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SUMMARY

This thesis explores the application of a Bayesian approach to hyperparameter optimization
in surrogate modeling for geotechnical engineering problems. Surrogate modeling, particu-
larly employing Gaussian Processes and Kriging, has become an essential tool for accelerat-
ing complex numerical simulations in geotechnical engineering. Traditional Maximum Like-
lihood Estimation (MLE) approaches to hyperparameter optimization, although straightfor-
ward, often overlook the inherent uncertainties in model hyperparameters, potentially lead-
ing to sub-optimal prediction accuracy and poor generalization.

The research presented in this thesis investigates the feasibility and benefits of applying a
Bayesian inference approach to the tuning of hyperparameters in surrogate models. This ap-
proach allows for a probabilistic treatment of hyperparameters, providing a comprehensive
quantification of uncertainty. The Markov Chain Monte Carlo sampling method, specifically
the No-U-Turn Sampler, was employed to sample from the posterior distributions of hyper-
parameters, addressing the challenges posed by their non-Gaussian nature and non-linear
relationship with model outputs.

Three case studies of varying complexity from geotechnical engineering practice are exam-
ined to compare the Bayesian approach against traditional MLE in terms of hyperparame-
ter determination, prediction accuracy, uncertainty quantification, and computational effi-
ciency. The findings suggest that the Bayesian approach, while computationally more in-
tensive, could potentially offer more accurate predictions in terms of the mean-squared er-
ror and provide a deeper understanding of uncertainty, which is crucial for risk-informed
decision-making in geotechnical engineering.

The study concludes that Bayesian hyperparameter optimization in surrogate modelling
holds significant potential for improving the robustness and reliability of predictions in geotech-
nical engineering, particularly in applications involving complex dependencies and where a
thorough understanding of uncertainty is crucial. Further research is recommended to en-
hance the computational efficiency of the Bayesian method and to explore its integration
with multi-point enrichment strategies for practical engineering applications.
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1
INTRODUCTION

This chapter summarizes the current state-of-the-art in surrogate modelling in geotechnical
problems and reliability analysis. It gives highlight to the research gaps and the motivation
of this study. Lastly, it discusses the study’s objectives and scope and limitations.

1.1. RESEARCH CONTEXT

Surrogate modelling, specifically employing Gaussian processes (GP) and Kriging, has be-
come a powerful approach to accelerate complex numerical simulations in geotechnical en-
gineering. The fundamental premise is to develop an alternative model based on known
results in certain input parameter spaces, enabling predictions in unexplored regions with
remarkable speed and acceptable accuracy. Before the advent of surrogate modelling, tradi-
tional methods such as crude Monte Carlo simulations were predominant but proved ineffi-
cient due to their computational demands, particularly when dealing with multiple indepen-
dent input parameters defining complex structural behaviors and very low probabilities of
failure. Therefore, only Level I and Level II methods have been used. These methods provide
low to moderate consideration of uncertainties in reliability analysis. Reliability analysis, in
the context of civil engineering, is the numerical assessment of an engineering structure’s
probability of success or, more often, failure. It involves probabilistic analysis of the struc-
ture’s strength or stability, with a result that typically defines the probability of the structure
failing or collapsing under certain loading/environmental conditions. It has a wide use in
geotechnical engineering, including assessments of the reliability of footings, slopes, retain-
ing walls, etc.

In recent years, advancements in the use of surrogate models have come through research,
ranging from response surfaces to polynomial chaos expansion and support vector machines.
Among these, Gaussian processes and Kriging have gained prominence. A Gaussian process,
as applied in surrogate modelling, involves fitting joint Gaussian distributions on input and
output spaces, with Kriging being the method of prediction using these joint distributions.

The effectiveness of Kriging in conjunction with active learning and Monte Carlo sampling

1
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has been explored in reliability analysis, leading to advancements such as Active Learning
with Monte Carlo Sampling (Al-Bittar et al., 2018) and its refinement with importance sam-
pling (AK-IS) (Soubra et al., 2019). These techniques demonstrated efficiency gains com-
pared with crude Monte Carlo techniques, particularly in scenarios with smaller probabil-
ities of failure, and have found applications in geotechnical reliability analysis, including
bearing capacities, slope stability, and monopile reliability.

However, a commonality among these studies is the reliance on Type II - Maximum Like-
lihood Estimation (Type-II MLE) for hyperparameter optimization in the Gaussian process.
While MLE is a quick and straightforward method, it has inherent limitations, including de-
terministic results in terms of hyperparameter determination and poor generalization with
limited available dataset. Recognizing these drawbacks, the research community has ex-
plored the potential of full Bayesian optimization for hyperparameter tuning in general ma-
chine learning contexts, but its application specifically to geotechnical models remains un-
explored.

1.2. RESEARCH QUESTIONS

This research aims to answer the question: “What improvements can a full Bayesian opti-
mization in hyperparameter tuning provide in surrogate modelling for geotechnical engi-
neering problems?” As such, the main objective of this research is to determine the effect of
applying a full Bayesian optimization in hyperparameter tuning of a surrogate model for a
geotechnical engineering problem, particularly when compared to the more common ap-
proach of Type-II MLE of hyperparameters. In trying to answer the main research question,
additional subquestions arise, including:

1. How can a full Bayesian approach to hyperparameter tuning be implemented in sur-
rogate modelling of geotechnical engineering problems?

2. How can it be implemented in combination with active learning?

3. How does a geotechnical surrogate model that applies full Bayesian optimization in
hyperparameter tuning compare with one that performs Type-II MLE to optimize hy-
perparameters?

1.3. RESERACH SCOPE AND LIMITATIONS

This research specifically aims to determine the effect of performing full Bayesian optimiza-
tion in hyperparameter tuning. Since this method has not been applied to geotechnical en-
gineering models and reliability analysis, it first aims to explore and compare its accuracy
and performance when compared with the MLE method. Two simple geotechnical models
were considered for this research as will be discussed later. It also aims to see its effectivity
in reliability problems, for which one geotechnical problem with a more complex numerical
solutions is considered. Random noise are added added to the results of the simple prob-
lems, while it was assumed that noise was inherently present in the solutions of the more
complex problem, due to possible numerical instabilities. However as this is a preliminary
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analysis, basic learning functions (i.e. utility) which not fully take into account noise in ob-
servations are used. In addition, the use of simple geotechnical engineering problems in this
research prevents the chance of having incomplete models, and consequently eliminates the
need for more complicated learning functions and multi-step surrogate modelling methods,
such as those employed in (Van den Eijnden et al., 2022).

Since this study explores the application of Bayesian optimization of hyperparameters both
general geotechincal engineering as well as reliability problems, basic Monte Carlo sampling
of the population was used in lieu of Importance sampling. Single point enrichment was per-
formed, and hyperparameter updating was done for every iteration. In addition, while tech-
niques were applied to increase the efficiency of the Bayesian approach, the performance
time is not the main focus of this research, and as such more complex algorithms that may
decrease computational costs were not looked into.





2
LITERATURE REVIEW

2.1. SURROGATE MODELLING

Surrogate modelling has been proven to be an effective method in speeding up the calcula-
tions of complex numerical models. The basic premise of surrogate modelling is that when
results of a numerical model at parts of the input parameter space are available, an alterna-
tive model is trained and developed that can predict the results in other regions of the input
parameter space at much faster speeds and within an acceptable level of accuracy.

Its application to reliability analysis has been a popular topic of research in recent years.
Reliability analysis involves the determination of an engineering structure’s probability of
failure through stochastic analysis of the inputs and their corresponding function outputs,
which generally relate to the safety of the structure. Before the development of surrogate
modelling, results for the entire input space were mostly calculated using crude Monte Carlo
techniques. This involves calculation of the true performance function’s value for every set
of input generated through stochastic sampling. The probability of failure is then defined
as the fraction of failing points, as defined in Equation 2.1. The performance function as
defined such that it is greater than 0 if the structure is safe and less than or equal to 0 if the
structure fails.

P f ,MC = Ng (x)≤0

NMC
(2.1)

Where:
P f ,MC : Monte Carlo evaluation of the probability of failure
g : performance function

While this method is effective in estimating the probability of failure, it becomes inefficient
when dealing with lower probabilities of failure, for which most structures today are de-
fined. Depending on the structure’s importance, the required probabilities of failure can
reach values as low as 10−6. For these values, more than 1,000,000 samples and correspond-
ing function values would be needed for a sufficiently accurate prediction of the probability

5
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of failure. The large number of required runs of the true model makes this method time con-
suming. In addition, analysis of the performance of engineering structures require complex
time-demanding numerical models (i.e. finite element models), and the computation time
increases exponentially with increasing number of input parameters. This led to the devel-
opment of surrogate models, requiring much less runs of the true model.

Through the years, different types of surrogate models have been developed, each having
an advantage over its predecessors. Below is a summary of the most commonly used surro-
gate models, based on a comprehensive comparison by Teixeira et al., 2021.

1. Response Surfaces. Outputs are treated as a sum of polynomial basis functions of the
inputs. The use of this type is limited to models exhibiting local reliability, where failure
regions are confined in a local region of the input space. It is also limited to weakly
non-linear models, where a low order of polynomial basis functions can be used.

2. Polynomial Chaos Expansion. The outputs are treated as a combination of multivari-
ate basis functions that are orthogonal to the joint probability density functions of the
input variables. It is able to capture the global behavior of the true model and per-
forms well when the model is globally smooth. However, there is not much evidence
of the metamodel’s performance in complex (i.e. highly non-linear) models, and the
implementation is challenging in high-dimensional input spaces.

3. Support Vector Machines. This is a kernel-based metamodelling technique initially
formulated for classification problems and later extended to regression problems.

4. Kriging and Gaussian Processes. The outputs are treated as a combination of a trend
and a Gaussian process. The trend is a sum of basis function of the inputs, while the
Gaussian process is the covariance of the outputs defined by the autocorrelation of the
inputs. It has been shown to be the most robust in application to varying complexity
and smoothness of the true model, but is costly for high-dimensional inputs.

Due to its robustness, Kriging has commonly been used in metamodelling highly non-linear
problems, particularly in engineering.

2.2. KRIGING AND GAUSSIAN PROCESSES

A Gaussian process is a collection of random variables that have a joint Gaussian distribution
(Rasmussen and Williams, 2006). It is used in surrogate modelling by fitting joint Gaussian
distributions on the input and output spaces of a parent model. Using properties of these
joint distributions, new predictions can be made from new inputs. This prediction method
is commonly known as Kriging. Ingredients of a Kriging metamodel include functional basis,
kernel, and hyperparameters (Lataniotis et al., 2022).

The functional basis defines the trend of the metamodel. This is used to specify a prior belief
regarding the general relationship between the inputs and output of a model. Commonly
used trends in Kriging include constant trends, linear trends, and polynomial trends. In the
absence of this prior belief, this trend can be removed, thus allowing the kernel to play a
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more significant role in the Gaussian process metamodel predictions. This is commonly
known as a Gaussian process with zero mean, and is utilized in complex geotechnical engi-
neering problems and reliability analysis where the form of the trend is not known a priori.

The kernel defines autocorrelation of the target values as functions of the autocorrelation
of the inputs. These are called correlation functions and are defined based on the expected
behavior of the model. One of the most common correlation functions used in geotechnical
reliability analysis is the squared exponential correlation. This correlation depends on how
close two inputs are in the input variable space, such that the output values of closer inputs
have higher correlations. Thus, this correlation function is defined by a length scale hyper-
parameter, describing how far inputs have to be to have no correlation between outputs.
Squared exponential kernels create metamodels that are infinitely differentiable, which may
not be representative of some models. The Matérn autocorrelation function addresses this
by adding a smoothness hyperparameter, which defines how smooth and differentiable the
model is (Van den Eijnden et al., 2022).

While the trend and the kernel are the two main ingredients of a Kriging metamodel, it is also
heavily affected by a set of metamodel hyperparameters. As mentioned above, the kernel is
a function of multiple hyperparameters such as the length scale and smoothness parame-
ter, where different correlation types have its own set of hyperparameter types. In addition
to these kernel hyperparameters, the metamodel may have additional hyperparameters, de-
pending on what information is known about the observations. For example, if the uncer-
tainty of observations is not known, then the noise of the metamodel is treated as a hyper-
parameter.

For a zero-mean Gaussian process where the uncertainty of the observations is unknown,
the metamodel is defined by a normal distribution as shown in Equation 2.2.

M (X ) =N (0,η2K (X ,θ)+σ2) (2.2)

Where:
M : metamodel
η : scaling factor between kernel and noise
K : GP kernel
θ : kernel hyperparameters
σ : GP noise

Since the metamodel is defined by a Gaussian distribution of functions, the mean and uncer-
tainty of the predictions are a natural results of Kriging, and this is one particular advantage
of Kriging over other types of metamodels particularly when used with active learning.

2.3. ACTIVE LEARNING

The computational requirements needed for learning depend heavily on the number of learn-
ing points since true values are calculated for each of these learning points. Thus, in surro-
gate modelling of complex and computationally expensive models, active learning is em-
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ployed with a small initial design of experiments (DoE). The acceptability of the metamodel
is evaluated based on certain accuracy metrics, and the DoE is expanded by adding learning
points until the desired accuracy is met. Selection of input points to be added to the DoE
depends on learning or acquisition functions evaluated at each point outside the DoE. Mul-
tiple learning functions suitable for different types of problems have been developed. Most
of these functions derive from the metamodel prediction characteristics at each point, such
as the mean and uncertainty. Typical learning functions include:

1. Variance. The uncertainty (defined by the variance) of the metamodel prediction of
each point is the learning criteria, where the point with the highest uncertainty is cho-
sen as the next learning point. This is typically used in general active learning algo-
rithms where no function is being optimized.

2. Expected Improvement. A balance between the uncertainty of the metamodel predic-
tion of each point and the expected improvement of an optimization function caused
by the addition of that learning point to the DoE is the learning criteria. This is used
when a function is being optimized (i.e. model accuracy).

3. Utility (U ). The probability of misclassification of each point is used as the learning
criteria. This is used when the model can be treated as a classification problem. This is
commonly employed in reliability analysis of structures, where each input point pro-
duces an output that can define whether a structure fails or not.

Since learning functions depend on the mean and variance of metamodel predictions, the
use of Kriging over other metamodel structures in combination with active learning is ad-
vantageous due to its automatic calculation these results.

The advantages of using Kriging in combination with active learning and Monte Carlo sam-
pling were explored (Echard et al., 2011). This method is now known as AK-MCS. It was
found that Monte Carlo sampling can be improved by separating failure and non-failure re-
gions with a failure line, allowing enrichment near the limit state by providing appropriate
learning functions. In addition, the advantages of using Kriging over other metamodels were
explained. For instance, it naturally obtains the uncertainty at prediction points without the
need for further Monte Carlo analysis. This uncertainty is needed in the learning process,
thus the computation time of enrichment was lessened. It was shown that the combination
of Kriging with Monte Carlo sampling greatly reduced the number of calls to the true model
needed to achieve an acceptable accuracy of the probability of failure.

The method was further developed by combining active learning and Kriging with impor-
tance sampling (Echard et al., 2013), known as AK-IS. Importance sampling obtains popula-
tion samples centered around a most probable failure point, whereas Monte Carlo sampling
defines the population of samples centered around the mean of input parameters. Particu-
larly for reliability analyses, this allowed for a much smaller size of the population set while
maintaining the same level of accuracy of the probability of failure. While more realizations
were needed to reach a target accuracy, the faster computation of predictions and learning
functions lead to a lower overall computation time.
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2.4. SURROGATE MODELLING IN GEOTECHNICAL ENGINEER-

ING

The application of surrogate modelling in geotechnical engineering has been a popular topic
of research in recent years. The use of polynomial chaos expansions in surrogate mod-
elling of geotechnical problems and reliability analysis was investigated (Sudret, 2014). Soil
stochastic inputs involved strength and stiffness parameters. Reliability analysis of a strip
footing and settlement analysis of a soil layer with spatial variations were assessed using clas-
sical FORM/SORM methods, polynomial chaos expansion, and Monte Carlo estimations.
Polymonial chaos expansion was shown to provide accurate estimates of the probability of
failure and settlement values, while also being able to represent the model outputs better
than FORM or SORM analysis.

More popularly, the use of Kriging in surrogate modelling of geotechnical engineering prob-
lems has been a popular topic of research. The use of AK-MCS as a surrogate model for
bearing capacities of strip footings on spatially varying soils was explored (Al-Bittar et al.,
2018). In this research, the limit state was modelled both using analytical solutions following
a general bearing capacity equation and using finite element method. Cohesion and friction
angle of soil were treated as stochastic variables that define the soil spatial-variability. Monte
Carlo sampling was used to obtain the initial DoE, and the U learning function was used dur-
ing the enrichment process. The stopping condition was based on a minimum value of 2 for
the learning function, which was shown by Echard to correspond to a probability of misclas-
sification equal to 0.023 and provide great accuracy to the predictions. However, it was also
shown to be stricter than a simple analysis of the convergence of the probability of failure
and its convergence criterion. The Kriging metamodel was able to obtain a sufficiently accu-
rate probability of failure, with low convergence criterion value, at a lower number of added
realizations.

Similarly, Al-Bittar refined the method by adopting AK-IS instead of AK-MCS, which permit-
ted a reduction in the population size (Soubra et al., 2019). While a larger number of added
realizations where needed for the AK-IS compared to AK-MCS, the faster computation times
for predictions and learning functions still resulted in an overall lower computation time for
the AK-IS.

Other applications of Gaussian process regression in geotechnical engineering include sur-
rogate modelling for slope stability (Kang et al., 2015) and monopile reliability analysis (El
Haj et al., 2019). El Haj and Soubra applied an improved enrichment process, based on
the U-learning function, which adds multiple points during each learning step by using a
weighted K-means clustering approach in solving for the learning functions.

The application of AK-IS to a reliability analysis of sheet pile walls in dykes was explored
(Van den Eijnden et al., 2022). In this study, two new challenges were identified and tackled:
(1) noisy model and (2) incomplete model. A noisy model is a model that has inherent un-
certainty, which can be attributed to the stability of the numerical model itself or to very low
tolerance for convergence. An incomplete model is a model that has no solutions at certain
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regions of the input variable space. In the case of sheet pile analysis, this happens for soil
properties that cause failure during initialization of the slope, before the installation of the
sheet pile. To address the problem of incomplete models, a two-stage metamodelling pro-
cedure was employed, incorporating a classification stage prior to the regression modeling.
The classification model was used to classify the space into compatible (regions where solu-
tions exist) and incompatible domains (regions without solutions), and the regression model
is only applied on the compatible domain. In addition, an alternative learning function was
used, which is based on the difference in the probability of misclassification before and after
adding a candidate learning point. This dealt with the problem of noisy models, where the
probability of misclassification of a candidate learning point does not reduce to zero after
addition of that learning point.

2.5. ADAPTIVE METAMODELLING AND CURRENT RESEARCH DI-

RECTIONS

Current research efforts in metamodelling focus on altering specific aspects of metamodels
to determine if these changes lead to improvements. These can be categorized into several
focus areas including (Teixeira et al., 2021):

1. Initialization of Design of Experiments. Different strategies for initializing the design
of experiments have been studied, including Monte Carlo sampling, importance sam-
pling, Latin hypercube sampling, etc.

2. Enrichment of Metamodel. Different learning functions have been developed such as
those discussed in 2.3.

3. Size and Domain of Design of Experiments. The required dimensionality of the de-
sign of experiments for accurate metamodelling, as determined through sensitivity
analysis, is a key research direction in each field application.

4. Assumptions and Estimations of Metamodel Parameters. Various assumptions and
methods for parameter determination have been researched and developed. These
include the use of different metamodel types and trends as well as different kernels.

As discussed in 2.4, most of the research in metamodelling in geotechnical engineering have
focused on either altering the initialization of the sample population and design of experi-
ments or the enrichment of the metamodel. Different types of metamodels have also been
applied. However, a commonality exists in research involving Kriging in geotechnical en-
gineering: the estimation of hyperparameters is done through marginal likelihood estima-
tion, alternatively known as Type-II Maximum Likelihood Estimation (MLE). This involves
marginalizing the metamodel prediction over different possible models and determining the
hyperparameter values that maximize the marginal likelihood of the observed data. This
provides simplicity such that only one set of hyperparameter values is used in building the
metamodel, and the uncertainty of the predictions is characacterized only by the uncertainty
of the Gaussian process.
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However, this approach neglects the effect of hyperparameter uncertainty, resulting in a de-
terministic hyperparameter determination. In addition, MLE methods are known to cause
poor generalization of the model especially when the training dataset is small. Although
Kriging generally incorporates a Bayesian approach for model selection, extending this Bayesian
framework to hyperparameter selection could enhance the model’s generality. Thus, Bayesian
approaches to hyperparameter optimization have been attempted.

2.6. BAYESIAN APPROACH TO HYPERPARAMETER ESTIMATION

A full Bayesian approach to hyperparameter estimation involves applying a prior belief to the
hyperparameter distribution, observing data, and building posterior hyperparameter distri-
butions based on the prior distribution and the likelihood of the observed data conditioned
on the hyperparameters. This essentially follows Bayesian inference as shown in Equation
2.3.

poster i or = l i kel i hood ∗pr i or

mar g i nal
→P(H |Y ) = L (Y |H )P(H )

P(Y )
(2.3)

Where:
H : concatenation of all hyperparameters of the metamodel
Y : observed values of outputs

When the outputs are linear functions or parameters and the parameters can be fitted with
Gaussian distributions, the expansion of Equation 2.3 leads to tractable integrals and an an-
alytical solution for the posterior distribution. However, model hyperparameters are neither
Gaussian-distributed nor linear with respect to the model outputs, and as such no analytical
solution for the posterior can be obtained. This has hindered the use of a full Bayesian ap-
proach to hyperparameter determination.

Alternative approaches to building the posteriors of non-Gaussian priors exist in the form
of Markov Chain Monte Carlo (MCMC) sampling (Neal, 1997). This can be done because
the marginal in Equation 2.3 is constant for all parameter or hyperparameter values, and the
shape of the unnormalized posterior distribution can be calculated. Popular sampling tech-
niques include Metropolis-Hastings MCMC, slice sampling and Hamiltonian Monte Carlo
(HMC). Metropolis-Hastings works efficiently in finding local modes of distributions. How-
ever, the efficiency of the sampler is highly dependent on a proposal distribution that must
be defined a priori. Moreover, the efficiency of its random walk behavior is very limited to
simple unimodal distributions and lower-dimensional spaces. On the other hand, slice sam-
pling uses a ’slice’ to determine the range from which subsequent samples may be drawn.
The size of the slice adjusts adaptively and rapidly, eliminating the need for a predefined
proposal distribution (Murray and Adams, 2010 ; Neal, 2000). While it can be used to effi-
ciently sample kernel hyperparameters in low-dimensional spaces, its efficiency decreases
as the dimentionality of the sampling space increases. Recently, the incorporation of Hamil-
tonian dynamics with Metropolis-Hastings algorithm, appropriately named Hamiltonian
Monte Carlo, has been shown to be an efficient sampler both in simple and more complex
distributions (Neal, 2011; Betancourt, 2018). HMC introduces auxiliary momentum vari-
ables, sampled concurrently with each hyperparameter, to guide the sampling process. Fol-
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lowing Hamiltonian dynamics, wherein the Hamiltonian remains constant for paired values
of hyperparameters and momentum variables, the trajectory of the sampler is determined
and the end of this trajectory is taken as the next proposed sample. MCMC acceptance cri-
teria are then applied on the proposed sample. The No-U-Turn sampler (NUTS) (Hoffman
and Gelman, 2014) builds on this technique by stopping the trajectory when it starts mak-
ing a ’U-turn’ and goes back to the value of the previous sample, effectively reducing sample
redundancy and improving efficiency. Currently, NUTS is the method being employed by
coding packages specializing in Bayesian inference, as it has been shown to be effective in
building non-Gaussian, high-dimensional, and complex posterior distributions. More de-
tailed information of HMC and NUTS are provided in Section 3.3 of the Theoretical Frame-
work chapter.



3
THEORETICAL FRAMEWORK

This section discusses the different theories involved in this thesis. Formulations are pre-
sented through equations followed by step-by-step discussions of each algorithm’s imple-
mentation. There are two different algorithms being compared in this thesis. First is a Type-II
MLE approach to hyperparameter determination of Gaussian processes applied to geotech-
nical engineering problems, and second is a full Bayesian approach to hyperparameter de-
termination of the same metamodel. This section is structured to first discuss the commonly
used algorithm for building metamodels with Type-II MLE hyperparameter determination,
including its extension to active learning. Subsequently, the full Bayesian algorithm, also in
conjunction with active learning, is presented.

The equations below apply for a zero-mean Gaussian process. For a more general formu-
lation that includes a Kriging trend, readers are referred Lataniotis et al., 2022 or Dubourg,
2011.

3.1. GAUSSIAN PROCESSES

3.1.1. KERNEL AND AUTOCORRELATION FUNCTIONS

The basic definition of a Gaussian process has been discussed in 2.2, and the equation for a
zero-mean Gaussian process is shown in 2.2. The kernel matrix is a function of the autocor-
relation of the inputs and the kernel hyperparameters. It is a matrix defining the autocor-
relation between each pair of known inputs, as shown in 3.1, where R is the autocorrelation
function between two inputs and N is the number of observed data.

K (x,x′,θ) =


R(x1, x1,θ) R(x1, x2,θ) · · · R(x1, xN−1,θ) R(x1, xN ,θ)
R(x2, x1,θ) R(x2, x2,θ) · · · R(x2, xN−1,θ) R(x2, xN ,θ)

...
...

. . .
...

...
R(xN−1, x1,θ) R(xN−1, x2,θ) · · · R(xN−1, xN−1,θ) R(xN−1, xN ,θ)

R(xN , x1,θ) R(xN , x2,θ) · · · R(xN , xN−1,θ) R(xN , xN ,θ)

 (3.1)

13
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Different autocorrelation types exist, and listed below are some most commonly used types
along with their corresponding equations.

1. Exponential

R(x, x ′,θ) = exp

(
−|x −x ′|

l

)
(3.2)

2. Squared Exponential

R(x, x ′;θ) = exp

(
−1

2

( |x −x ′|
l

)2
)

. (3.3)

3. Matérn

R(x, x ′;θ) = 1

2ν−1Γ(ν)

(p
2ν|x −x ′|

l

)ν
Kν

(p
2ν|x −x ′|

l

)
.. (3.4)

Where:
l : length scale
ν : smoothness hyperparameter

In the equations above, θ is a concatenation of kernel hyperparameters including the length
scale and smoothness hyperparameter. The smoothness hyperparameter used in the Matérn
correlation controls the differentiability of the model. When it approaches infinity, the model
becomes infinitely differentiable and this Matérn correlation then resembles a squared ex-
ponential correlation.

When the input is multi-dimensional, the autocorrelation can be calculated for each dimen-
sion and multiplied as shown in 3.5, where M represents the dimensionality of the input.

R(x, x ′,θ) =
M∏

i=1
R(xi , x ′

i ;θi ). (3.5)

3.1.2. MARGINAL LIKELIHOOD ESTIMATION

The hyperparameters of the Gaussian process can be estimated by maximizing the marginal
likelihood of the observed data conditioned on the hyperparameters. Following a Gaussian
assumption of all possible models, the marginal likelihood of the observed outputs is shown
in Equation 3.6.

L (Y |X ,H ) =
(

det(C )−1/2

(2πN )N /2

)
exp

(
−1

2
Y T C−1Y

)
(3.6)

Where C = η2K (x, x ′,θ)+σ2 is the covariance matrix in Equation 2.2. In log-scale, Equation
3.6 can be written as shown in Equation 3.7. The use of log-scale in calculations is beneficial
as it provides better computational stability when dealing with very low probability values.
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log(L (Y |X ,H )) =−1

2
N log(2πσ̂2)− 1

2
log(det(C ))− N

2
log(2π) (3.7)

Where:

σ̂= 1

N
Y T C−1Y (3.8)

Optimization of hyperparameters then becomes a maximization of Equation 3.7.

ˆ̂H = argmax
(
log(L (Y |X ,H ))

)
(3.9)

3.1.3. PREDICTION

Once an optimal hyperparameter set has been selected, predictions at new points can be
made. Equation 3.10 models the joint distribution between observed outputs and new pre-
dictions, assuming a multivariate normal distribution.[

Y
ŷ

]
∼N

(
0,

[
C cT = η2k(X , x̂,θ)T

c = η2k(X , x̂,θ) η2I

])
(3.10)

In Equation 3.10, k is a vector of covaraince between each of the known inputs and the pre-
diction point. From this joint distribution, the predictive mean and variance are calculated
using Equations 3.11 and 3.12, respectively.

µŷ = cT C−1Y (3.11)

σ2
ŷ =σ2 − cT C−1c (3.12)

3.2. MODEL ENRICHMENT THROUGH ACTIVE LEARNING

For each DoE set, optimal hyperparameters are selected, enabling predictions at new points.
To improve these predictions, new learning points are added based on the learning function
values of each point in the population. These learning functions are typically defined by the
predictive means and uncertainties, which are natural results of Kriging as demonstrated in
Equations 3.11 and 3.12. A simple enrichment approach is to select the point with the high-
est prediction variance, with the goal of reducing the overall uncertainty of the metamodel.
This method allows for efficient exploration of the stochastic variable space and is particu-
larly useful if the goal of the metamodelling is getting the most accurate model. However,
in such cases where a particular function value is also desired, such as in optimization or
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reliability problems, this active learning method does not fully leverage the knowledge that
has already been obtained from the available learning points. In these cases, other learning
functions such as Expected Improvement and Utility learning functions, which balance ex-
ploitation with exploration, are more applicable.

In optimization problems, the goal is to find the maximum value of true function. In this
case, a learning point is selected based on the currently believed function value of that point
combined with the maximum possible increase of this point’s function value, which is de-
fined by its uncertainty. As such, the Expected Improvement learning function is defined as
the sum of its mean and its standard deviation.

In reliability problems, points nearer to the limit state surface or points who have higher
probabilities of misclassification are selected as the best succeeding learning points. It is
common to define the limit state as a performance function equal to zero, where function
values less than or equal to zero indicate failure. Thus, the probability of misclassification
can be related with the ratio of the absolute value of the predicted mean and standard devi-
ation of a point as shown in Equations 3.13 and 3.14 (Moustapha et al., 2022).

U (x) = |µŷ (x)|
σŷ (x)

(3.13)

Pm(x) =Φ(−U (x)) (3.14)

Where:
U : utility learning function
Pm : probability of misclassification
Φ : standard Gaussian cumulative density function

Selecting the point with the highest probability of misclassification is the same as selecting
the point with the lowest U learning function value. This balances exploitation, by prioritiz-
ing points with predictive means closer to the limit state performance function value of zero,
and exploration, by giving importance also to points with higher predictive uncertainties.

Each time a learning point is added, a new metamodel is built. This includes rebuilding
of the kernel matrix, re-optimization of hyperparameters, and recalculation predictions and
prediction uncertainties. Enrichment is stopped once the metamodel has reached a certain
level of accuracy. Typically, model accuracy is assessed by comparing predictions to pre-
defined validation points using a loss function, such as mean squared error (MSE). This is
shown in 3.15.

MSEval =
1

Nval

Nval∑
n=1

(
ytr ue − ŷ

)2 (3.15)

Where:
MSEval : mean squared error at validation points
Nval : number of validation points
ytr ue : true function values at validation points
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Since the predictions are Gaussianly distributed, an MSE calculated with respect to the
mean prediction gives a representative accuracy for each metamodel.

In some cases, especially when the true function is complex and expensive to perform, the
definition of validation points may not be practical. Instead, the learning can be stopped
once the uncertainty or learning function of the model reaches a pre-defined tolerance value.
In reliability problems, the training can be stopped upon convergence of the probability of
failure. The probability of failure can be defined as the number of points failing, or in this
case having predicted performance function values less than zero, divided by the total popu-
lation of prediction points. This is shown in Equation 3.16, where the probability can simply
be obtained as a Monte Carlo estimate (Echard et al., 2011).

Moreover, the uncertainty of the P f prediction is defined by its coefficient of variation. This
can be calculated, for a Monte Carlo analysis, with Equation 3.17. Low values of P f lead to
large values of its coefficient of variation, but this can be lowered by providing a large num-
ber of samples.

P̂ f =P(µŷ ≤ 0) (3.16)

COVP̂ f
=

√√√√ 1− P̂ f

P̂ f ·NMC
(3.17)

3.3. BAYESIAN OPTIMIZATION OF HYPERPARAMETERS

3.3.1. MCMC SAMPLING OF POSTERIOR DISTRIBUTIONS

For a full Bayesian optimization of hyperparameters, the posterior distributions of each hy-
perparameter must be determined in each iteration of metamodel building. As discussed
in 2.6, this can be estimated through MCMC sampling methods, where the unnormalized
distribution is equal to the product of the likelihood of the observed data and the prior prob-
ability of the hyperparameters. This relationship is formalized by Equation 3.18.

f (H ) =L (Y |H )P(H ) (3.18)

Where:
f (H ) : unnormalized posterior distribution of hyperparameters

As it is more numerically stable to work in the log-scale of probabilities, the logarithm of
the unnormalized posterior as shown in Equation 3.19 is conveniently used instead of the
unnormalized posterior in sampling.

f (H ) = log(L (Y |H ))+ log(P(H )) (3.19)

The value of the unnormalized posterior, f (H ), can then be used as an acceptance crite-
ria for different sampling methods. Algorithms 1 shows how posterior distributions of hy-
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perparameters can be built using Metropolis-Hastings MCMC. Note that h denotes a set of
hyperparameter samples while hi is used to represent each hyperparameter type.

Algorithm 1 Metropolis-Hastings MCMC Sampling of Hyperparameter Posteriors

1: For each hyperparameter, define proposal distributions q(hi ).
2: Define prior distributions for each hyperparameter.
3: Propose initial samples for each hyperparameter. hcur r ent is set equal to the initial sam-

ples.
4: Calculate f (hcur r ent ).
5: Propose a new set of hyperparameter samples, hpr oposed , from hcur r ent and following the

proposal distributions q(hi ).
6: Calculate f (hpr oposed ).
7: Randomly sample an acceptance factor value, α, between 0 and 1.

8: If min
(
1,

f (hpr oposed )
f (hcur r ent )

)
≥ α, accept and add hpr oposed to the list of samples and set

hcur r ent = hpr oposed . Else, reject hpr oposed and re-add hcur r ent to the list of samples.

9: Repeat steps 4 to 8 until convergence with true distribution.

While Metropolis-Hastings MCMC is a simple and effective method in sampling hyperpa-
rameter values, it becomes inefficient in exploring more complex spaces, such as in the case
of multidimensional joint distributions or wide and multi-modal posteriors. Particularly, the
need for a proposal distribution limits the capability of the sampler in adapting the sampling
step sizes based on the current sample of the hyperparameter. Thus, it has the potential of
getting stuck in local modes. Hamiltonian Monte Carlo (Neal, 2011; Betancourt, 2018) sam-
pling addresses this by combining the sampling approach of Metropolis-Hastings MCMC
with Hamiltonian dynamics. HMC introduces auxiliary momentum variables for each hy-
perparameter. These variables, sampled concurrently with the hyperparameters, dictate the
trajectory of the sampler according to Hamiltonian dynamics as defined with Equations 3.20,
3.21, and 3.22. These equations signify that the Hamiltonian remains constant along the tra-
jectory of the sampler. This mechanism is analogous to the conservation of energy principle
in physics, where the total energy of a system remains constant in the absence of external
forces. In the case of HMC, the potential energy is the negative log-posterior of the hyper-
parameter sample as defined in Equation 3.19. Higher values of f (H ) correspond to lower
potential energy. The kinetic energy on the other hand is a function of the auxiliary momen-
tum, as specified in Equation 3.23.

H(θ, p) = Eu(θ)+Ek (p) (3.20)

dθ

d t
= ∂H

∂p
(3.21)

d p

d t
= ∂H

∂θ
(3.22)

Ek (p) = 1

2
mp2 (3.23)
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Where:
H : Hamiltonian energy
Eu : potential energy
Ek : kinetic energy
p : momentum
t : time (arbitrarily taken as 1)
m : mass (arbitrarily taken as 1)

Figure 3.1 visualizes how HMC is able to obtain samples from a one-dimensional bimodal
distribution composed of Gaussian distributions centered at 10 and 20. The process be-
gins with an initial hyperparameter sample set at 15, and a momentum variable is randomly
drawn from a standard unit Gaussian distribution. The next sample is obtained through a
deterministic path following the Hamiltonian equations. This path is discretized into a se-
ries of ’leapfrog’ steps, where both the number of steps and the step size are predetermined.
At the end of the trajectory, the hyperparameter sample is accepted following an accep-
tance criteria, and a new momentum is sampled again to provide the starting point of the
new trajectory. The visualization in Figure 3.1 demonstrates how the trajectory varies based
on the momentum sampled, illustrating the adaptive exploration capabilities of the HMC
method allowing for a more efficient exploration of the hyperparameter space as compared
to Metropolis-Hasting’s random walk sampling approach. It can also be seen how depend-
ing on the sampled momentum, the sampler can stay within a local mode or extend to other
possible modes in the space.
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Figure 3.1: HMC Sampling Trajectories

While a one-dimensional example is shown above for a better visualization, it has been
demonstrated (Neal, 2011) that HMC also works efficiently in sampling higher-dimensional
distributions. However, there are still some limitations to this sampling technique, such as
its dependence on pre-defined step sizes and number of leapfrog steps. The No-U-Turn
sampler builds on the HMC sampling technique by stopping the leapfrog trajectory once
the sampler starts moving back to the original position, effectively making a U-turn. This
further decreases the autocorrelation between samples, thereby increasing the efficiency of
the sampler (Betancourt, 2018; Hoffman and Gelman, 2014). Moreover, optimization of the
leapfrog step sizes can be done by a preliminary sampling phase called the tuning stage,
where a target acceptance rate is specified. The step size is adjusted to attain this target
acceptance rate. NUTS has been shown to be effective in building posterior distributions
in Bayesian problems and is currently being implemented by programming languages and
packages specializing in Bayesian analysis.

To increase the efficiency of sampling, multiple parallel sampling chains can be conducted,
each starting from different initial hyperparameter values. The Gelman-Rubin statistic R̂,
which compares the interchain variance with the intrachain variance, is often used as the
stopping criteria for sampling (Gelman and Rubin, 1992). Calculation of R̂ is done follow-
ing Algorithm 2. To ensure the results are unbiased, the variances in the calculation above
are normalized with nsamples −1. As R̂ approaches one, it indicates increasing convergence
of the samples toward the true posterior distribution. Traditional acceptable R̂ values are
below 1.1; however recent research have suggested the use of 1.01 for practical applications
(Vehtari et al., 2021).
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Algorithm 2 Calculation of R̂

1: For each chain, the intra-chain means and variances of the samples are calculated.
2: The mean of all samples is calculated by taking the mean of the intra-chain means.
3: The normalized inter-chain variance (B) is calculated by taking the variance of the intra-

chain means and multiplying it with the number of samples per chain.
4: The average intra-chain variance (W ) is calculated by taking the mean of the intra-chain

variances.
5: V̂ = nsamples−1

nsamples
∗W + nchai ns+1

nchai ns∗nsampl es ∗B

6: R̂ =
√

V̂
W

3.3.2. PREDICTION

The samples of hyperparameter sets can be used to build multiple different surrogate mod-
els, each one defined by a Gaussian distribution of functions following the same concepts in
3.1 and 3.1.3. Predictive samples of functions can be derived from the posterior means and
covariances of the set of prediction points for each hyperparameter sample, leading to a col-
lection of samples that take into account the uncertainties of both the hyperparameter space
and Gaussian processes constructed from each hyperparameter set. Since the hyperparam-
eter distribution does not conform to any standard parametric shape, traditional definitions
of mean and uncertainty may not be applicable. While Gaussian equations for mean and
standard deviation can estimate these metrics, analyzing predictions using the median and
confidence intervals based on selected percentiles may be more appropriate. This provides
flexibility in analyzing any distribution shape as well as robustness in dealing with outliers.

3.3.3. INCORPORATION WITH ACTIVE LEARNING

When considering a full Bayesian treatment of hyperparameters, learning functions, must be
integrated over the hyperparameter space (Snoek et al., 2012). As mentioned, predictive dis-
tributions become non-parametric, and the learning functions defined in Section 3.2 must
be modified. In this case, the uncertainty can be defined as the larger of the difference be-
tween the 97.5th percentile and the median or the difference between the median and the
2.5th percentile. Similarly, the U learning function can be redefined as shown in Equation
3.24, where the denominator takes into account the possibly non-symmetric uncertainty.
Appendix Listing

U (x) = |P50(x)|
max[|P97.5(x)−P50(x)|, |P50(x)−P2.5(x)|] (3.24)

Where:
P50 : median of predictions
P97.5 : 97.5th percentile of predictions
P2.5 : 2.5th percentile of predictions
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In addition to the learning functions being integrated, the stopping criteria must also be
integrated across the sampled hyperparameter values. How this was implemented is dis-
cussed in the Research Methods chapter.

3.4. 1D ILLUSTRATIVE EXAMPLES

To provide a clear and illustrative example of how the Bayesian approach would differ from
the MLE approach to hyperparameter determination, a one-dimensional problem of soil
consolidation is analyzed below. This problem is specifically chosen as the uncertainty of
soil hydraulic conductivity spans several orders of magnitude, and a wider posterior of the
length scale can be expected. A relationship between the hydraulic conductivity and one-
dimensional consolidation (given other constant soil properties and loading time) is de-
picted in Figure 3.2. To briefly describe this behavior, at lower magnitudes of hydraulic con-
ductivity, insignificant values of pore pressures are allowed to dissipate within the given time
of loading. Between hydraulic conductivity values of 10−8m/s to 10−5m/s, the largest dif-
ference in settlement values can be seen, implying that it is within this region that the soil
behavior transitions from fully undrained to fully drained within the time duration. Beyond
10−5m/s, the settlement reaches a plateau, signifying soils that reach their fully drained state
within the time duration.

Figure 3.2: Consolidation Settlement vs. Hydraulic Conductivity

Ten training points are randomly selected from a wide log-normal distribution and provided
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as shown, and learning from these points was performed using MLE and Bayesian optimiza-
tion of hyperparameters. Figure 3.3 shows the optimized and sampled hyperparameters.
L-BFGS, a gradient-based optimizer, was used to obtain the maximum likelihood estimate.
Meanwhile, PyMC’s implementation of NUTS was used to generate the posterior samples,
and it is evident that it can sample through very wide posterior distributions. In the MLE
approach, multiple functions were sampled from the Gaussian process defined by the max-
imum likelihood estimate of the hyperparameter. In the Bayesian approach, one function
was sampled from each of the Gaussian processes defined by each hyperparameter sample.
Ten random selections of surrogate models are drawn from each bag and plotted in Figure
3.4, where the medians and confidence bounds are also shown. It must be noted that for the
MLE approach, the median and 95% confidence bounds correspond to the mean and 1.96
standard deviations away from the mean, since the distribution of functions is Gaussian.

Figure 3.3: Optimized Hyperparameters

Figure 3.4: Surrogate Model Samples

While the maximum likelihood estimate of the length scale was able to find a value that will
fit in some regions of the hydraulic conductivity space, particularly in the regions of similar
magnitude with the optimized length scale, it fails to capture the function behavior at higher
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magnitudes (between 10−6m/s and 10−5m/s) even with the presence of training points in
that area. As can bee seen from the sample functions drawn, the relatively low value of the
length scale causes short oscillations in higher magnitude orders.

Meanwhile, a Bayesian approach to selecting hyperparameters shows that the posterior dis-
tribution of length scales do indeed span across different magnitude orders. While functions
derived from length scales of similar magnitude to those of the maximum likelihood esti-
mates perform similarly to the MLE function draws, functions drawn from length scales of
higher magnitudes fit better the behavior of the true function at higher hydraulic conduc-
tivity values. Integration over functions obtained from the posterior distribution captures
better the behavior of the function over the entire parameter space. In addition, the added
uncertainty in the hyperparameter space allows for a better encapsulation of the uncertainty
of the predictions, signified by the wider confidence interval.

Additionally, one can easily see from Figure 3.4 how poorly defined hyperparameters can
affect the learning of the model. With the MLE approach, the uncertainty remains relatively
constant at the tail end of the input space. If the learning approach was to select the point
with the highest predictive uncertainty, then any point within this region might be selected.
In contrast, the Bayesian approach properly scales the uncertainties as the distance from the
training points increase.

Figure 3.5 shows how this may affect surrogate modelling of reliability analysis problems.
In this case, a performance function was set up based on bearing capacity of a strip foot-
ing, where friction angle is considered as the stochastic input variable. Again, the Bayesian
approach was able to more closely resemble the true function. On lower values of friction
angle, the MLE approach gave false performance function values less than zero. In addition,
the MLE gave more confident predictions as shown by the narrower predictive intervals. For
friction angles greater than 30 degrees, the entire predictive interval of the MLE method lies
above the failure line, indicating a probability of failure misclassification of less than one in
twenty. For the Bayesian approach, the lower bound of the predictive interval for friction
angles less than 40 degrees is mostly below the failure line. Ultimately, the Bayesian method
considers higher probabilities of misclassification due to the added uncertainty in the hy-
perparameter space.
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Figure 3.5: Reliability Analysis Illustrative Example





4
RESEARCH METHODS

This chapter discusses how the concepts and algorithms presented in Chapter 3 were imple-
mented to achieve the target results. It goes through specifics such as types of geotechni-
cal problems considered, assumptions on distributions, sampling method employed, algo-
rithms used, etc.

4.1. PROBLEM DEFINITIONS

Three problems were considered for the research project. The first two problems involved
two stochastic variables and used simpler analytical solutions for the true function, The third
problem involved 9 stochastic variables, and was set up as a reliability analysis such than
the true function was defined by a performance function. The last problem utilized a more
complex numerical solution in order to obtain the value of the performance function.

4.1.1. CASE 1: RETAINING WALL

A retaining wall factor of safety problem was chosen for two reasons: (1) this is a textbook
problem with well-defined and popular analytical solutions for the factors of safety, and (2)
it had multiple modes of failure, which was expected to add non-linearity to the solution.
Figure 4.1 shows a simple representation of this problem.

This problem has three failure modes (Das, 2007): sliding, overturning, and bearing capacity
failure. The factor of safety for sliding was calculated using Equation 4.1.

F Sslide =
resisting force

driving force
(4.1)

The driving force is caused by Rankine’s active lateral force and calculated using Equation 4.2
in the case of cohesionless soil. While the soil under the wall was cohesive, the soil above the
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Figure 4.1: Retaining Wall Problem

base of the wall was assumed cohesionless to simplify the calculations by preventing tension
cracks between the wall and the soil.

driving force = 1

2
γKa H 2

w all =
1

2
γ

1− sin(φ)

1+ sin(φ)
H 2

w all (4.2)

Where:
γ : soil unit weight
Ka : Rankine active lateral earth pressure coefficient
φ : soil friction angle
Hw all : wall height

The resisting force is caused by friction and adhesion under the base of the wall. The in-
terface friction was assumed to be 5◦ less than the soil friction angle and the adhesion was
taken as half of the soil cohesion. The resisting force was calculated using Equation 4.3.

resisting force = Pv tanφint +Bw all cadh (4.3)

Where:
Pv : total weight of wall and soil above wall base
φint : interface friction between wall and soil
Bw all : width of wall base
cadh : adhesion between wall and soil

The factor of safety for overturning is equal to the ratio of the righting and overturning mo-
ments as shown in Equation 4.4.

F Soverturn = righting moment

overturning moment
(4.4)

The overturning moment was calculated by multiplying the driving force by its moment arm
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from the base of the wall. Similarly, the righting moment was calculated by multiplying the
weight of the wall and soil by their respective moment arms from the toe of the wall.

Lastly, the factor of safety for bearing capacity was calculated using Meyerhof’s bearing ca-
pacity equation for an eccentric footing. The bearing capacity of a shallow footing under an
eccentric load was first calculated following Terzaghi’s bearing capacity equation with Mey-
erhof’s modifications. The general equation for the bearing capacity is given in Equation 4.5.
The surcharge load was conservatively taken as 0, since the toe of the footing lies on ground
surface.

qu = c ·Nc +q ·Nq + 1

2
·γ ·B ′ ·Nγ (4.5)

Where:
qu : ultimate bearing capacity
q : surcharge load at the level of the footing base
Nc , Nq , Nγ : Meyerhof’s bearing capacity factors
B ′

w all : effective footing width due to eccentricity = Bw all −2 ·e
e eccentricity of load

Empirical equations for Meyerhof’s bearing capacity factors were used as shown in Equa-
tions 4.6, 4.7, and 4.8.

Nq = eπ tan(φ) tan

(
45◦+ φ

2

)2

(4.6)

Nc = (Nq −1) · 1

tan(φ)
(4.7)

Nγ = (Nq −1) · tan(1.4φ) (4.8)

The load eccentricity was calculated using Equation 4.9.

e = B

2
− righting moment−overturning moment

Pv
(4.9)

The maximum acting pressure is then calculated. If the resultant vertical load acts within
the middle-third of the footing, the maximum pressure, qmax , can be calculated using Equa-
tion 4.10.

qmax =
(

Pv

B

)(
1+ 6e

B

)
(4.10)



4

30 4. RESEARCH METHODS

The factor of safety for bearing capacity can then be calculated by dividing the ultimate bear-
ing capacity with the maximum bearing pressure as shown in Equation 4.11. In the case
where the resultant vertical load acts outside the middle-third of the footing, tension forces
between the footing and the soil underneath are developed. Since soil has negligible tensile
strength, this is generally not allowed and footings are redesigned. For this scenario, the fac-
tor of safety is set to 0 when the resultant vertical load acts outside the middle-third of the
footing.

F Sbearing pressure =
qu

qmax
(4.11)

The factor of safety of the retaining wall was taken as the minimum of the factors of safeties
calculated using Equations 4.1, 4.4, and 4.11. Slight artificial noise in the form of a Gaussian
distribution with a variance of 0.1 was added to the results of the true analytical solution of
the factor of safety.

In the metamodelling of this problem, friction angle and cohesion were treated as the stochas-
tic variables. The distributions of these stochastic inputs were defined as log-normal distri-
butions with moments as shown in Table 4.1. The distributions were given artificially larger
uncertainties than usual to provide a wider selection of possible learning points. However,
an upper-limit of 50o was applied to the friction angle to ensure realism of possible sampled
values. The sampled population is shown in Figure 4.2.

Table 4.1: Stochastic Properties of Inputs

Stochastic Variable Distribution Log-mean Log-std

Friction Angle Log-normal 20◦ 8◦

Cohesion Log-normal 20 kPa 5 kPa

Figure 4.2: Population of Inputs for Retaining Wall Problem
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4.1.2. CASE 2: ONE-DIMENSIONAL SOIL CONSOLIDATION

As shown in Section 3.4, maximum likelihood estimate of hyperparameters may lead to in-
accurate predictions at certain regions when the stochasticity of the input variables are de-
fined by wide distributions. Therefore, another simple geotechnical problem involving one-
dimensional consolidation was also tested. The solution described below for one-dimensional
consolidation settlement can be used to approximate the settlement of a consolidating layer
under a uniformly distributed surface load applied over a large area. The consolidation set-
tlement of soil depends on hydraulic conductivity, which can vary widely with uncertainties
spanning several orders of magnitude.. It also depends on soil stiffness, which, along with
the hydraulic conductivity, defines the soil’s coefficient of consolidation, as shown in Equa-
tion 4.12. In the case of one-dimensional consolidation, the oedometer stiffness is used,
which can be calculated from the soil stiffness using Equation 4.13.

cv = k ·Eoed

γw
(4.12)

Eoed = E
1−ν

(1+ν)(1−2ν)
(4.13)

Where:
cv : soil coefficient of consolidation
k : hydraulic conductivity
Eoed : oedometer stiffness
E : soil stiffness
ν : Poisson’s ratio

The settlement at any given time t can be calculated as a factor of the end-of-consolidation
settlement. This factor is defined by the average degree of consolidation, which is related
to the soil’s time factor. Figure 4.3 shows Terzaghi’s consolidation chart, which provides the
relationship between the degree of consolidation and the time factor. Empirical equations
that approximate this relationship have been made, such as those shown in Equation 4.14.
This was used in lieu of the chart for easier implementation in the coding algorithm.
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Figure 4.3: Terzaghi’s Consolidation Curve

Tv =
{
π
4 ·U 2

v if Uv < 0.6

−0.933 · log10(1−Uv )−0.085 if Uv ≥ 0.6
(4.14)

Where:
Tv : time factor for soil consolidation
Uv : degree of consolidation

The time factor is a function of the coefficient of consolidation, the drainage path length,
and the time allotted for consolidation. This is shown in Equation 4.15.

Tv = cv · t

H 2
dr

(4.15)

Where:
t : times
Hdr : length of drainage path

The settlement was calculated with Equation 4.16.

st = q ·H

Eoed
Uv (4.16)
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Where:
st : settlement at time t
q : uniform surface load

Hydraulic conductivity and soil stiffness were considered as the stochastic variables for this
problem. Table 4.2 shows the moments of the distribution used to define the stochasticities
of these variables. The resulting sampled population is shown in Figure 4.4.

Table 4.2: Stochastic Properties of Inputs for Consolidation Problem

Stochastic Variable Distribution Log-mean Log-std

Hydraulic Conductivity Log-normal 1x10−8 m/s 1x10−8 m/s
Soil Stiffness Log-normal 15000kPa 1000kPa

Figure 4.4: Population of Inputs for Consolidation Problem

4.1.3. CASE 3: PILED EMBANKMENT

The performance of the methods when applied to more complex numerical problems was
also investigated. In addition, the application of the method to geotechnical reliability anal-
ysis was explored. The case of a piled embankment built on top of a layered soil was consid-
ered. An illustration of this problem is shown in Figure 4.5. The soil stratigraphy is composed
of a 2-meter sand layer overlying a 13-meter clay layer, with the groundwater lying at the in-
terface of these two layers. A 20-m wide and 4-m high embankment with side-slopes of 3:1
was then built on the ground surface. The construction of the embankment was divided
into four 1-meter intervals, with each construction stage lasting two days. The long-term
settlement of the piled embankment was used to define the performance function as shown
in 4.17. In this case, the failure is defined as the long-term settlement being greater than
the allowable settlement. Note that allowable settlements of embankments are typically dis-
cussed with the client of a project; therefore, no actual allowable value is listed in geotech-
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nical codes. A common guideline allows for a settlement equal to 10% of the embankment
height. However, a stricter allowable settlement of 150 mm was used for this problem.

Figure 4.5: Piled Embankment in Plaxis

g (x) = sal low

s(x)
−1 (4.17)

Where:
sal low : allowable long-term settlement
s(x) : settlement of embankment after 50 years

The clay layer was modelled with a Modified Cam-Clay (MCC) constitutive model, while the
sand and embankment layers were modelled with a Hardening Soil model. Nine stochastic
soil parameters were defined as shown in Table 4.3. These properties were particularly cho-
sen as those that may have the most effect on soil settlement.

The mean values for friction angle, cohesion, and stiffness were taken from “NEN 9997-1”,
2016. The slope of the critical state line used for the Modified Cam-Clay model of the clay
layer was calculated from the clay friction angle using Equation 4.18. To define the uncer-
tainties around the means, the general range of values specified in “NEN 9997-1”, 2016 and
the distributions used in previous geotechnical engineering reliability research (ex. Al-Bittar
et al., 2018) were used as guidelines. The means and uncertainties of the compression in-
dex λ represented the range of values for clay with medium deformability as specified in
Kulhawy and Mayne, 1990. The distribution of swelling index was then calculated from the
values of compression index, given the ratio shown in the table. Hydraulic conductivity val-
ues and uncertainties were defined to resemble the range of values provided in Das, 2007.
Lastly, the uncertainty for the overconsolidation ratio of the clay layer was defined to repre-
sent lightly to moderately overconsolidated soils. Other soil properties were automatically
defined based on default values or relationships with these stochastic variables (PLAXIS 2D
2024.1 Material Models Manual, 2023). In addition to these, the distributions were also ad-
justed such that there is a low probability of defining an invalid material and the probability
of failure is between 10−5 and 10−3. The latter was done through short preliminary runs.
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Table 4.3: Stochastic Properties of Inputs for Piled Embankment Problem

Stochastic Variable Distribution Mean Standard Deviation

Sand Friction Angle (φs) Log-normal 30◦ 1.8◦

Sand Cohesion (c) Log-normal 5 kPa 1 kPa
Sand Stiffness (E) Log-normal 50000 kPa 2500 kPa

Clay Friction Angle (φc ) Log-normal 22.5◦ 1.8◦

Clay Compression Index (λ) Log-normal 0.15 0.02
Index Ratio (λκ ) Normal 5 0.5

Sand Hydraulic Conductivity (ks) Log-normal 2e-4 m/s 1e-4 m/s
Clay Hydraulic Conductivity (kc ) Log-normal 1.5e-8 m/s 2e-8 m/s

Clay OCR Log-normal 2 0.3

M = 6sin(φc )

3− sin(φc )
(4.18)

Figure 4.6 shows the histogram of the population of each stochastic variable used as input
for the piled embankment problem.
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Figure 4.6: Population of Inputs for Piled Embankment Problem

4.2. SURROGATE MODELLING WITH MLE

For each input variable, 1,000,000 samples were randomly taken from the corresponding
distributions and concatenated. This represents the total population of input points from
which training points can then be selected and added to the design of experiments. For the
first two case problems, an additional 1,000 sets of inputs were generated, whose true func-
tions were evaluated. These were used as the validation set in the calculation of the MSE .

From the 1,000,000 possible training points, 5 were randomly selected as the initial design of
experiments. A small number of samples were taken initially since the comparison of early
performances between MLE and Bayesian approaches was also of interest. The same set of
input data was used for both MLE and Bayesian optimization methods, such that the only
difference was the optimization methods.

The true function values for the initial DoE were calculated. The initial DoE was then used
to build the first metamodel following the equations presented in Section 3.1. A Matérn- 5

2
autocorrelation function was used. For each problem, hyperparameters include the length
scales for each of the stochastic variables, a kernel scaling factor, and a Gaussian process
constant noise. Thus, the simple analytical problems involved 4 hyperparameters, while the
numerical problem involved 11 hyperparameters.

PyMC does not have a built-in maximum likelihood estimator. Instead, a maximum a pos-
teriori estimator was used, where uniform prior distributions are defined. This approach
yields the maximum likelihood estimate, provided the bounds of these distributions are well-
defined. Bounds of these distributions were defined as shown in Table 4.4. L-BFGS was used
to find the maximum likelihood estimate. The initial guesses for the length scales were spec-
ified as the means of the corresponding populations of variables, and the initial values for
both kernel scale and Gaussian process noise were set to 1. A single gradient-descent path
was used.
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Table 4.4: Bounds of Prior Distributions

Hyperparameter Bounds

Length Scale of x [min(x)/100, max(x)*100]
Kernel Scale [10−6, 10]

GP Standard Deviation [10−6, 10]

Once the optimal hyperparameters had been determined, predictive means and variances
were calculated for the entire population set. These results were then used to calculate the
learning function values of each point, and the point with the highest learning function value
was chosen and added to the existing DoE. For the analytical problems, where the interest
of the investigation was the accuracy of the models, the learning function used was simply
the variance of the predictions, such that the point with the highest predictive uncertainty
was added to the DoE. For the piled embankment reliability analysis problem, the U learn-
ing function was used as defined in Equation 3.13. When a point was in a sparse location of
the input space, it may happen that it has the highest uncertainty even if it was already in
the DoE. To prevent re-adding a point already in the DoE, the learning function values were
sorted in descending order, and the point with the highest learning function value that was
not currently in the DoE was added. In this case, the negative of the U learning function
was used instead. The true function value of the newly added learning point was calculated.
Predictive values for the validation sets were also calculated and the MSEs between the pre-
dictions and true values of the validation sets were calculated.

From the new DoE, a new metamodel is built. Predictions, learning function values, and
MSE ’s of the validation points were recalculated. For the analytical problems, one hundred
iterations were performed and the evolution of the MSE values was observed.

For the reliability analysis problem, the accuracy of the calculated probability of failure is
defined by a convergence criterion related to the bounds of the limit state surface, as shown
in Equation 4.19. The bounds P̂+

f and P̂−
f can be conservatively defined with Equation 4.20

(Schöbi et al., 2017). The enrichment was done until the convergence criterion reached a
value of 0.05, as suggested by Schöbi, with a minimum of 100 iterations to better see and
compare the behavior of the two methods.

P̂+
f − P̂−

f

P̂ f
= ϵP̂ f

(4.19)

P̂±
f =P(

µŷ ∓1.96σŷ
)≤ 0 (4.20)

Where:
ϵP̂ f

: convergence criterion for probability of failure
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4.3. SURROGATE MODELLING WITH BAYESIAN OPTIMIZATION

The same sets of inputs from the MLE metamodels were used as the starting points for
the metamodels using a Bayesian approach. As discussed earlier, one main advantage of
the Bayesian approach over a simple MLE method is the ability to define prior assump-
tions regarding the distribution of hyperparameters. Due to the lack of previous studies in
this area, informative prior distributions cannot yet be provided and non-informative pri-
ors were used. Since hyperparameters of Gaussian processes can vary across different mag-
nitude orders depending on the uncertainty of the input variables as well as the behavior
of the function with respect to the inputs, log-uniform distributions were defined as priors.
This suggests that length scale values across different orders of magnitude have equal proba-
bilities of defining the observed data. While not strongly informative, the use of log-uniform
priors is expected to perform better and provide more information than uniform priors; the
normalization of different scale magnitudes should prevent the posterior from being highly
peaked at the maximum likelihood estimate. It should also aid the sampler in finding the
correct scale magnitudes of the hyperparameters. The same bounds used to define the prior
uniform distributions in the MLE method were used as the bounds of the prior log-uniform
distributions for the Bayesian method. PyMC’s implementation of NUTS was used to build
the distributions, where 4 chains of 1000 samples each were run. Prior to the sampling pro-
cess, PyMC performs a tuning stage, in which it runs a pre-sampling mechanism while also
adjusting the step size of the NUTS sampler to meet a user defined acceptance rate. For all
problems, an acceptance rate of 95% was set after preliminary runs showed that lower ac-
ceptance rates resulted in multiple divergences within the sampling chains. In addition, the
number of tuning steps was set to 1000 for the analytical problems but was increased to 2000
for the complex numerical problem. The samples obtained during the tuning stage are dis-
carded, thus also acting as the burn-in period of the sampler.

During preliminary runs of the Bayesian method, it was found that usage of all the sam-
pled sets of hyperparameters for prediction led to enormous and impractical computation
times. To alleviate this, the chains were greatly thinned, with the idea that hyperparameter
samples with high autocorrelations provide similar information regarding predictions and
predictive uncertainties. Chain thinning reduces the autocorrelation between samples and
greatly reduces computation time, at the expense of providing less predictive samples of
hyperparameters. Consequently, more predictive samples of functions were made for each
hyperparameter sample in the thinned posterior. In this case, the hyperparameter sample
chains were thinned by a factor of 40 (i.e. every 40th accepted sample in each chain is kept),
and 10 predictive samples of functions were made each hyperparameter. This led to 1000
predictions for each set of stochastic variable inputs. The use of more predictive samples
is expected to provide a better representation of the uncertainty in each Gaussian process;
however, memory limitations prevented this.

To properly draw functions for each hyperparameter value, the posterior mean and covari-
ance matrices are needed. Functions are then drawn from the multivariate normal distribu-
tion defined be these matrices. Here lies a problem when dealing with multiple predictions
points, as the full posterior covariance matrix is a square matrix with the dimension equal to
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the number of prediction points and training points combined. The memory requirement
needed to store this matrix greatly surpasses that of standard computing machines when the
number of prediction points is in the range of 1,000,000.

Thus, instead of sampling full functions spanning the entire prediction set, predictive sam-
ples of the function value for each prediction point were instead made individually. This
incorrectly implies that the prediction points are uncorrelated and jumps between function
values become present. This may have a consequence of an increase in the spread of possi-
ble function values for each point. The results of this simplified method was compared to a
less simplified approaches, involving providing more predictive samples as well as lessening
the sparsity of the posterior covariance matrix. Due to memory and computation time limi-
tations, the comparison was done on a smaller prediction dataset.

The entire process of generating Bayesian predictive samples is detailed in Algorithm 3. A
code snippet is provided in Appendix Listing 7.2; the code used for MLE metamodelling is
also provided in Appendix Listing 7.1 for reference. The final output of the Bayesian meta-
model is a two-dimensional array, containing predictive function values for each point in the
prediction set.

Algorithm 3 Generating Bayesian Predictive Samples

1: Prior distributions for each hyperparameter type are defined with appropriate bounds.
2: A Gaussian process with a zero mean and a Matérn- 5

2 kernel is defined and conditioned
on the DoE.

3: From the prior distributions and likelihood of currently known data, a joint posterior
distribution is built with NUTS with 4 chains and 1000 samples per chain.

4: Chains are thinned by a factor of 40, leading to 100 hyperparameter sample sets.
5: For each hyperparameter sample set, the predictive means and variances at all prediction

points are calculated individually following Equations 3.11 and 3.12.
6: For each hyperparameter sample set, 10 predictive function values are sampled from the

calculated means and variances for each prediction point.

Predictions were made again for the population and validation sets. The medians of the pre-
dictive function values of the points in the validation set were used in calculating the MSE .
Similar to the MLE approach, enrichment continued until no further discernible improve-
ment in the MSE values of the validation set was observed, with a minimum of 100 itera-
tions. For each iteration, the traces of hyperparameter samples as well as the MSE of the
validation set were stored in lists.

For the reliability analysis of the piled embankment, modifications were made to Equation
4.20 to account for the non-Gaussian nature of the predictive samples. Percentiles were
used instead of the mean and standard deviation to define the boundaries of the limit state,
as shown in Equations 4.21, 4.22, and Equation 4.23. Recall from 3.24 that P50, P2.5, and
P97.5 are the median, 2.5th , and 97.5th percentiles of the predictive function values for each
point. The use of percentiles instead of the mean and standard deviation allows for greater
flexibility in analyzing distribution shapes and provides robustness in dealing with outliers.
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Equations 3.17 and 4.19 were still used to calculate the coefficient of variation and the con-
vergence criterion for the probability of failure.

P̂ f =P(P50 ≤ 0) (4.21)

P̂+
f =P(P2.5 ≤ 0) (4.22)

P̂−
f =P(P97.5 ≤ 0) (4.23)

Code snippets of the implementations of the learning functions and calculation of P f and
its convergence criterion are provided in Appendix Listings 7.3 and 7.4, respectively.



5
RESULTS AND DISCUSSION

5.1. CASE 1: RETAINING WALL FACTOR OF SAFETY

Figure 5.1 shows the evolution of the MSE with every iteration of the active learning process
for both MLE and Bayesian approaches. Recall that both methods started with the same
initial design of experiments with 5 training points. The initial runs of the MLE approach
produce higher magnitudes of the MSE , while the Bayesian approach has a faster decrease in
MSE, with a steep decline in the first 5 iterations. As more realizations are added, the MSE for
the MLE method gradually becomes slightly lower than that of the Bayesian method. After
100 iterations, the MSE ’s for both method seem to have negligible decrease in value. The
final MSE was 0.0256 for the MLE method and 0.0287 for the Bayesian method. To further
understand how the two methods differ, a comparison of the optimized hyperparameters
and the added learning points is discussed below.

41
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Figure 5.1: Mean Squared Error for Retaining Wall Problem

Figure 5.2 shows the optimized hyperparameters of every iteration of the active learning pro-
cess of both the MLE and Bayesian approaches. In each iteration, the maximum likelihood
estimates are plotted, whereas the Bayesian posterior samples are displayed in a scattered
format to resemble a histogram. Generally, the MLE approach required more learning points
to find a good estimate of the hyperparameter values. Specifically, in the case of the friction
angle length scale and Gaussian process noise, the first 10 iterations resulted in large max-
imum likelihood estimates, indicating that the metamodel predominantly interpreted the
true behavior as noise. This contributed to the higher initial MSE values. The Bayesian ap-
proach obtained better samples of friction angle length scales at very early iterations, with
less than 5 learning points.

In later iterations, the hyperparameter posterior distributions appear to be bounded be-
tween two peak locations, as evidenced by the maximum likelihood estimates across most
iterations and the notable jump at iteration 65. It also becomes thin in the log scale, which
is likely due to the higher number of learning points, lower leap-frog step size caused by the
higher acceptance rate in the tuning stage, and weakly informative prior.
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Figure 5.2: Optimized Hyperparameters for Retaining Wall Problem

There is a slight deviation between the length scales optimized by the two methods in the
final iterations. Figures 5.3 and 5.4 show log-likelihood values after 100 iterations calculated
for different combinations of the length scales of friction angle and cohesion, where the ker-
nel scale and GP noise were fixed at the maximum likelihood estimates. Note that there is a
difference in the log-likelihood values between the two methods, attributed to differences in
the design of experiments. Also shown are the maximum likelihood estimates and the sam-
ples taken by the NUTS sampler. The MLE method failed to find the true peak; however, it
still found a point with a log-likelihood value almost equal to that of the true peak. It can
be seen visually that Bayesian sampling with NUTS was effective as it was able to generate
samples that are concentrated in the mode of the joint distribution. However, there is a low
spread of hyperparameter samples in the Bayesian posterior, which again is maybe due to
the high acceptance rate in the tuning stage and the weakly informative prior. There are
some outliers in some iterations. These were still accepted as part of the sampling process
due to the possibility of having multiple modes.
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Figure 5.3: Log-likelihoods for MLE Iteration 100

Figure 5.4: Log-likelihoods for Bayesian Iteration 100

Figure 5.5 shows the learning points that were added after selected numbers of iterations.
In the initial iterations, the Bayesian approach took points that have less correlations com-
pared to the MLE method, which tended to choose points clustered in specific areas. This
may have caused the faster determination of the appropriate range of length scale values for
friction angle and reduction of the MSE . In later iterations, the MLE method acquired learn-
ing points mostly at the bounds of the population distribution, while the Bayesian method
included points near the center, leading to a more evenly spread design of experiments.
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Figure 5.5: Enrichment for Retaining Wall Problem

The predictions made from the final models for the retaining wall problem are shown in Fig-
ure 5.6. While both methods were able to capture the general behavior of the factor of safety,
neither was able to fully replicate the steep drop to a factor of safety of zero at friction angle
of around 20o . Visually, there is negligible difference between the predictions of the two sur-
rogate model, as evidenced by the minor difference in MSE values.

Figure 5.6: Metamodel Predictions for Retaining Wall Problem

Figure 5.7 shows the credible and predictive intervals of the two methods after 20 iterations.
The credible interval defines the uncertainty in predictions due solely to the hyperparameter
uncertainty, while the predictive interval combines both hyperparameter uncertainty and
the uncertainty inherent in each Gaussian process. When, comparing the uncertainty of the
MLE and Bayesian predictions for this problem, the variability in the hyperparameter space
contributes only a slight increase in the overall uncertainty of the predictions.
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Figure 5.7: Predictive Intervals for Retaining Wall Problem

5.2. CASE 2: CONSOLIDATION SETTLEMENT

Figure 5.8 shows a comparison between the evolution of the MSE of the MLE and Bayesian
methods for the consolidation problem. In this case, the differences between the MSE
values and the number of iterations to reach a low value are more pronounced, with the
Bayesian method achieving an MSE of 5.34 ·10−7m2 after 52 added realizations, whereas the
MLE method reached its lowest MSE of 8.96 ·10−7m2 after 88 added realizations. Jumps in
MSE values are observed in the MLE approach after 60 iterations, while the Bayesian values
are consistently in the lower ranges of MSE values. To better understand the behavior of this
MSE evolution, analyses of the sampled hyperparameters are presented in Figure 5.9.
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Figure 5.8: Mean Squared Error for Consolidation Problem
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Figure 5.9: Optimized Hyperparameters for Consolidation Problem

Early iterations show that both methods struggled to find reasonable values for the length
scale of the hydraulic conductivity, with optimized values and samples taken at the upper
limits of the prior distributions. It’s interesting to note however that at around 20 iterations,
the Bayesian method was able to find modes at two different locations of the hydraulic con-
ductivity length scale posterior distribution, signifying its potential to spot multiple modes.
This can also be directly correlated with the jumps to lower MSE values around this time.
On the other hand, wide posteriors of stiffness were obtained until 48 added realizations, af-
ter which they narrowed down. It was at this moment when the MSE value of the Bayesian
method drops to its lowest values. At this point, the MLE finds hyperparameter estimates
within the same range of the Bayesian method, yet the MSE values attained by the meth-
ods differ by approximately a factor of 10. It is also noticeable how the changes and jumps
in hyperparameter values are more sudden and often for the MLE approach. The Bayesian
approach on the other hand has a smoother and more gradual shift of its hyperparameter
posteriors. It should be noted that both methods did not use prior information from opti-
mized hayperparameter values of previous iterations.

Figures 5.10 and 5.11 show the joint log-likelihoods of the length scales of k and E after 21
added realizations, which is when the Bayesian approach already seems to find samples that
give better likelihoods while the MLE is still stuck in the bounds. It can be seen that the MLE
fails to find the true optimum of the log-likelihood, getting stuck in a mode that has a wider
spread than the true peak. The Bayesian approach on the other hand was able to take sam-
ples from both regions of high likelihood densities, with the spread of samples relatively pro-
portional with the width of the peaks. This demonstrates the NUTS sampler’s effectiveness
in approximating more complex posterior distributions, particularly in capturing samples
from the relevant peaks. The localization of samples in the modes can again be attributed to
the higher acceptance rate of the tuning stage of the sampler.
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Figure 5.10: Log-likelihood for MLE Iteration 21

Figure 5.11: Log-likelihood for Bayesian Iteration 21

Jumps in maximum likelihood estimates of hyperparameters are also observed from round
70 iterations onwards. Figures 5.12 and 5.13 show the joint log-likelihood of the length scales
of k and E at iteration 70. Although the MLE method properly locates the peak for this iter-
ation, there are noticeable jumps in the optimized noise values, leading to different peak
locations. The Bayesian method on the other hand considers different possible peak loca-
tions and obtains a wide range of samples of cohesion length scale and noise.
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Figure 5.12: Log-likelihood for MLE Iteration 70

Figure 5.13: Log-likelihood for Bayesian Iteration 70

Figure 5.14 shows how learning points were selected during the enrichment of both models.
In initial runs, the MLE method selected points with high correlations. Both methods prior-
itized taking learning points from the right tail of the hydraulic conductivity length scale
distribution, which is expected as points there are spaced wider apart. After 50 and 100
added realizations, the spread of the design of experiments becomes similar for both meth-
ods. Therefore, the difference in the MSE values is most likely explained by the difference in
the sampled hyperparameter values
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Figure 5.14: Enrichment for Consolidation Problem

The predictions made from the best models of each method are shown in Figure 5.15. Vi-
sually, there is no noticeable difference in predictive performance. However, the Bayesian
method needed 36 fewer added realizations and still achieved lower MSE value. It should
be noted however that there are still oscillations of predicted settlements at higher values of
hydraulic conductivity, which can be attributed to relatively narrower posteriors of hydraulic
conductivity length scales.

Figure 5.15: Metamodel Predictions for Consolidation Problem

Figure 5.16 shows the predictive intervals for both methods in the consolidation problem af-
ter 52 added realizations, when the Bayesian method attained its lowest MSE . In this case,
the effect of the uncertainty in the hyperparameter space is significant. There are larger un-
certainties in the higher values of hydraulic conductivity for the MLE approach, likely due
to a sub-optimal fit of the obtained length scale in this region. Aside from this, the hyper-
parameter uncertainty of the Bayesian approach greatly increased the predictive intervals
compared to the MLE approach. A large skew in the both hyperparameter and predictive
uncertainty can also be seen.
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Figure 5.16: Predictive Intervals for Consolidation Problem

5.3. CASE 3: PILED EMBANKMENT

Figure 5.17 shows the evolution of the probability of failure and its convergence criterion
value as the number of added realizations increased for both MLE and Bayesian approaches.
One hundred realizations were added for both methods; however, the required convergence
criterion value of 0.05 was reached at iteration 50 for the MLE approach and 46 for the
Bayesian approach. Higher initial values of the convergence criterion are observed for the
Bayesian approach, which can be attributed to the increase of the uncertainty of the Bayesian
predictions caused by the additional uncertainty of hyperparameter samples. This lead to
wider intervals of the probability of failure for the Bayesian approach. The uncertainty caused
solely by the hyperparameter distribution diminished at around 30 to 40 iterations. After-
wards, a sharp reduction in overall predictive uncertainty at around 50 iterations for both
methods, though a larger change is seen in the Bayesian method.

The stabilization of the P̂ f and COVP̂ f
values happens after around 35 to 40 added realiza-

tion for both methods, less than the number of iterations needed to reach the convergence
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criteria. The probability of failure converges at 4.94∗10−4, with a corresponding coefficient
of variation of 4.5% following Equation 3.17.

Figure 5.17: P̂ f , COVP̂ f
, and ϵP̂ f

for Piled Embankment

Figure 5.18 shows the optimized and sampled hyperparameter values for each iteration of
the enrichment process. There seems to be a general agreement between the obtained val-
ues for both methods, with the MLE values lying within the distributions obtained by the
Bayesian approach. Sudden changes in optimized values for the length scales of friction an-
gle and stiffness of sand can be observed in the MLE method. There is also a difference in the
Gaussian process noise obtained by the two methods at later iterations, where the maximum
likelihood estimate obtains values at the lower bound, while the Bayesian method took sam-
ples at around 10−3 m. These noise are low compared to the performance function values
and only translate to a small increase in the convergence criterion values for the Bayesian
approach.

It is also observed that some of the hyperparameters obatained by both methods are sit-
uated at the upper bounds of the prior distribution. For Gaussian processes metamodels,
this usually signifies one of two things: either the input variable does not affect the output
and the relationship between the two is explained by noise (which may be the case for the
hydraulic conductivity of sand), or the input variable and the output have a linear relation-
ship (which may be the case for stiffness). Furthermore, the posterior distributions have a
wider uncertainty for these hyperparameters. However, varying draws from these distribu-
tions likely resulted in negligible differences in function values, as the magnitudes of these
length scales are all high compared to the scale of the corresponding input variable.

The observed drop in the uncertainty at around 50 iterations does not seem to be caused by
hyperparameter selection, as the hyperparameter plots for both MLE and Bayersian meth-
ods show no significant difference in the sampled hyperparameters at this time.
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Figure 5.18: Optimized Hyperparameters for Piled Embankment

Figure 5.19 shows the predictive values of the performance function for a small sample of
the population after 100 added realizations. Predictive samples were directly obtained from
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the Bayesian metamodel, while the Gaussian uncertainty of the MLE predictive samples was
generated from its predictive mean and variance. In most cases, the true values are visually
closer to the Bayesian predictive samples than the MLE predictive uncertainty. A comparison
between MSE values after 100 iterations was also performed, where a small selection of 100
random points was selected as the validation set. Note that the U learning function was used
during enrichment, leading to points closer to the failure criteria being added to the DoE in
both methods, while the validation set was randomly sampled from the entire population.
The MLE method achieved an MSE of 0.0309 while the Bayesian method achieved an MSE
of 0.0141. While this comparison was done on a relatively small validation set size, it again
shows the potential of the Bayesian method to give predictive estimates closer to the true
function values.

Figure 5.19: Piled Embankment Predictions
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5.4. COMPARATIVE SUMMARY AND ADDITIONAL REMARKS

In general, the NUTS approach in obtaining the distribution of hyperparameter samples was
either in accordance with the maximum likelihood estimate or fit better the likelihood of the
design of experiments. It showed better capability than the MLE’s gradient-descent based
search algorithm in finding the true optima of the likelihood space. It must be noted that the
MLE method’s robustness in finding the true optimum can be improved by utilizing multiple
restarts of the L-BFGS search algorithm at different locations of the hyperparameter space.
Similary, the Bayesian method may also further be improved by providing different starting
points of the sampling chains. The effect and comparison of these improvements were not
investigated.

The full stochastic analysis of hyperparameters led to an increased understanding of the un-
certainty in metamodel predictions, where the extent of the increase is problem dependent.
In terms of MSE scores, the Bayesian method provides better generalization at earlier itera-
tions, reaching lower MSE values sooner than the MLE approach. After addition of multiple
points, while it is not definitive that the Bayesian method gives better predictive accuracy, it
gave better MSE scores for Cases 2 and 3 and performed only slightly poorer in Case 1. For
all cases, it gave a more comprehensive quantification of the uncertainty, but the increase in
the predictive uncertainty is problem dependent. For Case 1, only a slight increase in predic-
tive uncertainty was observed. In contrast, Case 2 experienced a significant increase, while
Case 3 initially saw a substantial rise in uncertainty that quickly diminished after just one
additional learning point.

The Bayesian method involved calculation of 1000 metamodels per iteration, and this sig-
nificantly increased the required computational costs and time. In addition, the predictive
mean and uncertainties are not automatically calculated and percentiles had to be obtained
from the predictive samples. The sorting process needed for each of the prediction point also
increased the computation time. As a comparison, one iteration ,including hyperparameter
optimization, metamodel building, prediction, and enrichment, of the MLE method takes a
few seconds to complete. On the other hand, this takes at least 8 minutes for the Bayesian
method, and took as long as around 30 minutes for the latter iterations of the more complex
piled embankment problem, where a bulk of the computation time was spent on generating
predictive samples and quantifying the uncertainties based on the percentiles. All analysis
were performed on a Lenovo Thinkpad E14 Gen2, a consumer-grade laptop.

During sampling, there were occasional warnings reported by PyMC regarding divergences,
Gelman-Rubin value, and the effective sample size. As stated in the methodology, measures
were taken to reduce the occurrence of these warnings, including increasing the tuning steps
and the acceptance rate during the tuning stage. This did not however completely resolve the
issue, and while some iterations had divergences or larger R̂ values, further measures were
no longer taken. The acceptance ratio was already high at 0.95, and increasing the number of
samples would also further increase the computation time. These warnings typically occur
in more complex posteriors, where different step sizes might be suitable for different areas
of the posterior space. In addition, chains might take samples from different modes of the
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space, leading to different sampling chains and larger R̂ values. A full table of number of di-
vergences and R̂ values are presented in Appendix. Higher R̂ values occur at instances when
the sampler takes samples from different mode locations, leading to bad mixing. However,
spotting of different modes was a goal for this research, and this was accepted. Ideally, all
four chains will spot all the different mode locations, which leads to lower R̂ values. This
requires more generated samples and was not done for this research.

As mentioned in the methodology, some simplifications to the process of making predic-
tions were performed, which resulted in uncertainty quantification through uncorrelated
predictive sampling. Recall that the method applied in this thesis involves ten predictive
samples per hyperparameter sample and uncorrelated prediction points, such that only the
diagonal of the predictive covariance matrix was used. Theoretically, an infinite number of
samples and a full predictive posterior covariance matrix would lead to the correct values of
the predictive median and intervals. While this is not possible to perform, the smoothness
of the predictions and predictive uncertainty can be improved by providing more predictive
samples per hyperparameter sample and lessening the sparsity of the predictive covariance
matrix. Figure 5.20 shows how the results of the method used in this research compare to less
simplified approaches. The first involves providing 100 predictive samples per hyperparam-
eter instead of ten. This led to smaller jumps in the values of the median and bounds of the
predictive samples. The second involves a less sparse predictive covariance matrix, where
prediction points were manually clustered into 100 points and fully correlated Gaussian pre-
dictions were made for each of these clusters using 10 by 10 covariance matrices. This led
to fewer jumps, located between smooth segments. These jump locations are potentially
the boundaries between clusters. The less simplified methods can only be performed with a
smaller number of prediction points due to memory allocation and computation time con-
straints; thus, the predictive performance was tested only for one iteration and the methods
were not fully integrated with the active learning approach. While the approach applied in
this study resulted in less smooth predictive medians and uncertainties, the magnitudes are
similar to those of the less simplified approaches. This may have led to slight misselection of
learning points. However, the locations of these learning points are expected to be near the
correct learning points.
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Figure 5.20: Effect of Predictive Simplifications
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CONCLUSION

This research aimed to explore the application of a Bayesian approach to surrogate mod-
elling in geotechnical engineering problems. First, it explored how a Bayesian method can
be applied to hyperparameter determination, whose posterior distributions could not be di-
rectly obtained due to their non-Gaussian nature and their non-linear relationship with the
function values. A Markov Chain sampling approach using No-U-Turn sampling was shown
to be reliable both in low-dimensional and high-dimensional geotechnical problems. To im-
prove sampling diagnostics, larger tuning steps and acceptance ratios were used, causing
more localized sampling of hyperparameters. Measures and simplifications also had to be
taken to reduce the needed computational resources and time to a level that is manageable
and practical, including large thinning of samples and uncorrelated predictions. Increasing
the number of samples or the correlation between the prediction points provided smoother
medians and predictive intervals but did not significantly affect the magnitudes of these val-
ues. Log-uniform priors appeared to be effective in finding samples at more reasonable val-
ues for the length scales, requiring fewer added realizations compared to the MLE method
in the early iterations. The suitability of other prior distributions for these hyperparame-
ters remains unexplored; providing informative priors for surrogate model hyperparameters
may be challenging, as the length scale can vary depending on the model. For example, the
optimized length scales for cohesion, friction angle, hydraulic conductivity and stiffness ob-
tained in Cases 1 and 2 differ greatly from the same length scales obtained in Case 3.

This Bayesian sampling approach was able to obtain hyperparameter samples in accordance
with log-likelihood plots as well as maximum likelihood estimates of the hyperparameters.
It showed better ability than the MLE in finding true optima of the likelihood space. It also
showed good ability in spotting multiple modes for more complex joint distributions of hy-
perparameters, especially in early iterations where the learning points are still few, finding
more reasonable values of hyperparameters earlier than the MLE method.

When combined with active learning, the benefits of already having the predictive means
and variance in Kriging with one hyperparameter value disappear, and the predictive uncer-
tainty has to be defined from generated predictive samples. Using percentiles instead of the

59
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standard mean and variance is ideal, given the non-Gaussian nature of the hyperparameter
distribution and its non-linear relationship with predictive function values. This potentially
causes greatly skewed predictive samples, as portrayed in the predictive intervals of Cases 2
and 3, and the use of percentiles provides better robustness over this skew. This increases the
computational requirements, especially when dealing with a large set of prediction points.

The use of Bayesian inference in hyperparameter determination allowed for a more compre-
hensive quantification of the model uncertainty, as evidenced by the increased predictive
intervals of both functions and probabilities of failure. This increase in the understanding
of the uncertainty is vital in decision making in geotechnical engineering, where the stakes
involve high monetary and safety consequences. Extensive quantification of uncertainty
helps engineers make more informed choices, balancing risks and benefits effectively. The
Bayesian approach also showed potential in giving more accurate function values as indi-
cated by the lower MSE ’s in Cases 2 and 3. This however is limited mostly in the prediction
of the function values. It didn’t show any improvement in the predictive accuracy in terms
of the MSE ’s of the probability of failure in a reliability analysis problem, and needed more
added realization to reach an acceptable convergence criterion. Thus, it is more useful in
cases where the actual function values as well as its uncertainty is desired. For example, it
can be applied to geotechnical design optimization problems or extensive sensitivity anal-
ysis, where the effect of the joint uncertainty of different input geotechnical parameters on
the uncertainty of the output is desired.

While not much difference was shown in the P f values of MLE and Bayesian methods, the
uncertainty quantification is more comprehensive for the Bayesian method. Thus, if there
is greater interest in uncertainty analysis in geotechnical reliability problems, then the ap-
plication of the Bayesian method can be advantageous over the MLE method. This provides
stricter requirements for the size of the DoE needed to conclude a sufficiently accurate P f

value.

Further research need to be done with regards to the improvement of the efficiency of the
Bayesian method. Due to the long computation times for each iteration, the Bayesian method
could greatly benefit from multi-point enrichment, which is suggested as a direction for fu-
ture research. In this scenario, additional samples of hyperparameters can be added to en-
sure improved mixing of the chains and enhanced sampling diagnostics.
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Table 7.1: Sampling Statistics for Retaining Wall Problem

Iteration Divergences R̂
lφ lc η σ

1 1 1.01 1.00 1.01 1.01
2 0 1.00 1.00 1.01 1.01
3 3 1.00 1.00 1.00 1.00
4 0 1.00 1.00 1.01 1.00
5 0 1.01 1.00 1.00 1.01
6 1 1.01 1.01 1.01 1.01
7 0 1.00 1.00 1.00 1.01
8 16 1.01 1.01 1.00 1.01
9 0 1.02 1.01 1.01 1.03

10 0 1.00 1.00 1.00 1.01
11 18 1.00 1.02 1.01 1.01
12 0 1.01 1.01 1.01 1.01
13 1 1.00 1.01 1.00 1.01
14 0 1.01 1.00 1.00 1.01
15 0 1.01 1.01 1.00 1.01
16 0 1.00 1.01 1.01 1.00
17 0 1.01 1.01 1.01 1.01
18 31 1.00 1.01 1.01 1.01
19 14 1.01 1.02 1.02 1.01
20 10 1.01 1.01 1.00 1.02
21 39 1.02 1.01 1.02 1.01
22 10 1.02 1.02 1.01 1.02
23 8 1.02 1.02 1.01 1.01

Continued on next page
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Iteration Divergences R̂
lφ lc η σ

24 8 1.06 1.07 1.02 1.11
25 12 1.00 1.00 1.00 1.00
26 10 1.01 1.01 1.00 1.01
27 4 1.60 1.56 1.54 1.19
28 0 1.01 1.01 1.01 1.00
29 0 1.00 1.00 1.00 1.00
30 0 1.00 1.00 1.00 1.00
31 0 1.00 1.01 1.00 1.01
32 0 1.00 1.00 1.00 1.00
33 0 1.00 1.00 1.01 1.00
34 1 1.01 1.01 1.01 1.01
35 0 1.01 1.00 1.01 1.00
36 0 1.00 1.00 1.00 1.01
37 0 1.00 1.01 1.00 1.00
38 0 1.00 1.00 1.00 1.00
39 0 1.00 1.00 1.00 1.00
40 0 1.00 1.00 1.00 1.00
41 0 1.00 1.00 1.00 1.00
42 0 1.00 1.00 1.00 1.00
43 0 1.00 1.00 1.01 1.00
44 0 1.01 1.01 1.01 1.00
45 0 1.00 1.00 1.00 1.00
46 0 1.00 1.00 1.00 1.00
47 0 1.00 1.00 1.00 1.00
48 0 1.00 1.00 1.00 1.00
49 0 1.00 1.00 1.00 1.00
50 1 1.00 1.00 1.00 1.00
51 0 1.01 1.00 1.01 1.00
52 0 1.00 1.00 1.00 1.00
53 2 1.00 1.00 1.00 1.00
54 1 1.59 1.58 1.60 1.55
55 4 1.59 1.59 1.60 1.59
56 0 1.00 1.00 1.00 1.00
57 0 1.00 1.00 1.00 1.00
58 0 1.00 1.00 1.00 1.00
59 0 1.00 1.00 1.00 1.00
60 0 1.01 1.01 1.01 1.00
61 0 1.00 1.01 1.01 1.00
62 0 1.00 1.00 1.00 1.00
63 0 1.00 1.00 1.00 1.00
64 0 1.01 1.00 1.01 1.01

Continued on next page
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Iteration Divergences R̂
lφ lc η σ

65 0 1.00 1.00 1.01 1.00
66 0 1.01 1.01 1.01 1.00
67 0 1.01 1.01 1.01 1.01
68 0 1.00 1.01 1.00 1.01
69 0 1.00 1.00 1.00 1.00
70 169 1.01 1.01 1.01 1.01
71 0 1.00 1.00 1.00 1.00
72 0 1.01 1.01 1.00 1.00
73 0 1.00 1.00 1.00 1.00
74 0 1.00 1.00 1.00 1.00
75 0 1.00 1.00 1.01 1.00
76 0 1.00 1.00 1.00 1.00
77 0 1.00 1.00 1.00 1.00
78 0 1.00 1.00 1.00 1.00
79 0 1.00 1.00 1.00 1.00
80 0 1.00 1.00 1.00 1.00
81 0 1.00 1.00 1.00 1.00
82 0 1.00 1.00 1.00 1.00
83 0 1.00 1.00 1.00 1.00
84 0 1.00 1.00 1.00 1.00
85 0 1.00 1.00 1.00 1.00
86 0 1.00 1.00 1.00 1.00
87 0 1.01 1.00 1.01 1.00
88 0 1.00 1.00 1.00 1.00
89 0 1.00 1.00 1.00 1.00
90 0 1.58 1.59 1.60 1.59
91 0 1.00 1.00 1.00 1.00
92 0 1.00 1.00 1.00 1.00
93 0 1.00 1.00 1.00 1.00
94 0 1.00 1.00 1.01 1.00
95 0 1.00 1.00 1.00 1.00
96 0 1.00 1.00 1.00 1.00
97 0 1.00 1.00 1.00 1.00
98 4 1.53 1.56 1.59 1.60
99 0 1.00 1.00 1.00 1.00

100 0 1.00 1.00 1.00 1.00
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Table 7.2: Sampling Statistics for Consolidation Problem

Iteration Divergences R̂
lk lE η σ

1 0 1.01 1.01 1.01 1.01
2 0 1.03 1.01 1.00 1.07
3 4 1.07 1.02 1.01 1.09
4 0 1.00 1.00 1.00 1.00
5 0 1.01 1.00 1.00 1.00
6 0 1.00 1.00 1.00 1.00
7 0 1.00 1.00 1.00 1.00
8 0 1.01 1.00 1.00 1.00
9 0 1.00 1.00 1.00 1.00

10 0 1.00 1.00 1.00 1.00
11 0 1.00 1.00 1.00 1.00
12 0 1.00 1.00 1.00 1.00
13 0 1.00 1.00 1.00 1.00
14 0 1.00 1.00 1.00 1.00
15 0 1.74 1.08 1.10 1.74
16 0 1.74 1.10 1.14 1.73
17 0 1.00 1.00 1.01 1.00
18 0 1.53 1.11 1.11 1.53
19 0 1.53 1.10 1.11 1.53
20 0 1.54 1.09 1.11 1.53
21 0 1.00 1.00 1.00 1.00
22 277 1.55 1.13 1.12 1.53
23 0 1.00 1.00 1.00 1.00
24 0 1.74 1.16 1.18 1.73
25 0 1.01 1.00 1.00 1.00
26 0 1.54 1.10 1.10 1.53
27 0 1.01 1.00 1.00 1.00
28 0 1.00 1.00 1.00 1.00
29 0 1.00 1.00 1.00 1.00
30 0 1.00 1.00 1.00 1.00
31 0 1.00 1.01 1.01 1.00
32 0 1.74 1.12 1.18 1.73
33 0 1.00 1.00 1.00 1.00
34 0 1.01 1.00 1.00 1.00
35 0 1.01 1.01 1.01 1.00
36 0 1.01 1.01 1.00 1.00
37 0 1.01 1.01 1.01 1.00
38 0 1.01 1.00 1.01 1.00
39 0 1.74 1.48 1.13 1.74

Continued on next page
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Iteration Divergences R̂
lk lE η σ

40 0 1.74 1.15 1.17 1.74
41 0 1.54 1.06 1.13 1.53
42 0 1.00 1.00 1.00 1.00
43 2 1.47 1.18 1.09 1.53
44 295 1.44 1.40 1.40 1.46
45 0 1.53 1.20 1.05 1.53
46 54 1.46 1.19 1.05 1.48
47 1 1.02 1.01 1.00 1.02
48 0 1.00 1.00 1.00 1.01
49 0 1.00 1.00 1.00 1.01
50 0 1.00 1.00 1.00 1.01
51 0 1.00 1.01 1.00 1.00
52 0 1.01 1.01 1.01 1.01
53 0 1.05 1.03 1.01 1.05
54 156 1.84 1.59 1.26 1.70
55 0 1.02 1.01 1.02 1.02
56 0 1.14 1.13 1.09 1.10
57 0 1.02 1.01 1.00 1.02
58 0 1.01 1.01 1.01 1.01
59 0 1.01 1.00 1.00 1.00
60 0 1.01 1.00 1.00 1.01
61 0 1.01 1.01 1.01 1.01
62 0 1.01 1.01 1.00 1.01
63 0 1.01 1.00 1.00 1.01
64 0 1.00 1.00 1.00 1.02
65 0 1.01 1.01 1.01 1.02
66 0 1.01 1.00 1.01 1.01
67 0 1.01 1.01 1.00 1.01
68 0 1.01 1.00 1.01 1.00
69 0 1.01 1.00 1.01 1.00
70 0 1.01 1.01 1.01 1.01
71 0 1.01 1.01 1.01 1.01
72 0 1.01 1.00 1.00 1.02
73 0 1.00 1.00 1.00 1.00
74 0 1.00 1.00 1.01 1.01
75 0 1.00 1.00 1.00 1.02
76 0 1.00 1.01 1.01 1.01
77 0 1.01 1.00 1.01 1.01
78 0 1.01 1.00 1.01 1.00
79 0 1.01 1.00 1.01 1.00
80 0 1.00 1.00 1.00 1.01

Continued on next page
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Iteration Divergences R̂
lk lE η σ

81 0 1.00 1.00 1.00 1.00
82 0 1.01 1.01 1.01 1.00
83 0 1.00 1.00 1.00 1.01
84 0 1.00 1.00 1.00 1.02
85 0 1.01 1.00 1.00 1.01
86 0 1.00 1.00 1.00 1.01
87 0 1.01 1.01 1.01 1.02
88 0 1.00 1.00 1.00 1.01
89 0 1.01 1.01 1.01 1.01
90 0 1.01 1.01 1.01 1.01
91 0 1.00 1.00 1.01 1.00
92 0 1.01 1.01 1.01 1.01
93 0 1.01 1.01 1.01 1.01
94 0 1.00 1.00 1.00 1.00
95 0 1.01 1.01 1.01 1.01
96 0 1.00 1.00 1.00 1.00
97 0 1.00 1.00 1.00 1.00
98 0 1.00 1.00 1.00 1.01
99 0 1.01 1.01 1.01 1.00

100 0 1.00 1.00 1.00 1.00
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Table 7.3: Sampling Statistics for Piled Embankment Problem

Iteration Divergences R̂
lφ lc lE lM lλ lκ lkcl ay lksand lOC R η σ

1 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00
2 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01
3 0 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01 1.01 1.01
4 0 1.00 1.00 1.01 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.01
5 0 1.01 1.00 1.00 1.00 1.01 1.02 1.01 1.01 1.03 1.01 1.01
6 1 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00
7 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
8 0 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
9 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00

10 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
11 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
12 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
13 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
14 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
15 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
16 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
17 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
18 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
19 0 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00
20 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
21 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00
22 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
23 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
24 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Continued on next page
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Iteration Divergences R̂
lφ lc lE lM lλ lκ lkcl ay lksand lOC R η σ

25 0 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00
26 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
27 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
28 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
29 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
30 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00
31 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
32 0 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
33 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
34 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
35 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
36 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
37 14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
38 7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
39 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
40 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
41 0 1.00 1.00 1.00 1.01 1.00 1.00 1.01 1.00 1.00 1.00 1.00
42 0 1.00 1.01 1.00 1.02 1.00 1.00 1.01 1.00 1.00 1.00 1.01
43 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
44 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01
45 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
46 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
47 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
48 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
49 0 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.01 1.00
50 0 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Continued on next page
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Iteration Divergences R̂
lφ lc lE lM lλ lκ lkcl ay lksand lOC R η σ

51 0 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.01 1.00
52 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00
53 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
54 0 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.01
55 0 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.01 1.01 1.00
56 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01
57 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01
58 0 1.01 1.00 1.00 1.01 1.00 1.01 1.01 1.00 1.01 1.01 1.00
59 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01
60 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
61 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
62 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
63 0 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01
64 0 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.01 1.00
65 0 1.01 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.01 1.01
66 0 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01
67 0 1.00 1.01 1.01 1.00 1.01 1.00 1.00 1.01 1.00 1.00 1.00
68 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00
69 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00
70 0 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
71 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00
72 0 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
73 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
74 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.00
75 0 1.01 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.01 1.01 1.00
76 0 1.01 1.00 1.00 1.00 1.01 1.01 1.00 1.00 1.01 1.01 1.01

Continued on next page
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Iteration Divergences R̂
lφ lc lE lM lλ lκ lkcl ay lksand lOC R η σ

77 0 1.02 1.00 1.01 1.01 1.00 1.00 1.03 1.00 1.01 1.01 1.03
78 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
79 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01
80 0 1.01 1.01 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.09
81 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
82 0 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.01 1.00
83 0 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00
84 0 1.00 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01
85 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
86 0 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00
87 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00
88 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
89 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01
90 0 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00
91 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
92 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
93 0 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
94 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00
95 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00
96 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
97 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
98 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
99 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00
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Listing 7.1: Python Code for MLE GP Modelling with PyMC

with pm. Model ( ) as GP_model :
# Hyperparameters for the Gaussian Process
ls_phi = pm. Uniform ( " ls_phi " , lower=np . min( phi_pop ) /100 , upper=np .max( phi_pop )

*100)
l s _ c = pm. Uniform ( " l s _ c " , lower=np . min( c_pop ) /100 , upper=np .max( c_pop ) *100)
cov_scale = pm. Uniform ( " cov_scale " , lower =0.000001 , upper=10)
sigma = pm. Uniform ( "sigma" , lower =0.000001 , upper=10)

# Mean functiom
mean_func = pm. gp .mean. Zero ( )

# Covariance function
cov_func = cov_scale ** 2 * pm. gp . cov . Matern52 ( input_dim=2 , l s =[ ls_phi , l s _ c ] )

# GP prior with zero mean
gp = pm. gp . Marginal ( mean_func = mean_func , cov_func = cov_func )

# GP l ikel ihood
y_ = gp . marginal_likelihood ( "y_" , X_DoE, Y_DoE, sigma )

s t a r t = { ’ ls_phi ’ : np .mean( phi_pop ) , ’ l s _ c ’ : np .mean( c_pop ) , ’ cov_scale ’ : 1 , ’
sigma ’ : 1}
map_estimate = pm. find_MAP ( )

mean_pop, var_pop = gp . predict (X_pop , map_estimate , diag=True )
mean_val , var_val = gp . predict ( X_val , map_estimate , diag=True )

Listing 7.2: Python Code for Bayesian GP Modelling with PyMC

n_chain = 4
n_trace = 1000
thinning_factor = 40
n_thin = i n t ( n_trace / thinning_factor )
n_pred_samples = 10
N_pred_samples = i n t ( n_chain * n_thin * n_pred_samples )

y_hat_pop = np . zeros ( ( N_pred_samples , len (X_pop) ) )
y_hat_val = np . zeros ( ( N_pred_samples , len ( X_val ) ) )

with pm. Model ( ) as GP_model :
# Hyperparameters for the Gaussian Process
log_ls_phi = pm. Uniform ( " log_ls_phi " , lower=np . log (np . min( phi_pop ) /100) , upper=np .
log (np .max( phi_pop ) *100) )
log_ls_c = pm. Uniform ( " log_ls_c " , lower=np . log (np . min( c_pop ) /100) , upper=np . log (np
.max( c_pop ) *100) )
log_cov_scale = pm. Uniform ( " log_cov_scale " , lower=np . log (0.000001) , upper=np . log
(10) )
log_sigma = pm. Uniform ( " log_sigma " , lower=np . log (0.000001) , upper=np . log (10) )

ls_phi = pm. Deterministic ( ’ ls_phi ’ , pm. math . exp ( log_ls_phi ) )
l s _ c = pm. Deterministic ( ’ l s _ c ’ , pm. math . exp ( log_ls_c ) )
cov_scale = pm. Deterministic ( ’ cov_scale ’ , pm. math . exp ( log_cov_scale ) )
sigma = pm. Deterministic ( ’ sigma ’ , pm. math . exp ( log_sigma ) )

# Mean function
mean_func = pm. gp .mean. Zero ( )
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# Covariance function
cov_func = cov_scale ** 2 * pm. gp . cov . Matern52 ( input_dim=2 , l s =[ ls_phi , l s _ c ] )

# GP prior with zero mean
gp = pm. gp . Marginal ( mean_func = mean_func , cov_func = cov_func )

# GP l ikel ihood
y_ = gp . marginal_likelihood ( "y_" , X_DoE, Y_DoE, sigma )

trace = pm. sample ( n_trace , return_inferencedata=True , chains = 4 , cores = 1 , tune
=1000 , target_accept =0.95)
idata = trace . s e l ( draw= s l i c e (None, None, thinning_factor ) )

count = 0

for i in range ( len ( idata . posterior . chain ) ) :
for j in range ( len ( idata . posterior . draw ) ) :

hyperparam = {
" log_ls_phi " : idata . posterior [ ’ log_ls_phi ’ ] [ i ] [ j ] ,
" log_ls_c " : idata . posterior [ ’ log_ls_c ’ ] [ i ] [ j ] ,
" log_cov_scale " : idata . posterior [ ’ log_cov_scale ’ ] [ i ] [ j ] ,
" log_sigma " : idata . posterior [ ’ log_sigma ’ ] [ i ] [ j ] ,

" ls_phi " : idata . posterior [ ’ ls_phi ’ ] [ i ] [ j ] ,
" l s _ c " : idata . posterior [ ’ l s _ c ’ ] [ i ] [ j ] ,
" cov_scale " : idata . posterior [ ’ cov_scale ’ ] [ i ] [ j ] ,
"sigma" : idata . posterior [ ’ sigma ’ ] [ i ] [ j ]

}

mean_pop, var_pop = gp . predict (X_pop , point = hyperparam , diag=True )
y_hat_pop [ count : count+n_pred_samples ] = np . random . normal (mean_pop, np . sqrt

( var_pop ) , ( n_pred_samples , len (X_pop) ) )

mean_val , var_val = gp . predict ( X_val , point = hyperparam , diag=True )
y_hat_val [ count : count+n_pred_samples ] = np . random . normal ( mean_val , np . sqrt

( var_val ) , ( n_pred_samples , len ( X_val ) ) )

count += n_pred_samples

Listing 7.3: Python Code for Learning Functions

def learning_function_MLE ( mean_hat , var_hat , learning_function_type ) :
’ ’ ’
Solves and returns learning function values .

Parameters
−−−−−−−−−−
mean_hat : predict ive mean of metamodel in each point

element type : array ; f l o a t

var_hat : predict ive variance of metamodel in each point
element type : array ; f l o a t

learning_function_type : type of learning function employed ( Options : U, var )
element type : s t r i n g
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Returns
−−−−−−−
LFV : learning function values at population points

element type : array ; f l o a t
’ ’ ’

N = len ( mean_hat )
LFV = np . zeros (N)

sigma_hat = np . sqrt ( var_hat )

i f learning_function_type == ’U’ :
for i in range (N) :

U = np . abs ( mean_hat [ i ] ) /sigma_hat [ i ]
LFV[ i ] = −U

e l i f learning_function_type == ’ var ’ :
LFV = sigma_hat

return LFV

def learning_function_bayesian ( p2_5 , p50 , p97_5 , learning_function_type ) :
’ ’ ’
Solves and returns learning function values , Bayesian approach .

Parameters
−−−−−−−−−−
p2_5 : 2.5 th percenti le of predictions in each point

element type : array ; f l o a t

p50 : 50th percenti le of predictions in each point
element type : array ; f l o a t

p97_5 : 97.5 th percenti le of predictions in each point
element type : array ; f l o a t

learning_function_type : type of learning function employed ( Options : U, var )
element type : s t r i n g

Returns
−−−−−−−
LFV : learning function values at population points

element type : array ; f l o a t
’ ’ ’

N = len ( p50 )

LFV = np . zeros (N)

i f learning_function_type == ’U’ :
for i in range (N) :

# phi = min(np .sum( preds [ : , i ] > 0) , np .sum( preds [ : , i ] <= 0) ) /H
U = np . abs ( p50 [ i ] ) /max(np . abs ( p50 [ i ] − p2_5 [ i ] ) , np . abs ( p97_5 [ i ] − p50 [ i ] )

)
LFV[ i ] = −U

e l i f learning_function_type == ’ var ’ :
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for i in range (N) :
LFV[ i ] = max(np . abs ( p50 [ i ] − p2_5 [ i ] ) , np . abs ( p97_5 [ i ] − p50 [ i ] ) )

return LFV

Listing 7.4: Python Code for Calculation of Probability of Failure and Bounds

def calculate_Pf_MLE ( mean_hat , var_hat ) :
’ ’ ’
Calculates probabi l i ty of f a i l u r e ( including bounds ) and convergence ( for
r e l i a b i l i t y problems ) .

Parameters
−−−−−−−−−−
mean_hat : mean of metamodel predictions

element type : array ; f l o a t

var_hat : variance of metamodel predictions
element type : array ; f l o a t

Returns
−−−−−−−
Pf : predicted probabi l i ty of f a i l u r e

element type : f l o a t
Pf_plus : upper bound of predicted probabi l i ty of f a i l u r e

element type : f l o a t
Pf_minus : lower bound of predicted probabi l i ty of f a i l u r e

element type : f l o a t
conv_criterion : convergence c r i t e r i i o n value of predicted probabi l i ty of f a i l u r e

element type : f l o a t
’ ’ ’

N = len ( mean_hat )
sigma_hat = np . sqrt ( var_hat )

Pf_plus = np .sum( mean_hat−1.96* sigma_hat <= 0) /N
Pf = np .sum( mean_hat <= 0) /N
Pf_minus = np .sum( mean_hat+1.96* sigma_hat <= 0) /N

conv_criterion = ( Pf_plus − Pf_minus ) / Pf

return Pf , Pf_plus , Pf_minus , conv_criterion

def calculate_Pf_bayesian ( p2_5 , p50 , p97_5 ) :
’ ’ ’
Calculates probabi l i ty of f a i l u r e ( including bounds ) and convergence ( for
r e l i a b i l i t y problems ) , Bayesian approach .

Parameters
−−−−−−−−−−
p2_5 : 2.5 th percenti le of predictions in each location

element type : array ; f l o a t

p50 : 50th percenti le of predictions in each location
element type : array ; f l o a t

p97_5 : 97.5 th percenti le of predictions in each location
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element type : array ; f l o a t

Returns
−−−−−−−
Pf : predicted probabi l i ty of f a i l u r e

element type : f l o a t
Pf_plus : upper bound of predicted probabi l i ty of f a i l u r e

element type : f l o a t
Pf_minus : lower bound of predicted probabi l i ty of f a i l u r e

element type : f l o a t
conv_criterion : convergence c r i t e r i i o n value of predicted probabi l i ty of f a i l u r e

element type : f l o a t
’ ’ ’

N = len ( p50 )

Pf_plus = np .sum( p2_5 <= 0) /N
Pf = np .sum( p50 <= 0) /N
Pf_minus = np .sum( p97_5 <= 0) /N

conv_criterion = ( Pf_plus − Pf_minus ) / Pf

return Pf , Pf_plus , Pf_minus , conv_criterion
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