

invloed van scheve inval en richtingspreiding op golfoploop en overslag

J.W. van der Meer en J.P. de Waal

waterloopkundig laboratorium|wL

*

SAMENVATTING

In opdracht van de projectgroep TAW-Al is modelonderzoek uitgevoerd naar de invloed van richtingspreiding en scheve golfaanval op golfoploop en overslag. Tevens is de invloed van de waterdiepte h (voor $h/H_s > 3$, waarin H_s de significante golfhoogte is) en de invloed van een berm bepaald. Er zijn drie constructies onderzocht: een recht talud 1:4, een talud 1:4 met een berm op de stilwaterlijn en een recht talud 1:2.5. Per proef is de oploop gemeten en voor twee kruinhoogtes het overslagdebiet. In totaal zijn 158 proeven uitgevoerd, alle met onregelmatige golven. Het onderzoek heeft plaatsgevonden in de richtingspreidingsfaciliteit (Vinjé-bak) van het Waterloopkundig Laboratorium in de Voorst.

De invloed van de verschillende randvoorwaarden is bestudeerd in de vorm van invloedsfactoren r op de relatieve oploop R_u/H_s . Hierin is R_u de oploophoogte ten opzichte van de stilwaterlijn. Vervolgens is bij de analyse van de overslag gekeken of bovenstaande invloedsfactoren voor oploop kunnen worden verwerkt in de kruinhoogte bij overslag.

1

INHOUD

LIJS	I VAN TABELLEN	
LIJS	I VAN FIGUREN	
LIJS	T VAN SYMBOLEN	
		Blz.
1.	<u>Inleiding</u>	1
1.1	Algemene projectbeschrijving	1
1.2	Samenvatting en conclusies	2
2	Beschriiving van het fysisch model	Q
21	Onzet van het modelonderzoek	ģ
2.2	Analyse van de golfrandvoorwaarden	17
3	Golfonloon	22
31	Theorie	22
3.2	Referentieproeven (LL)	24
3.3	Scheve inval (SL)	27
3.4	Richtingspreiding (LK)	31
3.5	Combinatie van scheve inval en richtingspreiding (SK)	33
4.	<u>Golfoverslag</u>	37
4.1	Bestaande kennis m.b.t. overslag	37
4.2	Referentieproeven (LL)	48
4.3	Scheve inval (SL)	52
4.4	Richtingspreiding (LK)	53
4.5	Combinatie van scheve inval en richtingspreiding (SK)	54

.

i

REFERENTIES

TABELLEN

FIGUREN

LIJST VAN TABELLEN

- 1. Proevenprogramma
- 2. Gemeten randvoorwaarden
- 3. Gemeten oploopgegevens
- 4. Gemeten overslaggegevens
- 5. Geïnterpoleerde oploopgegevens
- 6. Overslaggegevens LL (inclusief ander onderzoek)

. .

. .

ander onderzoek)

... · ·

.

.

. . .

•

. .

.

LIJST VAN FIGUREN

- 1. Basisformules oploop
- 2. Overslagkans
- 3. Basisformule voor overslagdebiet
- 4. Invloed scheve golfaanval, langkammig en kortkammig
- 5. Invloed berm
- 6. Invloed waterdiepte
- 7. Modelopstelling, positie GHM's en GRSM's
- 8. Overschrijdingskrommen en spectra van GHM's
- 9. Overschrijdingskrommen en spectra van GRSM's
- 10. Spectrum, hoofdrichting en spreiding van GRSM 4
- 11. Oploopoverschrijdingskromme
- 12. Oploop LL talud 1:4, Vergelijking visueel-meting
- 13. Oploop LL talud 1:2.5, Vergelijking visueel-meting
- 14. Voorbeeld registratie (LK08)
- 15. Invloed golfbrekerkoppen op oploop
- 16. Realisatie golfrandvoorwaarden $H_{s,diep} H_{m_o,diep} H_{s,teen}$
- 17. Reflectiecoëfficiënt
- 18. Piek- en gemiddelde periode
- 19. Gestuurde en gemeten hoofdrichting, lang- en kortkammig
- 20. Gemeten spreiding en golfsteilheid, lang- en kortkammig
- 21. Gemeten spreiding en hoofdrichting, lang- en kortkammig
- 22. Spectrumvorm ε
- 23. Gegroeptheidsparameters $\gamma_{HH,t}$ en $\kappa_{HH,t}$ volgens M1983
- 24. Gegroeptheidsparameters κ_f en $\kappa_{HH,t}$ volgens M1983
- 25. Gegroeptheidsparameters $y_{HH,t}$, $\kappa_{HH,t}$ en κ_{f} in dit onderzoek
- 26. Oploop meetgegevens
- 27. Oploop talud 1:4, Verwachting
- 28. Oploop talud 1:4 met berm, Verwachting
- 29. Oploop talud 1:2.5, Verwachting
- 30. Oploop Invloed berm Verwachting
- 31. Oploop Invloed scheve golfaanval Verwachting (langkammig) -
- 32. Oploop LL talud 1:4, Invloed golfsteilheid
- 33. Oploop LL talud 1:4 met berm, Invloed golfsteilheid
- 34. Oploop LL talud 1:2.5, Invloed golfsteilheid
- 35. Oploop LL talud 1:4, Invloed waterdiepte
- 36. Oploop LL ta lud 1:4, Invloed berm

LIJST VAN FIGUREN (vervolg)

```
37.
     Oploop LL Invloed taludhelling en golfsteilheid
    Oploop SL talud 1:4, Invloed hoek van golfaanval s_{op} = 0.02
38.
    Oploop SL talud 1:4, Invloed hoek van golfaanval s
39.
                                                           = 0.04
40.
    Oploop SL talud 1:4, Invloed golfsteilheid
     Oploop SL talud 1:4 met berm, Invloed hoek van golfaanval
41.
    Oploop SL talud 1:2.5, Invloed hoek van golfaanval
42.
    Oploop SL talud 1:4, Invloed waterdiepte \theta = 20
43.
44.
    Oploop SL talud 1:4, Invloed waterdiepte \theta = 40
    Oploop SL talud 1:4, Invloed berm
45.
    Oploop SL Vergelijking taluds
46.
47.
    Oploop LK talud 1:4, Invloed richtingspreiding
48.
    Oploop LK talud 1:4, Invloed golfsteilheid
49.
     Oploop LK talud 1:4 met berm, Invloed golfsteilheid
50.
    Oploop LK talud 1:2.5, Invloed golfsteilheid
    Oploop LK talud 1:4, Invloed waterdiepte
51.
52.
    Oploop LK talud 1:4, Invloed berm
     Oploop LK talud 1:4, Invloed taludhelling en golfsteilheid
53.
    Oploop SK talud 1:4, Invloed hoek van golfaanval s_{op} = 0.02
54.
    Oploop SK talud 1:4, Invloed hoek van golfaanval s_{op} = 0.04
55.
     Oploop SK talud 1:4, Invloed richtingspreiding
56.
57.
     Oploop SK talud 1:4, Invloed golfsteilheid
58.
     Oploop SK talud 1:4, Invloed richtingspreiding, \theta = 20
     Oploop SK talud 1:4, Invloed richtingspreiding, \theta = 40
59.
60.
     Oploop SK talud 1:4 met berm, Invloed hoek van golfaanval
61.
     Oploop SK talud 1:4 met berm, Invloed richtingspreiding
62.
     Oploop SK talud 1:2.5, Invloed hoek van golfaanval
63.
     Oploop SK talud 1:2.5, Invloed richtingspreiding
64.
     Oploop SK talud 1:4, Invloed waterdiepte, \theta = 20
     Oploop SK talud 1:4, Invloed waterdiepte, \theta = 40
65.
     Oploop SK talud 1:4, Invloed berm
66.
67.
     Oploop SK Vergelijking taluds
68.
    Oploop Invloed waterdiepte, algemeen
69.
    Overslag volgens leidraad
70.
     Overslag Vergelijking leidraad-HRS
    Overslag LL talud 1:4, (incl. ander onderzoek) Keuze tussen T_m en T_p
71.
     Overslag LL (incl. ander onderzoek) Bepaling invloed taludhelling
72.
```

LIJST VAN FIGUREN (vervolg)

Overslag SL talud 1:4, Verwachting 73. Overslag SL talud 1:4 met berm, Verwachting 74. 75. Overslag SL talud 1:2.5, Verwachting 76. Overslag SK talud 1:4, Verwachting 77. Overslag SK talud 1:4 met berm, Verwachting 78. Overslag SK talud 1:2.5, Verwachting 79. Overslag LL Invloed brekende of niet-brekende golven 80. Overslag LL talud 1:4, Overslagpercentage 81. Overslag LL talud 1:4 met berm, Overslagpercentage 82. Overslag LL talud 1:2.5, Overslagpercentage 83. Overslag LL talud 1:4, Invloed kruinhoogte 84. Overslag LL talud 1:4 met berm, Invloed kruinhoogte 85. Overslag LL talud 1:2.5, Invloed kruinhoogte Overslag LL talud 1:4, Invloed berm 86. 87. Overslag SL talud 1:4, Invloed hoek van golfaanval Overslag SL talud 1:4 met berm, Invloed hoek van golfaanval 88. 89. Overslag SL talud 1:4, Invloed berm 90. Overslag SL talud 1:2.5, Invloed hoek van golfaanval Overslag LK talud 1:4, Invloed kruinhoogte 91. 92. Overslag LK talud 1:4, Invloed richtingspreiding 93. Overslag LK talud 1:4 met berm, Invloed kruinhoogte 94. Overslag LK talud 1:4 met berm, Invloed richtingspreiding 95. Overslag LK talud 1:2.5, Invloed kruinhoogte Overslag LK talud 1:2.5, Invloed richtingspreiding 96. 97. Overslag SK talud 1:4, Invloed hoek van golfaanval 98. Overslag SK talud 1:4, Invloed richtingspreiding, $\theta = 20$ 99. Overslag SK talud 1:4, Invloed richtingspreiding, $\theta = 40$ 100. Overslag SK talud 1:4 met berm, Invloed hoek van golfaanval 101. Overslag SK talud 1:4, Invloed berm Overslag SK talud 1:2.5, Invloed hoek van golfaanval 102. 103. Golfopwekking met de reflectiemethode

LIJST VAN SYMBOLEN

В	bermbreedte	(m)
g	zwaartekrachtsversnelling	(m/s^2)
H ·	golfhoogte	(m)
н	gemiddelde golfhoogte	(m)
H	golfhoogte bepaald uit spektrum, $4\sqrt{m_o}$	(m)
H	significante golfhoogte, gemiddelde van hoogste 1/3 deel	(m)
h	waterdiepte	(m)
hd	kruinhoogte t.o.v. de stilwaterlijn	(m)
L	golflengte op diep water (L = $(g/2\pi) * T_{p}^{2}$)	(m)
m _o	nulde moment (oppervlakte) van het spectrum, $m_0 = \int E(f)df$	(m²)
m ₂	tweede moment van het spectrum, $m_2 = \int f^2 E(f) df$	(m²)
m ₄	vierde moment van het spectrum, $m_4 = \int f^4 E(f) df$	(m²)
N	aantal golven	-
Q	dimensieloos overslagdebiet	-
q	gemiddeld overslagdebiet per strekkende meter kruin	(m^3/ms)
R	golfoploop, verticaal gemeten ten opzichte van de	
u	stilwaterlijn	(m)
R _{ux%}	x% overschrijdingswaarde van de golfoploop	(m)
Rum	gemiddelde golfoploop	(m)
Rus	significante golfoploop	(m)
R	dimensieloze kruinhoogte	-
r [.]	reflectiecoëfficiënt	-
rx	invloedsfactor met betrekking tot randvoorwaarde x	-
r _B	invloedsfactor van de berm	-
r _θ	invloedsfactor van de hoek van golfaanval	· -
r _a	invloedsfactor van de richtingspreiding	-
rh	invloedsfactor van de waterdiepte	-
s op	golfsteilheid, s _{op} = H _s /L _o	-
Tm	gemiddelde periode	(s)
T _D	piekperiode	(s)
α ^Γ	taludhelling	(°)
y _{AA.t}	correlatiecoëfficiënt van opeenvolgende amplitudes	-
y _{HH t}	correlatiecoëfficiënt van opeenvolgende golfhoogtes	-
ε	spectrumbreedte parameter, $\varepsilon = \sqrt{1 - m_2^2 / m_0 m_4}$	-
θ	hoofdrichting van de golven, gemeten t.o.v. de normaal	(°)
	op de kust	

LIJST VAN SYMBOLEN (vervolg)

^к нн.t	vormparameter van de twee-dimensionale Rayleigh-kansdichtheids-	
	funktie, bepaald uit tijdsregistratie van golfhoogtes	. –
κ _f	idem, bepaald in het frequentiedomein	-
ອ້	richtingspreiding	(°)
ξ _{op}	surf similarity parameter, $\xi_{op} = \tan(\alpha)/\sqrt{s_{op}}$	

.

.

INVLOED VAN SCHEVE INVAL EN RICHTINGSPREIDING OP GOLFOPLOOP EN OVERSLAG

1. <u>Inleiding</u>

1.1 Algemene projectbeschrijving

Kader

Er is reeds veel geschreven over golfoploop en golfoverslag. De literatuur met betrekking tot golfoploop is samengevat in de literatuurstudie van Klein Breteler (1990). Hierin is naar voren gekomen dat bij loodrechte golfinval en bij rechte taluds genoeg bekend is om ontwerprelaties op te stellen. Verschillende aspecten zijn echter nog niet of onvoldoende onderzocht.

- Een eerste aspect dat niet duidelijk genoeg is onderzocht, is de invloed van de waterdiepte/golfhoogte verhouding (h/H_S) met $h/H_S > 3$. Hierbij is h de waterdiepte ter plaatse van de teen van de constructie en H_S is de significante golfhoogte op diezelfde plaats.
- De invloed van scheve regelmatige golfaanval voor de oploop op gladde taluds is in verschillende onderzoeken beschreven. De invloed van onregelmatige scheve golfaanval is echter niet onderzocht.
- Tot slot is er geen enkel onderzoek bekend waar de invloed van richtingspreiding op golfoploop en golfoverslag wordt beschreven.

Doelstelling

Het doel van het onderhavige onderzoek is het bepalen van de invloed van scheve onregelmatige golfaanval, met en zonder richtingspreiding, voor oploop en overslag op rechte taluds en een talud met een berm.

Uitvoering

Het	onderz	oek is	s uitgevoerd	met e	en dr	ietal	taluc	is:					
Een	recht	talud	1:4	Dit i	s een	talud	dat	veel	voork	omt	bij	de	Neder-
				lands	e zee	dijken	. Bij	j dit	talud	is	het	mee	est
				uigeb	reide	proev	enpro	ogramn	na uitį	gevo	berd		
Een	recht	talud	1:2.5	Dit t	alud	is het	stei	ilste	talud	dat	t to	ch r	nog
				vaak	voork	omt bi	j de	bover	n- en i	bene	eden	rivi	leren.
				Hierb	ij is	met n	ame g	gekeke	en naa:	r he	et ta	aluc	lge-
				deelt	e dat	bepal	end i	is voo	or de o	oplo	oop e	en o	over-
				slag	van d	e bekl	ede t	taluds	5.				

Een talud 1:4 met een berm Gekozen is voor een berm op ontwerppeil, omdat dit het meest reëel blijkt te zijn bij zeedijken (1:4). Voor de breedte is 5 * H_s gekozen omdat dit volgens proeven met regelmatige golven de breedte is waarbij de effectiviteit van verbreding van de berm vrij plotseling afneemt (Pilarczyk en Moret, 1976). Voor bermen smaller dan 5H_s kan eventueel geïnterpoleerd worden.

Faciliteit

Het modelonderzoek is uitgevoerd in de richtingspreidingsfaciliteit (Vinjébak) van het Waterloopkundig Laboratorium in de Voorst.

Personen

Het onderzoek heeft plaatsgevonden in opdracht van de projectgroep TAW-Al (Belastingen op dijken). De opzet, uitvoering en eerste analyse is uitgevoerd door dr. ir. J.W. van der Meer en het definitieve verslag is geschreven door ir. J.P. de Waal, beiden werkzaam bij het Waterloopkundig Laboratorium.

1.2 <u>Samenvatting en conclusies</u>

In opdracht van de projectgroep TAW-Al is modelonderzoek uitgevoerd naar de invloed van richtingspreiding en scheve golfaanval op golfoploop en overslag. Tevens is de invloed van de waterdiepte h (voor $h/H_s > 3$, waarin H_s de significante golfhoogte is) en de invloed van een berm bepaald. Er zijn drie constructies onderzocht: een recht talud 1:4, een talud 1:4 met een berm op de stilwaterlijn en een recht talud 1:2.5. Per proef is de oploop gemeten en voor twee kruinhoogtes het overslagdebiet. In totaal zijn 158 proeven uitgevoerd, alle met onregelmatige golven. Het onderzoek heeft plaatsgevonden in de richtingspreidingsfaciliteit (Vinjé-bak) van het Waterloopkundig Laboratorium in de Voorst.

De invloed van de verschillende randvoorwaarden is bestudeerd in de vorm van invloedsfactoren r op de relatieve oploop R_{μ}/H_{s} :

 $r_{\theta} = \frac{R_u/H_s}{R_u/H_s} \text{ bij golfaanval onder hoek } \theta$

$$r_{\sigma} = \frac{R_{u}/H_{s} \text{ bij richtingspreiding } \sigma}{R_{u}/H_{s} \text{ bij langkammige golfaanval } (\sigma = 0)}$$

$$r_{B} = \frac{R_{u}/H_{s} \text{ bij talud met berm op SWL, breedte B}}{R_{u}/H_{s} \text{ bij recht talud } (B = 0)}$$

$$r_{h} = \frac{R_{u}/H_{s} \text{ bij relatieve waterdiepte h/H}_{s}}{R_{u}/H_{s} \text{ bij relatieve waterdiepte h/H}_{s} = 6}$$

Hierin is R_u de oploophoogte ten opzichte van de stilwaterlijn. Vervolgens is bij de analyse van de overslag gekeken of bovenstaande invloedsfactoren voor oploop kunnen worden verwerkt in de kruinhoogte bij overslag.

OPLOOP

Algemeen

De trend in de gemeten oploopwaarden wijkt enigszins af van de verwachting op grond van de formules uit de literatuur (Klein breteler, 1990): het buigpunt tussen de golfsteilheden 0.01 en 0.05 wordt bij de taluds 1:4 niet teruggevonden, en bij het talud 1:2.5 treedt het gemeten maximum op voor een lagere golfsteilheid dan verwacht.

De gemeten relatieve oploop is in veel gevallen lager dan op grond van de literatuur (met name de formules van Klein Breteler) verwacht kan worden. Dit wordt veroorzaakt door het feit dat waterlaagjes dunner dan 3 à 4 mm niet gedetecteerd worden.

De invloed van de golfrandvoorwaarden op de oploop is in het algemeen voor elk oplooppercentage vrijwel gelijk. Een (verdere) analyse van deze invloed kan daarom in het algemeen wel worden beperkt tot bijvoorbeeld alleen de 0.5% en 5% oploopwaarden.

De invloed van de taludhelling kan beter in rekening worden gebracht met behulp van de parameter $\sqrt{\tan \alpha / s_{op}}$ in plaats van de surf similarity parameter $\xi_{op} = \tan \alpha / \sqrt{s_{op}}$. Hierbij is α de taludhelling, en s_{op} is de golfsteilheid. Overigens is de overeenstemming alleen goed gebleken voor duidelijk brekende golven, dat betekent hier dat de surf similarity parameter ξ_{op} kleiner dan ca. 2.2 moet zijn. De onderlinge verhoudingen tussen de oplopen voor de verschillende taluds en golfsteilheden bij de verschillende hoeken van golfaanval voldoen eveneens redelijk aan de verwachting van een hogere golfoploop bij een hogere waarde van $\sqrt{\tan \alpha/s_{op}}$.

Hoek van golfaanval

langkammig, recht talud

De hoek van golfaanval θ wordt gemeten ten opzichte van de lijn loodrecht op de kust. Voor invalshoeken groter dan ongeveer 60° wordt de oploop tot ongeveer 60 % gereduceerd ten opzichte van de oploop bij loodrechte inval. Voor hoeken tot ongeveer 30° treedt geen oploopreductie op. Afhankelijk van de golfsteilheid en de taludhelling kan voor deze kleine hoeken een maximum oploop optreden. In het onderhavige onderzoek zijn voor het talud 1:4 en s = 0.02 en het talud 1:2.5 bij s = 0.04 maxima gevonden welke ongeveer 5% hoger zijn dan de oploop bij loodrechte golfaanval.

Richtingspreiding

loodrecht, recht talud

De richtingspreiding σ is een maat voor de variatie in golfvoortplantingsrichting rond de hoofdrichting θ . Tegelijkertijd is σ daarmee een maat voor de kortkammigheid van de golven. (Bij $\sigma = 0$ is sprake van langkammige golven). De invloed van richtingspreiding bij loodrecht invallende golven is gering. De invloedsfactor als gevolg van richtingspreiding ligt voor alle maten van richtingspreiding globaal tussen 0.9 en 1.0.

Hoek van golfaanval

kortkammig, recht talud

Bij kortkammige golven is de invloed van scheve inval zwakker ten opzichte van langkammige golven. Bij de grootste hoeken is de reductie het sterkst, maar de invloedsfactor bedraagt toch nog ongeveer 0.8. Er kan nog wel een maximum optreden voor een hoek tussen de 10° en 40°, maar dit maximum is dan lager dan bij langkammige golven.

-4-

Richtingspreiding

scheef, recht talud

De richtingspreiding zorgt voor vermindering van de invloed van de hoek van golfaanval. Voor kleine hoeken van golfaanval verkleint de richtingspreiding de oploop en voor grote hoeken van golfaanval vergroot de richtingspreiding de oploop (ten opzichte van de oploop bij langkammige golven). De invloedsfactor als gevolg van richtingspreiding bedraagt 0.9 à 1.0 voor hoeken van 20° en 40°. Voor grote hoeken bedraagt de invloedsfactor 1.3 à 1.4 (ten opzichte van langkammige golven bij deze hoeken van golfinval). De gecombineerde invloed van scheve inval en kortkammigheid voor zeer grote hoeken van golfaanval is bijvoorbeeld als volgt:

 $r_{\theta=80,\sigma=32} = r_{\theta=80}(\sigma=0) * r_{\sigma=32}(\theta=80) = 0.60 * 1.35 = 0.8$

Berm

De gemeten invloed van een berm op de oploop is iets sterker dan volgens de literatuur. De aanwezigheid van de berm zorgt voor een reductie van de oploop tot iets minder dan ongeveer 70% (in vergelijking met de oploop bij dezelfde randvoorwaarden op het talud zonder berm). Dit geldt voor alle oplooppercentages en situaties. Alleen bij hoeken van golfaanval groter dan 60° is de reductie iets sterker dan 70%, namelijk ongeveer 60%.

Waterdiepte

De invloed van de waterdiepte is aan vrij grote spreiding onderhevig. De gemiddelde trend is echter als volgt: Voor langkammige golven zorgt de invloed van de waterdiepte bij $h/H_s = 3$ voor een reductie tot ongeveer 85% van de oploop bij $h/H_s = 6$. Bij kortkammige golven is de invloed van de waterdiepte echter verwaarloosbaar.

OVERSLAG

Uitgaande van een oploopformule is voor $\xi_{op} \leq 2.2$ (brekende golven) een verband gevonden tussen de overslagkans en de relatieve kruinhoogte:

 $P(\text{overslag}) = \exp\left[-\left\{\frac{h_d/H_s}{0.81 \xi_{op}}\right\}^2\right]$

Er is een schatting gevonden voor een algemene overslagformule, gebaseerd op beschikbare meetgegevens, geldend voor loodrecht invallende brekende golven $(\xi_{op} \leq ca. 2.5)$:

 $Q = 0.10 \exp(-11.5 R)$

Hierin is:

Q	= dimensieloos	overslagdebiet	Q = - q	s op
			√gH ₃	tanα

R = dimensieloze kruinhoogte R =
$$\frac{h_d}{H_s} \sqrt{\frac{s_{op}}{t_{an\alpha}}}$$

g	=	zwaartekrachtsversnelling	(m/s^{2})
Hs	=	significante golfhoogte	(m)
h_d	=	kruinhoogte ten opzichte van SWL	(m)
SOD	=	golfsteilheid	(-)
q	=	gemiddeld overslagdebiet per meter kruin	(m³/ms)

Ook voor niet-brekende golven wordt de bovenstaande overslagformule aanbevolen, zij het dat in veel gevallen deze berekening een overschatting van het overslagdebiet zal opleveren.

Er kunnen verwachtingen worden opgesteld voor de invloed van scheve golfaanval, richtingspreiding en een berm op de overslag, uitgaande van de invloed van deze factoren op de oploop. Een eenvoudig verband tussen de proefresultaten bij oploop en die bij overslag kan gevonden worden door de invloedsfactor voor de oploop te verwerken in de kruinhoogte bij overslag.

Het verschil tussen de gemeten overslagpercentages en de gemeten oplooppercentages wordt veroorzaakt doordat de oploopmeter dunne waterlaagjes (3 à 4 mm) niet detecteert. Het verschil tussen de gemeten overslagpercentages bij het talud 1:2.5 en de overslagpercentages, gebaseerd op de oploopformule van Klein Breteler (1990), wordt waarschijnlijk vooral veroorzaakt door het feit dat niet bij alle proeven voldoende sprake is geweest van brekende golven.

Het gemeten overslagdebiet komt voor het talud 1:4 redelijk goed overeen met die in de overslagformule. Het verband voor het talud 1:4 met de berm geeft een gelijkvormig (rechtlijnig) beeld met alleen beduidend lagere overslagdebieten. Voor het talud 1:2.5 is de overeenkomst met de overslagformule zeer matig. Dit komt vooral tot uiting in het feit dat de meetgegevens bij de twee kruinhoogtes niet goed met elkaar in overeenstemming zijn te brengen door de kruinhoogtes dimensieloos te maken. Bovendien worden afwijkingen veroorzaakt door het voorkomen van niet-brekende golven.

De invloed van de berm is redelijk in overeenstemming met de verwachting op grond van de invloed van de berm op de oploop.

Hoewel de spreiding in de meetresultaten betrekkelijk groot is, komt de trend van de invloed van de hoek van golfaanval vrij goed overeen met de verwachting op basis van de invloed op oploop. Alleen de hoogte van de eventuele maxima voor een hoek kleiner dan 30° voldoet niet goed aan de verwachting op basis van de invloed op oploop: het komt enerzijds voor dat een duidelijk maximum in de overslagmetingen ontbreekt terwijl er wèl een maximum was verwacht en anderzijds komt het voor dat een duidelijk maximum rond de hoek van 30° gevonden wordt terwijl bij de oploopmetingen een minder duidelijk maximum was aangetroffen. Dit wordt waarschijnlijk veroorzaakt door de spreiding, zowel in de oploop- als in de overslagmetingen.

De invloed van de richtingspreiding bij loodrecht invallende golven is nagenoeg verwaarloosbaar. Dit is goed in overeenstemming met de gemeten invloed op golfoploop.

De invloed van de combinatie van richtingspreiding en scheve golfaanval op de overslag is (behalve voor het talud met de berm) redelijk goed in overeenstemming met de verwachting, gebaseerd op de invloed op de oploop.

De invloed van de hoek van golfaanval wordt (net als bij oploop) kleiner door de richtingspreiding. Dit geldt echter alleen voor de rechte taluds. Bij het talud met de berm neemt het gemeten maximum voor $\theta=20^{\circ}$ zelfs nog toe ten opzichte van het overeenkomstige maximum bij langkammige golven.

De resultaten zijn voor praktisch gebruik samengevat in Figuur 1 tot en met 6.

-7-

Aanbeveling

In dit verslag is een verband tussen enerzijds oploop en overslag en anderzijds de taludhelling en de golfsteilheid gevonden waarin de parameter $\tan(\alpha)/s_{op}$ een belangrijke rol blijkt te spelen. Een nadere bureaustudie zou informatie kunnen verschaffen over de optimale keuze van de "brekerparameter" in dit kader, die waarschijnlijk een variant is op:

 $\frac{\tan^m(\alpha)}{s_{op}^n}$

Voor ξ_{op} geldt m = 1, n = $\frac{1}{2}$. In deze studie blijkt de keuze m = n (= $\frac{1}{2}$) vaak geschikt.

2. <u>Beschrijving van het fysisch model</u>

2.1 Opzet_van het modelonderzoek

De richtingspreidingsfaciliteit

Richtingspreiding (kortkammigheid) kan worden opgewekt door een golfschot op te delen in veel kleine afzonderlijke golfschotjes, met ieder een eigen aansturing. De "zee" wordt gekenmerkt door een groot aantal sinuscomponenten op te tellen, die ieder worden gekarakteriseerd door een amplitude, een frequentie, een fase en een richting. Bij het opwekken van een langkammig golfveld hebben alle componenten dezelfde richting en kan het golfveld in principe door een spectrum worden beschreven. De enige extra parameter bij een kortkammig golfveld is dus de richting van iedere component.

Bij richtingspreiding wordt naast het spectrum ook een verdelingsfunktie gevraagd, die aangeeft hoe groot de spreiding is van de verschillende componenten rondom de hoofdrichting. Een voorschrift voor zo'n funktie (het "cosinus-2s-model"), die ook voor dit onderzoek gold, is:

(2.1)

$$D(f,\theta) = A(f) \cos^{2S}((\theta-\theta_m)/2)$$

waarin:	:	
D(f,0)	= de verdelingsfunktie	
A(f)	= een funktie afhankelijk van s, uitmondend in een konstante	
2s	= een coëfficiënt (groter dan 1)	
θ	= de richting	
θ _m	= de hoofdrichting	

In feite bepaalt de waarde van de macht 2s of de verdelingsfunktie, gegeven door een cosinus tot de macht 2s, smal is of breed. Een lage waarde van 2s geeft een brede verdeling en een hoge waarde een smalle. Een langkammige golf ontstaat theoretisch als 2s naar oneindig gaat. Alhoewel andere typen verdelingsfunkties zijn ontstaan, is bij de ontwikkeling van de faciliteit gekozen voor dit model en wordt de mate van spreiding bepaalt door de parameter 2s. Voor een goed overzicht van generatie van richtingsspreiding en analyse wordt verwezen naar Sand and Mynett (1987).

-9-

Voor de uitwerking van richtingspreidingsmetingen wordt vaak een model gekozen dat afwijkt van het bovenstaande. De richtingspreidingsmaat (kortweg spreiding) wordt dan gedefinieerd door een normale verdeling met bijbehorende standaardafwijking σ , zie ook Sand and Mynett (1987). De relatie tussen 2s en σ is voor de volgende waarden:

2s	σ (graden)
2	65
4	51
10	34
20	25
80	12
∞	0 (langkammig)

Het golfveld werd dus opgewekt met het cosinus-2s-model en de analyse van de meetgegevens werd gedaan op basis van de spreiding σ . Het spektrum werd opgewekt met maximaal 80 komponenten, inklusief de komponten die nodig waren voor de reflektiemethode (zie volgende paragrafen). De verdelingsfunktie werd door dit aantal componenten beschreven. De verdelingsfunktie was dus ook dezelfde over het volledige frekwentiegebied, evenals de hoofdrichting.

Meer recentere technieken maken gebruik van generatie met ongeveer 2000 componenten, waarbij de verdelingsfunktie alleen over een klein frekwentiegebiedje konstant is en daar gesimuleerd wordt door een 50-tal componenten. Het spektrum bestaat dan uit een 40-tal frekwentiegebiedjes met daarbinnen nog eens 50 componenten die de verdelingsfunktie simuleren. Met deze techniek kan zowel de hoofdrichting als de spreiding worden gevarieerd over het volledige frekwentiegebied. Deze techniek was nog niet beschikbaar tijdens het onderzoek.

Bij generatie van richtingsspreiding ontstaan er ongewenste reflekties op de zijwanden, zodat het gebied waar een homogeen golfveld ontstaat maar erg klein is, zie figuur 103 A - effective area for conventional method. Door het canadese NRC is een methode ontwikkeld om het effectieve gebied veel groter te maken. Hierbij worden de componenten die op een zijwand zouden reflekteren door de betreffende golfschotjes niet weggezonden, zie figuur 103b - de rechter zijde. Componenten echter die "naast" het golfschot vandaan zouden moeten komen, worden door de schotjes in een tegengestelde hoek weggestuurd zodat ze na reflektie op de zijwanden de goede richting hebben, zie figuur 103 B - de linker zijde. Hierdoor wordt het gebied met een homogeen golfveld veel groter, zie Figuur 103a - effective area for corner reflector method. Zie voor meer informatie over dit systeem Funke and Miles (1987). Dit systeem is toegepast bij het onderzoek.

Modelopstelling

De proeven zijn uitgevoerd in de richtingspreidingsfaciliteit (Vinjé-bak). De totale breedte van het golfschot bedraagt 26.4 m. Aan beide zijden is gebruik gemaakt van een verticale reflectiewand van 10 m lang. De overige zijden zijn voorzien van een golfdempend grindtalud. In Figuur 7 is deze faciliteit weergegeven, waarbij tevens het gebied is aangegeven waarbinnen een homogeen golfveld kan worden gecreëerd.

Uit deze figuur blijkt dat de totale lengte van de constructie waaraan wordt gemeten niet groter mag zijn dan ongeveer 15 m. Bij iedere combinatie van hydraulische randvoorwaarden moet gelijktijdig zowel de oploop als de overslag gemeten worden. Voor de meting van oploop is een talud nodig dat zo hoog is dat er geen water overheen gaat. Voor de meting van overslag moet de kruinhoogte juist lager gekozen worden dan de maximale oploop, terwijl de kruinhoogte zelf een variabele is. Op grond van deze voorwaarden is de volgende modelopstelling gekozen.

De constructie met een lengte van 15 m is onderverdeeld in drie secties van 5 m, waarbij iedere sectie een andere kruinhoogte heeft. Hiermee is naast de oploop voor twee kruinhoogtes de overslag bepaald. De kruinhoogtes van de twee overslagsecties zijn bepaald aan de hand van het verwachte overslagpercentage: de ene kruinhoogte moest kleine hoeveelheden overslag (O à 10% overslaande golven) opleveren en de andere meer (> 10%), zodat het meest interessante gebied zo goed mogelijk zou worden gedekt. Het bij deze kruinhoogtes verwachte overslagdebiet is bepaald met behulp van de overslagformules van Owen (1980). De lengte van 5 m per sectie is nodig om beïnvloeding van de naastgelegen secties bij scheve golfaanval te dempen. Het effect van beïnvloeden is het grootst bij de meest scheve golfaanval.

-11-

Proevenprogramma

Bij gegeven constructie zijn de variabelen:

- golfhoogte H_s (m)
 golfsteilheid s_{op} (-)
 waterdiepte h (m)
 hoek van golfaanval θ (°)
- richtingspreiding σ (°)

Hierbij geldt: $s_{op} = H_s/L_o;$ $L_o = golflengte op diep water, <math>L_o = (g/2\pi) T_p^2.$

De golfhoogte H_s is voor vrijwel alle proeven gelijk aan 0.12 m geweest. De golfsteilheid is gevarieerd van 0.01 tot 0.05. De waterdiepte h is voor veruit de meeste proeven gelijk geweest aan 0.72 m.

Tussen 0° en 80° is de invloed van scheve golfaanval onderzocht. Om dit effectief te laten gebeuren is de lengterichting van de constructie onder een hoek van 15° met het golfschot geplaatst. Loodrechte golfaanval op de constructie betekent dat de golven onder een hoek van 15° met de golfmachine zijn weggestuurd. Scheve golfaanval met 80° betekent dat de golven onder een hoek van -65° zijn weggestuurd. Bij deze grote hoek zijn de golven voor het grootste deel via reflectie op de zijwand naar het model gestuurd.

Richtingspreiding $\sigma = 0^{\circ}$ is langkammig, $\sigma = 25^{\circ}$ à 43° zijn waarden die in de praktijk voorkomen, $\sigma = 12^{\circ}$ is net niet langkammig maar de richtingspreiding is uiterst klein. $\sigma = 12^{\circ}$ kan worden gezien als een tussenstap tussen langkammige golfaanval (zoals vrijwel in elk golfbasin) en de praktijk, waar langkammige golven vrijwel niet voorkomen. De meeste kortkammige proeven zijn uitgevoerd met $\sigma = 32^{\circ}$.

De meetduur is gesteld op ongeveer 1000 golven, wat afhankelijk van de golfperiode neerkomt op 20 à 40 minuten.

Er zijn drie constructies onderzocht. Het meest uitgebreide proevenprogramma is uitgevoerd bij een recht talud met een helling van 1:4. Vervolgens is een verkort meetprogramma uitgevoerd bij een talud onder een helling van 1:4 met een berm en een talud met een helling van 1:2.5. De programma's zijn onderverdeeld in vier blokken, waarbij de hoek van golfaanval wel of niet loodrecht is en waarbij wel of geen richtingspreiding is toegepast. Tabel 1 geeft het volledige proevenprogramma.

Instrumentatie en data-acquisitie

Vier golfrichtingspreidingsmeters (grsm) en drie golfhoogtemeters (ghm) hebben de golfrandvoorwaarden geregistreerd. De positie van de meters is aangegeven in Figuur 7.

Een grsm is een door WL ontwikkeld instrument, dat de richtingspreiding kan meten. Het principe van meten is vrijwel gelijk aan die van de WAVEC boei die in prototype wordt gebruikt en door de Rijkswaterstaat is ontwikkeld. In één punt worden de golfhoogte gemeten met een golfhoogtemeter en twee watersnelheden loodrecht opelkaar in het horizontale vlak met een onderaan de golfhoogtemeter geplaatste electromagnetische snelheidsmeter. In drie richtingen wordt dus simultaan de waterbeweging gemeten.

In Figuur 8 zijn overschrijdingskrommen en energiedichtheidsspectra van de golfhoogtemeters gegeven en in Figuur 9 die van de grsm´s, zoals deze vrijwel standaard bij WL worden berekend.

De uitwerking van een eenpuntsmeting met een grsm is door Sand and Mynett (1987) beschreven. Een korte samenvatting volgt hier. De verdelingsfunktie van de spreiding kan in een Fourierserie als volgt worden beschreven:

$$D(f,\theta) = a_0/2 + \sum_{n=1}^{N} \{a_n \cos(n\theta) + b_n \sin(n\theta)\}$$
(2.2)

waarin a_0 , a_n en b_n constanten zijn. Met behulp van kruisspectrale analyse zijn deze constanten te berekenen. De kruisspectrale analyse op de drie simultaan gemeten signalen levert de auto-spectra $S_{\eta\eta}$ (met η voor de waterbeweging in vertikale zin), S_{xx} (snelheid in x-richting) en S_{yy} (snelheid in y-richting). Verder levert deze analyse de co-spectra $C_{\eta x}$, $C_{\eta y}$, C_{xy} en de quad-spectra $Q_{\eta x}$, $Q_{\eta y}$, Q_{xy} . De konstanten in formule 2.2 die hiermee kunnen worden berekend, zijn dan:

$$a_0 = 1$$
 (2.3)

$$a_{1} = \frac{C_{\eta x}(f)}{R(f) S_{\eta \eta}(f)}$$
 $b_{1} = \frac{C_{\eta y}(f)}{R(f) S_{\eta \eta}(f)}$ (2.4)

$$a_{2} = \frac{S_{xx}(f) - S_{yy}(f)}{R^{2}(f) S_{nn}(f)} \qquad b_{2} = \frac{C_{xy}(f)}{R^{2}(f) S_{nn}(f)} \qquad (2.5)$$

met:
$$R(f) = \sqrt{\{S_{xx}(f) + S_{yy}(f)\}/S_{\eta\eta}(f)}$$
 (2.6)

De hoofdrichting van de golven wordt dan bepaald met:

$$\theta_{\rm m} = \tan^{-1} b_1/a_1 \tag{2.7}$$

Voor het cosinus-2s model kan de s worden bepaald met:

$$s = \frac{\sqrt{a_1^2 + b_1^2}}{a_0 - \sqrt{a_1^2 + b_1^2}}$$
(2.8)

De richtingspreidingsmaat σ kan bepaald worden met:

$$\sigma = \sqrt{2 \left\{ 1 - \left(a_1^2 + b_1^2 \right)^{0.5} \right\}}$$
(2.9)

In Figuur 10 is de uitwerking van een van de grsm's gegeven. De energiedichtheid, de hoofdrichting en de spreidingsmaat zijn gegeven als functie van de frequentie. De spectrumvorm is iets gladder dan in figuur 9 door een iets andere uitwerking. De hoofdrichting voor de proef is bepaald door het gemiddelde te nemen van het gedeelte waar de meeste energie van het spectrum zit. Dit is in het midden van figuur 10 in het frequentiegebied 0,3 - 0,8 Hz. De spreidingsmaat voor een proef is bepaald door een gemiddelde te nemen rondom de hoogste concetratie van de energie. Dit is het laagste deel van de lijn in de onderste grafiek van figuur 10 voor ongeveer 0,7 Hz.

De golfoploop R_u is de hoogte van de oplooptong, verticaal gemeten ten opzichte van SWL. De oploop is gemeten met een stappenbaak. De onderlinge afstand tussen de detectiepennen bedroeg 5 cm in het gebied waar de oploop werd verwacht (en 10 cm daarbuiten). In verticale zin was de afstand tussen de pennen dus 1.2 cm bij het talud 1:4 en 1.9 cm bij het talud 1:2.5. Figuur 11 geeft een oploop-overschrijdingskromme. Deze werd bepaald voor verschillende nivo's van "nuldoorgangen". Dit heeft de volgende achtergrond. De positie van de watertong op het talud is te beschouwen als een golfbeweging. De verschillende golven worden van elkaar gescheiden door de (opwaartse) passage van een bepaald referentieniveau in het tijdsignaal (een "nuldoorgang"). Per golf wordt dan de maximale waarde van de oploop bepaald. Het is echter enerzijds mogelijk dat een (hoog) dal niet onder het referentievlak ligt en anderzijds dat een (lage) top niet boven het referentieniveau ligt. Met name voor de kleine oploopwaarden kan het dan ook van belang zijn welk referentieniveau gekozen wordt, omdat het aantal lage golven en daarmee het aantal lage pieken hierdoor wordt beïnvloed. Hierbij wordt er van uitgegaan dat een hoge top vrijwel altijd wordt vergezeld van een laag dal.

De overschrijdingskans van oploopwaarden wordt aan het totaal aantal inkomende golven gerelateerd, en is dus niet afhankelijk van het referentieniveau voor de oploop. De overschrijdingskrommen, gebaseerd op verschillende referentieniveau's zullen dan ook alleen afwijkingen vertonen bij de lage oploopwaarden. Een lijn die de verbinding vormt tussen de hoogste punten geeft de uiteindelijke oploopkromme. Uit deze kromme werden de 0.5%, 2%, 5%, 10% en 20% waarde afgelezen (in mm) en getabelleerd.

De oploopmeter registreerde alleen waterlaagjes die dikker zijn dan 3 à 4 mm. De laatste dunne oploop wordt dus niet door de oploopmeter geregistreerd. Daarom is een visuele waarneming gedaan en vergeleken met de meting. Figuur 12 geeft de resultaten voor proef SLIA bij het talud 1:4. Figuur 13 geeft de resultaten voor een proef bij het talud 1:2.5. Het verschil tussen de visuele meting en de oploopmeting is in beide figuren bij oplooppercentages kleiner dan 20% vrijwel constant en bedraagt gemiddeld ongeveer 3.2 cm.

Als wordt aangenomen dat de gemeten oploop consequent 3.2 cm kleiner is dan de werkelijke oploop, dan geldt voor de meetfout in R_{μ}/H_{s} :

$$\frac{R_u}{H_s} \text{ (werkelijk)} - \frac{R_u}{H_s} \text{ (gemeten)} = \frac{0.032}{H_s(\text{gemeten})}$$
(2.10)

Hierin is $R_{11} = oploop (m)$

-15-

Omdat de gemeten waarde van H_s niet voor alle proeven gelijk is geweest aan de gestuurde waarde van 0.12 m, is de fout in R_u/H_s ook niet voor alle proeven precies gelijk. Het blijkt dat de fout in R_u/H_s gemiddeld 0.269 is met een standaardafwijking van 0.028. De minimale afwijking bedraagt 0.208 en de maximale afwijking 0.395. Het zou mogelijk zijn om bij alle gemeten waarden van R_u 0.032 m op te tellen en vervolgens deze nieuwe waarden te analyseren.

Voor het eigenlijke doel van het onderzoek, namelijk de invloed nagaan van scheve golfaanval en richtingspreiding op oploop en overslag, is het nauwelijks belangrijk dat de werkelijke oploop wordt onderschat. Aangenomen kan worden dat de afwijking systematisch in alle proeven zit, waardoor een onderlinge vergelijking mogelijk blijft. Daarom is van een correctie van de oploopmeetgegevens afgezien.

Met een golfhoogtemeter op de kruin is het aantal overslaande golven bepaald in de beide gedeelten met een lage kruin. Bij elke overslag geeft een schrijver een piek op het meetpapier. De percentages oplopen (gerelateerd aan het aantal inkomende golven), die overeenkomen met de twee kruinhoogtes waarbij overslag is gemeten, zijn vervolgens afgelezen van de oploopkromme. De waarden voor elke proef zijn gegeven in Tabel 4.

Het overslagdebiet q is het gemiddelde overslagdebiet per strekkende meter kruin. Kleine overslaghoeveelheden werden in een emmer opgevangen en gemeten, grotere hoeveelheden (meer dan 20-30 liter) werden gemeten door een golfhoogtemeter in de overslagbak. Deze bak had de afmetingen 1.0 x 1.0 x 0.7 m³. Bij zeer grote hoeveelheden overslag werd de bak enkele malen tijdens de proef snel leeggepompt, terwijl de tijd waarin de bak weer door overslag werd gevuld werd opgenomen.

Figuur 14 geeft een deel van de registratie die voor iedere proef is gemaakt. De golfhoogtemeter 3 (ter plaatse van de teen van het talud) en de oploop zijn opgenomen. De overslaghoeveelheid en het aantal overslagen zijn eveneens geregistreerd voor beide kruinhoogtes.

De proeven met langkammige golven zijn uitgevoerd met een constructie zoals gegeven in Figuur 7, waarbij de einden van de constructie loodrecht naar beneden liepen. Er was dus een abrupte overgang. In sommige proeven, met name bij de proeven met een langere periode bestond de indruk dat deze

-16-

abrupte overgang in meer of mindere mate invloed had op de wijze van oploop en overslag. Na de uitvoering van de loodrecht kortkammige proeven bij het talud 1:4 is besloten de overgang minder abrupt te maken door een soort "golfbrekerkoppen" van grof grind te maken. Dit bleek voor de langere perioden inderdaad een mooier golfbeeld op te leveren. Om het effect van deze verandering na te gaan, was het noodzakelijk om een aantal proeven over te doen. Dit zijn de proeven in de Tabellen 1 tot en met 4 met de toevoeging "A" achter het proefnummer.

In Figuur 15 worden de resultaten van de proeven met en zonder grindkoppen met elkaar vergeleken. De oploopwaarden liggen in het algemeen iets lager voor de herhalingsproeven, maar het verschil is van dezelfde orde van grootte als de spreiding in de meetresultaten in het algemeen. Er mag worden geconcludeerd dat de beide constructies, met en zonder grindkoppen, wat betreft de oplopen niet veel van elkaar afwijken.

2.2 Analyse van de golfrandvoorwaarden

De gemeten waarden van de golfrandvoorwaarden zijn gegeven in Tabel 2.

Golfhoogte

In Figuur 16a (dat wil zeggen de bovenste figuur van Figuur 16) is de significante golfhoogte H_s uitgezet tegen de golfhoogte bepaald uit het spectrum ${f H}_{m_o}$. De significante golfhoogte is gedefinieerd als het gemiddelde van hoogste 1/3 deel van de golven en H wordt bepaald uit de oppervlakkte van het m_0 spectrum m_0 : $H_{m_0} = 4\sqrt{m_0}$. De waarden van de golfhoogtes zijn de gemiddelden van golfrichtingspreidingsmeter (grsm) 2, 3 en 4 en golfhoogtemeter (ghm) 1 en 2. De overeenkomst tussen H $_{
m s}$ en H $_{
m m_o}$ is erg goed. Bij de uitwerking is verder alleen H gebruikt. Figuur 16b geeft de golfhoogte ter plaatse van de teen als funktie van H_c. De spreiding is groter dan in Figuur 16a en de golfhoogte voor de constructie is gemiddeld iets hoger dan ter plaatse van de teen. Het gemiddelde waternivo van de golfhoogtemeter bij de teen week vrijwel niet af van de ingestelde waterstand, zodat daar geen opzet aanwezig was. Het verschil wordt veroorzaakt doordat bij de teen invloed is van reflectie. Doordat de ghm bij de ene proef in een knoop en bij de andere in een buik kan hebben gestaan is de meting van H_c ter plaatse van de teen niet betrouwbaar.

-17-

Reflectie

Figuur 17a geeft de reflectiecoëfficiënt r als funktie van de golfsteilheid. Deze kan alleen worden bepaald voor loodrechte langkammige golfaanval. Bij de twee rechte taluds is deze bepaling uitgevoerd. De reflectie van het talud 1:4 is voor een golfsteilheid s_{op} > 0.025 ongeveer 0.25 en stijgt snel tot 0.60 voor lagere golfsteilheden.

Bij het talud 1:2.5 zijn de waarden van r nog aanzienlijk hoger, voor één proef zelfs groter dan 0.80. Met name bij de lage golfsteilheid blijkt r zo groot te zijn doordat er niet of nauwelijks sprake is van brekende golven. Als de reflectiecoëfficiënt tegen de brekerparameter ξ_{op} wordt uitgezet (Figuur 17b) blijken de meetpunten redelijk in elkaars verlengde te liggen. De reflectie kan ervoor zorgen dat de waarden van de golfhoogterandvoorwaarde (inkomende golven) niet nauwkeurig bekend zijn. Door middeling over de meetresultaten van de verschillende golfhoogtemeters wordt in het algemeen wel een betrouwbare schatting verkregen. Het is echter denkbaar dat bij bepaalde combinaties van golflengte en -richting de invloed van de reflectie niet voldoende wordt uitgemiddeld.

Door de reflectie wordt de inkomende golfhoogte overschat door uit te gaan van de gemeten (totale) golfhoogte. Buiten het patroon van knopen en buiken geldt:

$$r = \frac{\frac{n_{o}, gereflecteerd}{H}}{m_{o}, inkomend}$$
(2.11)

$$H_{m_{0},gemeten} = H_{m_{0},totaal} = \sqrt{H_{m_{0},inkomend}^{2} + H_{m_{0},gereflecteerd}^{2}}$$
(2.12)

 $= \sqrt{1 + r^2} \star H_{m_0,inkomend}$

 $H_{m_{0},inkomend} = \frac{1}{\sqrt{1 + r^{2}}} * H_{m_{0},gemeten}$ (2.13)

Bij een reflectiecoëfficiënt r = 0.50 geldt dat de gemeten golfhoogte een factor 1.12 groter is dan de werkelijk inkomende golfhoogte. Dit geldt alleen voor loodrecht invallende langkammige golven.

Golfperiode

Figuur 18 geeft de verhouding tussen de piekperiode T_p en gemiddelde periode T_m als funktie van de golfsteilheid. Voor een hoge golfsteilheid is de verhouding ongeveer 1.1 en voor een lage golfsteilheid ongeveer 1.3. Bij de lage golfsteilheden komen enkele uitschieters voor door het optreden van een secundair golfje in het lange dal. Hierdoor wordt een lagere T_m gemeten. Bij de analyse van de oploop is gebruik gemaakt van de gemeten piekperiode. Bij de analyse van de overslag is zowel de piekperiode als de gemiddelde periode gebruikt.

Hoofdrichting

Figuur 19 geeft het verband tussen de gemeten en gestuurde hoofdrichting 0. De richting 0° is loodrecht op de constructie en komt onder een hoek van 15° vanaf de golfgenerator. Voor langkammige golven komen de gemeten en gestuurde richting redelijk goed overeen (Figuur 19a), behalve bij het talud 1:2.5, waar de gemeten hoek veelal 10° à 15° groter is dan de gestuurde hoek. De gemeten hoofdrichting voor kortkammige proeven is aan grotere spreiding onderhevig (Figuur 19b). Bij de taluds 1:4 (met en zonder berm) is de gemeten hoofdrichting meestal iets lager dan de gestuurde hoofdrichting, terwijl bij het talud 1:2.5 het omgekeerde het geval is. Waarschijnlijk is de hogere reflectie bij dit laatste talud van invloed op de gemeten hoofdrichting. Bij de analyse is uitsluitend uitgegaan van de gestuurde hoofdrichting.

Richtingspreiding

De Figuren 20 en 21 geven een overzicht van de gemeten en gestuurde spreiding σ . De gestuurde spreiding voor langkammige golven is 0°. Uit Figuur 20a blijkt dat voor s_{op} > 0.025 voor langkammige golven bij de taluds 1:4 een spreiding wordt gevonden van 15° à 25°. Voor lagere golfsteilheden en het talud 1:2.5 worden veel hogere spreidingen gevonden, waarschijnlijk door de veel hogere reflecties, zie ook Figuur 17. Uit de vergelijking van Figuur 14b met Figuur 14a blijkt dat inderdaad een hogere spreiding wordt gevonden als een hogere spreiding is opgewekt.

Figuur 21 geeft het verband tussen de gemeten spreiding en de gestuurde hoofdrichting. De figuur geeft hetzelfde beeld als Figuur 20. De hoge reflectie is waarschijnlijk de oorzaak van de grote gemeten richtingspreiding (en de variatie hierin) bij het talud 1:2.5. Bij de analyse is uitsluitend uitgegaan van de gestuurde richtingspreiding. Bij betere uitwerking met nieuwe analyseprogrammatuur (Maximum Entropy Method, M.E.M.) zijn mogelijk de gemeten θ en σ betrouwbaarder. Met name bij langkammige golven worden met de M.E.M. methode waarden van 0 à 4° voor σ gevonden in plaats van 15° à 25°.

Spectrumvorm en gegroeptheid

Bij alle proeven is een Jonswap spectrum opgewekt. In Figuur 22 is de gemeten vormparameter $\varepsilon_{5\%}$ van het spectrum uitgezet tegen de golfsteilheid. De parameter ε wordt berekend met behulp van verschillende momenten van het spectrum en is als volgt gedefinieerd:

$$\varepsilon = \sqrt{1 - \frac{m_2^2}{m_0 m_4}}$$
 (2.14)

De waarde van het vierde moment van het spectrum is sterk afhankelijk van de gemeten energiedichtheid voor hoge frequenties, ook al zijn deze energiedichtheden klein. Omdat deze energiedichtheden niet nauwkeurig bekend zijn, is bovenstaande definitie van ε niet goed bruikbaar. Daarom is gekozen voor de bepaling van ε met (2.14) maar dan alleen voor dat deel van het spectrum met een gemeten energiedichtheid groter dan 5% van de maximale energiedichtheid. Deze parameter wordt daarom aangeduid met $\varepsilon_{5\%}$. De trend komt overeen met de trend van T_p/T_m in Figuur 18. Bij de analyse is verondersteld dat alle proeven dezelfde spectrumvorm hebben, zoals de opzet was.

Door Stam (1988) is als onderdeel van zijn afstudeerwerk gekeken naar de correlatieparameter in de twee-dimensionale Rayleigh kansdichtheids-funktie voor opeenvolgende golfhoogtes. Figuren 23 en 24 zijn uit dat verslag overgenomen. De correlatiecoëfficiënt $\gamma_{\rm HH.t}$ ligt iets hoger dan de theoretische lijn (Figuur 23). Als niet van de opeenvolgende golfhoogtes wordt uitgegaan, maar van opeenvolgende amplituden (toppen of dalen) dan is de overeenkomst tussen theorie en meting volgens Stam (1988) erg goed. In dit onderzoek zijn alleen de opeenvolgende golfhoogtes geanalyseerd. De vormparameter κ kan zowel in het tijdsdomein als het frequentiedomein worden bepaald. Figuur 24 geeft de onderlinge relatie bepaald voor opeenvolgende golfhoogtes. Bij bepaling uit opeenvolgende golfhoogtes is $\kappa_{\rm HH.t}$ steeds te groot. Bij de standaarduitwerking van de golfhoogtemeters worden $\gamma_{\rm HH.t}$, $\kappa_{\rm HH.t}$ en $\kappa_{\rm f}$ berekend. Voor de berekening van de κ 's met opeenvolgende amplitudes is een andere uitwerking nodig die niet is uitgevoerd. De Figuren 25a en 25b (dit onderzoek) geven dezelfde uitwerking als Figuren 19 en 20 (Stam (1988)) en geven ook hetzelfde beeld. Het blijkt dat de kortkammige golven goed overeenkomen met de langkammige golven wat betreft de relatie tussen de spectrumvorm en de gegroeptheid.

3. <u>Golfoploop</u>

3.1 Theorie

Literatuur

Over golfoploop bestaat al veel literatuur. In een literatuuronderzoek (Klein Breteler, 1990) wordt hiervan een uitgebreid overzicht gegeven. Een voorbeeld van een verzameling meetgegevens is weergegeven in figuur 26. Bekende oploopformules zijn afkomstig van Ahrens (1981 en 1983). Deze formules hebben de volgende vorm:

$$\frac{R_{ux}}{H_s} = C_1 + C_2 * \frac{H_s}{g_{T_p}^2} + C_3 * \left(\frac{H_s}{g_{T_p}^2}\right)^2$$

Hierin staat R_{ux} voor $R_{u2\%}$, R_{us} of R_{um} . De constanten C_1 , C_2 en C_3 zijn best-fit constanten die in tabelvorm gegeven zijn voor verschillende taludhellingen en R_{ux} .

De invloeden van verschillende randvoorwaarden kunnen in het algemeen worden aangegeven met de invloedsfactor r:

 $r_{\theta} = \frac{R_u/H_s \text{ bij golfaanval onder hoek } \theta}{R_u/H_s \text{ bij loodrechte golfaanval } (\theta = 0)}$ $r_{\sigma} = \frac{R_u/H_s \text{ bij richtingspreiding } \sigma}{R_u/H_s \text{ bij langkammige golfaanval } (\sigma = 0)}$ $r_B = \frac{R_u/H_s \text{ bij talud met berm}}{R_u/H_s \text{ bij recht talud } (B = 0)}$ $r_h = \frac{R_u/H_s \text{ bij relatieve waterdiepte h/H}_s}{R_u/H_s \text{ bij relatieve waterdiepte h/H}_s = 6}$

De conclusies van het literatuuronderzoek (Klein Breteler, 1990) kunnen als volgt samengevat worden:

- Voor het berekenen van de oploop op gladde rechte taluds met $\cot(\alpha) > 2$ worden de volgende formules (gebaseerd op het werk van Ahrens) geadviseerd:

	ξ _{op} ≦ 2.2	2.2 < ξ _{op} < 7
$R_{u2\%}/H_s =$	1.61 ξ _{op}	3.5
	ξ _{op} ≦ 2.1	2.1 < ξ_{op} < 7
$R_{us}/H_s =$	1.25 ξ _{op}	2.9 - 0.14 ξ _{op}
	ξ _{op} ≦ 2.0	2.0 < ξ_{op} < 7
$R_{um}/H_s =$	0.84 ξ _{op}	1.9 - 0.13 ξ _{op}

- De invloed van de waterdiepte De invloed van de waterdiepte h, als $h/H_s > 3$, is nog onvoldoende bekend.
- De invloed van de schaal
 Als de golfhoogte in het model groter is dan 5 à 10 cm en bovendien de schaalfactor niet groter is dan 20, dan mogen schaaleffecten verwaarloosd worden.
- De invloed van een berm op SWL-niveau
 Voor een berm op SWL in een talud met een helling 1:3 of flauwer geldt globaal de volgende invloedsfactor:
 - $r_{\rm B} = 1 \qquad \text{als} \qquad B^2/(H_{\rm s}L_{\rm op}) < 0.01$ $r_{\rm B} = 0.65^{3\tan(\alpha)}(B^2/(H_{\rm s}L_{\rm op}))^{-0.3\tan(\alpha)} \qquad \text{als} \qquad 0.01 < B^2/(H_{\rm s}L_{\rm op}) < 1.00$ $r_{\rm B} = 0.65^{3\tan(\alpha)} \qquad \text{als} \qquad 1.00 < B^2/(H_{\rm s}L_{\rm op})$
- De invloed van scheve golfaanval
 De invloedsfactor als gevolg van scheve golfaanval bij regelmatige, langkammige golven kan als volgt berekend worden:
 - $r_{\theta} = \cos(\theta) * (2 \cos^{1}(2\theta))^{0.33} \quad \text{als} \quad \theta < 60^{\circ}$ $r_{\theta} = 0.6 \quad \text{als} \quad \theta \ge 60^{\circ}$

-23-

In Figuur 27 tot en met 31 zijn voor de modelproefomstandigheden de verwachte oploopresultaten weergegeven, gebaseerd op de voorgaande formules. Tabel 3 geeft de gemeten oploopgegevens.

3.2 <u>Referentieproeven</u> (LL)

De opbouw van de paragrafen waarin de proefresultaten besproken worden is als volgt:

Tussenkopje	Innoud
talud 1:4	Beschouwing van proefresultaten bij alleen dit talud
	(en bij waterstand gelijk aan 0.72 m)
talud 1:4 met berm	Beschouwing van proefresultaten bij alleen dit talud
talud 1:2.5	Beschouwing van proefresultaten bij alleen dit talud
invloed waterdiepte	Vergelijking tussen proefresultaten bij de proeven
	met verschillende waterstand (alleen bij talud 1:4)
invloed berm	Vergelijking tussen de resultaten van talud 1:4 en
	talud 1:4 met berm
invloed taludhelling	Vergelijking tussen de resultaten van talud 1:4 en
	talud 1:2.5

Talud 1:4

Figuur 32 geeft alle relatieve oplopen voor $h = 0.72 \text{ m en H}_{S} = 0.12 \text{ m van de}$ proeven met <u>l</u>oodrecht invallende <u>l</u>angkammige golven (LL). Het verloop van de oploop is voor elk oplooppercentage vrijwel gelijk. Opvallend is echter dat de hogere oploopwaarden van de proef met s_{op} = 0.02 duidelijk onder de trend van de overige metingen vallen. Daardoor komt de trend voor kleine golfsteilheid niet goed overeen met de verwachtingen op grond van de formules, zoals die zijn aangegeven.

Uit een kwantitatieve vergelijking van deze oploopresultaten met de verwachting blijkt dat deze meetresultaten veelal lagere oploopwaarden geven. Dit wordt veroorzaakt door het feit dat de oploopmeter dunne waterlaagjes niet registreert.

Talud 1:4 met berm

Figuur 33 geeft vrijwel hetzelfde beeld als Figuur 32: bij toenemende golfsteilheid neemt de relatieve golfoploop af. De afname tussen $s_{op} = 0.04$ en $s_{op} = 0.05$ is overigens in dit geval zeer gering. In dit geval blijkt de trend beter overeen te komen met de verwachting, al is er geen sprake van een buigpunt bij de lage golfsteilheid.

Talud 1:2.5

In Figuur 34 is voor golfsteilheden groter dan 0.02 weer een vloeiend dalend verloop van de relatieve oploop te zien. Alleen de proef met $s_{op} = 0.01$ geeft consequent lagere oploopwaarden, waardoor de trend een maximum vertoont. Een dergelijk maximum wordt ook in de verwachting gevonden, maar dan minder sterk gepiekt en voor een grotere golfsteilheid.

Invloed waterdiepte en schaal

Figuur 35 geeft de relatieve oploop R_u/H_s van alle proeven met loodrechte langkammige golfaanval als functie van de golfsteilheid. De waarden van 0.5% en 5% zijn in de figuren uitgezet en onderscheid is gemaakt tussen de proevenseries met een verschillende waterdiepte. De trend is overeenkomstig Figuur 32: een hogere golfsteilheid geeft een lagere oploop en de proeven met een lagere waterdiepte, maar ook met een lagere golfhoogte, geven eveneens lagere waarden. De proevenserie met h = 0.36 m en H_s = 0.06 m is een schaalserie van de eerste serie met h = 0.72 m, H_s = 0.12 m. Het verschil is ten dele te wijten aan de bovenomschreven methode voor oploopmeting. Als aangenomen wordt dat ook bij H_s = 0.06 m de gemeten oploop 0.032 m te laag is dan bedraagt het verschil in R_u/H_s ongeveer 0.27. Het is mogelijk dat ook de ruwheid van het talud een klein verschil veroorzaakt. In verhouding tot de golfhoogte is het betontalud ruwer voor de serie met de laagste golfhoogte.

Invloed berm

De invloedsfactor van de berm is uitgezet tegen de golfsteilheid in Figuur 36. Uit deze figuur blijkt dat de reductie door de berm vrijwel onafhankelijk is van de golfsteilheid en het beschouwde oplooppercentage. De relatieve oploop wordt in alle gevallen tot ongeveer 70% gereduceerd. Dit komt vrij goed overeen met de verwachting (Figuur 30).

Invloed taludhelling

In Figuur 37a is voor de beide rechte taluds de relatieve oploop uitgezet tegen de parameter ξ_{op}. Er blijkt toch duidelijk onderscheid te zijn tussen de resultaten van de twee taludhellingen, zodat geconcludeerd moet worden

-25-

dat het gebruik van de parameter ξ (zoals in de literatuurstudie is voorgesteld) in dit geval niet zinvol is.

In Figuur 37b is de relatieve oploop uitgezet tegen de parameter $\sqrt{\tan \alpha}$ _{op}. De resultaten stemmen nu opvallend goed overeen. Slechts één meting van $R_{u0.5\%}/H_s$ bij het talud 1:4 wijkt enigszins af van de trend, maar dit was ook al in Figuur 32 geconstateerd. De knik in de trend in beide figuren duidt op de overgang van brekende naar niet-brekende golven ($\xi_{op} = 2.0$ à 2.5).

Conclusies:

- De trend in de gemeten oploopwaarden wijkt enigszins af van de verwachting op grond van de formules uit de literatuur (Klein Breteler, 1990): het buigpunt tussen de golfsteilheden 0.01 en 0.05 wordt bij het talud 1:4 niet teruggevonden, en bij het talud 1:2.5 treedt het gemeten maximum op voor een lagere golfsteilheid dan verwacht.
- De gemeten relatieve oploop is in veel gevallen lager dan op grond van de literatuur (met name de formules van Klein Breteler) verwacht kan worden. Dit wordt veroorzaakt door het feit dat dunne waterlaagjes niet gedetecteerd worden.
- 3. Het verloop van de oploop onder invloed van de golfsteilheid is voor de verschillende oplooppercentages (< 20%) voldoende gelijkvormig om een verdere analyse te kunnen beperken tot bijvoorbeeld alleen de 0.5% en 5% oploopwaarden. In de meeste gevallen kan de gemeten oploopoverschrijdingskromme voor de kleine oplooppercentages redelijk benaderd worden door een Rayleigh-verdeling. Er is echter wel sprake van enige spreiding in deze waarnemingen, waarbij geen duidelijk verband is gevonden met de golfrandvoorwaarden.
- De gemeten invloed van een berm op de oploop komt vrij goed overeen met de literatuur. De gemeten invloedsfactor bedraagt voor iedere golfsteilheid ongeveer 0.7.
- 5. De invloed van de taludhelling kan goed in rekening worden gebracht met behulp van de parameter $\sqrt{\tan \alpha/s_{op}}$.
- 6. De invloed van de waterdiepte is klein. Voor $h/H_s = 3$ is de relatieve oploop ongeveer 85% van de waarde bij $h/H_s = 6$.

3.3 <u>Scheve inval</u> (SL)

Talud 1:4

Bij de proeven is getra^ht om de golfsteilheden van 0.01, 0.02, 0.03, 0.04 en 0.C5 in te stellen. Dit is natuurlijk niet precies gelukt, zodat de proeven niet zonder meer onderling vergelijkbaar zijn. De trend is namelijk dat voor een toenemende golfsteilheid de golfoploop afneemt. Een betere methode is om bij proeven met gelijke hoek van golfaanval op de precieze waarde van de golfsteilheid (0.02 en 0.04) de waarde van de relatieve oploop met behulp van lineaire interpolatie of extrapolatie te bepalen.

In Tabel 5 zijn de waarden van de relatieve oploop voor de precieze waarden 0.01, 0.02, 0.03, 0.04 en 0.05 van de golfsteilheid gegeven. hierbij is zoveel mogelijk gebruik gemaakt van (lineaire) interpolatie. Dat wil zeggen dat bekeken werd tussen welke twee proefrealisaties de gewenste golfsteilheid zich bevond. De benadering voor de relatieve oploop R_{uxx}/H_s op de precieze waarde van de golfsteilheid werd via lineaire interpolatie bepaald, uitgaande van de twee proefresultaten. Hierbij is overigens geen gebruik gemaakt van de herhalingsproeven (met het achtervoegsel "A").

Als voorbeeld wordt hier de berekening van de relatieve oploop bij loodrecht invallende langkammige golven voor s_{op} = 0.02 uitgewerkt. Deze golfsteilheid ligt tussen de realisaties van de proeven LL1 en LL2.

$$(R_{u}/H_{s})_{(s=0.02)} = (R_{u}/H_{s})_{(LL1)} + \frac{(0.02 - s_{(LL1)})}{(s_{(LL2)} - s_{(LL1)})} * ((R_{u}/H_{s})_{(LL2)} - (R_{u}/H_{s})_{(LL1)})$$

$$(R_{u}/H_{s})_{(s=0.02)} = 2.925 + \frac{0.0200 - 0.0138}{0.0223 - 0.0138} * (2.245 - 2.925) = 2.429$$

De figuren geven de relatieve oploop voor scheve langkammige golfaanval, die met bovenstaande methode is bepaald. In de figuren is de oploop gegeven als functie van de hoek van golfaanval. In iedere tweede figuur is voor dezelfde

-27-

gegevens de verhouding weergegeven tussen de relatieve oploop bij de betreffende hoek van golfaanval en de relatieve oploop bij loodrechte inval. Dit laatste is alleen voor de 0.5%, 5% en 20% waarde van de oploop gedaan.

Golfsteilheid s = 0.02

In Figuur 38 zijn de resultaten van de proeven voor golfsteilheid s_{op} = 0.02 gegeven. Het blijkt dat voor hoeken kleiner dan ongeveer 30° geen sprake is van oploopreductie. Voor hoeken groter dan 60° bedraagt de invloedsfactor ongeveer 0.6. Verder is opvallend dat er een sprong optreedt tussen 50° en 60° in het overigens nagenoeg horizontale verloop. Dit geldt vooral voor de lagere oploopwaarden. Tenslotte valt nog op dat de resultaten bij de hoek van 5° beneden de trend liggen. Bij deze figuur moet overigens worden opgemerkt dat de referentieproef met loodrecht invallende golven enigszins afwijkt van de trend, met name voor de hogere oploopwaarden (zie Figuur 32). Bij de interpretatie van de berekende invloed van de hoek van golfaanval dient dus enige voorzichtigheid betracht te worden.

Golfsteilheid s = 0.04

In Figuur 39 zijn de resultaten van de proeven voor golfsteilheid s_{op} = 0.04 gegeven. De gemeten invloed van de hoek van golfaanval geeft voor kleine hoeken geen vloeiend verloop te zien. Bij θ = 10° is de oploop zelfs duide-lijk hoger dan voor loodrechte golfaanval. Het is in ieder geval duidelijk dat voor hoeken tot ongeveer 30° geen sprake van reductie van de oploop is. Voor hoeken groter dan 30° neemt de relatieve oploop geleidelijk af naar ongeveer 60% van de loodrechte oploop. In deze figuur blijkt dat bij invalshoeken groter dan 30° in het algemeen de hogere oploopwaarden sterker gereduceerd worden dan de lagere oploopwaarden. Voor de hoeken van golfaanval van 20° en 40° is het verband tussen de oploop en de golfsteilheid gegeven in Figuur 40.

Talud 1:4 met berm

De invloed van scheve golfaanval bij de berm is uitgezet in Figuur 41. Bij iedere hoek van inval is de relatieve oploop vergeleken met de relatieve oploop bij de proef met loodrechte golfaanval. De resultaten van de proeven met de invalshoek gelijk aan 10° en vooral 50° vallen enigszins buiten de tendens bij de overige proeven. Er is wederom sprake van een sprong tussen de hoeken 50° en 60°. De reductie door scheve aanval is voor de verschillende oplooppercentages bij iedere hoek van golfaanval vrijwel gelijk. Ook uit deze figuren volgt: geen reductie voor hoeken kleiner dan ongeveer 30°, daarna een geleidelijke afname van de oploop, in dit geval tot ongeveer 50%.

Talud 1:2.5

Zie Figuur 42. De trend komt in grote lijnen overeen met de resultaten bij de twee andere constructies. De resultaten van de proeven met de invalshoek gelijk aan 30° respectievelijk 80° zijn echter opvallend. In het algemeen zijn echter de meetresultaten bij zeer grote hoeken van golfaanval (70° en 80°) minder betrouwbaar. Net als bij het talud 1:4 blijkt dat door scheve inval in het algemeen de hogere oploopwaarden sterker gereduceerd worden dan de lagere oploopwaarden.

Invloed waterdiepte

In Figuur 43 en 44 zijn ook de proeven met een tweemaal zo kleine waterdiepte (maar dezelfde golfhoogte) uitgezet. De oploopwaarden bij de kleinere waterdiepte liggen consequent iets lager dan voor de grotere waterdiepte.

Invloed berm

De invloed van de berm bij scheve langkammige golfaanval is uitgezet in Figuur 45. Bij iedere hoek van inval is de relatieve oploop bij de proef met berm vergeleken met de relatieve oploop bij de proef zonder berm. Deze figuur geeft een vrij warrig beeld. Gemiddeld wordt de relatieve oploop tot 60 à 70% gereduceerd. Enerzijds bestaat de indruk dat alleen de resultaten bij de golfaanval van 10° en 50° afwijken van het licht dalende verloop dat in de overige resultaten te zien is. Anderzijds kan verondersteld worden dat de meetresultaten bij 10° en 50° een indruk geven van de spreiding in de meetreslutaten, hetgeen tot de conclusie leidt dat de invloed van de berm bij benadering onafhankelijk is van de hoek van golfaanval.

De voorzichtige conclusie is dat de invloed van de berm vrijwel onafhankelijk is van de hoek van golfaanval, met een zeer lichte tendens naar een grotere reductie voor grotere hoeken van golfaanval.

Invloed taludhelling

In Figuur 46 zijn de relatieve oploopgegevens van de twee proevenseries met een recht talud met elkaar vergeleken. Opvallend is dat de punten voor talud

-29-

1:2.5 en s_{op} = 0.04 veel overeenstemming vertonen met de punten voor talud 1:4 en s_{op} = 0.02. Nadere bestudering wijst uit dat de eerstgenoemde punten globaal nèt iets lager liggen (orde 1 à 5%), behalve bij een aanvalshoek van 30°. De punten voor talud 1:4 en s_{op} = 0.04 liggen beduidend lager (orde 20 à 30%). Deze constatering is vrij goed in overeenstemming met de stelling in het voorgaande hoofdstuk dat de invloed van de taludhelling goed in rekening kan worden gebracht met de parameter $\sqrt{\tan \alpha/s_{op}}$.

Nadere beschouwing

Het is onjuist om scheve inval te vertalen in een flauwer talud, vervolgens hierop de waarde van de brekerparameter te baseren en daaruit tenslotte de oploop te bepalen. Dit zou namelijk betekenen dat door scheve inval de taludhelling kleiner wordt en daardoor zou de oploop ook altijd kleiner zijn dan bij loodrechte golfaanval. Dit is in tegenspraak met de meetgegevens. Anderzijds is het onjuist om onafhankelijk van de taludhelling en de golfsteilheid een invloedsfactor r₀ te bepalen, zoals in de literatuur is voorgesteld.

Door een vloeiende lijn door de meetgegevens te trekken zijn de volgende waarden voor het maximum bij kleine hoeken naar voren gekomen:

$tan(\alpha)$	s _{op}	θ	r _{θ,max}
0.25	0.02	12	1.04
0.25	0.04	-	1.00
0.25(*)	0.04	-	1.00 (* met berm)
0.40	0.04	20	1.07

Voor praktische doeleinden kan echter wel aangenomen worden dat tussen 10° en 30° de invloedsfactor r $_{\theta}$ globaal 1.05 is, ongeacht taludhelling en golfsteilheid.

Conclusies:

 In het algemeen geldt dat voor hoeken tot 30° de oploop niet gereduceerd wordt. Voor hoeken groter dan 60° bedraagt de reductie 60%. Voor kleine hoeken kan een maximum in de oploop optreden. De combinatie van waarden van θ en r_{θ}, die bij dit maximum gelden, is afhankelijk van de taludhelling en de golfsteilheid. Er zijn echter te weinig meetgegevens beschikbaar om de precieze onderlinge relatie te bepalen.

- 2. De af te leiden relatie tussen θ en r_{θ} is zeer gevoelig voor de nauwkeurigheid van de referentieproef en de wijze waarop de lijn door de punten getrokken wordt. Daarom wordt voor de praktijk voorgesteld om de invloedsfactor voor scheve golfaanval grofweg als volgt te karakteriseren:
 - tussen 10° en 30° is r_o maximaal, gelijk aan 1.05;
 - voor hoeken groter dan 60° is ra gelijk aan 0.60;
 - Voor tussenliggende hoeken wordt lineair geïnterpoleerd.
- 3. De onderlinge verhoudingen tussen de oplopen voor de verschillende taluds en golfsteilheden bij de verschillende hoeken van golfaanval voldoen redelijk aan de verwachting van een hogere golfoploop bij een hogere waarde van √tanα/s_{op}.
- De invloed van de berm is vrijwel onafhankelijk van de hoek van golfaanval. Alleen voor zeer grote hoeken wordt de oploopreductie door de berm iets sterker.
- 5. De invloed van de waterdiepte is bij benadering onafhankelijk van de hoek van golfaanval.

3.4 <u>Richtingspreiding</u> (LK)

Talud_1:4

Figuur 47a geeft de vergelijking van de loodrechte kortkammige aanval met de loodrechte langkammige golfaanval voor s_{op} = 0.02. Figuur 47b geeft dezelfde parameters voor s_{op} = 0.04. Voor deze figuren geldt dezelfde opmerking als voor Figuur 38 en verder. Uit Figuur 47 volgt dat de invloed van richtingspreiding erg klein tot vrijwel nihil is. De proeven met de grootste spreiding liggen wel het laagst. In Figuur 48a is voor σ = 32 de relatieve oploop uitgezet tegen de golfsteilheid. Deze figuur vertoont grote overeenkomst met Figuur 32 voor langkammige golven. In Figuur 48b is voor σ = 32 de invloed van de richtingspreiding (vergeleken met langkammige golven) uitgezet tegen de golfsteilheid. Het verschil is ook in deze figuur beperkt tot maximaal ongeveer 10%. Bij de 0.5% oploopwaarde in Figuur 47a moet worden opgemerkt dat de referentiewaarde (loodrecht langkammig bij s $_{op}$ = 0.02) enigszins afweek ten opzichte van de trend (zie Figuur 32). Overigens lijkt de conclusie gerechtvaardigd dat de invloed van de richtingspreiding voor elk oplooppercentage gelijk is.

Talud 1:4 met_berm

Zie Figuur 49. De kortkammige golven geven hetzelfde vloeiende verloop van de oploop te zien als de langkammige golven, met dien verstande dat voor σ = 32 ook hier de oploop ongeveer 10% lager is dan voor σ = 0.

Talud 1:2.5

Zie Figuur 50. Voor zowel de 0.5% als de 5% oploop blijkt de invloed van de kortkammigheid zeer klein te zijn, hoewel de kortkammige golven vrij consequent een iets lagere oploop te zien geven. De afwijking is het grootst bij $s_{op} = 0.02$.

Invloed waterdiepte

Figuur 51 geeft de meetgegevens van de proven met loodrecht invallende kortkammige golven met een kleinere waterdiepte. De waarden stemmen vrijwel precies overeen met die voor een grotere waterdiepte.

Invloed berm

In Figuur 52 is de invloed van de berm bij richtingspreiding gegeven. Hierbij zijn twee proeven met berm vergeleken met de corresponderende proeven zonder berm. De invloed van de berm is zowel bij langkammige golven ($\sigma = 0$) als bij kortkammige golven ($\sigma = 32$) voor alle oplooppercentages vrijwel gelijk. De relatieve oploop wordt tot 60 à 70% gereduceerd.

Invloed taludhelling

In Figuur 53 zijn de oploopresultaten van de twee rechte taluds met elkaar vergeleken door ze uit te zetten tegen respectievelijk ξ_{op} en $\sqrt{\tan\alpha/s_{op}}$. Ook bij kortkammige golven blijken de resultaten het best met elkaar in overeenstemming te zijn als gebruik gemaakt wordt van de parameter $\sqrt{\tan\alpha/s_{op}}$. De knik in de trend in beide figuren duidt op de overgang van brekende naar niet-brekende golven ($\xi_{op} = 2.0$ à 2.5).

-32-

Conclusies:

- 1. De invloed van de richtingspreiding bij loodrecht invallende golven is zeer klein. Er bestaat een lichte tendens naar sterkere oploopreductie voor grotere hoeken van richtingspreiding, maar r_{σ} is vrijwel altijd nog groter dan 0.90. Het gemiddelde voor r_{σ} is ongeveer 0.95.
- 2. De invloed van de berm is onafhankelijk van de richtingspreiding.
- 3. Bij kortkammige golven is de invloed van de waterdiepte voor $h/H_s > 3$ verwaarloosbaar.

3.5 <u>Combinatie van scheve inval en richtingspreiding</u> (SK)

Talud 1:4

Figuur 54a geeft de oploop voor scheve kortkammige golfaanval met $\sigma = 32$ en $s_{op} = 0.02$ als functie van de hoek van golfaanval. In figuur 54b is de vergelijking met de loodrocht invallende (kortkammige) golven gegeven. Figuur 55 geeft dezelfde informatie als figuur 54, maar dan voor $s_{op} = 0.04$. Uit deze figuren blijkt wel dat loodrechte golfaanval de hoogste oploop geeft, maar dat de reductie zelfs voor grotere hoeken (tot bijna strijk-golven) maar uiterst beperkt is. Overigens zijn de proeven met 70° en 80° niet de meest nauwkeurige wat betreft het opgewekte golfbeeld. Een groot deel van de golven werd via reflectie op de zijwand langs de constructie gestuurd. Het golfbeeld in het bassin was wel bevredigend, maar de proeven zijn minder betrouwbaar dan de proeven met kleinere hoeken. De conclusie dat voor hoeken groter dan 60° de oploop weer toeneemt, is daarom niet gerechtvaardigd.

Uit een vergelijking met Figuur 38 en 39 volgt dat de invloed van de hoek van golfaanval bij kortkammige golven kleiner is dan bij langkammige golven. Net als bij langkammige golven blijkt dat door scheve inval in het algemeen de hogere oploopwaarden sterker gereduceerd worden dan de lagere oploopwaarden. De invloedsfactor van de richtingspreiding is bepaald door vergelijking van de relatieve oploop bij gelijke hoek van golfaanval. Deze invloed is gegeven in Figuur 56.

Bij de hoeken 20° en 40° is naast de golfsteilheid ook de spreidingsmaat gevarieerd. Figuur 57 geeft de invloed van de golfsteilheid op de relatieve oploop. Figuur 58a geeft de invloed van de richtingspreiding op de 0.5%, 5% en 20% oploopwaarden voor een hoek van 20° bij s_{op} = 0.02. Figuur 58b geeft dezelfde parameters voor s_{op} = 0.04. Figuur 59 geeft dezelfde informatie als Figuur 58, maar dan voor θ = 40°.

De invloed van de richtingspreiding blijkt voor deze kleine hoeken zeer klein te zijn. De relatieve oploop wordt in geen enkele proef tot minder dan 80% gereduceerd, terwijl de meeste metingen duiden op een reductie tot niet minder dan 90% ten opzichte van langkammige golven. Behalve bij de proeven met $\theta = 20$ en s_{op} = 0.02 blijkt dat de hogere oploopwaarden minder gereduceerd worden door de richtingspreiding dan de lagere oploopwaarden.

Talud 1:4 met berm

De Figuren 60 en 61 geven hetzelfde beeld te zien van de invloed van de hoek van golfaanval bij kortkammige golven bij een berm: de invloed van de hoek van golfaanval is zwakker dan bij langkammige golven. De invloeds-factor r_{σ} vertoont dan ook de omgekeerde trend van de invloedsfactor r_{θ} : reductie van de oploop voor kleine θ , vergroting van de oploop voor grote θ in vergelijking met langkammige golven.

Talud 1:2.5

Ook de Figuren 62 en 63 geven weer hetzelfde beeld te zien: de invloed van de hoek van golfaanval is zwakker dan bij langkammige golven. De invloedsfactor r_{σ} vertoont dan ook weer de omgekeerde trend van de invloedsfactor r_{θ} .

Invloed waterdiepte

In Figuur 64 en 65 zijn ook de proeven met een kleinere waterdiepte uitgezet. De waarden voor een kleinere waterdiepte komen vrijwel overeen met die voor de grotere waterdiepte en zijn in sommige gevallen zelfs iets hoger.

-34-

Invloed berm

In Figuur 66 is de invloed van de berm uitgezet voor de oplooppercentages 0.5%, 5% en 20%. Zoals eerder bij scheve langkammige golfaanval is geconstateerd blijkt ook bij kortkammige golven de invloed van de berm vrijwel onafhankelijk van de hoek van golfaanval en het beschouwde oplooppercentage. Bovendien blijkt uit een vergelijking met Figuur 45 dat de richtingspreiding geen invloed heeft op de invloedsfactor van de berm omdat deze in beide gevallen 0.60 à 0.70 bedraagt.

Invloed taludhelling

De vergelijking tussen de relatieve oploopgegevens van de scheve kortkammige golven voor de twee rechte taluds is gegeven in Figuur 67. Afgezien van het feit dat de invloed van de hoek van golfaanval kleiner is dan bij langkammige golven komen de relaties tussen de drie series goed overeen met die bij de langkammige golven:

De punten voor talud 1:2.5 en $s_{op} = 0.04$ vertonen veel overeenstemming met de punten voor talud 1:4 en $s_{op} = 0.02$. Nadere bestudering wijst uit dat de eerstgenoemde punten globaal nèt iets lager liggen (orde 1 à 5%). De punten voor talud 1:4 en $s_{op} = 0.04$ liggen beduidend lager (orde 20 à 30%). Deze constatering is weer vrij goed in overeenstemming met de stelling dat de invloed van de taludhelling goed in rekening kan worden gebracht met de parameter $\sqrt{\tan \alpha/s_{op}}$.

Nadere beschouwing

De invloed van richtingspreiding kan kwalitatief beschouwd worden als het uitmiddelen van de invloed van de hoek van golfaanval bij langkammige golven over een groot interval van hoeken rond de beschouwde hoofdrichting bij kortkammige golven. De invloed van de richtingspreiding is voor kleine aanvalshoeken (inclusief loodrechte aanval) klein omdat de invloed van scheve golfaanval klein is voor hoeken tot 30°. Een directe vertaling in de kwantitatieve invloed van richtingspreiding (bijvoorbeeld door r_{θ} te middelen over een interval van θ -waarden) is echter niet helemaal in overeenstemming met de meetgegevens. In Figuur 68 is voor de verschillende golfkenmerken de invloed van de waterdiepte uitgezet tegen de verhouding h/H_s . De punten geven de gemiddelde verhouding (over de oplooppercentages) aan ten opzichte van de overeenkomstige proef met $h/H_s = 6$. (Deze referentiewaarde is overigens weliswaar gemiddeld vrijwel gelijk aan zes, maar de afzonderlijke waarden liggen tussen 5 en 7.) Uit deze figuur valt af te lezen dat voor langkammige golven de invloed van de waterdiepte bij $h/H_s = 3$ zorgt voor een reductie tot ongeveer 85% van de oploop bij $h/H_s = 6$. Bij kortkammige golven is de invloed van de waterdiepte echter verwaarloosbaar.

Conclusies:

- 1. Bij kortkammige golven is de invloed van de hoek van golfinval op de oploop veel kleiner dan bij langkammige golven. De sterkste reductie bedraagt 80% en wordt pas bij $\theta = 80^{\circ}$ bereikt. Alleen bij het talud 1:2.5 (s_{op} = 0.04) treedt in de meetgegevens pas reductie op voor hoeken groter dan 50°. Dit is redelijk in overeenstemming met de verwachte uitmiddeling van r_{θ} bij langkammige golven, omdat juist bij deze omstandigheden een duidelijk maximum optreedt voor kleine hoeken bij langkammige scheve golfaanval. Voor de beide andere taluds (en golfsteilheden) daalt de invloedsfactor ongeveer lineair tussen $\theta = 0^{\circ}$ en $\theta = 80^{\circ}$ van 1.0 naar 0.8. Kennelijk is de uitmiddeling bij deze taluds sterker omdat met name bij het talud 1:4 en s_{op} = 0.02 ook een maximum optreedt voor kleine hoeken bij langkammige scheve golfaanval.
- 2. Voor praktijkberekeningen wordt aanbevolen om bij kortkammige golven de invloed van de richtingspreiding als volgt te schematiseren: $0 < \theta < 30$ $r_{\theta} = 1.00$ $\theta > 30$ r_{θ} neemt lineair af van 1.00 naar 0.80 (voor $\theta = 80^{\circ}$)
- 3. De invloed van de berm is vrijwel onafhankelijk van de mate van richtingspreiding en de hoek van golfaanval, $r_B = 0.65$. Alleen voor zeer grote hoeken wordt de oploopreductie door de berm iets sterker.
- 4. Ook voor scheef invallende kortkammige golven is de invloed van de waterdiepte verwaarloosbaar, $r_{h} = 1.0$.

-36-

4. Golfoverslag

4.1 Bestaande kennis m.b.t. overslag

Het verschijnsel overslag kan op verschillende manieren bestudeerd worden. Een eerste methode is het analyseren van het overslagpercentage. Een tweede methode is het analyseren van het gemiddelde overslagdebiet. De bestudering van het verschijnsel overslag beperkt zich in dit project tot de overslag bij een glad talud zonder kruinconstructie.

Overslagpercentage

Het overslagpercentage is gebaseerd op de verhouding van het aantal overslaande golven tot het totaal aantal inkomende golven. De overslagpercentages voor loodrecht invallende golven kunnen theoretisch worden afgeleid uit een berekening vanuit de oploop. Dit geldt echter alleen voor kleine overslagpercentages omdat dan de terugstromende hoeveelheid water nauwelijks afwijkt ten opzichte van de situatie zonder overslag. Bij zeer grote overslagpercentages wijkt het golfbeeld voor de constructie wèl af. De relatieve oploop is voor brekende golven ($\xi_{op} \leq 2.2$) recht evenredig met de brekerparameter ξ_{op} [Klein Breteler, 1990]:

$$\frac{R_u}{H_s} = c_0 \xi_{op} \qquad \text{bijvoorbeeld:} \frac{R_u 2\%}{H_s} = 1.61 \xi_{op} \qquad (4.1)$$

Door nu aan te nemen dat de oploop Rayleigh verdeeld is:

$$P(\frac{R_u/H_s}{s} > R_u/H_s) = exp(-(\frac{R_u/H_s}{c_1})^2)$$
 (4.2)

kan de overslagkans bepaald worden bij kruinhoogte h_d:

$$P(\text{overslag}) = P(\underline{R_u/H_s} > h_d/H_s)$$
(4.3)

Hieruit kan de waarde van de constante c_1 worden afgeleid:

$$P(R_u/H_s > R_{u2\%}/H_s) = 0.02$$
(4.4)

 $\exp(-(\frac{R_{u2\%}/H_s}{c_1})^2) = 0.02$

$$\exp\left(-\left(\frac{1.61 \xi_{op}}{c_{1}}\right)^{2}\right) = 0.02$$

$$c_{1} = \frac{1.61}{\sqrt{-\ln(0.02)}} \xi_{op}$$

$$c_1 = 0.81 \xi_{op}$$
 (4.5)

Voor brekende golven is hiermee een verband gevonden tussen het overslagpercentage en een dimensieloze kruinhoogte:

P(overslag) = exp(-
$$(\frac{h_d/H_s}{0.81 \xi_{op}})^2)$$
 (4.6)

Overslagdebiet

De in de literatuur meest gebruikte **overslagformules** zijn afkomstig van TAW (1972) en Owen (1980). Deze formules zullen later in deze paragraaf ter sprake komen. Ook zullen **overslagmeetgegevens** van ander onderzoek in de beschouwing betrokken worden. De herkomst van deze meetgegevens wordt hier-onder kort beschreven. De meetgegevens zijn opgenomen in Tabel 6.

Eind 1983 zijn proeven uitgevoerd in het kader van het testen van een systeem van reflectiecompensatie. Hierbij is ook overslag gemeten. De resultaten van dit onderzoek zijn echter niet gerapporteerd. Het onderzoek is uitgevoerd in de Deltagoot van het Waterloopkundig Laboratorium. De taludhelling was 1:6 en de significante golfhoogte is gevarieerd van ongeveer 0.6 m tot 1.5 m. De waterdiepte bedroeg bij alle proeven 4.5 m, en de kruinhoogte is gevarieerd van 1.3 m tot 2.3 m ten opzichte van SWL. Er zijn 13 proeven met overslag beschikbaar (zie Tabel 6).

Van der Meer (1987) beschrijft een modelonderzoek naar overslag bij de Afsluitdijk. Het betreft een gebogen talud dat globaal overeenkomt met een talud 1:4. Het totaal aantal proeven is 18, voornamelijk met een Jonswap spectrum.

Perdijk (1987) beschrijft een modelonderzoek naar overslag waarbij gebruik is gemaakt van 3 taluds (1:2, 1:4 en 1:7) en zowel regelmatige golven als twee spectra bij onregelmatige golven. Het totaal aantal proeven met onregelmatige golven bedraagt 67. Owen (1980) geeft een algemene overslagformule met daarbij een aantal tabellen en grafieken met waarden voor de coëfficiënten in deze formule, afhankelijk van de taludhelling, eventuele bermafmetingen en de hoek van golfaanval. De formules zijn gebaseerd op meetgegevens bij drie taluds (1:1, 1:2 en 1:4). Het totaal aantal beschikbare proeven met overslag bedraagt 92.

Het verslag zelf bevat niet de meetgegevens van de 92 proeven, maar alleen de formules en de coëfficiënten. Hydraulics Research, Wallingford, in de persoon van Owen, was echter bereid de oorspronkelijke meetgegevens aan WL af te staan. WL is Hydraulics Research hiervoor zeer erkentelijk.

Als referentiebasis zijn ook in het onderhavige onderzoek proeven uitgevoerd met loodrecht invallende langkammige golven. Deze resultaten worden (ook) in samenhang met de resultaten van bovengenoemde onderzoeken beschouwd.

Uitgaande van de belangrijkste literatuur en meetgegevens op het gebied van de overslagdebieten wordt hieronder getracht een geschikt referentiekader te scheppen voor de studie naar de invloed van scheve inval en richtingspreiding. Het doel in dit hoofdstuk is het bepalen van een handzame formule voor loodrecht invallende golven.

Voor de analyse van het overslagdebiet moet gebruik gemaakt worden van een dimensieloze kruinhoogte en een dimensieloos overslagdebiet. Voor deze parameters zijn verschillende formuleringen in gebruik. Twee van deze formuleringen worden hieronder behandeld.

TAW (1985) geeft een grafiek om de overslag te bepalen. Figuur 69 geeft deze grafiek. Deze figuur is overigens overgenomen uit Van der Meer (1987), waarbij ook zijn meetpunten zijn weergegeven. Het blijkt dat voor de Afsluitdijk de meetpunten goed overeenkomen met de lijn voor de maximale schatting. De dimensieloze parameters zijn gebaseerd op TAW (1972).

ς.

(4.7)

Overslagdebiet:

$$y = \frac{q T_m \sqrt{\cot(\alpha)}}{0.1 H_m L_{om}}$$

Hierin zijn H en T respectievelijk de gemiddelde golfhoogte en de gemiddelde golfperiode.

-39-

Kruinhoogte (zie ook de analyse van het overslagpercentage):

$$x = \frac{h_d \cot(\alpha)}{\sqrt{H_m L_{om}}}$$
(4.8)

Beide parameters kunnon enigszins herschreven worden om de structuur duidelijk te maken:

$$y \sim \frac{q}{\sqrt{gH^3}} \sqrt{H/L} \frac{1}{\sqrt{\tan\alpha}}$$
(4.9)

$$x \sim \frac{h_d}{H} \sqrt{H/L} \frac{1}{\tan \alpha}$$
(4.10)

In beide parameters blijkt de hoofdparameter (q respectievelijk h_d) met de golfhoogte dimensieloos gemaakt te zijn, waarna deze term met een macht van de golfsteilheid en de taludhelling (beide eveneens dimensieloos) wordt vermenigvuldigd.

Owen (1980) geeft overslagformules voor rechte taluds en taluds met bermen. De volgende dimensieloze parameters worden voorgesteld:

Overslagdebiet:

$$Q^{\star} = \frac{q}{T_{m} g H_{s}}$$
(4.11)

Kruinhoogte:

$$R^{\star} = \frac{n_{d}}{T_{m} \sqrt{gH_{s}}}$$
(4.12)

Met een andere schrijfwijze wordt meer inzicht verkregen in de rol van de fysische parameters:

$$Q^{\star} \sim \frac{q}{\sqrt{gH^3}} \sqrt{H/L}$$
(4.13)

$$R^* \sim \frac{h_d}{H} \sqrt{H/L}$$
(4.14)

De structuur vertoont grote overeenkomst met de formulering volgens TAW (1972). Alleen ontbreekt nu de term met de taludhelling. Het verband tussen de overslag en de kruinhoogte wordt gegeven door een exponentiële kromme:

 $Q^* = A \exp(-B R^*)$

(4.15)

(4.16)

(4.17)

waarin A en B coëfficiënten zijn, welke afhangen van de taludhelling. Voor een talud 1:4 is A = 0,0192 en B = 46,97.

Synthese

Bovenstaande twee formuleringen blijken goed met elkaar vergelijkbaar te zijn. Na enige herleiding kunnen de dimensieloze parameters rechtstreeks in elkaar uitgedrukt worden:

dimensieloze kruinhoogte:

$$\frac{x}{R*} = \sqrt{2\pi} \cot \alpha \sqrt{H_s/H_m}$$

dimensieloos overslagdebiet:

 $\frac{y}{Q*} = 10 \ (2\pi) \ \sqrt{\cot\alpha} \ (H_s/H_m)$

De lijnen volgens TAW (1985) zijn dus rechtstreeks te vergelijken met de lijnen volgens Owen (1980). Figuur 70 geeft deze vergelijking, waarbij verschillende taluds voor de lijnen volgens Owen zijn uitgezet. Deze lijnen liggen grotendeels net onder de maximale schatting volgens TAW (1985) en komen alleen voor erg grote overslagdebieten (x < 0.5) en erg kleine overslagdebieten (x > 2.5) erboven. Zoals later in de beschikbare meetgegevens zal blijken, ligt in praktische gevallen de waarde van x echter meestal wel tussen de waarden 0.5 en 2.5, zodat gesteld kan worden dat de formule volgens Owen (1980) in de praktijk dicht bij de maximum schatting volgens TAW (1985) ligt.

De lijn voor het talud 1:3 springt er iets uit voor lage overslagdebieten. Dit komt waarschijnlijk doordat deze lijn een interpolatie is van een 1:2 en

-41-

1:4 talud en niet is gebaseerd op meetwaarden. Het talud 1:5 is een extrapolatie. Uitgaande van Figuur 70 lijkt het geen gek idee om de verschillende taluds tot één lijn samen te brengen.

De relatieve oploop R_u/H_S geeft bij gladde rechte taluds in de meeste gevallen een maximum te zien voor een bepaalde combinatie van taludhelling en golfsteilheid. Dit hangt samen met de overgang van brekende naar niet-brekende golven. Verwacht mag worden dat ook de overslag bij deze combinatie een maximum vertoont. In overslagrelaties neemt de dimensieloze overslag logischerwijze monotoon af voor toenemende dimensieloze kruinhoogte. Het inbrengen van de golfsteilheid (en de taludhelling) in deze parameters is dan ook alleen bruikbaar als brekende golven beschouwd worden.

Opmerkelijk is echter dat juist bij een talud 1:4 een duidelijk maximum in de oploop ontbreekt. Bij een talud 1:2.5 is zo'n maximum wèl duidelijk aanwezig en komt ook uit de meetresultaten naar voren (zie Figuur 34). Op grond hiervan kan worden verwacht dat het lineaire verband tussen log(Q*) en R* wellicht goed van toepassing is voor het talud 1:4, maar niet goed voor het talud 1:2.5 bij de volledige range van golfsteilheden.

Voorgesteld wordt nu de volgende algemene vorm van de dimensieloze parameters aan te nemen:

Overslagdebiet:

$$Q = \frac{q}{\sqrt{gH^3}} \sqrt{H/L} (\tan \alpha)^{C_3}$$
(4.18)

Kruinhoogte:

$$R = \frac{h_d}{H} \sqrt{H/L} (\tan \alpha)^{C_4}$$
 (4.19)

Omgeschreven ziet de relatie volgens Owen (1980) er nu in de algemene vorm als volgt uit:

$$Q = c_5 \exp(-c_6 R)$$
 (4.20)

In bovenstaande formules moeten de constanten c_3 tot en met c_6 nog bepaald worden. Bovendien moeten de golfhoogte en de golflengte (golfperiode) nog gedefinieerd worden.

- 1. Keuze tussen H_m en H_s 2. Keuze tussen T_m en T_p 3. Bepaling van optimale waarden van c_3 en c_4 (invloed taludhelling) 4. Bepaling van optimale waarden van c_5 en c_6 (relatie Q-R)
- 1. Keuze tussen H en H s

De verhouding tussen H_m en H_s is afhankelijk van de golfhoogte-overschrijdingskromme. Als de golfhoogte-overschrijdingskromme gelijk is (inderdaad veelal een Rayleighverdeling) dan is de keuze tussen H_m en H_s triviaal. Bij de beschikbare overslaggegevens is geen informatie met betrekking tot de overschrijdingskromme van de golfhoogte aanwezig. Het is echter aannemelijk dat een maat voor de hoogste golven (H_s) meer bepalend is voor de overslag dan een maat voor de gemiddelde golven (H_m). In de praktijk wordt bovendien vaker melding gemaakt van meetwaarden van H_s dan van H_m. Uit praktische overwegingen wordt daarom gekozen voor het gebruik van H_s.

2. Keuze tussen T en T

De verhouding tussen T_m en T_p is afhankelijk van de spectrumvorm. Gezocht wordt naar de golfperiode waarbij de relatie tussen Q en R het minst afhangt van de spectrumvorm. Voor het talud 1:4 zijn voldoende geschikte meetgegevens beschikbaar om te bepalen bij welke combinatie de overslag het best met de voorgestelde overslagformule beschreven kan worden. In Figuur 71a en 71b zijn deze gegevens weergegeven voor de twee verschillende golfperiodes. (Hierbij is, vooruitlopend op de latere keuze, $c_3 = c_4 = -\frac{1}{2}$ gesteld.) Bij deze figuren kunnen de volgende conclusies getrokken worden:

- De gegevens bevestigen een rechte lijn op log-lineair papier, zodat de vorm van de voorgestelde overslagformule goed bruikbaar is.
- De overslaggegevens bij de proeven met de verschillende spectrumvormen komen het best overeen als wordt uitgegaan van de piekperiode T_n.

- 3. <u>Bepaling van optimale waarden van c₃ en c₄</u> (invloed taludhelling) Vervolgens moet de invloed van de taludhelling in rekening worden gebracht, uitgaande van de voorgestelde vergelijking. Hiervoor zijn (tenminste) drie methoden. Ter wille van de eenvoud worden uitsluitend veelvouden van ½ bekeken.
 - a. Owen (1980) geeft een tabel van waarden voor A en B bij verschillende tanα. Er is getracht om in deze tabel een relatie te vinden in de vorm:

$$A \sim (\tan \alpha)^{C_3} \tag{4.21}$$

$$B \sim (\tan \alpha)^{C_4} \tag{4.22}$$

Dit is echter niet gelukt. De tabel is overigens gebaseerd op meetwaarden bij alleen de taluds 1:1, 1:2 en 1:4. De overige waarden zijn inter- en extrapolaties.

b. In navolging van de formulering volgens TAW (1972) kan voorgesteld worden:

$$c_3 = -\frac{1}{2}$$
 (4.23)

$$c_4 = -1$$
 (4.24)

In Figuur 72a is de relatie Q-R voor deze combinatie uitgezet. Uit deze figuur blijkt dat de meetresultaten van de verschillende taluds niet goed samenvallen.

c. In het verslaggedeelte met betrekking tot oploop is geconstateerd dat de verhouding van de taludhelling (tan α) tot golfsteilheid (H_S/L_O) een goede basis kan zijn om oploopgegevens van verschillende taluds met elkaar te vergelijken. Deze verhouding kan in de dimensieloze overslagparameters worden opgenomen door de volgende waarden voor c₃ en c₄ te kiezen:

$$c_3 = -\frac{1}{2}$$
 (4.25)

 $c_4 = -\frac{1}{2}$ (4.26)

In Figuur 72b is bij deze combinatie log(Q) uitgezet tegen R. Uit een vergelijking met Figuur 72a blijkt dat met deze formulevorm de meetresultaten van de verschillende taluds beter samenvallen dan volgens methode b. Alleen de meetresultaten bij het talud 1:7 liggen net iets onder de trend.

Andere combinaties van c_3 en c_4 zijn nog uitgeprobeerd, maar de resultaten bij $c_3 = c_4 = -\frac{1}{2}$ zijn nog het best gebleken. Hoewel beseft wordt dat deze formule verder geoptimaliseerd zou kunnen worden, wordt hiervan binnen het kader van dit project afgezien.

4. Bepaling van optimale waarden van c_5 en c_6 (relatie Q-R) Met behulp van lineaire regressie is voor alle meetgegevens van Figuur 72b de optimale combinatie van c_5 en c_6 bepaald. Het resultaat is:

$$c_5 = 0.10$$
 (4.27)

$$c_6 = 11.5$$
 (4.28)

Hiermee is nu een schatting gevonden voor een algemene overslagformule, geldend voor loodrecht invallende brekende golven (ξ_{op} < 2.5):

$$Q = 0.10 \exp(-11.5 R)$$
 (4.29)

Met:
$$Q = \frac{q}{\sqrt{gH_3^3}} \sqrt{\frac{s_{op}}{\tan \alpha}}$$
 (4.30)

$$R = \frac{h_d}{H_o} \sqrt{\frac{s_{op}}{t_{an\alpha}}}$$
(4.31)

Deze formule kan beschouwd worden als middel om de meetgegevens van het huidige onderzoek te vergelijken met de resultaten van eerder onderzoek.

In het algemeen kunnen voor de invloed van scheve golfaanval en richtingspreiding op overslag dezelfde trends verwacht worden als bij oploop. (Hierbij wordt er van uitgegaan dat de overslagpercentages zo klein zijn dat de waterbeweging voor de constructie nauwelijks afwijkt ten opzichte van de situatie zonder overslag.) In de literatuur is hierover nog niet veel bekend:

-45-

- Invloed scheve inval

Owen (1980) geeft in grafieken correctiefactoren voor scheve golfaanval voor de constanten A en B. De correctiefactor voor A is maximaal 1.65 voor $\theta = 17^{\circ}$, neemt vervolgens af naar 1.0 voor $\theta \approx 35^{\circ}$ en daalt verder naar 0.45 voor $\theta = 60^{\circ}$. De correctiefactor voor B is voor $\theta < 30^{\circ}$ vrijwel constant gelijk aan 1.0, voor grotere hoeken neemt de factor geleidelijk toe tot 1.37 voor $\theta = 60^{\circ}$.

- De invloed van richtingspreiding en de invloed van de combinatie van scheve inval en richtingspreiding is niet bekend.

- Invloed berm

Owen (1980) geeft in grafieken waarden van A en B voor verschillende taludhellingen, bermbreedtes en bermdieptes. Vanwege het feit dat de laatste twee maten niet dimensieloos zijn en vanwege de grove aard van deze grafieken wordt deze informatie niet bruikbaar geacht.

Het is niet goed mogelijk om de invloed van de verschillende parameters onder te brengen in een invloedsfactor, zoals dat bij oploop kan. Dit wordt met name veroorzaakt door de grote onderlinge verschillen in overslagdebiet. In theorie bestaat echter de mogelijkheid om de oploopresultaten te vergelijken met de overslaggegevens door de invloedsfactor(en) r in de dimensieloze kruinhoogte te verwerken. Als namelijk de relatieve oploop door een bepaalde invloed (berm, scheve inval, etc.) met een factor r wordt vermenigvuldigd, kan voor de overslag beschouwd worden als een vermenigvuldiging van de relatieve kruinhoogte met een factor 1/r. Als de oploop dus kleiner wordt, wordt de schijnbare kruinhoogte groter, waardoor de overslagkans en het overslagdebiet kleiner worden. In de overslagformule kan dit als volgt worden opgenomen:

$$Q = 0.10 \exp(-11.5 \frac{R}{r_1})$$
 (4.32)

Vanwege de grote verschillen in debiet wordt gekeken naar de invloed van de verschillende factoren op log(Q). De invloeden worden dan aangeduid als $log(r_2)$:

$$\log(r_2) = \log(Q/Q_{ref}) = \log(Q) - \log(Q)_{ref}$$
 (4.33)

Met bovenstaande aanname voor r geldt op grond van de oploopresultaten:

$$log(r_2) = log(exp(-11.5 (\frac{1}{r_1} - 1) R))$$
 (4.34)

Het is echter niet mogelijk om een debiet gelijk aan nul in de beschouwing op te nemen. Op grond van de oploopresultaten bij de proevenseries op de verschillende constructies worden nu de volgende invloeden op de overslag **verwacht**:

- 1. De invloed van de richtingspreiding is verwaarloosbaar.
- 2. De invloed van de hoek van golfaanval voor langkammige golven is gegeven in Figuur 73 tot en met 75.
- De invloed van de hoek van golfaanval voor kortkammige golven is gegeven in Figuur 76 tot en met 78.
- 4. De overslag onder invloed van de berm kan worden gebaseerd op $r_B = 0.65$ à 0.70 bij oploop. De dimensieloze kruinhoogte wordt door de berm met een factor $1/r_p$ vermenigvuldigd:

 $Q = 0.10 \exp(-11.5*1.5*R)$

De richtingscoëfficiënt van de lijn voor log(Q) wordt dus 1.5 maal zo groot. Voor R = 0.500 geldt dat de waarde van log(Q) ongeveer 1.25 lager is voor het talud met berm dan voor het talud zonder berm.

(4.35)

Overslagdebiet bij niet-brekende golven

In Figuur 79 zijn de meetgegevens bij brekende golven (ξ_{op} < 2.5) vergeleken met de meetgegevens bij niet-brekende golven (ξ_{op} > 2.5). De meeste meetgegevens van niet-brekende golven hebben betrekking op vrij steile taluds (cota \leq 2).

De conclusie uit deze figuur is dat de het overslagdebiet bij niet-brekende golven in het algemeen niet groter is dan het overslagdebiet bij brekende golven. Daarom wordt als benadering aanbevolen om ook voor brekende golven de afgeleide overslagformule te hanteren. In veel (maar zeker niet alle!) gevallen zal deze benadering een overschatting van het debiet opleveren.

-47-

Conclusies:

1. Uitgaande van een oploopformule is voor $\xi_{op} \leq 2.2$ (brekende golven) een verband gevonden tussen de overslagkans en de relatieve kruinhoogte:

$$P(overslag) = exp(-(\frac{h_d/H_s}{0.81 \xi_{op}})^2)$$
 (4.)

2. Er is een schatting gevonden voor een algemene overslagformule, gebaseerd op beschikbare meetgegevens, geldend voor loodrecht invallende brekende golven ($\xi_{op} \leq ca. 2.5$):

$$Q = 0.10 \exp(-11.5 R)$$
 (4.)

Hierin is:

Q = dimensieloos overslagdebiet Q =
$$\frac{q}{\sqrt{gH_s^3}} \sqrt{\frac{s_{op}}{tan\alpha}}$$
 (4.)

R = dimensieloze kruinhoogte R =
$$\frac{h_d}{H_s} \sqrt{\frac{s_{op}}{t_{an\alpha}}}$$
 (4.)

$$\xi_{\rm op} = brekerparameter$$
 $\xi_{\rm op} = \frac{tan\alpha}{\sqrt{s_{\rm op}}}$

- 3. Op grond van de invloed van scheve golfaanval, richtingspreiding en een berm op de oploop kunnen verwachtingen worden opgesteld voor de invloed van deze factoren op de overslag door de invloedsfactor voor de oploop te verwerken in de kruinhoogte.
- 4. Ook voor niet-brekende golven wordt de bovenstaande overslagformule aanbevolen, zij het dat in veel gevallen deze berekening een overschatting van het overslagdebiet zal opleveren.

4.2 <u>Referentieproeven</u> (LL)

Voor zover gegevens beschikbaar zijn, wordt de opbouw van de paragrafen waarin de proefresultaten besproken worden gelijk gehouden aan de opbouw vermeld in paragraaf 3.2 (bij de oploopresultaten).

Vergelijking overslagpercentages met oplooppercentages

Talud 1:4

In Figuur 80a zijn de gemeten oplooppercentages voor de respectievelijke kruinhoogtes uitgezet tegen de gemeten overslagpercentages. Een duidelijke trend is aanwezig dat het oplooppercentage kleiner is dan het overslagpercentage. Het verschil is gemiddeld enkele procenten voor kleine overslagpercentages tot tien procent voor overslagpercentages groter dan 30-40 %. De spreiding is vrij groot.

Ook bij de vergelijking van het overslagpercentage met de afgeleide formule voor de overslagkans (Figuur 80b) geeft een grote spreiding te zien. Globaal is de overeenkomst echter redelijk.

Talud 1:4 met berm

Voor de vergelijking van de gemeten oplooppercentages en de gemeten overslagpercentages (Figuur 81a) geldt hetzelfde als bij het talud 1:4. De vergelijking met de afgeleide formule in Figuur 81b geeft al aan hoe groot de invloed van de berm is op de overslag.

Talud 1:2.5

Globaal geldt ook hier voor de vergelijking van de gemeten oplooppercentages en de gemeten overslagpercentages hetzelfde als bij het talud 1:4. Beide percentages zijn overigens in dit geval vrij klein, zie Figuur 82a.

De spreiding in Figuur 82b, waarin de overslagpercentage met de afgeleide formule voor de overslagkans wordt vergeleken, is zeer groot. Dit wordt veroorzaakt doordat de formule geldt voor brekende golven. Bij het talud 1:2.5 zijn bij veel proeven de golven niet echt gebroken, waardoor lagere overslag-percentages gevonden worden. Dit geldt vooral voor de lage golfsteilheden.

Het verschil tussen de gemeten oplooppercentages en de overslagpercentages wordt verklaard uit het feit dat de oploopmeter waterlaagjes van 3 à 4 mm registreerde, terwijl de waterlaagjes bij de overslag al bij een dikte van minder dan 1 mm geregistreerd werden.

Analyse overslagdebieten

Talud 1:4

In Figuur 83 zijn is het gemeten verband tussen log(Q) en R gegeven met onderscheid tussen de twee kruinhoogtes. Het blijkt dat de resultaten van de twee kruinhoogtes redelijk goed met elkaar overeenkomen. De overeenstemming met de algemene formule is redelijk, al is de trend in de meetgegevens iets minder steil. (De richtingscoëfficiënt van de lijn voor log(Q) bedraagt ongeveer 3.5.)

Talud 1:4 met berm

Het verband tussen log(Q) en R is ook bij een talud met een berm bij benadering lineair, zie Figuur 84. De trend ligt echter duidelijk lager dan het verband dat voor rechte taluds geldt.

Talud 1:2.5

In Figuur 85 is het gemeten verband tussen log(Q) en R gegeven met onderscheid tussen de twee kruinhoogtes. De punten met $\xi_{op} > 2.2$ zijn weer apart aangegeven. Bij beide kruinhoogtes geeft de proef met de kleinste golfsteilheid (kleinste waarde voor (R) een duidelijk kleiner overslagdebiet dan de proeven met grotere golfsteilheid. Een dergelijk verschijnsel was ook bij golfoploop geconstateerd. De overeenkomst met de algemene overslagformule is zeer matig. Opvallend hierbij is dat de meetgegevens van de verschillende kruinhoogtes een onderling afwijkend verband tonen.

Invloed waterdiepte en schaal

Overslag trad niet op voor waterstanden die lager waren dan de meest gehandhaafde waterstand van 0.72 m. (Een uitzondering is alleen proef LL6.) De invloed van de waterstand en de schaal op de overslag kan dus met deze gegevens niet onderzocht worden. Dit was ook bij de opstelling van het proevenprogramma voorzien.

Invloed berm

In Figuur 86 is voor de overeenkomstige kruinhoogte de overslag bij de berm vergeleken met de overslag bij het vlakke talud. De trend is bij de berm duidelijk steiler. De richtingscoëfficiënt van de lijn voor log(Q) bedraagt ongeveer 7.0. Dit is 2.0 maal zo groot als de richtingscoëfficiënt zonder berm in de meetgegevens en 1.4 maal zo groot als de richtings-coëfficiënt zonder berm volgens de overslagformule. Een factor 1.5 was verwacht. De invloed van de berm volgt overigens vrijwel rechtstreeks uit een vergelijking van de verbanden tussen log(Q) en R. Deze invloed zal dan ook verder niet afzonderlijk behandeld worden.

Invloed taludhelling

Het verband tussen de kruinhoogte R en de overslag Q is niet voor beide rechte taluds gelijk. Bovendien zijn de kruinhoogtes alle vier verschillend. Het is daarom niet goed mogelijk de meetresultaten rechtstreeks met elkaar te vergelijken. De gegevens kunnen alleen indirect met elkaar vergeleken worden door de mate van overeenkomst met de algemene overslagformule te bepalen. Deze vergelijking wordt al in de beschrijving van de resultaten bij de afzonderlijke taluds gemaakt. Ook deze invloed zal daarom verder niet nog eens apart behandeld worden.

Conclusies:

- Het verschil tussen de gemeten overslagpercentages en de gemeten oplooppercentages wordt veroorzaakt doordat de oploopmeter kleine waterlaagjes niet detecteert.
- 2. Het verschil tussen de gemeten overslagpercentages bij het talud 1:2.5 en de overslagpercentages, gebaseerd op de formule voor de overslagkans (afgeleid uit oploopformules), wordt veroorzaakt door het feit dat niet bij alle proeven voldoende sprake is geweest van brekende golven. Dit is reeds bij de oploop gebleken in de vorm van een knik in de oplooptrend voor ξ_{op} = 2.0 à 2.5.
- 3. Het gemeten overslagdebiet komt voor het talud 1:4 redelijk goed overeen met de in hoofdstuk 1 bepaald overslagformule. Het verband voor het talud 1:4 met de berm geeft een gelijkvormig (rechtlijnig) beeld met alleen beduidend lagere overslagdebieten. Voor het talud 1:2.5 is de overeenkomst met de overslagformule zeer matig. Dit komt vooral tot uiting in het feit dat de meetgegevens bij de twee kruinhoogtes niet goed met elkaar in overeenstemming zijn te brengen door de kruinhoogtes dimensieloos te maken. Bovendien worden afwijkingen veroorzaakt door het voorkomen van niet-brekende golven.

1.,

4. De invloed van de berm is redelijk in overeenstemming met de verwachting op grond van de invloed van de berm op de oploop.

4.3 <u>Scheve inval</u> (SL)

Talud 1:4

Figuur 87 geeft de resultaten voor scheve langkammige golfaanval waarbij log(Q) is uitgezet als functie van de hoek van golfaanval. Onderscheid is gemaakt voor verschillende R- waarden. Net als bij oploop moet interpolatie worden toegepast om de meetgegevens goed met elkaar te kunnen vergelijken. (Deze vergelijking is niet zonder meer mogelijk omdat het niet precies gelukt is om de gewenste golfsteilheden te verkrijgen.) Een geschikte methode is om bij proeven met gelijke hoek van golfaanval op de precieze waarde van R de waarde van log(Q) te bepalen. Hierbij kan worden uitgegaan van het rechtlijnige verband tussen log(Q) en R met richtingscoëfficiënt -5.0.

Het verband voor loodrecht invallende golven bij het talud 1:4 gaf echter een iets flauwer verlopend verband te zien (richtingscoëfficiënt -3.5). Daarom is de volgende correctieformule toegepast:

$$\log(Q)_{\text{gewenst}} = \log(Q)_{\text{aanwezig}} - 3.5 \star \{(R)_{\text{gewenst}} - (R)_{\text{aanwezig}}\}$$

Uit de figuur volgt dat tot een hoek van 30° vrijwel geen reductie in log(Q) aanwezig is en dat reductie plaatsvindt tussen 30° en 60°. Daarna blijft waarschijnlijk de overslag op een min of meer constant nivo. De proeven met hoeken van 70° en 80° zijn minder betrouwbaar. Hoewel de referentiewaarden niet precies overeenkomen met de verwachting is de trend van de invloed van de hoek van golfaanval vrij goed in overeenstemming met de verwachting.

Talud 1:4 met berm

Zie Figuur 88. Bij het talud met berm is een iets andere correctieformule toegepast, namelijk:

$$\log(Q)_{gewenst} = \log(Q)_{aanwezig} - 7.0 * \{(R)_{gewenst} - (R)_{aanwezig}\}$$

Dit houdt verband met de afwijking van het verband voor loodrecht invallende golven ten opzichte van de algemene formule. Bij scheve golfaanval treedt een maximum op tussen een hoek van golfaanval tussen de 10° en de 20°. Voor

-52-

grotere hoeken neemt de overslag bij de hoge kruin snel af terwijl dit bij de lage kruin pas na θ = 50° gebeurt. Voor R = 0.500 kan een vergelijking gemaakt worden tussen de waarden van log(Q) met en zonder berm (zie Figuur 89). Het verschil in log(Q) bedraagt gemiddeld ongeveer 1.4. (Verwacht was 1.25.)

Talud 1:2.5

Bij het talud 1:2.5 is geen correctieformule toegepast, in verband met het feit dat de overslag bij de verschillende steilheden nauwelijks verschillen vertoont (voor de afzonderlijke kruinhoogtes). Bij de lage kruin is een maximum in de overslag te zien bij $\theta = 30^{\circ}$ (zie Figuur 90). Voor grotere hoeken van golfaanval neemt de overslag snel af. Bij de hoge kruin bevindt het maximum zich bij $\theta = 20^{\circ}$. Het verschil in overslag tussen de twee kruinen neemt toe voor grotere hoeken van golfaanval. De overslagreductie is sterker dan verwacht al moet vermeld worden dat de spreiding vooral voor kleine debieten groot is.

Conclusie:

1. Hoewel de spreiding in de meetresultaten betrekkelijk groot is komt de trend van de invloed van de hoek van golfaanval vrij goed overeen met de verwachting op basis van de invloed op oploop. Alleen de hoogte van de eventuele maxima voor een hoek kleiner dan 30° blijkt moeilijk te voorspellen. Dit wordt waarschijnlijk veroorzaakt door de spreiding, zowel in de oploop- als in de overslagmetingen.

4.4 <u>Richtingspreiding</u> (LK)

Talud 1:4

Figuur 91 geeft het verband tussen log(Q) en R bij loodrecht invallende kortkammige golven. Figuur 92a geeft de invloed van richtingspreiding bij loodrechte golfaanval. Figuur 92b geeft de invloed van de mate van richtingspreiding. De invloed is duidelijk: alle punten liggen op een lijn en de mate van richtingspreiding bij loodrechte golfaanval heeft vrijwel geen effect op de overslag.

Talud 1:4 met berm

Ook voor het talud 1:4 met berm blijkt de richtingspreiding nauwelijks invloed op de overslag te hebben. Dit blijkt uit Figuur 93 en 94.

-53-

Talud 1:2.5

Ook voor het talud 1:2.5 blijkt de richtingspreiding nauwelijks invloed op de overslag te hebben, zie Figuur 95 en 96. Opvallend hierbij is wel dat de overslag voor kortkammige golven in het algemeen net iets hoger ligt dan voor langkammige golven, terwijl dit bij het talud 1:4 eerder andersom is.

Conclusie:

 De invloed van de richtingspreiding bij loodrecht invallende golven is nagenoeg verwaarloo_baar. Dit is goed in overeenstemming met de gemeten ir.vloed op golfoploop.

4.5 <u>Combinatie van scheve inval en richtingspreiding</u> (SK)

Talud 1:4

Figuur 97 geeft de overslag als functie van de hoek van golfaanval. De trend is vrijwel rechtlijnig en komt redelijk goed overeen met de verwachting. De invloed van de hoek van golfaanval is duidelijk veel kleiner voor kortkammige, dan voor langkammige golven.

De invloed van de mate van richtingspreiding is ook onderzocht bij hoeken van 20° en 40°. De resultaten zijn in Figuur 98 en 99 gegeven. Dezelfde conclusie kan worden getrokken als bij loodrechte golfaanval. Alleen bij $\theta = 40^\circ$ geldt dat de richtingspreiding zorgt voor een licht toename van de overslag. Dit geldt met name voor het geval bij langkammige golven de invalshoek van 40° al een aanzienlijke overslagreductie geeft. De richtingspreiding verkleint deze invloed.

Talud 1:4 met berm

Zie Figuur 100. Bij het talud 1:4 met berm treedt een maximum op voor een aanvalshoek van 20°. Dit maximum is nog duidelijker dan bij langkammige golven. Voor grotere hoeken wordt de spreiding in de resultaten groter, maar er blijft wel sprake van overslag in tegenstelling tot de trend bij langkammige golven. Het maximum voor de kleine hoek van golfaanval wijkt duidelijk af van de verwachting. Voor R = 0.500 kan een vergelijking gemaakt worden tussen de waarden van log(Q) met en zonder berm (zie Figuur 101). Het verschil in log(Q) bedraagt gemiddeld ongeveer 1.5. (Verwacht was 1.25.)

Talud 1:2.5

Zie Figuur 102. Bij het talud 1:2.5 wordt de invloed van de hoek van golfaanval op de overslag verkleind door de richtingspreiding. Enerzijds is er hierdoor nauwelijks meer sprake van een maximum overslag bij scheve inval, anderzijds is zelfs voor grote invalshoeken nog sprake van overslag. De overeenkomst met de verwachting is weer redelijk goed.

Conclusies:

- De invloed van de combinatie van richtingspreiding en scheve golfaanval op de overslag is (behalve voor het talud met de berm) redelijk goed in overeenstemming met de verwachting, gebaseerd op de invloed op de oploop.
- 2. De invloed van de hoek van golfaanval wordt (net als bij oploop) kleiner door de richtingspreiding. Dit geldt echter alleen voor de rechte taluds. Bij het talud met de berm neemt het maximum voor θ = 20 zelfs nog toe ten opzichte van het overeenkomstige maximum bij langkammige golven.

	'n	0	33300000
	Ŭ	,	
	O	(J)	
	8	-	22222222
	Ś	÷	
	т	(m)	
	д	(m)	2222222
	proef		SLJA SLIA SLIA SLI3A SLI3A SLI3A SLI3A SLI3A SLIA STZA
[h	()	222828888888888888888888888888888888888
)	
	Θ	(。)	222222222222222222222222222222222222222
	Sop	(-)	
	т°	(m)	222222222222222222222222222222222222222
	ų	(m)	
	f		
	proe		KK1 KK1 KK1 KK1 KK1 KK1 KK1 KK1
~~]			000000000000000000000000000000000000000
op) slag slag	0	ډ)	
(oplo (over (over	Θ	(°)	000000000000000000000000000000000000000
1.25 .96 .87	Sop	(-)	
4 m)	H	(m)	222222222222888222222222222222222222222
lud 1: gtes (ч	(m)	£5555555555555555555555555555555555555
Recht ta Kruinhoo	proef		LL1 LL2 LL2 LL2 LL2 LL2 LL2 LL2 LL10 LL10

32000000

Proevenprogramma Tabel 1

Talud 1: Kruinho	:4 met ogtes	berm (m)	1.25 .87 .82	(oploo (overs (overs	p) lag) lag)	Recht t Kruinho	alud 1 ogtes	:2.5 (m)	1.25 (oploop) 1.02 (overslag) .93 (overslag)				
prœf	h	Нs	s _{op}	θ	σ	proef	h	Hs	Sop	θ	σ		
	(m)	(m)	(-)	(*)	(°)		(m)	(m)	(-)	(^)	(°)		
LL1B LL2B LL3B LL4B LL5B SL6B SL7B SL8B SL7B SL10B SL10B SL12B SL12B SL13B LK14B LK15B LK16B LK17B LK16B LK17B LK16B SK19B SK20B SK21B SK22B SK23B SK22B	.72 .72 .72 .72 .72 .72 .72 .72 .72 .72	.12 .12 .12 .12 .12 .12 .12 .12 .12 .12	$\begin{array}{c} .01\\ .02\\ .03\\ .04\\ .05\\ .04\\ .04\\ .04\\ .04\\ .04\\ .04\\ .04\\ .04$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 70 \\ 80 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 60 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LL1C LL2C LL3C LL4C LL5C SL6C SL7C SL8C SL9C SL10C SL11C SL12C SL12C SL12C LK14C LK15C LK14C LK15C LK16C LK17C LK16C SK20C SK21C SK22C SK23C SK22C SK23C	.72 .72 .72 .72 .72 .72 .72 .72 .72 .72	$\begin{array}{c} .12\\ .12\\ .12\\ .12\\ .12\\ .12\\ .12\\ .12\\$	$\begin{array}{c} .01\\ .02\\ .03\\ .04\\ .05\\ .04\\ .04\\ .04\\ .04\\ .04\\ .04\\ .04\\ .04$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

Tabel 1Proevenprogramma (vervolg)

ч	÷	ទម់នាន់នេះមន់នាន់ ន
Z	.	1192 1192 1192 1192 1192 1192 1192 1193 1193
Ь		3/3/2/3 2/3/2/3 <t< th=""></t<>
0) (_)	-outuutusotionto321888888888888888888888888888888888888
ω	(-)	405 405 405 405 405 405 405 405 405 405
¥.	-	523 554 555 555 555 555 555 555 555 555 55
H.t	-	886 887 888 888 888 888 888 888
μ.τ Υ	- -	
*	·) (-	
مد ا	-) (-	889696877777777777777777777777777777777
S S	-) (
ŭ v	-) (
rden	s) (s	P\$\$P\$2322222222222222222222222222222222
orwaa To	s) (s	0412832283244555683325434284284238428428428428428326232 23 4
, Hove	reen (m	
olfra H	(E)	
τen Έ	1ep (m)	
, High	а (в е	<u>1222121212222222222222222222222222222</u>
Ъ	(;)	<u> </u>
Φ	<u> </u>	٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٤٤٤٤٤٤٤٤٤٤٤٤٤٤٤٤٤٤٤٤
Sop	(-)	200020000000000000000000000000000000000
ramma H _s	(m)	222222222222288822222222222222222222222
enprogr h	(m)	
Proev		LL1 LL2 LL2 LL2 LL2 LL2 LL2 LL2 LL2 LL2

Tobel 2 Gemeten randvoorwaarden

,

<u>ц</u>	Ĵ		ц	÷	
Z	-	$\begin{smallmatrix} 1023\\ 1033\\ 10$	z	(-)	$\begin{array}{c} 1141 \\ 1069 \\ 1035 \\ 1035 \\ 1006 \\ 1083 \\ 1083 \\ 1056 \end{array}$
ь	(.)	Z\$\$\$\$%%%\$	ь	(。)	33 733220 23
Ð	C	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Φ	(°)	23 45 61 9
ω	-)	444 447 447 447 447 447 447 447 447 447	ω	(-)	.401 .412 .358 .358 .321 .321 .434
x'	÷	x x x x x x x x x x x x x x x x x x x	× ¹	(-)	.572 .529 .526 .526 .584 .641 .641 .505
нн _У	-	611 611 611 611 611 611 611 611 611 611	к нн.	(-)	.639 .575 .575 .621 .604 .603 .590
Днн т	-	841 842 843 844 845 845 845 845 845 845 845	Унн.t	-)	.416 .380 .389 .389 .389 .437 .374 .374
	Ĵ	1.33 1.33 1.33 1.34 1.35 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>.</u>	2.33 2.33 1.26 1.28 1.30 1.34 1.34
200 S	• •	$\begin{array}{c} 0.023\\ 0.$	Sop	(-)	.012 .039 .049 .038 .035 .035 .037
S S S	-	$\begin{array}{c} 0.03\\ 0.02\\ 0.03\\$	wo s	-	.019 .058 .058 .058 .058 .055 .055
م _و	(s)	1.42	٩	(s)	2.70 1.39 2.78 1.41 1.41 1.41 1.41 1.41 1.36 1.36
Tm	(s)	1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15	Taarde Tm	(s)	2.12 2.12 1.15 1.19 1.13 1.13 1.13
H NOON	с (E		Hmo H	œ	.117 .1115 .138 .138 .133 .133 .097 .097
frand Hs	(n)		frand H s Tee	<u></u>	.120 .102 .140 .137 .137 .102
log e r gol	д (ш)		g E E E E E E	(E)	.129 .116 .123 .123 .123 .123 .123 .123
Gemete Hs	(m)		Gemete H _s Die	(m)	112 124 124 124 124 124 124 124 124 124
<u>ь</u>	<u> </u>	222222222222222222222222222222222222222	σ	(ئ	<u> </u>
Φ	()	00000000000000222222222222222222222222	θ	(r)	889498001 8899999001
soo Soo	÷ .	2422242424242424242424242424242424242424	Sop	Ī	222222222
ranna H _s	í	222222222222222222222222222222222222222	ramma H _s	(E	222222222
nprog. h	(E)	<i><i><i><i><i>x</i>xxxxxxxxxxx</i></i></i></i>	nprog. h	(II)	22222222
Proeve proef		LK1 LK2 LK5 LK5 LK5 LK5 LK7 LK1 LK1 LK1 LK1 LK1 LK1 LK1 LK1 LK1 LK1	Proeve proef		SL3A SL10A SL10A SL13A SL13A SL18A SL18A SL26A SL26A SL26A SK2A

Tabel 2 Gemeten randvoorwaarden (vervolg)

_					_	والمحالات فنتحو معاليا الشاهنا معاجر وموان والواني المواد ومعرفي ويتجرب والمراجع والمراجع
	L.	(-)		н	(-)	
	N	(-)	$\begin{array}{c} 1218\\ 1218\\ 1044\\ 1044\\ 1045\\ 10045\\ 10042\\ 10042\\ 10048\\ 10048\\ 10048\\ 10048\\ 10048\\ 10048\\ 10048\\ 10046\\ 10046\\ 10046\\ 10046\\ 10061\\ 10066\\ 10060\\ 1000\\ 100$	N	(-)	11138 1453 1099 10036 10036 10036 10047 10047 10047 10058 10058 10058 10059 10059 10059 10059 10059 10059 10059 10059 10059 10050 10
	ь	(_`)	***************************************	ъ	(。)	&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
	θ	(.)	2000008838868 <u>5</u> 08704888888888	θ	(。)	ら <u>10003384758888510802885487</u> 285285
	ω	(-)		ω	(-)	.474 .340 .340 .340 .340 .340 .340 .340 .34
	۲ ۲	-	522 527 552 552 552 552 552 552 552 552	۲ ^۲	(-)	.521 .523 .523 .523 .523 .523 .523 .523 .523
	К HH.(Ŀ	.575 .625 .579 .579 .579 .579 .579 .579 .579 .57	К нн.t	:	
	Унн.t	Ŀ	284 287 287 287 287 287 287 287 287 287 287	Унн.t	(-)	
	5	<u>.</u>	2.45 2.45 2.45 2.45 2.45 2.45 2.45 2.45		(-)	2.06 2.03 2.73 2.73 2.73 2.23 2.20 2.09 2.09 2.00 2.00 2.00 2.00 2.00
	do G	<u> </u>	0010 0010 0011 0011 0011 0011 0011 001	e S	-	013 0028 0028 0041 0041 0041 0043 0043 0043 0043 0043
	Som	<u>.</u>	033 035 055 055 055 055 055 055 055 055	چ دی	(-)	055 055 055 055 055 055 055 055 055 055
	<u>م</u>	(s)	312222233349494933425255555555555555555555	م ۲	(s)	1.42
arde	٤	(s)	1.1.56 1.1.34 1.1.34 1.1.15 1.	aardei T m	(s)	11.138 11
NOOT W	Ê.	(E	1111 1117 1117 1117 1117 1117 1117 111	H no n H no n H n	(m)	108 109 109 109 109 109 109 109 109 109 109
frand	я Ч	(E)	122 122 122 122 122 122 122 122 122 122	frand H _s	(m)	155 157 157 157 157 157 157 157 157 157
	° E H	<u>е</u>	11111111111111111111111111111111111111	H doll	(m)	109 109 109 109 109 109 109 109 109 109
Gemete	Hs. Die	(E)	1121 1121 1121 1122 1122 1123 1123 1123	Gemete H _s	(m)	.150 .130 .130 .130 .130 .133 .133 .133 .13
	σ	2	222222222222222222000000000000000000000	υ	ر <i>(</i>	<u>33333333333333333</u> 00000000000000000000
	θ	0	83653583500000000588658	Φ	(·) (82655553535500000000000000000000000000000
	Sop	Ē	55555555555555555555555555555555555555	Sop	-	122222222222222222222222222222222222222
Tamma	т	(E	222222222222222222222222222222222222222	ramma Hs	(m)	222222222222222222222222222222222222222
10010t	r L	(E	**********************	h h	(m)	************************
Proevei	proef		[LL1B [LL2B [LL2B SL6B SL6B SL2B SL2B SL2B SL2B SL2B SL2B SL2B SL2	Proevel proef	-	LL1C LL2C LL2C LL2C LL4C LL4C SL1C SL1C SL1C SL1C SL1C SL1C SL1C SL1

Gemeten randvoorwaarden (vervolg) \sim

.

Tabel

Proev proef	enprog h (m)	yramma H _s (m)	s _{op} (-)	θ (`)	σ ()	Gemet H _s Di (m)	en go Tp ep (s)	lfrvw ^S op (-)	ξ _ρ (-)	(Ru .5% (m))ploor R _u 2% (m)	R. 5% (m)	R. 10% (m)	R. 20% (m)	Ru /Hs R .5% (-)	ູ∕∺ _∎ R, 2 ° (-)	,/H,R, 5% (-)	/H_R_ 10% (-)	/н , 20% (-)
LL1 LL2 LL3 LL4 LL5 LL6 LL7 LL8 LL9 LL10 LL11 LL12 LL13 LL14 SL1 SL2 SL3 SL4 SL5 SL6 SL7 SL3 SL4 SL5 SL6 SL1 SL12 SL13 SL14 SL12 SL13 SL14 SL15 SL16 SL17 SL18 SL2 SL23 SL14 SL15 SL26 SL17 SL18 SL19 SL10 SL11 SL12 SL23 SL24 SL25 SL26 SL26 SL26 SL26 SL26 SL26 SL26 SL26	n (m) .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72 .72	H_s (m) .12 .12 .12 .12 .12 .12 .12 .12 .12 .12	\$ op (-) .01 .02 .03 .04 .05 .01 .03 .04 .05 .01 .03 .05 .01 .03 .05 .01 .03 .05 .02 .04 .02 .04 .02 .04 .02 .04 .02 .04 .02 .04 .02 .04 .02 .04 .02 .04 .02 .04	0 0	0 0	$\begin{array}{c} {\sf H}_{\rm S} \\ {\sf Di} \\ {\sf Di} \\ {\sf Di} \\ {\sf I} $	i_{p} ep (s) 2.65 2.65 2.65 2.65 2.65 2.75 2.65 2.75 2.65 2.75 2.1.65 2.75 2.1.65 2.75 2.1.65 2.75 2.1.65 2.75 2.1.65 2.75 2.1.65 2.75 2.1.65 2.75 2.1.95 2.1.95	Sop (-) .014 .022 .033 .040 .022 .033 .040 .022 .033 .040 .022 .033 .040 .052 .016 .025 .016 .030 .043 .011 .030 .031 .011 .030 .043 .011 .030 .041 .030 .041 .031 .041 .032 .041 .032 .041 .041 .041 .041 .041 .041 .041 .041 .041 .041	<pre>\$ (-) 2.13 1.68 1.39 1.25 1.10 2.54 1.59 1.14 3.09 1.24 1.24 1.45 1.09 1.83 1.21 2.41 1.45 1.09 1.87 2.40 1.72 1.44 1.11 1.73 1.23 1.23 1.17 1.24 1.17 1.24 1.17 1.25 1.16 1.55 1.16 1.55 1.16 1.55 1.16 1.55 1.16 1.55 1.16 1.55 1.16 1.24 1.17 1.24 1.17 1.24 1.17 1.24 1.24 1.17 1.24 1.24 1.17 1.24 1.24 1.17 1.24 1.24 1.17 1.24 1.24 1.17 1.24 1.24 1.17 1.24 1.24 1.17 1.24 1.24 1.24 1.17 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24</pre>	Ku .5% (m) .430 .312 .290 .233 .208 .363 .238 .208 .363 .238 .208 .178 .166 .133 .082 .073 .291 .178 .166 .133 .082 .073 .291 .239 .400 .288 .248 .248 .208 .183 .271 .239 .400 .288 .248 .248 .183 .271 .205 .350 .266 .243 .198 .168 .169 .219 .170 .219 .100 .219 .110 .219 .110 .219 .110 .219 .110 .219 .110 .219 .110 .219 .110 .219 .219 .110 .219 .110 .219 .219 .110 .219 .219 .219 .219 .219 .218 .288 .288 .288 .288 .288 .288 .288	K. 2% (m) .370 .281 .254 .254 .206 .253 .166 .235 .164 .251 .130 .251 .145 .130 .075 .064 .251 .130 .258 .213 .188 .161 .241 .188 .161 .245 .225 .180 .245 .214 .188 .161 .241 .188 .161 .245 .255 .180 .245 .216 .160 .201 .151 .189 .170 .190 .160 .160 .160 .160 .160 .126 .166	ку 5% (m) .322 .256 .223 .176 .258 .170 .158 .258 .170 .153 .202 .140 .153 .202 .140 .153 .202 .140 .153 .202 .140 .153 .202 .140 .153 .202 .140 .153 .220 .154 .220 .153 .220 .154 .154 .216 .154 .216 .154 .216 .154 .216 .154 .216 .154 .216 .154 .216 .154 .216 .154 .216 .154 .216 .154 .216 .154 .216 .154 .216 .154 .216 .154 .217 .154 .154 .217 .154 .154 .154 .154 .155 .154 .154 .155 .154 .154	Kg 10% 10% 10% .278 .228 .188 .228 .183 .156 .220 .145 .130 .156 .103 .055 .166 .148 .150 .205 .166 .148 .150 .200 .190 .131 .136 .150 .166 .130 .149 .131 .131 .131 .131 .132 .1252 .1284 .1300 .1325 .1326 .1330 .1456 .1325 .1331 .1303 .1314 .1325 .1331 .1331<	K 20% (m) 2232 .188 .158 .158 .130 .106 .168 .133 .108 .136 .136 .136 .136 .136 .136 .136 .136 .136 .136 .136 .136 .136 .136 .136 .136 .136 .136 .137 .106 .168 .138 .136 .145 .088 .145 .169 .145 .169 .122 .169 .121 .155 .166 .130 .145 .169 .122 .115 .166 .130 .145 .169 .121 .155 .166 .130 .145 .169 .121 .155 .166 .130 .173 .169 .121 .155 .166 .130 .173 .169 .121 .155 .166 .130 .173 .169 .122 .115 .166 .130 .173 .169 .122 .166 .130 .173 .169 .122 .166 .130 .173 .166 .169 .122 .166 .130 .173 .155 .166 .130 .173 .166 .169 .173 .166 .169 .173 .166 .169 .173 .166 .169 .173 .166 .169 .173 .166 .173 .170 	$\kappa_{0}/H_{3}R_{1}$ (-) 2.93 2.24 2.23 1.97 1.69 3.21 2.29 1.89 3.21 2.29 1.85 2.20 1.64 2.02 1.44 1.20 2.20 1.64 2.02 1.44 1.20 2.29 1.65 2.20 1.64 2.02 1.44 1.20 2.29 1.73 1.55 2.20 1.55 2.20 1.64 2.02 1.64 2.02 1.64 2.02 1.64 2.02 1.64 2.02 1.64 2.02 1.64 2.02 1.64 2.02 1.73 1.55 2.20 1.55 2.20 1.73 1.55 2.20 1.55 2.20 1.73 1.55 2.20 1.55 2.20 1.73 1.55 2.20 1.55 2.20 1.55 2.20 1.55 2.20 1.55 2.20 1.55 2.10 1.55 2.10 1.55 2.10 1.55 2.20 1.55 2.10 1.57 3.106 2.55 1.57 3.106	$\begin{array}{c} 74.8\\ 28\\ (-)\\ 2.52\\ 2.02\\ 1.95\\ 1.75\\ 1.50\\ 2.59\\ 1.97\\ 1.52\\ 2.59\\ 1.97\\ 1.32\\ 1.62\\ 2.69\\ 1.57\\ 1.36\\ 1.94\\ 2.68\\ 1.67\\ 1.42\\ 1.85\\ 1.32\\ 1.32\\ 1.50\\ 1.58\\ 1.32\\ 1.50\\ 1.58\\ 1.29\\ 1.50\\ 1.58\\ 1.29\\ 1.36\\ 1.30\\ 1.50\\ 1.$	(-) (-)	(-) 1.89 1.64 1.45 1.32 1.18 1.95 1.52 1.18 1.95 1.54 1.07 1.56 .77 1.81 1.07 1.56 1.63 1.32 1.23 1.11 1.60 1.23 1.11 1.60 1.23 1.11 1.55 1.55 1.55 1.55 1.55 1.63 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.13 1.10 1.56 1.52 1.12 1.23 1.11 1.00 1.21 1.55 1.07 1.55 1.07 1.55 1.23 1.11 1.00 1.21 1.22 1.23 1.11 1.05 1.55 1.07 1.55 1.07 1.55 1.07 1.55 1.07 1.55 1.07 1.55 1.07 1.55 1.07 1.55 1.07 1.55 1.07 1.21 1.22 1.23 1.11 1.00 1.21 1.22 1.23 1.11 1.00 1.21 1.22 1.23 1.11 1.00 1.21 1.22 1.23 1.07 1.55 1.08 1.07 1.55 1.08 1.07 .84 1.21 1.01 1.22 1.23 1.01 1.55 1.08 1.07 .84 1.21 1.03 1.00 .66 1.00 .83 1.00 .83 1.00	(-) 1.58 1.35 1.22 1.10 .86 1.49 1.28 1.49 1.28 1.49 1.28 1.49 1.28 1.49 1.28 1.49 1.28 1.49 1.26 1.77 1.49 1.26 1.34 1.00 1.51 1.67 1.34 1.00 1.52 1.33 1.26 1.34 1.00 1.52 1.33 1.26 1.02 .88 1.36 .97 1.00 1.02 .88 1.36 .97 1.00 .87 1.26 .64 1.00 .97 1.34 1.00 1.00 .97 1.34 1.00 .97 1.00 .97 1.00 .97 .02 .02 .02 .02 .03 .04 .03 .02 .03 .04 .03 .04 .03 .04 .03 .04 .03 .04 .03 .04 .03 .04 .03 .04 .03 .04 .03 .04 .03 .04 .03 .04 .03 .04 .04 .02 .03 .04 .03 .04 .04 .03 .04 .04 .05 .05 .05 .05 .05 .05 .05 .05
SL27 SL28 SL29 SL30 SL31 SL32 SL33	.72 .72 .72 .72 .72 .72 .72 .72	.12 .12 .12 .12 .12 .12 .12	.01 .03 .05 .02 .04 .02 .04	10 10 5 5 15 15	0 0 0 0 0 0	$ \begin{array}{c} .12\\.11\\.11\\.12\\.12\\.11\\.10\\.11\\\end{array} $	9 2.7 7 1.6 4 1.2 0 1.9 4 1.4 8 1.9 4 1.4	3 .01 6 .02 2 .04 9 .019 0 .03 8 .018 0 .03	1 2.37 7 1.52 9 1.13 9 1.79 7 1.29 8 1.88 7 1.29	.344 2250 3178 3260 3235 3235 3235 3210	. 293 .215 .165 .237 .200 .248 .248	.255 .198 .144 .215 .171 .220 .161	.221 .169 .125 .194 .150 .200 .200	1.188 3.137 5.104 4.164 0.121 0.168 0.119	2.67 2.14 1.56 2.17 2.00 3.2.62 1.84	2.27 1.84 1.45 1.98 1.75 2.30 1.62	1.98 1.69 1.26 1.79 1.50 2.04 1.41	1.71 1.44 1.10 1.62 1.32 1.85 1.23	1.46 1.17 .91 1.37 1.06 1.56 1.04

Tabel 3 Gemeten oploopgegevens

Proevenprogramma							Gemeten golfrvw				00100	 ר									
proef	h	He	See	θ	σ	H _s	Τ _ο	Sop	ξ	RuÌ	R	้R	Ru	Ru			/H_R.	./H. R.	/н,		
-	· ·	5	υp	•) Di	.ep ်	-,	μ.	.5%	2%	5%	103	20%	.5%	2%	5%	10%	20%		
	(m)	(m)	(-)	()	()	(m)	(s)	(-)	(-)	(m)	(m)	(m)	(m)	(m)	(-)	(-)	(-)	(-)	(-)		
LK1	.72	.12	.02	0	12	.140	1.99	.023	1.66	.363	.305	.266	230	185	2 59	2 18	1 90	1 64	1 32		
LK2	.72	.12	.04	ŏ	12	.121	1.40	.040	1.26	.223	.200	.175	.158	.128	1.84	1.65	1.45	1.31	1.06		
LK3	.72	.12	.01	Ō	32	.154	2.64	.014	2.10	.435	.363	.315	.273	.218	2.82	2.36	2.05	1.77	1.42		
LK4	.72	.12	.02	. 0	32	.11	1.87	021	1.72	.285	.235	- 205	.178	.150	2.48	2.04	1.78	1.55	1.30		
LK5	.72	.12	.03	0	32	.105	5 1.57	.027	1.51	.215	.179	.160	.139	.123	2.05	1.70	1.52	1.32	1.17		
LK6	.72	.12	.04	0	32	.114	1.40	.037	1.29	.222	.188	.165	.145	.118	1.95	1.65	1.45	1.27	1.04		
LK7	.72	.12	.05	0	32	.118	1.23	.050	1.12	180	.161	.144	.123	.100	1.53	1.36	1.22	1.04	.85		
LK8	.72	.12	.02	0	25	.135	5 1.95	.023	1.66	.304	.270	.239	.210	.179	2.25	2.00	1.77	1.56	1.33		
LK9	.72	.12	.04	0	25	.110	1.38	.037	1.30	.217	.184	.163	.146	.123	1.97	1.67	1.48	1.33	1.12		
LK10	.72	.12	.02	0	43	.112	2 1.95	.019	1.82	.248	.218	.198	.173	.146	2.21	1.95	1.77	1.54	1.30		
LK11	.72	.12	.04	0	43	.129	1.38	.043	1.20	.215	.188	.163	.148	.121	1.67	1.46	1.26	1.15	.94		
LK12	.36	.12	.02	0	32	.10	5 1.97	.017	1.90	.238	.216	.200	.166	.138	2.27	2.06	1.90	1.58	1.31		
LK13	.36	.12	.04	0	32	.120	1.31	.045	1.18	.210	.183	.157	.134	.109	1.75	1.53	1.31	1.12	.91		
SK1	.72	.12	.02	10	32	.109	1.99	.018	1.88	.258	.229	.200	.175	.149	2.37	2.10	1.83	1.61	1.37		
SK2	.72	.12	.04	10	32	.12	3 1.40	.040	1.25	.210	.193	.170	.130	.121	1.71	1.57	1.38	1.06	.98		
SK3	.12	.12	.01	20	32	.12	5 2.12	.011	2.42	.336	.285	.249	. 220	.190	2.73	2.32	2.02	1.79	1.54		
SK4	./2	.12	.02	20	32	1.130	1.92	.024	1.03	.296	.200	. 225	.208	.1/5	2.18	1.00	1.65	1.53	1.29		
SKO	./2	.12	.03	20	22	111		.029	1 21	.225	.202	.1/5	.160	.130	1.92	1.73	1.50	1.3/	1.11		
SKO	./2	.12	.04	20	32	1.12	1.42	.037	1 16	145	1/3	.104	.140	.123	1 39	1.10	1.29	1.10	.97		
SK/	.72	.12	.05	20	32	114	1 94	.040	1 78	265	221	204	191	156	2 28	. 1 01	1 76	1 56	1 34		
SKO	72	12	.02	30	32	1 111	1 1 39	.020	1 29	181	160	148	130	110	1 60	1 42	1 31	1 15	1.34		
SKID	72	12	.01	40	32	100	2 77	.009	2.62	250	232	181	161	131	2 36	2 19	1 71	1 52	1 24		
SK11	.72	.12	.02	40	32	.124	1.96	.021	1.74	.268	.225	.208	.194	.156	2.16	1.81	1.68	1.56	1.26		
SK12	.72	.12	.03	40	32	1.120	1.59	.030	1.43	.221	.193	.169	.154	.129	1.84	1.61	1.41	1.28	1.08		
SK13	.72	.12	.04	40	32	.12	2 1.42	.039	1.27	.200	.174	.149	.128	.108	1.64	1.43	1.22	1.05	.89		
SK14	.72	.12	.05	40	32	.12	1.20	.054	1.08	.165	.150	.128	.116	.100	1.36	1.24	1.06	.96	.83		
SK15	.72	.12	.02	50	32	.133	3 1.92	.023	1.64	.249	.223	.206	.180	.155	1.87	1.68	1.55	1.35	1.17		
SK16	.72	.12	.04	50	32	.119	1.39	.039	1.26	.196	.170	.150	.127	.110	1.65	1.43	1.26	1.07	.92		
SK17	.72	.12	.02	60	32	.124	1 2.02	.019	1.79	.243	.213	.200	.179	.153	1.96	1.72	1.61	1.44	1.23		
SK18	.72	.12	.04	60	32	.132	2 1.39	.044	1.19	.180	.152	.136	.122	.103	1.36	1.15	1,03	.92	.78		
SK19	.72	.12	.02	20	43	.110	5 1.96	.019	1.80	.236	.215	.195	.164	.136	2.03	1.85	1.68	1.41	1.17		
SK20	.72	.12	.04	20	43	.100	5 1.35	.037	1.29	.185	.160	.139	.112	.103	1.75	1.51	1.31	1.06	.97		
SK21	.72	.12	.02	20	25	1.114	E 1.97	.019	1.82	.2/7	.243	.221	.198	.163	2.43	2.13	1.94	1.74	1.43		
SKZZ	.12	.12	.04	20	25	1 .11	1.39	.037	1.30	.213	.1/2	.153	.131	.111	1.92	1.55	1.38	1.18	1.00		
SK23	.12	.12	.02	20	12		1.90	.019	1.79	.205	.239	.230	.200	.103	1 00	2.10	1.95	1./3	1.39		
SK24	./2	12	.04	20	12	1 .11	1 05	020	1.27	.205	.170	205	181	-119	2 15	1.03	1.3/	1.10	1 30		
SK25	.72	12	.02	40	43	110	5 1 41	.020	1 29	178	160	141	126	105	1 53	1 38	1 22	1 09	91		
SK20	72	12	.07	40	25	131	1.41	.037	1 69	258	229	205	180	149	1 97	1 75	1 56	1 37	1 14		
SK28	.72	.12	.04	40	25	1.128	1.38	.043	1.20	.194	.175	.159	.133	.110	1.52	1.37	1.24	1.04	.86		
SK29	.72	.12	.02	40	12	1.134	1.98	.022	1.69	.265	.235	.212	.200	.168	1.98	1.75	1.58	1.49	1.25		
SK30	.72	.12	.04	40	12	.13	2 1.42	.042	1.22	.185	.165	.153	.138	.119	1.40	1.25	1.16	1.05	.90		
SK31	.36	.12	.02	20	32	1.110	1.98	.018	1.86	.259	.236	.211	.193	.158	2.35	2.15	1.92	1.75	1.44		
SK32	.36	.12	.04	20	32	.119	5 1.41	.037	1.30	.210	.175	.158	.139	.115	1.83	1.52	1.37	1.21	1.00		
SK33	.36	.12	.02	40	32	1.11	5 2.02	.018	1.86	.268	.220	.200	.173	.144	2.33	1.91	1.74	1.50	1.25		
SK34	.36	.12	.04	40	32	.11	1.41	.038	1.29	.195	.171	.158	.135	.113	1.67	1.46	1.35	1.15	.97		
SK35	.72	.12	.02	70	32	.11	3 1.93	.019	1.79	.233	.208	.186	.168	.136	2.06	1.84	1.65	1.49	1.20		
SK36	.72	.12	.04	70	32	.11	1.36	.038	1.27	.175	.158	.140	.123	.104	1.58	1.42	1.26	1.11	.94		
SK37	.72	.12	.02	80	32	1.104	1.91	.018	1.85	.218	.205	.183	.158	.130	2.10	1.97	1.76	1.52	1.25		
ISK38	.72	.12	.04	80	32	1.104	1.42	.033	1.37	.150	.135	.121	.106	.088	1.44	1.30	1.16	1.02	.85		

•

• • • • • • • • •

Proevenpro proef h (m)	ogramm H _s (m)	a S _{op} (-)	θ (`)	σ (`)	Gemeto H _s Dio (m)	en go: T _p ep (s)	lfrvw S _{op} (-)	ξ _ρ (-)	(Ru .5% (m))ploop Ru 2% (m)	Ru 5% (m)	Ru 10% (m)	Ru 20% (m)	Ru /H. I .5% (-)	Ru /H∎R 2% (-)	5% (-)	」/H₅R 10% (-)	, ∕H , 20% (−)
SL3A .72 SL6A .72 SL10A .72 SL13A .72 SL18A .72 SL16A .72 SL16A .72 SL16A .72 SL26A .72 SK2A .72	2 .12 2 .12 2 .12 2 .12 2 .12 2 .12 2 .12 2 .12 2 .12 2 .12	.01 .04 .01 .04 .04 .04 .04 .04	20 20 40 60 80 0 10	0 0 0 0 0 32 32	.131 .119 .124 .134 .153 .119 .100 .111	2.70 1.39 2.78 1.41 1.41 1.41 1.36 1.39	.012 .039 .010 .043 .049 .038 .035 .037	2.33 1.26 2.47 1.20 1.13 1.28 1.34 1.30	.385 .198 .316 .194 .150 .123 .184 .198	.315 .175 .263 .170 .136 .113 .160 .175	.268 .155 .226 .154 .125 .100 .136 .159	.235 .134 .200 .139 .113 .089 .119 .140	.200 .110 .169 .121 .100 .075 .100 .115	2.94 1.66 2.55 1.45 .98 1.03 1.84 1.78	2.40 1.47 2.12 1.27 .89 .95 1.60 1.58	2.05 1.30 1.82 1.15 .82 .84 1.36 1.43	1.79 1.13 1.61 1.04 .74 .75 1.19 1.26	1.53 .92 1.36 .90 .65 .63 1.00 1.04

Tabel 3Gemeten oploopgegevens (vervolg)
LL1C LL2C LL2C LL4C LL4C SL1C SL1C SL1C SL1C SL1C SL1C SL1C SL1	Proeve proef] [LL1B LL2B LL2B LL2B LL4B LL5B SL7B SL2B SL2B SL2B SL2B SL2B SL2B SL2B SL2		Proeve
	nprog h			(m)	nprog h
	(m)) (III)	ranma H _s
······································	(-) so			Ē	s do S
83888860000888888860000	(°) Θ		8265688600008268868600000	(`)	Φ
***************************************	<u> </u>		***************************************	3	9
.150 .141 .130 .11300 .113000 .11300 .113000 .113000 .113000 .113000 .113000 .1130000 .113000 .1130	Gemet Hs Di		.1124 .1124 .1124 .1115 .1115 .1115 .1115 .1115 .1116 .1116 .1116 .1116 .1116 .1116 .1116 .1116 .1116 .1116 .1116 .1117	(m)	Gemet
$\begin{array}{c} 2.67\\ 1.1.2205\\ 1.1.421\\ 1.1.33$	ep (s) (s)		$\begin{array}{c} 2.64\\ 1.226\\ 1.2$	(s)	en go
.011 .022 .022 .022 .022 .022 .022 .022	Sop (-)		.032 .032 .033 .034 .034 .034 .034 .034 .034 .034	-	lfrvw ^S op
2.12 2.23 2.23 2.23 2.23 2.23 2.23 2.23	₩g []		$\begin{array}{c} 2.45\\ 1.170\\ 1.122\\ 1.230\\ 1.223\\ 1.223\\ 1.223\\ 1.223\\ 1.223\\ 1.231\\ 1.231\\ 1.231\\ 1.233\\ 1.2$	-	÷,
.396 .315 .325 .325 .325 .325 .325 .325 .325 .32	.5% (11)] [.263 .140 .145 .145 .145 .145 .145 .145 .145 .145	(m)	مح
$\begin{array}{c}$. 220 . 150 . 150 . 125 . 125 . 125 . 125 . 126 . 127 . 109 . 1059 . 1054 . 1055 . 10555 . 10555555555555555555555555555555555555	(E)	ၟၣၯၟ
	(j) ទូ ភូ ភ្ល (j) ទូ ភូ ភ្ល		.138 .138 .138 .138 .138 .138 .138 .138	(m) v	مح
.239 .240 .194 .194 .194 .194 .194 .194 .194 .194	Ĵ Į Z		$\begin{array}{c} .163\\ .123\\ .103\\ .093\\ .094\\ .094\\ .094\\ .094\\ .094\\ .094\\ .094\\ .094\\ .095\\ .094\\ .094\\ .094\\ .094\\ .094\\ .094\\ .094\\ .005\\ .005\\ .006\\ .006\\ .006\\ .006\\ .006\\ .007\\ .006\\$	(m) 108	<mark>ج</mark> ۾
.191 .2166 .158 .158 .158 .158 .158 .158 .158 .158	Î XAR		$\begin{array}{c} .130\\ .120\\ .083\\ .083\\ .073\\ .073\\ .073\\ .073\\ .073\\ .073\\ .073\\ .073\\ .073\\ .073\\ .073\\ .073\\ .073\\ .073\\ .073\\ .073\\ .073\\ .053\\ .053\\ .053\\ \end{array}$	(m) 208	<u>1</u> 20
$\begin{array}{c} 2.20\\ 2.297\\ 2.252\\ 2.252\\ 2.252\\ 2.252\\ 2.252\\ 2.252\\ 2.252\\ 2.252\\ 2.252\\ 2.252\\ 2.252\\ 2.254\\ 2.254\\ 2.254\\ 2.254\\ 2.254\\ 2.254\\ 2.254\\ 2.254\\ 2.254\\ 2.254\\ 2.254\\ 2.254\\ 2.256\\ 1.252\\ 1.2$	R _u /H _e R .5% (-)			(-) %	₽╻∕ӉҙҎ
1.1.1.1.1.1.2.2.1.2.2.2.2.2.2.2.2.2.2.2	(-) (-)			(-) 66	៷຺៸ឣ៹ឨ
$\begin{array}{c} 1.86\\ 2.13\\ 2.07\\ 1.86\\ 1.86\\ 1.86\\ 1.80\\ 1.90\\$	5% 5% (-)		$\begin{array}{c} 1.72\\ 1.29\\ 1.14\\ 1.00\\ .91\\ .91\\ .97\\ .98\\ .88\\88\\ 1.27\\ 1.07\\ 1.07\\ 1.07\\86\\88$	(-) %	ู้ ค. ค.
$\begin{array}{c} 1.59\\ 1.84\\ 1.85\\ 1.61\\ 1.61\\ 1.62\\$,/H ₃ R _u 10% (-)		$\begin{array}{c} 1.44\\ 1.13\\ 1.02\\90\\78\\76\\$	(-) %01	,/H, R,
1.27 1.27 1.21 1.21 1.21 1.21 1.22 1.22	(-) 20 H			(-)	} ` }

Tabel 3 Gemeten oploopgegevens (vervolg)

- -

ъ	(1/sm)	1.01210 .68820 .41850 .09256 .092580 .05740 .05740 .05580 .05580 .05580 .05580 .05580 .00018 .14770 .03320 .03320 .04210 .012560 .02560 .025580 .00000 .02560 .00000 .02560 .000000	•	q (1/sm)	.08480 .14240 .09310 .09310 .09200 .09200 .17700 .017700 .00000 .00000 .00000 .00000 .017450 .00000 .017450 .02150 .00000 .02150 .00000 .017450 .017450 .03530 .03530 .03530 .03530 .03530 .03530 .03530 .03530 .03530 .03530 .03530 .03530 .03530 .03530 .03530 .03530 .03530 .03530 .03550 .03550 .03750 .00000 .03750 .03750 .03750 .03750 .03750 .03750 .03750 .037500 .037500 .037500 .037500 .037500 .037500 .037500 .037500 .037500 .037500 .037500 .037500 .037500 .037500 .037500 .037500 .037500 .0375000 .0375000 .0375000 .0375000 .0375000 .0375000 .0375000 .0375000 .037500000000000000000000000000000000000
e kruin - Over-	(%) (%)	0 38.5 0 38.5		e kruin - Over- op slag) (%)	0.000000000000000000000000000000000000
Lag Kruin Op	ор (ш)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Lag Kruin Op lo (m) (%	<u> </u>
5	(1/sm)	$\begin{array}{c} .22680\\ .07460\\ .07460\\ .00570\\ .00570\\ .00580\\ .00540\\ .00380\\ .00339\\ .00000\\ .00339\\ .00000\\ .0000\\ .$		q (1/驺)·	$\begin{array}{c} 011470\\ 022390\\ 00730\\ 00730\\ 001484\\ 001210\\ 001210\\ 001210\\ 000100\\ 000100\\ 000100\\ 000100\\ 0000\\ 000\\ 000$
ruin Ver-	(%)	$\begin{array}{c} 17.0\\ 16.1\\ 16.1\\ 16.1\\ 17.2\\$		ruin Wer- slag (%)	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	1001 (%)			(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	www voovorærooooovu4v04001000
kruin	(u)	ສສະສະສະສະສະສະສະສະສະສະສະສະສະສະສະສະສະສະສະສ		F Kruin (m)	୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶୶
440	-	2.45 1.70 1.70 1.30 1.30 1.25 1.25 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27		مرد (-)	2.093 2.033 2.033 2.034 2.035 2.337 2.037
lfrw Sop	(-)	$\begin{array}{c} .010\\ .021\\ .022\\ .022\\ .023\\ .023\\ .033\\$		s _{op} (-)	$\begin{array}{c} .013\\ .023\\$
ango 1	(s)	2.2,64 1.1.2,254 1.1.2,2		lan go (s)	2.2.35 2.2.55 2.2.55 2.2.55 2.2.55 2.2.55 2.2.55 2.2.55 2.2.55 2.2.55
Gemet(H _s	(m)		•	Gemet H _s Di(m)	
σ	()		·	<u>ل</u> م	88888888888888888 888888888888888 888888
θ	()	00000222000000022200000	i	θ ()	8365553500000000000000000000000000000000
sop	-	666666666666666666666666666666666666666		s op	56655555555555555555555555555555555555
iranna H _s	(m)	222222222222222222222222222222222222222		ramma Hs (n)	222222222222222222222222222222222222222
h	(¤)	22222222222222222222222222222222222		h h (m)	22222222222222222222222222222222222
Proeve proef		LL13B LL23B LL23B LL23B SL26B SL26B SL26B SL28B SL27B		Proeve	LLLIC LLLZC LLLZC LLLZC LLLZC SLLZC SLLZC SLLZC SLLZC SLLZC SLLZC SLLZC SLLZC SLLZC SLLZC SLLZC SLLZC SLLZC SLLZC SLLZC SLLZC SLZC S

:

•

- - -

٠

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	proef	h	Hs	Sop	9	σ	0 R, /H,	ploop R _u /H _s I		DLATIES	5 u /Hs
		(m)	(m)	(-)	(`)	()	.5% (-)	2% (-)	5% (-)	10% (-)	20% (-)
	LLI	.72	.12	.01	.00	.00	3.23	2.74	2.35	2.01	1.68
	LL2	.72	.12	.02	.00	.00	2.43	2.16	1.94	1.71	1.41
	LL3	.72	.12	.03	.00	.00	2.23	1.97	1.75	1.49	1.25
	LL4	.72	.12	.04	.00	.00	1.97	1.74	1.49	1.32	1.10
	LLS	.72	.12	.05	.00	.00	1.74	1.55	1.32	1.20	.90
$ LL7 .54 .12 .03 .00 .00 \\ LL8 .54 .12 .05 .00 .00 \\ L.9 .36 .12 .01 .00 .00 \\ L.9 .36 .12 .01 .00 .00 \\ L.10 .36 .12 .03 .00 .00 \\ L.11 .36 .12 .05 .00 .00 \\ L.11 .36 .06 .01 .00 .00 \\ L.14 .36 .06 .03 .00 .00 \\ L.14 .36 .06 .05 .00 .00 \\ SL2 .72 .12 .04 10.00 .00 \\ Z.56 2.21 2.00 1.80 \\ SL2 .72 .12 .01 20.00 .00 \\ L.33 .273 2.34 2.09 \\ SL4 .72 .12 .02 20.00 .00 \\ L.38 2.11 1.87 1.67 \\ SL5 .72 .12 .03 20.00 .00 \\ L.38 2.211 1.87 1.67 \\ SL5 .72 .12 .04 20.00 .00 \\ 1.57 1.38 1.25 1.12 \\ SL6 .72 .12 .04 20.00 .00 \\ 1.57 1.38 1.25 1.12 \\ SL8 .72 .12 .02 30.00 .00 \\ 1.57 1.38 1.25 1.12 \\ SL1 .72 .12 .04 40.00 .00 \\ 2.78 2.39 2.06 1.82 \\ SL11 .72 .12 .04 40.00 .00 \\ 1.68 1.54 1.36 1.23 \\ SL11 .72 .12 .04 40.00 .00 \\ 1.68 1.46 1.74 1.57 \\ SL12 .72 .12 .04 40.00 .00 \\ 1.60 1.46 1.34 1.21 \\ .9 .9 .9 \\ SL1 .72 .12 .04 40.00 .00 \\ 1.43 1.34 1.22 1.10 \\ SL17 .72 .12 .04 40.00 .00 \\ 1.43 1.34 1.22 1.10 \\ SL17 .72 .12 .04 40.00 .00 \\ 1.43 1.34 1.22 1.10 \\ SL17 .72 .12 .04 40.00 .00 \\ 1.43 1.34 1.22 1.10 \\ SL17 .72 .12 .04 40.00 .00 \\ 1.43 1.34 1.22 1.10 \\ SL17 .72 .12 .04 40.00 .00 \\ 1.43 1.34 1.22 1.10 \\ SL17 .72 .12 .04 40.00 .00 \\ 1.43 1.34 1.22 1.10 \\ SL17 .72 .12 .04 40.00 .00 $	LL6	.54	.12	.01	.00	.00	3.20	2.58	2.27	1.94	1.48
	LL7	.54	.12	.03	.00	.00	2.20	1.87	1.58	1.45	1.21
$ L19 .36 .12 .01 .00 .00 \\ L110 .36 .12 .03 .00 .00 \\ L112 .36 .12 .05 .00 .00 \\ L112 .36 .06 .01 .00 .00 \\ L113 .36 .06 .03 .00 .00 \\ L114 .36 .06 .03 .00 .00 \\ L114 .36 .06 .05 .00 .00 \\ L114 .36 .06 .05 .00 .00 \\ L114 .36 .06 .05 .00 .00 \\ L123 1.08 .92 .79 \\ SL1 .72 .12 .02 \ 10.00 .00 \\ SL2 .72 .12 .04 \ 10.00 .00 \\ SL4 .72 .12 .02 \ 20.00 .00 \\ SL4 .72 .12 .02 \ 20.00 .00 \\ L.56 2.21 2.00 1.80 \\ SL4 .72 .12 .02 \ 20.00 .00 \\ L.57 .133 1.65 1.41 \\ SL3 .77 .12 .02 \ 20.00 .00 \\ L.73 1.87 1.67 \\ SL5 .72 .12 .04 \ 20.00 .00 \\ L.74 1.57 1.39 1.24 \\ SL7 .72 .12 .05 \ 20.00 .00 \\ L.74 1.57 1.39 1.24 \\ SL7 .72 .12 .04 \ 20.00 .00 \\ L.74 1.57 1.39 1.24 \\ SL7 .72 .12 .04 \ 30.00 .00 \\ L.74 1.57 1.38 1.25 1.12 \\ SL8 .72 .12 .04 \ 30.00 .00 \\ L.68 1.54 1.36 1.23 \\ SL10 .72 .12 .04 \ 30.00 .00 \\ L.68 1.54 1.36 1.23 \\ SL10 .72 .12 .04 \ 40.00 .00 \\ L.68 1.54 1.36 1.23 \\ SL11 .72 .12 .04 \ 40.00 .00 \\ L.60 1.46 1.34 1.21 \\ SL13 .72 .12 .04 \ 40.00 .00 \\ L.85 1.71 1.58 1.43 \\ SL13 .72 .12 .02 \ 50.00 .00 \\ L.86 1.72 1.55 \\ SL16 .72 .12 .02 \ 50.00 .00 \\ L.60 1.46 1.34 1.21 \\ .143 1.44 \\ 1.22 .14 \\ .122 .04 50.00 .00 \\ L.54 1.44 1.22 .100 \\ SL23 .72 .12 .02 \ 50.00 .00 \\ L.58 1.41 1.27 1.10 \\ SL21 .36 .12 .02 \ 20.00 .00 \\ 1.58 1.41 1.27 .10 \\ SL22 .36 .12 .04 \ 40.00 .00 \\ 1.58 1$	LL8	.54	.12	.05	.00	.00	1.84	1.48	1.38	1.16	.96
	LL9	.36	.12	.01	.00	.00	2.81	2.37	2.06	1.76	1.43
	LL10	.36	.12	.03	.00	.00	1.94	1.68	1.48	1.32	1.10
	LL11	.36	.12	.05	.00	.00	1.48	1.30	1.04	.93	.74
	LL12	.36	.06	.01	.00	.00	2.04	2.00	1.78	1.59	1.28
$ L114 .36 .06 .05 .00 .00 \\ SL1 .72 .12 .02 10.00 .00 \\ SL2 .72 .12 .04 10.00 .00 \\ SL2 .72 .12 .01 20.00 .00 \\ SL3 .72 .12 .01 20.00 .00 \\ SL4 .72 .12 .01 20.00 .00 \\ SL5 .72 .12 .03 20.00 .00 \\ SL5 .72 .12 .03 20.00 .00 \\ SL6 .72 .12 .04 20.00 .00 \\ SL7 .138 1.25 1.12 \\ SL8 .72 .12 .05 20.00 .00 \\ SL8 .72 .12 .04 30.00 .00 \\ SL9 .72 .12 .04 30.00 .00 \\ SL10 .72 .12 .01 40.00 .00 \\ SL11 .72 .12 .01 40.00 .00 \\ SL11 .72 .12 .03 40.00 .00 \\ SL13 .74 1.57 1.58 1.43 \\ SL13 .72 .12 .03 40.00 .00 \\ SL13 .74 1.57 1.58 1.43 \\ SL13 .72 .12 .05 40.00 .00 \\ SL15 .72 .12 .05 40.00 .00 \\ SL15 .72 .12 .05 40.00 .00 \\ SL15 .72 .12 .02 50.00 .00 \\ SL15 .72 .12 .02 50.00 .00 \\ SL16 .74 1.48 1.72 1.55 \\ SL16 .72 .12 .02 50.00 .00 \\ SL17 .72 .12 .02 50.00 .00 \\ SL17 .72 .12 .02 50.00 .00 \\ SL17 .72 .12 .02 60.00 .00 \\ SL17 .72 .12 .02 60.00 .00 \\ SL24 .143 1.34 1.22 1.10 \\ SL17 .72 .12 .02 60.00 .00 \\ SL24 .124 .12 .99 .92 \\ SL19 .36 .12 .04 40.00 .00 \\ SL23 .72 .14 .123 \\ SL22 .36 .12 .04 40.00 .00 \\ SL23 .141 1.27 .14 \\ SL24 .72 .12 .04 40.00 .00 \\ SL23 .72 .12 .02 40.00 .00 \\ SL23 .72 .12 .02 40.00 .00 \\ SL23 .72 .12 .02 40.00 .00 \\ SL24 .128 .12 .03 \\ SL23 .72 .12 .03 10.00 .00 \\ SL34 .143 .127 .14 \\ SL24 .72 .12 .04 40.00 .00 \\ SL24 .128 .12 .133 \\ SL24 .72 .12 .03 10.00 .00 \\ SL36 .01 .92 .36 .75 .76 .76 \\ SL2$	LL13	.36	.06	.03	.00	.00	1.44	1.31	1.15	.96	.77
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LL14	.36	.06	.05	.00	.00	1.23	1.08	.92	.79	.66
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SL1	.72	.12	.02	10.00	.00	2.56	2.21	2.00	1.80	1.48
	SL2	.72	.12	.04	10.00	.00	2.04	1.83	1.65	1.41	1.24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SL3	.72	.12	.01	20.00	.00	3.33	2.73	2.34	2.09	1.69
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SL4	.72	.12	.02	20.00	.00	2.38	2.11	1.87	1.67	1.37
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SL5	.72	.12	.03	20.00	.00	1.97	1.69	1.49	1.32	1.10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SL6	.72	.12	.04	20.00	.00	1.74	1.57	1.39	1.24	1.01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SL7	.72	.12	.05	20.00	.00	1.57	1.38	1.25	1.12	.98
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SL8	.72	.12	.02	30.00	.00	2.21	1.96	1.76	1.61	1.35
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SL9	.72	.12	.04	30.00	.00	1.68	1.54	1.36	1.23	1.06
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SL10	.72	.12	.01	40.00	.00	2.78	2.39	2.06	1.82	1.51
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SL11	.72	.12	.02	40.00	.00	2.13	1.94	1.73	1.57	1.35
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SL12	.72	.12	.03	40.00	.00	1.85	1.71	1.58	1.43	1.27
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SL13	.72	.12	.04	40.00	.00	1.60	1.46	1.34	1.21	1.06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SL14	.72	.12	.05	40.00	.00	1.39	1.29	1.18	1.07	.93
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SL15	.72	.12	.02	50.00	.00	2.04	1.86	1.72	1.55	1.37
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SL16	.72	.12	.04	50.00	.00	1.43	1.34	1.22	1.10	.97
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SL17	.72	.12	.02	60.00	.00	1.54	1.44	1.26	1.14	.94
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SL18	.72	.12	.04	60.00	.00	1.24	1.12	.99	.92	.79
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SL19	.36	.12	.02	20.00	.00	1.96	1.70	1.55	1.41	1.16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SL20	.36	.12	.04	20.00	.00	1.66	1.47	1.27	1.10	.97
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SL21	.36	.12	.02	40.00	.00	1.88	1.62	1.41	1.23	1.04
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SL22	.36	.12	.04	40.00	.00	1.36	1.28	1.12	1.03	.91
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SL23	.72	.12	.02	70.00	.00	1.58	1.41	1.27	1.14	.95
SL25 .72 .12 .02 80.00 .00 1.60 1.40 1.26 1.12 SL26 .72 .12 .04 80.00 .00 1.08 1.01 .92 .84 SL27 .72 .12 .01 10.00 .00 2.70 2.30 2.00 1.73 SL28 .72 .12 .03 10.00 .00 2.06 1.79 1.64 1.40 SL29 .72 .12 .05 10.00 .00 1.54 1.43 1.25 1.08 SL30 .72 .12 .02 5.00 .00 2.16 1.97 1.78 1.61	SL24	.72	.12	.04	70.00	.00	1.11	.97	.86	.76	.64
SL26 .72 .12 .04 80.00 .00 1.08 1.01 .92 .84 SL27 .72 .12 .01 10.00 .00 2.70 2.30 2.00 1.73 SL28 .72 .12 .03 10.00 .00 2.06 1.79 1.64 1.40 SL29 .72 .12 .05 10.00 .00 1.54 1.43 1.25 1.08 SL30 .72 .12 .02 5.00 .00 2.16 1.97 1.78 1.61	SL25	.72	.12	.02	80.00	.00	1.60	1.40	1.26	1.12	.98
SL27 .72 .12 .01 10.00 .00 2.70 2.30 2.00 1.73 SL28 .72 .12 .03 10.00 .00 2.06 1.79 1.64 1.40 SL29 .72 .12 .05 10.00 .00 1.54 1.43 1.25 1.08 SL30 .72 .12 .02 5.00 .00 2.16 1.97 1.78 1.61	SL26	.72	.12	.04	80.00	.00	1.08	1.01	.92	.84	.71
SL28 .72 .12 .03 10.00 .00 2.06 1.79 1.64 1.40 SL29 .72 .12 .05 10.00 .00 1.54 1.43 1.25 1.08 SL30 .72 .12 .02 5.00 .00 2.16 1.97 1.78 1.61	SL27	.72	.12	.01	10.00	.00	2.70	2.30	2.00	1.73	1.48
SL29 .72 .12 .05 10.00 .00 1.54 1.43 1.25 1.08 SL30 .72 .12 .02 5.00 .00 2.16 1.97 1.78 1.61	SL28	.72	.12	.03	10.00	.00	2.06	1.79	1.64	1.40	1.14
SL30 .72 .12 .02 5.00 .00 2.16 1.97 1.78 1.61	SL29	.72	.12	.05	10.00	.00	1.54	1.43	1.25	1.08	.90
	SL30	.72	.12	.02	5.00	.00	2.16	1.97	1.78	1.61	1.36
SL31 .72 .12 .04 5.00 .00 2.05 1.72 1.46 1.27	SL31	.72	.12	.04	5.00	.00	2.05	1.72	1.46	1.27	1.01
SL32 .72 .12 .02 15.00 .00 2.53 2.22 1.96 1.78	SL32	.72	.12	.02	15.00	.00	2.53	2.22	1.96	1.78	1.49
SL33 .72 .12 .04 15.00 .00 1.73 1.53 1.33 1.14	SL33	.72	.12	.04	15.00	.00	1.73	1.53	1.33	1.14	.97

Tabel 5 Geinterpoleerde oploopgegevens

٠

<u> </u>																	
Proeve	enpro	gramma	3			Geme	ten_g	olfrvw	٤	1	loge]	kruin			Lage)	cruin	
proer	n	н _s	Sop	θ	σ		_'р	Sop	۶p	Kruin	Op- (Jver-	q	Kruin	Op- (Wer-	P
{	(m)	(m)	(-)	(γ)	1.3	1 (m)	(e)	(-)	(-)	(m)	100p	STag (%)	(1/m)	(m)	1000	(%)	(1/571)
 	<u>(</u>)	()	()	<u> </u>		()	(3)	(-)	(-)	(11)	(8)	(8)	(1/50)	<u> </u>	(8)	()	(1/50)
LL1	.72	.12	.01	0	0	.14	7 2.6	.014	2.13	.24	18.0	25.2	.57500	.15	44.0	54.4	1.36100
LL2	.72	.12	.02	0	0	.13	9 2.0	.022	1.68	.24	8.0	8.6	. 11900	.15	34.0	30.7	.67800
LL3	.72	.12	-03	0	0	.13	0 1.6	0.033	1.39	.24	3.5	6.1	.06200	.15	23.0	28.6	.32100
LL4	.72	.12	.04	0	0] .11	8 1.3	3.040	1.25	.24	.4	1.2	.01000	.15	12.0	13.6	.12400
LL5	.72	.12	.05	0	0	.12	3 1.2	3.052	1.10	.24	.0	.2	.00031	.15	7.0	5.5	.07200
LL6	.54	.12	.01	0	0	1.11	3 2.7	3.010	2.54	.42	.0	.0	.00000	.33	.0	1.4	.01200
LL7	.54	.12	.03	0	0	.10	4 1.6	1.025	1.59	.42	.0	.0	.00000	.33	.0	.0	.00000
LLS	.54	.12	.05	0		1.10	9 1.2	1.048	1.14	.42	.0	.0	.00000	.33	.0	.0	.00000
LL9	.30	.12	.01	0	. vi	1.09	2 3.0	J.007	3.09	.60	.0	.0	.00000	.51	.0	0	.00000
	.30	.12	.03	0		1.00	1 1.0	019	1.03	.60	.0	.0	.00000	.01	.0	.0	.00000
	. 30	.12	.05	0	, N	1 .10	1 1.2 C 1 0	043	2 11	.00	.0	.0	.00000	.51	.0	.0	00000
1113	. 30	.00	.01	0	0	1.00	711	01011	1 45	.00	.0	.0	00000	. 51	.0	.0	00000
	. 30	.00	.03	0	0	1.05	/ 1.1 1 8	5 053	1 09	.00	 n	.0	00000	51	.0	.0	.00000
SL1	.30	.00	.03	10	0	1 11	2 1 9	4 019	1.80	.00	4.0	4.7	.01740	.15	26.0	.4.5	.60500
SL2	.72	.12	.04	10	ŏ	1 .11	61.3	8.039	1.27	.24	.5	.7	.00300	.15	16.5	16.1	.11300
SL3	.72	.12	.01	20	õ	.12	3 2.7	0.011	2.40	.24	12.0	5.1	.04400	.15	38.0	41.3	.58600
SL4	.72	.12	.02	20	Õ	.12	6 1.9	6.021	1.72	.24	4.0	5.1	.03000	.15	29.0	43.2	.52900
SL5	.72	.12	.03	20	Ő	.12	6 1.6	4 .030	1.44	.24	.7	2.2	.00820	.15	16.0	33.4	.30600
SL6	.72	.12	.04	20	0	.12	0 1.3	8.040	1.24	.24	.0	.5	.00150	.15	9.5	17.6	.10700
SL7	.72	.12	.05	20	0	.11	8 1.2	2.051	1.11	.24	.0	.0	.00000	.15	4.0	8.7	.03300
SL8	.72	.12	.02	30	0	.12	4 1.9	5.021	1.73	.24	2.0	5.4	.03100	.15	28.5	39.2	.53200
SL9	.72	.12	.04	30	0	.12	4 1.3	9.041	1.23	.24	.0	.1	.00000	.15	10.0	22.5	.10900
SL10	.72	.12	.01	40	0	.12	4 2.9	2.009	2.59	.24	8.0	5.5	.03600	.15	33.5	27.1	.26600
SL11	.72	.12	.02	40	0	.13	01.9	8.021	1.71	.24	2.5	6.3	.01600	.15	31.0	56.2	.28300
SL12	.72	.12	.03	40	0	.13	5 1.6	4 .032	1.39	.24	.7	.9	.00040	.15	29.0	26.6	.16000
SL13	.72	.12	.04	40	. 0	$1 \cdot 12$	1.4	0.042	1.23	.24	.0	.0	.00000	.13	9.0	14.8	.05400
SL14	.//	.12	.05	40	0		9 1.2	3.055	1.07	.24	.0		.00000	10	່ 3.3 ຳາວ 0	12 6	.01300
SL15	.12	.12	.02	50	0		1 1 2	2.020	1 24	.24	· · · ·	.4	.00000	10		12.0	000100
5610	.12	.12	.04	50	0	$1 \cdot \frac{1}{1}$	0 1 0	0.041	1,24	.24	.0		.00000	15	1 12 0	12 2	02000
GT 18	.12	12	.02	60	0		8 1 4	3 046	5 1.55	24		, .0 1 1	.000020		2 0	2.7	.00250
SL19	36	12	.04	20	ň		0 1.9	7 .018	3 1.85	.60	0		.00000	.51	.0	.0	.00000
SL20	.36	.12	.04	20	ŏ		3 1.4	0 .032	1.30	.60	.0	0.	.00000	.51	.0	.0	.00000
SL21	.36	.12	.02	40	ŏ		0 1.8	7.022	2 1.69	.60	.0	0.	.00000	.51	.0	0.	.00000
SL22	.36	.12	.04	40	õ		4 1.4	2 .03	1.26	.60	0.0	0. (.00000	.51	0	0. (.00000
SL23	.72	2.12	.02	70	Ō	.1	31 1.9	4 .022	2 1.67	.24	.0	.0	.00000	.19	5 8.0	12.5	.04900
SL24	.72	2.12	.04	70	0	.1:	6 1.3	9.04	5 1.18	.24	.0	0. (.00000] .15	5.0) 1.9	.00440
SL25	.72	.12	.02	80	0	.1	21 1.9	1.02	1.71	.24	.0).0	.00000	.15	5.0	23.4	.12600
SL26	.72	2.12	.04	80	0]] .1	26 1.4	1.04	1.24	.24	.0	0.	.00000	.1	.	8.9	.02400
SL27	.72	.12	.01	10	0	.1	29 2.7	3.01	2.37	.24	8.0	9.4	.10810	.1	5 33.0	44.1	.73130
SL28	.72	.12	.03	10	0	.1	7 1.6	6 .02	7 1.52	.24		3 2.4	.01000	1.1	5 15.5	30.0	.2/100
SL29	.72	2.12	.05	10	Ŭ	$\ \cdot^{i}$	4 1.2	2.049	1.13	.24		0.	.00000	l ·1	4.7	(/.8	.03827
SL30	.72	2.12	.02	5	0	$ \cdot $	20 1.9	.01	9 1.79	.24	1.8	5 4.4	.01834		20.4	E 29.9	.45410
SL31	.72	2.12		5	Ő	$\{ \cdot\}$	14 1.4	10.03	1.29	.24	1 .4 1 7 7	t./	.003/8	1 .1	5 20 0) VU C 1 T2'S	10407
SL32	. 12	.12	.02	15	0		10 I.S	0 .01	7 1 70 7 1 70	1 .24	2.1	່ 3./	100100		5 7 9	, 10.0 10.1	17500
12133	.//	4.14	.04	12	U	11 • 1	14 1.4	.03	1.23	.24	r .(.00100	1	, ,.c	, 10.4	.12550

Tabel 4 Gemeten overslaggegevens

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Proevo proef	enpro <u>c</u> h	pramma H _s	s _{op}	θ	σ	Geme H _s	ten go Tp	lfrvw S _{op}	ξ _p	Kruin	loge Op~ (cruin Over-	đ	Kruin	Lage k Op- (ruin Ver-	q
		(m)	(m)	(-)	(`)	()	(m)	(s)	(-)	(-)	(m)	(%)	ऽ।ay (६)	(1/sm)	(m)	(%)	(%)	(1/sm)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LK1 LK2 LK3 LK4 LK5 LK6 LK7 LK8 LK9 LK10 LK11 LK12 LK13 SK1 SK1 SK2 SK3 SK4 SK5 SK6 SK7	(m) .72 .72 .72 .72 .72 .72 .72 .72 .72 .72	(m) .122.12 .122.12 .122.12 .122.12 .122.12 .122.12 .122.12 .122.12 .122.12 .122.12 .122.12 .122.12 .122.12	(-) .02 .04 .01 .02 .03 .04 .05 .02 .04 .02 .04 .02 .04 .02 .04 .02 .04 .02 .04 .02 .04 .02 .04 .02 .04 .02 .04 .05 .05 .04 .05 .05 .05 .04 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	() 0 0 0 0 0 0 0 0 0 0 0 0 0	() 12 12 32 32 32 32 32 32 32 32 32 3	(m) .14 .12 .15 .11 .10 .11 .11 .11 .11 .11 .12 .10 .12 .10 .12 .12 .13 .12 .12 .12 .12 .12 .12 .12 .12	(s) 0 1.99 1 1.40 4 2.64 5 1.87 5 1.57 4 1.40 8 1.23 5 1.97 0 1.38 9 1.99 9 1.38 5 1.97 0 1.31 9 1.99 3 1.40 3 2.77 6 1.97 7 1.49 0 1.25 1 1.40 1	(-) 9.023 0.040 1.014 9.021 9.027 1.027 1.027 1.037 1.037 1.045 1.045 1.045 1.045 1.045 1.045 1.046 1.040 1.045 1.040 1.045 1.040 1.045 1.040 1.045 1.040 1.045 1.040 1.045 1.04	(-) 1.66 1.26 2.10 1.72 1.51 1.29 1.12 1.66 1.30 1.82 1.20 1.90 1.18 1.88 1.25 2.42 1.63 1.46 1.31 1.16	(m) .24 .24 .24 .24 .24 .24 .24 .24 .24 .24	$\begin{array}{c} 10.5p\\ (\%)\\ \hline \\ 8.5\\ .1\\ 15.5\\ 1.8\\ .2\\ .1\\ .0\\ 5.0\\ 0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .$	(%) 13.3 1.1 23.3 3.2 .5 .5 .0 9.1 3.6 .6 .0 3.0 .6 .0 3.0 .6 1.7 1.2 .0	(1/sm) .09300 .00420 .42200 .01600 .00180 .00230 .00000 .07300 .00220 .02080 .00290 .00290 .00290 .05800 .06300 .00290 .00290 .00290 .00290 .00290	(m) .155 .155 .155 .155 .155 .155 .155 .15	(%) 40.0 12.0 42.0 20.0 6.5 8.5 3.7 32.0 .0 .0 18.5 10.0 34.0 30.0 13.5 8.4 1.8	(%) 52.5 20.9 55.1 31.2 17.3 18.6 12.0 54.5 20.7 37.6 20.7 37.6 20.4 .0 27.6 20.3 33.8 25.6 21.6 8.5	(1/sm) 1.13000 .14200 1.29300 .36500 .11600 .11500 .06200 .05700 .15700 .48400 .14800 .00000 .26200 .13400 .44500 .44500 .17900 .14700 .02500
$ \begin{bmatrix} 8K32 & .36 & .12 & .04 & 20 & 32 \\ 8K33 & .36 & .12 & .02 & 40 & 32 \\ 8K34 & .36 & .12 & .02 & 40 & 32 \\ 8K35 & .72 & .12 & .02 & 70 & 32 \\ 8K36 & .72 & .12 & .04 & 70 & 32 \\ \end{bmatrix} \begin{bmatrix} .115 & 1.41 & .037 & 1.30 \\ .115 & 2.02 & .018 & 1.86 \\ .60 & .0 & .0 & .00000 \\ .60 & .0 & .0 & .00000 \\ .60 & .0 & .0 & .00000 \\ .51 & $	SK8 SK9 SK10 SK11 SK12 SK13 SK14 SK15 SK16 SK17 SK18 SK19 SK20 SK21 SK22 SK23 SK24 SK25 SK26 SK27 SK28 SK29 SK30 SK31 SK32 SK33 SK34 SK35 SK36	.72 .72 .72 .72 .72 .72 .72 .72 .72 .72	.12 .12 .12 .12 .12 .12 .12 .12 .12 .12	$\begin{array}{c} .02\\ .04\\ .01\\ .02\\ .03\\ .04\\ .02\\ .04\\ .04\\ .04\\ .04\\ .04\\ .04\\ .04\\ .04$	30 30 40 40 40 40 40 40 40 50 50 60 20 20 20 20 20 20 40 40 40 40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	32 32 32 32 32 32 32 32 32 32 32 32 32 3	.11 .10 .12 .12 .12 .13 .11 .12 .13 .11 .12 .13 .11 .11 .11 .11 .11 .11 .11 .11 .11 .11 .12 .13 .11 .11 .11 .11 .11 .11 .12 .13 .14 .15		4 .020 9 .037 3 .009 5 .021 9 .030 2 .039 2 .023 9 .039 2 .019 9 .039 2 .019 9 .039 2 .019 9 .037 7 .019 9 .037 7 .019 9 .037 5 .020 1 .037 5 .020 1 .037 8 .042 2 .042 8 .048 1 .037 5 .020 8 .048 1 .037 5 .020 8 .048 5 .020 1 .037 5 .020 8 .048 5 .028 5 .020 6 .038 5 .038	1.78 1.29 2.62 1.74 1.29 2.62 1.74 1.29 1.27 1.08 1.27 1.9 1.64 1.26 1.79 1.9 1.80 1.29 1.30 1.29 1.30 1.79 1.29 1.30 1.29 1.29 1.30 1.29	.24 .24 .24 .24 .24 .24 .24 .24 .24 .24	.7 .0 .8 .8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	3.7 .1 .8 3.1 .5 .0 4.4 .1 1.9 .0 2.8 .1 3.5 .3 5.2 .4 3.1 .1 4.0 .0 .0 .0 .0 1.2 .0	.01690 .0072 .00590 .00250 .00250 .00072 .00000 .01020 .00037 .00890 .00000 .01034 .00109 .02320 .00108 .00770 .00233 .01870 .00030 .00030 .00050 .00000 .00000 .00000 .00000	.155 .155 .155 .155 .155 .155 .155 .155	$\begin{array}{c} 22.0\\ 4.0\\ 13.5\\ 22.0\\ 11.5\\ 5.5\\ 22.0\\ 21.5\\ 6.5\\ 21.0\\ 2.5\\ 15.0\\ 3.2\\ 24.0\\ 6.0\\ 26.0\\ 6.0\\ 21.5\\ 4.0\\ 26.0\\ 6.0\\ 21.5\\ 4.0\\ 29.0\\ 5.8\\ .0\\ .0\\ 15.0\\ 3.0\\ 15.0\\ .0\\ 3.0\\ \end{array}$	30.6 13.1 16.4 38.9 22.2 14.4 31.0 12.0 20.4 11.5 26.9 12.0 37.2 12.0 37.2 12.0 38.3 11.4 31.9 14.8 33.0 13.1 15.1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.26100 .09400 .12800 .46100 .12900 .02500 .02500 .04770 .14860 .05060 .34980 .06600 .46700 .06290 .51700 .06170 .34200 .07460 .32180 .05940 .32000 .03700 .00000

Proeven proef (nprog h (m)	ramma H _s (m)	s _{op} (-)	θ (°)	σ (*)	Gemet H _s Di (m)	en go T _p ep (s)	lfrvw ^S op (-)	ξ _p (-)	} Kruin (m)	loge) Op- (loop (%)	ruin)ver- slag (%)	q (1/sm)	I Kruin (m)	lage Op-(loop (१)	kruin Over- slag (१)	q (1/sm)
SL3A SL6A SL10A SL13A SL18A SL26A LK6A SK2A	.72 .72 .72 .72 .72 .72 .72 .72 .72	.12 .12 .12 .12 .12 .12 .12 .12 .12	.01 .04 .01 .04 .04 .04 .04 .04	20 20 40 60 80 0 10	0 0 0 0 32 32	.131 .119 .124 .134 .153 .119 .100 .111	2.70 1.39 2.78 1.41 1.41 1.41 1.36 1.39	.012 .039 .010 .043 .049 .038 .035 .037	2.33 1.26 2.47 1.20 1.13 1.28 1.34 1.30	.24 .24 .24 .24 .24 .24 .24 .24 .24	9.5 .0 3.8 .0 .0 .0 .0	4.4 .3 5.3 .0 .0 .0 .0 .3	.03050 .00072 .03060 .00000 .00000 .00000 .00000 .00000	.15 .15 .15 .15 .15 .15 .15 .15	34.0 6.0 27.0 6.5 .5 .0 3.4 7.0	33.7 14.2 21.1 10.4 5.7 11.9 10.4 17.1	.48400 .07100 .17500 .03000 .00600 .05200 .12400 .09900

Tabel 4 Gemeten overslaggegevens (vervolg)

Tabel 5 Geinterpoleerde oploopgegevens (vervolg)

proefh (m Ē ۳ <u>.</u> s ob Φ 88 ġ 888 88888 0 212 32 ននង ° Q 8 (- 5% $\omega \sim N$ (ploop IN ,/H₃R_u/H₅R_u/ ?% 2% 5%) (-) (-) (-) .03271 2. (-5% INTERPOLATIES 1.30 1.60 .67 40 55 20 43 97 (-)% 2688 (-) 20° Ŧ

S	11 88 87 86 87 86 87 87 87 87 87 87 87 87 87 87 87 87 87	× 8 → 1111238656511286511111111111111111111111111111
), /H, R,	24.1 1.11 1.11 1.12 1.12 1.12 1.12 1.12	HEA HEA HEA HEA HEA HEA HEA HEA
NTERPO	11.73 985 985 985 985 985 985 985 985 985 985	MTERP MTERP 1. 29 1.
1000 []	1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.03 1.031	- -
R, /H, R, P, P, P, R, A, R, P,	8.8.8.2.2.2.2.1.2.2.2.2.1.2.2.2.2.2.2.2.	₽ ³ ² ² ² 4824233555222525252525555555555555555555
b C		
9 _ 6 ~		
' د د	222222222222222222222222222222222222222	
Т <u></u>		
) (1	*****************	

Geinterpoleerde oploopgegevens (vervolg) Tabel 5

Bro (-	n proef) (-)	cot(a) (-)	H _{si} (m)	Tp (s)	T _z (s)	kruin hoogte (m)	kruin breedte (m)	overslag q (m3/s/m)	overslag aantal (%)	teen diepte (m)	spectrum type (-)	spectrum £5% (-)
	3 3	$\begin{array}{c} 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\$	$\begin{array}{c} 2.20\\ 1.69\\ 1.96\\ 2.50\\ 2.75\\ 3.02\\ 2.20\\ 2.15\\ 2.24\\ 2.30\\ 2.15\\ 2.24\\ 2.30\\ 2.17\\ 2.45\\ 3.00\\ 2.22\\ 2.23\\ 2.17\\ 2.45\\ 3.00\\ 2.22\\ 2.23\\ 2.17\\ 2.26\\ 1.25\\ 1.76\\ 2.26\\ 1.27\\ 1.25\\ 2.61\\ 1.27\\ 2.61\\ 1.27\\ 2.61\\ 1.27\\ 2.61\\ 1.27\\ 2.61\\ 1.27\\ 2.61\\ 1.27\\ 2.61\\ 1.27\\ 2.61\\ 1.27\\ 2.61\\ 1.27\\ 2.61\\ 1.27\\ 2.63\\ 1.27\\ 1.78\\ 2.55\\ 1.27\\ 1.31\\ 1.82\\ 2.63\\ 1.27\\ 2.36\\ 1.27\\ 2.36\\ 1.27\\ 2.36\\ 1.27\\ 2.36\\ 1.27\\ 2.36\\ 1.27\\ 1.78\\ 2.55\\ 1.27\\ 1.78\\ 2.55\\ 1.27\\ 1.78\\ 2.55\\ 1.27\\ 1.78\\ 2.55\\ 1.27\\ 1.78\\ 2.55\\ 1.27\\ 1.23\\ 2.63\\ 1.27\\ 1.23\\ 2.63\\ 1.27\\ 1.23\\ 2.63\\ 1.27\\ 1.23\\ 2.55\\ 1.27\\ 1.23\\ 2.55\\ 1.27\\ 1.23\\ 2.55\\ 1.27\\ 1.23\\ 2.55\\ 1.27\\ 1.23\\ 2.55\\ 1.23\\ 1.23\\ 2.55\\ 1.23\\ 1.23\\ 2.55\\ 1.23\\ 1.23\\ 2.55\\ 1.27\\ 1.23\\ 1.23\\ 2.55\\ 1.27\\ 1.23\\ 1.23\\ 2.55\\ 1.27\\ 1.23\\ 1.23\\ 2.55\\ 1.27\\ 1.23\\ 1.23\\ 1.25\\ 1.23\\ 1.25\\ 1.25\\ 1.25\\ 1.27\\ 1.23\\ 1.25\\$	$ \begin{array}{c} 6.97\\ 6.08\\ 7.65\\ 9.15\\ 8.24\\ 9.15\\ 8.24\\ 9.15\\ 8.24\\ 9.15\\ 8.24\\ 5.67\\ 7.8\\ 7.8\\ 7.8\\ 7.8\\ 7.8\\ 7.8\\ 7.8\\ 7.$	$\begin{array}{l} 5.50\\ 4.85\\ 5.24\\ 5.290\\ 6.54\\ 5.290\\ 6.54\\ 5.55\\ 5.660\\ 7.13\\ 5.569\\ 6.55\\ 5$	$\begin{array}{c} 2.40\\ 2.40\\ 2.40\\ 2.40\\ 2.40\\ 2.40\\ 2.40\\ 2.40\\ 2.40\\ 2.40\\ 2.40\\ 2.40\\ 2.60\\ 2.60\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 3.00\\ 2.50\\ 3.00\\$		3.37e-2 6.4e-3 1.68e-2 1.336e-1 2.155e-1 6.33e-2 1.034e-1 1.8e-2 5.3e-3 9.06e-2 2.115e-1 3.451e-1 4.71e-2 1.2e+3 9.06e-2 2.115e-1 3.451e-1 4.71e-2 1.284e-1 2.138e-2 1.284e-1 2.34e-2 1.284e-1 2.34e-2 1.26554e-1 9.92e-3 5.404e-2 1.0665e-1 2.0945e-1 1.0665e-1 2.0945e-1 1.0665e-1 2.0945e-1 1.0665e-1 2.0945e-1 1.0665e-1 2.0945e-1 1.6735e-1 3.31e-3 3.02e-2 7.5e-4 1.19e-2 3.142e-2 6.573e-2 4.531e-2 1.6154e-1 5.609e-2 2.4446e-1 1.6427e-1 1.6427e-1 1.6427e-1 1.6427e-1 1.6427e-1 1.6427e-1 1.6427e-2 1.655e-2 1.6542e-1 1.6427e-2 1.6427e-2 1.6427e-2 1.642e-2 1.642e-2 1.9014e-1 4.82e-3 3.053e-2 7.305e-2 1.6894e-1 2.56e-32 2.56e-32 1.6894e-1 2.56e-32 1.6894e-1 1.377e-2 4.832e-2 1.649e-3 3.052e-2 1.649e-3 5.742e-2 1.649e-3	$\begin{array}{c} 35\\ 14\\ 25\\ 46\\ 42\\ 45\\ 22\\ 31\\ 1\\ 5\\ 61\\ 67\\ 77\\ 36\\ 44\\ 34\\ 61\\ 12\\ 25\\ 23\\ 11\\ 5\\ 61\\ 67\\ 77\\ 36\\ 44\\ 34\\ 61\\ 12\\ 25\\ 23\\ 37\\ 5\\ 23\\ 37\\ 45\\ 35\\ 47\\ 63\\ 16\\ 36\\ 50\\ 3\\ 63\\ 63\\ 9\\ 28\\ 43\\ 62\\ 52\\ 14\\ 46\\ 71\\ 77\\ 63\\ 15\\ 56\\ 61\\ 12\\ 37\\ 56\\ 42\\ 43\\ 62\\ 28\\ 28\\ 72\\ 81\\ 9\\ 72\\ 11\\ 43\\ 60\\ 71\\ 81\\ 56\\ 61\\ 12\\ 37\\ 56\\ 62\\ 82\\ 82\\ 82\\ 72\\ 81\\ 9\\ 81\\ 61\\ 12\\ 37\\ 56\\ 61\\ 61\\ 61\\ 61\\ 61\\ 61\\ 61\\ 61\\ 61\\ 6$	5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8		

Tabel 6

٠.

1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2	Bron (-)
212 225b 25c 26a 277 29a 326 39 40 43 10 11 20 212 23 30 40 41 102 111 120 212 23 30 40 41 102 111 120 210 220 310 311 320 210 220 310 311 320 210 220 310 311 320 321 330 311 320 320 321 320 320 321 320 320 321 320 320 321 320 320 321 320 320 321 320 320 321 320 320 321 320 320 321 320 320 321 320 320 321 320 320 321 320 320 321 320 320 321 320 320 321 320 320 320 320 320 320 320 320 320 320	proef (-)
$\begin{array}{c} 6.0\\ 6.0\\ 6.0\\ 6.0\\ 6.0\\ 6.0\\ 6.0\\ 6.0\\$	cot(a) (-)
$\begin{array}{c} .72 \\ 1.48 \\ 1.22 \\ 1.23 \\ .80 \\ 1.39 \\ .82 \\ .83 \\ .81 \\ .83 \\ 1.24 \\ .83 \\ .56 \\ .10 \\ $	H _{si} (៣)
$7.302 \\ 5.000 \\ 5.00$	T _p (s)
$\begin{array}{c} 4.70\\ 4.60\\ 3.80\\ 3.90\\ 4.70\\ 4.60\\ 3.90\\ 4.70\\ 4.00\\ 3.60\\ 3.70\\ 4.10\\ 3.60\\ 3.70\\ 4.10\\ 3.90\\ 3.60\\ 3.50\\ 1.29\\ 1.30\\ 1.29\\ 1.41\\ 1.39\\ 1.40\\ 1.40\\ 1.40\\ 1.40\\ 1.40\\ 1.41\\ 1.40\\$	T _z (s)
$\begin{array}{c} 1.80\\ 2.30\\ 1.80\\ 1.80\\ 1.80\\ 1.80\\ 1.80\\ 1.80\\ 1.80\\ 1.80\\ 1.80\\ 1.80\\ 1.80\\ 1.80\\ 1.80\\ 1.80\\ 1.80\\ 1.80\\ 1.80\\ 1.80\\ 1.80\\ 1.90\\$	kruin hoogte (m)
$\begin{array}{c} .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00$	kruin breedte (m)
3.3e-4 3.3e-4 6e-4 5.5e-4 5.7e-4 9.7e-4 3e-5 1.3e-4 9.029e-6 1.072e-5 2.38e-5 2.036e-5 2.036e-5 2.036e-5 2.036e-5 2.036e-5 2.036e-5 2.036e-5 2.036e-5 1.095e-4 1.087e-4 1.087e-4 1.045e-5 1.095e-4 1.05e-5 1.095e-4 1.027e-5 5.097e-5 1.393e-4 1.224e-5 1.076e-6 1.217e-5 5.0597e-5 1.393e-4 1.225e-5 1.076e-6 1.217e-5 5.0597e-5 1.393e-4 1.225e-5 1.076e-6 1.225e-5 1.893e-5 5.699e-5 2.85e-5 1.844e-4 3.048e-6 2.536e-5 2.85e-5 1.225e-5 1.311e-4 2.818e-6 3.881e-6 2.536e-5 2.55e-5 1.225e-5 1.084e-4 1.072e-4 1.684e-4 1.072e-4 1.684e-4 1.072e-4 1.684e-4 1.072e-4 1.267e-5 5.639e-5 2.326e-5 2.326e-5 2.326e-5 2.326e-5 2.326e-5 2.326e-5 2.326e-5 2.326e-5 2.326e-5 2.326e-5 2.326e-5 2.326e-5 2.326e-5 2.326e-5 1.225e-5 1.084e-4 1.072e-4 1.684e-4 1.201e-4 4.15e-4 2.016e-4 1.202e-5 1.084e-4 1.202e-5 1.976e-5	overslag q (m3/s/m)
$\begin{array}{c} -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ $	overslag aantal (%)
1.5 5	teen diepte (m)
$\begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $	spectrum type (~)
- - - - - - - - - - - - - - - - - - -	spectrum E 5% (-)

•

Tabel 6 Overslaggegevens LL (inclusief ander onderzoek) (vervolg)

Bron (-)	proefcot((-)(-)	α) H _{si} (m)	Tp (s)	, T ₂ (s)	kr tho (m	uin ogte)	kruin breedte (m)(oversl q m3/s/m)	overslagteen aantaldiepte (%)(m)	spectrum type (-)	spectrum £5% (-)
Bron (-) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	proefcot((-)(-) 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 81 82 83 84 82 83	$\begin{array}{c} a) & H_{si} \\ (m) \\ \hline 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 4$	T _p (s) 2.26 .81 1.24 1.75 .77 1.23 1.73 1.73 1.73 1.69 2.27 1.46 1.82 2.36 1.24 1.71 2.32 .78 1.22 1.70 1.26 1.75	T ₂ (s) 6.80 3.97 5.01 5.80 4.00 4.88 5.81 3.97 4.94 5.88 5.20 6.07 6.88 4.97 5.86 6.80 3.99 5.86 6.80 5.86 5.80 5.86 5.84	kr ho (m 5.23 3.05 3.85 4.46 3.08 3.75 4.47 3.08 3.80 4.52 5.25 4.00 4.67 5.29 3.82 4.51 5.23 3.07 3.81 4.51 3.81 4.49	uin ogte) 3.00 1.00 1.00 1.50 1.50 2.00 2.00 2.00 2.00 2.00 2.50 2.50 3.00 3.00 1.00 1.00 1.00	kruin breedte (m)(- - - - - - - - - - - - - - - - - - -	oversl q m3/s/m) 8.24e-2 2.45e-2 1.17e-1 2.74e-1 2.74e-1 2.74e-1 2.74e-3 5.479e-2 1.695e-1 8.7e-4 3.89e-2 9.2e-2 1.91e-1 1.66e-2 6.6e-2 1.31e-1 7.23e-3 3.7e-2 1.12e-1 5.154e-4 2.346e-2 1.057e-1 3.98e-3 2.55e-2	overslagteen aantaldiepte (%)(m) 55 59 83 89 13 61 81 3 39 59 78 38 59 78 38 56 72 13 36 61 4 50 79 22 50	spectrum type (-) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	spectrum
4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	87 88 90 91 92 94 95 LL1 LL2 LL3 LL4 LL5 LL4 LL5 LL4 LL5C LL4C LL5C LL4C LL3C LL4C LL3C LL4C LL3C LL4C LL3C LL4C LL3C LL4C LL3C	$\begin{array}{c} 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\$	$1.75 \\ 2.35 \\ 1.26 \\ 1.71 \\ 2.29 \\ 1.72 \\ 2.32 \\ .15 \\ .14 \\ .13 \\ .12 \\ .15 \\ .14 \\ .13 \\ .12 \\ .15 \\ .14 \\ .13 \\ .12 \\ .15 \\ .14 \\ .13 \\ .12 \\ .12 \\ .11 \\ .15 \\ .14 \\ .13 \\ .12 \\ .12 \\ .11 \\ .15 \\ .14 \\ .13 \\ .12$	5.84 6.81 4.95 5.51 5.86 6.86 2.61 2.00 1.60 1.23 2.67 2.05 1.72 1.45 1.23 2.61 2.00 1.60 1.38 1.23 2.67 2.05 1.72 1.45 1.23 2.67 2.05 1.23 2.67 2.05 1.23 2.61 2.00 1.60 1.38 1.23 2.67 2.05 1.72 1.45 1.23 2.67 2.05 1.23 2.67 2.05 1.23 2.67 2.05 1.23 2.67 2.05 1.23 2.67 2.05 1.23 2.67 2.05 1.23 2.67 2.05 1.23 2.67 2.05 1.23 2.67 2.05 1.23 2.67 2.05 1.23 2.67 2.05 1.23 2.67 2.05 1.23 2.67 2.05 1.23 2.67 2.05 1.23 2.67 2.05 1.72 1.45 1.21	4.49 5.24 3.81 4.24 4.51 5.28 2.02 1.56 1.33 1.17 1.09 2.13 1.66 1.38 1.22 1.56 1.33 1.17 1.09 2.13 1.66 1.33 1.17 1.09 2.13 1.66 1.33 1.17 1.09 2.13 1.66 1.33 1.17 1.09 2.13 1.66 1.33 1.17 1.09 2.13 1.66 1.33 1.17 1.09 2.13 1.17 1.09 2.13 1.17 1.09 2.13 1.17 1.09 2.13 1.17 1.09 2.13 1.17 1.09 2.13 1.17 1.09 2.102 1.56 1.33 1.17 1.09 2.002 1.56 1.33 1.17 1.09 2.002 1.56 1.33 1.17 1.09 2.102 1.56 1.33 1.17 1.09 2.102 1.56 1.33 1.17 1.09 2.102 1.56 1.33 1.17 1.09 2.102 1.56 1.33 1.17 1.09 2.102 1.56 1.33 1.17 1.09 2.102 1.56 1.38 1.22 1.11	$\begin{array}{c} 1.50 \\ 1.50 \\ 2.00 \\ 2.00 \\ 3.00 \\ 3.00 \\ 3.00 \\ .24 \\ .24 \\ .24 \\ .24 \\ .24 \\ .24 \\ .24 \\ .30 \\ .30 \\ .30 \\ .30 \\ .30 \\ .15 \\ .15 \\ .15 \\ .15 \\ .15 \\ .15 \\ .15 \\ .15 \\ .15 \\ .21 \\ .21 \\ .21 \\ .21 \\ .21 \\ .21 \end{array}$		3.55e-2 9.93e-2 1.33e-3 1.334e-2 5.21e-2 1.595e-3 1.073e-2 5.75e-4 1.19e-4 6.2e-5 3.1e-7 3.1e-7 1.47e-5 2.29e-5 7.3e-6 6.2e-6 1.361e-3 6.78e-4 3.21e-4 1.24e-4 7.2e-5 2.832e-4 1.424e-4 9.31e-5 8.15e-5	50 73 12 31 60 8 28 25 9 6 1 0 2 4 3 2 4 3 2 1 54 31 54 31 29 14 6 1 8 29 14 6 1 8 29 14 6 1 1 1 1 54 31 12 14 1 1 12 14 1 1 12 14 1 1 12 14 1 1 1 1 1 1 1 1	7 1 7 <th>- - - - - - - - - - - - - - - - - - -</th>	- - - - - - - - - - - - - - - - - - -

TOELICHTING	
Bron 1	Reflektie compensatie tests
Bron 2	M1258
Bron 3	H24 Afsluitdijk (talud ca. 1:4)
Bron 4	Gegevens Wallingford HRS
Bron 5	H638 (LL)
Spectrumtype 1	JONSWAP
Spectrumtype 2	PM
Spectrumtype 3	Overig (o.a. tweetoppig)

Tabel 6 Overslaggegevens LL (inclusief ander onderzoek) (vervolg)

'n

REFERENTIES

M. Klein Breteler Golfoploop Literatuurstudie en kleinschalig modelonderzoek Waterloopkundig Laboratorium, H638, 1990

E.R. Funke and M.D. Miles Multi-directional wave generation with corner reflectors NRC report TR-HY-021, No. 28081, 1987

J.W. van der Meer Golfoverslag Afsluitdijk Verslag modelonderzoek Waterloopkundig Laboratorium, H24, 1987

M.W. Owen Design of seawalls allowing for wave overtopping Hydraulics Research Station Wallingford, England, report Ex 924 b, 1980

H.W.R. Perdijk Golfoverslag bij dijken Verslag modelonderzoek Waterloopkundig Laboratorium, H181/M1258, 1987

K.W. Pilarczyk en G.E. Moret Invloed van bermen op de oploop van regelmatige golven Verslag modelonderzoek Waterloopkundig Laboratorium M1130, Rijkswaterstaat Deltadienst Waterloopkundige afdeling W73. H900L, 1976

S.E. Sand and A.E. Mynett Directional wave generation and analysis Proc. IAHR seminar, Lausanne, 1987.

<u>REFERENTIES</u> (vervolg)

C.J.M. Stam

De korrelatieparameter in de twee-dimensionale Rayleigh kansdichtheidsfunctie voor opeenvolgende golfhoogten; een vergelijking van berekeningsmethoden; Deelstudie (TU Delft) Waterloopkundig Laboratorium, M1983, 1988

WAT

Golfoploop en golfoverslag Technische Adviescommissie voor de Waterkeringen, 1972

TAW

Leidraad voor het ontwerpen van rivierdijken, deel 1 - bovenrivierengebied Technische Adviescommissie voor de Waterkeringen, 1985

Klein Breteler (1990):

	ξ _{op} ≦ 2.2	2.2 < ξ_{op} < 7
$R_{u2\%}/H_{s} =$	1.61 ξ _{ορ}	3.5
	ξ _{op} ≦ 2.1	$2.1 < \xi_{op} < 7$
$R_{us}/H_s =$	1.25 ξ _{op}	2.9 - 0.14 ξ _{op}
	ξ _{op} ≤ 2.0	2.0 < ξ _{op} < 7
R _{um} /H _s =	0.84 ξ _{op}	1.9 - 0.13 ξ _{op}

Ru = golfoploop, verticaal gemeten t.o.v. SWL (m) = gemiddelde golfoploop (m) Rum = significante golfoploop (m) Rus = golfoploop met overschrijdingskans van 2% (m) Ru2% = significante golfhoogte (m) Hs = surf similarity parameter (-), $\xi_{op} = \tan(\alpha)/\sqrt{H_s/L_o}$ ξ_{op} $\frac{R_u}{H_s}$ ¹(basis) * r Verwerking invloeden: $r_{\sigma} \star r_{\theta} \star r_{h} \star r_{B}$ r

Voor brekende golven ($\xi_{op} \leq 2.5$):

 $P(\text{overslag}) = \exp(-\left(\frac{h_d/H_s}{0.81 \xi_{op}}\right)^2)$

 H_s = significante golfhoogte (m) h_d = kruinhoogte t.o.v. SWL (m) ξ_{op} = surf similarity parameter (-), ξ_{op} = tan(α)/ $\sqrt{H_s/L_o}$ Voor niet-brekende golven geeft deze formule meestal een overschatting van de overslagkans.

OVERSLAGKANS	
WATERLOOPKUNDIG LABORATORIUM	H 638 FIG. 2

Klein Breteler (1990): Voor tana \leq 0.333 en berm op SWL:

$B^2/(H_sL_{op})$	r _B	
< 0.01	1.00	
0.01 < < 1.00	$0.65^{3\tan(\alpha)}(B^2/(H_sL_o))^{-0.3\tan(\alpha)}$	
> 1.00	$0.65^{3tan(\alpha)}$	

= bermbreedte (m)

В

H_s

L_o

α

- = significante golfhoogte (m)
- = golflengte op diep water (m)
- = taludhelling (°)

INVLOED BERM		
WATERLOOPKUNDIG LABORATORIUM	Н 638	FIG. 5

WATERLOOPKUNDIG LABORATORIUM

Н 638

000 _____ FIG.

7

Invloed grindkoppen op oploop Links zonder, rechts met grindkoppen

Proefnummer	Proefcode
1	SL3
2	SL6
3	SL10
4	SL13
5	SL18
6	SL26
7	LK6
8	SK2

INVLOED GOLFBREKERKOPPEN OP OPLOOP WATERLOOPKUNDIG LABORATORIUM H 638 FIG. 15

R_{u0.5%} / H_s

R_{u2%} ∕H_s

×

A

- R_{u5}%; ∕H_s
- R_{u10%} / H_s
- R_{u20}%; / H_s

ł

• . .

i

_ _ _ ___

.

Scheef langkammig, verwachte overslag Talud 1:4 0 R=0.354 R=0.500 R=0.566 R≕0.800 -2 (D)60| -6 -8 | 0 30 70 10 20 40 50 60 80 90 Hoek van golfaanval θ (graden) OVERSLAG SL TALUD 1:4, VERWACHTING FIG. H 638 WATERLOOPKUNDIG LABORATORIUM 73

_ _ _

t,

•

Ł

• locatie 'De Voorst'

• hoofdkantoor

hoofdkantoor Rotterdamseweg 185 postbus 177 2600 MH Delft telefoon (015) 56 93 53 telefax (015) 61 96 74 telex 38176 hydel-nl

locatie ' De Voorst ' Voorsterweg 28, Marknesse postbus 152 8300 AD Emmeloord telefoon (05274) 29 22 telefax (05274) 35 73 telex 42290 hylvo-nl

