Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

Enhancing Hyperledger Fabric smart contracts with secret sharing

Ali Kahawati*
Supervisor: Kaitai Liang’
EEMCS, Delft University of Technology, The Netherlands

Abstract

Blockchain networks have acquired ongoing noto-
riety among associations that need to utilise the
security perspectives that blockchain gives. Hy-
perledger Fabric (HF) is one of the most widely
utilised distributed network technologies, most or-
dinarily applied in situations that require private in-
formation to be maintained safely and secretly. Use
case models are finance, commerce and healthcare
record-keeping.

HF has been shown to have vulnerabilities that
might allow hostile attackers to gain access to the
data contained in the ledger or the state database,
according to many studies.

Using Shamir’s Secret Sharing (SSS), this paper
provides a way to increase the security measure-
ments of information stored on the ledger or in the
state database. As a result of this research, design
details for implementing these privacy-protection
measures are given.

In conclusion, although this design improves the
security of HF, it also affects the runtime and code
complexity.

1 Introduction

The road towards an increased adoption in applications of
new blockchain technologies, such as Hyperledger Fabric or
more secure solutions to store data on open-source distributed
ledgers, is still blocked by the presence of vulnerabilities. Ad-
dressing these concerns will offer one of the best and fastest
solutions to many applications.

For instance, the current traditional insurance application
procedure, like many other applications, may have various
disadvantages. The main ones are the following:

» The data of a client is easily accessible for company de-
partments when proceeding with his application.(Leak
of private data between individuals)

e Slow verifiability of the important information of a
client.

“{a.kahawati}@student.tudelft.nl
"{Kaitai Liang}Q@tudelft.nl

Using systems like Hyperledger Fabric (HF) offers so-
lutions to both disadvantages. HF is defined as a dis-
tributed ledger technology blockchain platform for permis-
sioned blockchains [1]. The technology of HF is becoming
more popular among big business companies [2]. The use of
it is now widely accepted, like in the insurance business field.
But unfortunately, it is not perfectly secure, since the data on
the ledger is stored as plain text. And since the GDPR” (Gen-
eral Data Protection Regulation) or ’AVG” (Algemene veror-
dening gegevensbescherming) (as called in the Netherlands)
has been revealed in 2018 [3], [4], more privacy is required
for it to be easily used around the EU.

All in all, it is important to research a way to solve the
vulnerability of revealing private data to all peers on the same
channel in decentralised systems for general use cases. By
achieving that, applying the new technology of Hyperledger
Fabric will become easier, in addition to providing speed and
security.

This paper is proposing a system that combines a crypto-
graphic method called secret sharing with Hyperledger Fabric
smart contract. This will enable saving the data on a fast dis-
tributed ledger as encrypted data and thus securing it from
any malicious attack.

Motivation

This paper will focus its research on perfecting the security of
Hyperledger Fabric smart contracts by adding a secret sharing
scheme to it.

Secret sharing alone has a lot of feasible applications in
many scenarios in network based transactions for instance,
attribute-based encryption, key transfer protocols and secure
multilateral computation [5].

The main goal of this research is to solve the issue where
an attacker has gained access to an organisation, the attacker
will be able to see all assets stored inside the ledger of that
channel. Because the data is stored as plain text in the ledger,
attackers or malicious peers can access private data or maybe
keys, which can be used to perform some malicious transac-
tions. For instance, changing the data stored on the ledger
or attack the network. It also will solve issues like when an
attacker compromises encryption keys using secret sharing.

Next to that, It will improve traditional systems, like insur-
ance systems, by offering:

* A distributed ledger solution supported by a standard de-
sign providing high degrees of confidentiality.

* Scalable and fast ledger while preserving privacy.

* high ability to customise the consensus and network pro-
tocols.

Contribution

This research aims to answer the following question, How
to enhance the security and privacy of Hyperledger Fabric’s
smart contracts using secret sharing?.

The question can be broken down to the following sub-
questions, which can be answered separately:

1. Are Hyperledger Fabric’s smart contracts secure? To
what degree are they secure?

2. What is secret sharing, how does it work?

3. How to combine secret sharing with a Hyperledger Fab-
ric smart contracts?

4. How does such a combination affect the performance?
What are the drawbacks and what are the benefits?

The proposed system idea will provide the next properties:

* Authorization where only authorised departments will
be able to write to the ledgers.

* Slightly reduce the key management complexity.

As a result, private data will be securely shared between
organisations like hospitals, insurance companies or govern-
ment’s institutions for instance.

Structure

The rest of the paper will answer the stated question in 8 sec-
tions presented as follow:

Section 2 will provide the background of the technical ex-
pertise required to understand the technical parts of this re-
search.

The research methodology and the implementation idea
of this study will be discussed in section 3. Section 4 shall
present the privacy enhancements achieved during the exper-
imental work, which will be followed by the results and anal-
ysis in section 5.

Section 6 will discuss other possible vulnerabilities or im-
provements to this research, which will be followed by sec-
tion 7 responsible research. Section 8 will conclude the re-
search and propose future work areas.

2 Background

This section presents the technical expertise required to un-
derstand the technical parts of this work.

To reduce the cost of trust, as the primary purpose, the use
of Blockchain has been objectified by Nakamoto [6]. Offer-
ing peer-to-peer networking, thus removing centralised third-
party dependencies, which offers trust for high prices. By do-
ing so, Blockchain reduces the validation time of transactions
and provides consistency and immutability.

2.1 Hyperledger Fabric

Offering an enterprise-grade, code base and open-source dis-
tributed ledger framework, the Hyperledger project has been
found by the Linux Foundation in early 2016 and not so late
after that a distributed ledger platform has been implemented
for running smart contracts, i.e. Hyperledger Fabric. The
Hyperledger Fabric [7] is a Blockchain framework, a permis-
sioned one to be specific, i.e. peers need some credentials
to be able to write to the ledger. The Membership Service
Provider (MSP) ensures that Fabric is a permissioned net-
work. It identifies every member on the network, as a list of
permissioned identities. MSP allows trust between members
without revealing their private keys.

Figure 1 represents a transaction flow instance of a Hy-
perledger Fabric network. A network consists of organisa-
tions, chaincode, ordering services, channels and optionally
private data collections. Before joining a network, organi-
sations must agree to its policies and permissions stored on
the channel configurations. Organisations use applications lo-
cated outside the network to interact. Applications can access
the ledger through chaincode.

Hyperledger Fabric

i Y5 =
rg::!isw'.::ur 1 Organisation 2 ;ﬂ., >

ce
ﬂ Transaction proposal

v
o

Excute cha

2|

[e]

=
=

el
@
a
r

Peer1

o
@
g
=
@
2
]

2

%
§mm | &

ncode

i fn
H |

Endorser

1
4
Transaction Flow

Apphcatic;n
ko,

Subeit
Orderer oubmit
Transaction

Proposal
Response
Pear

Figure 1: A transaction flow in Hyperledger Fabric architecture,
shows the required steps for a transaction. It starts with Peer 1 in-
voking the chaincode.

HF is a distributed system, hence Peers are expected to ex-
ecute as independent components rather than on the same
server in the same Docker network. And as stated in the
Fabric documentation, the endorsing peer process is segre-
gated from Chaincode, which operates in a secure Docker
container. This is why each peer must create, install and run
their chaincode container. In addition to that, TLS private
keys and certificates are stored in this container.

Chaincode (Smart contract)

Smart contracts (chaincode) [8] have made transactions be-
tween parties easier than ever using a blockchain network.
Those executable programs i.e. smart contracts have opened
up a diversity of new possibilities. Since smart contracts are
event-driven and self-enforcing programs, by using their rules
of any type of affairs can be easily implemented and con-
trolled. In addition to that, smart contracts being customiz-
able offers a lot of advantages. With Fabric’s chaincode,

multiple smart contracts can be deployed. It handles busi-
ness logic which members of the network have agreed to [9].
A chaincode on one network cannot be accessed by another
chaincode or other members who didn’t agree with it and are
not on the same network. Chaincode has access to the ledger
and all transactions happening, it even has the last word to
decide if any transaction will be accepted or not thus adding
the data to the ledger or not.

All parties on the same channel have access to the chain
code on that channel which means also that they can read the
data that is accessible by the chaincode.

Ordering service [10] is used to avoid collisions when
adding new elements to the ledger. The Hyperledger Fabric
ledger already implements this feature.

Private data and channels

HF offers the ability for subsets of organisations on the same
channel to work with private data [11] instead of creating
channels every time they need to. Using private data collec-
tions, organisations can overcome the overhead of creating
many channels. They also can commit, query and endorse
private data. Two elements make up private data, the actual
private data and a hash of that data.

2.2 Symmetric Encryption

Symmetric encryption is an encryption type that uses only
one secret key for both encryption and decryption, see figure
2. Using symmetric encryption algorithms, data is turned into
a form that is incomprehensible to anyone who does not have
the secret key to decrypt it.

Ex‘Sg.rmrnetric|-:e-:,r =| Plaintext (@M Ciphertext

N me N
> @ >

y
Encryption — Decryption

Figure 2: the architecture of Symmetric Encryption.

2.3 Secret sharing

Secret sharing is a cryptographic technique for privacy-
preserving data sharing between peers. Secret sharing sys-
tems are important and they are the pillars of many safe proto-
cols. They work by distributing shares, see figure 3, between
parties in such a way that the secret can only be reconstructed
by permitted subsets of those parties.

Secret sharing schemes have a wide range of applications
in both cryptography and distributed computing including se-
cure multiparty computations, Byzantine agreement, access
control, threshold cryptography, generalised oblivious trans-
fer and attribute-based encryption [5]. There are two types
of secret sharing schemes, schemes for secret sharing in gen-
eral access structures and schemes for the threshold case in-
troduced by Shamir [12] and Blakley [13]. The general ac-

Nod AN
Drivision Reconstruction

Figure 3: the architecture of the Secret Sharing method.

cess structures were introduced by Ito, M., Saito, A. and
Nishizeki, T.[14].

In threshold schemes, only qualified groups are capable of
reconstructing the secret, where the qualified groups are all
subsets with cardinality greater than or equal to a threshold ¢.

The general access structure is also a set of qualified groups
I" but it must satisfy the monotone property, X € I'and Y C
X then Y € I" and where X and Y are subsets, to be capable
of reconstructing the secret.

As stated by [5], the existing schemes for general access
are unfeasible. The reason is that the size of shares in the
number of parties in the access structure is exponential. Un-
fortunately, this is true for both explicit and implicit access
models.

Shamir’s Secret Sharing

One of the most famous threshold schemes of secret sharing
is Shamir’s secret sharing, which is a key cryptographic al-
gorithm that permits private information, or “secrets,” to be
securely distributed over an untrustworthy network. It is a
Key-less approach that is employed to keep personal data'
secure and safe.

This simple and elegant scheme has been constructed by
Shamir [12]. Sets can be divided into authorised and unau-
thorized sets, where every authorised set whose size is ¢ an
integer where 1 < ¢t < n and where n is also an integer rep-
resenting the total number of participants, see figure 4.

The domain of shares and secrets in Shamir’s scheme is the
elements of some finite field F,, where p > n and p is some
prime power. This means that shares are taken from the same
finite field as secrets, which implies that Shamir’s scheme is
ideal. In addition to that, it has homomorphic properties since
it is a linear scheme. Its linearity comes from the fact that
computing the values of some linear transformation can be
used to generate the shares and reconstruct the secret [15].

It can also be used to create safe multiparty computation
protocols because of its multiplicative features. This is only
in the case when the ratio between the number n of par-
ticipants and the threshold ¢ is large enough. In that case,
Shamir’s scheme exhibits homomorphic features concerning
multiplication in the finite field.

There are a couple of reasons why this research chooses to
use Shamir’s scheme:

* The abstract underpinning of Shamir’s approach allows
for great proofs and applications.

* It is simple to switch and change shares while maintain-
ing the same secret.

'Biometric data, private keys, or any other type of personal in-
formation that shouldn’t be shared with the public.

* It is simple to add or withdraw shares without affecting
other shares.

* The possibility for each person to have more than one

share.
.
Share secret
with threshold 2
Share
— ho cierl —
— T —
RN N
- Share
Secret to holder 2 Reconstructed
share - secret

Share
holder n

Figure 4: Shamir mechanism. Share secret shares between n users
and using only t users to reconstruct the secret

3 Methodology

This section will contain a description of the methodology
used to answer the research question and its sub-questions
mentioned in 1.

3.1 Literature research

Toward the start of the research project time frame, a broad
review was performed on the current status of Hyperledger
Fabric security.

First of all, the terms used in the search on google scholar
are as follows: (secret sharing”) AND (("Hyperledger Fab-
ric” AND ”smart contract”) OR chaincode). Using those
terms, most of the sources mentioned at the reference sec-
tion have been found. Thanks to TU Delft library chrome
extension, most of the results were made accessible.

Number of the results was high, especially that Fabric is
now very popular in the research field around the world. Fur-
thermore, another two methods have been used to make sure
that enough resources are found to strengthen the results of
this research. Using wildcard searching method and Citation
searching to locate related literature that was not caught by
the first Boolean logic search query.

Related research
To find the vulnerabilities of Fabric technology, multiple
studies have been done to test its security. In [16] Hyper-
ledger fabric’s security architecture has been analysed. Some
vulnerabilities have been shown, like Wormhole attacks, DOS
attacks and Majority’s decision. Some of them are related to
the security of the network and other to the security of chain-
code like Random key generation.

According to Dabholkar, Vishal, Ahaan and Saraswat [17],
a compromised MSP, a noxious Ordering Service and ma-
licious validators, all contribute to a significant number of
possible security issues. Paulsen [18] shows other potential
risks like updates using rich queries” or range query risk”

which can exploit Illegal value propagation and changing the
expected behaviour of smart contracts using global variables.

Although a lot of studies have been done to issue Fabric’s
vulnerabilities, not as many countermeasures has been done
for general use cases. Hasanova [19] and Putz [20] did not
only detect risks on blockchain but also stated that data can
be encrypted before storing it in the ledger. Likewise, Fab-
ric’s documentation [21] expresses that, in addition to chan-
nels and private data, data encryption can be utilised as a type
of privacy protection via file system encryption on the peer
for data at rest. Whereas data in-transit can be encrypted via
Transport Layer Security(TLS).

The method of secret sharing [5] has been used to improve
the privacy of Blockchain generally in a couple of different
ways like in [22] where Mao and Abdihakim enhanced autho-
rized access to medical data. And in [23], where they fairly
reconstruct secrets in a trust-less network in one round. Tso,
Liu and Hsiao [24] have implemented the first decentralised
e-voting system and bidding system, where they use secret
sharing, in addition to other cryptographic techniques.

But because Hyperledger Fabric smart contracts have dif-
ferent applications compared to other blockchain platforms,
this implies, it also has other security needs.

There are some papers which worked on increasing the se-
curity and the privacy of the Hyperledger Fabric in differ-
ent ways and for different systems, like e-voting and bidding
systems. For instance, [25] implements an E-voting system
which is decentralised and secure using blind signature and
Hyperledger Fabric platform.

Kyazhin and Popov [26], improved the system imple-
mented by [25] where they have resolved a couple of perfor-
mance issues like constructing a two-stage anonymization us-
ing link-able ring signature and Idemix and without the need
to change Fabric’s standard signature scheme.

Another anonymous credential system has also been imple-
mented, it is called Idemix [27], which increases the security
and privacy of transactions on Blockchain.

Other studies, like Benhamouda and Halevi in [28], im-
plemented a demo using Secure Multiparty Computation to
Support Private Data on Hyperledger Fabric.

[29] also used secret sharing but with zero-knowledge
proofs and homomorphic encryption to protect the privacy on
Fabric using secure multiparty computation (MPC) .

Some papers also provide other encryption methods for
more general use cases like [30]. Rado [31] provides a very
good way to save encrypted data on the ledger using symmet-
ric encryption and Paillier encryption.

3.2 Implementation

Before the implementation of the prototype took place, the
Fabric test network has been set and used to become ac-
quainted with the workflow of smart contracts on Hyper-
ledger Fabric. Fabric provides a very clear tutorial to get
started with it [32].

The implementation by itself is meant as an extension of
the smart contract example provided by the Hyperledger Fab-
ric test network tutorial.

In general, smart contracts contain assets and functions, the
examples provided by the tutorial store the data on the ledger

as plain text. Rado [31] has extended this implementation
using symmetric encryption to be able to store the data en-
crypted on the ledger. This implementation will also use the
same idea but then add secret sharing to it to increase the se-
curity.

4 Experimental work

To achieve the wanted result, the next sections will explain
how the data is encrypted, how private keys are managed and
what is the role that secret sharing is playing to improve the
security.

4.1 Encryption & Decryption

External attackers that breach the security of Hyperledger
Fabric and get access to the state database or ledger will be
able to read the stored data, if the data stored is raw, i.e. plain
text. To secure the data, it can be encrypted, and doing so the
attackers will be unable to read the stored data since the data
will be encrypted.

Encryption of the data can be achieved using either of Sym-
metric Key Systems or Asymmetric Key Systems. In addi-
tion to that one of the multiple encryption algorithms must
be used, like Triple DES, AES, RSA security, Blowfish or
Twofish.

Rado [31], has already researched this area and came to
the conclusion that using a symmetric key encryption is se-
cure enough. Other encryption methods are also possible,
but since Ebrahim, Khalid, Khan and Bin[33] and Atwal,
Umesh and Kumar [34] showed that AES, the algorithm used
in [35], when compared to other prominent symmetric en-
cryption methods like RSA DSS, 3DES, Blowfish, and oth-
ers, is the most secure symmetric encryption algorithm. And
when compared to asymmetric encryption, AES is faster and
more efficient encryption method.

Note that the method studied by this research can also be
applied to Asymmetric Key Systems.

4.2 Privacy Enhancement

Since Rado [31] has already explained how Symmetric En-
cryption can be applied to encrypt the data on both the ledger
and database, this paper is not going to explain that part, but
only going to dig further in improvements using secret shar-
ing.

Using secret sharing on the data before storing it on the
ledger, doesn’t add any improvements.

To increase the security of the Hyperledger Fabric this pa-
per uses Shamir’s Secret Sharing to secure the symmetric key
used to encrypt and decrypt the data. The next section will
explain how this is done and what are the effects of doing so.

Shamir’s Secret sharing role

Shamir is used to divide the secret key, used for encryption
and decryption, into shares. Every peer on the channel will
have one share, i.e. part of the key. This means that no one
peer will be able to recover the secret key alone. Doing so,
even if an attacker was able to get access to one of the peers
on a channel, by getting its share, he will not be able to do
anything with it. The only condition for attackers to com-
promise the secret key and reconstruct it is to gain access to

all peers on the network. The algorithm 1 shows how to use
Shamir’s Secret Sharing.

Algorithm 1 Divide key

Require: n > 2
key with
2 < Threshold < n > Is the required number of shares to
recover the key
secret > Is an encrypted key, or just a key
function DIVIDE KEY(n, threshold, secret)
r < ShamirSecretSharing(n, threshold, secret)
return r > Return an array containing all the shares (n
share)
end function

> Is the total number of peers to share the

This operation must be done in specific conditions, for
example, the original key might be destroyed after making
shares, and the threshold is unknown by any peer. If those
two conditions are not met, then this whole process does not
add any security, but only adds complexity to the process.
This process can be seen in figure 5.

==
— o«
5. Upload = 8. Request data by invoking smart
encrypted data == ontral
to the ledger. Ledger
9.Retrive decrypted data
1. Generate key ’_|
2. Encrypt the 7 Share key
key shares wit "
L > 2 BHEIESED
—_———)
—> 4.Share key shares 6.Request key
Data 44— hares —
3. Divide the owner
key into n ﬂ Data

Figure 5: Schematic representation of this enhancement.

Hyperledger Fabric Endorsement policy

To be able to retrieve a secret key, at least a couple of peers
must share their shares with the chaincode when a peer in-
vokes the chaincode. Another option is to share the shares
between peers. Sharing shares between peers on the Hyper-
ledger Fabric is not something that is easily done. Because of
the leak of time, this research will not be able to implement
something to deal with this problem. But using the endorse-
ment policy will ensure that at least a couple of peers will be
available when some peer invokes the chaincode at that same
time. Doing so a couple of shares will be shared with the
chaincode (or with the peer invoking the chaincode), ensur-
ing that the recovery of the secret key is possible again.

Endorsement policies are defined by default in the chain-
code specification. But using state-based endorsement, en-
dorsement policies can be overridden.

4.3 Key management

All data security is built on the foundation of key manage-
ment. Because data is encrypted and decoded using encryp-
tion keys, the loss or compromise of any encryption key ren-
ders the data security mechanisms in place ineffectively. Ad-

ditionally, keys ensure the secure transfer of data over an In-
ternet connection.

Key generation

The first step of key management is the generation of a key.
This step forms the basis, since it assures the security of a
key. If the encryption key is generated using a weak encryp-
tion method or in an insecure location, any attacker may eas-
ily figure out what it’s worth or could compromise it when
it is created. There are multiple schemes to generate secure
keys like [36]. This paper will only refer to the importance of
having a secure key and secure key generation method.

Key Distribution

Using the proposed method of secretly sharing the secret key,
no distribution of the secret key is needed. This add another
layer of protection, increasing the safety of the key used for
encryption. Even if an attacker tends to execute a man-in-
the-middle attack, he will only be able to get one share. Not
knowing that this share is not enough to recover the data and
not knowing the number of shares needed to reconstruct the
key. Using Shamir’s secret sharing not only secure the distri-
bution of a key but also ensure that only the chaincode will
be able to retrieve the key and use it. This will prevent unau-
thorised users from retrieving the key and prevent misusing
it.

The algorithm 2 will handle the distribution of shares be-
tween the peers, using some random communication tool.

Algorithm 2 Distribute key shares

Require: len(peers) > 2 > The array of peers to share the

key with must contain more than two peers
function DISTRIBUTE KEY SHARES(peers, threshold, se-
cret)

shares < Dividekey(len(peers), threshold, secret)
> The array of shares, len(shares) = len(peers)

for peer in peers do

Send a peer a random share from shares

end for

end function

Key Rotation & Backup/Recovery

Secret keys tend to be unusable after a period, which is called
a cryptoperiod. When this happens, the key must be retired
or revoked and replaced with a new one. This process in-
creases the security of the data encrypted since keys are al-
ways protected against compromise. It also adds more com-
plexity to the encryption process, since every time this hap-
pens the data encrypted using that key needs to be decrypted
and re-encrypted.

Because key shares are distributed equally between peers
inside organisations, key recovery can be done safely. This
is connected to whom is responsible for generating a key and
creating its shares. He can easily request the shares from all
other peers and reconstruct the key either outside or on the
network.

Storing Keys

Peers stores their parts of the secret key on their own Docker
container. To communicate each share with other peers refer
to 4.3 or the chaincode.

There are multiple ways to store private keys, each has its
advantages and disadvantages. As a result of dividing a key
into several shares after applying secret sharing, storing can-
not be done on the chaincode container or other central op-
tion. Since this will make it easy for an attacker to combine
shares and retrieve the secret key. But this also decreases
the complexity of storing it. Another option is to store some
shares using private data collection and the rest of the shares
on the peers. In this case, no communication between peers
is needed, and it eliminates the need for another tool to en-
sure safe communication between peers. Depending on the
threshold of shares, a division can be done. For instance, if
the threshold is 2 and the number of shares is 10, one share
should always be stored using the private data collection and
other shares will be divided between peers. In this case, peers
will be able to reconstruct keys without the need to commu-
nicate with other peers.

Next are some options peers can make use of to ensure the
safety of their shares:

» Using HSMs: Using a hardware security module (HSM)
is one of the safest ways to store cryptographic keys.
HSMs are physical computing devices that can execute
on-premises cryptographic operations. The only way for
an attacker to steal keys from an HSM is to physically be
there where the HSM is located. In addition, they need
to bypass the encryption algorithm used by the HSM to
keep the keys secure. Which makes that too difficult.

HSM has some disadvantages, one of them is the lack
of transparency and also the high cost of updating and
fixing vulnerabilities as Prof. Yehuda Lindell has men-
tioned in [37].

» Software key management: A software to handle storage
of encryption keys, distributing and managing them. It
provides protection and prevents data loss for keys. It
has a couple of advantages over the HSM, like running
in the cloud, has lower cost and giving full control of
keys. It also can perform all functions done by an HSM.

Still, if something fails, replication must be done by the
user. Because servers must be installed and configured
manually to execute key management, this solution is
only viable for IaaS. Finally, Regulatory criteria that
need FIPS-certified hardware are not met, as cited by
[38].

* Peers can also store their shares in couchDB. As a result,
accessing the shares will become easier since peers have
easy access to it. CouchDB offers rich queries which
are flexible and efficient. But the main disadvantages
of using CouchDB are that all peers on a network must
agree on using it and that only all the data must be in
JSON format.

 File System: The simplest way is to store keys in local
storage. The main disadvantage of this way is concurrent

accessibility and its limitation to data sharing. This will
require more communication outside the system.

Communicating secret key shares

To support secret sharing, another important question needs
to be answered, i.e. how to communicate shares (secret key
parts) between peers during endorsement? Two simple ways
are possible:

The first one is to communicate shares using an Inner-peer
communication system. The invoking peer can communicate
with other peers during endorsement to ask them to share
their parts with him. This can be implemented and used as
pluggable addition to Fabric, as done by [28], though they
didn’t show the implementation details.

The second option is to use the transient data API this will
allow peers to send their shares directly to the chaincode,
this can be enforced by altering the endorsement policy. The
chaincode will then combine shares to recover the key and
use it. This is similar to the trust model used by [29].

There are a lot of other possible ways when sharing the
shares outside the Fabric network. For instance, physically or
using some communication platform, all those ways have one
main disadvantage in common, which is not using Fabric.

5 Results

This section presents the results of the research, its subsec-
tion provides the analysis done to test the performance when
secret sharing is used.

The Shamir secret sharing algorithm used? is simple. But
the idea of using it can be divided into two ways.

One is using secret sharing to share the secret between
peers. This cannot be used easily in the case of Hyperledger
Fabric, since all data are stored either on the ledger or in the
state database. In both cases, all shares are still easily acces-
sible to peers since all peers have a copy of the ledger and
have direct access to the state database. By having direct ac-
cess to all shares (parts) of a secret, it is easy to reconstruct
the secret.

The other way is dividing the key instead of using this
method for encryption and decryption. In other words, com-
bining two cryptographic techniques so that one solves the
other problem. In other words, when a peer has some data
to add to the ledger then he encrypts it before adding it to
the ledger using some encryption method. And in the case
of using symmetric encryption, for instance, one key is used
for both encryption and decryption. This key is then secretly
shared between peers i.e. using secret sharing, see figure 6.
As a result, no single peer can decrypt the data without other
peers being notified or left out. This offers three improve-
ments:

1- Decreasing the complexity of managing a secret key.

2- Increasing the security of the encrypted data, since no
single peer can decrypt it or get the key to doing so.

3- Even though it is not a good idea to reuse keys, using
secret sharing, keys can be used multiple times.

2A simple implementation of Shamir’s Secret Sharing con-
figured to use a finite field in GF(2®) with 128-bit padding:
https://www.npmjs.com/package/shamirs-secret-sharing

share key shares
between peers

Peer T
%) Peer 2
Division Peer 3
\ (—
L N SR Put the L
encrypted > o
) > = data on |
Peer Encryption the ledger —
Ledger

Figure 6: The end result of the system proposed.

A couple of limitations do still exist:

1- Multiple peers must work together to retrieve the de-
crypted data.

2- Key management is still important. Having the key di-
vided into unusable shares (if not combined) doesn’t mean
that a peer can just share his key share with anyone or store it
unsafely.

3- Extra runtime complexity since the secret key should be
divided into shares.

4- What about the threshold, only one peer know it, i.e. the
data owner. This means it is difficult for other peers to have
access to the data without having all other peers involved in
the transaction.

5- If a communication tool needs to be implemented. So
that shares can be shared between peers instead of directly
sharing them with the chaincode. Its limitations are still un-
known since this need to be further studied.

5.1 Analysis

Every additional step to increase data privacy does also in-
crease either the runtime, the space complexity or the cost
of the software. Hence, adding Shamir secret sharing as ex-
plained before, the security of the proposed software hugely
increases. But it also slows down the system, since every
time the key reconstruction takes around 160 milliseconds on
a middle-class machine which adds up to the encryption and
decryption time, see figure 7.

—— Create assets
—— Create encrypted assets

—— Read assets
Read encrypted assets

- update assets
—— update encrypted assets

2000
1750

I}
=3
S

750

Time in milliseconds

B e e e e e e et
0 e

0 20 40 &0 80 100
Number of test cases

Figure 7: Performance analysis when using Shamir secret sharing.

Even though this addition increases the complexity of the
code and slows it down, it is relatively cheap and easy to ap-
ply. Another thing that couldn’t be tested or analysed is the
communication tool to share key parts between peers. This
tool couldn’t be finalised because of the lack of time for this
study. This will be further discussed in future work.

6 Discussion

Multiple studies have used secret sharing to implement sys-
tems such as Secure Multiparty Computation like [28] and
[29]. But both studies didn’t use secret sharing as a tool to
protect the data by dividing it. This research also didn’t im-
plement this idea for a couple of reasons. Firstly, is to avoid
the increase in needed storage, which might lead to the usage
of external database services. Secondly, since every peer on
the channel has access to the ledger, even if peers got differ-
ent shares, they all need to store them on the ledger. This will
not work without using private data collection so that every
peer has access only to his share. But this will also increase
the overhead.

Further in this section, some other possible scenarios,
where security can be breached, will be discussed.

Storing shares

Despite the secrecy provided by private data collections, they
should be utilised with caution because the metadata of secret
information is much more than metadata and can be used to
unlock the true private data, which is in this case the shares.
Unauthorised peers on the same channel can examine the
shared ledger in this attack scenario and see if private transac-
tions happen regularly. In addition to that, if an unauthorised
peer got compromised by an attacker, this attacker can easily
recover the secret key using both shares, on the private data
collection and the compromised peer.

Communicating shares

As early proposed in 4.3, a pluggable communication system
can be implemented and used to share shares between peers.
Since the system proposed is pluggable, a lot of vulnerabili-
ties might breach and need further study. In addition to that
complicated implementation can be viewed as an exaggerated
drain on energy consumption when using Hyperledger Fabric.
This might be further studied in future work.

As mentioned by Brotsis [16], Hyperledger Fabric’s
ecosystem is not post-quantum secure. This means, if infor-
mation broadcasted over the network can be compromised,
it can then be exposed to malicious decryption techniques to
try decrypting it using a large number of quantum comput-
ers. Still, this remains to be seen in the (near) future, whether
post-quantum digital signatures will be implemented by then.

7 Responsible Research

This section is divided into two parts. The first section dis-
cusses the reproducibility of the methodologies utilized in
this study. The second section then goes through the re-
search’s integrity implications.

7.1 Reproducibility

The reproducibility of this study is crucial to ensure that it is
robust and can be used for further studies in the future.

The research explained in this paper is done in such a way
that it is easy for anyone who has a computer science back-
ground to reproduce it. In addition to that, all sources used
in this paper are listed in the respective section. The steps
needed to get the experiments running are all described and
included with the code.

The running environment used to produce the results was
Fedora 35, Intel(R) Core(TM) i7-7700HQ @ 2.80GHz and
16 GB of RAM. The latest version of Hyperledger Fabric
(v2.4) and its test network has been used to experiment.

The test network uses separate docker containers for each
peer and for the chaincode too. Those containers were all
located on the same machine. The network had two organi-
sations in all of the experiments, and each organisation con-
tained two peers belonging to it.

The code for the experiments can be found on Github® on
a public repository.

7.2 Integrity

Academic integrity at TU Delft is of high importance and is
one of the six core values of TU Delft. TU Delft has created
a course where it explains the essential topics which need to
be considered when doing research [39].

Generally, integrity is accomplished by the application of
high ethical and moral standards. In addition to that, re-
searchers must commit to the policies of their faculty and
university.

The code of this research commits to the TU Delft code
of conduct and the Netherlands code of conduct for research
integrity. It is developed from the code of other researchers
and designed to offer more solutions for developers.

Furthermore, the experiments conducted in this study do
not create any ethical or privacy problems. Because no real
data is used in the trials or evaluations in this study, and no
real-world data is obtained.

8 Conclusions

In conclusion, this research has studied the possibilities of
improving the security and privacy of Hyperledger Fabric us-
ing the cryptographic method called Secret sharing. A brief
comparison between secret sharing methods has been done to
conclude that using Shamir’s secret sharing is the most suit-
able for this enhancement. Two different ways of using se-
cret sharing have been considered and the better option this
research believes has been applied. This research (like oth-
ers) proposed combining secret sharing with other encryp-
tion methods, like homomorphic encryption or in the case of
this study experiment symmetric encryption. This strategy
increases the security and safety if malevolent attackers ob-
tain access to the encrypted data kept on the ledger, as well as
their secret key in a Fabric network.

This paper result was to secretly share keys used to encrypt
data stored on the ledger or state database, to decrease the

*https://github.com/alikahawa/fabric-samples

complexity of key management. Some possible ways to share
the key parts have also been discussed and a proposal for a
communication tool is set as future work.

The main advantages and disadvantages of this research are
clearly stated in the results sections. For more information,
please contact us and we hope to help you as much as we can.

8.1 Future Work

This research is only a small study in an enormous study field.
Many features are currently being developed to improve the
security of Hyperledger Fabric and other decentralised sys-
tems. That being said, a lot of issues are left to be further
studied and verified in the future.

The main research work for the future will be finishing the
communication tool mentioned earlier and investigating po-
tential limitations and performance issues related to it. Also
testing the use of Transient data API to communicate shares
directly with the chaincode.

Other research is also needed to assess the performance
implications in real-world circumstances, and investigate the
limitations when using this approach in production-level
smart contracts. As for data storage, IPFS 4 can be used in
future experiments.

Most importantly, for this system to be more attractive per-
formance must be improved. A deeper dive into improve-
ments that increase the performance of this system and de-
crease both runtime and space complexity shall be further
studied. Also the use of some advanced encryption like
attribute-based encryption [40], [41] and [42].

Acknowledgment

The author would like to thank his supervisor and his peer
group for their continuous feedback and suggestions.

References

[1] E. Androulaki, A. Barger, V. Bortnikov, et al., “Hy-
perledger fabric: A distributed operating system for
permissioned blockchains,” in Proceedings of the thir-
teenth EuroSys conference, 2018, pp. 1-15.

[2] H. Insights., “Companies currently using hyperledger
fabric. 2021,” 2021. [Online]. Available: https : //
discovery.hgdata.com/product/hyperledger-fabric.

[3] M. Goddard, “The eu general data protection regu-
lation (gdpr): European regulation that has a global
impact,” International Journal of Market Research,
vol. 59, no. 6, pp. 703-705, 2017.

[4] P. Voigt and A. Von dem Bussche, “The eu general data
protection regulation (gdpr),” A Practical Guide, 1st
Ed., Cham: Springer International Publishing, vol. 10,
p- 3152676, 2017.

[5] A. Beimel, “Secret-sharing schemes: A survey,” in
International conference on coding and cryptology,
Springer, 2011, pp. 11-46. DOT: https://doi-org.tudelft.
idm.oclc.org/10.1007/978-3-642-20901-7_2. [On-
line]. Available: https://link-springer-com.tudelft.idm.
oclc.org/chapter/10.1007/978-3-642-20901-7 2.

“The InterPlanetary File System (IPES) is a peer-to-peer dis-
tributed file system

(6]

(7]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system,” 2008. [Online]. Available: https://bitcoin.org/
bitcoin.pdf.

C. Ferris, “Hyperledger achieves huge milestone: In-
troducing hyperledger fabric 2.0,” IET Cyber-Physical
Systems: Theory & Applications, 2020. [Online].
Available: https://www.ibm.com/blogs/blockchain/
2020/ 01 / hyperledger - achieves - huge - milestone -
introducing-hyperledger-fabric-2-0/.

H. Fabric, “Smart contracts and chaincode,” 2021.
[Online]. Available: https : / / hyperledger - fabric .
readthedocs.io/en/latest/smartcontract/smartcontract.
html.

M. Krsti€¢ and L. Krsti¢, “Hyperledger frameworks
with a special focus on hyperledger fabric,” Vo-
Jjnotehnicki glasnik, vol. 68, pp. 639-663, Jul. 2020.
DOTI: 10.5937/vojtehg68-26206.

H. Fabric, “Ordering service,” 2021. [Online]. Avail-
able: https://hyperledger - fabric . readthedocs.io/en/
latest/orderer/ordering_service.html.

——, “Private data,” 2021. [Online]. Available: https:
/Ihyperledger-fabric.readthedocs.io/en/latest/private-
data/private-data.html.

A. Shamir, “How to share a secret,” Communications
of the ACM, vol. 22, no. 11, pp. 612-613, 1979.

G. R. Blakley, “Safeguarding cryptographic keys,”
in Managing Requirements Knowledge, International
Workshop on, IEEE Computer Society, 1979, pp. 313—
313.

M. Ito, A. Saito, and T. Nishizeki, “Secret sharing
scheme realizing general access structure,” Electronics
and Communications in Japan (Part I1l: Fundamental
Electronic Science), vol. 72, no. 9, pp. 56-64, 1989.
O. Farras and C. Padr6, “Ideal secret sharing schemes
for useful multipartite access structures,” in Inter-
national Conference on Coding and Cryptology,
Springer, 2011, pp. 99-108.

S. Brotsis, N. Kolokotronis, K. Limniotis, G. Bendiab,
and S. Shiaeles, “On the security and privacy of hy-
perledger fabric: Challenges and open issues,” in 2020
IEEE World Congress on Services (SERVICES), IEEE,
2020, pp. 197-204.

A. Dabholkar and V. Saraswat, “Ripping the fabric: At-
tacks and mitigations on hyperledger fabric,” in Inter-
national Conference on Applications and Techniques
in Information Security, Springer, 2019, pp. 300-311.
C. Paulsen, “Revisiting smart contract vulnerabilities
in hyperledger fabric,” 2021.

H. Hasanova, U.-j. Baek, M.-g. Shin, K. Cho, and
M.-S. Kim, “A survey on blockchain cybersecurity
vulnerabilities and possible countermeasures,” Inter-

national Journal of Network Management, vol. 29,
no. 2, e2060, 2019.

B. Putz and G. Pernul, “Detecting blockchain secu-
rity threats,” in 2020 IEEE International Conference
on Blockchain (Blockchain), IEEE, 2020, pp. 313-320.

https://discovery.hgdata.com/product/hyperledger-fabric
https://discovery.hgdata.com/product/hyperledger-fabric
https://doi.org/https://doi-org.tudelft.idm.oclc.org/10.1007/978-3-642-20901-7_2
https://doi.org/https://doi-org.tudelft.idm.oclc.org/10.1007/978-3-642-20901-7_2
https://link-springer-com.tudelft.idm.oclc.org/chapter/10.1007/978-3-642-20901-7_2
https://link-springer-com.tudelft.idm.oclc.org/chapter/10.1007/978-3-642-20901-7_2
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.ibm.com/blogs/blockchain/2020/01/hyperledger-achieves-huge-milestone-introducing-hyperledger-fabric-2-0/
https://www.ibm.com/blogs/blockchain/2020/01/hyperledger-achieves-huge-milestone-introducing-hyperledger-fabric-2-0/
https://www.ibm.com/blogs/blockchain/2020/01/hyperledger-achieves-huge-milestone-introducing-hyperledger-fabric-2-0/
https://hyperledger-fabric.readthedocs.io/en/latest/smartcontract/smartcontract.html
https://hyperledger-fabric.readthedocs.io/en/latest/smartcontract/smartcontract.html
https://hyperledger-fabric.readthedocs.io/en/latest/smartcontract/smartcontract.html
https://doi.org/10.5937/vojtehg68-26206
https://hyperledger-fabric.readthedocs.io/en/latest/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/latest/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/latest/private-data/private-data.html
https://hyperledger-fabric.readthedocs.io/en/latest/private-data/private-data.html
https://hyperledger-fabric.readthedocs.io/en/latest/private-data/private-data.html

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

H. Fabric, “Frequently asked questions, security &
access control,” 2021. [Online]. Available: https://
hyperledger - fabric . readthedocs .io/en/release- 2.4/
Fabric-FAQ.html.

A. M. Mao, “Using smart and secret sharing for
enhanced authorized access to medical data in
blockchain,” Ph.D. dissertation, Carleton University,
2020.

E. Zhang, M. Li, S.-M. Yiu, J. Du, J.-Z. Zhu, and G.-G.
Jin, “Fair hierarchical secret sharing scheme based
on smart contract,” Information Sciences, vol. 546,
pp. 166-176, 2021.

R. Tso, Z.-Y. Liu, and J.-H. Hsiao, “Distributed e-
voting and e-bidding systems based on smart contract,”
Electronics, vol. 8, no. 4, p. 422, 2019.

J. Lyu, Z. L. Jiang, X. Wang, Z. Nong, M. H. Au, and
J. Fang, “A secure decentralized trustless e-voting sys-
tem based on smart contract,” in 2019 18th IEEE Inter-
national Conference On Trust, Security And Privacy In
Computing And Communications/13th IEEE Interna-
tional Conference On Big Data Science And Engineer-
ing (TrustCom/BigDataSE), IEEE, 2019, pp. 570-577.

S. Kyazhin and V. Popov, “Yet another e-voting
scheme implemented using hyperledger fabric
blockchain,” in International Conference on Compu-
tational Science and Its Applications, Springer, 2020,
pp. 37-47.

J. Camenisch and E. Van Herreweghen, “Design and
implementation of the idemix anonymous credential
system,” in Proceedings of the 9th ACM Conference
on Computer and Communications Security, 2002,
pp- 21-30.

F. Benhamouda, S. Halevi, and T. Halevi, “Supporting
private data on hyperledger fabric with secure multi-
party computation,” IBM Journal of Research and De-
velopment, vol. 63, no. 2/3, pp. 3—1, 2019.

J. Zhou, Y. Feng, Z. Wang, and D. Guo, “Using secure
multi-party computation to protect privacy on a per-
missioned blockchain,” Sensors, vol. 21, no. 4, 2021,
ISSN: 1424-8220. DOI: 10.3390/s21041540. [Online].
Available: https://www.mdpi.com/1424-8220/21/4/
1540.

J. Cha, S. K. Singh, T. W. Kim, and J. H. Park,
“Blockchain-empowered cloud architecture based on
secret sharing for smart city,” Journal of Information
Security and Applications, vol. 57, p. 102 686, 2021.
R. Stefanov, “Enhancing the privacy and security of
hyperledger fabric smart contracts using different en-
cryption methods,” 2021. [Online]. Available: http://
resolver. tudelft.nl/uuid: dbf548c7 - 849f- 4aad - b4b7 -
455bad4al835d.

H. Fabric, “Using the fabric test network,” 2021.
[Online]. Available: https : / / hyperledger - fabric .
readthedocs.io/en/latest/test_network.html.

M. Ebrahim, S. Khan, and U. B. Khalid, “Symmet-

ric algorithm survey: A comparative analysis,” arXiv
preprint arXiv:1405.0398, 2014.

10

[34]

[35]

(36]

(37]

(38]

[39]

[40]

[41]

[42]

E. S. Atwal and U. Kumar, “A comparative analysis of
different encryption algorithms: Rsa, aes, dss for data
security,” 2021.

P. Mahajan and A. Sachdeva, “A study of encryption
algorithms aes, des and rsa for security,” Global Jour-
nal of Computer Science and Technology, 2013.

L. Harn and H.-Y. Lin, “A cryptographic key genera-
tion scheme for multilevel data security,” Computers &
Security, vol. 9, no. 6, pp. 539-546, 1990.

L. Yehuda, “Uncovering hardware security modules
vulnerabilities,” 2019. [Online]. Available: https :
/ / www . unboundsecurity . com / blog / major -
vulnerabilities-in-hardware-security-modules/.

E. consulting, “What is software key manage-
ment?,” [Online]. Available: https : / / www .
encryptionconsulting.com/education- center/what-is-
software-key-management/.

T. Delft, “Scientific integrity,” [Online]. Available:
https : // www . tudelft . nl / ethics / ethics / teaching -
activities / courses - for - phd - students / scientific -
integrity.

Y. Chen, W. Li, F. Gao, et al., “Efficient attribute-based
data sharing scheme with hidden access structures,”’
The Computer Journal, vol. 62, no. 12, pp. 1748-1760,
2019.

J. Han, L. Chen, W. Susilo, X. Huang, A. Castiglione,
and K. Liang, “Fine-grained information flow con-
trol using attributes,” Information Sciences, vol. 484,
pp. 167-182, 2019.

P. Zhang, Z. Chen, J. K. Liu, K. Liang, and H. Liu, “An
efficient access control scheme with outsourcing capa-
bility and attribute update for fog computing,” Future
Generation Computer Systems, vol. 78, pp. 753-762,
2018.

https://hyperledger-fabric.readthedocs.io/en/release-2.4/Fabric-FAQ.html
https://hyperledger-fabric.readthedocs.io/en/release-2.4/Fabric-FAQ.html
https://hyperledger-fabric.readthedocs.io/en/release-2.4/Fabric-FAQ.html
https://doi.org/10.3390/s21041540
https://www.mdpi.com/1424-8220/21/4/1540
https://www.mdpi.com/1424-8220/21/4/1540
http://resolver.tudelft.nl/uuid:dbf548c7-849f-4aad-b4b7-455ba4a1835d
http://resolver.tudelft.nl/uuid:dbf548c7-849f-4aad-b4b7-455ba4a1835d
http://resolver.tudelft.nl/uuid:dbf548c7-849f-4aad-b4b7-455ba4a1835d
https://hyperledger-fabric.readthedocs.io/en/latest/test_network.html
https://hyperledger-fabric.readthedocs.io/en/latest/test_network.html
https://www.unboundsecurity.com/blog/major-vulnerabilities-in-hardware-security-modules/
https://www.unboundsecurity.com/blog/major-vulnerabilities-in-hardware-security-modules/
https://www.unboundsecurity.com/blog/major-vulnerabilities-in-hardware-security-modules/
https://www.encryptionconsulting.com/education-center/what-is-software-key-management/
https://www.encryptionconsulting.com/education-center/what-is-software-key-management/
https://www.encryptionconsulting.com/education-center/what-is-software-key-management/
https://www.tudelft.nl/ethics/ethics/teaching-activities/courses-for-phd-students/scientific-integrity
https://www.tudelft.nl/ethics/ethics/teaching-activities/courses-for-phd-students/scientific-integrity
https://www.tudelft.nl/ethics/ethics/teaching-activities/courses-for-phd-students/scientific-integrity

A Appendix A

To simplify the vision and purpose of this paper, the follow-
ing example can be used as an application example. This
example shall show the benefit of the Hyperledger Fabric if
supported by a preserving privacy method securing the data
on the ledger:

The National Road Traffic Agency in the Netherlands
(RDW) wants to have their data on a joint ledger in a privacy-
preserving manner because of the privacy law in the Nether-
lands. For instance, they cannot reveal information about a
car owner while they need to reveal all information about that
car itself. They also want smart contracts that can be used
to change owners of cars, but that also need to be done in a
privacy persevering manner so that no one can see the private
information of owners. Using Hyperledger Fabric, When the
RDW receives a transfer application, the data of both the old
owner and the new owner of a car will be revealed to the de-
partments of the RDW. This means all employees who have
access to the ledger through their departments will be able to
see the private data of both old and new owners. Fabric offers
two ways to protect data, channels and private data, but they
both have disadvantages [5]. Using both Hyperledger Fabric
and cryptographic technologies will result in making the pro-
cedure of transferring car’s data between RDW’s departments
faster and at the same time ensuring the privacy of the clients
by encrypting the data before storing it on the ledger.

B Appendix B

This appendix will add some elements that might be needed
to gain a better understanding of Hyperledger Fabric.

Execute-order-validate transaction
Execute-order-validate, figure 8, transaction workflow in-
cludes the following three phases: Execute, a transaction is
simulated and endorsed. Read and write sets are created and
endorsements are collected. Order will order read and write
sets in addition to atomic broadcasting (consensus). This step
also contains a stateless ordering service. During the valida-
tion step, endorsements, read and write sets are validated and
invalid and conflicting transactions are eliminated. When all
those steps finish, the state is persisted on all peers.

c-°>

Excute Order Validate ~ Update state

3

>8> S

Figure 8: the architecture of Execute-order-validate of Hyperledger
Fabric.

11

	Introduction
	Background
	Hyperledger Fabric
	Chaincode (Smart contract)
	Private data and channels

	Symmetric Encryption
	Secret sharing
	Shamir's Secret Sharing

	Methodology
	Literature research
	Related research

	Implementation

	Experimental work
	Encryption & Decryption
	Privacy Enhancement
	Key management

	Results
	Analysis

	Discussion
	Responsible Research
	Reproducibility
	Integrity

	Conclusions
	Future Work

	Appendix A
	Appendix B
	Execute-order-validate transaction

