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Abstract
Recent advances in reinforcement learning (RL)
have achieved superhuman performance in vari-
ous domains but often rely on vast numbers of
environment interactions, limiting their practical-
ity in real-world scenarios. MuZero is a RL al-
gorithm that uses Monte Carlo Tree Search with
a learned dynamics model, which is trained only
to predict rewards, values, and policies, without
any explicit objective to match real environment
transitions. This work investigates how constrain-
ing the learned model of MuZero to follow the
real environment dynamics with either a temporal-
consistency loss over latent states or a pixel-level
observation-reconstruction loss impacts the sample
efficiency of MuZero, tested under the Atari100k
benchmark. We evaluate performance on Pong,
Breakout, and MsPacman analyzing the impact of
each loss and its sensitivity to loss weight. Our
results show how the temporal-consistency loss
can improve performance in certain environments
while the observation-reconstruction loss fails to
do so, and that both losses are highly sensitive to
their weight coefficient, indicating that they might
require task-based fine tuning.

1 Introduction
Reinforcement learning (RL) has recently surpassed human
performance in domains ranging from Atari games to board
games, demonstrating the power of deep neural networks to
learn policies directly from high-dimensional inputs. For ex-
ample, DQN [1] showed that it is possible to learn policies
directly from pixel inputs with deep neural networks, paving
the way for algorithms such as Rainbow [2], MuZero [3], and
DreamerV2 [4] to achieve superhuman play. However, these
breakthroughs often rely on hundreds of millions of environ-
ment interactions, equivalent to thousands of hours of real-
world gameplay [5; 6; 7]. This makes them impractical for
domains where each interaction is costly or risky.

To address this sample inefficiency, recent work has
explored several complementary approaches: model-based
methods (e.g., SimPLe [5], SPR [6]), data augmentation
(DrQ [8]), and self-supervised objectives (EfficientZero [7],
DreamerV3 [9], BBF [10]).

MuZero [3] is a model-based RL algorithm that builds on
top of AlphaZero [11]. Compared to its predecessor, MuZero
learns an internal model of environment dynamics, rather
than relying on a known simulator. It uses Monte Carlo
Tree Search (MCTS) to plan over this learned model, but
this model is only meant to be value-equivalent with the real
environment[12]; it is only trained to predict the correct value
and policy without ever being constrained to learn the envi-
ronment dynamics faithfully. As a result, the latent model can
drift away from real dynamics in low-data regimes, limiting
MCTS planning accuracy in low-data scenarios [7].

EfficientZero [7] improves the sample-efficiency of
MuZero by adding a few modifications to the base algorithm,

including a temporal-consistency loss for the learned model,
specifically meant to address the issue of learned model in-
consistencies. However, EfficientZero does not test the im-
pact of the temporal-consistency loss in isolation, compare
it against alternative model-learning losses, or investigate
the sensitivity of performance to the weight of the consis-
tency term. Moreover, other studies have proposed SPR-style
consistency, contrastive losses, and autoencoder-based recon-
struction objectives for the learned model of MuZero [13; 14;
15], but these have been evaluated mainly for generalization
or model interpretability, rather than exploring their perfor-
mance impact in strict low-data benchmarks.

This leaves an open question: How do different model-
learning losses impact the sample efficiency of MuZero,
measured through the scores obtained in Atari games after
100,000 environmental steps?

We systematically evaluate two approaches: SimSiam-
based temporal-consistency loss (a latent state loss) and
autoencoder-based observation-reconstruction loss (a pixel-
level reconstruction loss) under the Atari100k [5] benchmark.
We focus on temporal-consistency because EfficientZero at-
tributes its sample-efficiency gains mainly to it [7], and re-
construction due to its wide use in other model-based RL al-
gorithms [4; 16; 17].

We measure how these losses influence MuZero’s per-
formance in Pong, Breakout, and MsPacman when training
data is limited, while also examining the sensitivity to loss
weights. Our contributions show that temporal-consistency
loss improves MuZero’s sample efficiency in simple environ-
ments, while reconstruction loss can degrade performance,
and that performance is sensitive to loss weighting and does
not always generalize between tasks.

The rest of the paper is organized as follows: Section 2 re-
views background on MuZero and the losses studied. Section
3 surveys related work. Section 4 outlines our methodology,
the implemented losses and setup. Section 5 presents exper-
imental results. Section 6 discusses their implications and
limitations. Section 7 reflects on responsible research consid-
erations, and Section 8 concludes with future directions.

2 Background
In this section, we provide the necessary technical back-
ground and formal definitions that underlie our research.
First, we introduce the general concepts of model-based re-
inforcement learning. Next we describe MuZero, the algo-
rithm studied in the paper. We then review two key con-
cepts: autoencoder-based reconstruction objectives and Sim-
Siam representation learning.

2.1 Model-Based Reinforcement Learning
Reinforcement learning (RL) addresses the problem of how
an agent should make decisions while interacting with an en-
vironment. The goal is to maximize cumulative reward deter-
mined by the agent’s actions [18]. The environment is typi-
cally modeled as a Markov Decision Process (MDP), defined
by a transition function that specifies state changes given ac-
tions, and a reward function that assigns scalar values to each
transition [19].



RL algorithms are often classified as either model-free or
model-based. In contrast to model-free methods, model-
based RL involves learning or using an explicit model of the
environment’s dynamics, which can be queried for arbitrary
state–action pairs [20]. Such models can be either provided
in advance or learned from interaction data. By incorporat-
ing planning into the decision process, model-based meth-
ods have demonstrated superhuman performance in complex
games such as Go, Chess, Shogi, and Atari, most notably
through algorithms like MuZero [3].

2.2 MuZero
MuZero [3] is a model-based RL algorithm that learns its
own latent dynamics and uses Monte-Carlo Tree Search
(MCTS) for planning. It consists of three learned functions:

1. Representation s0t = h(ot) encodes the current observa-
tion ot into a hidden state s0t . 1

2. Dynamics (rkt , s
k
t ) = g(sk−1

t , akt ) predicts the next hid-
den state skt and immediate rkt reward given a hidden
state sk−1

t and an action akt .
3. Prediction (pkt , v

k
t ) = f(skt ) outputs a policy prior pkt

and value estimate vkt for a hidden state skt .
At each decision step t, MuZero runs Monte Carlo Tree
Search (MCTS) on hidden states: it encodes the current ob-
servation at the root of the tree using the representation func-
tion, then it expands nodes using the dynamics function and
employs the prediction function to approximate the value of
states in the leaf nodes (Fig. 1a). The next action is picked
based on the values obtained through MCTS (Fig. 1b). Com-
pared to traditional MCTS, MuZero replaces random rollouts
at leaf nodes with the value estimations, and uses the pre-
dicted policy as a prior to guide the search in the tree .

It is important to note that MuZero works on the idea of
building a value-equivalent model of the environment [12].
Its internal model is optimized only to make accurate reward,
value, and policy predictions, not to learn a representation and
dynamics function that are consistent with the true environ-
ment dynamics.

Training is end-to-end, optimizing all functions (represen-
tation, dynamics, and prediction) together. For each real ob-
servation ot, the latent model is unrolled K steps and com-
pared to MCTS targets (Fig. 1c). The loss aggregates the
policy, value and reward errors across all timesteps.

MuZero enhances training with prioritized experience re-
play and the reanalyze procedure, which refreshes MCTS tar-
gets (i.e. policy and value targets) by re-planning on past tra-
jectories using updated network parameters.

In the original study by Schrittwieser et al.[3], the base-
line MuZero trained for 20 billion steps achieved a mean
human-normalized score of 4999.2% on Atari 2600, whereas
the reanalyze-augmented variant, reached a score of 2168.9%
after being trained for only 200 million steps.

1Subscripts like t denote environment timesteps, while super-
scripts like k denote the learned model rollout steps (if the super-
script is omitted or 0, it denotes a state encoded through the rep-
resenation function, while a value of 1 or higher denote states un-
rolled through the dynamics function). We maintain this distinction
throughout the paper.

2.3 Autoencoders
Autoencoders (AEs) are a class of unsupervised learning
methods for dimensionality reduction and feature extraction
[21]. Autoencoders operate by learning to encode an input
into a latent space and then reconstruct it. The objective used
in training is the similarity between the input and its recon-
struction.

Autoencoders typically consist of an encoder and a decoder
network. Many specialized types of autoencoders exist de-
pending on their network architecture (i.e. CAEs, VAEs).
Given an input, for example an image, it is first processed
through the encoder, and then the result is passed through the
decoder, with the training objective being to make the output
of the decoder similar to the original input. The joint training
of the two components ensures the encoder learns to work as
a dimensionality reduction operation, learning to encode the
most relevant features of the input.

Formally, if x is an input, enc the encoder and dec the de-
coder, then autoencoders minimize a loss of the form:

L = lrec(dec(enc(x)), x)

where lrec is a loss function such as mean square error (MSE).
Autoencoders have been extensively used in anomaly de-

tection and machine vision to learn visual representations
for many tasks, including classification, clustering or im-
age generation [21]. In reinforcement learning autoencoder-
like methods have been previously used to learn environment
models [4; 16; 17].

2.4 SimSiam
SimSiam is a self-supervised learning method originally de-
veloped for learning visual representations without labels
[22]. It operates by maximizing the similarity between dif-
ferent augmented views of the same input, encouraging the
learned representations to be invariant to data augmentations.

The SimSiam framework consists of an encoder network
and a predictor network. The encoder is made of a back-
bone network (e.g. ResNet) and a MLP projection network.
The predictor is also an MLP. Given two differently aug-
mented versions of the same input image, one is processed
through the encoder followed by the predictor, while the other
is passed through only the encoder and then a stop-gradient is
applied (gradients are not back-propagated through the sec-
ond branch). The objective is to make the output of the pre-
dictor match the representation produced by the stop-gradient
branch. The use of the predictor and stop-gradient prevents
representational collapse, allowing the model to learn mean-
ingful features without contrastive sampling or negative pairs.

Formally, if x1 and x2 are two augmentations of the same
image, enc the the encoder and pred the predictor. Then,
SimSiam minimizes a loss of the form:

L = lsim (pred(enc(x1)), stopgrad(enc(x2)))

where lsim is a loss such as negative cosine similarity, and
stopgrad indicates that gradients are not back-propagated
through that branch.

SimSiam stands out because it avoids model collapse and
achieves strong performance without contrastive sampling,



Figure 1: Overview of MuZero’s architecture and training process, adapted from [3]. (a) MuZero plans with MCTS, using a learned model
composed of a representation function h, a dynamics function g, and a prediction function f . At each step, the model receives a hidden state
and action to output the next hidden state, reward, value, and policy. (b) At each environment step, MuZero performs MCTS as shown in a
to select an action, which is executed in the environment and a reward u is received. (c) During training, past trajectories are unrolled for K
steps, the model is trained end-to-end to predict rewards, values, and policies from these rollouts.

negative pairs, momentum encoders, memory banks, or large
batch sizes [22]. This has made it attractive for adaptation
in other domains beyond image classification, including rein-
forcement learning [7].

3 Related Work
In this section, we review prior research on data-efficient re-
inforcement learning, focusing on extensions to MuZero, par-
ticularly EfficientZero, that introduce self-supervised consis-
tency losses and other architectural modifications to acceler-
ate learning under strict data budgets.

3.1 Data Efficient Reinforcement Learning
Most state-of-the-art deep RL algorithms require vast
amounts of experience, often hundreds of millions of envi-
ronment steps, to reach strong performance. For example,
MuZero Reanalyze is typically trained with 200M+ frames
[3] to achieve its top performance. This means thousands of
hours of real gameplay.

In contrast, recent work has focused on dramatically re-
ducing data requirements. For instance, Kaiser et al.’s Sim-
PLe [5] algorithm popularized the idea of training agents
on around 100,000 environment interactions in Atari games
(around 2 hours of play), then many other papers started
evaluating their agents on the same benchmark [6; 8; 9;
7; 10]. Furthermore, algorithms such as DreamerV3, BBF
and EfficientZero have surpassed human performance on the
benchmark [9; 10; 7].

3.2 Model-learning losses for MuZero
Some works have previously augmented MuZero with model-
learning losses in order to explore various aspects of the
model. Anand et al. have previously explored if augment-
ing MuZero with SPR-style consistency, reconstruction,, and
contrastive losses improves the generalizability of MuZero in

various tasks and procedurally generated environments [13].
Others have tested the impact of reconstruction-based model-
learning losses on planning [15] or for interpreting the hidden
states of MuZero [14].

However, the impact of model-learning losses on the sam-
ple efficiency of MuZero remains largely unexplored. The
only relevant work on this topic we have found is Effi-
cientZero [7].

3.3 EfficientZero
EfficientZero was proposed specifically to address the poor
sample efficiency of MuZero. Ye et al. report how on the full
Atari100k benchmark their agent improves the mean human-
normalized score of MuZero from 56.2% to 194.3% [7].

EfficientZero largely retains MuZero’s architecture but in-
troduces multiple key modifications aimed at improving sam-
ple efficiency.

Most importantly, EfficientZero adds a self-supervised
temporal-consistency loss. This loss enforces that the hid-
den states predicted by the dynamics model remain consistent
with real environment observations. Ye et al. argue that this
internal consistency is critical for sample-efficient learning,
as MCTS relies heavily on accurate internal models. To im-
plement this, EfficientZero applies a SimSiam [22] based ap-
proach to jointly train the representation and dynamics func-
tions: the stop-gradient branch encodes the actual observation
and the other unrolls the learned dynamics model. This en-
courages the model to learn a representation and dynamics
functions that more closely align the hidden states with their
real counterparts. Data augmentations are also applied to im-
prove the robustness of learned representations.

Ye et al. report that the temporal-consistency loss con-
tributes the most to EfficientZero’s performance gains. Their
ablation studies explore the impact of removing one modifi-
cation at a time. These experiments showed the largest perfor-



mance drop when the consistency loss was omitted. However,
since it was not evaluated in isolation and only one weight
coefficient was reported, its direct impact is hard to clearly
quantify.

4 Methodology
In this paper we aim to answer what is the impact of dif-
ferent model-learning losses on MuZero’s sample efficiency.
We address two questions: (1) How augmenting MuZero with
model-learning losses affects sample efficiency relative to the
baseline? and (2) How varying the weight of these losses in-
fluences final agent performance. This section presents the
model-learning losses explored, the environments used in ex-
periments and the evaluation metrics.

4.1 Model-learning losses

We focus on two model-learning losses: (a) temporal-
consistency, an objective that penalizes discrepancies be-
tween predicted and actual hidden states, as introduced by
EfficientZero [7], and (b) observation-reconstruction, a loss
that penalizes pixel-level differences between observations
and reconstructions obtained from hidden states. The model-
learning losses are only applied during training, the agent’s
planning remaining unmodified.

The baseline agent implements the MuZero Reanalyze
algorithm [3], which implements a value-equivalent loss
trained only on value, reward and policy targets. Each model-
learning loss is individually applied on top of the baseline,
being weighed and added to the full loss. These losses con-
tribute to training the representation and dynamics networks
and should lead to state representations and predictions better
aligned with the true environment’s model. We theorize that
this should help the agent plan more effectively over its latent
model. This claim is supported by prior work showing how
the efficiency and generalizability of planning in latent space
benefits from enforcing alignment between latent transitions
and true environment dynamics [23].

(a) Temporal-consistency loss. Following EfficientZero
[7], we introduce a SimSiam-style loss between the hidden
states predicted by the dynamics network and the encodings
of the real next observations. To apply this loss we augment
the baseline model with two networks: a projector m and a
predictor n. The projector maps hidden states to a lower-
dimensional latent space where the consistency loss is calcu-
lated, while the predictor prevents model collapse [22].

Starting from time t, at each step 1, . . . , k − 1, k we pass
the hidden state sit predicted by unrolling the dynamics net-
work through the projector m and the predictor n to obtain
qit = n(m(sit)). The target for the stop gradient branch
qt+1 = stopgrad(m(h(ot+1)) is obtained by passing the
real future observations ot+1 through the representation net-
work and the projector, with a stop-gradient operation ap-
plied. Both branches share the same network parameters
for the projector and predictor, but the stop-gradient branch
does not propagate gradients during updates. The temporal-
consistency loss is calculated as the summation of the nega-

tive cosine similarities of qit and qt+i for each timestep:

lcons = − 1

k

k∑
i=1

qit
∥qit∥

· qt+i

∥qt+i∥
.

(b) Observation-reconstruction loss. This loss aims to
make the learned dynamics predictive of the real environ-
ment by adding a pixel-level reconstruction loss between real
observations and reconstructions obtained from the unrolled
hidden states. To implement this loss, we augment the base-
line agent with a decoder network d, used to reconstruct
observation-like tensors from hidden states. The decoder mir-
rors the representation network h but with deconvolution op-
erations.

Starting from time t, at each step 1, . . . , k − 1, k we pass
the hidden state predicted by unrolling the dynamics network
sit through the decoder d to obtain the observation reconstruc-
tion oit = d(sit). We calculate this loss as the means-squared
error (MSE) of the reconstruction and the real observation
ot+i obtained from the environment

lrec =
1

k

k∑
i=1

∥ ot+i − oit∥2.

No image augmentations are applied to the observa-
tions for any of the model-learning losses. Both losses are
computed for five unrolled steps (k = 5). Figure 2 illustrates
the losses for one unrolled step.

For all variants of the MuZero agent we maintain the same
architecture for the representation, dynamics and prediction
network. A detailed description of all networks can be found
in appendix C. We also keep the model hyper-parameters the
same for all models, except the ones related to the additional
losses. The hyper-parameters used can be found in appendix
B.

4.2 Environments
We follow the Atari100k benchmark, which evaluates agents
on Atari 2600 games with a limit of around 100,000 environ-
ment interactions, or roughly 2 hours of real gameplay [5].

In our setup, we use: 2,000 interactions for initial data col-
lection with a random policy and 100,000 interactions when
training, totaling 102,000 interactions. We use a frame-skip
of 4 and a stack of 4 frames per observation.

We focus our experiments on Pong, Breakout, and MsPac-
man, representative Atari100k games, to compare the effects
of different model-learning losses on MuZero’s performance.

It is important to note that in Breakout the agent needs to
start the level with the ”fire” command. If the agent does not
learn this it might get stuck in some runs. To avoid this issue
the environment is modified to automatically start the level.

4.3 Evaluation Metrics
During training each agent configuration goes through ten
evaluation episodes. An evaluation episode has the agent play
50 game rounds and then averages the resulting scores. This
averaging over multiple games provides a more stable esti-
mate of each run’s performance. The final evaluation metrics



Figure 2: Illustration of the model learning losses for one step.
(Top) Temporal-consistency loss: the latent state s1t predicted by the
dynamics function is passed through a projection network m and
predictor n to produce q1t , which is matched via cosine similarity to
a stop-gradient target qt+1, derived from the real observation ot+1.
(Bottom) Observation-reconstruction loss: the predicted latent s1t is
decoded by network d to reconstruct o1t , which is compared to the
true observation ot+1 using mean squared error.

are computed across the scores of all runs testing the same
environment-loss configuration.

For easy interpretability and consistency with previous
work we report performance by mean evaluation scores with
95% confidence intervals in the main text. Additional met-
rics, including the median and interquartile mean (IQM),
which offers greater robustness in low-data or high-variance
settings [24], are presented in Appendix A.1. These other
metrics however show the same trends with differences only
in absolute values, making the mean illustrative enough for
our purposes. We choose not to base our comparisons
on statistical significance tests like p-values, as they can
be misleading in small-sample experiments and do not in-
dicate whether differences are practically meaningful [24;
25].

5 Results

To evaluate the impact of model learning losses on the sample
efficiency of MuZero, we conduct two sets of experiments.
First, we isolate the effect of model-learning losses and com-
pare them with the baseline MuZero Reanalyze agent; then,
we compare the effect of different weights on each loss.

In all experiments, we use the same training hyperparam-
eters and neural network architecture, except for the differ-
ences introduced by the additional loss terms.

We focus most of our resources on Pong in order to enable
a thorough investigation of the loss effects, using ten runs for
every agent configuration. For the other environments, we
use five runs per configuration.

In our evaluation we focus on mean evaluation scores and
present plots to aid in the visualization of performance dif-
ferences. More metrics are presented in Appendix A.1 and
tabular summaries of the results in Appendix A.2.

5.1 Effect of model learning loss type
In the first experiment, we aim to isolate the contribution of
each model learning loss to sample efficiency. We compare
the performance of the baseline agent with the two model-
learning loss augmented variants in multiple environments.
For this comparison, we fix the loss coefficient for the model
learning objectives to a common value of 2 and keep it con-
stant throughout training. This value was chosen to match the
setting used in EfficientZero [7], and serves as a reasonable
starting point. The second experiment further investigates the
effect of this coefficient and, to some extent, validates this
choice, showing that a weight of 2 leads to peak or near-peak
performance for both model losses in Pong. This setup allows
us to directly observe the performance difference attributed to
the additional loss signal introduced by each method.

The final evaluation scores are presented in Figure 3.
In Pong, the temporal-consistency agent consistently out-
performs both the baseline MuZero Reanalyze and the
observation-reconstruction variant across all aggregated met-
rics. Training curves in Figure 4a show the temporal-
consistency agent improving more rapidly in early training
and maintaining higher scores throughout, while the other
two exhibit similar progress and final performance.

In Breakout, temporal-consistency again outperforms both
the baseline and observation-reconstruction. While the base-
line’s mean score is high, its estimates have large confi-
dence intervals due to one outlier run (with a score of 134.6).
Observation-reconstruction shows the most consistent results
between runs with tight confidence intervals. Training curves
in Figure 4b indicate similar progress for the baseline and
the temporal-consistency agent for most of the training, be-
fore diverging in the last quarter, while the observation-
reconstruction stays consistently behind the two.

In MsPacman, the baseline clearly outperforms both
temporal-consistency and observation-reconstruction in final
evaluation. Training curves in Figure 4c show all agents pro-
gressing similarly until late training, where the baseline con-
tinues to improve while the other two drop in performance.

Figure 3: Means of the final evaluation scores for all agent variants
across environments. All agent variants are evaluated with a loss
coefficient of 2. Mean shown as black lines, with 95% confidence
intervals represented as shaded boxes. Pong results are aggregated
over 10 runs; Breakout and MsPacman over 5 runs. Notation: MZ =
baseline MuZero Reanalyze, TC = temporal-consistency loss, OR =
observation-reconstruction loss

These results suggest that augmenting MuZero with a
temporal-consistency loss term provides sample-efficiency
benefits, but only in a subset of environments, while
observation-reconstruction does not lead to improvements
and most likely will degrade performance. This indicates
that the usefulness of model-learning objectives is highly
environment-dependent and might not generalize to all tasks.



(a) Pong (10 runs) (b) Breakout (5 runs) (c) MsPacman (5 runs)

Figure 4: Training curves of agent variants across environments. All agent variants are evaluated with a loss coefficient of 2. The mean is
plotted with 95% confidence intervals shown as shaded regions. Pong results are averaged over 10 runs; Breakout and MsPacman over 5 runs.

Furthermore, the effectiveness of the losses is most likely re-
lated to the complexity of the environment’s visuals and dy-
namics, since in MsPacman, the more complex environment
tested, the model-loss agents underperformed significantly.

5.2 Effect of model learning loss weight
In the second experiment, we investigate how sensitive the
performance of the modified agents is to the choice of the
model learning loss coefficient. We train the consistency-loss
and reconstruction-loss variants of MuZero using a range of
coefficient values and record their achieved scores in Pong.
We selected the loss coefficient values on a logarithmic scale,
doubling at each step from 0.5 up to 16, in order to explore a
wide range. Then we test if the performance of certain weight
coefficients in one environment generalizes to others.

Figure 5: Means of the final evaluation scores per model-learning
loss weight coefficient in Pong for the model-loss augmented agents.
Means are shown as black lines, with 95% confidence intervals
represented as shaded boxes. Results obtained from 10 runs per
coefficient. Notation: MZ = MuZero Reanalyze, TC = temporal-
consistency loss, OR = observation-reconstruction loss

As shown in Figure 5, varying the weight of the model-
learning loss produces irregular changes in both perfor-
mance and confidence. The mean returns show two lo-
cal performance peaks at coefficients 2.0 for both loss vari-
ants and at 8.0 or 16.0 for the temporal-consistency and
observation-reconstruction loss respectively. Confidence
intervals widen substantially with larger coefficients for
temporal-consistency, indicating less consistent outcomes,
except at 8.0, where the confidence is comparable to the
lower-weight settings. However, the reconstruction-based

agent generally produces tighter confidence intervals across
most coefficients, suggesting more stable estimates, with the
exception of the coefficient 0.5 where the agent shows high
uncertainty of the estimated performance.

The multiple peaks in performance seen for both loss vari-
ants indicate a non-monotonic relationship with their weights.
For both variants, we observe performance peaks at interme-
diate and higher weights (e.g., 2.0 and 8.0/16.0), indicating
that moderate to strong weightings can be beneficial, though
not reliably so. The performance dips between peaks sug-
gest that the model-learning losses interact in complex ways
with other components of the algorithm. These findings un-
derscore the need for careful tuning, as even small adjust-
ments in weight can produce significantly different results.
Furthermore, the sensitivity and instability observed in Pong
motivate the need to validate whether these weight settings
generalize to other environments.

(a) Temporal-consistency loss

(b) Observation-reconstruction loss

Figure 6: Means of the final evaluation scores per model-learning
loss weight coefficient in Breakout and MsPacman for the two aug-
mented MuZero variants. Means are shown as black lines with 95%
confidence intervals as shaded boxes. Results obtained from 5 runs
per coefficient.

Building on the findings from Pong, we investigate whether
the most effective model-loss weightings transfer to other en-
vironments. We evaluate the augmented agents in Breakout
and MsPacman using the best-performing coefficients from
the Pong experiments (2.0 and 8.0 or 16.0). As shown in



Figure 6, increasing the weight coefficient in Breakout leads
to diminishing evaluation scores for both augmented agents.
For the observation-reconstruction variant, higher weights
tighten the confidence intervals, suggesting more consis-
tent, but worse, performance, while the temporal-consistency
variant shows inflated intervals, indicating instability. In
MsPacman, the temporal-consistency agent performs better
with the higher weight, while the observation-reconstruction
does not. Both losses show tighter confidence intervals
with higher weights, indicating less variability between runs.
Nonetheless, even while the temporal-consistency shows im-
provements, it still falls behind the baseline in MsPacman.
These results indicate that the impact of loss weighting is
environment-dependent and suggest the need for task-specific
tuning.

6 Discussion
Our results show that the impact of augmenting MuZero with
model-learning losses is highly dependent on the environ-
ment used. We saw the best performance compared to the
baseline in Pong, arguably the simplest environment used in
regards to game dynamics and visual complexity, the agent
having to predict only the dynamics of the ball and the op-
ponent. The worst performance was seen in MsPacman, the
most complex one where the agent needs to predict the re-
sults of actions, accounting both for the maze walls and mul-
tiple opponents. We theorize that this relates to model-loss
efficiency in low-data settings. Reconstruction likely under-
performed temporal-consistency because it is a more diffi-
cult objective, optimizing a more restrictive loss on high-
dimensional data. Even in Pong, which has minimal visual
complexity, the final reconstructions still show visible arti-
facts on dynamic elements like the ball and paddle, indicating
that the model struggles to learn accurate pixel-level predic-
tions even under favorable conditions (Figure 7) In contrast,
consistency losses seem more robust with limited data, being
able to bring performance improvements on two of the three
tested environments. This observation aligns with prior work
suggesting that training the model of MBRL algorithms with
latent-state level losses improves planning more efficiently
than pixel-level reconstruction objectives [23].

Furthemore we have seen how both model-learning losses
perform in unpredictable ways when their weighting is
changed, and how the optimal weights found for a game
might not generalize to other Atari games. Going beyond
Atari, the coefficients found, or even the model-learning
losses tried, might not be suitable for other environments,
board games or real-world applications. Furthermore, we
cannot conclude that the better coefficients found generalize
for bigger data-budgets (e.g. 200 million steps).

During our experiments we have observed big discrepan-
cies between the performance of our baseline MuZero Rean-
alyze agent the results reported in other works. For example
EfficientZero, reports a mean return of −6.7 for their base-
line MuZero [7] while ours achieves 7.4, a difference approx-
imately equal to a third of the total range of possible scores.
Both their agents and ours use mostly the same network ar-
chitecture but a few implementation differences, such as the

normalization and optimizer used. This significant difference
in the performance of the baseline MuZero agents suggests
that a lot of factors that influence the performance of MuZero
in low-data scenarios still remain underexplored.

Furthermore, EfficientZero does not report scores for the
agent augmented only with temporal-consistency, reporting
only ablations where they remove one modification at a time
[7]. This makes it hard to accurately compare the evaluation
scores achieved in our experiments with theirs directly. How-
ever, we observed behaviors that stay consistent with their re-
ports: temporal-consistency improves the evaluated scores in
Pong and Breakout but performs worse in MsPacman, where
their agent also failed to meaningfully improve compared to
the baseline.

It’s also worth noting that many recent papers using the
Atari100k benchmark report results using only three runs
per experiment [7; 26; 27; 28]. Agarwal et al. highlight
issues with drawing conclusions based on point estimates
from a limited number of runs, and that around 20–30 runs
are needed for reliable CIs on single tasks in the Atari100k
benchmark [24]. Furthermore, Mathieu et al. propose meth-
ods for comparing RL algorithm performance that automat-
ically adapt the number of runs needed [29], but due to the
setting in which we ran the experiments (i.e. on the available
HPC cluster every run needed a clear estimate of runtime) we
could not use their methods. We also noticed high variance
in performance between training runs with all agent variants
in our tests. Due to computational constraints, we used 5–10
runs, aiming for the best trade-off between statistical rigor
and resource limitations.

Limitations: The main limitations of this research are due
to the high computational cost of training the models and
the limited resources available. Local development was con-
strained, and access to high-performance computing clusters
involved scheduling delays, especially during peak usage.
This technical limitation narrowed the scope of the research.

We only conducted tests on three environments: Pong,
Breakout and MsPacman. Moreover, only two model-loss
augmentations were explored despite others existing (e.g.
contrastive losses), a limited range of weight coefficients was
tested, the number of runs was limited, image augmentations
and different values for the number of future steps on which
the model-losses are calculated were not explored. Broader
testing across more model configurations and environments
is necessary to provide stronger conclusions and validate the
generalizability of the results.

7 Responsible Research
This section addresses the ethical and practical aspects of our
research, focusing on the reproducibility of methods, ethical
considerations, environmental impact, and the acknowledg-
ment of AI tools usage.

This research builds on a JAX[30]-based im-
plementation of MuZero maintained by the su-
pervisor team. The code can be accessed at
https://gitlab.tudelft.nl/jinkehe/bachelor-research-project/-/
tree/daniel rp final?ref type=heads. All experiments are con-
ducted in a controlled software environment, with consistent

https://gitlab.tudelft.nl/jinkehe/bachelor-research-project/-/tree/daniel_rp_final?ref_type=heads
https://gitlab.tudelft.nl/jinkehe/bachelor-research-project/-/tree/daniel_rp_final?ref_type=heads


Figure 7: Reconstructed observations from the observation-reconstruction loss MuZero agent trained on Pong with a weight coefficient of
2. Predictions of observations one step in the future are sampled from early (left), mid (center), and late (right) stages of training. Early in
training, the model primarily reconstructs static scene elements such as the score and boundary lines. As training progresses, it increasingly
captures dynamic game elements, with clearer representations of the paddles and ball emerging toward the end.

training configurations and different random seeds between
runs. Nonetheless, full reproducibility remains a challenge,
particularly because of limited access to consistent hardware
configuration.

It was not possible to ensure the same hardware configu-
ration for all experiments. Experiments were run on either
Nvidia A40, A100 or V100 gpus, depending on availability.
The same code (even using set random seeds) has no repro-
ducibility guarantees if run on different generations of Nvidia
gpus [31]. As a result fully reproducing the same exact values
might not be possible. To mitigate this, the results reported
are aggregated over multiple independent training and evalu-
ation runs and 95% confidence intervals are presented. De-
tailed logging of training parameters, environment configura-
tions, and network architectures is also performed to support
transparency and replicability (see Appendix B and C).

In this research,, we investigate modifications to the loss
function of MuZero, evaluated exclusively on Atari games
within controlled simulations. The research does not in-
volve human participants, personal data, private or public
datasets or deployment in real-world applications. However,
it’s important to acknowledge that reinforcement learning al-
gorithms have potential applications in domains with ethi-
cal implications, such as autonomous systems and decision-
making processes [32; 33].

Considering the extensive use of GPUs for training, we
also note environmental concerns. In recent years, both the
energy consumption and the environmental impact of hard-
ware production related to ML training have increased, de-
spite mitigation strategies being applied [34]. Our models
require between 3 to 16 hours for one training and evalu-
ation, depending on the loss configuration and GPU model
used. This means that even limited scale research such as
ours requires hundreds of GPU runtime hours. As models be-
come more complex and resource-intensive, researching bet-
ter strategies for mitigating their environmental cost should
become a priority.

The use of Large Language Models (LLMs) should be ac-
knowledged as part of responsible research. In writing this
paper, LLMs were used to assist with spell checking, assess-
ing the quality of writing, and improving LATEXformatting
(e.g., creating tables, organizing figures). Use for code was
limited to debugging and creating plots for figures. We thor-

oughly verified all AI-generated content and avoided AI use
in areas critical to the research.

8 Conclusions and Future Work

In this work, we investigated how augmenting MuZero with
different model-learning losses affects its sample efficiency
under the Atari100k benchmark. Our evaluation on Pong,
Breakout and MsPacman demonstrates that incorporating a
temporal-consistency loss can improve the low-data perfor-
mance of MuZero in certain environments. In contrast, us-
ing the observation-reconstruction loss does not provide any
improvements and can even degrade performance. We also
observed that the effectiveness of model-learning losses is
highly sensitive to their weighting, showing a complex and
unpredictable behavior under different coefficients and be-
tween environments. Finally, we noted considerable variance
in the baseline results and discrepancies when compared to
previously reported scores, underscoring the substantial in-
fluence of implementation details, model architecture, opti-
mization settings and random initialization on performance.

Looking ahead, there are several promising directions to
build on these insights. A direct continuation of this research
is to explore additional self-supervised objectives such as
contrastive losses. It will also be valuable to experiment with
hybrid loss formulations or variable losses during training.
Furthermore, the impact of image augmentations on model
performance remains unexplored, but we theorize they might
have a significant role on the performance of model-losses for
MuZero. Moreover, the high differences between the perfor-
mance of our baseline agent and results reported in related lit-
erature highlight the need for a systematic study on the impact
of model architecture, training details, and hyper-parameters
on MuZero’s efficiency in low data scenarios. Finally, extend-
ing this evaluation beyond Pong and Breakout to a broader
suite of Atari titles and other environments will clarify the
generality of the results presented in this research.

In conclusion, our work identifies the strengths and limi-
tations of model-learning losses for MuZero in low-data set-
tings, but further research is still needed to generalize these
findings and explore ideas that were outside the scope of this
paper.
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Appendix
A Extended Results
This appendix presents additional evaluation metrics and analysis of the results and detailed summaries of the results in tabular
forms as an extension to section 5.

A.1 Further Result Analysis
In addition to the mean scores and 95% confidence intervals shown in the main text, we report median and interquartile mean
(IQM) evaluation scores to provide a more robust assessment of agent performance. All aggregate scores are presented with
95% confidence intervals using stratified bootstrap sampling with 50,000 samples. IQM, the mean of the values inside the
interquartile range, is used as a more stable metric robust to outliers in low-data settings while 95% confidence intervals are
reported to account for variability and provide more reliable comparisons, as advised in [24]. Mean and median are included
for completeness and consistency with prior work.

Figure 8 presents the extended set of evaluation metrics for the final results of the first experiment, comparing the effec-
tiveness of the model-learning losses when all hyperparameters are constat. Figure 9 presents the model-learning loss weight
impact on the augmented agents in Pong, as discussed in the second experiment, while Figure 10 presents it for the other two
environments. We present the same results in tabular form in appendix A.2.

Overall we observe the same trends discussed in section 5 between all metrics, with the only exception being the median of
the observation-reconstruction agent in MsPacman increasing for the higher weight coefficient while the other metrics decrease
(Figure 10). Furthermore, the IQMs in Figure 8 show overall higher differences in performance than the means in Pong and
Breakout. This can be attributed to the presence of extreme outliers in some runs (e.g. in Breakout 4 of the 5 runs of the baseline
present evaluated scores with values in [35.44, 55.36] and one run a score of 134.60, see Table 4 in Appendix A.2).

(a) Pong (10 runs)

(b) Breakout (5 runs)

(c) MsPacman (5 runs)

Figure 8: Aggregate metrics for agent variants across environments.
All agent variants are evaluated with a loss coefficient of 2. Median,
IQM, and Mean are shown as black lines, with 95% confidence inter-
vals represented as shaded boxes. Pong results are aggregated over
10 runs; Breakout and MsPacman over 5 runs.

(a) Pong - Temporal-consistency (10 runs)

(b) Pong - Observation-reconstruction (10 runs)

Figure 9: Aggregate metrics per model-learning loss weight coeffi-
cient for augmented agents in Pong. Median, IQM, and Mean are
shown as black lines, with 95% confidence intervals represented as
shaded boxes. Results obtained from 10 runs per coefficient.

Furthermore, to obtain a more complete analysis of the differences in agent variant performances we compare them using
the probability of improvement metric as recommended by [24], based on the Mann-Whitney U-statistic [35]:

P (Xm > Ym) =
1

NK

N∑
i=1

K∑
j=1

S(xm,i, ym,j)

where

S(x, y) =


1, if y < x,

0.5, if y = x,

0, if y > x.

This is used to estimate how likely agent X is to outperform agent Y in task m, when the agents are evaluated for N and K runs
respectively . It is important to note that this metric does not account for the magnitude of the improvements one variant brings



(a) Breakout – Temporal-consistency (5 runs) (b) Breakout – Observation-reconstruction (5 runs)

(c) MsPacman – Temporal-consistency (5 runs) (d) MsPacman – Observation-reconstruction (5 runs)

Figure 10: Aggregate metrics per model-learning loss weight coefficient in Breakout and MsPacman for the two augmented MuZero
variants. Median, IQM, and Mean are shown as black lines with 95% confidence intervals as shaded boxes. Results obtained from 5 runs per
coefficient.

over another, just how often it outperforms it. A probability of improvement around 0 shows that algorithm X underperforms
algorithm Y almost always, a probability around 1 means X always performs better almost all the time, and a probability
around 0.5 means the two algorithms performs similarly. We provide a probability of improvement per environment and then
the overall probability of improvement across all environments. For the latter the scores are normalized as:

scoreagent,env − randomenv

meanbaseline,env − randomenv

where randomenv is the score obtained in an environment by a random policy, scoreagent,env is the score achieved by the agent
in the environment in one run and meanbaseline,env is the mean of the scores achieved by the baseline agent in an environment.
We use this normalization because raw scores vary drastically across environments, making direct comparisons impossible.
Some environments, like MsPacman and Breakout, have very high upper bounds on achievable scores, while others like Pong
have a much lower maximum score which is actually reached in practice on some runs. Unlike a min-max normalization that
scales between the absolute minimum and maximum possible scores, we set the baseline agent’s mean performance as the
upper bound (normalized to 1) and a random policy as the lower bound (normalized to 0).

The probability for improvements of the agent variants are shown in Table 1 and Figure 11. We see that across all tasks
the temporal-consistency agent is likely to outperform the baseline on 58% of the runs, while the observation-reconstruction
in 34% of them. Again these result do not account for the size of the improvement. This shows however that even when
taking into account the underwhelming performance in MsPacman the temporal-consistency agent is likely to outperform the
baseline and observation-reconstruction augmented agents across all tested environments, while the observation-reconstruction
has significantly lower chances to outperform it, the probability of improvement coming mostly from its decent performance in
Pong.

Table 1: Probability of Improvement between algorithm pairs for Pong, Breakout, MsPacman, and across all environments, with 95% confi-
dence intervals. For each algorithm pair (X,Y ), each entry represents P (X > Y ) with 95% confidence intervals. Models: MZ = Baseline
MuZero Reanalyze agent, MZ+TC = Temporal-Consistency augmented MuZero Reanalyze agent, MZ+OR = Observation-Reconstruction
augmented MuZero Reanalyze agent.

Variant Pair Pong Breakout MsPacman All Envs
MZ+TC, MZ 0.69 [0.44, 0.91] 0.80 [0.40, 1.00] 0.12 [0.00, 0.40] 0.58 [0.40, 0.77]
MZ+OR, MZ 0.50 [0.23, 0.78] 0.32 [0.00, 0.68] 0.08 [0.00, 0.32] 0.34 [0.18, 0.52]
MZ+TC, MZ+OR 0.65 [0.40, 0.89] 1.00 [1.00, 1.00] 0.48 [0.12, 0.88] 0.68 [0.50, 0.84]
MZ+OR, MZ+TC 0.35 [0.12, 0.59] 0.00 [0.00, 0.00] 0.52 [0.12, 0.88] 0.32 [0.15, 0.49]

A.2 Tabular Results
This appendix presents additional tables with experiment results and summaries. Tables 2 and 3 present the by run results
of each agent configuration (model-learning loss and weight coefficient) and the summaries of the results respectively for the
environment of Pong. In a similar fashion the results for Breakout are presented in Tables 4 and 5, and the results for MsPacman
are presented in tables 6 and 7.



(a) Pong (b) Breakout (c) MsPacman (d) All Envs

Figure 11: Probability of improvement for each algorithm pair in different environments. Each bar represents P (X > Y ) with 95%
confidence intervals. Models: MZ = Baseline MuZero Reanalyze agent, MZ+TC = Temporal-Consistency augmented MuZero Reanalyze
agent, MZ+OR = Observation-Reconstruction augmented MuZero Reanalyze agent.

Table 2: Pong Final Return Values per Run. Models: MZ = Baseline MuZero Reanalyze agent, MZ+TC = Temporal-Consistency augmented
MuZero Reanalyze agent, MZ+OR = Observation-Reconstruction augmented MuZero Reanalyze agent, W = weight parameter. Numbers
rounded to 2 decimal places.

Model Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
MZ -1.90 -1.54 1.28 2.74 2.76 8.00 10.32 16.10 16.84 19.38
MZ+TC (W=0.5) -18.18 -2.62 3.40 4.40 6.74 11.26 15.00 15.02 16.30 19.66
MZ+TC (W=1.0) -13.04 0.82 1.36 3.74 11.36 14.50 15.44 17.84 17.90 20.52
MZ+TC (W=2.0) -6.88 2.12 8.54 11.08 13.56 16.36 17.22 18.68 20.24 20.44
MZ+TC (W=4.0) -20.44 -12.22 -9.94 -1.32 -0.28 13.36 14.80 16.76 17.52 18.70
MZ+TC (W=8.0) -17.14 3.20 4.46 12.84 14.84 19.16 19.34 19.40 19.84 20.54
MZ+TC (W=16.0) -21.00 -20.98 -17.08 0.42 3.74 5.90 7.50 7.7000 15.66 19.9800
MZ+OR (W=0.5) -21.00 -20.98 -20.06 -17.34 -14.60 -0.02 5.52 8.80 16.70 20.28
MZ+OR (W=1.0) -6.86 -5.40 -4.40 -2.40 1.68 8.28 9.34 11.86 14.90 14.92
MZ+OR (W=2.0) -3.72 -2.68 -1.96 7.42 8.10 11.10 12.38 15.76 18.12 19.00
MZ+OR (W=4.0) -13.26 -8.94 -5.90 0.16 4.64 4.84 9.02 9.06 12.74 19.98
MZ+OR (W=8.0) -4.48 -3.22 -3.10 1.24 2.22 3.94 4.40 8.28 8.68 14.50
MZ+OR (W=16) -3.10 -1.36 0.12 0.74 9.34 11.18 11.44 12.76 18.76 19.70

Table 3: Summary Statistics for Pong (10 runs per entry). Models: MZ = Baseline MuZero Reanalyze agent, MZ+TC = Temporal-Consistency
augmented MuZero Reanalyze agent, MZ+OR = Observation-Reconstruction augmented MuZero Reanalyze agent, W = weight parameter.
Numbers rounded to 2 decimal places; Mean, IQM, and Median include 95% confidence intervals in brackets.

Model Min Max Mean IQM Median Std Dev
MZ -1.90 19.38 7.40 [2.86, 12.11] 6.87 [1.08, 13.58] 5.38 [0.60, 16.10] 7.92
MZ+TC (W=0.5) -18.18 19.66 7.10 [-0.04, 13.13] 9.30 [0.70, 14.81] 9.00 [0.89, 15.65] 11.25
MZ+TC (W=1.0) -13.04 20.52 9.04 [2.41, 14.76] 10.71 [2.37, 16.74] 12.93 [1.36, 17.84] 10.57
MZ+TC (W=2.0) -6.88 20.44 12.14 [6.53, 16.80] 14.24 [6.82, 18.25] 14.96 [6.60, 18.73] 8.81
MZ+TC (W=4.0) -20.44 18.70 3.69 [-4.93, 11.87] 5.56 [-7.07, 15.75] 6.54 [-9.94, 16.76] 14.40
MZ+TC (W=8.0) -17.14 20.54 11.65 [3.83, 17.64] 15.01 [5.45, 19.44] 17.00 [4.46, 19.59] 11.95
MZ+TC (W=16.0) -21.00 19.98 0.18 [-8.82, 8.57] 1.36 [-11.63, 10.43] 4.82 [-17.08, 11.58] 14.84
MZ+OR (W=0.5) -21.00 19.84 -3.48 [-13.16, 6.33] -4.95 [-18.40, 9.89] -4.54 [-20.06, 12.50] 16.77
MZ+OR (W=1.0) -6.86 14.92 4.19 [-0.88, 9.26] 4.06 [-2.95, 11.27] 4.98 [-4.40, 12.12] 8.62
MZ+OR (W=2.0) -3.72 19.00 8.35 [3.27, 13.28] 8.80 [1.48, 14.89] 9.60 [-1.96, 15.76] 8.58
MZ+OR (W=4.0) -13.26 19.98 3.23 [-2.87, 9.19] 3.64 [-4.12, 10.16] 4.74 [-5.90, 10.88] 10.31
MZ+OR (W=8.0) -4.48 14.50 3.25 [-0.22, 6.90] 2.83 [-1.33, 7.22] 3.08 [-3.10, 8.28] 6.06
MZ+OR (W=16.0) -3.10 19.70 7.96 [3.15, 12.87] 7.60 [1.37, 14.28] 10.26 [-0.31, 15.10] 8.33



Table 4: Breakout Final Return Values per Run. Models: MZ = Baseline MuZero Reanalyze agent, MZ+TC = Temporal-Consistency
augmented MuZero Reanalyze agent, MZ+OR = Observation-Reconstruction augmented MuZero Reanalyze agent, W = weight parameter.
Numbers rounded to 2 decimal places.

Model Run 1 Run 2 Run 3 Run 4 Run 5
MZ 35.44 48.04 55.32 55.36 134.60
MZ+TC (W=2.0) 64.50 65.88 91.88 99.40 116.44
MZ+TC (W=8.0) 17.24 17.24 41.94 46.70 139.60
MZ+OR (W=2.0) 28.80 41.04 42.02 49.16 61.78
MZ+OR (W=16.0) 14.68 21.22 21.38 22.82 23.0400

Table 5: Summary Statistics for Breakout (5 runs per entry). Models: MZ = Baseline MuZero Reanalyze agent, MZ+TC = Temporal-
Consistency augmented MuZero Reanalyze agent, MZ+OR = Observation-Reconstruction augmented MuZero Reanalyze agent, W = weight
parameter. Numbers rounded to 2 decimal places; Mean, IQM, and Median include 95% confidence intervals in brackets.

Model Min Max Mean IQM Median Std Dev
MZ 35.44 134.60 65.75 [43.39, 101.43] 52.91 [39.64, 108.19] 55.32 [35.44, 134.60] 39.34
MZ+TC (W=2.0) 64.50 116.44 87.62 [70.53, 104.71] 85.72 [64.96, 110.76] 91.88 [64.50, 116.44] 22.33
MZ+TC (W=8.0) 17.24 139.60 52.54 [22.18, 96.55] 35.29 [17.24, 108.63] 41.94 [17.24, 139.60] 50.54
MZ+OR (W=2.0) 28.80 61.78 44.56 [35.40, 53.88] 44.07 [32.88, 57.57] 42.02 [28.80, 61.78] 12.09
MZ+OR (W=16.0) 14.68 23.04 20.63 [17.62, 22.63] 21.81 [16.86, 22.97] 21.38 [14.68, 23.04] 3.43

Table 6: MsPacman Final Return Values per Run. Models: MZ = Baseline MuZero Reanalyze agent, MZ+TC = Temporal-Consistency
augmented MuZero Reanalyze agent, MZ+OR = Observation-Reconstruction augmented MuZero Reanalyze agent, W = weight parameter.
Numbers rounded to 2 decimal places.

Model Run 1 Run 2 Run 3 Run 4 Run 5
MZ 706.20 807.80 992.20 1003.20 1107.20
MZ+TC (W=2.0) 505.60 558.80 607.80 722.60 850.20
MZ+TC (W=8.0) 578.80 652.20 658.00 755.80 767.60
MZ+OR (W=2.0) 516.60 569.40 572.20 778.20 785.20
MZ+OR (W=16.0) 531.80 547.80 596.60 599.20 648.80

Table 7: Summary Statistics for MsPacman (5 runs per entry). Models: MZ = Baseline MuZero Reanalyze agent, MZ+TC = Temporal-
Consistency augmented MuZero Reanalyze agent, MZ+OR = Observation-Reconstruction augmented MuZero Reanalyze agent, W = weight
parameter. Numbers rounded to 2 decimal places; Mean, IQM, and Median include 95% confidence intervals.

Model Min Max Mean IQM Median Std Dev

MZ 706.20 1107.20 923.32
[785.92, 1042.60]

934.40
[740.07, 1072.53]

992.20
[706.20, 1107.20] 162.34

MZ+TC (W=2.0) 505.60 850.20 649.00
[547.32, 766.40]

629.73
[523.33, 807.67]

607.80
[505.60, 850.20] 138.11

MZ+TC (W=8.0) 578.80 767.60 682.48
[624.00, 742.16]

688.67
[603.27, 763.67]

658.00
[578.80, 767.60] 78.88

MZ+OR (W=2.0) 516.60 785.20 644.32
[548.84, 740.64]

639.93
[534.20, 782.87]

572.20
[516.60, 785.20] 127.38

MZ+OR (W=16.0) 531.80 648.80 584.84
[548.48, 618.68]

581.20
[537.13, 632.27]

596.60
[531.80, 648.80] 46.42



B Hyper-parameters and Environment Settings
This appendix provides a comprehensive overview of the hyperparameters used in our MuZero implementation for Atari game
environments. The configuration is structured into several key components that control different aspects of the training process,
from environment setup to learning dynamics and Monte Carlo Tree Search parameters.

B.1 Training Configuration
The training configuration defines the overall experimental setup for learning and evaluation. The system is configured for a
100K environment step regime as per the Atari100K [5] benchmark.

Table 8: Training Configuration Parameters

Parameter Value Description

Environment Steps 102,000
Total number of environment interactions,

2,000 of which with a random policy to reach
the minimum size of the replay buffer

Offline Update Steps 0 Number of offline learning steps (disabled)
Evaluation Episodes 10 Number of evaluations
Learning Steps 12750 Number of learning steps
Reanalyze Steps 510 Number of reanalyze steps
Gradient Steps 8 Gradient updates per learning step

Table 9: Environment-Specific Parameters

Parameter Training Evaluation Description

Number of Environments 8 50 Parallel environment instances for
parallel data gathering or evaluation

Max Episode Steps 3,000 10,000 Episode length limit
NoOp Max 30 30 Random no-op actions
Reward Clipping True False Clip rewards to [-1, 1]
Terminal on Life Loss True False Episode ends on life loss

Learning occurs at every step, ensuring continuous parameter updates throughout training. Training uses shorter episodes
with reward clipping for stability, while evaluation uses full-length episodes without clipping for accurate performance assess-
ment. Multiple environments are used in parallel for data gathering to speed up training. The significant number of evaluation
environments ensures robust performance estimates. Each learning steps 8 new observations are gathered from each of the
parallel training environments, then 8 gradient updates are performed, leading to 100,000 network updates for training.

B.2 Environment Configuration
The environment setup defines the Atari game configuration and preprocessing pipeline. We use 4 stacked frames for each
observation, leading to observation sizes of 96× 96× 12 when accounting for the RGB channels of the frames.

Table 10: Common Environment Parameters

Parameter Value Description

Frame Skip 4 Action repetition frames, only save every 4th frame
in the replay buffer

Frame Stack 4
Consecutive frames stacked to make an observation
with a frame skip of 4 this leads to one observation

representing 16 real world frames
Screen Size 96× 96 Resized frame dimensions
Frame channels 3 Three channels for RGB frames

B.3 Monte Carlo Tree Search Configuration
MCTS parameters control the planning process during action selection.



Table 11: MCTS Configuration Parameters

Parameter Training Eval Reanalysis Description
Simulations 50 50 50 MCTS simulation count
PB-C Init 1.25 1.25 1.25 UCB exploration constant
PB-C Base 19,652 19,652 19,652 UCB base parameter
Dirichlet Alpha 0.3 0.3 0.3 Dirichlet noise parameter
Dirichlet Fraction 0.25 0.0 0.25 Noise mixing ratio
Q-Transform Min-Max Min-Max Min-Max Value normalization method

The temperature schedule for training starts with high exploration, temperature = 1.0 for the first 50% of training, reducing
to 0.5 at 75%, and finally to 0.25 for the remainder. Evaluation uses zero temperature for deterministic action selection, while
reanalysis maintains the same exploratory schedule as training. We use min-max normalization to scale Q-values in the MCTS
backup to avoid overconfidence in UCT calculations, as described by [7].

B.4 Replay Buffer and Prioritized Experience Replay
The replay buffer configuration incorporates Prioritized Experience Replay (PER) [36] to improve sample efficiency by focusing
learning on more informative transitions.

Table 12: Replay Buffer and PER Configuration

Parameter Value Description
Minimum Size 2,000 Buffer size before learning starts
Maximum Size 102,000 Maximum buffer capacity
PER Alpha 0.6 Prioritization exponent
PER Beta Start 0.4 Initial importance sampling correction
PER Beta End 1.0 Final importance sampling correction

Priority Method Value prediction
error Priority calculation method

Correction Frequency 25 Steps between sum-tree corrections

The buffer size matches the total training steps, allowing the system to store the entire training trajectory. The PER beta
parameter is annealed from 0.4 to 1.0 throughout training to gradually increase the importance sampling correction.

B.5 Optimizer Configuration
The optimization setup uses AdamW with gradient clipping to ensure stable learning dynamics throughout the training process.

Table 13: Optimizer Configuration

Parameter Value Description
Optimizer Type AdamW Optimization algorithm
Batch Size 256 Mini-batch size
Learning Rate 0.001 Step size parameter
Weight Decay 1× 10−4 L2 regularization coefficient
Gradient Clipping 5.0 Maximum gradient norm
Warmup Ratio 0.0 Learning rate warmup (disabled)

B.6 Loss Function Configuration
The loss function balances different learning objectives in MuZero, with specific coefficients for each component and temporal
difference learning parameters.

The model-learning loss weight used in the main comparison is equal to 2. Other values for the model-loss are also used in
experiments, see section 5. The other coefficients are kept the same in all experiments.

B.7 Value Transformation
MuZero employs a categorical value representation approach instead of direct scalar regression for value prediction. This
technique discretizes the continuous value space into categorical bins. The signed hyperbolic transformation is applied to
handle extreme values.



Table 14: Loss Function Configuration

Parameter Value Description
Unroll Steps 5 Model unroll depth
Reward Loss Coeff. 1.0 Reward prediction weight
Policy Loss Coeff. 1.0 Policy prediction weight
Value Loss Coeff. 0.25 Value prediction weight
TD Steps 5 Temporal difference horizon
Entropy Coefficient 0.0 Policy regularization (disabled)
Model Loss 2 Model-learning loss weight

Table 15: Value Transformation Parameters

Parameter Value Description
Number of Bins 601 Discretization resolution
Support Range [−300, 300] Value function range
Transformation Enabled Use signed hyperbolic transform
Discount Factor 0.997 Reward discount factor

C Network architecture
The MuZero network architecture is composed of several interconnected sub-networks. The implementation is done in JAX
[30], using FLAX [37] to define the networks.

The primary activation function used throughout the networks is Leaky ReLU (unless specified otherwise for optional com-
ponents), and the primary normalization technique is Layer Normalization (LN). Specific configurations, such as the number
of output planes or units, are detailed below. Weight initialization is generally done using a variance scaling initializer.

C.1 Base networks
The base MuZero networks are the (a) Representation, (b) Dynamics, (c) Reward, (d) Value and (e) Policy networks. These
network are implemented by all MuZero variants (baseline, temporal-consistency augmented, observation-reconstruction aug-
mented), their architecture being kept the same.

(a) Representation Network This network is responsible for encoding the input observation ot (i.e., a stack of game frames,
96× 96×Cin where Cin = 12, corresponding to 4 stacked RGB images) into a lower-dimensional hidden state representation
s0t . Input observations are first normalized by dividing pixel values by 255.0. The layers are as follows:

1. 3× 3 Convolution (output planes: 32, stride: 2, padding: SAME, no bias) + LN + Leaky ReLU

2. Residual Block (output planes: 32, stride: 1)

3. Residual Block (output planes: 64, stride: 2, with downsampling shortcut)

4. Residual Block (output planes: 64, stride: 1)

5. Average Pooling (3× 3 window, stride: 2, padding: SAME)

6. Residual Block (output planes: 64, stride: 1)

7. Average Pooling (3× 3 window, stride: 2, padding: SAME)

8. Residual Block (output planes: 64, stride: 1)

The output of this network is the hidden state s0t (of shape 6 × 6 × 64). This output hidden state is subsequently normalized
using min-max scaling, applied per-channel across the spatial dimensions.

(b) Dynamics Network The Dynamics Network models the environment’s transitions. Given a current hidden state skt and
an action ak+1

t , it predicts the next hidden state sk+1
t . The input action ak+1

t is one-hot encoded and broadcasted to form a
channel plane, which is then concatenated with the current hidden state skt (64 planes), resulting in an input tensor with 65
planes. The gradient flowing into this network from subsequent computations is scaled by a factor of 0.5. The layers for next
state prediction are:

1. 3× 3 Convolution (output planes: 64, stride: 1, padding: SAME, no bias), applied to the state-action input + LN

2. Element-wise sum with the input hidden state skt (residual connection) + Leaky ReLU

3. Residual Block (output planes: 64, stride: 1)

The output is the predicted next hidden state sk+1
t . This state is also normalized using min-max scaling per-channel.



(c) Reward Prediction Network This head predicts the distribution of immediate rewards from a given hidden state skt . The
input is the hidden state skt (64 planes). The layers are as follows:

1. Residual Block (output planes: 64, stride: 1)

2. 1× 1 Convolution (output planes: 128, stride: 1, padding: SAME, no bias) + LN + Leaky ReLU

3. Flatten spatial dimensions

4. Dense layer (output units: 64, no bias) + LN + Leaky ReLU

5. Dense layer (output units: 601, corresponding to reward bins, with bias, weights zero-initialized)

The output is a tensor of reward logits (a distribution over 601 bins).

(d) Value Prediction Head This head predicts the distribution of the state value from a processed hidden state s′k. The input
s′k is obtained by passing the original hidden state sk (64 planes) through one Residual Block (output planes: 64, stride: 1,
Leaky ReLU activation, Layer Normalization). The layers are as follows:

1. Residual Block (output planes: 64, stride: 1)

2. 1× 1 Convolution (output planes: 128, stride: 1, padding: SAME, no bias) + LN + Leaky ReLU

3. Flatten spatial dimensions

4. Dense layer (output units: 64, no bias) + LN + Leaky ReLU

5. Dense layer (output units: 601, corresponding to value bins, with bias, weights zero-initialized)

The output is a tensor of value logits (a distribution over 601 bins).

(e) Policy Prediction Head This head predicts the policy (distribution over actions) from a processed hidden state s′k. Similar
to the Value Head, the input s′k is obtained by passing the original hidden state sk (64 planes) through one Residual Block
(output planes: 64, stride: 1, Leaky ReLU activation, Layer Normalization). The layers are as follows:

1. 1× 1 Convolution (output planes: 128, stride: 1, padding: SAME, no bias) + LN + Leaky ReLU

2. Leaky ReLU activation

3. Flatten spatial dimensions

4. Dense layer (output units: 64, no bias) + LN + Leaky ReLU

5. Dense layer (output units: NA, where NA is the number of actions, with bias, weights zero-initialized)

The output is a tensor of policy logits (a distribution over NA actions).

Residual Block Used throughout the base networks (Representation, Dynamics, and prediction heads), this block adds a skip
connection over two convolutional layers.

Core path:

1. 3× 3 Convolution (output planes: F, stride: S, no bias) + LN + Leaky ReLU

2. 3× 3 Convolution (output planes: F, stride: 1, no bias) + LN

Shortcut path:

• Identity if no downsample is required
• Otherwise: 3× 3 Convolution (output planes: F, stride: 2, no bias)

Output: Element-wise sum of core and shortcut + Leaky ReLU

C.2 Temporal-consistency loss specific networks
If the SimSiam-style temporal-consistency loss is employed the baseline MuZero agent is augmented with two aditional net-
works: Projector and Predictor networks. The Projector network is used on both branches of the SimSiam loss (see section 2)
sharing the same parameters, but only the Predictor branch propagates gradients during updates.

Projector Network It projects the flattened hidden state from the Representation and Dynamics Networks into an embedding
space. The activation function is ReLU and normalization is LayerNorm. The input hidden state is first flattened into a one
dimensional vector. The layers are as follows:

1. Dense layer (output units: 1024) + LN + Leaky ReLU

2. Dense layer (output units: 1024) + LN + Leaky ReLU

3. Dense layer (output units: 1024)

The output is a projected representation (1024 units).



Predictor Network It further processes the output of the Projection Network for one branch of the SimSiam architecture. The
activation function is ReLU and normalization is LayerNorm. The input is the output from Projection Network (1024 units).
The layers are as follows:

1. Dense layer (output units: 512) + LN + Leaky ReLU
2. Dense layer (output units: 1024)

The output is a prediction for SimSiam loss (1024 units).

C.3 Observation-reconstruction loss specific networks
If the autoencoder-style observation-reconstruction loss is used the baseline MuZero agent is augmented with a hidden state to
observation decoder.
Representation Decoder It decodes a hidden state back into an observation-like space, architecturally mirroring the Rep-
resentation Network in reverse, replacing all convolutions with deconvolutions (transpose convolution layers). The internal
activation is Leaky ReLU and normalization is LayerNorm by default. The final activation is Sigmoid by default. The input is
a hidden state skt (64 planes). The layers are as follows:

1. Decoder Residual Block (input/output planes: 64, stride: 1)
2. 3× 3 Transposed Convolution (output planes: 64, stride: 2, padding: SAME, no bias) + LN + Leaky ReLU
3. Decoder Residual Block (input/output planes: 64, stride: 1).
4. 3× 3 Transposed Convolution (output planes: 64, stride: 2, padding: SAME, no bias) + LN + Leaky ReLU
5. Decoder Residual Block (input/output planes: 64, stride: 1)
6. Decoder Residual Block (input planes: 64, output planes: 32, stride: 2, with upsampling shortcut)
7. Decoder Residual Block (input/output planes: 32, stride: 1)
8. 3× 3 Transposed Convolution (output planes: 12, stride: 2, padding: SAME, with bias)
9. Sigmoid activation

The output is a reconstructed observation-like tensor, with all channel values in the range [0, 1].
Decoder Residual Block Used in the Representation Decoder, this block mirrors the Residual Block but uses transposed
convolutions to upsample hidden states.

Core path:

1. 3× 3 Transposed Convolution (output planes: F, stride: S, no bias) + LN + Leaky ReLU
2. 3× 3 Transposed Convolution (output planes F, stride: 1, no bias) + LN

Shortcut path:

• Identity if no upsampling is required
• Otherwise: 3× 3 Transposed Convolution (output planes: F, stride: 2, no bias)

Output: Element-wise sum of core and shortcut + Leaky ReLU
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