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Tightly Integrated Motion Classification and State
Estimation in Foot-Mounted Navigation Systems

Isaac Skog
Dept. of Electrical Engineering
Uppsala University
Uppsala, Sweden
isaac.skog@angstrom.uu.se

Abstract—A framework for tightly integrated motion mode
classification and state estimation in motion-constrained inertial
navigation systems is presented. The framework uses a jump
Markov model to describe the navigation system’s motion mode
and navigation state dynamics with a single model. A bank of
Kalman filters is then used for joint inference of the navigation
state and the motion mode. A method for learning unknown
parameters in the jump Markov model, such as the motion
mode transition probabilities, is also presented. The application
of the proposed framework is illustrated via two examples. The
first example is a foot-mounted navigation system that adapts
its behavior to different gait speeds. The second example is
a foot-mounted navigation system that detects when the user
walks on flat ground and locks the vertical position estimate
accordingly. Both examples show that the proposed framework
provides significantly better position accuracy than a standard
zero-velocity aided inertial navigation system. More importantly,
the examples show that the proposed framework provides a
theoretically well-grounded approach for developing new motion-
constrained inertial navigation systems that can learn different
motion patterns.

Index Terms—Inertial navigation, Zero-velocity detection,
Constant height detection, Filter bank, Motion-constraints.

I. INTRODUCTION

Current state-of-the-art technology for zero-velocity aided
inertial navigation systems is based upon a strategy of loose
integration between the zero-velocity detector and the inertial
navigation filter [1]. That is, the zero-velocity detector and
the inertial navigation filter are treated as separate functions,
with a one-directional flow of information from the former to
the latter. From an information theoretical perspective this is
suboptimal because: (a) the estimated navigation states carry
information about the system’s motion mode that is not used
in the zero-velocity detector, and (b) the test statistic used in
the zero-velocity detector is quantized before it is used in the
navigation filter. Thus, information that could be used both to
improve the detection of zero-velocity events and to control
how the zero-velocity updates are performed, is lost. The
same argumentation also applies to other motion constraints
commonly applied to foot-mounted inertial navigation systems
and where an external motion classifier is used to determine
when to apply these constraints. A few examples of commonly
used motion constraints are that the system keeps a constant
height [2], constant heading [3], or constant speed [4].
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The fact that the estimated navigation state carries informa-
tion that can be used to improve the zero-velocity detection
process is utilized in [5], where the velocity estimates from
the inertial navigation filter are used as a prior for a Bayesian
zero-velocity detector. And in [6], the test statistics from the
zero-velocity detector are used to control the magnitude of
the measurement covariance in the inertial navigation filter.
Thereby, quantization of the zero-velocity test statistics is
avoided and the zero-velocity update process can adapt to
different gait conditions. Still, both [5] and [6] employ a loose
integration strategy where the zero-velocity detector and the
inertial navigation filter are treated as separate functions.

This paper instead proposes a framework for tightly
integrated motion mode classification and navigation state
estimation, of which tightly integrated zero-velocity aided
inertial navigation is a special case. The core of the framework
is a jump Markov model that includes both the navigation
state and the motion mode. That is, a single model is used
to describe both the kinematics of the system under various
motion modes and the probability of transitioning between
the motion modes. A bank of Kalman filters is then used to
jointly estimate the navigation state and the motion mode.
A method to automatically learn unknown parameters in
the jump Markov model is also presented. The proposed
framework is evaluated on two data sets consisting of various
gait conditions and motion modes.

Reproducible research: The data and code used to produce
the presented results can be downloaded at:
https://gitlab.liu.se/open-shoe/filterbanks.

II. SIGNAL MODEL

Let the system state x; and input vector uy at time instant
k be defined as

Tk
Uk Sk
= and = , 1
Tk o U LJ (D
&k

respectively. Here r, vg, and g denote the position, veloc-
ity, and attitude quaternion, respectively. Further, &, denotes
potential auxiliary states, such as sensor biases, needed to
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describe the behavior of the system. Moreover, s, and wy
denote the specific force and angular velocity, respectively.
Next, define the discrete state

5k€{1,...,L} (2)

that indicates the current motion mode of the navigation sys-
tem, e.g., the system is stationary, keeping a constant height, or
moving at constant velocity. A jump Markov nonlinear model
that can be used to the describe the dynamics of the inertial
navigation system is then given by [7]

Try1 = f(Tr, Ok, Uky M) (3a)
Y = h(Tk, Ok, uk) + ex (3b)
Me ~ N (nk; 0, Q) (3c)

e ~ N (ex; 0, R(3x))
P(Ok-+1/0k)

Here y;, = 0 is used as a pseudo-observation to impose a set of
motion mode dependent “stochastic constraints”, such as zero-
velocity constraints, on the navigation state zj. The exact form
of these constraints, defined by h(-), depends on the assumed
motion modes and will be discussed later. The “hardness” of
the imposed constraints is controlled via the motion mode
dependent covariance R(6). Further, N'(-; 1, %) denotes a
multivariate normal distribution parameterized by the mean
vector 4 and covariance matrix . The function f(-) describes
the system dynamics and is given by the inertial naviga-
tion equations and the dynamics of the auxiliary states &.
Moreover, J; denotes the covariance of the process noise,
and II; ; denotes the :th row and j:th column entry of the
mode transition probability matrix. Finally, p(a|b) denotes the
probability density (mass) function of a given b. Note that it
is straightforward to extend the model (3) to also include real
observations from various sensors, but it is out of the scope
of this paper, as the focus is on motion-constrained inertial
navigation.

(3d)

= H6k+175k' (36)

III. STATE ESTIMATION USING A FILTER BANK

A variety of inference techniques for jump Markov models
exist. Here a commonly used filter banks solution to the
inference problem will be recapitulated; for details the reader
is referred to [8] and [9]. Thereafter, necessary approximations
needed to adapt the filter bank solution to the considered
navigation problem will be presented.

A. Linear model with normal distributed noise

The goal of the inference process is to estimate the a
posteriori distribution p(xx|y1.x) of the state x; given all the
observations up until time k, denoted as y;.;. If the motion
mode sequence 1., is known, the state-space model in the
Markov jump system is linear, and the process and mea-
surement noise are normally distributed, then the a posteriori
distribution can be estimated with the Kalman filter. That is,

(kb yra) = N (zws 20055, PRs), “

where xil‘k’” and P,C \11: denote the Kalman filter state estimate
and state covariance given the mode sequence d;., respec-
tively. In reality, the motion mode sequence is unknown and
must be estimated from the measurements. Let p(d1.x|y1.%)
denote the a posteriori distribution of the motion mode se-
quences d1. given the measurements y.;. The sought-after a
posteriori distribution of the state x; can then be found as

Lk
) = Zp(‘rk‘(sika ylk)p(5§k|ylk)

Aélk lk
= E wk./\/ xk,zk‘k,Pk‘k ),

p(xk‘ylzk

where w}, £ p(8%., |y1.) is probability of the i:th motion mode
sequence. Hence, the posteriori distribution of the state xy, is
given by a mixture of L* weighted normal distributions where
the expected value and covariance of each mixture component
are calculated via a Kalman filter. That is, the posteriori
distribution can be calculated via a bank of Kalman filters
where the size of the filter bank grows according to a tree
structure. The weights w} in the mixture, i.e., the probability
for each branch in the tree, can be recursively calculated as

wj, o< p(Yk|yrk—1, 04.)D(S116% 1 wh_ 1, (6a)
where
Lk
sz =1, (6b)
=1
PYrkly1e-1.01k) = N (v Gl 10 S)- (6¢)

Here ykl W, and S,‘i”“ denote the Kalman filter measurement
prediction and innovation covariance, respectively.

From the posteriori distribution, the minimum variance
estimate of the state xj; can be calculated as

. N
" Z why (Ta)
and the associated conditional covariance matrix as
R s .
Zwk k\k + (Tk|k mv)(xk\k ) — me) ) (7b)

B. Approximative solution

The outlined filter bank solution to the inference problem
can in general not be used without modifications due to
the growing number of Kalman filters needed. Therefore,
many strategies have been developed for pruning and merging
branches in the growing filter bank tree so that a fixed
complexity is achieved [10].

Beyond the challenges with the exponentially increasing
complexity, the outlined general solution cannot still be ap-
plied to the Markov jump system model in (3). The system
is nonlinear and the attitude states belong to a manifold of
Euclidean space. This implies that p(zg|d1.x,y1.x) in (4) is
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generally not a normal distribution, neither can the minimum
variance estimate of the attitude q; be calculated as in (7a).
A common way to handle that the system is nonlinear and
the attitude not belonging to Euclidian space in the filtering
process is to use an error state Kalman filter [11]. The a
posteriori distribution p(x|d1.x,y1.1) is then, at every time
instant, approximated as normal distributed with the mean and
covariance given by the error state Kalman filter [12].

One way to calculate a point estimate of the attitude in terms
of the Euler angles ¢ is via

Lk
o = argmin > wi O — C@)IF, @)
Py T
where C(q) denotes the rotation matrix that transforms a
vector from the body frame to the navigation frame [13]; to
simplify the notation, a slight misusage of notation is admitted,
and the rotation matrix is here interchangeably parameterized
by the attitude quaternion ¢ and the corresponding Euler angles
¢. Further, the set Qy = [0,27) x [-7/2,7/2) x [0,27). The
covariance of A',;W can be approximately calculated as

Cov(d™) & > wi (St + Agp ™ (Agp™) 7). (9)

Here Eil‘lf denotes the covariance of the attitude (in terms
of Euler angles) calculated by the error state Kalman filter for
the branch corresponding to the motion sequence §: , . Further,
the difference between the attitude estimate calculated by the
error state Kalman filter and the minimum variance attitude
estimate in (8) is given by
51, S mv 01,

AgpiE = {6 € Qy st. C(P) = COCH)}.  (10)
Note that the optimization problem in (8) can be efficiently
solved using a polar decomposition [13].

IV. LEARNING OF UNKNOWN MODEL PARAMETERS

The signal model in (3) may have unknown parameters, such
as the transition probability matrix II, whose values can be
hard to specify accurately. Instead of resorting to cumbersome
hand-tuning of these parameters, they may be learned from
data. A variety of methods to learn model parameters in
jump Markov models has been suggested [14], [15]. Here a
maximum likelihood method, similar to that presented in [12],
for learning the parameters from the data will be outlined.

Let 6 denote the unknown parameters in the model. The
maximum likelihood estimate of these parameters is then given
by

0 = argmax p(y1.x; 0), (11a)
)
where
k
pix;0) = ] pwnlyrn—1)p(w1), (11b)
n=2

Almost
stationary
5§ =2

Unconstrained
motion
§=1

Stationary
5§ =3

(a) Varying gait speed example.

II q -
1,1 HS,I H3$3

Unconstrained
motion
5§=1

Stationary &
new height
5 =2

Stationary &
same height
® =3

(b) Return to same height example.

Fig. 1: Mode transition diagrams for the application examples.

and

L'VL
Pnlyrn—1) = DN (yni Gy St )p(8116, 1 )wh s
=1

(11c)
Here p(y;) denotes the a priori probability of the observa-
tion y;. Note that the number of modes in the full mixture
distribution, which subsequently must be summed to marginal-
ize away the mode dependence, increases exponentially in n.
However, in practice, the actual number of modes to consider
is reduced using pruning or merging in the filter bank. Hence,
the number of modes to consider when evaluating (11c) can
be kept tractable.

V. APPLICATION EXAMPLES

Next, the proposed inference framework is used to realize
two foot-mounted inertial navigation systems that incorporate
different motion modes. The first system adaptively selects the
covariance matrix used in the zero-velocity update, and the
second system automatically detects if the system returns to
the same height after a step. For both systems, the motion
mode state transition matrix is learned from training data
using the method outlined in Sec. IV. The performances of
both systems are compared to the OpenShoe system presented
in [16].

A. Example: Varying gait speed

The challenge of designing and tuning a foot-mounted zero-
velocity aided inertial navigation system so that it works
well for multiple gait speeds is well-known [1]. To use the
proposed framework to design a system that adaptively selects
the detection threshold, as well as the covariance matrix used
in the zero-velocity updates, we define the following three
motion modes: the unconstrained motion mode (d; = 1), the
almost stationary motion mode (§; = 2), and the stationary
motion mode (J; = 3). A motion mode transition diagram
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illustrating how the system is assumed to transition between
these motion modes is shown in Fig. 1a. The associated motion
mode transition probabilities II; ; are also shown.

Next, introduce the following system dynamics

T + Atug,
f @k, Oy wr, i) = | v + A(C(qr)(sk +15) + 9)
QAL (wi +75) ) i
(12a)
Here At and g denote the sampling period and gravity vec-
tor, respectively. Further, Q(-) denotes the quaternion update
matrix (see [17] for details). Moreover, n; and 7} denote
the process noise associated with the accelerometers and
gyroscopes, respectively.
Finally, define the stochastic motion constraints imposed
during the different motion modes as follows

0 , 0 =1
h(zk, g, 05) = : 12b
(k, ug, Ok) {ho(xk,uk), 5 = {2,3) (12b)
where
vk
ho(xg, ug) = Wi (12¢)
Clqr)sk +9g

The “hardness” of the constraints is controlled by the covari-
ance matrix

0'2 I 5k =1
R(8) =4 ¢ , (12d)
©r) {Ro(cm, 5 = {2.3)
where
R0(§k) = O'E((Sk)f D ai(ék)l D Uf(5k)l (126)

Here @ denotes the direct sum matrix operator and I denotes
an identity matrix of appropriate size. Further, 02 (dy,), 02 (%),
and 02(8;) denote the mode-dependent variance associated
with the stochastic constraints on the velocity, angular velocity,
and acceleration, respectively. Moreover, o2, is a design
parameter that controls the measurement likelihood associated
with no constraints.

A filter bank with the jump Markov model defined by
(12) was designed and two data sets were recorded with a
sensor array consisting of 32 InvenSense MPU9150 IMUs
while a person walked and ran back and forth along a
straight line. From the recorded data, two data sets with
50 measurement sequences each were created by repeatedly
drawing four random IMUs and averaging their measurements.
These measurement sequences were then processed using the
OpenShoe system algorithm with the zero-velocity detector
threshold tuned to generate a detection at least once per
gait cycle. The measurements were also processed using the
designed filter bank. Pruning was used to keep the tree size to
a maximum of nine leaves, and a pruning strategy where the
most probable leaves were retained was used.

The measurement sequences in the first data set were used
to learn the mode transition matrix II. The initial value and
end result of the learning process were

~ 1/2 1/3 0 ~ 0.993 0.073 0
™ = |1/2 1/3 1/2| and T = |0.007 0.893 0.005| ,
0 1/3 1/2 0 0.034 0.995

respectively, and the optimization converged in less than 10
iterations. The matrix II* corresponds to a mode transition
system with low-pass characteristics. That is, the probability of
staying in a mode is much higher than transitioning to another
mode. On average, the percentage of time spent in the motion
modes one, two, and three is 57%, 5%, and 38%, respectively.

The learned mode transition matrix was then used in the
filter bank when processing the measurements in the second
data set. The result is shown in Fig. 2. In Fig. 2a the speed and
most likely mode sequence b1.x estimated by the filter bank
from one of the measurement sequences are shown. And in
Fig. 2b the horizontal plane errors at the end of the trajectory
are shown.

From the figures, the following things can be observed.
The filter bank adaptively selects different motion modes
depending on the gait speed. That is, when walking, the
filter bank frequently selects the stationary motion mode as
the most likely mode, whereas when running, the filter bank
never selects the stationary mode. Comparing the horizontal
positioning error of the OpenShoe system and the filter bank
the systems have about the same cross-track error, whereas
the filter bank has a significantly smaller along-track error.
The OpenShoe system has an along-track bias error of about
minus one meter. This is likely due to the high detection
threshold used in the zero-velocity detector, causing zero-
velocity updates to be applied even when the system is moving.
This, in turn, causes part of each step to be cut away, especially
when the user walks and the foot’s transition from stationary
to moving is less distinct. Thanks to the ability of the filter
bank to adaptively select the detection threshold and the
covariance used in the zero-velocity update, this effect is
reduced. However, looking at the vertical root mean square
(RMS) error, both systems have an error of several meters.
How to reduce this error will be illustrated next.

B. Example: Return to same height

The vertical position error often grows faster than the
horizontal position error in foot-mounted zero-velocity aided
inertial navigation systems. This is because the beginning and
end of each step, when the foot is mainly moving in the vertical
direction, are cut away by the zero-velocity updates. However,
the vertical error growth can be significantly reduced by noting
that most of the time a person is walking on flat ground and
the foot should return to the same height [3]. To design a
system using the proposed framework that incorporates this
information, we introduce the following three motion modes:
the unconstrained motion mode (d; = 1), the stationary at
new height motion mode (J; = 2), and the stationary at the
same height motion mode (§; = 3). A motion mode transition

Authorized licensed use limited to: TU Delft Library. Downloaded on February 19,2024 at 14:02:41 UTC from IEEE Xplore. Restrictions apply.



2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN)

Speed versus time
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(a) Estimated speed and most likely motion mode versus time.
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Horizontal RMS error = 1.21 [m] Horizontal RMS error = 0.40 [m]
Vertical RMS error = 3.25 [m] Vertical RMS error = 4.78 [m]
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(b) Horizontal position error at end of the trajectory. Also shown
are the mean error (blue dot) and 95% confidence interval (blue
circle) calculated from the filter covariance, assuming the error to
be normally distributed.

Fig. 2: Results from varying gait speed application example.

diagram illustrating how the system is assumed to transition
between these motion modes is shown in Fig. 1b. Here it has
been assumed that if the system becomes stationary at a new
height, the system will be stationary for at least two samples.
Hence the probability of transitioning from mode J; = 2 to

mode d; = 3 is one.

Next, we introduce the following extended system dynamics

_ f(a:a(sauvn)
fem(l’k,(Sk,Uk,ﬁk) = ]1(5k _ 1)52 ﬁfﬂ(gk ;é 1)[}%]3 5
(

stationary.
The stochastic motion constraints are as follows
0o op=1
ho(xg,ug), Op =2
(g 6y) = (PO RS OR=2 gy
ho(wk, uk) 5 —
9 k — 3
[Pk]3 — &k

13a)
where 1(-) denotes the indicator function and [a]; denotes
j:th element of the vector a. Furthermore, the auxiliary state
& stores the height from the time when the system was last

Average estimated height versus time

4
— — — OpenShoe system
E 2 Filter bank -,
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% 0T == 7 F N
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(a) Estimated height and most likely motion mode versus time.

) OpenShoe system . Filter bank
- - : ‘>< T
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Vertical RMSXerror =3.07 [m] Vertical RMS error = 0.19 [m]
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ks}
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(b) Height versus horizontal position error at end of the trajectory.
Also shown are the mean error (blue dot) and 95% confidence in-
terval (blue circle) calculated from the filter covariance, assuming
the error to be normally distributed.

Fig. 3: Results from return to same height application example.

The ‘“hardness” of these constraints is controlled by the
covariance matrices

0‘721017 61@ =1
Ro(01) = { Ro(d%), o0 =2, (13¢)
Ro(dk) ® J%((sk-)f, o =3

where o7 (8);) denotes the variance associated with the stochas-
tic constraints on height.

The jump Markov model defined by (13a), (13b), and (13c)
was used to design a filter bank, and two data recordings
were collected while a person walked on flat ground and then
climbed and descended a stair. Following the same procedure
as in the previous example, the data recordings were used to
create two data sets with 50 measurement sequences each. The
measurement sequences in the first data set were used to learn
the mode transition matrix II. The initial value and end result
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of the learning process were

- 1/3 0 1/2 - 0.976 0 0.031
™= {1/30 0 | and ™= {0003 0 0 |,
1/3 1 1/2 0.021 1 0.969

respectively, and the optimization converged in less than 10
iterations. Once again the matrix corresponds to a mode tran-
sition system with low-pass characteristics, where the average
percentages of time spent in motion modes one, two, and three
is 56.2%, 0.2%, and 43.6%, respectively.

The learned mode transition matrix was then used in the
filter bank when processing the measurements in the second
data set. Once again, pruning was used to keep the tree size
to a maximum of nine leaves and a pruning strategy where
the most leaves were retained was used. The result is shown
in Fig. 3. In Fig. 3a the height and the most likely mode
sequence 4.5 estimated by the filter bank is shown. And in
Fig. 3b the height versus horizontal plane errors at the end of
the trajectory are shown.

From the figures, the following things can be observed. The
filter bank can detect whether the user walks on flat ground
or not, i.e., whether the foot returns to the same height as in
the previous step or not. Therefore it effectively reduces the
height error from several meters to a few decimeters. A minor
increase in the horizontal position error is observed with the
filter bank.

VI. DISCUSSION AND CONCLUSIONS

A framework for tightly integrated motion classification and
state estimation in motion-constrained inertial navigation sys-
tems has been presented. The framework provides a structured
and theoretically sound way to design motion-constrained
inertial navigation systems that can learn different motion
patterns. The application of the framework has been illustrated
via two examples of foot-mounted zero-velocity aided inertial
navigation systems. The examples show that a significant
performance gain can be achieved compared to a standard foot-
mounted inertial navigation system. However, the price paid
is an increased computational complexity (proportional to the
number of filters in the filter bank) and an increased number
of system parameters to tune. The challenges with tuning the
system parameters can to some extent be alleviated via the
proposed parameter learning method. Still, tuning the system
parameters can be challenging, especially if many motion
modes are included in the system model.

VII. OUTLOOK AND FUTURE RESEARCH

A basic version of the filter bank framework has been
presented and tested with models that have a few motion
modes. Many possible improvements and open research ques-
tions exist. First and foremost, the framework should be
compared against other adaptive zero-velocity detector frame-
works. More complex models that include a variety of motion
modes should also be explored. Related to that, hieratical
model structures constructed of several linked small hidden
Markov models for the motion states are of special interest

to obtain a computationally attractive algorithm. Further, to
obtain a smoother transition between motion modes and a
more robust algorithm framework, the feasibility of substi-
tuting the normal distribution in (6¢) with a more heavy-
tailed distribution, such as the Student-t distribution, should
be explored. Moreover, since the probability of transitioning
between motion modes varies both with time and the motion
dynamics, the use of a constant mode transition probability
matrix II is clearly suboptimal. Therefore, the feasibility
of learning a time-varying and motion-dynamic dependent
transition matrix should be explored.
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