Correlation of text-based records and remote sensing 
indicators 

The information on drought occurrence and impacts obtained in the previous step was 
used as a benchmark dataset to assess the ability of the remote-sensing-based datasets to 
provide early detection. Figure 2-3 and Figure 2-4 present the results of the cross 
correlation of the remote sensing datasets to the timelines of drought events (i.e. upper 
records in Figure 2-2) and impacts (i.e. all other records in Figure 2-2), respectively. The 
central line (x = 0) corresponds to the correlation of the two datasets in the same month. 
Negative values of x refer to correlations between impact time series at time t and remote 
sensing values at each of the 24 months before t (τ = −1, τ = −2, . . . , τ = −24). Strong 
correlations on the left side of the central line reflect the ability of the dataset to anticipate 
the occurrence of drought events and impacts. The positive side of the plots reflects the 
correlation of the drought occurrence and impact series with the values of the different 
datasets in later months. This type of correlation appears if the conditions that define the 
start of the event or impact occurrence last longer than 1 month. The positive correlations 
of the timelines of drought occurrence and impacts with the values of the indicator 
datasets with lags over 1 year (most notably at −15 and ±24 lags) are casual correlations. 
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Since the analysis presented here focuses on anticipations within a period of one 
hydrological year, the correlations should not be affected by this issue. 

 

Figure 2-3. Cross correlation of drought indicators and drought events at multiple time 
lags. The numbers in the y axis represent the management areas depicted in Figure 2-1. 

For NDVI and LST, irrigated (i) and rain-fed (r) crops within the areas are 
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distinguished. The x axis represents the shift in months between the two data sets. The 
indicator built from in situ data (Ie) is also included. 

 

Figure 2-4. Cross correlation of remote sensing data sets against the timeline of 
reported drought impacts (all types). 

         

           

            

                

               

 
 
 
 
 
 
 
 
 
  
 
 
  

   



2. The predictability of reported drought events and impacts in the Ebro Basin using six 
different remote sensing datasets 

 

26 

 

Figure 2-3 and Figure 2-4 have similar correlation patterns, with the second showing higher 
anticipation. This result was expected because Figure 2-3 is based on records reflecting 
climatic and hydrologic anomalies and deficits, and these processes precede the impacts. 
SPI shows the strongest correlations for both events and impacts. For SPI values calculated 
for longer aggregation periods, the correlation grows stronger, while the anticipation is 
slightly reduced. The best correlation–anticipation relationship is obtained for SPI-6 and 
for SPI-9. For these indicators, the correlation is also stronger in the southern areas. This is 
probably because most of the socioeconomic activities are concentrated in these managed 
areas, and therefore the impacts and media attention are likely to be higher. The results 
show that SPI-6 and SPI-9 are most suitable for predicting impacts, together with NDVI 
and ET; achieving an anticipation of 6 months with a sufficient correlation (r2 > −0.6). This 
provides useful information for activating drought mitigation measures. Soil moisture also 
shows good anticipation, albeit with weaker correlations. NDVI and ET datasets show a 
strong negative correlation with drought occurrence and impacts, which would be expected 
from a biophysical perspective. NDVI shows better anticipation, preceding the impacts in 
most of the units by more than 6 months. ET shows a slightly stronger correlation in the 
rain-fed areas, while no distinction is seen between rain-fed and irrigated areas for LST and 
NDVI. LST has a positive correlation because evaporative cooling is diminished during 
drought events, which prompts the land surface temperature to rise. LST correlation to 
events is stronger than to impacts, but the degree of anticipation is lower for the former. 
Indices derived from both GPP and PsnNet present weak or no correlation for most of the 
areas, with only some of the rain-fed areas showing moderate positive correlations. In situ 
indicators show varied levels of anticipation for the different areas. Most of them provide 
early information on drought occurrence and impacts from 6 to 9 months in advance, but 
there are two areas where the indicator offers no anticipation (management unit 140) or 
even no correlation with the benchmark datasets (management unit 123). 

The time plots obtained for each of the parameters present no trends or discontinuities, and 
the values in the autocorrelation plots show that the autocorrelation diminishes quickly with 
increasing lag. An exception are the series of the reservoir indices. In that case, for some of 
the series, it is not clear from the plot if the series is stationary. For one of them 
(management unit 122), it clearly is not. This management unit corresponds to a reservoir 
(Rialb) that started to be filled in the year 2000, and therefore the levels cannot be 
considered stationary for the period of study. Most of the autocorrelation plots for the 
reservoir level series present a small peak of autocorrelation at a lag of 12 months, and one 
of them (management unit 132) presents autocorrelation values declining more slowly 
(significant values until lag 20). In the Ie plots in Figure 2-3 and Figure 2-4, it can be clearly 
seen that the two management units that do not satisfy the conditions for stationarity 
(management units 122 and 132) are those (at least two out of the three) that do not present 
anticipation. For the remaining products, autocorrelation for ET, LST, GPP, PsnNet, SM 
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and SPI-3 dissipates mostly at a lag of 2 months. For SPI-1, it is quicker and is non-existent 
in some cases. NDVI takes 3–4 months and for SPIs with longer accumulation periods (SPI-
6, 9 and 12) the correlation dissipates slower (4, 6 and 8 months, respectively), which is 
inherent to the product. 

2.3.3 Correlation of crop yield and remote sensing indicators 
The results of the correlation analysis between the remote sensing data time series and 
the annual crop yield for the main irrigated and rain-fed cereal crop types in the selected 
districts in Huesca are represented in Figure 2-5 and Figure 2-6. Every parameter is tested 
for the six areas. The crop types are represented on the y axis and the months on the x 
axis. The latter spans from the start of the agricultural year in September to the end of the 
following calendar year. The colour gradient reflects the sign and strength of the 
correlation, while the size of the inner grey circle corresponds to the reliability of the 
correlation.  

NDVI and ET present some of the strongest positive correlations, especially between the 
remote sensing measurement during the spring (MAM) and the yield of rain-fed crops. 
LST shows also strong correlations with rain-fed crops in March and at the beginning of 
the season in September (S). The pattern is less clear for irrigated crops, probably because 
their water supply is less dependent on the rainfall. The strongest correlations in this case 
appear for rice crops with ET and NDVI, mainly at the start of the year. 

Despite irrigated crops directly depending on reservoir supply, only rice shows significant 
positive correlations with the index based on reservoir levels for the two irrigated areas 
tested (HM, corresponding to management unit 141 and LB, corresponding to 
management unit 131). The reason can be that rice is especially drought sensitive, since 
it has shallow roots and consequently a low depth of readily available soil water, which 
is the fraction of total available soil water that crops can obtain from the root zone without 
experiencing water stress. This fraction is 0.2 for rice (Allen et al., 1998) and higher for 
the rest of the tested crops that therefore experience stress when more moisture is depleted. 
The rain-fed crops in the HH area (corresponding to management unit 140) show 
correlation with the status index based on reservoir inflow in April. Soil moisture, GPP 
and PsnNet do not show a clear pattern against reported crop yield, except for a strong 
positive correlation in one of the areas (MB). These correlations appear in the spring 
(especially for GPP and PsnNet) and at the beginning of the hydrological year. SPI has 
positive correlations at the start of the season, which are particularly strong in the MB 
area. In some cases, also a negative correlation during the summer emerges, especially 
for shorter-term SPIs. It can also be observed that the stronger correlations appear later 
with longer-term SPIs. 
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Figure 2-5. Correlation between remote sensing drought indicators and crop yield data. 
Rain-fed areas and crops are marked with 0 and irrigated areas and crops with 1. The 

crops are irrigated and rain-fed wheat (W1 and W0), irrigated rice (R1), irrigated 
maize (M1), irrigated and rain-fed six-row barley (6B1 and 6B0) and irrigated and 

rain-fed two-row barley (2B1 and 2B0). 
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Figure 2-6. Correlation between drought indices (SPI and state index) and crop yield. 
Rain-fed areas and crops are marked with 0 and irrigated areas and crops with 1. The 

crops are irrigated and rain-fed wheat (W1 and W0), irrigated rice (R1), irrigated 
maize (M1), irrigated and rain-fed six-row barley (6B1 and 6B0) and irrigated and 

rain-fed two-row barley (2B1 and 2B0). 
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Rain-fed two-row barley (2B0) in March stands out as the crop with the stronger overall 
correlation with the different indicators. 2B0 is one of the major crops in the area, with a 
maximum cultivated surface for the period 2000–2012 of 170,914 ha of the total 204,614 
ha dedicated to herbaceous crops (in 2008) and a minimum cultivated surface of 130,764 
ha (2012). Maize is the second most common crop, with an average crop surface of 41,292 
ha during the period. Figure 2-7illustrates the correlation of two-row barley to each of the 
indicators for the rain-fed crops in the Monegros–Bajo Cinca area (MB0), which has been 
selected as an example. This shows the crop yield for the different years against the value 
of each respective indicator. 

Three years stand out in Figure 2-7 for having extreme low indicator values (high in the 
case of LST) for all variables: 2005, 2008 and 2012. Values are also low for the year 2000 
for the datasets for which it is available. These three years correspond with hydrological 
years of reported impact in the area identified in the previous section. The lowest crop 
yields were obtained in 2012 (1342.5 kg ha−1). Accordingly, the remote sensing 
parameters present some of the lowest (highest in the case of LST) values for the period. 
Only SPI-6 presents a value that is well above the minimum. This is caused by November 
2011 being a particularly wet month in the middle of the drought period, thus moderating 
the value of SPI-6. For longer-term SPI values, this positive anomaly is compensated by 
the negative anomalies of the rest of the months. 

Crop yields were very similar in 2005 and 2008 (1662.3 and 1800.1 kg ha−1, respectively) 
and so was the behaviour of most of the variables. The main differences appear in LST, 
with the 2005 LST for March being more than 2°C higher than in 2008 (23.8 and 21.3°C, 
respectively), and SPI-3, which is less extreme in 2008 (−0.68 compared to −1.51 in 2005). 
The reason for this difference is the earlier start of spring rains in 2008. Both hydrological 
years start with an exceptionally dry period that extends to April in 2005 and to March in 
2008 after which the spring rains improve the situation. 

There is a second group in the middle sector of the plots that includes the rest of the years 
for which drought impacts on rain-fed agriculture were reported in the analysed media. 
This includes 2011 (3551 kg ha−1), 2006 (3857 kg ha−1) and 2002 (4249 kg ha−1), together 
with the hydrological year 2006–2007 (3115 kg ha−1), for which no impact was reported 
in the regional press. March values of SPI-3 for these years are close to the mean and only 
2002 presents strong negative anomalies for SPI-6. In 2006 and 2007, the precipitation 
deficits start in April and May, respectively, and for 2006 the impacts are reported only 
after that month. Hydrological year 2001–2002 shows dryer autumn–winter conditions 
according to SPI-6. 

The results of this second test present a consistent behaviour of the indicators with respect 
to the different levels of crop yield among the analysed years in rain-fed areas. As in the 
previous test, NDVI, ET and SPI stand out for having stronger correlations. Most 
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indicators present similar March values for the years of severe drought, clearly 
differentiated from the behaviour of years of moderate drought and years of no drought. 
The only exception is LST, in which a year where drought was not reported and yields 
were normal, such as 2009, has similar LST values in March to the years of severe drought. 
This indicates that LST may not be a good indicator of drought on its own but can still be 
useful in combination with other indicators. 

 

Figure 2-7. Correlation of the remote sensing drought indicators for the month of 
March to annual rain-fed two-row barley yield in Monegros-Bajo Cinca districts (MB). 

For LST, NDVI, SM, ET, GPP and PsnNet, monthly means were used. 

2.4 DISCUSSION 

2.4.1 Use of impact records as drought reference 
The review of text-based records allowed a detailed reconstruction of the drought events 
during the period studied. The cross correlation of the timelines of drought events derived 
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from this review to the indices derived from remote sensing data revealed the potential of 
the latter to provide early detection of drought events. However, this binary information 
has the limitation that it does not allow to objectively quantify the severity of the events. 
For example, in the case of rain-fed agriculture, the information on impacts collected from 
the newspaper does not allow for differentiation between those years in which production 
was extremely low as a consequence of drought conditions and those years in which 
production was only partially affected by drought. Other studies have suggested a link 
between impact severity and the number of records reporting it (e.g. Hernández Varela et 
al., 2003; Bachmair et al., 2016), but this needs to be taken carefully since the media 
coverage of a drought event is highly influenced by the sociopolitical context in the 
affected area (Llasat et al., 2009; Sonnett et al., 2006).  

A few additional aspects concerning reliability were noticed while processing the records 
from the press: 

• Accuracy: The information on drought occurrence reported in the newspaper may 
not be accurate. For example, impacts due to other causes may be attributed to 
drought, or other phenomena such as normal summer shortages may be described 
as drought. This issue was the reason to classify the records of drought occurrence 
according to the source of the information to make a distinction between official 
sources such as mandated authorities, managers and scientists, and non-official 
sources such as journalists or water users. This second type of source is the one 
that is most susceptible to accuracy issues. Particularly for the case of the 
mandated authorities, there are clear procedures with which drought is officially 
acknowledged, which are defined in the drought management plan. In the records 
reviewed, only the mention of drought conditions recorded in 2003 is not backed 
up by the mention of drought from official sources during the same period and 
may therefore be regarded as a misuse of the word. Thus, we consider accuracy 
issues to have little impact on results. 

• Completeness: Reporting of drought occurrence in the newspaper is not 
systematic, and therefore some impacts may be missing. In Figure 2-2, some 
unlikely situations can be identified. For example, there are impacts on livestock 
in May and July 2006 but not in June. Records referring to specific types of 
impacts are more likely to have gaps. However, when all types are aggregated, 
part of the gaps in each of the disaggregated datasets will likely be filled with 
records from the other datasets. 

• Scale: Drought events affecting only a small area within the region covered by 
the newspaper may not be reported. The results of the test with crop yield data 
show values for the hydrological year 2006–2007 for which no drought impacts 
were identified in the reviewed regional newspaper that are similar to three other 
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hydrological years for which drought impacts were recorded. Local press for the 
specific area of the test (Alto Aragón), however, reported a lack of rain from 
October to March, aggravated by high temperatures, in Monegros and Bajo Cinca 
that had an impact on rain-fed cereals and pastures. 

• Bias: Public or political interest or concern about drought (or even scarcity of 
other relevant news) can motivate overstatement of drought impacts. These do not 
have an influence in our analysis since we are only considering binary data of 
occurrence or non-occurrence, but this issue could have a significant impact on 
the reliability if the records were used to estimate the severity of the event. 

The length of the period of analysis does not have an influence in the identification of 
drought events based on impact records. However, having a longer series, and therefore 
potentially a larger number of drought events, would provide more robust results in the 
correlation analysis. Ideally the results should be updated as the period of record of remote 
sensing data grows. 

The drought events identified by the textual search for a sector of the Ebro Basin 
correspond with events observed at a larger scale. For example, Spinoni et al. (2015) use 
an indicator that combines three precipitation- and potential-evaporation-based indices to 
identify the drought events that occurred in different regions of Europe during the period 
1950–2012. Following that approach, they identify three drought events for the Iberian 
Peninsula for the period 2000–2012 that match the ones obtained by the textual search, 
with the difference that the event starting in the hydrological year 2004–2005 has a shorter 
duration. This is caused by the different spatial scale of the analysis. While most of the 
basins in Spain received normal precipitation during the hydrological year 2006–2007, in 
the Ebro Basin, and especially in the inner part of Catalonia, it was still low during that 
year (MMA, 2007). 

Crop yield data, on the other hand, allowed for a more objective identification of the 
drought events that had higher impact on agriculture, though the yield data do have the 
disadvantage that may only be reported on an annual basis. March was the month that 
presented higher correlations. This is in agreement with the results obtained by Vicente‐
Serrano et al. (2006), who observed a higher correlation between barley crop yield and 
NDVI for the month of March at a location in the Ebro River valley. The examination of 
the behaviour of the remote sensing parameters in the years with similar yield values 
provided insight on the reliability of the parameter as an index. Similar values of the 
parameter for years of similar final crop yield indicate the robustness of the indicator. For 
the period of analysis, the occurrence of drought in the years in which low yields were 
obtained is confirmed by the media records, but despite the water availability being a 
determinant factor for rain-fed winter cereal yield, other factors such as frost, floods, 
plagues and diseases could have further reduced the annual yield. However, for March 
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values, there are no anomalies that suggest these factors had a strong influence in the low 
annual yield values. The lowest crop yields were obtained in 2012. This is in line with the 
information in newspapers reporting that drought that year especially affected cereal 
production in the middle sector of Huesca, the area of focus of this test. 

Crop yield data can also be a useful reference to identify thresholds of drought severity 
classes. These thresholds could be derived based on the differences observed between the 
groups of years with severe, moderate and no drought conditions, although a longer data 
series than was used in this study is recommended to provide a more robust estimate of 
threshold values. 

There are several factors that play a role in the severity of the impacts due to drought 
conditions, including coping capacities and water management (e.g. drought may not lead 
to impacts in irrigated areas). Variations in these factors can alter the relationship between 
the indicators and the impact. It should also be noted when using drought impacts as a 
benchmark of drought occurrence, the absence of certain types of impacts as a result of 
sound drought management does not imply that there is no drought (Smakhtin and 
Schipper, 2008), though even with perfect management there will always be some kind 
of impact. For example, a reduction of income as a consequence of substituting the usual 
crops with less productive alternatives with lower water requirements constitutes a clear 
impact, even if the yield in kg ha−1 is not affected. The influence of management is 
probably also the reason for irrigated land showing less clear correlation patterns than 
drought in rain-fed areas in both analyses. A wider view that considers as many different 
types of impacts and affected sectors as possible can help overcome the effect of 
management when using this type of data as a benchmark of drought occurrence. 
Initiatives such as the US Drought Impact Reporter and the European Drought Impact 
Report Inventory can play a useful role in providing that broader view. 

2.4.2 Early drought detection with remote sensing products 
Early information on emerging droughts benefits mitigation strategies by increasing the 
time available for managers and affected communities to take action. The requirements 
for drought early warning range from a few weeks to several months (UNISDR, 2009). 
The results show the potential of the tested products to anticipate up to 6 months reported 
drought impacts at the basin scale. SPI, NDVI and ET products stood out in both analyses 
as particularly suitable datasets to detect early stages of drought at the basin scale and 
anticipate drought impacts. However, while for most products the autocorrelation 
dissipates at a lag of 2 months, for NDVI and SPI-6 it takes 3–4 months, and this can have 
an influence on NDVI and SPI-6 showing stronger correlations. For SPIs with longer 
accumulation periods (SPI-9 and 12), the correlation dissipates even slower. 
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The weaker correlations obtained for SM data in the first test may be due to the coarser 
spatial resolution of the dataset. Higher-resolution soil moisture products (Alexandridis 
et al., 2016; Scott et al., 2003) could be considered for future studies. The reason for the 
weak or no correlations between both GPP and PsnNet and the text-based records may 
lie in the formulation of the MOD17 product. Indeed, limitations of the product in 
capturing spatial and temporal variability in croplands have been reported (Verma et al., 
2014; Zhang et al., 2012). 

The trade-off between the anticipation of the information and its reliability is also 
illustrated by the results. The lower reliability associated with earlier information 
detection of conditions that may lead to drought implies that often the situation may not 
evolve into a drought event. However, that information is still highly valuable as it allows 
the stakeholders to get ready to undertake mitigation actions if necessary. 

The remote sensing products tested can enhance early warning capacity and therefore 
contribute to the shift from reactive to proactive management recommended by the 
European Commission (Commission of the European Communities, 2007) and the United 
Nations (UNISDR, 2009), and is being undertaken by many institutions (Iglesias et al., 
2009). As remote sensing data products generally have a global coverage, this 
contribution would therefore be especially useful in areas with less in situ data available. 
Yet the most informative indicators of drought occurrence may vary depending on 
specific characteristics of the country or basin, such as management practices or dominant 
water uses (Stagge et al., 2015). Remote sensing products also have the potential to 
provide information at a finer spatial detail than the management units and land cover 
classes considered in this study, allowing the detection of local drought events that may 
remain unnoticed when the pixels are aggregated to the scale of the land cover classes 
considered. 

2.5 CONCLUSIONS 

The aim of this research was to test the ability of remotely sensed datasets to detect early 
stages of drought at the river basin scale, with particular attention to their capacity to 
anticipate drought impacts and gain time to inform operational land and water 
management. Media records from a regional newspaper proved to be a helpful source of 
information that allowed a detailed reconstruction of drought events and impacts. The 
analysis using these data as a benchmark revealed the potential of the tested medium-
resolution remote sensing products to anticipate reported drought impacts on irrigated and 
rain-fed areas at basin scale up to 6 months. The best correlation–anticipation 
relationships were obtained for SPI, NDVI and ET. SM and LST also showed potential 
to anticipate drought but with weaker correlations. GPP and PsnNet from MOD17 
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presented weak or no correlation for most of the areas, with only some of the rain-fed 
areas having moderate positive correlations. The index based on in situ data currently 
used in the basin also provides early detection, and with the exception of two of the 
management units, the anticipation of drought impacts is better than that provided by the 
remote sensing indicators. However, the correlation of the indices based on SPI, NDVI 
and ET to anticipate drought impacts was found to be stronger. The use of quantitative 
impact data of crop yields as a benchmark showed a consistent behaviour of the remote 
sensing indicators with respect to the different levels of crop yield in rain-fed areas among 
the analysed years. SPI, NDVI and ET stand out for having stronger correlations, 
reinforcing the findings of the first analysis. In both analyses, drought on irrigated land 
showed less clear correlation patterns than drought in rain-fed areas. 

Altogether, the results confirm remote sensing products’ ability to anticipate reported 
drought impacts and therefore provide a useful source of information to support drought 
management decisions at the basin scale. However, further analysis of managers’ 
information requirements and response options is required to better assess the usefulness 
of these types of products in informing specific operational drought management 
decisions. 
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Abstract 

We follow a user-based approach to examine how information supports operational 
drought management decisions in the Ebro basin and how these can benefit from 
additional information such as from remote sensing data. First, we consulted decision-
makers at basin, irrigation district and farmer scale to investigate the drought-related 
decisions they make and the information they use to support their decisions. This allowed 
us to identify the courses of action available to the farmers and water managers, and to 
analyse their choices as a function of the information they have available to them. Based 
on the findings of the consultation, a decision model representing the interrelated 
decisions of the irrigation association and the farmers was built. The purpose of the model 
is to quantify the effect of additional information on the decisions made. The modelled 
decisions, which consider the allocation of water, are determined by the expected 
availability of water during the irrigation season. This is currently informed primarily by 
observed reservoir level data. The decision model was then extended to include additional 
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information on snow cover from remote sensing. The additional information was found 
to contribute to better decisions in the simulation and ultimately higher benefits for the 
farmers. However, the ratio between the cost of planting and the market value of the crop 
proved to be a critical aspect in determining the best course of action to be taken and the 
value of the (additional) information. Risk-averse farmers were found to benefit least 
from the additional information, while less risk-averse farmers stand to benefit most as 
the additional information helps them take better informed decisions when weighing their 
options. 
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3.1 INTRODUCTION 

Water managers and farmers regularly make decisions on how to make the most of the 
available water resources. Information on the availability and variability of the resource 
is essential to allow these decision-makers to choose among the actions available to 
them, especially as water becomes scarce, for example during drought events. Improved 
information on the availability of water can then potentially lead to a more effective 
management and can therefore contribute to the mitigation of the impacts of drought 
events. 

In situ meteorological and hydrological measurement networks have long served to 
inform these decisions, often providing accurate water resources observations at high 
temporal resolution. In addition, the potential of Earth observation (EO) from satellites to 
support water management has also been widely recognised (Famiglietti et al., 2015; 
Fernández-Prieto et al., 2012). The availability and quality of EO datasets has 
continuously improved during recent decades, providing an increasingly relevant source 
of globally consistent data that can be used to complement in situ data. 

However, the increased quality and availability of information does not necessarily 
translate directly into benefits due to better decisions. How the information is used and 
distributed also plays a critical role (Williamson et al., 2002). It is the capacity of the user 
of information to change the course of action as a result of new information being 
available to them that largely determines the value of that new information (Macauley, 
2006). 

A good understanding of the role that information plays or could play in supporting 
decisions, as well as the resulting benefits, is useful both for the users and the data 
providers and helps improve the connection between these two groups. Onoda and Young 
(2017) present a series of analyses on the contribution of EO datasets in addressing 
environmental problems from a policy point of view and conclude recommending more 
stakeholder-oriented studies of the value of these data and the quantification of the 
benefits of this data through comparisons with current tools. The assessment of the role 
and impacts of remote sensing products is expected to help in fully achieving the potential 
of the products, maximising the socio-economic and environmental benefits, and 
contributing to justify the investment in developing and improving the products. 

An example of a stakeholder-oriented approach to assess the value of satellite-based 
information in support of water management is presented by Bouma et al. (2009). They 
develop a framework to measure the benefits of satellite-based observations. The 
framework, which is based on Bayesian decision theory and expert consultation, is 
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applied to water quality management in the North Sea (Bouma et al., 2009) and to coral 
reef protection (Bouma et al., 2011). 

Macauley (2006) reviews studies on the value of information in Earth science applications, 
classifying the techniques that are used or that are potentially useful into three groups: 
studies that measure the value by gains in output or productivity; studies based on hedonic 
pricing, in which the value is inferred from models based on wages and housing prices; 
and studies that consider the willingness to pay. The main example of the first group of 
techniques are the studies that relate farm profits and weather information, especially in 
relation to weather forecasts. Early studies explore simplified cases of decisions such as 
whether to plant or to leave cultivable land fallow (Brown et al., 1986), or on what crop 
to plant (Wilks and Murphy, 1986). 

From the user's perspectives, the optimal choice for a decision to be made is to take the 
course of action that results in the highest expected utility, which is defined as the 
weighted sum of the outcomes of the possible actions and the probability of a given state 
of nature such as a reduction in the available water resource. Clearly this includes 
undesirable outcomes, where an action is taken based on an expected state of nature that 
does not materialise. Additional information is then considered to have value if it can 
improve the advance knowledge on the probabilities of the different possible states of 
nature occurring, thus allowing the user to make a better-informed decision. A commonly 
used approach to evaluate the value of advance information, such as information provided 
through advanced warning, is the cost-loss framework (Mylne, 2002; Roulin, 2007; 
Verkade and Werner, 2011; Zhu et al., 2002). Often used to evaluate the potential benefit 
of (flood) warnings, this is the ratio of the costs of taking protective action to the losses 
incurred if that action is not taken. This framework has also been extended to water 
resources management decisions, such as in Quiroga et al. (2011), who analyse the value 
of climate projections to decisions on applying measures to reduce water demand in the 
Ebro basin. The cost-loss framework does assume a strictly rational behaviour of users in 
weighing the costs and probability of losses, which is a limitation as different users may 
make different decisions depending on their levels of risk averseness. This can, however, 
be incorporated through a function of risk aversion (Matte et al., 2017; Quiroga et al., 
2011). 

The aim of our paper is to explore the value of information to drought management 
decisions through a stakeholder-oriented analysis. We examine the operational decisions 
that stakeholders such as farmers and reservoir operators take within the context of water 
resources allocation during droughts. The proposed framework first uses interviews to 
identify the decisions stakeholders make, as well as the information they use to inform 
those decisions. A decision model is then established and applied to emulate the decision 
process and how additional information contributes to improving the decisions made. Our 
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work contributes to the developing field of socio-hydrology (Sivapalan et al., 2012) in 
that it explores the co-evolution of the availability of water and the decisions made by 
humans (in this case farmer and irrigation operators). While the emerging field of socio-
hydrology is broad (McMillan et al., 2016), we consider our work to be related most to 
that of the working group on drought in the Anthropocene (Van Loon et al., 2016), which 
explicitly addresses the inefficiency of drought management due to poorly understood 
feedback between people (and the decisions they make) and drought conditions. 

3.2 STUDY AREA AND APPROACH 

3.2.1 The Ebro basin 
We explore the role of information in drought-related decisions in the Ebro basin. The 
Ebro Basin is the largest in Spain (85,600 km2) and is a highly regulated basin with 125 
reservoirs (>1 Mm3) and a total storage capacity of approximately 8000 Mm3. These 
reservoirs are used primarily to supply water to more than 900,000 ha of irrigated 
agriculture and 360 hydro-electrical plants (CHE, 2015). 

The larger irrigation districts are located in the north-east of the basin (Figure 3-1). We 
have selected one of these, the irrigation district supplied by the Aragón and Cataluña 
channel (Canal de Aragón y Cataluña, CAyC), to examine the decisions made at the sub-
basin scale. 

Over 90 % of the water provided by CAyC is used for irrigation. The water it supplies is 
sourced from three reservoirs (Barasona, San Salvador and Santa Ana), and it is supplied 
to an irrigated area of around 98,000 ha. Two zones can be distinguished in the irrigated 
area: an upstream zone that can only be supplied from the Barasona reservoir as well as 
from the recently inaugurated San Salvador reservoir, and a downstream zone that can be 
supplied from all three reservoirs. These zones are 54,000 and 44,000 ha in size, 
respectively. The main crops grown in the area are fruit orchard (apple, pear, peach and 
nectarine) and extensive herbaceous crops, mainly maize, alfalfa and barley. The area 
cropped with wine vine surface is increasing, though it is still somewhat localised (CHE, 
2018). 

Three drought events that resulted in impacts to agriculture and other sectors have been 
recorded for the 2000–2014 period: a short drought spell in 2002, a multi-year event that 
lasted from the winter of 2004–2005 to the spring of 2008, and another during the years 
2011 and 2012 (Linés et al., 2017). The impacts of the multi-year drought of 2004–2008 
in the Ebro basin have been widely studied. The north-eastern part of the basin was the 
most impacted (Hernández-Mora et al., 2013) and agriculture was the most affected sector, 
with 540 million Euros of estimated losses to crop production during the hydrological 
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year 2004–2005 and further losses of 272 million in related industries (Pérez Pérez and 
Barreiro Hurlé, 2009). 

 

Figure 3-1. Canal de Aragón y Cataluña: irrigated area and catchment. 

3.2.2 Approach 
As the utility of information strongly depends on the particular details of the decisions 
and how information is used to support these, we first consulted decision-makers at the 
basin (Confederación Hidrográfica del Ebro, CHE), irrigation district (Comunidad de 
Regantes del Canal de Aragón y Cataluña) and farmer scale to better understand their 
decision processes, their information needs, and how they use information to support the 
decisions they make. For this analysis we focused on decisions regarding the allocation 
of water resources, in particular during drought, when curtailments may be applied 
(Figure 3-2). The methods followed for the consultation and a summary of the outputs of 
the interviews at each of the locations are provided in section 3.3. 
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The findings of the consultation phase were used to build a model of the decisions at 
irrigation district scale. The design of the model from these findings is described in 
sections 3.4.1 (farmer decisions) and 3.4.2 (reservoir operator decisions). The outputs of 
these components are the areas of different crops that are planted during the irrigation 
season and the curtailments applied. The crop yield is then calculated using the area of 
each crop and observed meteorological data in open-source crop models (introduced in 
section 3.4.3). 

 

Figure 3-2. Research phases and spatial scales. 

In order to test and quantify the effect that additional information has on the operational 
drought management decisions analysed, the decision model was run for two scenarios 
with different input information. The input data and specific parameters used in these two 
runs are described in section 3.5. 

The expected final results of the analysis are the relative values of information in each of 
the tested scenarios. We calculate this based on the total net benefit obtained by farmers 
during the whole period of analysis. This benefit depends on the decisions made during 
each season, which in turn depend on the information used to inform them. The results 
are described in section 3.6 and followed by discussion and conclusions. 

3.3 STAKEHOLDER CONSULTATION 

3.3.1 Method 
The stakeholders we consider are the different groups that have the capacity to modify 
the amount of water to be used for irrigation either by deciding on the volume of water to 

                  

                      

                  

     

          
        

       

                         

                                   

               
   

                      
    

             
      



3. Do users benefit from additional information in support of operational drought management 
decisions in the Ebro basin? 

 

44 

 

be supplied, or by deciding on the area and type of crops planted. This decision effectively 
also determines the irrigation demand. We use semi-structured interviews to develop our 
understanding of the decisions these stakeholders make in managing water resources and 
the possible adjustments to those decisions that they may make in view of water shortages. 
This method provides the possibility to discuss additional topics not originally envisioned 
by the research team in the interview guideline (Harrell and Bradley, 2009). O’Keeffe et 
al. (2016) and Carr et al. (2011) similarly apply semi-structured interviews to understand 
water use and management practices. Participants were asked to describe their own 
practices, as well as the practices of the groups they deal with in relation to drought 
management. A set of questions had been previously prepared but was only used to guide 
the interviews and ensure that topics not mentioned were addressed and that all required 
details about the decision processes were collected. 

One interview session was held at each of the locations (the basin authority, the irrigation 
association and the farm) with two or three people participating in each. In the interview 
that was held at the basin authority, the participants included the head of one of the basin's 
management units and two members of the hydrological planning office, both with 
expertise in drought management in the basin. In the interview at the Irrigation 
Association, the participants were the head of the Irrigation Association and the engineer 
in charge of the information service about current and expected water availability. And 
in the interview at the farm level, two people participated: the head of viticulture and the 
engineer responsible for the information service. 

The information about the practices and attitudes of farmers in the study area was to a 
great extent obtained from the interview with the staff at the Irrigation Association who 
work in close collaboration with all the farmers in the area and therefore have a wider 
view than individual farmers. We acknowledge that the sample of interviews we held is 
small. Although important to the assumptions made in the development of the decision 
model that we constructed, we would readily agree that our representation of the farmer 
behaviour and the diversity of responses across farmers may be over-simplified. A larger 
sample of interviews would reveal more information, but we feel that is outside the scope 
of this paper. 

3.3.2 Confederación Hidrográfica del Ebro 
The main operational decisions that the Ebro River basin authority (CHE) takes regarding 
drought are the declaration of drought conditions and the allocation of water in emergency 
situations. To guide these decisions, CHE defined a drought management plan in 2007 
(CHE, 2007), which was the first of its kind in Europe. It is a very comprehensive plan 
and links hydro-meteorological indicators to drought severity levels. The decision to 
declare drought is informed by a set of indicators, derived from measurements from a 
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dense network of in situ automatic stations. The plan establishes the main indicator to be 
used for each of the areas of the basin. Where applicable, water stored in the reservoir is 
used as the main indicator, since it is considered the most robust option. Otherwise, 3-
month discharge or groundwater levels are used as indicators. 

In the opinion of those interviewed at CHE, the declaration of drought is currently well 
informed and therefore they consider that additional information would be more useful 
after the declaration, when conditions must be monitored closely and decisions such as 
selecting the most cost-effective alternative sources of water or how to secure sufficient 
water to guarantee environmental flows must be taken. For these decisions timing is 
critical, and they point out that information should be available with a maximum delay of 
1 week to be useful for decisions. In addition, they showed particular interest in remote 
sensing derived snow data to support the quantification of water availability in the basin. 

3.3.3 Canal de Aragón y Cataluña (CAyC) 
General Irrigation Associations such as Canal de Aragón y Cataluña (CAyC) are 
responsible for the distribution of water from the reservoir to the users. In drought 
situations they can decide to introduce restrictions to irrigation water quotas. The 
decisions they make on the application of these restrictions are informed by the 
availability of water in the reservoirs that feed the irrigation canal system. 

The main decisions that CAyC make in relation to drought is to apply restrictions 
(curtailments) to the maximum amount of water that irrigators can request. They make 
this decision when they consider that the available water resource is insufficient to reach 
the end of the irrigation season if full irrigation supply to meet demand is maintained. 
They can also decide to move water among the three reservoirs in the area. When 
restrictions are necessary, these are applied to all users independently of the reservoirs 
that they can be supplied from to ensure curtailments are applied equitably across the 
district. However, when water is scarce, priority is given to perennial crops such as fruit 
orchards and vines to ensure their survival. 

To make their decisions, the reservoir operators need information both on water 
availability and the expected demand until the end of the season. In the interviews, they 
indicated that they consider that they are well informed on the availability of water given 
the levels in the reservoir. However, the information on water demand is limited. The 
difficulty of knowing the demand is due to the fact that they lack information on what 
crops farmers are planning on cultivating that year, and especially if the farmers will 
decide to plant a second crop, thus increasing the demand towards the end of the season. 
Currently they use historic data to estimate the demand. They are also conducting studies 
on the feasibility of obtaining this information from remotely sensed NDVI data (Casterad 
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Seral, 2015; Quintilla et al., 2014), and although this will provide useful information on 
the current crops, it will not provide information on the future plans of the farmers. 

Unlike the managers at the basin scale, CAyC indicated that they consider additional data 
on the snow cover in the headwaters to be of little use in quantifying the available resource. 
They argue that they tend to be cautious when accounting for snow in the estimation of 
total availability, since the reservoir capacity is rather small and therefore the possibility 
to store snowmelt runoff depends very much on the melt rate. 

3.3.4 Farmers in the Canal de Aragón y Cataluña Irrigated Area 
During the consultation, CAyC also provided details on the types of farmers present in 
their supply area as well as on the decisions these farmers make on what to plant. 
Typically, the proportion of crops planted is fruit orchards and vines for roughly a third 
of the area, alfalfa for another third, and annual crops for the remaining third. These 
annual crops are mostly winter cereals and maize. The cropping schedule adopted by 
farmers is mostly either a single crop of long-cycle maize or a winter cereal, or a double 
crop in which a winter cereal is followed by short cycle maize. The selection of one or 
the other by the farmers depends on the expected water availability and is currently 
mainly informed by the water level in the reservoir. CAyC shares this information with 
them in the form of biweekly reports. Conversely, the decisions farmers make in terms of 
what crop to plant, and if they plan to plant a double crop, determine the demand for the 
season, and will therefore also have an impact on the decision to apply curtailments that 
are taken by the CAyC. 

A prominent farmer in the supply area of CAyC is the Raimat wine producer, who also 
participated in the consultation process. They provided details of their information use 
for water resources management. Their parcels extend over 3200 ha and are highly 
technified, with extensive use of detailed information. In addition to in situ measurements 
and meteorological station data, they use Landsat satellite data and perform flight 
campaigns to acquire spatial NDVI and thermal data. The thermal data are used to 
estimate the leaf water potential and, together with temperature data, calculate a crop 
water stress index. This information on crop condition is used to detect spatial differences 
in the crops to make the most of the limited water, select the optimal moment for irrigation 
and prevent plagues, as well as to ensure the production is as uniform and controlled as 
possible. 

The decisions they make are already based on high-resolution data, and therefore additional 
medium-resolution global data are not likely to be a valuable contribution to this type of 
user. However, this extensive use of information is not representative of all the farmers in 
the basin and other farmers may indeed benefit from additional information. 
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3.4 DECISION MODEL 

Two of the drought-related operational decisions described by the stakeholders were 
selected to be modelled. These are the decisions of the farmers on what to plant and the 
decision of the reservoir operators (part of the irrigation association, CAyC) to apply 
curtailments to the amount of water that farmers can request when this is considered 
necessary to avoid depleting the supply before the end of the irrigation season. The model 
represents both decisions as well as the interaction between the two. In the year-to-year 
planning of water allocation and crops to plant, the basin authority is of lesser relevance 
to the decision model as they are responsible for the longer-term planning through the 
basin hydrological plan. They are also in charge of developing the drought management 
plan, and although this plan provides guidelines on the measures to be taken during 
drought, it does not go into detail on the operational decisions to be taken on water 
allocation. 

The decision model was built in R (R Core Team, 2016). 

3.4.1 Farmer decision: crop areas 
The farmers have a number of possible crop alternatives for each irrigation season. In this 
part of the model, we simulate the decision of the farmers to follow one of the possible 
courses of action available to them. The result of the decision is the planted area of the 
selected crops. Since fruit orchards, vines and alfalfa crops are perennial crops and are 
typically planted for several years, their approximate areal extent is known and is 
considered to be constant in the model. The farmer decision model therefore focuses on 
determining the variable areal extent of maize and winter cereal, as well as the decision 
as to whether to plant a single crop or also a second crop. In the model, barley is selected 
to represent the winter cereal crop since it is the most common winter cereal crop in the 
area. 

The courses of action represented in the model consist of a series of decisions made 
during the irrigation season. The possible actions are depicted in Figure 3-3, which 
shows the choices that can be made at each decision stage in the calendar. At each of 
these decision points, the option that farmers would prefer to take if they perceive there 
are sufficient water resources available is indicated by a blue A. The preferred 
decision(s) if there are insufficient resources is marked with a red A. The choices and 
the calendar are based on the information provided by the stakeholders we interviewed, 
supported by literature sources (Espluga Trenc, 2016; Gil Martínez, 2013; Lloveras 
Vilamanyà et al., 2014). We consider two types of farmers in the model, with different 
options available to them: technified farmers managing large plots and smaller-scale 
farmers. In the model, technified farmers (marked with T1 in Figure 3-3) can support a 
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double crop, and this is always their preferred option because of its higher productivity. 
However, in years of low water availability (red A in the figure) they may decide to 
leave the land fallow instead of planting a second crop. Smaller-scale farmers (T2) can 
only manage a single crop and in this case long-cycle maize is the most productive 
option. In years of low water availability, their decision will depend on the level of risk 
they are willing to take. We consider three levels of risk aversion (R1, R2 and R3 in the 
figure). The safest option to secure a crop is to plant long-cycle barley at the beginning 
of the season (R1), but they can also decide to wait for conditions to improve, taking 
the risk of having to leave the land fallow if there is no improvement (R>1). If, however, 
water availability increases by February, they can decide to plant long-cycle maize. If 
availability is still low, they can secure a crop by planting a short-cycle barley (a less 
productive option than the long-cycle version) (R2), or they can decide to wait longer 
(R3). In April, they can still plant a long-cycle maize crop if availability has improved, 
but, if it has not, then it is too late to plant barley, and they have no other option than to 
leave the land fallow. 

 

Figure 3-3. Crop options considered in the model for farmers. Blue and red As 
represent respectively good and poor water availability at the moment of the decision. 
R1, R2 and R3 mark the different courses of action that farmers can follow depending 
on the risk they are willing to take, with R1 being the most risk averse and R3 the least 
risk averse. The lower-case letters a–h indicate the end points of the possible decision 

paths. The blue vertical line marks the start of the irrigation season. 
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Figure 3-4. Model decisions, parameters that inform them and decision outputs. A 
description of the abbreviations is included below. The period considered for each 

parameter is given in between square brackets. The shapes indicate the availability and 
source of the information. The parameters representing the information that is exchanged 

between the two decision models are coloured in green (crop surface, CS) and blue 
(curtailments, Cu). The grey boxes represent different blocks of the decision models. The 
reservoir operation decision has the same kind of input and output for each decision date, 
while the farmer's decision has different inputs before and after the start of the irrigation 
season. The white lines within the blocks represent the moments at which decisions are 

made (time i). 

The choice of a particular course of action in the model is based on the water availability 
at the moment of the decision and is used as an indicator of the expected availability of 
water during the remaining season. For the decisions made before the start of the irrigation 
season (November and February), the availability is based on the observed volume in the 
reservoir since these decisions have no influence on the level of the reservoir until the 
actual start of the irrigation season. For the decisions after the start of the irrigation season 
(decision points in April and May) a simulated volume is used (Figure 3-4). The simulated 
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volume is based on the observed volume at the beginning of the irrigation season and the 
accumulated inflow from the beginning of the irrigation season until the decision date. 
From the start of the irrigation season the decisions made will have an influence on the 
level of the reservoir and therefore observed levels are not representative as an input for 
further decisions. Note that the barley crop is not irrigated and therefore does not pose a 
demand on the available water resource. However, as can be seen in Figure 3-3 the choice 
for planting a barley crop will have implications for the available options later in the 
season and therefore indirectly influences the irrigation demand. 

3.4.2 Reservoir operation decision: water restrictions 
Every 2 weeks during the irrigation season (March–October), the decision on whether to 
apply curtailments to the maximum amount of water that irrigators can request is re-
examined. This decision requires an estimate of the total amount of available water during 
the season and the total water demand. To estimate the total amount of water that will be 
available during the season, the inflow into the reservoir from the beginning of the 
hydrological year in October up to the week of the decision (represented as F[h:i] in Figure 
3-4) is compared with the percentiles of historic data. Data of accumulated inflow in the 
reservoir are preferred to reservoir levels as input information for the reservoir operator 
decision model to avoid the influence of the actual decisions of the managers and simulate 
them independently. The percentile curve in which the value of the current year is 
positioned is then used to sample from the climatological record a projection of the inflow 
series into the reservoir until the end of the season. 

The total water demand for irrigation until the end of the season (D[s:n]) is calculated as 
the sum of the demand until the decision day (D[s:i]) and the expected demand from the 
decision day until the end of the season (D[i:n]). The first is the product of the crop surfaces 
already planted (Cs[i−1]), which is the output of the farmer decision model, and the 
resulting crop demand (CD[s:i]) obtained from the crop models using observed 
meteorological data. The latter (D[i:n]) is unknown to the managers. In the model, an 
average demand per unit area of crop calculated with the crop model data for the period 
2000–2014 is used as an estimate to inform their decision. This is a simplification, as the 
demand to the end of season will depend on the expected climatological conditions and 
the crop surfaces planted. The actual demand up to the decision day could be used as an 
estimate of the expected demand until the end of the season. However, while that could 
provide an indication of the climatological conditions, the decisions made by farmers on 
which crops to plant at future decision moments are unknown. 

When the estimated total amount of available water during the season is insufficient to fulfil 
the total demand, curtailments are applied. Conversely, if in a later week the expected total 
available water is found to be enough to fulfil the total demand, restrictions are lifted. 
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The output of the farmer model are the areas of each of the crops planted each year by the 
farmers. These crop areas determine the demand in the reservoir operator decision model. 
The outputs of the operator decision model on the other hand are the curtailments posed 
on the water supplied to the farmers until the end of the season, which is determined every 
2 weeks. These curtailments may reduce the yield of the crops, if these are already planted 
and the demand cannot be satisfied, but will also influence the farmer decisions within 
the irrigation season. If curtailments are in force when the farmers are deciding what to 
plant (April and May), then the model assumes that the farmers do not consider water 
availability to be good, leading to decisions commensurate with low water availability 
being made. These decisions will consequently influence the demand. 

3.4.3 Crop water demand and benefit 
AquaCrop-OS (Foster et al., 2017) was used to simulate barley and maize yields. These 
crops are the main focus of the analysis and they require a more detailed and flexible 
simulation to differentiate the different growing cycles and planting dates. Default 
parameters for maize and barley were adapted for the diverse cycles using data from 
Lloveras Vilamanyà et al. (2014), Gil Martínez (2013) and Gutiérrez López (2011). 

CropWat 8.0 (FAO, 2000) was used for alfalfa and fruit orchards, the crops that are 
considered to have a constant crop surface in the analysis. Default parameters were used 
but were adapted to the cropping calendar in the Ebro basin. Peach tree was selected as 
the representative fruit orchard crop. An irrigation calendar of 14 days was selected to 
match the reservoir operators' decision. 

The percentage of reduction in crop yield was calculated as the maximum percentage of 
unsatisfied demand during the season. The reason for this is that, when there is 
insufficient water, farmers prefer to stop watering a part of the area, rather than apply 
insufficient water to the whole area. These percentages were calculated using the same 2-
week time step of the operator decision. The areas in which irrigation was stopped were 
considered to have no yield and their contribution was subtracted from the full supply 
yield values derived from the crop models to obtain the final yield for each crop and year. 
Priority is given to the perennial crops, with the curtailments then being applied to the 
maize crops. 

3.5 QUANTIFYING THE EFFECT OF ADDITIONAL INFORMATION 

Expected availability of water during the irrigation season is the main variable used by 
both the reservoir operators and the farmers to inform their decisions. Information on that 
availability can, however, be obtained from different sources. Currently the main source 
of information that is used is the volume stored in the reservoirs, obtained through 
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observations of the reservoir levels. Stakeholders indicated that they may also consider 
the available water resource in the snowpack in the headwaters upstream of the reservoirs, 
though there are currently no systematic observations of this resource that are formally 
included in their decision processes. Satellite images can, however, routinely provide 
estimates of this resource. Two information scenarios were therefore simulated: the 
expected water resource availability as informed by the reservoir levels alone, and the 
expected availability based on the reservoir levels with the addition of satellite-based data 
on snow cover in the headwaters. 

Output benefit values using either of the two information scenarios were evaluated against 
the value (Val) of uninformed decisions and decisions under perfect information 
following the usual form of skill scores (Stanski et al., 1989): 

𝑅𝑉 =  
𝑉𝑎𝑙𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 −  𝑉𝑎𝑙𝑢𝑛𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑉𝑎𝑙𝑝𝑒𝑟𝑓𝑒𝑐𝑡 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 − 𝑉𝑎𝑙𝑢𝑛𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (3.1) 

The relative value (RV) is therefore a score between −∞ and 1, with RV =1 meaning that 
the information is perfect and RV ≤0 meaning that the information does not contribute to 
improving the decisions made. 

The value of perfect information and uninformed decisions was calculated by running the 
model for all possible courses of action represented in Figure 3-3. The value of perfect 
information was then obtained by selecting for each season the best performing course of 
action, while the value of the uninformed decisions was defined as the result of selecting 
the course of action that performs best on average for all years. 

Analysing the pathways in Figure 3-3 results in seven possible courses of action. These 
are summarised in Table 3-1, where the columns represent the four decision points and 
the colours the course that is followed. Blue and red indicate that the good or the poor 
water availability option is followed, respectively. The points at which no decision is 
required are marked in yellow. This happens when previous decisions already determine 
the course of action for later months. Option 7 corresponds to the situation in which the 
availability of water is good at the beginning of the hydrological year, so farmers already 
select to plant the most productive crops in November and no further decisions are 
required in the following months. The other six options correspond to situations in which 
the availability of water is not considered to be good at the beginning of the hydrological 
year. In options 3 and 6, the situation improves by February, so small-scale farmers decide 
to plant the preferred option (long-cycle maize) at this point and do not require further 
decisions. The difference between these two options results from the decision taken by 
technified farmers on whether to plant a second crop in May. They will do this if they 
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consider the availability of water to be good (option 6), otherwise they will leave the land 
fallow (option 3). 

Table 3-1. Possible paths for farmers. The paths are the result of the water availability 
(red – poor availability, blue – good availability, yellow – indifferent) at the four 

decision moments. The letters and coloured boxes in the last four columns correspond 
to the courses of action in Figure 3-3 for each of the farmer types given good or poor 

availability at the four decision moments. The crops planted when following each of the 
paths are indicated using the same colours as in Figure 3-3. 

 

3.5.1 Input data 

Reservoir and meteorological data 

In situ data on reservoir levels were obtained from the automatic measurement stations 
(SAIH, Automatic Hydrologic Information System). These data are available from 
http://sig.mapama.es/redes-seguimiento/ (last access: 12 November 2018). 

Reservoir volume data for Barasona reservoir and river flow data from the stations at the 
upstream tributaries (stations located at Graus on the Ésera river and at Capella on Isábena 
river, Figure 3-1) were used to estimate the availability of water during the season. We 
focus on the Barasona reservoir as it is the levels in this reservoir that trigger the 
restrictions in the area supplied by CAyC. SAIH provides data for the Barasona reservoir 
from 1931 to September 2014, though there are some data gaps in the first few decades. 
The reservoir was enlarged in 1972 to a capacity of 84.71 hm3 and we therefore consider 
only the values after that year. 

http://sig.mapama.es/redes-seguimiento/
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In addition, daily precipitation and temperature data, as well as monthly relative humidity 
data from the meteorological station located just outside the basin at the University of 
Lleida (station 9771C), were used to provide meteorological inputs to the crop model. 
Data from this station are available from 1983 through 2014 and can be obtained from 
https://opendata.aemet.es/centrodedescargas/productosAEMET (last access: 12 
November 2018). 

Snow cover data 

MODIS 8-day snow cover 500 m grid data (MOD10A2; Hall et al., 2006) were used to 
calculate the percentage of snow cover in the headwaters of the reservoirs (Figure 3-1) as 
an additional source of water availability information. This dataset covers the period from 
26 February 2000 to the end of 2016 and was downloaded from the EartH2Observe Water 
Cycle Integrator (http://wci.earth2observe.eu, last access: 12 November 2018). 

3.5.2 Model options 

Availability thresholds 

Thresholds are needed to define at what reservoir level, or at what combination of 
reservoir level and snow cover, the water availability is regarded by the farmers as good. 
This judgement is made at each of the decision points. If the availability is above the 
threshold, then the farmer would follow the decision path associated with good expected 
availability of water (this corresponds to following the paths marked with a blue A in 
Figure 3-3), while if it is below the threshold then the alternative, poor expected 
availability path will be followed. These thresholds are currently not formally defined and 
may also differ between farmers as individual farmers will assess water availability 
differently, depending on how risk averse they are. 

In the first test we identified the thresholds that maximise the sensitivity (rate of true 
positives) for all years analysed and for each of the farmers decision moments (November, 
February, April, May). This is a measure of the goodness of a binary classification that in 
this case refers to the points correctly classified as having good availability of water. To 
assess the performance of the classification the decisions made with perfect information 
are used as a reference. This results in a set of four optimised thresholds, which may be 
different for each of the decision points. The optimised threshold values at each decision 
point are kept the same for all years analysed. 

In addition to the optimised set of thresholds, the model is run with 10 extra sets of 
thresholds to explore the sensitivity to these thresholds. In this case, the thresholds are 
kept the same at each decision point, and the values range from low (35 hm3) to almost 
full capacity (80 hm3). 

https://opendata.aemet.es/centrodedescargas/productosAEMET
http://wci.earth2observe.eu/
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The effect of the additional snow cover information on the expected available water 
resource is incorporated in the decision model by considering the expected contribution 
of snowmelt to the available water resource. When the snow cover is below a certain 
threshold, indicating lower than normal expected runoff from snowmelt, the farmers 
would require the reservoir level threshold to be higher to regard water availability as 
being good and thus follow the higher water demanding path. The snow cover thresholds 
used for this test are again determined using a goodness-of-fit measure of the binary 
classification of the decision points correctly identified as having good or poor 
availability. For the decisions made in May the snow information was not considered 
since snow cover is already very limited in that period. 

Allocation factor 

An allocation factor is applied to the accumulated inflow in the reservoir to obtain the 
proportion of the available resources that effectively reaches the crops. This factor 
accounts for water supplied to other uses, water losses due to evaporation, efficiency of 
the distribution network and releases from the reservoir to the downstream river. The 
allocation factor determines the amount of water that is available for irrigation and 
therefore has significant influence on the decisions made by the farmers and operators. 
As the true allocation factor is not known for the area, the sensitivity to this factor is tested 
by running the model with different allocation factors, considering perfect knowledge of 
the expected availability of water. 

The most profitable choices for farmers were identified for different allocation factors 
under perfect information and are shown in Table 3-2. The first row (AF =1) represents 
the hypothetical situation in which all the water that enters the reservoir is available to 
the farmers to irrigate the crops. The following rows represent different levels of 
allocation of water for irrigation. The results show that when more water is available, 
farmers already choose to plant the most productive option in November or February 
(options 7 and 6 respectively). When there is less water, they select to plant less maize or 
nothing at all (option 1). In years of water scarcity, such as 2005, we can see in the table 
that this is the case even if 80 % of the total water is used for irrigation. 

An allocation factor of 0.55 was selected for the following tests, since it is found to be a 
tipping point between good and poor availability for many of the years in the tested period 
and therefore allows for a higher range of represented situations. With this level of 
allocation, the area receives an amount of water that would be able to satisfy the full 
demand of the most productive alternative of crops in 10 out of the 14 years, with 4 years 
experiencing water shortages, which reflects the number of drought events in the 2000–
2014 period. 

To calculate the crop demand, an irrigation efficiency of 80 % is considered. 
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Table 3-2. Most profitable choice for the farmers for each of the years of the period 
2001–2014 (represented in the columns) in function of the available water determined 

by the allocation factor (AF). The numbers of the options refer to the alternatives 
included in Table 3-1. The colours for the years represent the SPI-12 for the month of 
September for the catchment area of Barasona and Santa Ana reservoirs, calculated 

with CHIRPS precipitation data for the period 1981–2015. 

 

Farmer types 

The distribution of the types of farmer was kept constant for all the years and runs. The 
proportions of technified and smaller-scale farmers was established as the mid-range of the 
yearly ratio between farmers sowing transgenic maize (considered to be technified) and 
farmers sowing conventional maize (considered to be small-scale farmers) observed in the 
area for the period 2010–2015 (Espluga Trenc, 2016; Gutiérrez López, 2016). This resulted 
in 65 % of the area being exploited by farmers considered to be technified, and 35 % by 
small-scale farmers. The proportion of risk aversion used in the model is R1 = 0.4, R2 = 0.3, 
R3 = 0.3, with R1 being the most risk averse and R3 the most risk acceptant. 

Different distributions of farmer types would result in different levels of demand and 
therefore different optimal paths. The proportion between technified farmers and smaller-
scale farmers also gives more weight to different decision moments. For example, the 
decision in May on whether to plant a second crop is only relevant to the technified 
farmers. 
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Costs and benefits 

Planting costs and selling prices were used to calculate the value of the yield for the 
variable crops. The planting costs considered are 496 EUR ha−1 for barley and 
1807 EUR ha−1 for maize (MAGRAMA, 2015) and the selling prices are EUR 159 per 
1000 kg for barley and EUR 171.3 per 1000 kg for maize (Aragon Statistics Institute, 
2015). Average yields are 2349.75 kg ha−1 for rainfed barley and 12 179.34 kg ha−1 for 
irrigated maize (MAGRAMA, 2015). No differences in price or cost between the varieties 
of a same crop type were considered, although the higher productivity of long-cycle 
varieties results in these varieties being more profitable in the model. 

3.6 RESULTS 

3.6.1 Selection of optimal thresholds 
We first ran all possible decisions paths and identified the decisions that result in the 
highest benefits to the farmers for each season. These decisions are represented in Figure 
3-5 by the coloured points, with the volume of the reservoir on the y axis. If the point is 
red, then the best decision is for the farmer to follow the path marked with a red A in 
Figure 3-3. If it is blue, then it is best to follow the blue A path. If the point is yellow, 
then it does not matter which of the paths is followed. 

We use the optimal decisions based on perfect information to establish a threshold for the 
reservoir level to divide between good and poor water availability. A perfect threshold 
would be selected such that all the red points are below and all the blue points are above 
the threshold. This perfect threshold would always allow the farmer to make the decision 
that results in a higher benefit at the end of the season. 

However, as can be seen in Figure 3-5, it is not possible to obtain a perfect classification 
of the reservoir levels with a single threshold. The dashed lines mark the thresholds that 
maximise the points correctly classified. The fact that the classification cannot be 
perfect means that the reservoir level alone does not provide enough information on 
what is the best decision to make. Additional information will be valuable if it 
contributes to improving the classification and, therefore, results in the decision that 
maximises the benefits being made more often. In this case the additional information 
we consider is the snow cover data. This is shown in the lower part of the figure. The 
coloured points again indicate the decision path that would be taken based on perfect 
information. Again, the figure shows that it is not possible to select a threshold value 
(dashed lines) where all the red points are below the threshold, and all blue points are 
above the threshold. This again indicates that this information alone does not lead to a 
perfect classification either. 
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Figure 3-5. The position of the points represents reservoir levels (a) and snow cover (b) 
for the period 2001–2014. The points are coloured according to the decisions made with 

perfect information at those decision points, which are considered to be the “optimal 
course”, and refer to the paths illustrated in Figure 3-3. The individual thresholds mark 
the threshold for reservoir level or snow cover when considered independently, while the 
combined thresholds are the modified thresholds for reservoir level for years in which the 

snow cover threshold is not reached. 

This is different when the combined information of reservoir level and snow cover 
extent is used to inform the expectation of water availability. We incorporate this 
additional information by amending the threshold of the reservoir level. This is the solid 
line in the figure for the months November, February and April. Snow cover is not 
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considered in May as that is too late in the season for snow to be of significance. When 
snow covers an area larger than the threshold coverage (dashed line in the lower plot), 
then the original threshold for the reservoir level is used. However, when the snow cover 
is smaller than the identified threshold, and therefore the future contribution to the 
reservoir volume from snowmelt is expected to be low, a second, more conservative 
threshold for the reservoir level is used (solid line). With the second threshold some of 
the red points incorrectly classified above the original threshold are now classified 
below the threshold. 

The optimised thresholds for the reservoir level were established at 62 hm3 for 
November, February and April, and 82 hm3 for May; the thresholds for snow cover were 
set at 25 %, 35 % and 15 % for November, February and April respectively, while the 
increase in the reservoir level threshold for the years that are below the snow threshold 
was set at 20 hm3. 

Value of additional information for the decisions 

The value of information is assessed here in terms of the total and relative benefit for 
the farmers during the whole period of analysis in each of the information scenarios. 
Figure 3-6 shows the total benefits obtained considering the two information scenarios 
with each of the 10 sets of thresholds. The benefits obtained using the optimised set 
identified in the previous step is also included (labelled as 62 in the figure). The columns 
are coloured to show the net benefit in terms of total gain (above 0) or loss (below 0) of 
each of the years in the period. The black dot represents the net benefit taken over the 
whole period. 

The two reference scenarios are included in the first two columns. These show the net 
benefits using the uninformed decision and decisions made using perfect information, 
which are independent of the thresholds. 

The difference between the perfect information (column labelled P) and the no 
information (labelled A) reference scenarios shows the potential value of using 
information, as the use of uncertain information is expected to scale between these two 
extreme situations. However, as can be seen in the following columns that represent the 
net benefits of the informed scenarios as a function of the threshold (labelled R for 
information from reservoir levels only and S for information from both reservoir levels 
and snow cover), the use of non-perfect information in this case results in losses for some 
of the years. This is particularly so for the lower thresholds, as water availability is often 
judged to be good when in fact it is poor. 
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Figure 3-6. Total benefit for decisions informed by reservoir level alone (R) and with 
the addition of snow information (S) for the 10 sets of thresholds and the optimized 

thresholds (labelled as 62). The total benefit for uninformed decisions (A) and perfect 
information (P) is included as a reference. The colours indicate the yearly benefit while 

the points represent the total benefit for the period (total gains – total losses). 

Figure 3-7 presents the relative value of the decisions using each of the two tested sources 
of information with respect to the decisions informed by perfect information and the 
uninformed decisions (Eq. 1). This shows that the relative values for the total benefits are 
negative for almost all thresholds, both when using only reservoir levels as well as when 
also using additional information on snow cover. This means that, for the period as a whole, 
selecting a course of action based on the expected availability informed by these datasets 
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does not result in higher benefits than when following the path that performs best on 
average every year. The reason for this lies in the large losses incurred when failing to 
recognise a poor-availability year and as a consequence planting more than what can be 
irrigated. This is the case for the years with a negative benefit represented in Figure 3-6. 
These high losses also result in higher thresholds showing a better relative value, since these 
thresholds lead to more years being regarded as poor-availability years, thus leading to 
lower areas being planted. 

 

Figure 3-7. Total Relative Value for the period 2001–2014 for decisions informed by 
reservoir level alone (R) and with the addition of snow information (S) for the 10 sets of 

thresholds and the optimized thresholds (labelled as 62). 

Still, the results show that the additional information does help to reduce the losses in 
some of the years and for all thresholds a better relative value is obtained when using the 
additional dataset on snow cover. This can be seen by the net benefit for the period 2001–
2014 (represented by black dots in Figure 3-6) being higher for all thresholds when the 
snow-cover information is used. 

3.6.2 Quantifying the effect of additional information 
The high losses in some of the years are the result of the limited profit margin between 
the cost of planting and the selling price of the products. To illustrate further the effect of 
the profit margin in the decision and the value of information, we have run a series of 
additional simulations where the costs of planting are reduced by 50 %, 75 % and 100 % 
(which is the same as zero cost). The relative value of information for these simulations 
(shown in Figure 3-8) indicates there is a gradual increase in the relative value of the 
informed decisions as the ratio of the benefits from the crop yield to the cost of planting 
increases. The fully detailed gains and losses for these simulations can be found in Annex 
B1.  

Relative values are still low, however, even when there is no cost for planting. This is 
because the uninformed decision used as a reference also improves with the reduction in 
the cost of planting. The course of action that performs better on average, in which the 
uninformed decision is based, is path 3 for the full reported cost, path 4 for the reduced 
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costs and path 5 when no cost is considered. This means that with lower or no investment 
costs for planting it is better on average to plant the more water-demanding crops. These 
results also show that as the ratio between the profit made from the crop yield and the 
costs of planting increases, the relative value of the informed decisions for the years in 
which the optimal path is followed is also reduced. 

At the reduced costs it also appears that the added value of the information from snow 
cover reduces and in some cases is even detrimental, particularly at the higher reservoir 
level thresholds. This is likely caused by the uncertainty in the relationship between 
snow cover and available water resources, which will be elaborated further in the 
discussion. 

 

 

Figure 3-8. Relative value (RV) with different levels of cost for planting for decisions 
informed by reservoir level alone (R) and with the addition of snow information (S) for 

the 10 sets of thresholds and the optimized thresholds (labelled as 62). 
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3.7 DISCUSSION 

To answer the question posed in the title on whether users would benefit from additional 
information on available water resources in drought conditions, we adopt an approach 
that starts with a stakeholder consultation to be able to understand the decisions users 
make and how they use information to support those decisions. This is followed by a 
model of the decisions to quantify how additional information can be used to inform and 
influence the decision process. 

The consultation was performed by semi-structured interviews with key stakeholders. 
The advantage of this method is that it encourages discussion (Iglesias et al., 2017), 
although the main limitations are the small sample size, which means that only a partial 
view is obtained of the plurality of the stakeholders that make these decisions. Despite 
this limitation, the responses of the interviews provided a detailed description of the 
possible choices to deal with water shortages in the Ebro basin, and the interaction and 
feedbacks between water management strategies at basin, irrigation district and local 
farmer scales. This knowledge was used to build a model of the interrelated decisions of 
farmers and water managers at the irrigation district scale. The decisions modelled are 
informed by the expected water availability during the irrigation season, which is 
currently derived mainly from the reservoir levels. In this case we test the use of 
additional information of remotely sensed snow cover, as this is information users 
currently may consider, but further research on the value of different datasets that inform 
the expectation of the available water resource could be conducted using the model. 

3.7.1 Potential value of additional information 
Decisions made with perfect or no information were used as reference cases. The 
difference in the net benefit between these two cases reveals the potential improvements 
that information can bring with respect to the uninformed decisions. With perfect 
information, losses can be avoided in seasons of water scarcity and benefits maximised 
when enough water is available. It should be noted that the paths for perfect information 
in the model maximise the benefit of the whole group of farmers, rather than that of 
individual farmers. In reality, the benefits and losses are not shared by the group, and 
individual farmers would try to optimise their individual benefit instead, though 
community collaboration in the form of the established user associations in the basin 
ensures that to an extent farmers do make decisions that contribute to a common good 
and the tragedy of the commons does not arise. 

The uninformed case follows a conservative approach considering that for every year the 
available water will be limited. Although this results in high losses being avoided, the 
benefits are well below the potential. Using additional information to inform decisions is 
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expected to help the decision-makers in characterising each season in terms of the water 
availability and selecting what and when to plant, and accordingly increasing their 
benefits. As additional information we test a medium-resolution snow cover product 
derived through remote sensing. Gascoin et al. (2015) show the value of this product in 
providing snow cover information at the Pyrenees range scale. Our analysis shows that 
the information from this product also has value at the basin headwater scale, showing 
improvements in the decisions made when compared to decisions informed by reservoir 
levels alone. 

Detailed analysis of the years where there is benefit in using the additional information 
shows that this arises mainly from the reduction in the losses in those years in which the 
optimal decision to make is more uncertain. In these the years the classification of the 
water resource as being good or bad is difficult, and the additional information on the 
snow cover adds value by making it more difficult for a bad year to look good. Losses 
occur in 2002, 2006, 2011 and 2012 (see Annex B2 for yearly relative value plots), which 
match the years for which drought impacts in irrigation agriculture have been reported 
(Linés et al., 2017). They are the consequence of an inappropriate course of action being 
chosen, as a result of the expected availability of water being too high, compounded by 
the high cost of planting relative to the return on investment of the crops planted. 

To test the robustness of the observed effect of the additional information, the model was 
run 10 times with randomly sampled values of snow cover at each of the decision points. 
The results of these runs (included in Annex B3) show that the improvement then also 
follows a more random pattern and, in some cases, the additional information is 
detrimental, thus supporting the hypothesis that the improvements in the decisions are 
indeed caused by the additional information on snow cover. 

However, the results of the model indicate that selecting the option that performs better 
on average, as is done in the uninformed case, leads to higher benefits than when using 
the information on reservoir levels (either alone or supported by the MODIS snow cover 
information). This is in contradiction with the current practice, in which the reservoir-
level information is used to support the decision and different choices are made each year. 
One reason that farmers do not follow this strategy may lie in the fact that not all the 
losses are assumed by the farmers, since there are subsidies for certain crops or for losses 
incurred in disastrous years. These subsidies are often based on planted surface and 
influence the ratio between the return from the crop yield and the investment costs 
incurred when planting. Additionally, the actual farmer decision on what to plant is 
influenced not only by water availability, but also by the market prices of the crops. Maize 
has a high cost of production and therefore, when its selling price is low, farmers tend to 
select other crops with lower production cost (Espluga Trenc, 2016). In the model, 
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however, the planting costs and selling prices were kept constant for all the years to better 
observe the effect of information on the selection of the crops. 

3.7.2 Effect of the cost of planting on the value of information 
The effect of the cost of planting and the profit margins on the usefulness of the 
information was explored by running the model for different planting costs. Changing the 
cost of planting modified the course of action both for the informed and uninformed 
decisions. The reduction in the costs results in higher relative values for the informed 
decisions for the period as a whole, caused again by the reduction in the net losses. The 
ratio between the cost of planting and the return on investment on the crop is similar to 
the cost–loss ratio used in evaluating the benefit of flood warnings (Verkade and Werner, 
2011). Where the cost-loss ratio is high, the cost of taking an action in vain (false alarm) 
is also high, and significant losses may be incurred. This may even result in the 
information being detrimental, since it does contain uncertainty and may therefore lead 
to wrong choices being made. Larger losses than if that information is simply ignored and 
the business-as-usual action is taken may then be incurred. For users with a lower cost-
loss ratio, explored here by lowering the cost of planting, additional (uncertain) 
information becomes increasingly valuable as these users become more tolerant of 
making a wrong decision. The role of uncertainty in the link between the information 
used (reservoirs levels and snow) and the realisation of the available water resource is not 
directly explored in this study through for example a hydrological model, though 
explicitly considering the uncertainty can add further value to the information. Several 
authors (e.g. Roulin, 2007; Verkade and Werner, 2011) have shown that the value of 
information from forecasts is always higher when these are probabilistic. In the 
application presented here, the relation between the reservoir levels and the available 
water resources is more certain than the relation between the snow cover and the available 
water. This may also explain the poorer performance when using snow cover information 
than when using only reservoir levels. This occurs in 2006. In this year the snow cover at 
the start of the year (February) was exceptionally high, leading to an expectation of good 
water resource conditions. However, this was due to widespread snowfall at the end of 
January just before the decision point in February. This snow melted rapidly and the snow 
cover in April was anomalously low, with low water resource availability for the rest of 
the season. 

3.7.3 Value of the information for the different types of farmers 
The value of the additional information is not equal to each of the different types of 
farmers identified. The additional information on the expected water resource provided 
by the snow cover is found to be relevant only to the decisions that are made in February. 
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For the technified farmers the information is therefore of little value, as the main decisions 
made by them fall in November and in May, respectively, before the snow accumulation 
period and after the snowmelt period. 

For the small-scale farmers, the additional information can be relevant for the decisions 
that are made when there is snow cover, primarily those made in February, but also those 
made in April. These small-scale farmers have only one crop. Once a decision is made to 
plant a crop, there is no further value to information as there is no further decision to be 
made. However, the benefit is again not evenly distributed. Small-scale farmers were 
divided here into three groups of decreasing risk averseness (R1, R2 and R3). We find 
that the additional information benefits the group of farmers that is willing to take more 
risk most. These are the farmers that decide to take the risk to wait for a possible 
improvement when the water availability is classified as not being good at the decision 
point, instead of taking the safe bet and securing a crop by planting a barley crop, which 
does not depend on irrigation and possible curtailments. The most risk-averse small-scale 
farmers (R1) do not even wait for any information on water availability and already plant 
barley in November. For them there is no value in the additional information. For the 
slightly less risk-averse farmers (R2) there is limited value in the additional information. 
If in January the water resource situation is expected to be good, then they will choose to 
plant maize, but at the first sign of it being bad they will forfeit the possible higher profits 
from maize and opt to take the safe bet by planting barley. The most risk-acceptant small-
scale farmers benefit the most from the additional information, as it will help them make 
the choice between taking the gamble of waiting for the water resource availability to 
become better so that they can plant maize, or plant a cereal to avoid the risk of having to 
leave the land fallow if it does not. In this case these results show that the additional 
information may be beneficial to improved equity across the farmers in the irrigation 
district as it is most beneficial to small-scale farmers, provided they are willing to take a 
gamble to improve their benefits. 

In this paper we model the distribution of risk averseness using only a simple percentile 
distribution. A more realistic distribution of risk averseness can be developed using for 
example the constant absolute risk aversion utility function (Matte et al., 2017; Quiroga 
et al., 2011), though this will require extensive survey data to determine how risk 
averseness is distributed among farmers. 

3.8 CONCLUSIONS 

An approach that combines stakeholder consultation and decision modelling was 
followed, allowing a comprehensive analysis of the role of information on drought 
management decisions in the area. Consultation with the different decision-makers in the 
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Ebro basin provided useful insight into the operational decisions they make in managing 
water resources when scarce, and their information needs and use. This allowed us to 
identify the courses of action available to the farmers and water managers, and to analyse 
their choices as a function of the information they have available to them. Feedbacks 
between the decisions made by farmers and the reservoir operators at irrigation district 
level were identified: curtailments imposed at irrigation district level as a result of water 
scarcity influences the decision farmers make on the planting of crops, which in turn 
influence demand and consequently water scarcity. 

Based on the findings of the consultation, a decision model representing these interrelated 
decisions was built with the aim of quantifying the effect of additional information on the 
decisions. The modelled decisions, which consider the allocation of water, are taken based 
on the expected availability of water during the irrigation season. This is currently 
informed primarily by observed reservoir-level data. When levels are above a defined 
threshold at the time of the decision, water resources availability is classified as good, 
whereas when levels are below the threshold and expected demand is high it is classified 
as poor and curtailments to water allocations are applied. Farmers decide on the crop to 
be planted based on their expectation of water resources availability, and whether 
curtailments are in force. The decision model was then extended from considering only 
reservoir levels to include additional information on snow cover in the basin headwaters 
obtained from MODIS remote sensing data to inform the expectation of water resources 
availability. 

Our simulations with the decision model show the additional information can contribute 
to better decisions and ultimately to higher benefits for the farmers. However, the ratio 
between the cost of planting and the market value of the crop proved to be a critical aspect 
in determining the best course of action to be taken and the value of the (additional) 
information. When there is little room for error due to small margins, then any 
information used to inform the decision may even be detrimental to any benefits being 
made. However, even in this case the additional information on snow cover can provide 
benefit over using the reservoir levels alone. Tests with reduced planting costs, and thus 
increasing margins, does lead to a higher benefit when using the additional information 
from snow cover. Nevertheless, uncertainty in the relationship between good snow cover 
and water resource availability may lead to overestimation of the expected resources and 
consequent losses. 

A key finding of our research is that farmers can benefit when the operational decisions 
they make consider the additional information. To what extent they benefit does, 
however, depend to a great extent to their level of risk averseness. Risk-averse farmers 
will decide to take the safe option early on, with information on the available water 
resource then having no value. Farmers that are less risk averse do benefit as the 
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information helps them weigh the options between planting a crop with a higher return or 
having to leave the land fallow. 
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4 HOW USEFUL ARE SEASONAL 

FORECASTS FOR FARMERS FACING 
DROUGHT? A USER-BASED 

MODELLING APPROACH 
 

 

This chapter is based on:  

Linés, C. and Werner, M.: How useful are seasonal forecasts for farmers facing drought? 
A user-based modelling approach. Climate Services (submitted for publication, 2023). 

 

Abstract  

Seasonal forecasts of water availability have clear potential benefit for decisions in 
irrigated agriculture. This potential depends in part on how accurate the information 
provided is. The actual benefit, however, depends on how the information is used in the 
decisions, by whom, and the outcome of those decisions. In this paper we assess how 
useful seasonal forecasts are in supporting drought management decisions by farmers at 
the irrigation district level. We model the decisions irrigated farmers make on what and 
when to plant in the Ebro basin (Spain), and the interconnected decisions reservoir 
operators make on whether to apply curtailments to the water allocated to farmers. The 
modelled farmers are supplied from a reservoir with capacity for a single irrigation season 
and therefore their decisions are conditioned by the expected water availability through 
to the end of the season. Different farmer behaviours are considered as a function of their 
risk averseness and their technical capacity. The value of seasonal streamflow forecasts 
to inform these decisions is compared against that of current practice using extrapolated 
historical records, as well as against a reference forecast based on climatology. Results 
show that seasonal forecasts of water availability have skill, albeit limited. How salient 
information is to the decisions that farmers make, however, differs for each type of farmer 
as they take key decisions at different points in the season. As a consequence, seasonal 
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forecast information is found to not serve the various farmer types considered equally. 
Our results illustrate how assessing the usefulness of information to servicing a decision 
can be approached from a combined technical and user-centric perspective. 
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4.1 INTRODUCTION 

Early information of water availability during the hydrological year is critical for 
supporting water management decisions, but difficult to predict due to the variability of 
the climate, as well as the uncertainty of demand through the season and from year to 
year. Information on expected water availability is often derived from climatology using 
historical observed flow data (Lopez and Haines, 2017; McMillan et al., 2017). Though 
this is a practical approach, it risks not capturing the full variability due to the limited 
length of records, or due to changes in climate and in the catchment (Hall et al., 2012). 

An alternative source of information to partially overcome these issues, is to establish 
seasonal water availability through seasonal streamflow forecasting, though the skill with 
which seasonal water availability can be forecast varies (Arnal et al., 2018; Pechlivanidis 
et al., 2020). 

Several studies have addressed the potential contribution of seasonal forecasts to inform 
water management decisions in a broad range of sectors including hydropower planning 
(Alexander et al., 2021; Beckers et al., 2016; Graham et al., 2022), food security early 
warning (Shukla et al., 2020), rain-fed agriculture (Winsemius et al., 2014), and irrigation 
planning and crop selection (Kaune et al., 2020; Steinemann, 2006). However, despite 
the apparent advantage of skilful seasonal forecasts demonstrated in research, the uptake 
by water managers and farmers faces multiple barriers (Antwi-Agyei et al., 2021; Bruno 
Soares and Dessai, 2016; Hansen, 2002; Lemos et al., 2012). Barriers include perceived 
lack of reliability, lack of relevance or awareness (Bruno Soares and Dessai, 2016), 
difficulty to interpret probabilistic seasonal forecasts (Crochemore et al., 2016), as well 
as risk perception (Kirchhoff et al., 2013). Lemos et al. (2012) classify these barriers in 
three categories: the user’s perception of the information (e.g. accuracy, reliability, 
timeliness), the interplay of the information and the user’s context (e.g. existing practices, 
technical capacity, risk aversion), and the interaction between the information producers 
and users. 

Studies on the value of seasonal forecasts for water management tend to focus on the skill 
of predictions of climate variables required by decision makers, such as precipitation and 
streamflow. However, as a result of the barriers to the uptake and usage of seasonal 
forecast, it is increasingly recognised that better skill alone does not necessarily lead to 
added value and there is a need to consider the context in which the information is used 

(Findlater et al., 2021; Ritchie et al., 2004; Turner et al., 2017). Crochemore et al. (2016, 
2021) set up participatory games to explore how seasonal forecasts are used to support 
reservoir operation decisions and assess the perceived value of this information, 
observing that improved seasonal forecasts led to better decisions. Golembesky et al. 
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(2009) assess the utility of a 3-month lead-time streamflow forecast product in 
combination with a reservoir operation model to improve management decisions, and 
Kaune et al. (2020) evaluate integrating a seasonal forecast product into the complex 
water allocation policy in an irrigation district in Australia, finding that this allows 
decisions on water allocation to annual crops to be established 1-2 months earlier than 
when based on climatological information, which is useful to farmers. 

Findlater et al. (2021) call for considering social aspects when assessing climate services, 
such as seasonal forecasts. Examples of such integration in climate services assessment 
can be found in the field of disaster adaptation decisions, in which socio-hydrologic 
approaches such as agent-based models are increasingly being used to account for the 
behaviour of individuals or groups in decision processes (Aerts et al., 2018; Schrieks et 
al., 2021; Wens, 2022).  

Considering the behaviour of users in response to the provision of seasonal forecast 
information is limited among studies that assess the value of climate services that support 
operational water management decisions. Li et al. (2017) apply a process-based 
agricultural model coupled with a farmers’ decision model over a period of 5 years to 
assess the value of different seasonal forecast products, showing that farmers attitudes to 
risk have an impact on the operational value of the products. Giuliani et al. (2020) explore 
the impact of forecast system setup and operator risk averseness on the value of seasonal 
forecasts for the operation of a lake with irrigation and flood control objectives, though 
their focus is on the behaviour of the operator in allocating water, rather than the farmers 
and the decisions they make, which influence demand. They suggest further research in 
different locations and decision contexts is required to develop general conclusions on 
the value of seasonal forecasts and their potential to improve decisions. These two studies 
do show that the attitudes users, such as farmers and reservoir operators, have to risk can 
have an impact on the operational value of the seasonal forecast products. 

In this paper, we extend this work on assessing the potential value of climate services as 
a function of the behavioural response of users to seasonal forecast. We apply a user-
based model of the decisions on what and when to plant in an irrigation district in a 
drought-prone area to assess how useful seasonal streamflow forecasts are in supporting 
farmers in making these decisions. The model also considers the interlinked reservoir 
operator decision on whether to apply curtailments to water allocations so as to preserve 
water and ensure supply through to the end of the season. In addition to three levels of 
risk averseness, our decision model considers two types of farmers, each with different 
levels of technical capacity. This determines whether they can plant a single or a double 
crop and influences the multiple paths they can follow to adapt their decision to the 
available information on water availability as the season evolves. This allows us to look 
at the role of the timing of the decision and available options, as well as how the 
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usefulness and value of the seasonal forecasts changes during the season and from year 
to year. 

4.2 METHODS  

4.2.1 Study area 
We select an irrigation district located in the northeast of the Ebro basin. The Ebro basin 
is a large (85,600 km2) and highly regulated (over 7,900 hm3 of total storage capacity) 
Mediterranean basin in the northeast of Spain. The basin has a long tradition of hydraulic 
infrastructure to store and distribute water resources for agriculture (Pinilla, 2006), with 
a good and accessible data record. This tradition originates from the mismatch between 
crop water requirements (which are high in the summer) and the seasonality of rainfall 
(which peaks in spring and autumn and has lows during the summer, typical of a 
Mediterranean climate). The issue is exacerbated by high interannual variability of 
rainfall, which ranges between 430 and 830 mm (CHE, 2022). 

 

Figure 4-1. Study area: Canal de Aragón y Cataluña (CAyC) irrigation district in the 
Ebro basin. 
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The selected irrigation district is supplied by the Aragón and Cataluña Canal (Canal de 
Aragón y Cataluña, CAyC, Figure 4-1. Study area: Canal de Aragón y Cataluña (CAyC) 
irrigation district in the Ebro basin.) and is mainly supplied from Barasona reservoir (92 
hm3), fed by the Ésera and Isábena rivers. These have a combined catchment of 1511 km2. 
Supplying the irrigation district is the main use of Barasona reservoir. Groundwater use 
in the irrigation district is limited (CHE, 2022). 

The period 1984-2016 was selected for the analysis due to data availability. This includes 
several drought episodes of different length (Linés et al., 2017), as well as wet years. The 
study area was the most affected in the basin by the drought episode in 2004-2005 (CHE, 
2018). 

Observed data 

Streamflow: 

The water available for irrigation is determined by the accumulated inflow into Barasona 
reservoir from 1st of October (after the end of the previous irrigation season). The total 
inflow into the reservoir is established by summing the flow of the two tributaries. We 
use streamflow data from two gauging stations, Graus (Ésera River) and Capella (Isábena 
River), from the national gauging stations network (ROEA). The data record starts in 
1931 but there are several gaps before 1984.  

Precipitation: 

Daily precipitation data (liquid and solid) was obtained from the SAFRAN dataset over 
Spain (Quintana Seguí, 2015; Quintana Seguí et al., 2016; Quintana-Seguí et al., 2017), 
which is based on interpolated station data from the Spanish State Meteorological Agency 
(AEMET), combined with ERA-Interim and available for the 1979-2016 period at a 
resolution 5x5km. 

The daily data was aggregated to monthly (sum per pixel), and spatially weighted (mean 
for the catchment). This dataset was also used to derive the three-month Standardised 
Precipitation Index (SPI-3) using the SPEI package in R (Beguería and Vicente-Serrano, 
2013). 

4.2.2 Seasonal forecasting of precipitation and streamflow 
Seasonal precipitation forecasts for the 1984-2016 period are obtained from the ECWMF 
SEAS5 ensemble seasonal forecast model (Johnson et al., 2019), with an ensemble size 
of 25 and horizontal resolution of approximately 36 km (Johnson et al., 2019). Forecasts, 
with a 7-month lead time are initiated on the first day of each calendar month. Monthly 
forecast precipitation is spatially weighted over the catchment upstream of the Barasona 
reservoir, and bias corrected against the catchment averaged SAFRAN data through a 
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parametric quantile-mapping approach (Yuan et al., 2015), using the gamma distribution 
for both observed and forecast precipitation (Annex C, Table C1-1, Piani et al., 2010; 
Zhao et al., 2017). We assess the skill of the bias-corrected forecasts through the 
correlation of the ensemble mean to observed monthly precipitation and the continuous 
ranked probability skill score (CRPSS; Hersbach, 2000), using leave-one-year-out cross 
validation (Schepen et al., 2018). A climatological reference forecast is obtained through 
randomly sampling the gamma distribution fitted to the observed precipitation for each 
month. 

Streamflow in the basin is bi-modal, with high flows in October-December due to excess 
precipitation, and in spring (April-May) due to precipitation and snowmelt (Annex C, 
Figure C1-2). To forecast monthly inflows to the Barasona reservoir, we develop a simple 
stochastic model forced by the bias-corrected seasonal precipitation forecasts. As 
baseflow has a longer memory (good autocorrelation, see Annex C, Figure C1-3), we 
separate this from the observed flow using a Lyne & Hollick baseflow separation 
procedure (Ladson et al., 2013; parameter alpha=0.8). This is then transformed into the 
standardised form using a gamma distribution to account for seasonality (Stagge et al., 
2015), and an auto-regressive time series ARIMAX model (Wilks, 2011; Mishra et al., 
2007; Valipour et al., 2013) is applied to model the transformed baseflow. The three-
monthly Standardised Precipitation Index (SPI-3) is used as exogenous variable, 
established using observed and then forecast precipitation out to the seven-month lead 
time. The shorter memory (low autocorrelation, Annex 3, Figure C1-3) quickflow, is 
modelled using a simple linear regression model against (forecast) precipitation. A 
separate regression model is established for each calendar month to account for 
seasonality (Annex C, Table C1-2), and added to the forecast baseflow.  Inputs to the 
decision model are then derived by accumulating monthly streamflow forecasts from the 
forecast initiation date to the end of season. Where the accumulation window is longer 
than seven months, flows are extrapolated for each ensemble member using the currently 
used forecast procedure (decision model and extrapolation approach described in next 
section). The skill of monthly and accumulated end-of-season forecasts is assessed using 
the same approach as for the precipitation forecast, again using a leave-one-year-out cross 
validation strategy. 

4.2.3 Modelling the cropping decisions of the farmers 
The decisions farmers in the CAyC make on which annual crop to plant in each season 
are modelled with a simplified version of the decision model that is described in full in 
Linés et al. (2018), which is based on interviews with stakeholders in the area. Decisions 
are made to maximise economic benefits, depending on the expected availability of water, 
but farmers may select different options depending on the risk they are willing to take. 
Planting later in the season helps reduce the uncertainty of expected water availability to 



4. How useful are seasonal forecasts for farmers facing drought? A user-based modelling 
approach 

 

76 

 

the end of season, and therefore reduces the risk of losing the crop due to water shortage. 
However, the available options to the farmer reduce as the season progresses, increasing 
the risk of having to leave the land fallow if conditions turn out to be unfavourable, rather 
than planting a “safe” rain-fed crop. 

 

Figure 4-2. Crop options for the different types of farmers: single-crop farmers (T1) 
and double-crop farmers (T2). For single-crop farmers three levels of risk aversion are 
considered, with R1 being the most risk averse and R3 the least risk averse. The arrows 

mark the decision path each type of farmer follows, which depends on the expected 
water balance at the end of the season. Blue (red) circles indicate the path that is 

followed if a positive (negative) balance at the end of the season is expected. White 
circles indicate that the path is followed irrespective of water availability. 

Figure 4-2 shows the different decision paths farmers can follow. We consider two types 
of farmers with different technical capabilities: farmers who can only plant a single crop 
each season (T1) and farmers who have the technical capacity to plant a second crop after 
the first one is harvested (T2). This double-crop is invariably short-cycle rainfed barley 
(SCB) during the winter, followed by a short-cycle irrigated maize (SCM) crop planted 
in May if water availability is considered sufficient. If availability is considered 
insufficient in May, the land is left fallow. 

For the single crop farmers there are different options, depending on the level of risk the 
farmer is willing to take. Three levels of risk aversion are considered (R1-R3). The single 
crop can be either long-cycle rainfed barley (LCB) planted in November, short-cycle 
rainfed barley (SCB) planted in February, or long-cycle irrigated maize (LCM) planted 
in April. Maize is more productive than barley and therefore preferred, but it is more 
expensive to plant and can result in higher losses if the crop is lost due to drought 
conditions and subsequent shortage of water. LCB is more productive than SCB, but 
needs be planted earlier in the season. This poses a lock-in as the decision to plant barley 
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prevents the farmer to plant the more productive maize crop if conditions improve. Risk 
averse farmers prefer to secure a crop, even if it is less profitable, rather than waiting to 
see if conditions improve and risking having to leave the land fallow if the expected water 
availability is not enough to irrigate the maize crop. More risk averse farmers (R1) 
therefore go for the safe option and plant LCB in November if the expected availability 
is not good at that time. Medium risk averse farmers (R2) in contrast wait until February 
to decide, and then plant SCB if expected water availability is insufficient to support the 
preferred LCM crop. The least risk averse farmers (R3) wait until April and then choose 
either to plant LCM or leave the land fallow. If during the irrigating season water is 
considered insufficient to support the demand of the irrigated crops planted following 
decisions made, allocated water is curtailed by the operator, with all irrigated annual crops 
receiving the same reduction. 

Table 4-1. Model parameterspresents the proportions for each type of farmer in the area, 
with 35 % of the farmers planting one crop per season (T1), and 65 % two crops (T2). 
Annual crops cover a third of the total area, while the other two thirds are predominantly 
covered in equal parts by two permanent irrigated crops, alfalfa, and peaches. These 
permanent crops have priority to be irrigated over maize when water is scarce (Linés et 
al., 2018). 

Table 4-1. Model parameters 

Parameter Value 

Proportion farmer types 0.35 (T1), 0.65 (T2) 

Proportion risk aversion levels 1/3 (R1), 1/3 (R2), 1/3 (R3) 

Proportion crops 1/3 (alfalfa), 1/3 (fruit), 1/3 (variable) 

Farmers base their decision on their perception of sufficient water availability during the 
season to grow irrigated maize, which is calculated as the balance between the expected 
availability of water and the expected demand of irrigated crops through to the end of the 
season. This balance is also used by the reservoir operators to decide whether to apply 
curtailments to water allocations. Farmer’s decisions that occur before the start of the 
irrigation season (November, February and April, see Figure 4-2) consider the total 
demand if LCM and SCM are planted by T1 and T2 farmers respectively (D1 demand), 
while decisions made in May, consider the total demand since the start of the irrigation 
season plus the additional demand if SCM is then planted by T2 farmers (D2 demand). 
Both D1 and D2 include the demand of the permanent crops (alfalfa and peach). A 



4. How useful are seasonal forecasts for farmers facing drought? A user-based modelling 
approach 

 

78 

 

positive balance indicates the expected availability is enough to plant the maize crop. We 
consider four scenarios to inform expected availability to the end of the season: 

i. Historic extrapolation (HE): Water availability is based on percentiles of the 
historic record. The climatological percentile of the inflow at the decision moment 
is used to extrapolate the inflow to the end of the season. This is the current 
approach used by the irrigation association. 

ii. Seasonal streamflow forecast (F#): Water availability is based on the ensemble 
streamflow forecast. The numeral indicates the non-exceedance decile of the 
ensemble (F10-F90), or the ensemble mean (FM). 

iii. Perfect streamflow forecast (Fp): Water availability is based on streamflow model 
driven by observed precipitation from SAFRAN. 

iv. Perfect information (P): Water availability is based on the observed streamflow. 

As the available reservoir storage is expected to be depleted during each irrigation season, 
the annual availability of water is determined by the variable inflow to the reservoir 
during the hydrological year.  

Perfect information of crop water requirements over the season is used in all scenarios, 
so the differences come from the estimation of the future availability alone. Yield 
estimations and monthly water requirements of the crops planted are obtained through 
simulation with the AquaCrop-OS (Foster et al., 2017) and Cropwat 8.0 (FAO, 2000) 
models. Default parameters for each of the crops are used, adapted to the Ebro basin 
calendar and the two different types of maize considered (Foster et al., 2017). The 
monthly water requirement values obtained are assigned to the first day of each month in 
the decision model.  

In the decision model, the yield obtained from the crop models is multiplied by the 
number of hectares planted. If curtailments are applied in the decision model, irrigated 
areas are reduced proportional to the curtailment as the crops are considered to be lost. 
Curtailments applied by the reservoir operator are determined proportional to the 
availability such that the conservation storage of the reservoir is depleted and applied to 
the variable crops. 

4.2.4 Evaluating the benefit of decisions 
Selected forecast verification scores are calculated to evaluate the outcomes of the decision 
model informed by each of the scenarios (HE, Fp, F#). The scores considered are 
summarised in Table 4-2 and are calculated through a confusion matrix, comparing the 
outcome (i.e. the crop selected) of the crop model in each of the scenarios against the 
outcome of the decisions made using the perfect information scenario. The decisions made 
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under perfect information are either planting maize (LCM for T1 farmers or SCM for T2 
farmers), if there is sufficient water to irrigate during the season, or selecting the preferred 
non-irrigated option in the case of insufficient water. The preferred non-irrigated option 
corresponds to LCB for R1, SCB for R2, and leaving the land fallow for R3 and T2. If the 
outcome in the tested scenario matches the outcome in the perfect information scenario, 
then we classify the result as a true-positive if the farmers opt to plant maize, as this is the 
preferred option, or a true-negative if they opt for the preferred non-irrigated option. 
Otherwise, if the outcome in the perfect information scenario is maize and in the selected 
scenario it is not, then we classify the result as a false-negative, while if the outcome in the 
perfect information scenario is the preferred non-irrigated option and in the other scenario 
it is something else, then the result is classified as a false-positive.  

Table 4-2. Definition and formula for the selected scores. 

Score Formula* 

Accuracy: fraction of the years in which the crop planted using 
imperfect information corresponded to the crop planted using perfect 
information. 

𝑡𝑝 + 𝑡𝑛

𝑛
 

Precision: fraction of the years in which the preferred crop was 
planted when using imperfect information that corresponded to the 
preferred crop being planted using perfect information. Same as 1- 
false alarm rate. 

𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

Recall: fraction of the years in which the preferred crop was planted 
when using perfect information that corresponded to the preferred 
crop being planted using imperfect information. Also referred to as 
the hit rate. 

𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

F1-score: harmonic mean of precision and recall, indicating balance 
between these two. F-score is zero when either precision or recall are 
zero, and one when both underlying scores are one (perfect 
prediction). 

2𝑡𝑝

2𝑡𝑝 + 𝑓𝑛 + 𝑓𝑝
 

*𝑡𝑝: true positive; 𝑡𝑛: true negative; 𝑓𝑝: false positive; 𝑓𝑛: true negative; 𝑛: number of 
years 

The scores above do not consider the application of curtailments, but only evaluate the 
decision made as a function of the information scenario used. If curtailments are applied, 
then these may reduce the yield and consequent profits due to the crop options selected. 
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We determine the relative economic value (Zhu et al., 2002) of the decisions made as the 
total benefit obtained from the crops with decision based on each of the scenarios (F#) 
for forecasting water availability to the end of season, compared to the benefit obtained 
using the current (HE) forecast applying a skill score function (Stanski et al., 1989): 

RV =
𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝐹 − 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝐻𝐸

𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑃 −  𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝐻𝐸
 (4.1) 

The relative economic value (RV) ranges between −∞ and 1. RV =1 corresponds to 
perfect information. RV = 0 means that the information does not contribute to improving 
the decisions made over the reference (HE), while a negative RV implies that it is of more 
value to base decisions on the reference (HE). 

We establish the economic benefit of decisions made using a selling price of 191 
euro/1000 kg for barley and 181 euro/1000 kg for maize. The costs of planting are 400 
euro/ha for barley and 1438 euro/ha for maize (MAPA, 2020). The impact of these 
parameters is then assessed through a sensitivity test. Note that while the selling price for 
barley and maize are comparable, the yield per hectare is higher for maize (Annex C, 
Table C2-1), thus explaining the preference for that crop. Crop yields vary with the actual 
weather conditions, and the ranges obtained in the crop model for each of the crops are 
16,770-18,640 kg/ha for LCM, 14,210-15,970 kg/ha for SCM, 9,790-11,590 kg/ha for 
LCB and 3.890-4,670 kg/ha for SCB. 

4.3 RESULTS 

4.3.1 Seasonal forecast of water availability to end of season 
The model was run for each information scenario for the period 01/10/1984 to 30/09/2016 
with the farmer proportions indicated in Table 4-1. Figure 4-3 illustrates the water balance 
to the end of season at each decision point. Light blue bars indicate the expected 
accumulated inflow to the end of the season as derived from historic data (HE), while black 
dots and whiskers show the ensemble median (FM) and the 10 and 90 percentiles (F10 and 
F90) of expected water availability based on the streamflow forecast. Dashed lines indicate 
the expected demand (D1 for the November, February and April decisions, and D2 for the 
May decisions). If the expected accumulated inflow at the end of the season (30th September, 
labelled O in Figure 4-3) is greater than the expected demand, water availability is 
considered sufficient for an irrigated maize crop (i.e. the option marked in blue in Figure 
4-2 is selected). If the accumulated inflow to the end of season is less than expected demand, 
availability is considered poor as curtailments may then be necessary, and the options 
commensurate with poor availability are selected (marked in red in Figure 4-2). 
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Figure 4-3. Accumulated inflow to the end of season estimated at each of the decision 
points in November (N), February (F), April (A), May (M) and observed at the end of 

the season on 30th September (O). The dashed green horizontal line corresponds to D1 
demand; the dashed red horizontal line corresponds to D2 demand. Years are marked 
as wet (purple), normal (green) or dry (yellow) based on the terciles of accumulated 

observed inflow to the end of season. 

The observed accumulated inflow at each step is shown by the dark blue bars for 
comparison. This shows that the skill of the predicted availability is low in November, 
with accumulated inflow to the end of season derived from the seasonal streamflow 
forecast (SF) showing little improvement to predictions based on historic extrapolation 
(HE). Selected years do, however, show the added value of including the indication of 
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uncertainty (e.g. 1988, 2004), though in the more extreme drought years (e.g. 2005) the 
final availability is well below this range. Predicted water availability for both methods 
improves markedly by February. 

4.3.2 Comparison of decisions made under the different 
information scenarios 

Figure 4-4 shows the expected water balance to the end of season at each decision point, 
depending on the information used. Red squares indicate a negative water balance 
(availability < demand) and blue squares a positive water balance. These balances are 
used to determine the decision path followed (corresponding to red and blue circles in 
Figure 4-2) and consequently the crops planted. The figure also shows whether water 
curtailments are applied by the operator because of available water deemed insufficient 
to meet demand. This is indicated by a cross or a circle for curtailments applied to LCM 
or SCM respectively. The size of the symbol represents the proportion of the planted crop 
that cannot be irrigated. For decisions made using the ensemble streamflow forecast, the 
ensemble mean (FM) is explored as well as five non-exceedance deciles (10 %, 30 %, 
50 %, 70 %, 90 %, labelled F10 to F90). A non-exceedance of 10 % (90 %) represents a 
conservative (confident) expectation of water availability. 

As expected, the streamflow forecast based on perfect rainfall information (Fp) produces 
a decision pattern that resembles that of the perfect streamflow information (P) most, as 
the uncertainty derives only from errors of the streamflow model.  

Curtailments are applied mostly when the higher deciles of the forecast are used (F70, 
F90), which is also expected as these are overconfident in predicting the availability of 
water, particularly for dry years (1989, 1991, 1995, 2002, 2011). Crop choices 
commensurate to good water availability are then too often made, leading to expected 
shortfalls. Interestingly, for the more extreme drought years (1990, 2005, 2006, 2015, 
2016) few curtailments are applied for all scenarios (except for the most overconfident 
F90 forecast). This is due to the expected availability being low from the start in these 
years, with farmers then taking the non-irrigated options related to poor water availability, 
resulting in low demand. 2011 is the year in which curtailments are applied most as all 
scenarios except perfect information fail to predict the exceptionally dry summer, with 
the start to the hydrological year looking normal (Figure 4-3). Curtailments for the HE 
scenario tend to happen when there is a wet start to the hydrological year that ends to be 
average (1994) or very dry (1995, 2011). 

The final economic benefit obtained for the harvested crops each year depending on the 
information used is shown in Figure 4-5. For most years, the decision made using the 
forecast mean (FM) provides the same or slightly higher benefit than when using the 
current (HE) scenario. Informing the decisions using the higher deciles (F70, F90) 
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sometimes results in significant curtailments (1989, 1991, 1995, 2002, 2011, 2012, 2015, 
2016). Losses in 2011 are particularly high as curtailments affect both types of crops 
(LCM and SCM). Curtailments of smaller proportion only result in a small loss of value 
(1986, 1987, 1994). 

 

Figure 4-4.  Decisions taken at each decision point based on the expected water 
balance to end of season. Blue (red) squares indicate positive (negative) water balance 
at the end of season if the preferred option is selected for each decision point (vertical 
axis) and information source (horizontal axis). Circles in the lower row indicate the 

need for curtailments for SCM (black circle) and LCM (crosses). The size represents the 
proportion of the crop that cannot be irrigated. 
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For wet years, the information used does not make a difference to the benefits achieved. 
These are years in which there is plenty of water (e.g. 1988, 2003, 2004, 2013). This is 
also the case when water is abundant after a relatively dry start of the season (low 
accumulated inflow values in November, e.g. 1996, 1997, 1998, 2001, 2010). 

 

Figure 4-5. Benefit obtained each year from the variable crops depending on the 
information used to decide what to plant. 

4.3.3 Influence of farmer type on forecast value 
Figure 4-6 shows the verification scores based on the outcomes of the decision model for 
all farmer types and information scenarios considered. For all scores, the outcomes of the 
decision model established with perfect knowledge the reference. For the risk averse 
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farmers (R1), recall is low for the conservative scenarios (F10 to F30). This is due to them 
readily making the choice for the safer LCB crop, despite water availability in many years 
being sufficient for the more desirable LCM crop. 

 

Figure 4-6. Scores for the outcomes of the decision model as a function of information 
scenario used, separated per farmer type. 

Precision is high, however, as when the LCM crop is selected, it is indeed a good choice. 
For the more confident scenarios, recall increases while precision drops, as the more 
desirable crop is selected more often though it is equally not always the correct choice. 
As a consequence, the F1-score, the geometric mean of precision and recall, is low for all 
scenarios for the R1 farmers (with the exception of the forecast based on perfect 
precipitation). The overall accuracy, which considers the correspondence of all outcomes 
for the selected information scenario to those found using perfect information, is also low. 
For the less risk averse R2 and R3 farmers, a broadly similar pattern is found, though all 
scores are marginally better, with improved F1-score and accuracy. This is likely due to 
these farmers taking decisions later in the season, when forecast skill improves. The 
scores for T2 farmers, who take the decision on the second crop only in May, are almost 
perfect, with only the most conservative or most confident scenarios showing lower 
performance. Though the scores of the different farmer types may be modulated due to 
the different number of possible outcomes, the results suggest that the T2 farmers can 
rely most on the information provided being accurate for the decision they make, while 
this is least so for the R1 farmers. Moreover, the latter are more sensitive to forecast 
uncertainty, as selection of the crop to be planted based on a different non-exceedance 
probability (F#) influences the outcomes more than it does for the T2 farmers. 

Figure 4-7 shows the total benefit each type of farmer obtains over the period analysed 
(1985-2016). To calculate the benefit, we consider that all single crop farmers (T1, Figure 
4-2) have the same benefit when making decisions based on scenarios P and Fp as they 
would all select the same crops if they knew from the start of the season how water 
availability would evolve. They would then either plant LCM later in the season, if there 
is sufficient water, or LCB early in the season if there is not.  
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Risk averse farmers (R1) have the highest overall benefit as they rarely end up leaving 
the land fallow (this only happens in 1992 and 1993 for F30, 2007 for F50 and Fp and 
2008 for F70 and Fp), because, together with R2 farmers, they then get the least 
curtailments, and especially because they have the most productive alternative option 
(LCB) for years with limited water availability. Despite the potential higher gain obtained 
from planting a double crop, T2 farmers have a lower overall benefit per hectare than R1 
farmers. This is due to the losses of leaving the land fallow in some years not being 
compensated by the higher gain in the good years in the long run. For the T2 farmers 
benefits for the ensemble mean (FM) and F50 scenarios are the highest, balancing 
between the more conservative F10 scenario where the land is left fallow in more years, 
and the F70 and F90 scenarios where SCM is planted in dry years (e.g. 1991, 2002, 2011, 
2015, 2016), thus increasing demand and requiring curtailments to be applied, leading to 
losses. 

 

Figure 4-7. Benefit per hectare over the whole period by farmer types, with R1 the most 
risk averse single crop farmers, R3 the least risk averse single crop farmers and T2 the 

double crop farmers. 

In Figure 4-8, we explore the relative value of each information scenario, scaling the 
values between those of the perfect information (P) and the reference hydrological 
extrapolation (HE) scenarios, which is current practice. The central bars (solid colour) 
show the relative value of information for each type of farmers. The forecast based on 
perfect rainfall information (Fp), which has the closest decision pattern to that of the 
scenario using perfect information in Figure 4-3, performs well for all types of farmers. 
For other information scenarios there is a difference between R1 farmers who favour a 
conservative estimate of water availability, and R2 and R3 farmers, for whom the opposite 
is true. This is because in the decision model the risk averse R1 farmers can best avoid 
the risk of leaving the land fallow by being overly cautious and always planting barley 
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early in the season while R2, R3, as well as T2 farmers, can best avoid that risk by being 
more confident in the prediction, and planting maize instead of leaving the land fallow. 
The risk of curtailments is higher for T2 farmers as they represent a larger total area in 
the irrigation district and therefore require more water, given that in the model they all 
follow the same behaviour. This results in a higher risk of losses, which makes being 
overconfident a less profitable option. 

 

Figure 4-8. Relative value of information over the period of study (baseline, bsl – solid 
colour bars) and sensitivity to crop value variation for each farmer type: Relative value 
with either the value of maize (M2 – striped bars) or barley (B2 – dotted bars) doubled. 

However, the relative values of the different information scenarios in our results are 
highly dependent on the ratio of benefits obtained from each of the two crops considered. 
When this ratio is altered by for example doubling the value of maize (striped bars, M2, 
in Figure 4-8) or doubling the value of barley (dotted bars, B2) the picture changes 
significantly, especially for single crop farmers. With a higher benefit for maize, 
overconfident scenarios improve in relative value for all types of farmers, as the increased 
profit of maize weighs up against the lower profits of barley, despite more frequent losses 
due to curtailments. With a higher crop value for barley (B2), the simplified decision 
model is stretched beyond its initial assumptions, in which maize is the preferred option 
because of its higher value. As the value per hectare for LCB is now higher than maize 
this assumption no longer holds. This results in the more conservative scenarios having a 
higher value than the perfect information scenarios and the relative values being >1 for 
R1 farmers. Information provided by the seasonal forecast has no value as planting LCB 
in November is then always the best choice. Changes in the benefit ratio of the two crops 
have less impact on the relative value of information for T2 farmers as they always plant 
SCB, and the only decision modelled is whether they plant SCM afterwards. With a 
higher value for maize, it again pays to be overconfident as the opportunity cost of leaving 
the land fallow is compensated by the higher gain obtained from maize in good years, 
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compared to the lower losses incurred due to curtailments imposed in the not so good 
years. 

4.4 DISCUSSION 

4.4.1 Is the forecast information good enough to be useful? 
Quality, or skill, of a forecast in predicting the variables of interest to decision makers is 
an important aspect to credibility (Bojovic et al., 2022; Peñuela et al., 2020), and pre-
requisite to usefulness (see e.g. Bennett et al., 2016; Shukla et al., 2020; Winsemius et al., 
2014; Anghileri et al., 2016). Our assessment of the skill of the bias corrected 
precipitation seasonal forecasts over the Barasona catchment, shows that though 
correlation of the ensemble mean is positive for all forecast lead times (see Annex C, 
Figure C1-5), skill reduces substantially beyond the one-month lead-time. CRPSS also 
shows positive skill compared to the climatological reference for one-month lead time 
but decreases to zero or marginally negative skill at longer lead times. This reflects the 
poor seasonal predictability of precipitation in this region of Europe (Crespi et al., 2021). 
Although a more elaborate bias correction method may result in a slightly increased skill, 
this is expected to be minor given the positive correlation of the ensemble mean to the 
observed precipitation at all lead times (Zhao et al., 2017). For streamflow, forecast skill 
is better than for precipitation (Annex C, Figure C1-6), with a correlation of > 0.6 of the 
ensemble-mean to observed flows. This is attributed primarily to the skill in predicting 
the longer memory baseflow component, with the skill of the fast response (quickflow) 
component poor. We also assess skill of the accumulated streamflow forecasts to end of 
season (Annex C, Figure C1-7), as this is the variable that is used in the decision. This 
indicates good correlation for most months, except in November and in the spring 
snowmelt season, where the simple regression-based quickflow model performs worst 
due to the absence of snow accumulation and melt. The low CRPSS values, with the 
forecast being reliable for most months (except November), tested using the Probability 
Integral Transform (Zhao et al., 2017) (Annex C, Figure C1-8) suggests that the ensemble 
spread is too wide (underconfident). The strong correlation of the streamflow forecast 
model forced with perfect precipitation indicates that loss of skill with lead time can 
primarily be attributed to the uncertainty in the forecast precipitation, as well as the poor 
performance of the quickflow model. The skill of the streamflow forecasts we find 
compares to those found by Pechlivanidis et al. (2020) in the Northeastern part of the 
Iberian Peninsula using a conceptual hydrological model, which includes snow 
accumulation and melt. Though a more complex model could improve skill here, the good 
skill of the baseflow forecast, which accounts for 73 % of the annual flow suggests this 
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may only provide marginal improvement to the skill of the forecast of the volumetric 
decision variable. 

4.4.2 In what context is the forecast information useful? 
Although there is (limited) skill in the streamflow forecasts, whether the information 
provided is useful depends on the context in which the forecast is used as well as on the 
users themselves (White et al., 2022). To be of value, information not only needs to be 
credible through being scientifically sound, but also salient to the decision in which it is 
intended to be used (Bremer et al., 2022; Cash et al., 2003) so that users can act on it 
(Hansen, 2002; Macauley, 2006). The decision model we develop here for the different 
types of farmers in the selected irrigation district in the Ebro basin, maps out the decision 
points they make. This is, however, clearly a simplification of the true diversity of farmers 
in the region and their behavioural choices. Indeed, the model used here is simplified 
compared to the more elaborate model used to evaluate farmer decisions in the same 
irrigation district in Linés et al. (2018). Despite its simplicity, the decision points 
identified through the cropping season are the points when farmers may act on seasonal 
forecasts of water availability through their crop choice. Similar approaches to mapping 
out decision points of corn farmers in the US (Haigh et al., 2015) and Argentina (Bert et 
al., 2006), or livelihood calendars for maize farmers in Malawi (Calvel et al., 2020) have 
been used to support a qualitative assessment of the usefulness of climate information. 
Here we extend these through a quantitative modelling of the interconnected decisions of 
irrigated farmers and reservoir operators. This shows that information is more relevant at 
the beginning of the season when water availability is more uncertain, though this is 
primarily so for the T1 type farmers who need to take a decision early in the cropping 
season, in particular the more risk averse farmers (R1). High uncertainty early in the 
season results in a lower overall accuracy of the forecasts to the R1 farmers, as well as 
lower precision and recall when compared to decision made using perfect forecast 
information. For farmers that have the option of two crops (T2), the uncertain early season 
information is less relevant than the forecast information in May, when most of the 
seasons’ accumulated inflows are already in the reservoir, though the streamflow forecast 
in May is also uncertain due to the poor snowmelt prediction of the model used. The 
forecast then supports T2 farmers’ choice between cropping an irrigated crop or leaving 
the land fallow in dry years, which is the action taken when considering the more 
conservative inflow scenario.  

Whether information provided is salient to the decisions farmers make also depends on 
water availability. In wet years, when there is plenty of water, the seasonal climate 
information does not make a difference, as all information scenarios indicate sufficient 
water to support the crops. Similar results by Kaune et al. (2020), show that seasonal 
forecast information is most relevant when it provides resolution to the decision being 
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made. This is also found by (Golembesky et al., 2009), who conclude that when the 
reservoir capacity is much larger than the maximum potential seasonal demand, then 
information on water availability is of lesser value. Interestingly our results also show 
that information is less useful in the more extreme dry years. This insight is gained 
through the modelling of the interlinked decisions of the farmers in their choice of crop, 
and of the reservoir operators in applying curtailments when demand due to the farmer 
decisions exceeds available water. Our results suggest that in years with more extreme 
droughts (e.g. 2005, 2006, 2015, 2016), water scarcity to irrigated agriculture may be less 
an issue if most farmers choose to leave the land fallow or choose the rain-fed crop to 
avoid the losses as assumed in the model, thus reducing demand for irrigated water. 

4.4.3 To whom is the information useful? 
The decision analysed shows that information provided by the seasonal forecast is not 
equally useful to all types of farmers at each of the decision points. The four types of 
farmers we consider here have different options available to them. The options available, 
and as described in the previous section, the timing associated with each of those options, 
play a key role both in the benefit they obtain, and the usefulness of the information 
provided by the forecast. Farmers who have the option to make their crop choices later in 
the season can rely more on information being more accurate. This is the case for the T2 
farmers who only use the forecast in May to select whether to plant a second crop. The 
decisions made at this stage in the season are also less sensitive to the uncertainty in the 
forecast, though this also means that the seasonal forecast is less salient than to farmers 
who are taking the highest risk, such as R2 and R3 as for them selecting the wrong option 
has a higher cost. The results therefore imply that the farmers with a higher technical 
capacity (T2), whose available options are less affected by the uncertainty of the forecast, 
benefit from the forecast being more accurate when they need it. This raises questions on 
the equity of climate services provision (Greene and Ferguson, 2023), as the more 
advantaged farmers stand to benefit most. The more risk averse R1 farmers are also more 
sensitive to uncertainty in the forecast, and so may be less inclined to using the 
information provided to their benefit. 

The different types of farmers favour different information scenarios depending on their 
options and their attitude to risk. R1 farmers benefit from conservative scenarios, while 
R2 and R3 prefer overconfident scenarios, as those are the scenarios in which leaving the 
land fallow is less likely. T2 farmers, being a larger group, have a higher risk of 
curtailments when they all plant an irrigated crop and therefore, they do not benefit as 
much from the overconfident scenarios. These preferences depend, however, on the cost-
benefit ratio between the different options and changes when these ratios change. The 
decision model applied here uses the assumptions that maize has better value than barley 
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and that the value for both crops over the whole period is constant. In reality, prices 
change every year and may also be subject to (European) subsidies (Gil et al., 2013; Linés 
et al., 2018). This adds uncertainty and complexity to the actual decision of farmers. The 
simple decision used here also includes other assumptions, with limited and fixed options 
for each type of farmer, and all farmers of a given type making the same decisions. The 
latter has some impact on the results as when the water availability is not enough for all 
of them to plant an irrigated crop, they will all choose the alternative option, despite water 
availability being sufficient for some to plant the irrigated crop. Allowing for more 
heterogenous decisions per farmer type may then result in a higher value for the group. 
We also assume that all farmers have the same access to information and capacity to 
understand it, which are also factors that influence the use of information and may 
introduce inequalities (Lemos et al., 2010).  

Developing a full agent based model, with agents formed by groups of farmers and their 
behaviour defined by decision rules (Helbing, 2012; Huber et al., 2018) would allow for 
more individual and heterogenous behaviour, and agent-based models have previously 
been applied to understand drought adaptation behaviours (Schrieks et al., 2021; Wens et 
al., 2019) and farmer’s crop choices (Yuan et al., 2021). Although the model we use here 
has some characteristics of an agent-based model, more simple models or game scenarios 
(see also Giuliani et al., 2020, and Crochemore et al., 2021) are helpful to isolate the 
impacts on the usefulness of the information provided to the four types of user considered, 
and contribute to increase the understanding of different decision maker’s needs. This can 
inform the design of climate services to meet those needs, thus improving usability 
(Lemos, 2015). 

4.5 CONCLUSIONS 

This paper aims to bridge the gap between technical evaluations of the usefulness of 
seasonal forecasts, and human-centred approaches that evaluate how useful forecasts are 
to actual decisions users make. We assess the usefulness of seasonal forecasting in 
supporting decisions in irrigated agriculture in the Ebro Basin in Spain through a user-
based model of farmer decisions on what and when to plant, which is conditioned by 
water availability and the interrelated decision of water managers on when to apply 
curtailments should shortages occur during droughts. We consider two types of farmers 
with different available options depending on their technical capabilities, as well as 
differing levels of risk aversity. This allows the usefulness of information to be illustrated 
through three key angles: 

i. Credibility: We show that seasonal forecasts of water availability to the end of the 
season have positive skill, even using a simple streamflow prediction model. 
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Though seasonal precipitation forecasts have only limited skill, the memory of the 
baseflow response contributes to improved skill of streamflow predictions. 
Accuracy of the information on which decisions are based is important to this 
being considered credible by users. 

ii. Salience: How useful the seasonal forecast information is, depends on how 
relevant it is to the decisions informed. The different types of farmers considered 
take key decisions at different times in the season, depending on their options. 
Forecasts are most relevant to the farmers that are more risk averse and have fewer 
technical capacities, as these need to take decisions early in the season, when 
water availability to the end of season is most uncertain. The relevance of the 
seasonal forecasts also varies between years and is low for years that are clearly 
wet from the outset. Interestingly, we find that forecasts are also less relevant in 
years that are clearly dry from the start, as then demand for irrigation is lower due 
to farmers opting choosing a rainfed option. Seasonal forecasts are most relevant 
in years that are changeable, such as those starting wet and then following a drier 
path, or vice versa.  

iii. Equity: The results also show that how useful the forecast is to a user depends on 
their individual behaviour. This means forecast information does not serve all the 
farmers equally. Farmers with higher technical capacity have more flexibility to 
design their crop pattern in a way that decisions are made later in the season when 
there is less uncertainty on seasonal water availability and information from the 
forecast. Although the added value of the forecast is not high to them, it is useful 
when they do as accuracy is then high. More risk averse farmers with less options 
available stand to obtain a higher added value from using the forecast. However, 
as they need to make key decisions earlier in the season due to their limited 
technical capacities, they also then make use of forecast information that is less 
accurate. 

Overall, we show that seasonal streamflow forecasts are useful and there is benefit over 
the currently used approach in using seasonal forecast information to support the 
decisions farmers in the Ebro basin make. However, how useful forecast information is, 
depends very much on the context in which decisions are made, by whom, and the options 
they have available to them. This also means that the usefulness of forecast information 
is not equal among different users, highlighting the importance of not only considering 
usefulness of information provided through a service such as a seasonal forecast from the 
perspective of the information itself, but also from the perspectives of the various users, 
and the decisions they make. 



  

 

 

5 
5 SYNTHESIS 

 

This chapter summarises the main results of the thesis, offers the conclusions to the 
research questions introduced in Chapter 1, and highlights the limitations and 
opportunities for further work. 
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5.1 MAIN RESULTS: INSIGHTS FROM THE DIFFERENT PERSPECTIVES 

This thesis investigates the usefulness of information for drought management decisions 
at the basin scale, as described in the research objectives in Section 1.3. The multifaceted 
nature of the question is explored by approaching the same case study in the Ebro basin 
from three complementary perspectives to assess the usefulness of information.  

First the question is approached from the perspective of data; assessing the extent to 
which data that is available provides the information required to support the decision. 
More specifically, the case presented in Chapter 2 shows how good the data is at detecting 
early stages of drought at the river basin scale. The study focusses on assessing the 
predictive power of different types of data (i.e. global remote sensing data products) in 
detecting emerging drought conditions that will lead to impacts with sufficient 
anticipation for drought managers to implement necessary mitigation measures. 
Newspaper reports and crop yields are used in the study as a benchmark of drought 
impacts. Data-centred perspectives such as the one presented in Chapter 2, are a helpful 
approach for data developers or data providers to demonstrate the usefulness of 
information to drought management decisions, as the results in that chapter prove. The 
analysis shows that early signs of drought impacts can be detected up to six months before 
these impacts are reported in newspapers. The remotely sensed datasets that are shown to 
provide the best correlation–anticipation relationships in the context of the Ebro basin are 
the standard precipitation index (SPI), the normalised difference vegetation index (NDVI) 
and evapotranspiration (ET). 

The focus then shifts to the perspective of the decision maker in Chapter 3, looking into 
how information supports specific decision processes and how those decisions could 
benefit from additional information identified as being useful by the decision makers. The 
options available to water managers and farmers in the area and the information use and 
needs they have to support these decisions was explored through semi-structured 
interviews. The interrelated decisions of the irrigation association responsible for the 
allocation of water to meet demands, and the farmers were modelled to assess the benefit 
of additional information on the decision. In addition to the information on currently used 
reservoir levels, on which decisions are currently taken on, snow cover in the headwater 
catchments was added. This information was identified by users to be potentially useful 
in the interviews. Through simulation of the interrelated decisions that incorporated 
information on snow cover, obtained from remote sensing, it was shown that better 
decisions and ultimately higher benefits for the farmers could be obtained. The most risk 
averse small-scale farmers benefited the most, due to the snow cover information adding 
the most value around the time that they make their decisions (February and April). 
However, the ratio between the cost of planting and the market value of the crop proved 
to be a critical aspect in determining the best course of action to be taken and the value 
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of the (additional) information, i.e., when the cost of making a wrong decision is high due 
to higher planting costs, there is less need for information as the default safer course of 
action is then always chosen.  

Combining the two perspectives, in Chapter 4 the user-based model from the previous 
chapter is adapted to assess the usefulness of seasonal forecasts as an alternative source 
of data to inform the decision. While seasonal forecasts were not seen as useful in their 
current state by the stakeholders interviewed, numerous examples of analyses showing 
the potential of seasonal forecasts to benefit water management decisions are available 
in the literature. In addition to exploring the potential benefit of using seasonal forecasts 
to inform decisions made, the analysis in Chapter 4 also aimed at identifying the factors 
that influence the usefulness of the information for those decisions. To that end, farmers 
with different levels of technical capacity, which determine the crop options available 
to them, and different level of risk averseness were considered in the analysis. The 
results show that there is clear benefit in using seasonal forecasts over the current 
approach, which is based on historical data. However, these also demonstrate that the 
extent to which seasonal forecasts are useful depends on the context in which the 
decisions are made, by whom, and the options that are available to them. The usefulness 
depends not only on the credibility, expressed here as the skill of the forecast, but also 
on the salience of the information, or in other words how relevant the information is to 
the decisions made. The variability of the season and the timing of the decision are 
shown to impact the usefulness of the forecast. Forecast information was found to be 
more relevant in seasons when the availability of water was most unclear, such as in 
seasons that initially looked wet and then flipped to dry due to the onset of drought 
conditions, or vice-versa. In other years, either clear wet or clear drought years, seasonal 
forecast information was of lesser value compared to the approach that is currently used, 
as it had little impact on decisions made. Additionally, farmers that can make their 
decisions later in the season were found to benefit from higher forecast accuracy, while 
the information was more salient to farmers taking decisions early in the season. This 
has implications for the equity of information, as it is usually the farmers with higher 
technical capacity that have the flexibility to select a crop pattern that allows them to 
make decisions later in the season when the information is more accurate. Farmers that 
have less technical options available to them, and that are more risk averse, tend to take 
decisions early in the season when uncertainty is highest. 

Overall, these results highlight that the usefulness of information depends not just on the 
information itself, but also on the decision that is being informed, the context within 
which the decision is taken, and by whom. This underpins the importance of integrated 
approaches to conduct these types of analysis. The following three sections discuss 
insights the different approaches followed in this thesis can provide to that integrated 
approach, and the implications for the assessment of the usefulness of information. 
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5.2 HOW TO ASSESS THE USEFULNESS OF INFORMATION 

The semi-structured interviews with the basin water resources managers, one of the 
irrigation associations, and one of the farmers to learn about their decision processes and 
the role of information in them (conducted for Chapter 3) confirmed there is a need for 
(additional) information by decision makers. The user-centred perspective was helpful to 
comprehend the details of the decision, especially the courses of action available and the 
conditions that determine the selection of a specific course of action. Indeed, it is essential 
for the assessment of the usefulness of the information to those decisions, since for the 
information to be useful, it needs to be able to provoke a change in the decision outcome. 
Although this may be less critical for decisions that appear well defined and documented, 
such as in drought management plans or reservoir operation rules, there is still plenty to 
learn about the actual decision process in those cases. For example, alternative sources of 
information, such as information on the snow cover identified in Chapter 3, may be used 
to complement the official indicators to reinforce the decision. Additionally, 
understanding the actual decision process can provide insights on the time limits to 
making critical decisions, which determines how much delay there can be between the 
event and the reception of the information by the decision maker for it to still be useful. 

Although this shows the importance of assessing the usefulness of information from the 
decision maker’s perspective, assessments of the usefulness or value of information to 
support a decision from the side of the data, such as shown in Chapter 2, are relevant in 
identifying the type of information that is potentially useful to support a decision. Still, to 
demonstrate whether that information has the capacity to change the outcome, and 
therefore is indeed useful for the decision, a decision model or trial is required. As shown 
in Chapter 4, several aspects of the decision, such its timing, the technical capacity and 
risk attitude of the decision maker, and the uncertainty of water availability during the 
season influence the usefulness of information and the benefit it brings to the user. 

5.3 BRIDGING THE GAP BETWEEN TECHNICAL AND HUMAN-CENTRED 
APPROACHES 

The three perspectives taken in this thesis show that the assessment of the usefulness of 
information for a decision requires combining the perspectives of both usefulness to the 
decision makers, as well as usefulness of the data itself. However, assessments are often 
approached from disciplines that focus on either a technical or socio-economic perspective. 
This thesis explores, and ultimately combines, these perspectives to contribute to filling the 
gap between technical and human-centred approaches to assess the usefulness of 
information for drought management decisions. 
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At a smaller scale, these two perspectives are also brought together in Chapter 2. There 
the question of the usefulness of information is approached from a data analysis 
perspective to assess whether selected information products have the capacity to detect 
emerging drought with enough anticipation to allow the implementation of measures by 
the basin managers. One of the obstacles to determining the ability of information 
products or drought indicators to inform decision makers about the occurrence of drought, 
is the lack of a benchmark for drought. The innovative solution applied in Chapter 2 to 
build that missing benchmark consists in using drought impacts reported in (regional) 
newspapers, thus incorporating a connection to drought impacts into the evaluation of 
drought indicators. This is critical, but often disregarded. 

5.4 INTERPLAY BETWEEN INFORMATION AND DECISIONS 

As expressed throughout the thesis, there are two main conditions for information to be 
useful to a decision: (1) the capacity of the information to provide the facts or indicators 
required by the decision maker in a timely manner; and (2) the capacity of the decision 
maker to change the course of action as a result of that information. The first point is 
explored in Chapter 2, while Chapters 3 focuses on the second point and Chapter 4 aims 
to combine both points. The three chapters show that each of the points has multiple 
factors that determine that capacity and which need to be considered to assess the 
usefulness of information.  

The first condition is connected to the quality of the information and its ability to provide 
accurate observations or predictions, but also to provide information that is salient to the 
decision. Information provided must inform on something that the decision maker needs 
to know to select one of the available courses of action and it needs to provide that 
information both early enough to be available at the time of making the decision (as 
happens with the early detection of drought in Chapter 2), and at the time of the year or 
season in which the decision is made (as happens with crop selection decisions in 
Chapters 3 and 4). 

The capacity of the decision maker to change course of action as a result of information, 
i.e. the second condition for the usefulness of information, is not a constant but may vary 
with the context. For example, as shown in Chapters 3 and 4 in clearly wet or dry years 
the information is less useful than in changeable years as the information helps clarify 
what the best course of action is. The cost of planting and the reduced profit margins were 
also shown to have clear impact on the usefulness of information. When the risk of losses 
is too high, a conservative approach tends to be the best path to follow and therefore 
information is less useful (as the course of action does not need to be changed as that 
typically implies the taking of more risk). 
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It is implicit in the second condition that the capacity to make use of the information 
depends on the users and the options available to them, as is shown by the decision models 
and the different users considered in Chapters 3 and 4. The cases analysed in those 
chapters show that the time of the season in which the decision is made has a strong 
influence in the usefulness of the information, and therefore users making decisions at 
different times would not benefit from the same type of information equally. This is 
shown for forecast data, which has varying levels of accuracy over the season, but also 
for observed data, as the relevance of hydrological variables can also change over the 
season. The case of snow cover information analysed in Chapter 3 is a clear example of 
that change in relevance over the season. 

5.5 OPPORTUNITIES FOR FURTHER INVESTIGATION 

As summarised in the previous three sections, this thesis shows the contribution of data 
and user-centric approaches to assess the usefulness of information and explores their 
integration to fill the existing gap between the technical and human disciplines that are 
interested in assessing this usefulness. The results show that the usefulness of information 
depends on multiple aspects of the decision that is being informed, confirming the 
necessity of considering both the data and the user aspects when assessing the usefulness 
of information. The thesis presents a combined approach for the case study of an irrigation 
district in the Ebro Basin and water management decisions. Other irrigation districts in 
the Ebro Basin and in other Spanish basins share similar decision processes as they all 
follow a common national framework for river basin and drought management plans. This 
facilitates the transferability of the methods and the results of this research to other areas 
in the country, although local variations in for example the crop options or the level of 
cooperation between farmers would need to be considered and incorporated as required. 
Basins beyond Spain may also share similarities in water allocation decisions, climate 
conditions and crop patterns, which could facilitate some extrapolation of the methods 
and results, though tailoring would again be needed to suit the specific characteristics of 
the local context. Broader research on the integration of social sciences methods, 
modelling of decisions, and hydro-climatological modelling is nevertheless necessary to 
identify more general applicable guidance to the assessment of the usefulness of 
information. 

In the analyses presented in this thesis, simpler models were preferred to help isolate the 
impact of different factors on the usefulness of information. However, having all farmers 
in each type of the four farmer groups making the same decision is shown to have an 
impact on the decision made by the group. For example, in some cases there was not 
enough available water for all of them to plant an irrigated crop, and as a result none of 
them planted that crop. This opens an opportunity for more complex modelling, such as 
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that offered by agent-based models. Agent-based models could allow for more 
heterogeneity among the farmers and help identify additional detail in the usefulness of 
information among the different users. Additional aspects, such as the variable prices of 
crops or subsidies, that were not considered in the model used in this thesis for simplicity, 
could also be incorporated into the model to assess their impact on the usefulness of 
information. 

The results in Chapter 4 show that how useful information is depends on the behaviour 
of the decision maker (defined here by their technical capacity and attitude to risk). This 
has implications on the equity of information, as different users benefit differently, 
depending on when the decision is taken, the uncertainty of the information at the time of 
the taking of the decision, and the options available to them. The question of how 
equitable information provided through climate services is has as yet been little 
researched, and further research in other contexts is recommended to develop a more 
complete insight. This also underlines the importance of a trans-disciplinary approach, 
where the usefulness of information is explored from the perspective of the data itself as 
well as from the perspective of the users and decision makers. 
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CODE AND DATA 
AVAILABILITY 

CHAPTER 2 

The remote sensing data used for Chapter 2 is openly available. The sources are 
mentioned in Section 2.2.2. In situ data from the basin measurement network can be 
downloaded from the Ebro Basin authority site (www.chebro.es). Crop yield data can be 
downloaded from the site of the Aragón government (www.aragon.es). The dataset 
derived from the review of newspaper records is available in GitHub 
(https://github.com/lnscl/SM/tree/main). The corresponding news articles can be 
accessed online at www.elperiodicodearagon.com. 

CHAPTER 3 

All in situ and remote sensing data used for this Chapter are openly available. The sources 
are mentioned in Section 3.5.1. The crop models, Aquacrop-OS and Cropwat, are open-
source and available from https://github.com/aquacropos/aquacrop-matlab and 
http://www.fao.org/land-water/databases-and-software/cropwat/ respectively. The code 
for the decision model is available in GitHub (https://github.com/lnscl/SM/tree/main). 

CHAPTER 4 

Seasonal forecast data from ECMWF SEAS5 is available from the ECMWF MARS 
archive (https://www.ecmwf.int/). Seasonal forecast data (raw and bias corrected) 
sampled to the catchment is available in GitHub (https://github.com/lnscl/SM/tree/main, 
see input_files/seasonal_forecast). 

SAFRAN data is published under DOI 10.14768/MISTRALS-HYMEX.1388. See 
https://www.obsebre.es/en/en-safran for additional information.  

Streamflow data from the Spanish national gauging station network (Red Integrada de 
Estaciones de Aforo, ROEA) is openly available at https://sig.mapama.gob.es/geoportal/. 
See https://www.miteco.gob.es/en/cartografia-y-sig/ide/descargas/agua/anuario-de-
aforos.html for additional information. 

The code for the decision model is available in GitHub (https://github.com/lnscl/SM/tree/
main). AquacropOS input files (used for barley and maize simulation) containing the crop 

http://www.chebro.es/
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model parameters available in the same GitHub folder (see input_files/crop_model_files 
subfolder). For Cropwat the default parameter files for alfalfa and peach were used.
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APPENDICES 
APPENDIX A: THE EBRO BASIN 

The Ebro basin is located in the northeast of Spain and limited by the Pyrenees to the 
north and the Iberian System to the south. The enclosed valley is crossed from the 
northwest to the southeast by the Ebro River (970 km), which flows from the Cantabrian 
mountains to the Mediterranean Sea, where it forms a large delta. 

The Ebro basin is the largest catchment in the country, covering about a sixth of the 
country’s surface (85,600 km2). It is shared by 18 provinces from 9 Autonomous Regions, 
with a small part of the catchment falling in Andorra and France. 

The area is scarcely populated, with almost half of its 3,675,000 inhabitants located in the 
cities of Zaragoza, Vitoria, Logroño, Pamplona, Huesca and Lleida. 

Climate 

The Ebro basin has a Mediterranean climate with varied geographical influences that 
result in different subtypes (Atlantic in the northeast, continental in the interior, mountain 
in the Pyrenees and Iberian System and coastal close to the Mediterranean Sea) and high 
differences of precipitation and temperature ranges within the basin (Table A-1). The 
average total annual precipitation for the basin is around 600 mm for the period 1980-
2018, but it has a high inter-annual variability, ranging from 430 to 830 mm in that period 
(CHE, 2022). Spring and autumn receive the highest amount of precipitation; the summer 
tends to be dry with occasional storms, and the winter sees extended periods of 
anticyclonic conditions too (López-Moreno et al., 2013). In the upper part of the northern 
catchments, which fall in the Pyrenees, precipitation falls mostly as snow from November 
to the end of April and remains as snow cover at high elevations (> 1600 m) (López-
Moreno and García-Ruiz, 2004). 

 Table A-1. Mediterranean climate subtypes in the Ebro basin (CHE, 2022). 

Subtype P (mm/year) Seasonal P variation 

Mountain 800-1800 Tendency to min. in summer 

Transition 700-900 Max. in spring, min. in winter 

Continental sub-humid 500-700 Min. in winter 
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Continental dry 350-500 Max. in spring and autumn 

Pre-costal 600-800 Max. in spring and autumn 

Costal 500-600 Max. in autumn 

 

Hydrology 

The Ebro has more than 200 tributaries and an annual mean discharge in natural 
conditions of roughly 500 m3/s (CHE, 2022). The highest contribution arrives from the 
northern bank tributaries, where the main tributaries are Aragón, Gállego, Cinca and 
Segre rivers. Southern bank tributaries contribute around a 5 % to the total runoff (Batalla 
et al., 2004). 

It is a highly regulated basin with 125 reservoirs (>1 hm3) and a total storage capacity of 
more than 7800 Mm3 (CHE, 2018), with water in most reservoir completely used within 
the season (Batalla et al., 2004). 

Groundwater use contributes around the 7 % of the water resources used in the basin, 
with aquifers located mainly in the southern bank catchments such as Cidacos, Jalón an 
Huerva rivers. In other catchments such as Ésera-Noguera Ribagozana, Garona, 
Matarranya or Najerilla less than 1 % of the water used for supply comes from 
groundwater (CHE, 2022). 

The response to previous climatic conditions is varied across the basin due to differences 
in altitude, groundwater storage, reservoir operations and snow accumulation. 
Unregulated Pyrenees basins showed responses at shorter time scales (2-4 months) than 
other areas in the basin, with longer response times in the winter and spring when the 
snow is present (López-Moreno and García-Ruiz, 2004). The snow accumulation in the 
Pyrenees part of the catchment is a key factor for reservoir management and irrigation 
supply (López-Moreno and García-Ruiz, 2004). 

Water uses 

Over 90 % of the water supplied in the basin in 2016 was used for irrigated agriculture 
(CHE, 2022). The basin has over 900,000 ha dedicated to irrigated agriculture, from 
which over 780,000 ha were irrigated in 2019 according to survey data (CHE, 2022). 
Other uses include supply to population (> 5 % of the water supplied), industrial uses 
(> 2 %), animal husbandry, fish farming, hydroelectricity (> 350 plants in use), 
refrigeration and recreational uses. 
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APPENDIX B: SUPPLEMENTARY MATERIALS CHAPTER 3 

B1 Total benefit for different costs 
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B2 Yearly relative value 
Yearly Relative Value for decisions informed by reservoir level alone (R) and with the 
addition of snow information (S) for the 10 sets of thresholds and the optimized thresholds 
(labelled as 62). When the uninformed decision results in the same benefit as the perfect 
information the Relative Value is -Infinite and is left blank in the plot. 
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B3 Total benefit for different costs 
Ten additional runs were performed with random snow values. The objective is to test if 
the improvements in the decisions observed when the model is run with additional 
information are indeed the result of better information and not a casual effect. 
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The first run (run 00) corresponds to MODIS snow data and the following runs (run 02-
10) to the generated random data. One of the runs with random data is included here as 
an example, the full set can be accessed in the paper supplementary materials 
(https://hess.copernicus.org/articles/22/5901/2018/hess-22-5901-2018-supplement.pdf). 

(a) Snow data 

Run 00 

 

Run 01 

 

(b) Total benefit (stacked values) 

https://hess.copernicus.org/articles/22/5901/2018/hess-22-5901-2018-supplement.pdf
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APPENDIX C: SUPPLEMENTARY MATERIALS CHAPTER 4 

C1 Seasonal Forecast Data, bias correction and skill assessment 
 

 

Figure C1-1. Cumulative empirical distributions of catchment averaged observed 
precipitation (SAFRAN, red lines) and seasonal forecasts (ECMWF SEAS5, grey lines) 
and bias corrected seasonal forecasts (green line) for each month. Precipitation data is 
averaged over the catchment area of the Barasona catchment (see main text, Figure 1). 
Grey lines show distributions for each 7 month lead time, but these are pooled prior to 

bias correcting. ECMWF-SEAS5 forecasts was found to include spurious extreme 
precipitation events (SPI1>2), which we censored to a maximum of SPI1=2. 
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Table C1-1. Parameters of the 2 parameter Gamma distribution (location=0) for each 
month for observed and forecast data used for bias correction. p-values established 

with Cramér-von-Mises test show Gamma distribution is acceptable at the 5% 
significant level. Given the large sample size, p-values for the forecast distributions 

were established as the median p-value of 100 randomly drawn samples with the same 
length as the number of observed years. Note that these parameters are for the full 

dataset. Parameters for the leave-one-year-out cross validation, where for data for the 
year for which a forecast is made is left out in fitting distributions and models. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Observed 

Alpha 0.89 1.95 1.70 3.43 6.95 3.92 2.49 3.36 2.36 2.59 1.62 1.12 
Scale 46.03 15.76 23.32 20.64 10.90 16.09 17.94 14.68 28.90 29.43 42.97 46.29 
p-value 0.28 0.86 0.89 0.60 0.69 0.80 0.96 0.99 0.60 0.83 0.66 0.99 

Forecast 
Alpha 2.44 2.58 3.85 5.07 5.73 3.70 2.61 2.75 2.94 2.86 2.77 2.54 
Scale 25.84 23.00 18.68 16.25 17.17 21.37 16.44 18.43 24.01 28.30 25.44 25.46 
p-value 0.49 0.50 0.49 0.52 0.37 0.52 0.47 0.47 0.48 0.50 0.46 0.41 

 

Figure C1-2. Climatological mean monthly inflow discharge to the Barasona reservoir 
(combined inflow of the Isábena and Ésera rivers).  
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Figure C1-3. (a) lag-correlation between catchment average precipitation and 

discharge. (b) Auto-correlation of the (total) discharge, baseflow and quickflow. 

Table C1-2. Upper table shows the parameters of the 2 parameter Gamma distribution 
(location=0) for each month fitted to the baseflow derived through baseflow separation 

from the total observed flow. p-values established with Cramér-von-Mises test show 
Gamma distribution is acceptable at the 5% significant level for all months. Lower 

table shows the parameters of the linear regression model fitted using ordinary least 
squares to each month to predict quickflow from the monthly precipitation. Adjusted-R2 

shows lower predictive for snowmelt season as well as for low-flow summer months. 
Note that these parameters are for the full dataset. Parameters for the leave-one-year-
out cross validation, where for data for the year for which a forecast is made is left out 

in fitting distributions and models. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Gamma distribution parameters to transform baseflow to SRI1 used in the ARIMAX model 

Alpha 3.92 3.06 5.00 10.39 14.85 11.93 12.63 7.56 8.42 7.00 9.36 9.14 

Scale 13.86 13.48 7.44 4.53 4.18 5.85 4.84 6.93 6.48 9.18 7.64 7.22 

p-value 0.98 0.91 0.85 0.52 0.89 0.67 0.48 0.92 0.90 0.87 0.92 0.51 

Linear regression model used to predict quickflow from monthly precipitation 

Slope 0.12 0.07 0.11 0.09 0.07 0.07 0.04 0.04 0.08 0.13 0.11 0.10 

Constant -0.91 0.48 0.04 1.52 3.57 2.96 1.95 1.13 -1.11 -2.25 -0.19 0.08 

Adj- R2 0.77 0.53 0.52 0.59 0.28 0.17 0.25 0.29 0.61 0.76 0.68 0.66 
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Figure C1-4. One-step ahead predictions using the ARIMAX model for predicting 

baseflow. Selected best performing model has ARIMA model structure [1,0,1], with 
parameters AR=0.78 and MA=-0.37. Monthly precipitation for the predicted month is 

exogenous variable X=0.57 and is derived from here from observed precipitation and in 
forecast mode from bias corrected ECMWF-SEAS5 precipitation. Predicted SRI1 values 
are back-transformed to discharge using Gamma distribution parameters in Table C1-2. 

R2 of the 1-step ahead prediction is 0.63, with a bias of -0.003. 

 
Figure C1-5. Skill assessment of the bias-corrected ECMWF-SEAS5 precipitation forecast 
for the Barasona catchment. (a) shows the Pearson correlation coefficient of the ensemble 
mean of the monthly precipitation for all forecast months, with grey lines showing the skill 
for months in which decisions are made (see decision model, main text. (b) shows the same 
for the CRPSS with forecast skill calculated using climatology as a reference forecast. Skill 
is assessed using a leave-one-year-out cross validation strategy, where observed data for 
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the year of the initiation date of the forecast is not considered in deriving parameters for 
distributions and forecast models. 

 
Figure C1-6. Skill assessment of the inflow to the Barasona reservoir using bias corrected 
precipitation. (a) Correlation of the ensemble mean (solid lines) for lead times 1 through 7 
months, with the correlation for the baseflow and quickflow components (using respective 

models) also shown. Circles show the correlation of the streamflow prediction using perfect 
(observed) precipitation to force the streamflow forecast model. (b) Continuous Ranked 
Probability Skill Score, using climatology as a reference, for the ensemble streamflow 

forecast (solid line) as well as for the baseflow (dashed) and the quickflow (dash-dot). Skill 
is assessed using a leave-one-year-out cross validation strategy. 

 
Figure C1-7. Skill assessment for the accumulated inflow to the Barasona reservoir, 

evaluated using the accumulated inflow from the start of forecast through to the end of the 
irrigation season at the end of September. (a) Correlation of the ensemble mean (solid line) 

for each accumulation, with the correlation for the baseflow and quickflow components 
(using respective models) also shown. Circles show the correlation of the accumulated 

streamflow prediction using perfect (observed) precipitation to force the streamflow forecast 
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model. (b) Continuous Ranked Probability Skill Score, using climatology as a reference, for 
the ensemble streamflow forecast (solid line) as well as for the baseflow (dashed) and the 

quickflow (dash-dot). Skill is assessed using a leave-one-year-out cross validation strategy. 

 

Figure C1-8. Probability Integral Transform plots of (a) accumulated (bias corrected) 
precipitation and (b) accumulated streamflow forecasts from the month start of 

prediction to the end of season at the end of September. A perfectly reliable forecast 
follows the main diagonal, with dotted lines showing the 95% confidence intervals for 

the Kolmogorov-Smirnoff test. Skill is assessed using a leave-one-year-out cross 
validation strategy. 
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C2 Crop yields 

Table C2-1. Yields (in tonnes per hectare) for long-cycle maize (LCM), long-cycle barley 
(LCB), short-cycle maize (SCM) and short-cycle barley (SCB) obtained in AquacropOS. 

 

LCM LCB SCM SCB 

1984 17.61 10.07 15.09 4.03 
1985 17.73 9.79 14.82 3.89 
1986 17.98 10.06 15.03 4.01 
1987 17.82 10.21 14.63 4.06 
1988 18.6 10.12 15.52 4.02 
1989 17.74 10.35 14.95 4.17 
1990 17.69 9.95 14.72 4.02 
1991 17.58 9.88 14.57 3.96 
1992 18.64 10.11 14.89 4.04 
1993 18.49 10.45 15.55 4.19 
1994 17.76 10.54 14.78 4.21 
1995 18.16 10.53 15.1 4.22 
1996 18.58 10.61 15.97 4.3 
1997 18.26 10.66 15.63 4.26 
1998 17.97 10.48 15.1 4.21 
1999 17.29 10.62 14.43 4.28 
2000 17.75 10.72 14.96 4.32 
2001 18.00 10.91 15.22 4.37 
2002 18.56 10.6 15.71 4.23 
2003 16.77 10.63 14.21 4.26 
2004 17.42 10.51 14.56 4.2 
2005 17.8 10.7 15.13 4.24 
2006 17.37 10.95 14.58 4.38 
2007 18.14 11.08 15.27 4.44 
2008 18.24 10.99 15.11 4.44 
2009 16.95 11.02 14.21 4.39 
2010 18.05 11.08 14.81 4.42 
2011 17.72 10.97 14.68 4.4 
2012 17.27 11.33 14.46 4.48 
2013 18.2 11.41 15.2 4.56 
2014 17.65 11.12 14.7 4.41 
2015 17.48 11.59 14.62 4.67 
2016 17.58 11.48 14.56 4.66 
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LIST OF ACRONYMS 
AEMET Agencia Estatal de Meteorología (Spanish Meteorological 

Agency) 

ALEXI Atmosphere–Land Exchange Inverse Model 

CAyC Canal de Aragón y Cataluña (Aragón and Cataluña Chanel) 

CCF Cross-correlation function 

CCI Climate Change Initiative 

CHE Confederación Hidrográfica del Ebro 

CHIRPS Climate Hazards Group InfraRed Precipitation with Station data 

CLC Corine Land Cover 

CRPSS Continuous Ranked Probability Skill Score 

DIR Drought Impact Reporter 

ECWMF European Centre for Medium-Range Weather Forecasts 

ECV Essential Climate Variables 

EDII European Drought Impact Report Inventory 

EO Earth Observation 

ET Evapotranspiration 

GLEAM Global Land Evaporation Amsterdam Model 

GPP Gross Primary Production 

LST Land Surface temperature 

MODIS Moderate Resolution Imaging Spectroradiometer 

NDVI Normalised Difference Vegetation Index 
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NTSG Numerical Terradynamic Simulation Group 

P Precipitation 

ROEA Red Integrada de Estaciones de Aforo (Integrated Gauging 
Stations Network) 

RV Relative Value 

SAIH Sistema Automático de Información Hidrológica (Automatic 
Hydrologic Information System) 

SEBS Surface Energy Balance System 

SM Soil Moisture 

SPEI Standardised Precipitation Evapotranspiration Index 

SPI Standardised Precipitation Index 

TRMM Tropical Rainfall Measuring Mission 

VOI Value of Information 

VOPI Value of Perfect Information 
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