
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

Fast and robust solution methods for the water
quality equations

A thesis submitted to the
Delft Institute of Applied Mathematics
in partial fulfillment of the requirements

for the degree

MASTER OF SCIENCE
in

APPLIED MATHEMATICS

by

A. Morais

Delft, the Netherlands
March 2012

Copyright c⃝ 2012 by A. Morais. All rights reserved.

MSc THESIS APPLIED MATHEMATICS

“Fast and robust solution methods for
the water quality equations”

A. Morais

Delft University of Technology

Daily supervisor Responsible professor

Dr.ir. M. Borsboom Prof.dr.ir. C. Vuik

Other thesis committee members

Dr. M. Genseberger Ir. L. Postma

Dr. P. Wilders

March 2012 Delft, the Netherlands

Contents

1 Introduction 9

2 The water quality model 11

3 Problem formulation 15

4 Numerical methods 19

4.1 Finite Volume Method . 19

4.2 Solution properties . 24

4.2.1 Convergence of FVM scheme . 24

4.2.2 Positivity and monotonicity of FVM scheme 25

4.3 Current numerical schemes . 26

4.3.1 The upwind method . 27

4.3.2 Lax-Wendroff method . 28

4.3.3 The FCT method . 29

4.3.4 FCT method extended to implicit schemes 33

4.3.5 Local-theta scheme . 35

4.3.6 Numerical methods compared . 36

4.4 The iterative FCT approach by Kuzmin . 38

5 Iterative FCT methods 45

5.1 Iterative FCT method with one limiter . 45

5.1.1 FCT method without accumulation . 45

5.1.2 FCT method with accumulation . 54

5.2 Iterative FCT method with two limiters . 58

5.2.1 FCT method without accumulation . 58

5.2.2 FCT method with accumulation . 60

6 Numerical results 63

6.1 One-limiter FCT approach . 63

6.1.1 Method 1A . 63

6.1.2 Method 1B . 76

6.1.3 Improving method 1A . 80

6.1.4 Variable and different theta . 84

6.2 Two-limiter FCT approach . 92

6.2.1 Constant theta . 92

6.2.2 Variable theta . 95

7 Conclusions 97

5

6 CONTENTS

8 Recommendations 99

A Matlab codes 101
A.1 Limiter by Zalesak . 101
A.2 Method 1A . 103
A.3 Method 1B . 109
A.4 Method 2A . 115
A.5 Method 2B . 121

A Current numerical schemes in Delft3D-WAQ 129

CONTENTS 7

Acknowledgement

I would like to thank some important people who helped me in order to finish my Master
Thesis. Without them it was not possible to accomplish my graduation work.

First of all, I would like to thank Kees Vuik for making contact with Deltares to do my thesis at
this company and also I am very grateful for his intensive involvement. Week after week we dis-
cussed about my work and the results I obtained and that really helped me a lot. Further I like
to thank Mart Borsboom, Leo Postma and Menno Genseberger for doing my thesis at Deltares
and also for helping me a lot by giving some useful advice to look at/tackle some mathematical
problems which I encounter during my project. This leads definitely to better insights into the
problems I was studying.

Finally but not least, I want to thank my wife Nadia for giving me all the support I need
during the time I spent on my graduation work. Also my friend Drifa was always there to
support me and therefore I am very grateful for her help.

8 CONTENTS

Chapter 1

Introduction

Deltares is an independent institute with high knowledge in the field of water, soil and subsoil.
The institute is consulted by public authorities, engineering agencies or other companies for
solving problems concerning the safety and environment of the society. One particular expertise
of Deltares is doing quantitative water quality research. For these assessments models are used
to solve the corresponding cases. In this thesis we consider methods how to solve these water
quality models. An important objective is to improve the solution methods in order to obtain
an efficient and accurate estimation of the water quality.

First we present in the next chapter the water quality model. This model is a mathematical
description of the transport and reaction processes of substances in the water. Together with ini-
tial and boundary conditions the model for studying the water quality is completely determined.

In Chapter 3 we will explain the problems or difficulties that we encounter for numerical meth-
ods in order to solve the water quality model. This will be explained for the time-dependent
case. The main objective is to improve the existing numerical methods in their robustness and
efficiency.

In Chapter 4 we present the Finite Volume Method for the discretization of the water qual-
ity equations. Some requirements will be given for the Finite Volume scheme such that the
numerical scheme is mathematically and physically correct. Furthermore will we discuss in
Chapter 4 several numerical methods. After that we continue with a more advanced approach
based on fluxlimiters.

Since we will deal mainly with implicit numerical schemes an iterative procedure is used to
solve the corresponding equations. Different iterative approaches will be treated in Chapter 5.
In the subsequently chapter we look at the numerical solutions of these methods and further-
more we analyze the numerical schemes in order to find improvements, both in accuracy and in
efficiency.

In the final two chapters we look back at the numerical methods and conclude which approach(es)
should be used to achieve the highest accuracy and efficiency. Since not all parts of the water
quality model are taken into account in the thesis we will recommend which subjects can be
(further) investigated in future research.

9

10 CHAPTER 1. INTRODUCTION

Chapter 2

The water quality model

In water a lot of different substances can be found. All these substances move along each other
or interact with each other. Therefore, for the study of the water quality the description is
needed of the behavior of these substances in the water. The behavior is modeled in terms
of transport and water quality processes. For the first kind two important types of transport
can be considered: the advective transport and the diffusive transport. The former one is the
transport due to the motion of the fluid. The substances are carried in the direction of the
stream. The latter is transport due to random movement of the molecules and is also called
molecular diffusion. The second type of processes contains physical-, chemical- and biological
processes for the substances. For each substance all these transport and water quality processes
can be expressed in a single equation, the so-called water quality equation. Also sources and/or
sinks are included in the equation.

The so-called water quality equations are defined by advection-diffusion-reaction equations. Per
relevant substance in the water we have this type of partial differential equation (PDE). This
PDE describes the change of a substance due to the transport and water quality processes
mentioned above. In practical situations we deal simultaneously with several substances in the
water, so the water quality model consists of ditto PDE’s.

Let I be the total number of substances we involve in a water quality model. For every substance
i ∈ I we have the following partial differential equation

∂ci
∂t

−∇ · (D∇ci) +∇(uci) = pi, (2.1)

defined on x ∈ Ω for t ∈ [0, T].

The area of interest is given by Ω, ci(x, t) is the concentration of substance i in the water,
D the diffusion coefficient, u the velocity vector and pi represents the water quality processes
for the substance in the water. The first term of the equation describes the change in time, the
second and third term of the left hand side are the diffusion and advection terms respectively.
The minus sign originates from the fact that diffusion causes net transport from higher to lower
concentrations.

A wide range of substances can be included in a water quality model (see also Delft3D-WAQ
manual [3]), such as:

11

12 CHAPTER 2. THE WATER QUALITY MODEL

• conservative substances (salinity, chloride)

• decayable substances

• suspended sediment

• temperature

• nutrients (ammonia, nitrate, phosphate, silicate)

• organic matter

• dissolved oxygen

• algae

• bacteria

• heavy metals

• organic micro-pollutants

The term pi on the right-hand side of Equation (2.1) consists of source terms S(t) and water
quality processes fR(ci, t). Changes by sources include the addition of mass by waste loads and
the extraction of mass by intakes. Water quality processes convert one substance to another,
so there is interaction between several substances. Therefore the function pi depends on the
concentration ci of substance i and may also depend on the concentration cj of other substances
j, with j ∈ I. A wide range of these water quality processes can be given in the model, see also
Delft3D-WAQ manual [3]. A few examples are:

• sedimentation

• reaeration of oxygen

• algae growth and mortality

• mineralisation of organic substances

• (de)nitrification

• adsorption of heavy metals

• volatilisation of organic micro-pollutants

Having explained the right-hand side of the water quality equation (2.1) it can be written as

∂ci
∂t

−∇ · (D∇ci) +∇(uci) = fR(ci, cj , t) + S(t). (2.2)

An example of a simple water quality process is the following first-order decay reaction

fR(ci, t) = −kci, with k ∈ R \ {0}.

13

To complete the model for the water quality both the initial and the boundary conditions must
be specified. The conditions in general formulation are

c(x, 0) = c0(x) (IC), (2.3)

c|x∈∂Ω = k1
∂c

∂n
+ k2c = g(x) (BC), (2.4)

with k1(x, t) and k2(x, t) given functions and g(x) a given function defined on the boundary ∂Ω.

14 CHAPTER 2. THE WATER QUALITY MODEL

Chapter 3

Problem formulation

The water quality model is defined by partial differential equations (PDE). These are advection-
diffusion-reaction equations and they describe the change in concentration due to the transport
of substances in the water and their interaction with other substances. The formulation of the
model is presented in the previous chapter. In this chapter we explain in general the use of
numerical methods to the water quality model. Further, we deal with restrictions such that
problems/difficulties arise. This all will be discussed below for the time-dependent case.

To solve the time-dependent water quality equations numerical methods are used. Together
with the numerical model a grid is specified. The numerical scheme depends on the time and
therefore time steps must be defined. In general a fine grid will lead to more accurate results
than a coarser grid. Likewise for smaller time steps higher accuracy can be obtained than for
larger time steps. Due to the highly computational costs caused by refining the grid and/or time
step a more efficient approach is desired to obtain sufficient accuracy. Below we will discuss the
relation between accuracy and costs for the spatial and time discretization separately.

Spatial discretization
There are different numerical methods for discretizing a partial differential equation (PDE) in
space. For the spatial discretization one can choose to apply a low order scheme or a high order
scheme. Low order schemes are less accurate compared with high order schemes. To achieve the
same percentage of accuracy as the high order scheme the low order scheme must use a finer
grid. The use of a finer grid may lead to higher costs. High order schemes may have due to its
complex structure also high computational costs. So one must consider which numerical scheme
is more suitable for solving a PDE.

As explained above computational costs are a very important aspect. The number of grid
cells has a large effect on the computation time. More cells corresponds with higher costs. To
obtain sufficient accuracy a specific cell size is necessary to obtain the desired accuracy. How
large these cells must be can be determined by two parameters and will be explained below
for the one-dimensional case. The size of the cells is denoted by ∆x. The grid size and its
parameters are related by

∆x = ϵLL,

where L is the length scale of the process (e.g. transport or chemical processes) we are studying
and ϵL ≪ 1 is a parameter which depends on the demanded accuracy and the accuracy of the

15

16 CHAPTER 3. PROBLEM FORMULATION

discretization in space. The length scale depends on what level the process takes place, e.g. on
molecule level. Furthermore, the length scale also varies in time. For instance, the length scale
increases when the processes will reach their steady state.

To reduce the computation time a larger value for ϵL is needed such that larger grid cells
can be used. Since we know from above that this value depends on the accuracy of the spa-
tial discretization a larger value can be reached by using a higher order spatial discretization
method, e.g. high order upwind. For the discretization of the spatial terms high order schemes
will have in general a larger value for ϵL than for low order schemes in order to have sufficient
accuracy for the numerical solution.

Time discretization
For the time discretization a similar analysis can be done. Distinction can be made between the
use of explicit and implicit numerical schemes. For explicit schemes no system of equations has
to be solved whereas for implicit schemes a (non-)linear system of equations must be solved. But
on the other hand, for the latter case larger time steps can be used than for the explicit case.
This can be explained by the fact that for the explicit case a CFL condition must be fulfilled in
order to obtain stability for the numerical solution. For the implicit case no (severe) restriction
on the time step is given, hence large time steps are taken. So due to computational costs we
must consider again which approach is appropriate for solving the PDE.

For the advection-diffusion equation the CFL condition depends on the following terms

|u|∆t

∆x
and

D∆t

∆x2
. (3.1)

This condition holds for each of the directions in space. From the CFL condition we know that
when a fine grid is taken to obtain sufficient accuracy, then the time step must be very small so
that the numerical solution is stable. This means that with smaller time steps more computation
time is necessary to solve the PDE.

It is obviously that the time step ∆t has a large effect on the computation time. How large this
time step must be can be determined by two parameters. The time step and its parameters are
related by

∆t = ϵTT, (3.2)

where T is the time scale of the process we are studying and ϵT ≪ 1 is a parameter which
depends on the required accuracy. The time scale is for example smaller for the region near
a discharge due to fast changes in the concentration, i.e. steep gradients for the concentration
profile. Also it varies in time, since the time scale increases when steady state will be reached,
i.e. flat gradients due to slow changes in concentration profile.

For numerical schemes we have to restrict to Condition (3.2). For the explicit schemes in
particular we also deal with Condition (3.1) to determine the time step. The involvement of the
latter condition may for the numerical method be not ideal, since more restrictions holds for the
time step. So we have for explicit schemes

17

∆t ≪ ϵTT, (3.3)

which means that the time step must be smaller than is needed for sufficient accuracy.

In order to have low computational costs we will use explicit schemes for the relatively larger
cells, since the time step is for these cases not too small. Furthermore, no equations have to be
solved. If very small time steps are necessary due to small grid cells then we prefer an implicit
scheme, since then larger time steps can be taken. With this approach we can reduce the com-
putational costs.

Conclusion
We may conclude that for solving the water quality model one must consider which spatial and
time discretization method is appropriate such that sufficient accuracy can obtained, but not
at the expense of very high computational costs. With appropriate we mean that larger values
for ϵT and ϵL are desired in order to permit larger time steps and larger grid cells respectively
while keeping the accuracy sufficiently high. One way to accomplish this is by using a high-order
spatial discretization method and by using an explicit scheme as much as possible and implicit
schemes when necessary. This will probably lead to an accurate and computationally efficient
numerical solution. Our goal is to construct a numerical method that is both robust (stable and
accurate) and efficient.

18 CHAPTER 3. PROBLEM FORMULATION

Chapter 4

Numerical methods

In Chapter 2 the water quality model is described by means of partial differential equations.
Because the coefficients in the water quality model (2.1) are space and time dependent the PDE
can not be solved analytically. Therefore in this thesis we will look at numerical methods to
deal with this problem. One particular discretization procedure is the Finite Volume Method
(FVM), which deals with the integral formulation of equation (2.1). Other important numerical
methods for solving PDE’s is the Finite Difference Method or the Finite Element Method. In
the rest of this thesis we will only focus on FVM schemes. The Finite Volume Method will be
discussed below.

4.1 Finite Volume Method

To apply the Finite Volume Method we first divide the domain of interest Ω completely into
disjoint volume cells Vi ⊂ Ω . This is the first step in the Finite Volume Method and is called
grid generation.

Figure 4.1: Example of a grid generation for the Eems-Dollard region

In the next step we integrate the water quality equation (2.1) piecewise over each volume cell Vi

19

20 CHAPTER 4. NUMERICAL METHODS

∫
Vi

[
∂c

∂t
−∇ · (D∇c) +∇(uc)] dV =

∫
Vi

p dV, i = 1, . . . , N,

where Vi is the volume of cell i in the domain Ω.

Since the time-derivative and integral can be interchanged the equation can be rewritten as

d

dt

∫
Vi

c dV −
∫
Vi

[∇ · (D∇c)−∇(uc)] dV =

∫
Vi

p dV, i = 1, . . . , N.

Applying the Gauss’ divergence theorem to the second term in the previous equation leads
to

d

dt

∫
Vi

c dV −
∮
Γi

[D∇c − uc] · n dΓ =

∫
Vi

p dV, i = 1, . . . , N, (4.1)

where Γi represents the total surface area of the cell and n is the unit vector normal to the
surface pointing outward.

An important property of the FVM is that due to the piecewise integration of the PDE, the
equation is expressed in average values. The quantities for the water quality case are defined as

ci =
1

|Vi|

∫
Vi

c(x, t) dV, (4.2)

cij =
1

|Γij |

∫
Γij

c(x, t) dΓ, (4.3)

uij =
1

|Γij |

∫
Γij

u(x, t) dΓ, (4.4)

pi =
1

|Vi|

∫
Vi

p(x, t) dV . (4.5)

In the first equation we defined the average concentration over the ith cell at time t, in the
second and third equation the average concentration and average velocity respectively over the
interface of the ith and jth cell at time t and in the final equation the average water quality
process over the ith cell at time t. Here | · | represents the volume/area of the cell/boundary and
Γij is the joint-boundary/interface of cell i and j.

Furthermore we define the deviations for the concentration and the velocity

ĉij(x, t) = c(x, t)− cij , x ∈ Γij , (4.6)

ûij(x, t) = u(x, t)− uij , x ∈ Γij , (4.7)

Using the definitions (4.2) and (4.5) Equation (4.1) is rewritten as

d|Vi|ci
dt

−
∑
j∈Ji

[

∫
Γij

(D∇c · nij − cu · nij) dΓ] = |Vi|pi, i = 1, . . . , N. (4.8)

4.1. FINITE VOLUME METHOD 21

If we substitute next the definitions (4.6)-(4.7) in the advection part of the summation term
and use that the average deviation of the average is zero we get

d|Vi|ci
dt

−
∑
j∈Ji

[

∫
Γij

(D∇c · nij − ĉij ûij · nij) dΓ − |Γij |cijuij · nij] = |Vi|pi, i = 1, . . . , N. (4.9)

The integral term in Equation (4.9) represents the new diffusion term which consist of the molec-
ular diffusion and the turbulent diffusion (Postma 2011, [9]). In the turbulent diffusion one has
the term ĉij ûij , which can be seen as non-normalized correlation coefficient i.e. a measure of
the linear dependence between two random variables. Remember the correlation coefficient for
two random variables X and Y which is defined as

ρX,Y =

∑N
i (xi − x)(yi − y)

σxσy
,

where x and y are the mean and σx and σy are standard deviations of X and Y respectively. In
our particular case the random variables are the deviations for the concentration and the velocity
(see Equations (4.2)− (4.7)). The turbulent diffusion is a sub-grid phenomenon (Postma 2011,
[9]). The magnitude of this term vanishes as the grid is refined.

For the spatial derivatives in (4.9) numerical difference formulas can be used, such as cen-
tral difference or one-sided difference. Next we use a time integration method to solve equation
(4.9). This numerical solution should lead to an accurate solution of the water quality model
(2.1). Below we illustrate the FVM described above for a simple one-dimensional example.

Example 4.1

Let’s consider the following one-dimensional water quality equation

∂c

∂t
−D(x)

∂2c

∂x2
+ u(x)

∂c

∂x
= p(x), (4.10)

with x defined on Ω = [a,b] and c(x, 0) = c0(x).

First we divide our interval Ω in N subintervals with equidistant cell-size. In each volume
cell we define a node at the center of the cell.

Integrating the equation above over a volume Vi = (xi−1/2, xi+1/2) results in

d

dt

∫ xi+1/2

xi−1/2

c dx−
∫ xi+1/2

xi−1/2

[D
∂2c

∂x2
− u

∂c

∂x
] dx =

∫ xi+1/2

xi−1/2

p dx, i = 1, . . . , N.

Next we apply Gauss’ divergence theorem to the previous equation. This yields

22 CHAPTER 4. NUMERICAL METHODS

d

dt

∫ xi+1/2

xi−1/2

c dx−(Di+1/2

∂ci+1/2

∂x
−Di−1/2

∂ci−1/2

∂x
)+(ui+1/2ci+1/2−ui−1/2ci−1/2) =

∫ xi+1/2

xi−1/2

p dx.

Using the average method described above we obtain

dci
dt

∆x− (Di+1/2

∂ci+1/2

∂x
−Di−1/2

∂ci−1/2

∂x
) + (ui+1/2ci+1/2 − ui−1/2ci−1/2) = pi∆x,

with ci and pi given by (4.2) and (4.5) respectively and Dm = D(xm, t), um = u(xm, t) and
∆x = xi+1/2 − xi−1/2 for an equidistant grid.

Next we assume a constant diffusion coefficient D and velocity u for each cell i. Using for
example central differences for the spatial derivative and central average for the zeroth order
derivative we get

dci
dt

∆x−Di
ci−1 − 2ci + ci+1

∆x
+ ui

ci+1 − ci−1

2
= pi∆x. (4.11)

A better choice for the difference and average is possible, but at this point this is not relevant
since we only illustrate how the PDE can be transformed to a system of equations. After rear-
rangement equation (4.11) can be written in matrix-vector form as

dc

dt
+ Sc = f, (4.12)

where S represents a N x N matrix .

Finally one can apply a time integration method to equation (4.12). Using the θ−method
we can write the equation in the form

(
1

∆t
I − θS)cn+1 = (

1

∆t
I − (1− θ)S)cn + f, (4.13)

with θ = 0 for Euler Forward and θ = 1 for Euler Backward. For θ = 0.5 we get the method
of Crank-Nicolson which has a higher order of accuracy than the Euler methods (second and
first order resp.). The letter I is the identity matrix. The letter n denotes the time tn, i.e.
tn = n∆t. As starting point we use the initial condition c0 = c0(x). Hence we are able to solve
the discretized water quality equation (4.13) for c. The value cni is an approximate average value
over the ith volume cell at time tn.

In the example above we present a general approach for solving the one-dimensional WQM.
Though, for practical situations we deal with non-linear water processes p(x, t) (see Chapter 2)
and therefore this approach leads to difficulties. Rather the following fractional-step approach
is used to avoid solving complex non-linear equations caused by the term p.

Split Equation (4.10) with source term p(x, t) into

4.1. FINITE VOLUME METHOD 23

∂c

∂t
−D(x)

∂2c

∂x2
+ u(x)

∂c

∂x
= 0, (4.14)

∂c

∂t
= p(x, t). (4.15)

By splitting the general equation one can use standard methods for each of the equations above
in order to solve Equation (4.10) with non-linear source term p(x, t). For the first equation
we use the FVM approach discussed above and for the second equation we can use a time-
integration method such as Euler Forward. Note that for each cell i the equations above are
solved in alternating order, i.e. first (4.14) then (4.15).

For Example 4.1 with Euler Forward as time discretization in both equations above we have

c∗i = cni +∆t[Di
cni−1 − 2cni + cni+1

h2
− ui

cni+1 − cni−1

2h
], (4.16)

cn+1
i = c∗i +∆tp(c∗i). (4.17)

In the first equation with known cn we determine solution c∗i and next this solution is used in
the second equation to obtain cn+1

i . So, solving the original problem is simplified by using this
splitting method.

24 CHAPTER 4. NUMERICAL METHODS

4.2 Solution properties

4.2.1 Convergence of FVM scheme

The FVM leads to a discrete numerical model of a partial differential equation. Several defini-
tions will be introduced below which are important in order to measure the quality of the model.

An important requirement of a FVM scheme (or any other numerical scheme) is that local
errors do not grow catastrophically and hence a bound on the global error can be obtained in
terms of these local errors. If this description holds for the FVM scheme, then the numerical
method is called stable. First we present the definitions for the global and local error.

The global error at a time tn is given by

En = q(x, tn)− c(x, tn),

with q the approximation by the FVM scheme and c the true value. The local truncation error
at time tn is defined as

τn =
N (c(x, tn−1))− c(x, tn)

∆t
,

where N (·) represents the numerical operator (Leveque 2002, [8]).

Stability for a numerical method is given in the following definition (Leveque 2002, [8]).

Definition 4.2
Let || · || be some norm, then a numerical method is stable if

||En|| ≤ C||E0||, for all n,

where C is some constant.

If Definition 4.2 holds, then the global error is bounded for each time step. We have due
to the boundedness that a small perturbation in the initial condition leads to a small change in
the solution.

Next we discuss when the FVM scheme is consistent with the PDE. This means that the local
truncation error vanishes as the grid is refined.

Definition 4.3
A method is called consistent with the partial differential equation if the local truncation error
at time tn in some norm satisfies

lim
∆t→0,∆x→0

||τn|| = 0, with x fixed.

The dominant term of the truncation error determines the order of accuracy of the numerical
method. We say that a method is accurate of order s1 in time and accurate of order s2 in space if

4.2. SOLUTION PROPERTIES 25

||EN || = O(∆ts1) +O(∆xs2), (4.18)

where N is the total number of time steps, i.e. N∆t = T with T the total time.

But what can be said about the numerical solution of a FVM scheme? Does this solution
approximates sufficiently well the real unknown solution? Having stability and consistency for
a numerical method we have indeed convergence of the numerical solution to the real solution
according to the Fundamental Theorem of numerical methods for PDE’s (Leveque 2002, [5]).
This theorem can be summarized as

consistency + stability =⇒ convergence.

Definition 4.4
A method is convergent at time tn in some norm if the global error satisfies

lim
∆t→0,∆x→0

||En|| = 0, with x fixed.

4.2.2 Positivity and monotonicity of FVM scheme

For the computation of the numerical solution of the water quality model it is important to
obtain non-negative values. Negative values are unphysical and may cause instability for its
solution.

The one-dimensional water quality model reads

dc

dt
−D(x)

∂2c

∂x2
+ u(x)

∂c

∂x
= p(x). (4.19)

Discretizing the equation above in space by the FVM approach we obtain an ordinary differ-
ential equation (ODE). In order to get a positive solution for the ODE it is necessary for the
ODE system to be positive. In here it is important that the right-hand side of the ODE remains
positive, i.e. the spatial discretization guarantees positive values. Definitions are given below
by Veldhuizen 2009, [11].

Definition 4.5
An ODE system dc

dt = F (c(t)) is called positive, or non-negative if c(0) ≥ 0 (component-wise)
implies c(t) ≥ 0 for all t > 0.

The ODE system can be solved numerically by applying a time-integration method. The defini-
tion mentioned above have to be translated to time-integration methods, such that the numerical
method can be called positive.

Definition 4.6
A time integration method cn+1 = ϕ(cn) is called positive if for all n ≥ 0 holds

cn ≥ 0 =⇒ cn+1 ≥ 0.

26 CHAPTER 4. NUMERICAL METHODS

If Definition 4.6 holds then we have a positive numerical solution which is important for water
quality models. At last, the numerical FVM scheme should ensure monotonicity. This means
that non-physically behavior of the numerical solution is not desired.

Definition 4.7
A numerical scheme is monotonicity preserving if for every non-decreasing part of the initial
condition the numerical solution at later time steps remains non-decreasing for these parts. A
similar definition holds for non-increasing parts.

If Definition 4.7 holds then we are ensured that the solution will maintain its proper form
such that no oscillations will occur.

4.3 Current numerical schemes

The numerical methods we will consider must deal with steep gradients in order to describe
a sudden release of a concentration in water. First we will discuss two different methods and
observe that these methods cannot deal sufficiently with this behaviour. The failure of these
two methods is caused by the advection term in the (discrete) water quality model which is not
very capable in describing the steep gradients. Though, one of these methods will be important
in the design for higher accurate numerical methods to tackle the steep gradients. Due to prob-
lems by the advection term the numerical methods will first be applied to the one-dimensional
homogeneous advection equation given by

∂c

∂t
+ u

∂c

∂x
= 0, x ∈ [0, 10], t ≥ 0, (4.20)

where u > 0 (substances flow from left to right) is constant and with periodic boundary condi-
tions

c(0, t) = c(10, t), t ≥ 0, (4.21)

and with initial condition

c(x, 0) = 1[2,4](x)
1

2
(1− cos(πx)) + 1[6,8](x), x ∈ [0, 10]. (4.22)

Since the water quality model is a conservative system the discretization of the equation above
is presented in terms of fluxes coming in and going out. Discretizing Equation (4.20) by FVM
and Euler Forward leads to the following system of equations

cn+1
i = cni − ∆t

∆xi
(Fn

i+1/2 − Fn
i−1/2) i = 1, . . . , N (4.23)

where the term Fn
i−1/2 is some approximation of the average flux at time tn along the left bound-

ary x = xi−1/2 of control volume Vi. Further ci represents the average concentration of volume
cell Vi. The FVM is chosen to be written in this form since we are dealing with a conservative
system, hence Equation (4.23) is a conservative scheme. Therefore the fluxes at the boundaries
are important to study.

4.3. CURRENT NUMERICAL SCHEMES 27

4.3.1 The upwind method

First of all we use a simple approximation for this average flux before continuing with more
accurate methods. The simplest one is the upwind method, which only uses information coming
from one side, dependent on the direction of the stream.

For the upwind method for the advection term we have Fn
i−1/2 = ucni−1 and Fn

i+1/2 = ucni .
The upwind method is first order accurate. By using the Taylor series expansion for the upwind
scheme it can be shown that this numerical method introduces diffusive behavior. The modified
equation yields

∂c

∂t
+ u

∂c

∂x
=

1

2
u∆x(1− u

∆t

∆x
)
∂2c

∂x2
, (4.24)

where the right-hand side represents a diffusion term.

It is necessary for the upwind method to satisfy the CFL condition u ∆t
∆xi

≤ 1, such that the
numerical upwind scheme is stable and converge to the solution of the differential equation as
the grid is refined. The main advantage of using the upwind method is that the solution is
monotone and negative values do not appear. A disadvantage is that the upwind method leads
to severe damping of the numerical solution. This is caused by the artificial numerical diffusion
term in Equation (4.24). In the figure below we can observe the features mentioned above for
Problem (4.20)-(4.22).

Figure 4.2: Upwind method for ∆xi = 0.1, u = 1 and CFL = 0.8

28 CHAPTER 4. NUMERICAL METHODS

4.3.2 Lax-Wendroff method

Also more accurate flux approximations can be used such as the Lax-Wendroff method, which
is a second-order accurate method. This method has an extra term to correct for the diffusive
upwind part. For the Lax-Wendroff method applied to the one-dimensional advection equation
with u > 0 we have the following flux approximation

Fn
i−1/2 =

1

2
u(cni−1 + cni)−

1

2

∆t

∆xi
u2(cni − cni−1),

Fn
i+1/2 =

1

2
u(cni + cni+1)−

1

2

∆t

∆xi
u2(cni+1 − cni).

The equations above can be rewritten as

Fn
i−1/2 = ucni−1 +

1

2
u(cni − cni−1)(1− u

∆t

∆xi
),

Fn
i+1/2 = ucni +

1

2
u(cni+1 − cni)(1− u

∆t

∆xi
).

The equations present an extra term which is absent for the upwind term. Note that this term
corresponds with the artificial diffusion term in Equation (4.24). This extra term is also called
an anti-diffusion term since it makes sure that the numerical diffusion caused by the upwind
part is vanished, i.e. zero numerical diffusion. So we have no smearing of the numerical solution.
Also for this case the CFL condition u ∆t

∆xi
≤ 1 must be satisfied. The advantage of this method

is that the numerical solution is more accurate than the upwind method, especially for smooth
parts. On the other hand it gives wiggles near steep gradients. As a consequence we may get
negative values for the numerical solution which is not desired.

In the figure below we present the features mentioned above for Problem (4.20)-(4.22).

Figure 4.3: Lax-Wendroff method for ∆xi = 0.1, u = 1 and CFL = 0.8

4.3. CURRENT NUMERICAL SCHEMES 29

4.3.3 The FCT method

Both the upwind- and Lax-Wendroff method have their limitations for dealing with the advec-
tive term. The former introduces extra diffusion of the solution, while the latter one introduces
oscillations in the solution. Therefore we introduce flux limiters, which optimize the numerical
solution by combining the best features of both the first-order method and the second-order
method. This optimized solution can be obtained by a convex combination between a first-order
flux and an high-order flux, e.g. Lax Wendroff. So in general the flux limiter method is defined as

Fn
i±1/2 = FL(c

n
i , c

n
i±1) + lni±1/2(FH(cni , c

n
i±1)− FL(c

n
i , c

n
i±1)), (4.25)

which is a convex combination of a low-order flux formula FL and an high-order flux formula
FH . The value for lnij ∈ [0, 1] determines the weight over the two formulas and is also called the
limiter. The value for the limiter is chosen such that high accuracy is maintained as much
as possible while positivity is preserved and no wiggles occur. A limiter of 0 corresponds
with the low-order method and for a limiter of 1 we obtain the high-order method. The term
FH(cni , c

n
i±1) − FL(c

n
i , c

n
i±1) is an anti-diffusion/flux-correction term. This term corrects for the

diffusive behavior made by the first-order flux method, i.e. the upwind method. Combined
with a suitable choice for lni±1/2, the upwind method with a second-order method will lead to a
monotonous and positive solution with no or a less diffusive behavior. An example will be given
below.

In the literature different methods are available for the computation of the limiter. One flux-
limiter method is called the Total Variation Diminishing (TVD) method (Leveque 2002, [8]).
Another important flux-limiter method is the Flux Corrected Transport (FCT) method (Kuzmin
et al. 2004, [6]). An essential condition for the WQM is that the solution is positive. The FCT
method has properties like positivity and monotonicity, whereas the TVD method has only the
total-variation diminishing property. Since we will make use of implicit numerical schemes the
former method is more appropriate since one can prove that non-negative solutions can be ob-
tained. For TVD methods on the other hand this is not possible. So, in the rest of this section
we will consider the FCT method .

We will present the FCT method developed by Boris and Book for the one-dimensional ad-
vection equation. The flux-limiter method is an algorithm to determine the value of the limiter
lni±1/2 in equation (4.25). The purpose of the limiter is to maintain the accuracy of the high-order
method as much as possible while positivity and monotonicity are fullfilled. In fact the FCT
algorithm is a method to optimize the accuracy of the solution under certain conditions.

First we discuss the method for the explicit situation. Later on we will focus on the more
important implicit case. The starting point is an explicitly discretized equation for the one-
dimensional advection equation (with u > 0 constant), which is of the form

cn+1
i = cni − ∆t

∆xi
(Fn

i+1/2 − Fn
i−1/2), i = 1, . . . , N (4.26)

where Fn
i−1/2 and Fn

i+1/2 is some numerical advective flux along the left and

right boundary of cell i respectively and with initial condition c0(x) = c(x, 0).

30 CHAPTER 4. NUMERICAL METHODS

The FCT method :
Below we present the FCT method as formulated by Zalesak 1979 [14], which can easily be ex-
tended to multi dimensions. The FCT method will be applied to the one-dimensional advection
equation. The algorithm is presented with upwind as first-order method and Lax-Wendroff as
high-order method. Naturally, also other discretizations are possible, e.g. central spatial dis-
cretization.

1. Given the solution cni a time tn we first compute a first-order approximation c̃n+1
i of the

solution at the new time step tn+1 with lnij = 0 in (4.25), i.e.

c̃n+1
i = cni − ∆t

∆xi
(FL(c

n
i , c

n
i+1)− FL(c

n
i−1, c

n
i)),

where FL is a low-order flux function, i.e. first-order upwind. The formulas of FL are in our
case given by

FL(c
n
i−1, c

n
i) = ui− 1

2
cni−1, ui− 1

2
≥ 0,

FL(c
n
i−1, c

n
i) = ui− 1

2
cni , ui− 1

2
< 0.

Note that the obtained solution c̃n+1
i is monotone (guaranteed to give monotonic results at time

tn+1) and it will be corrected by adding an anti-diffusion term (will be derived below).

2. Next we compute the flux FH at time tn by an high-order scheme. A scheme we mentioned
before is the Lax-Wendroff method. The formula FH is in this case given by

FH(cni−1, c
n
i) =

ui− 1
2

2
(cni−1 + cni)−

∆t

∆xi
u2
i− 1

2

(cni − cni−1).

3. Then we determine the flux correction by

∆Fn
i−1/2 = FH(cni−1, c

n
i)− FL(c

n
i−1, c

n
i)

=
ui− 1

2

2
(cni − cni−1)(1−

∆t

∆xi
ui− 1

2
),

where FL and FH are the low-order and high-order flux function respectively used in step 1 and
2. The flux correction ∆Fn

i−1/2 is referred to as anti-diffusion, since it corrects the numerical
diffusion of the low-order flux. It is important to note that the CFL condition must be satisfied,
i.e. u∆t

∆xi
≤ 1.

4. In the next step we apply a pre-limiting step. Since the term ∆Fn
ij corrects the diffusive

first-order flux it should not be diffusive. Hence we set ∆Fn
ij = 0 if ∆Fn

ij(c̃
n+1
i − c̃n+1

j) > 0, with

j ∈ [i− 1, i, i+ 1] and c̃n+1
i the first-order approximation for cn+1

i determined in step 1.

5. An important property for the solution is monotonicity, hence no new local maximum or
minimum must be created or accentuated. Therefore we determine an upper and lower bound
for c̃n+1

i computed by step 1

cmax
i = max

j∈Ji
c̃n+1
j ,

4.3. CURRENT NUMERICAL SCHEMES 31

cmin
i = min

j∈Ji
c̃n+1
j ,

where Ji consists of node i and its nearest neighbors.

These quantities will be used in the next step.

6. Next we define the amount of mass that flows into cell Vi

P+
i = max(0,∆Fn

i−1/2)−min(0,∆Fn
i+1/2).

The allowed mass increase is

Q+
i = |Vi|(cmax

i − c̃n+1
i),

where |Vi| is the volume of cell i.

The fraction of mass that is allowed to flow into the cell is given by

R+
i =

{
min(1,

Q+
i

P+
i

), P+
i > 0,

0, P+
i = 0.

For mass decrease we can define in a similar way the following quantities:

P−
i = max(0,∆Fn

i,i+1)−min(0,∆Fn
i,i−1),

Q−
i = |Vi|(c̃n+1

i − cmin
i),

R−
i =

{
min(1,

Q−
i

P−
i

), P−
i > 0,

0, P−
i = 0.

The values R+
i and R−

i guarantees no overshoot and undershoot in cell i respectively.

7. In the next step we determine the limiter which is the mass fraction that is allowed by
both adjacent cells

lni−1/2 =

{
min(R+

i , R
−
i−1), ∆Fn

i−1/2 ≥ 0

min(R+
i−1, R

−
i), ∆Fn

i−1/2 < 0.

Note that two neighboring cells have equal limiter at the cell interface, i.e. lni−1,i = lni−1/2 = lni,i−1

at x = xi−1/2.

8. With the previous step we finally update the solution by

cn+1
i = c̃n+1

i − ∆t

∆xi
(Fn

i+1/2 − Fn
i−1/2), (4.27)

with

Fn
i−1/2 = lni−1/2∆Fn

i−1/2 = lni−1/2

ui−1/2

2
(cni − cni−1)(1−

∆t

∆xi
ui− 1

2
). (4.28)

32 CHAPTER 4. NUMERICAL METHODS

Below we illustrate the result of applying the FCT method above to the 1D advection problem
(4.20 - 4.22). As low order method we used first-order upwind and as high-order method we
used Lax-Wendroff. The upwind and Lax Wendroff method are presented in the figure below
for comparison.

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Exact
FCT
Upwind
Lax−Wendroff

Figure 4.4: Numerical solutions with ∆xi = 0.1, u = 1 and CFL = 0.8

The results are obtained with a velocity value u = 1, a cfl value of 0.8, an uniform grid with
100 cells and a total of 125 time steps. We observe that the FCT solution by Zalesak gives a
more accurate solution then upwind and Lax Wendroff. The wiggles are removed by the limiter,
the monotonicity is maintained and the solution is less diffusive compared to the upwind solution.

4.3. CURRENT NUMERICAL SCHEMES 33

4.3.4 FCT method extended to implicit schemes

In this section we extend the FCT method to implicit schemes, whereas in the previous section
only explicit schemes are studied. We will briefly present the numerical schemes and the cor-
responding difficulties that arise. This methodology is discussed in more detail in Slingerland,
2007 [10].

In order to apply the FCT method one first needs an implicit representation for the advec-
tion equation. One useful description is by the theta approach. This method uses a θ-parameter
which determines the degree in which information is used from the new time level. The formu-
lation in terms of fluxes is for the 1D case as follows

cn+1
i − cni

∆t
= − 1

∆xi
[(1− θ)(Fn

i+1/2 − Fn
i−1/2) + θ(Fn+1

i+1/2 − Fn+1
i−1/2)], (4.29)

where θ ∈ [0, 1] and ∆t = tn+1− tn. For θ = 0 we have the original explicit scheme (4.26), which
is Euler Explicit. For other values such as θ = 1

2 and θ = 1 we have Crank-Nicolson and Euler
Implicit respectively.

Taking for example an upwind flux in the equation above, i.e. Fn
i−1/2 = ucni−1 for u ≥ 0, we get

an upwind implicit scheme (θ ̸= 0). For central fluxes we have Fn
i−1/2 = ucni−1/2 = u

cni−1+cni
2 ,

which leads to a central implicit method (θ ̸= 0). In a similar way we can use fluxes according
to Lax-Wendroff.

With the help of a Taylor-series expansion we can derive for each choice for the fluxes mentioned
above a modified equation for the advection equation. This modified equation is important, since
it describes more accurately the behavior of the numerical solution than the actual advection
equation. By inserting a function ν(x, t) in the numerical method instead of c and expanding
next these terms in Taylor series around (xi, t

n) we can derive the modified equation.

The reason we discuss the modified equations is that in the FCT method a convex combination is
used between the upwind flux and a high-order flux, e.g. central fluxes. As consequence we have
more insight in the effect of a specific value for theta on the numerical solution, i.e. the presence
and the amount of numerical (anti-)diffusion in the numerical solution of the advection equation.

Below we present three modified equations with upwind, central and Lax-Wendroff fluxes re-
spectively.

1. Combining the theta scheme (4.29) with upwind fluxes leads to the following equation

∂ν

∂t
+ u

∂ν

∂x
=

u∆x

2
(1− (1− 2θ)

u∆t

∆x
)
∂2ν

∂x2
. (4.30)

The term given on the right-hand side of the modified equation represents the numerical dif-
fusion. For θ = 0, the explicit case, the numerical solution will be diffusive provided that the
CFL-condition is satisfied. For θ ≥ 1

2(1 −
∆x
u∆t) the numerical solution is diffusive, independent

of the size of the time-step and cell-size. Furthermore we can note that the amount of numerical
diffusion increases with theta. But on the other hand, refining the grid (∆x → 0) leads to
vanishing of the numerical diffusion.

34 CHAPTER 4. NUMERICAL METHODS

2. Combining the theta scheme with central fluxes leads to the following equation

∂ν

∂t
+ u

∂ν

∂x
= (θ − 1

2
)u2∆t

∂2ν

∂x2
. (4.31)

For the central discretization case the numerical diffusion is diffusive for θ > 1
2 and anti-diffusive

for θ < 1
2 . For θ equal to 1

2 the numerical diffusion is zero. Also in this case the numerical
diffusion increases with theta.

3. Combining the theta scheme with Lax-Wendroff for the fluxes leads to the following equation

∂ν

∂t
+ u

∂ν

∂x
= θu2∆t

∂2ν

∂x2
. (4.32)

The numerical diffusion term is only zero for the Euler Forward method (θ = 0). For larger
values of theta the numerical solution is diffusive. Similar as in the other modified equations,
the amount of numerical diffusion increases with theta.

Next we insert the limiter in the fluxes Fn
i±1/2 and Fn+1

i±1/2 of Equation (4.29). The fluxes are
formulated as

Fn
i−1/2 = FL(c

n
i−1, c

n
i) + lni−1/2(FH(cni−1, c

n
i)− FL(c

n
i−1, c

n
i)), (4.33)

Fn+1
i−1/2 = FL(c

n+1
i−1 , c

n+1
i) + ln+1

i−1/2(FH(cn+1
i−1 , c

n+1
i)− FL(c

n+1
i−1 , c

n+1
i)), (4.34)

where the limiter lij is determined according to Zalesak (Section 4.3.3) and FH and FL corre-
spond with a high-order and upwind-flux function respectively. Using for example upwind and
Lax-Wendroff for the low-order and high-order fluxes respectively and ui−1/2 > 0 we get

Fn
i−1/2 = FL(c

n
i−1, c

n
i) + lni−1/2(FH(cni−1, c

n
i)− FL(c

n
i−1, c

n
i)), (4.35)

= ui−1/2c
n
i−1 + lni,i−1

ui−1/2

2
(cni − cni−1)(1−

∆t

∆xi
ui− 1

2
), (4.36)

and

Fn+1
i−1/2 = FL(c

n+1
i−1 , c

n+1
i) + ln+1

i−1/2(FH(cn+1
i−1 , c

n+1
i)− FL(c

n+1
i−1 , c

n+1
i)), (4.37)

= ui−1/2c
n+1
i−1 + ln+1

i,i−1

ui−1/2

2
(cn+1

i − cn+1
i−1)(1−

∆t

∆xi
ui− 1

2
). (4.38)

After substitution of these fluxes in Equation (4.29) we get an implicit FCT scheme. Note that
in this case we are dealing with limiters on two different time-levels, i.e. lni−1/2 and ln+1

i−1/2. So a
direct application of the FCT methodology described in the previous section is not obvious. A
simple approach according to Slingerland 2007 [10] will be discussed below.

Implicit FCT method :
1. Given the solution cni a time tn we first compute a first-order approximation c̃n+1

i of the

4.3. CURRENT NUMERICAL SCHEMES 35

solution at the new time step tn+1 with lnij = ln+1
ij = 0 in (4.33)-(4.34), i.e.

c̃n+1
i = cni −

∆t

∆xi
[{(1−θ)FL(c

n
i , c

n
i+1)+θFL(c̃

n+1
i , c̃n+1

i+1)}−{(1−θ)FL(c
n
i−1, c

n
i)+θFL(c̃

n+1
i−1 , c̃

n+1
i)}].

Note that the unknown solution cn+1
i (belonging to the implicit part) is approximated/replaced

by c̃n+1
i . Since FL is a linear function, the equation above can simply be solved.

2. Next we define the flux correction by

∆Fn
i−1/2 = (1− θ)(FH(cni−1, c

n
i)− FL(c

n
i−1, c

n
i)) + θ(FH(c̃n+1

i−1 , c̃
n+1
i)− FL(c̃

n+1
i−1 , c̃

n+1
i)). (4.39)

Note that instead of the unknown solution cn+1
i the first order approximation c̃n+1

i is used in
the second term of the right-hand side.

3. Next we apply steps 4-7 of the FCT method given in Section 4.3.3 to obtain the limiter
with ln+1

i−1/2 = lni−1/2.

4. Finally we update the solution by

cn+1
i = c̃n+1

i − ∆t

∆xi
lni−1/2(∆Fn

i+1/2 −∆Fn
i−1/2), (4.40)

where ∆Fn
i±1/2 is defined in step 2.

The implicit FCT method is simple since the first-order approximation c̃n+1
i is used instead

of the actual solution cn+1
i . Though, reasonable accuracy can be obtained for the advection

equation by this approach (Slingerland, 2007 [10]). In the final section of this chapter another
method will be discussed for updating the numerical solution to the next time-step. This ap-
proach will be more complex, but higher accuracy is possible than with the implicit FCT method
discussed above.

4.3.5 Local-theta scheme

In the previous section we observed from the modified equations that increasing the value of
theta leads to a larger amount of numerical diffusion. This implies that using an implicit scheme
leads to a decrease in the accuracy of the numerical solution. Though, the benefit of applying an
implicit scheme is that larger time-steps are allowed, which results in a lower computation time.
This implies that an optimal theta value must be available, such that the numerical diffusion is
minimized but large enough to allow larger values for the time-step.

In (Slingerland, 2007 [10]) a strategy was defined for determining the optimal θ. This strategy
says that θ must be chosen as small as possible to minimize the amount of numerical diffusion,
but large enough to ensure that the scheme is stable, positivity preserving and non-oscillatory.
In this way the accuracy of the theta scheme (4.29) is improved without loss of robustness. The
strategy for the one-dimensional case is given by

36 CHAPTER 4. NUMERICAL METHODS

θ ≥ 1− ∆xi
u∆t

.

For a non-uniform grid with a constant theta we conclude from the formula above that the value
for θ in the entire computational domain is determined by the smallest cell. This means that
for larger cells the value for θ is much larger than necessary. An unnecessarily larger value for θ
corresponds with an unnecessarily larger amount of numerical diffusion for these cells. Therefore
a value per volume interface is used, i.e. θ is space dependent. In (Slingerland, 2007 [10]) this
strategy is given by

θi+1/2 = max{0, θi, θi+1}, (4.41)

with

θi = 1− ∆xi
u∆t

, (4.42)

where θi+1/2 is the value for theta at the boundary interface of cell i and i+1 and θi represents
the value for the i-th cell. In the fully implicit case (θ = 1) any size for the time-step can be
taken, since in this situation Equation (4.42) is unconditionally satisfied. For further details of
the derivation of the strategy described above we refer to [10].

Using a local theta value per flux instead of a constant theta value gives us the local-theta
method. For the one-dimensional advection equation this is given by

cn+1
i − cni

∆t
= − 1

∆xi
[((1− θi+1/2)F

n
i+1/2 − (1− θi−1/2)F

n
i−1/2) + (θi+1/2F

n+1
i+1/2 − θi−1/2F

n+1
i−1/2)],

(4.43)

where Fn
i−1/2 and Fn

i+1/2 are some numerical advective fluxes along the left and right boundary

of cell i respectively. For a constant theta we retrieve the original theta scheme (4.29).

The local-theta scheme presented above can be improved by incorporating flux-limiters com-
puted by the FCT method. The flux-limiters make sure that a larger reduction of the numerical
diffusion can be obtained. The numerical fluxes Fn

i−1/2 and Fn+1
i−1/2 are defined by

Fn
i−1/2 = FL(c

n
i−1, c

n
i) + lni−1/2(FH(cni−1, c

n
i)− FL(c

n
i−1, c

n
i)), (4.44)

Fn+1
i−1/2 = FL(c

n+1
i−1 , c

n+1
i) + ln+1

i−1/2(FH(cn+1
i−1 , c

n+1
i)− FL(c

n+1
i−1 , c

n+1
i)), (4.45)

where the limiters lni−1/2 and ln+1
i−1/2 can be determined by the implicit FCT method described in

the previous section. Furthermore, FH and FL corresponds with a high-order and a low-order
flux function respectively.

4.3.6 Numerical methods compared

In the previous sections some numerical schemes were presented for solving the 1D advection
equation. In this section we discuss the advantages and disadvantages of the different types

4.3. CURRENT NUMERICAL SCHEMES 37

of numerical schemes presented in this chapter. In the table below a comparison between the
methods are based on the following properties: accuracy, diffusiveness, monotonicity, positivity
and efficiency. The table can be seen as a global summary of the numerical methods. All the
numerical methods are based on the local-theta scheme (4.43) and differs only in the formulation
of the fluxes.

Table 4.1: Numerical methods applied to the 1D problem (4.20)-(4.22)

Numerical scheme Accuracy Diffusive Monotone Efficient
and positive

Upwind explicit O(∆t), Yes Yes Only for
O(∆x) small timescale

Lax-Wendroff explicit O(∆t2), No No Only for
O(∆x2) small timescale

FCT explicit O(∆t) - O(∆t2) , Only with Yes Only for
O(∆x) - O(∆x2) LW fluxes small timescale

Upwind implicit O(∆t) - O(∆t2), Yes Yes Not for
O(∆x) small timescale

Central implicit O(∆t) - O(∆t2), No No Not for
O(∆x2) small timescale

FCT implicit O(∆t) - O(∆t2), Only for Yes Not for
O(∆x) - O(∆x2) θ ≥ 0.5 small timescale

The first three mentioned methods are explicit schemes and are only applicable under the CFL
condition which must be fulfilled for stability purposes. The FCT explicit method uses up-
wind fluxes as low-order flux function and Lax-Wendroff fluxes or central fluxes as high-order
flux function. Lax-Wendroff fluxes do not cause any numerical diffusion, whereas central fluxes
cause negative numerical diffusion, hence anti-diffusion (see also Section 4.3.4 for the modified
equations). Upwind fluxes is the only method which causes numerical diffusion, so diffusiveness
of the explicit FCT scheme only occurs if Lax-Wendroff fluxes are used.

The latter three methods are implicit schemes. An important benefit of these methods is that
the CFL condition does not have to be fulfilled. In the row of the ”FCT implicit” method we see
that diffusiveness is not always the case. For θ ∈ [0, 1/2) the numerical solution is anti-diffusive,
for θ = 1/2 it has zero diffusion and for θ ∈ (1/2, 1] the numerical solution is diffusive. The FCT
implicit method uses upwind fluxes as low-order flux function and central fluxes as high order
flux function.

All the methods presented in the table are robust, where for the explicit cases the CFL condition
must hold. For the definition of the accuracy we refer to Section 4.2. The results in Table 4.1
are only valid for the specified problem (4.20)-(4.22). According to the results in the table the
FCT implicit scheme is preferred for this 1D problem.

38 CHAPTER 4. NUMERICAL METHODS

4.4 The iterative FCT approach by Kuzmin

In the end of Section 4.3.4 we mentioned that another approach can be used to update the
numerical solution to the next time level. This method, which will be presented below, uses
an iterative approach and was designed by D. Kuzmin, M. Möller and S. Turek 2004 [6]. This
method is not implemented in Delft3D and therefore the main objective of this thesis is to in-
vestigate this new approach.

In Section 4.3 we described a simplified approach for updating the numerical solution based
on information at the old time level and on a first-order approximate solution at the new time
level. In the new approach we will make use of a high-order approximate solution at the new
time level. Below we will see that in this case a non-linear equation must be solved in order to
obtain the solution cn+1

i . To solve the non-linear equation we will use the iterative algorithm
by Kuzmin et al. 2004 [6]. The method of Kuzmin takes for each iteration step into account all
the anti-diffusive fluxes of the previous iteration steps, whereas normally only the anti-diffusive
fluxes of the current iteration step are important. More will be clear after reading the rest of
this section.

The method of Kuzmin uses a matrix-vector notation and in this section we keep this for-
mulation. To update the numerical solution to the next time level the following main steps have
to be performed for each single time step:

Implicit FCT method :
Given the solution cni for all i at time tn we proceed by

1. Determine the low and high order matrix operator KL and KH respectively

2. Determine a low-order approximation c̃n+1
i

Start of the iteration process, with cn+1,0
i = c0i

3. Define the anti-diffusive fluxes

4. Apply a pre-limiting step

5. Define the correction factors α

6. Update the solution to cn+1,m+1
i

7. Repeat steps 3 to 6 if stop-criterion is not fulfilled

End of the iteration process

8. Set cn+1
i = cn+1,m+1

i , which is the solution at time step tn+1

4.4. THE ITERATIVE FCT APPROACH BY KUZMIN 39

The method of Kuzmin will be discussed below in more detail for the one-dimensional ad-
vection equation with homogeneous boundary conditions. The equation for the homogeneous
one-dimensional advection equation reads

∂c

∂t
+ u

∂c

∂x
= 0. (4.46)

In order to apply the FCT method we discretize the equation by the theta-method. Using a
matrix-vector notation we get

cn+1 − cn = ∆t[(1− θ)(Fn
i+1/2 − Fn

i−1/2) + θ(Fn+1
i+1/2 − Fn+1

i−1/2)], (4.47)

where F i+1/2 and F i−1/2 are vectors representing the fluxes at the right and left boundary of
the volume cells respectively. The net fluxes are defined by

Fn
i+1/2 − Fn

i−1/2 = (KL + α · (KH −KL))cn, (4.48)

Fn+1
i+1/2 − Fn+1

i−1/2 = (KL + α · (KH −KL))cn+1, (4.49)

where α is an N x N matrix containing the limiters. KL (N x N matrix) is the discrete transport
operator of the low order method and KH (N x N matrix) is the discrete transport operator of
the high order method. The operators must satisfy the property of zero row sum. An operator
has zero row sum if the following holds

aii = −
∑
j ̸=i

aij , (4.50)

with aij entries of the matrix A. For every entry of the term Kcn (where K is an arbitrary
matrix) we have

(Kcn)i =
∑
j=1

kijc
n
j = kiic

n
i +

∑
j ̸=i

kijc
n
j

= −
∑
j ̸=i

kijc
n
i +

∑
j ̸=i

kijc
n
j by (4.50)

=
∑
j ̸=i

kij(c
n
j − cni).

With the derivation above we can rewrite Equation (4.47) for all i as

cn+1
i − θ∆t

∑
j

kLijc
n+1
j = cni + (1− θ)∆t

∑
j

kLijc
n
j

+ ∆t
∑
j ̸=1

{αij(k
H
ij − kLij)[θ(c

n+1
j − cn+1

i)− (1− θ)(cnj − cni)]}.(4.51)

This expression is the numerical scheme for the advection equation and has to be solved for
cn+1
i . Below we proceed with the solution algorithm by Kuzmin.

40 CHAPTER 4. NUMERICAL METHODS

1. First we determine the low and high order matrix operator. For KL we use the upwind
method given by

KL =

− u

∆x
u
∆x

u
∆x − u

∆x
. . .

. . .
u
∆x − u

∆x
u
∆x − u

∆x

 .

For matrix KH we choose the central method which is given by

KH =

0 − u

2∆x
u

2∆x
u

2∆x 0 − u
2∆x

. . .
. . .

. . .
u

2∆x 0 − u
2∆x

− u
2∆x

u
2∆x 0

 .

We can immediately observe that the zero-row-sum property (4.50) is fulfilled.

2. At the beginning of the time-step we determine the low order approximation c̃n+1
i by

c̃n+1
i = cni + (1− θ)∆t

∑
j

kLijc
n
j ,

where kLij are the entries of matrix KL. The solution c̃n+1
i is an intermediate solution computed

at the time instant tn+1−θ by the explicit low-order scheme. The low-order approximation c̃n+1
i

ensures monotonically behavior.

In steps 3-7 we apply the iteration procedure for the current time-step.

3. Next we define the anti-diffusive fluxes. As we already mentioned before, is that accord-
ing to Kuzmin also the previous anti-diffusive fluxes are taken into account. Since we will add
after each iteration a correction to the intermediate solution we are only interested in the dif-
ference between the new anti-diffusive fluxes and the previous ones for every iteration. The
difference between the anti-diffusive fluxes fm

ij and the net effect of previous flux corrections gmij
is given by the formula

∆fm
ij = fm

ij − gmij ,

with

fm
ij = −∆t(kLij − kHij)[θ(c

n+1,m
j − cn+1,m

i) + (1− θ)(cnj − cni)], fm
ji = −fm

ij , i < j.

4.4. THE ITERATIVE FCT APPROACH BY KUZMIN 41

and

gmij = gm−1
ij + αm−1

ij ∆fm−1
ij , g0ij = 0. (4.52)

For the first iteration (m=0) we have cn+1,0
i = c̃0i and no previous fluxes are available, hence

g0ij = 0. Note that for θ ∈ (0, 1) the anti-diffusive fluxes fm
ij depends on both the solution at

the start of the iteration cn and on the solution at the intermediate state cn+1,m. For θ = 0 and
θ = 1 the solution depends only on cn and cn+1,m respectively.

4. Before we continue with the computation of the correction factors α, we first apply a pre-
limiting step which is an important component of the FCT limiter. The purpose is to cancel
those anti-diffusive fluxes that directed down the gradient of cn+1,m. So we prevent the anti-
diffusive flux to be diffusive. The test to be performed is

Set ∆fm
ij = 0, if ∆fm

ij (c
n+1,m
i − cn+1,m

j) < 0. (4.53)

Without using this step the monotonicity property will not be preserved.

5. In this step the correction factors (limiters) are computed. First we determine the maxi-
mum and minimum values of the low order solution cn+1,m

i by

cmax
i = max

j∈Ji
cn+1,m
j , (4.54)

cmin
i = min

j∈Ji
cn+1,m
j , (4.55)

where Ji consists of node i and its nearest neighbors.

The reason for determining (4.54) and (4.55) is to cancel completely those anti-diffusive fluxes
which try to accentuate a local maximum or minimum.

Next we define the allowed flux increase/decrease by

Q+
i = cmax

i − cn+1,m
i ,

Q−
i = cmin

i − cn+1,m
i .

Further we define the following quantities according to Zalesak’s limiter

P±
i =

∑
j ̸=i

max
min (0,∆fm

ij),

and

R±
i =

{
min(1, Q±

i /P
±
i), if P±

i ̸= 0,
0, if P±

i = 0.

The values for R±
i must lie in the interval [0,1], since the corrected flux must be a fraction of

42 CHAPTER 4. NUMERICAL METHODS

the amount of flux P±
i along the boundaries of cell Vi. The values R±

i represents the fraction of
mass that is allowed to flow into cell Vi.

The exchange of mass through the interface of the cells Vi and Vj is the mass fraction that
is allowed by both adjacent cells, so therefore the correction factors (flux limiters) are defined
by

αm
ij =

{
min(R+

i , R
−
j), if ∆fm

ij ≥ 0,

min(R+
j , R

−
i), if ∆fm

ij < 0.

Furthermore the symmetry property must hold for the correction factors, i.e. αm
ij = αm

ji .

For the correction factors we have that αm
ij ∈ [0, 1]. It is important to note that the com-

putation of the correction factors is in accordance with the cancellation of anti-diffusive fluxes.
This means that having Q±

i = 0 implies αm
ij = 0.

6. In the final step we update the solution to cn+1,m+1
i according to

cn+1,m+1
i − θ∆t

∑
j

kLijc
n+1,m+1
j = cn+1,m

i +
∑
j ̸=i

αm
ij∆fm

ij (c
n, cn+1,m), (4.56)

where

cn+1,m
i = cn+1,m−1

i +
∑
j ̸=i

αm−1
ij ∆fm−1

ij , (m ≥ 1) (4.57)

and with cn+1,0 given. Note that the positivity-preserving solution cn+1,m
i is updated during

each iteration. The update formula is a linear equation of the form Ax = b which can be solved
directly.

Remark: An alternative is the defect correction method applied by Kuzmin et al. 2004 [6].
Instead of solving equation (4.56) directly the following approach is used:

First the defect vector rm is computed by

rm = bm − (I − θ∆tKL)cn+1,m,

where bm is a vector with the i-th entry given by the right-hand side of Equation (4.56). The
matrix KL represents the operator for the low order method and I is the identity matrix.

Next we determine the solution increment ∆cm by solving

(I − θ∆tKL)∆cm = rm.

Afterwards, the correction is added to the last iterate to get the updated solution cn+1,m+1

cn+1,m+1 = cn+1,m +∆cm.

7. Together with an iteration process also a stop-criterion should be given. This criterion defines

4.4. THE ITERATIVE FCT APPROACH BY KUZMIN 43

when the updated solution cn+1,m+1
i is sufficient. Several stop-criteria can be given, in the sense

||cn+1,m+1 − cn+1,m|| ≤ ϵ, ϵ > 0,

where || · || is the L1-norm.

If the stop-criterion is not fulfilled, then steps 3 to 6 are repeated until the criterion is sat-
isfied.

After the iteration is terminated the solution at the next time-step is determined in the fi-
nal step below.

8. If sufficient (by the stop-criterion) flux-correction is added to the low order approxima-
tion c̃n+1

i (step 2), then we set

cn+1
i = cn+1,m+1

i ,

where cn+1,m+1
i is the final update in the iteration process.

In the algorithm described above we increase in each iteration step the anti-diffusion for the
intermediate solution c̃n+1

i (step 2). This means that for each iteration the positivity-preserving
solution c̃n+1

i is more corrected and so more accurate, hence higher accuracy can be obtained
for the updated solution cn+1

i . In the next chapter we treat this method in more detail.

44 CHAPTER 4. NUMERICAL METHODS

Chapter 5

Iterative FCT methods

In this chapter we describe iterative flux-limiter methods for solving the non-linear equation
(4.51). In the previous chapter we used a matrix-vector formulation for the numerical fluxes.
From this point we will use the formulation according to Section 4.3.4 which is more transparent
and therefore no confusion can be made. Besides the method by Kuzmin also other iterative
approaches will be discussed for solving the advection equation. In the next chapter we look at
the results after applying the concerning methods.

5.1 Iterative FCT method with one limiter

5.1.1 FCT method without accumulation

The following scheme for the linear advection equation must be solved for each cell i

cn+1
i = cni − ∆t

∆xi
(Fi+1/2 − Fi−1/2), (5.1)

where Fi+1/2 and Fi−1/2 is the numerical flux along the right and left boundary of the i-th cell
respectively.

The fluxes are defined by

Fi−1/2 = (1− θi−1/2)[FL(c
n
i−1, c

n
i) + li−1/2(FH(cni−1, c

n
i)− FL(c

n
i−1, c

n
i))]

+θi−1/2[FL(c
n+1
i−1 , c

n+1
i) + li−1/2(FH(cn+1

i−1 , c
n+1
i)− FL(c

n+1
i−1 , c

n+1
i))], (5.2)

where FL is the first order upwind method, i.e. FL(c
n
i−1, c

n
i) = ui−1/2c

n
i−1 for ui−1/2 > 0, and

FH an high order method. Furthermore li−1/2 ∈ [0, 1], which determine a convex combination
between FL and FH and further θi−1/2 ∈ [0, 1].

By inserting the definition of the numerical fluxes into general Equation (5.1) we can rewrite
the equation for all i as

45

46 CHAPTER 5. ITERATIVE FCT METHODS

cn+1
i +

∆t

∆xi
[θi+1/2FL(c

n+1
i , cn+1

i+1)− θi−1/2FL(c
n+1
i−1 , c

n+1
i)] =

cni − ∆t

∆xi
[(1− θi+1/2)FL(c

n
i , c

n
i+1)− (1− θi−1/2)FL(c

n
i−1, c

n
i)]

− ∆t

∆xi
[li+1/2{(1− θi+1/2)∆Fn

i+1/2 + θi+1/2∆Fn+1
i+1/2}

−li−1/2{(1− θi−1/2)∆Fn
i−1/2 + θi−1/2∆Fn+1

i−1/2}], (5.3)

where ∆Fn
i±1/2 = FH(cni , c

n
i±1)− FL(c

n
i , c

n
i±1).

The limiter li±1/2 is according to Zalesak and depends non-linearly on cni±1/2 and cn+1
i±1/2. Its

description will be given below. This non-linear dependency makes sure that for each volume
cell i the non-linear equation (5.3) should be solved iteratively. In general (by taking all cells i)
we have an equation of the form

Acn+1 = f(cn, cn+1), (5.4)

where A represents the square matrix for the left-hand side of the concerning non-linear system.

The iterative process starts with an initial estimate cn+1,0 and continues by

Acn+1,m+1 = f(cn, cn+1,m), (5.5)

until the following stop-criterion is fulfilled

||cn+1,m+1 − cn+1,m||1 ≤ ϵ, ϵ > 0. (5.6)

Below we present the first method for solving the non-linear Equation (5.3) according to (5.5).

Method 1A : One limiter and without accumulated fluxes

Given the solution cn at time-step tn we compute the solution cn+1 at time-step tn+1. We
perform the following steps with θi±1/2 defined by:

θ1±1/2 = max{0, 1− ∆xi
|u|∆t

, 1− ∆xi±1

|u|∆t
}. (5.7)

———–

1. Determine for each cell i the intermediate solution c̃n+1
i by

c̃n+1
i = cni − ∆t

∆xi
[(1− θi+1/2)FL(c

n
i , c

n
i+1)− (1− θi−1/2)FL(c

n
i−1, c

n
i)].

5.1. ITERATIVE FCT METHOD WITH ONE LIMITER 47

2. Set cn+1,0
i = cni for all i.

While ||cn+1,m+1 − cn+1,m||1 > ϵ, ϵ > 0, m = 0, 1, 2, 3, ... do
(for m = 0 take ||cn+1,1 − cn+1,0||1 > ϵ)

• Determine for each cell i the flux difference along its right and left cell interface by

∆fm
i,i+1 = − ∆t

∆xi
[(1− θi+1/2)∆Fn

i+1/2 + θi+1/2∆Fn+1,m
i+1/2],

∆fm
i,i−1 =

∆t

∆xi
[(1− θi−1/2)∆Fn

i−1/2 + θi−1/2∆Fn+1,m
i−1/2],

with

∆Fn+1,m
i±1/2 = FH(cn+1,m

i , cn+1,m
i±1)− FL(c

n+1,m
i , cn+1,m

i±1).

Note that ∆fm
i+1,i = −∆fm

i,i+1 for every cell interface.

• Apply limited anti-diffusive fluxes to the intermediate solution c̃n+1
i by

bm+1
i = c̃n+1

i + lmi+1/2∆fm
i,i+1 + lmi−1/2∆fm

i,i−1,

where lmi±1/2 (with input c̃n+1
i and ∆fm

i,i±1) are the limiters determined according to
the method of Zalesak. The limiter is defined below and has to be applied for each
iteration m.

• Solve for all cells i the following linear equation for the next approximation of cn+1
i by

cn+1,m+1
i +

∆t

∆xi
[θi+1/2FL(c

n+1,m+1
i , cn+1,m+1

i+1)− θi−1/2FL(c
n+1,m+1
i−1 , cn+1,m+1

i)] = bm+1
i .

3. Set cn+1
i = cn+1,m+1

i for each cell i.

——–

The limiter according to Zalesak

The limiter is included in the iterative solution method and its value differs for each itera-
tion step m = 0, 1, 2, To determine the limiters we need as input in this “limiter formula”
the intermediate solution c̃n+1 and the flux differences ∆fm

i,i±1 for all i.

48 CHAPTER 5. ITERATIVE FCT METHODS

• First we apply a so-called pre-limiting step which is also part of this limiter description.
Since the term ∆fm

ij corrects the diffusive first-order flux it should not be diffusive. Hence

we set ∆fm
ij = 0 if ∆fm

ij (c̃
n+1
i − c̃n+1

j) ≤ 0, with j ∈ Ji = [i− 1, i, i+ 1].

• An important property for the solution is monotonicity, hence no new local maximum
or minimum must be created or accentuated. In order to satisfy this condition we first
determine an upper and lower bound for the intermediate solution c̃n+1

i

cmax
i = max

j∈Ji
c̃n+1
j ,

cmin
i = min

j∈Ji
c̃n+1
j ,

where Ji consists of node i and its nearest neighbors.

• Next we define the amount of flux that flows into cell Vi

P+
i = max(0,∆fm

i,i−1) + max(0,∆fm
i,i+1).

The allowed flux increase is

Q+
i = cmax

i − c̃n+1
i .

The fraction of flux that is allowed to flow into the cell is given by

R+
i =

{
min(1,

Q+
i

P+
i

), P+
i > 0,

1, P+
i = 0.

For flux decrease we can define in a similar way the following quantities:

P−
i = min(0,∆fm

i,i−1) + min(0,∆fm
i,i+1),

Q−
i = cmin

i − c̃n+1
i ,

R−
i =

{
min(1,

Q−
i

P−
i

), P−
i < 0,

1, P−
i = 0.

The values R+
i and R−

i guarantees no overshoot and undershoot in cell i respectively.

• In the next step we determine the limiter which is the flux fraction that is allowed by both
adjacent cells

lmi±1/2 =

{
min(R+

i , R
−
i±1), ∆fm

i,i±1 ≥ 0

min(R+
i±1, R

−
i), ∆fm

i,i±1 < 0.

Note that the symmetry condition lmi,i+1 = lmi+1/2 = lmi+1,i is fulfilled. This guarantees

5.1. ITERATIVE FCT METHOD WITH ONE LIMITER 49

that the limiter of the right boundary of cell i (lmi,i+1) is equal to the limiter of the left
boundary of cell i+1 (lmi+1,i).

Below we will show that the numerical solution by the FCT algorithm presented above is
indeed non-negative, i.e. cn+1 ≥ 0, and monotone.

Non-negativity and monotonicity

Below we will show that for each iteration m the numerical solution is non-negative for method
1A.

The equation to be solved is presented by

cn+1,m+1
i +

∆t

∆xi
[θi+1/2FL(c

n+1,m+1
i , cn+1,m+1

i+1)− θi−1/2FL(c
n+1,m+1
i−1 , cn+1,m+1

i)] =

c̃n+1
i + lmi+1/2∆fm

i,i+1 + lmi−1/2∆fm
i,i−1. (5.8)

The corresponding system to be solved is of the form Acn+1,m+1 = bm+1. The equation above is
positivity-preserving if the right-hand side bm+1 ≥ 0 and matrix A satisfies the following three
conditions (Kuzmin et al. 2004 [6], Kuzmin 2008 [5])

1. All diagonal coefficients are positive: aii > 0 for all i

2. The M-matrix property holds: the non-diagonal elements are non-positive (aij ≤ 0, j ̸= i)
and the eigenvalues have positive real parts

3. Matrix A is strictly diagonally dominant: |aii| >
∑

j ̸=i |aij | for all i

These are sufficient, but not necessary conditions for non-negativity. First we will show that
the right-hand side is non-negative, i.e. bm+1 ≥ 0 before we proceed with showing that the
conditions for matrix A are fulfilled. Only the results for u > 0 will be presented below, though
in a similar way one can show non-negativity for u < 0.

To show that the right-hand side of Equation (5.8) is positive for all i, we first show that
the intermediate solution c̃n+1

i is non-negative for cn ≥ 0. Remember the expression for the
intermediate solution which is given by

c̃n+1
i = cni − ∆t

∆xi
[(1− θi+1/2)FL(c

n
i , c

n
i+1)− (1− θi−1/2)FL(c

n
i−1, c

n
i)]. (5.9)

If we further take u > 0 then the equation can be written as

c̃n+1
i = cni − ∆t

∆xi
[(1− θi+1/2)uc

n
i − (1− θi−1/2)uc

n
i−1]

= (1− |u|∆t

∆xi
(1− θi+1/2))c

n
i +

|u|∆t

∆xi
(1− θi−1/2)c

n
i−1. (5.10)

50 CHAPTER 5. ITERATIVE FCT METHODS

Since the terms cni and cni−1 are non-negative we have positivity for c̃n+1
i if the following condi-

tion is fulfilled

|u|∆t

∆xi
(1− θi±1/2) ≤ 1. (5.11)

In solution method 1A we have chosen θi−1/2 = max{0, 1− ∆xi
|u|∆t , 1−

∆xi−1

|u|∆t }, so condition (5.11)

is fulfilled. Further, condition (5.11) tells us that the intermediate solution c̃n+1 is obtained by
shifting the entire solution cn at most one cell to the right.

Next we continue with the addition of the corrected anti-diffusion terms to the term c̃n+1
i and

show that the RHS of Equation (5.8) is still positive. Therefore we need to rewrite the RHS of
Equation (5.8) in the following form

(1− vi)c̃
n+1
i + vic̃

n+1
k , (5.12)

with k the number of a neighboring node at which a local extreme is attained and where vi
should be such that 0 ≤ vi ≤ 1 in order to have positivity for the expression above.

Now we choose vi as follows

vi =

lm
i+1/2

∆fm
i,i+1+lm

i−1/2
∆fm

i,i−1

c̃n+1
k −c̃n+1

i

, if lmi+1/2∆fm
i,i+1 + lmi−1/2∆fm

i,i−1 > 0,

lm
i+1/2

∆fm
i,i+1+lm

i−1/2
∆fm

i,i−1

c̃n+1
k −c̃n+1

i

, if lmi+1/2∆fm
i,i+1 + lmi−1/2∆fm

i,i−1 < 0,

0, if lmi+1/2∆fm
i,i+1 + lmi−1/2∆fm

i,i−1 = 0.

It requires now three steps to show that the definition for vi is correct. First we rewrite Equation
(5.12) as c̃n+1

i + (c̃n+1
k − c̃n+1

i)vi and by substitution of vi for each different case it can be easily
checked that the right-hand side of Equation (5.8) is obtained. Furthermore, we have vi ≥ 0 for
each of these cases.

The third step is to show that vi ≤ 1. Therefore we need the definitions given in the ”Limiter
by Zalesak” in this section. For lmi+1/2∆fm

i,i+1 + lmi−1/2∆fm
i,i−1 > 0 this is as follows

lmi+1/2∆fm
i,i+1 + lmi−1/2∆fm

i,i−1 ≤ lmi+1/2max{0,∆fm
i,i+1}+ lmi−1/2max{0,∆fm

i,i−1}. (5.13)

Since max{0,∆fm
i,i±1} ≥ 0 the limiter is given by lmi±1/2 = min{R+

i , R
−
i±1}, hence

lmi+1/2max{0,∆fm
i,i+1}+ lmi−1/2max{0,∆fm

i,i−1} ≤ R+
i max{0,∆fm

i,i+1}+R+
i max{0,∆fm

i,i−1}
= R+

i P
+
i . (5.14)

For P+
i > 0 we have

Q+
i

P+
i

≥ min{1, Q
+
i

P+
i

} = R+
i . So for P+

i ≥ 0 we have

5.1. ITERATIVE FCT METHOD WITH ONE LIMITER 51

R+
i P

+
i ≤ Q+

i , (5.15)

So finally we have from (5.13), (5.14) and (5.15)

lmi+1/2∆fm
i,i+1 + lmi−1/2∆fm

i,i−1 ≤ Q+
i = cmax

i − c̃n+1
i .

After dividing both sides by Q+
i with Q+

i > 0 we get

vi ≤ 1.

So the inequality vi ≤ 1 is verified for lmi+1/2∆fm
i,i+1 + lmi−1/2∆fm

i,i−1 > 0. This inequality can also
be shown in a similar way for lmi+1/2∆fm

i,i+1+lmi−1/2∆fm
i,i−1 < 0. For lmi+1/2∆fm

i,i+1+lmi−1/2∆fm
i,i−1 =

0 this is obvious, since vi = 0.

Now it remains to show that the left-hand side of Equation (5.8) satisfies the three condi-
tions. Since FL is the first-order upwind method the left-hand side of Equation (5.8) can be
written for u > 0 as

(1 +
|u|∆t

∆xi
θi+1/2)c

n+1,m+1
i − |u|∆t

∆xi
θi−1/2c

n+1,m+1
i−1 . (5.16)

The coefficients in the expression above can for all i ∈ [1, ..., N] be given in matrix form by

A =

1 + |u|∆t
∆x1

θ1+1/2 − |u|∆t
∆x1

θ1−1/2

− |u|∆t
∆x2

θ2−1/2 1 + |u|∆t
∆x2

θ2+1/2

. . .
. . .

− |u|∆t
∆xN−1

θ(N−1)−1/2 1 + |u|∆t
∆xN−1

θ(N−1)+1/2

− |u|∆t
∆xN

θN−1/2 1 + |u|∆t
∆xN

θN+1/2

.

From the matrix we immediately notice that condition 1 is fulfilled. The same holds for the first
part of condition 2. It remains to show for the second part of condition 2 that the eigenvalues
of matrix A have positive real part. Therefore we use the Theorem of Gershgorin which gives
precisely in which discs of the complex plane the eigenvalues can be found (Vuik et al. 2006, [12]).

Theorem of Gershgorin
The eigenvalues λ of a matrix M are in the union of circles if

|z −mii| ≤
N∑

j=1,j ̸=i

|mij |, with z ∈ C.

If we apply the Theorem to the matrix given above we get for all i the following result

52 CHAPTER 5. ITERATIVE FCT METHODS

|λi − (1 +
|u|∆t

∆xi
θi+1/2)| ≤

|u|∆t

∆xi
θi−1/2. (5.17)

Hence, each eigenvalue λi is in the circle with center (1 + |u|∆t
∆xi

θi+1/2, 0) and radius |u|∆t
∆xi

θi−1/2.
This means for the real part that

Re(λi) ∈ [1 +
|u|∆t

∆xi
θi+1/2 −

|u|∆t

∆xi
θi−1/2, 1 +

|u|∆t

∆xi
θi+1/2 +

|u|∆t

∆xi
θi−1/2]. (5.18)

For a uniform grid we have that θi−1/2 = θi+1/2, so Re(λi) ∈ [1, 1 + 2 |u|∆t
∆xi

θi+1/2] ⊂ [1,∞).
Hence, for a uniform grid Condition 2 is automatically satisfied. For a non-uniform grid this
condition is not obvious and therefore will be explained below. From above we know that

min(Re(λi)) = 1 +
|u|∆t

∆xi
θi+1/2 −

|u|∆t

∆xi
θi−1/2. (5.19)

Further, we can derive from the positivity condition (5.11) that

|u|∆t

∆xi
θi+1/2 ≥

|u|∆t

∆xi
− 1. (5.20)

Combining Equation (5.19) and Equation (5.20) we get

min(Re(λi)) = 1 +
|u|∆t

∆xi
θi+1/2 −

|u|∆t

∆xi
θi−1/2

≥ 1 +
|u|∆t

∆xi
− 1− |u|∆t

∆xi
θi−1/2

=
|u|∆t

∆xi
− |u|∆t

∆xi
θi−1/2

> 0. (5.21)

The last inequality is true since we haven chosen in the solution algorithm (see also method 1A)

θi−1/2 = max{0, 1− ∆xi
|u|∆t , 1−

∆xi−1

|u|∆t } < 1. So Condition 2 is also fulfilled for a non-uniform grid.

According to Condition 3 we must have strictly diagonally dominance for matrix A. This is
automatically satisfied for a uniform grid, since θi−1/2 = θi+1/2. For a non-uniform case the
third condition must be checked. For each row i of matrix A we have after summation of the
corresponding elements

1 +
|u|∆t

∆xi
θi+1/2 −

|u|∆t

∆xi
θi−1/2. (5.22)

From Equation (5.21) we see that this expression is positive, hence Condition 3 is also fulfilled.

We have shown above that the right-hand side of Equation (5.8) is non-negative. Together

5.1. ITERATIVE FCT METHOD WITH ONE LIMITER 53

with the fact that matrix A satisfies the three conditions we have for every iteration m positiv-
ity for cn+1,m+1, i.e. cn+1,m+1 ≥ 0.

Starting with an initial condition (IC) c(x, 0) = c0 ≥ 0 we are guaranteed by the analysis
above that a positive numerical solution is obtained for the numerical solution at the next time
step, i.e. c1 ≥ 0. Continuing the limiter procedure for every time step we obviously get a positive
solution cn for all time steps.

Given that cni is monotone we want this property also holds for the numerical solution at the next
time step. Remember that the intermediate solution c̃n+1 is computed by first-order upwind,
so we automatically have monotonicity for c̃n+1. Monotonicity must also hold after addition of
the anti-diffusive fluxes. Above we showed that positivity is guaranteed for the right-hand side
after correcting the intermediate solution. Hence, the right-hand side must be monotone. Since
matrix A in the LHS of (5.8) is the first-order implicit part we have positivity for cn+1

i , hence
cn+1
i is monotone.

Since we start with a monotonously initial condition c(x, 0), we have for every iteration m
at each time step a monotonous solution by the FCT method.

Accuracy at extrema

For solutions with discontinuities the FCT method is a good approximation method. The
method will be first-order accurate at the discontinuity and high-order accurate elsewhere. For
smooth functions we expect the FCT method to be high-order accurate everywhere, but this is
not the case. At extremal points the accuracy is decreased by the flux limiter. This behavior
for smooth functions will be discussed below.

For this explanation we return to the description of the limiter by Zalesak, which is presented in
the section above. To determine the limiter value one starts with the computation of the max-
imum and minimum of the intermediate solution c̃n+1

i . For points other then extremal points
these maxima and minima are different from the value in the corresponding cell, that is

cmax
i ̸= c̃n+1

i ,

cmin
i ̸= c̃n+1

i .

Though, for extremal points at least one of cmax
i or cmin

i is equal to value c̃n+1
i in the cell. This

automatically corresponds with Q+
i = 0 for maximum points and Q−

i = 0 for minimum points.
If next to it the amount of flux P±

i that flows into or out of cell i is equal to zero (this hap-
pens only at constant parts in the the intermediate solution c̃n+1

i) then by the definition of
R±

i this quantity is equal to 1 and then the limiter lmi+1/2 is according to its definition deter-

mined by the value R±
i+1 for cell i+1. If however the amount of flux P±

i is not equal to zero
then the value R±

i is equal to zero caused by Q±
i which implies a limiter value zero. In summary:

Q±
i = 0, P±

i ̸= 0 => R±
i = 0 => lmi+1/2 = 0.

A limiter value of zero corresponds with a low-order method (in our case first order). This
proves that the FCT solution cannot be high-order accurate for smooth solutions at extremal

54 CHAPTER 5. ITERATIVE FCT METHODS

points, in other words the accuracy is locally decreased from O(h2) to O(h). Though, for the
numerical solution at the end it is not clear yet if this problem has a large effect on the global
accuracy, since also other aspects are responsible for not being second-order accurate, which will
be shown in the next chapter. On the other hand, for solutions with discontinuities this effect
(having limiter value 0) is desired in order to remove the wiggles.

5.1.2 FCT method with accumulation

We want to obtain more improvement in the numerical solution by the FCT method. An ap-
proach is by introducing accumulation of fluxes into the FCT method. Below we present a
slightly different algorithm for solving general Equation (5.3). In the previous section no anti-
diffusive fluxes of the previous iterations are taken in the computation, whereas in this case the
anti-diffusive fluxes of the previous iterations are indeed taken into account. This latter method
is according to the approach of Kuzmin et al. 2004 [6]. See also the previous chapter.

In this case we have the following iterative procedure

cn+1,m+1 = cn+1,m +∆cm. (5.23)

This is a cumulative process with ∆cm a correction applied on the previous solution cn+1,m.
Below we first present the numerical method with two limiters and shortly after we will go into
more detail of this approach.

Method 1B : One limiter and with accumulated fluxes

Given the solution cn at time-step tn we compute the solution cn+1 at time-step tn+1. We
perform the following steps with θi±1/2 defined in (5.7):

——

1. Determine for each cell i the intermediate solution c̃n+1
i by

c̃n+1
i = cni − ∆t

∆xi
[(1− θi+1/2)FL(c

n
i , c

n
i+1)− (1− θi−1/2)FL(c

n
i−1, c

n
i)].

2. For all i set cn+1,0
i = cni , g

0
i,i±1 = 0 and b0i = c̃n+1

i .

While ||cn+1,m+1 − cn+1,m||1 > ϵ, ϵ > 0, m = 0, 1, 2, 3, ... do
(for m = 0 take ||cn+1,1 − cn+1,0||1 > ϵ)

• Determine for each cell i the flux difference along its right and left cell interface by

5.1. ITERATIVE FCT METHOD WITH ONE LIMITER 55

∆fm
i,i+1 = − ∆t

∆xi
[(1− θi+1/2)∆Fn

i+1/2 + θi+1/2∆Fn+1,m
i+1/2]− gmi,i+1,

∆fm
i,i−1 =

∆t

∆xi
[(1− θi−1/2)∆Fn

i−1/2 + θi−1/2∆Fn+1,m
i−1/2]− gmi,i−1,

with

∆Fn+1,m
i±1/2 = FH(cn+1,m

i , cn+1,m
i±1)− FL(c

n+1,m
i , cn+1,m

i±1).

The terms gmi,i±1 represents the anti-diffusive fluxes of the previous iterations m −
1, ..., 0.

• Apply limited anti-diffusive fluxes to the intermediate solution bmi by

bm+1
i = bmi + lmi+1/2∆fm

i,i+1 + lmi−1/2∆fm
i,i−1,

where lmi±1/2 (with input bmi and ∆fm
i,i±1) are the limiters determined according to the

method of Zalesak given in Section 5.1.1. Replace in the formula for the limiter the
term c̃n+1

i by bmi .

• Solve for all cells i the following linear equation for the next approximation of cn+1
i by

cn+1,m+1
i +

∆t

∆xi
[θi+1/2FL(c

n+1,m+1
i , cn+1,m+1

i+1)− θi−1/2FL(c
n+1,m+1
i−1 , cn+1,m+1

i)] = bm+1
i .

• Update gmi,i±1 for each cell i by

gm+1
i,i±1 = gmi,i±1 + lmi±1/2∆fm

i,i±1.

3. Set cn+1
i = cn+1,m+1

i for each cell i.

———

Next we will show that the algorithm above corresponds with Equation (5.23), i.e. a cumu-
lative procedure.

For the m-th iteration we have the following equation to be solved (third part of step 2)

Acn+1,m+1 = bm+1

= bm + lm ·∆fm.

56 CHAPTER 5. ITERATIVE FCT METHODS

where A represents the matrix for the left-hand side of the corresponding non-linear system and
· is the inner product.

Multiplying both left- and right-hand side with A−1 we get

cn+1,m+1 = A−1bm +A−1lm ·∆fm.

Since also Acn+1,m = bm the last expression can be written as

cn+1,m+1 = cn+1,m +A−1lm ·∆fm, (5.24)

which shows that the iteration procedure is indeed cumulative.

In method 1B we correct the intermediate solution c̃n+1 by adding a flux correction in each
iteration step. The corrections are accumulated, i.e. the corrections of previous iterations are
included in c̃n+1. At a certain moment sufficient correction is added due to the stop-criterion.
From the stop-criterion and Equation (5.24) we derive the following

||cn+1,m+1 − cn+1,m|| = ||A−1lm ·∆fm||
≤ ||A−1|| · ||lm∆fm||
≤ ϵ. (5.25)

This implies that

||lm∆fm|| ≤ C−1ϵ, (5.26)

where C is some constant. This equation tells us that the iteration is stopped when the lim-
ited flux correction is sufficiently small in the norm. This means that the limited corrections
lmi±1/2∆fm

i,i±1 must decrease as m get larger in order to fulfill the equation above.

Furthermore we can also show that if lmi±1/2 = 1 for all i and all m, then the equation to
solve for method 1A and method 1B are equal. For method 1B we have

bm+1
i = bmi +∆fm

i,i+1 +∆fm
i,i−1,

= bni +

m∑
k=0

∆fk
i,i+1 +

m∑
k=0

∆fk
i,i−1

= bni + gmi,i+1 +∆fm
i,i+1 + gmi,i−1 +∆fm

i,i−1

= bni + fm
i,i+1 + fm

i,i−1, (5.27)

with bni = c̃n+1
i .

5.1. ITERATIVE FCT METHOD WITH ONE LIMITER 57

The third and final equality follow respectively from the definition of gm+1
i,i±1 and the defini-

tion of the flux difference ∆fm
i,i±1 given in method 1B above. One can easily see that the final

equation holds for method 1A, since lmi±1/2 = 1 for all i and m.

Method 1B differs mainly from method 1A in the formulation of the fluxes ∆fm
i,i±1, so non-

negativity and monotonicity can be shown in a similar way as with method 1A. So method 1B is
a valid method, in the sense that no negative values and/or wiggles can occur in the numerical
solution.

58 CHAPTER 5. ITERATIVE FCT METHODS

5.2 Iterative FCT method with two limiters

In the previous section we presented the numerical FCT scheme for the advection equation
(Equation (5.3)) and discussed two methods for solving the corresponding system of equations.
The limiter for those methods depends both on the numerical solution at the old and new time-
level. This has as result that the fluxes at the old and new time-level are limited to the same
order of magnitude. For one or both of these numerical fluxes this limiting can be less accurate,
since the limiter has to take into account the information of both levels. One might question if
the numerical solution can be improved by using two different limiters with one for the old time-
level and the other for the new time-level. With this approach one might expect the numerical
fluxes to be limited properly. We will discuss this new approach to obtain the numerical solution.

5.2.1 FCT method without accumulation

Before we go into more detail we first give the general numerical scheme for the homogeneous
advection equation, where now we have a splitting of the fluxes between the old and new time-
level.

cn+1
i = cni −

∆t

∆xi
[((1−θi+1/2)F

n
i+1/2−(1−θi−1/2)F

n
i−1/2)+(θi+1/2F

n+1
i+1/2−θi−1/2F

n+1
i−1/2)], (5.28)

with the numerical fluxes defined in the following form

Fn
i±1/2 = Fn

L + lni±1/2(F
n
H − Fn

L), (5.29)

Fn+1
i±1/2 = Fn+1

L + ln+1
i±1/2(F

n+1
H − Fn+1

L), (5.30)

where FL is the first-order upwind method and FH an higher order method, e.g. central spatial-
discretization. Notice that we are dealing with a limiter at the old level (lni±1/2) and a limiter

at the new level (ln+1
i±1/2), which are not necessarily equal. The values are still contained in [0,1].

Furthermore we have θi±1/2 ∈ [0, 1]. Note that in the previous section we discussed a special

case of the numerical scheme above where lni±1/2 = ln+1
i±1/2.

By inserting the definition of the numerical fluxes into general Equation (5.28) we can rewrite
the equation for all i as

cn+1
i +

∆t

∆xi
[θi+1/2FL(c

n+1
i , cn+1

i+1)− θi−1/2FL(c
n+1
i−1 , c

n+1
i)] =

cni − ∆t

∆xi
[(1− θi+1/2){FL(c

n
i , c

n
i+1) + lni+1/2∆Fn

i+1/2} −

(1− θi−1/2){FL(c
n
i−1, c

n
i) + lni−1/2∆Fn

i−1/2}]

− ∆t

∆xi
[θi+1/2l

n+1
i+1/2∆Fn+1

i+1/2 − θi−1/2l
n+1
i−1/2∆Fn+1

i−1/2}], (5.31)

where ∆Fn
i±1/2 = FH(cni , c

n
i±1)− FL(c

n
i , c

n
i±1).

5.2. ITERATIVE FCT METHOD WITH TWO LIMITERS 59

The limiter ln+1
i±1/2 is according to Zalesak and depends non-linear on cni±1/2 and cn+1

i±1/2. For
each volume cell i the non-linear equation above should be solved iteratively. Though, the lim-
iter lnij depends solely on cni±1/2. In general (by taking all cells i) we have an equation of the form

Acn+1 = g(cn, cn+1). (5.32)

The iterative process starts with an initial estimate cn+1,0 and continue by

Acn+1,m+1 = g(cn, cn+1,m), (5.33)

where A represents the square matrix for the left-hand side of the concerning non-linear system.

Together with an iteration process also a stop-criterion should be given. This criterion de-
fines when the updated solution cn+1,m+1

i is sufficient. This condition is defined by

||cn+1,m+1 − cn+1,m||1 ≤ ϵ, ϵ > 0.

Below we present the first method for solving Equation (5.31) according to the iterative process
(5.33).

Method 2A : two limiters and without accumulated fluxes

Given the solution cn at time-step tn we compute the solution cn+1 at time-step tn+1. We
perform the following steps with θi±1/2 defined in (5.7):

———–

1. Determine the intermediate solution c̃n+1
i for each cell i by

c̃n+1
i = cni − ∆t

∆xi
[(1− θi+1/2){FL(c

n
i , c

n
i+1) + lni+1/2(FH(cni , c

n
i+1)− FL(c

n
i , c

n
i+1))}

−(1− θi−1/2){FL(c
n
i−1, c

n
i) + lni−1/2(FH(cni−1, c

n
i)− FL(c

n
i−1, c

n
i))}],

where lni±1/2 are the limiters determined according to the method of Zalesak given in Sec-

tion 5.1.1. Further, we must replace in the formula for the limiter the term c̃n+1
i by cni .

2. Set cn+1,0
i = cni for all i.

While ||cn+1,m+1 − cn+1,m||1 > ϵ, ϵ > 0, m = 0, 1, 2, 3, ... do
(for m = 0 take ||cn+1,1 − cn+1,0||1 > ϵ)

• Determine for each cell i the flux difference along its right and left cell interface by

60 CHAPTER 5. ITERATIVE FCT METHODS

∆fm
i,i+1 = − ∆t

∆xi
θi+1/2∆Fn+1,m

i+1/2 ,

∆fm
i,i−1 =

∆t

∆xi
θi−1/2∆Fn+1,m

i−1/2 ,

with
∆Fn+1,m

i±1/2 = FH(cn+1,m
i , cn+1,m

i±1)− FL(c
n+1,m
i , cn+1,m

i±1).

• Apply limited anti-diffusive fluxes to the intermediate solution c̃n+1
i by

bm+1
i = c̃n+1

i + lmi+1/2∆fm
i,i+1 + lmi−1/2∆fm

i,i−1,

where lmi±1/2 (with input c̃n+1
i and ∆fm

i,i±1) are the limiters determined according to
the method of Zalesak defined in Section 5.1.1.

• Solve for all cells i the linear equation for the next approximation of cn+1
i by

cn+1,m+1
i +

∆t

∆xi
[θi+1/2FL(c

n+1,m+1
i , cn+1,m+1

i+1)− θi−1/2FL(c
n+1,m+1
i−1 , cn+1,m+1

i)] = bm+1
i .

3. Set cn+1
i = cn+1,m+1

i for each cell i.

——–

5.2.2 FCT method with accumulation

Below we present a slightly different method for solving Equation (5.31). Above no anti-diffusive
fluxes of the previous iterations are taken in the computation, whereas in this case the anti-
diffusive fluxes of the previous iterations are indeed taken into account. This latter method is
an adapted version of the approach of Kuzmin et al. 2004 [6].

In this case we have the following iterative procedure

cn+1,m+1 = cn+1,m +∆cm. (5.34)

This is a cumulative process with ∆cm a correction applied on the previous solution cn+1,m.
Similar as before (Method 1B) one can show that the method below is indeed of the form (5.34).

5.2. ITERATIVE FCT METHOD WITH TWO LIMITERS 61

Method 2B : two limiters and with accumulated fluxes

Given the solution cn at time-step tn we compute the solution cn+1 at time-step tn+1. We
perform the following steps with θi±1/2 defined in (5.7):

——

1. Determine the intermediate solution c̃n+1
i for each cell i by

c̃n+1
i = cni − ∆t

∆xi
[(1− θi+1/2){FL(c

n
i , c

n
i+1) + lni+1/2(FH(cni , c

n
i+1)− FL(c

n
i , c

n
i+1))}

−(1− θi−1/2){FL(c
n
i−1, c

n
i) + lni−1/2(FH(cni−1, c

n
i)− FL(c

n
i−1, c

n
i))}],

where lni±1/2 are the limiters determined according to the method of Zalesak given in

Section 5.1.1. Further, we must replace in the formula for the limiter the term c̃n+1
i by

cni − ∆t
∆xi

[(1− θi+1/2)FL(c
n
i , c

n
i+1)− (1− θi−1/2)FL(c

n
i−1, c

n
i)].

2. For all i set cn+1,0
i = cni , g

0
i,i±1 = 0 and b0i = c̃n+1

i .

While ||cn+1,m+1 − cn+1,m||1 > ϵ, ϵ > 0, m = 0, 1, 2, 3, ... do
(for m = 0 take ||cn+1,1 − cn+1,0||1 > ϵ)

• Determine for each cell i the flux difference along its right and left cell interface by

∆fm
i,i+1 = − ∆t

∆xi
θi+1/2∆Fn+1,m

i+1/2 − gmi,i+1,

∆fm
i,i−1 =

∆t

∆xi
θi−1/2∆Fn+1,m

i−1/2 − gmi,i−1,

with
∆Fn+1,m

i±1/2 = FH(cn+1,m
i , cn+1,m

i±1)− FL(c
n+1,m
i , cn+1,m

i±1).

The term gmi,i±1 represents the anti-diffusive fluxes of the previous iterations m −
1, ..., 0.

• Apply limited anti-diffusive fluxes to the intermediate solution bmi by

bm+1
i = bmi + lmi+1/2∆fm

i,i+1 + lmi−1/2∆fm
i,i−1,

where lmi±1/2 (with input bmi and ∆fm
i,i±1) are the limiters determined according to the

method of Zalesak defined in Section 5.1.1. Replace in the formula for the limiter the
term c̃n+1

i by bmi .

62 CHAPTER 5. ITERATIVE FCT METHODS

• Solve for all cells i the linear equation for the next approximation of cn+1
i by

cn+1,m+1
i +

∆t

∆xi
[θi+1/2FL(c

n+1,m+1
i , cn+1,m+1

i+1)− θi−1/2FL(c
n+1,m+1
i−1 , cn+1,m+1

i)] = bm+1
i .

• Update gmi,i±1 for each cell i by

gm+1
i,i±1 = gmi,i±1 + lmi±1/2∆fm

i,i±1.

3. Set cn+1
i = cn+1,m+1

i for each cell i.

——-

In a similar way as in Section 5.1.1 we can explain for method 2A and 2B that for each
iteration m the numerical solution remains non-negative and monotone by the limiter. Though,
the main difference is that we deal in this case with two limiters. Remember the equation for
method 2 to be solved is given by

cn+1,m+1
i +

∆t

∆xi
[θi+1/2FL(c

n+1,m+1
i , cn+1,m+1

i+1)− θi−1/2FL(c
n+1,m+1
i−1 , cn+1,m+1

i)] =

cni − ∆t

∆xi
[(1− θi+1/2)FL(c

n
i , c

n
i+1)− (1− θi−1/2)FL(c

n
i−1, c

n
i)] +

lni+1/2∆fn
i,i+1 + lni−1/2∆fn

i,i−1 + lmi+1/2∆fm
i,i+1 + lmi−1/2∆fm

i,i−1, (5.35)

where FL is the first-order upwind operator, ∆fm
i,i±1 is the flux difference defined in method

2A/2B and ∆fn
i,i±1 is given by

∆fn
i,i±1 = ∓ ∆t

∆xi
(1− θi±1/2)(FH(cni , c

n
i+1)− FL(c

n
i−1, c

n
i)), (5.36)

with FH the high-order operator. If lni±1/2 = lmi±1/2 we obtain the one-limiter approach.

Equation (5.35) is of the form Acn+1,m+1 = bm+1 and since matrix A is equal as in method
1A and 1B we have that this matrix satisfies the three conditions for non-negativity (see Section
5.1.1). Next it remains to show that the right-hand side is non-negative, i.e. bm+1 ≥ 0.

In Section 5.1.1 we showed that the sum of the first two terms in the right-hand side of (5.35)

is positive, since theta is defined by θi±1/2 = max{0, 1 − ∆xi
|u|∆t , 1 − ∆xi±1

|u|∆t }. The addition of

corrected anti-diffusive fluxes is for the two-limiter approach done twice (last line in (5.35)). By
applying the steps on pages 48 and 49 first for ∆fn

i,i±1 and next for ∆fm
i,i±1 we can show in a

similar way that positivity is preserved for bm+1, and so for cn+1. Note that for the former case
the expression c̃n+1

i is defined by the first two terms of the RHS of Equation (5.35) and for the
latter case the expression c̃n+1

i is defined by the first four terms of the RHS of (5.35).

Further, due to the positivity-preserving property of cn we have that also monotonicity is main-
tained for the two-limiter approach.

Chapter 6

Numerical results

In this chapter we present the numerical results for the advection equation by method 1A/B
and method 2A/B presented in the previous chapter. Note that the number 1 stands for the
one-limiter approach whereas the number 2 stands for the two-limiter approach. Also included
in this chapter are some important insights into the numerical methods to understand the solu-
tion procedure.

6.1 One-limiter FCT approach

In this first section we apply the numerical iteration methods to the one-dimensional water
quality model. A simplified version is the advection equation without any source terms. The
one-dimensional problem reads

∂c

∂t
+ u

∂c

∂x
= 0, x ∈ [0, 10], t ≥ 0, (6.1)

where u > 0 (substances flow from left to right) is constant and with periodic boundary condi-
tions

c(0, t) = c(10, t), t ≥ 0 (6.2)

and with initial condition c(x, 0) = c0. To see the effect of the iterative FCT method we will
use both a smooth initial condition as a non-smooth initial condition.

6.1.1 Method 1A

First of all we take a closer look at the results by the one-limiter approach without flux accu-
mulation, i.e. method 1A. We apply the mentioned method on an uniform grid and with central
discretization in space for the high order flux FH and first order upwind for the low order flux
FL. Choosing also central discretization in time corresponds with θi+1/2 = 1/2 at each cell in-
terface. Furthermore, we profit from the fact that the numerical diffusion caused by the central
approach in time is equal to zero (see the corresponding modified equation in Section 4.3.4).

Below we present the numerical equation from method 1A that has to be solved

63

64 CHAPTER 6. NUMERICAL RESULTS

cn+1,m+1
i +

u∆t

2∆xi
(cn+1,m+1

i − cn+1,m+1
i−1) = cni − u∆t

2∆xi
(cni − cni−1) +

lmi+1/2[
u∆t

2∆xi
(
cni − cni+1

2
+

cn+1,m
i − cn+1,m

i+1

2
)] + lmi−1/2[

u∆t

2∆xi
(
cni − cni−1

2
+

cn+1,m
i − cn+1,m

i−1

2
)]. (6.3)

In order to have a positive, stable and non-oscillatory solution the following condition must be
fulfilled

θ ≥ 1− ∆xi
u∆t

. (6.4)

Since we are dealing with central discretization in time (θ = 0.5), this means that the CFL
number is equal to 2, i.e. u∆t

∆x = 2. This leads to the following equation

2cn+1,m+1
i − cn+1,m+1

i−1 = cni−1 + lmi+1/2[
cni − cni+1

2
+

cn+1,m
i − cn+1,m

i+1

2
]

+ lmi−1/2[
cni − cni−1

2
+

cn+1,m
i − cn+1,m

i−1

2
]. (6.5)

The number of time steps after p periods can be computed by N = 10p
u∆t .

For the following results we use a sinusoidal function for the initial condition c0. In the first
experiments we use N = 75 and ϵ = 0.001. Since we are mainly interested in the limiter for the
equation above and need to understand the computation of it, we present the quantities P±, Q±

and R± described in Section 5.1.1 for the first time-step. As start point for the iteration method
we used cn+1,0 = cn. After 1 iteration we have the following figures for the intermediate solution
c̃n+1 and the quantities P±, Q± and R±.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

initial condition

intermediate solution c
tilde
n+1

Figure 6.1: The initial condition and the intermediate solution at t = 0.5∆t

6.1. ONE-LIMITER FCT APPROACH 65

0 2 4 6 8 10
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

P+
P−
Q+
Q−

Figure 6.2: P± and Q± for the first iteration

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

R+
R−

Figure 6.3: R± for the first iteration

Below we will show that the figures above are correct for cn+1,0
i = cni . Keep in mind that the

results are necessary for a better understanding of the FCT method.

The intermediate solution c̃n+1
i is defined by the first two terms of the RHS of Equation (6.3).

For CFL = 2 we get

c̃n+1
i = cni − u∆t

2∆xi
(cni − cni−1)

= cni−1 (6.6)

With a CFL = 2 this means that the intermediate solution is just a shift of one cell to the right

66 CHAPTER 6. NUMERICAL RESULTS

which agrees with Fig 6.1.

The definitions for P+
i , Q+

i and R+
i are for θ = 0.5 defined by

P+
i = max(0,

cni − cni−1

2
+

cn+1,m
i − cn+1,m

i−1

2
) + max(0,

cni − cni+1

2
+

cn+1,m
i − cn+1,m

i+1

2
)

Q+
i = cmax

i − c̃n+1
i (6.7)

R+
i =

{
min(1,

Q+
i

P+
i

), P+
i ̸= 0,

1, P+
i = 0.

For the ”minus” quantities we must replace the term max by min in P+
i and Q+

i . With these
definitions we can verify Fig 6.2 and Fig 6.3.

First we take a closer look at the interval where the intermediate solution c̃n+1 is increasing.
For this situation with m = 0 we have

Q+
i

P+
i

=
cni − cni−1

cni − cni−1

= 1. (6.8)

So Q+
i = P+

i , hence R+
i = 1 for the increasing part of c̃n+1.

For the increasingly declining part of the intermediate solution we have

Q+
i

P+
i

=
cni−1 − cni
cni − cni+1

=
(cni − cni−1)/∆x

(cni+1 − cni)/∆x
< 1, (6.9)

where ∆x is the distance between two neighboring grid points. So Q+
i < P+

i , hence R+
i < 1 for

the increasing declining part of c̃n+1.

For the decreasingly declining part of c̃n+1 we have

Q+
i

P+
i

=
cni−1 − cni
cni − cni+1

=
(cni − cni−1)/∆x

(cni+1 − cni)/∆x
> 1. (6.10)

And so Q+
i > P+

i , hence R+
i = 1 for the decreased declining part of c̃n+1.

For the maximum holds P+
i > 0 and Q+

i = 0, so R+
i = 0.

For the minimum holds P+
i = 0 , so R+

i = 1.

The results above agree with Figures 6.2 and 6.3 presented above. On a similar way we can
define the values for Q−, P− and R−. This will be done below.

For the increasingly rising part of the intermediate solution c̃n+1 we have

Q−
i

P−
i

=
cni−2 − cni−1

cni − cni+1

=
(cni−1 − cni−2)/∆x

(cni+1 − cni)/∆x
< 1. (6.11)

6.1. ONE-LIMITER FCT APPROACH 67

So Q−
i > P−

i , hence R−
i < 1.

For the decreasingly rising part of c̃n+1 we have

Q−
i

P−
i

=
cni−2 − cni−1

cni − cni+1

=
(cni−1 − cni−2)/∆x

(cni+1 − cni)/∆x
> 1. (6.12)

So Q−
i < P−

i , hence R−
i = 1.

For the decreasing part of c̃n+1 we have

Q−
i

P−
i

=
cni − cni−1

cni − cni−1

= 1. (6.13)

Thus Q−
i = P−

i , hence R−
i = 1.

For the maximum holds P− = 0, so R−
i = 1.

For the minimum holds P− < 0 and Q−
i = 0, so R−

i = 0.

Also these results agree with Figures 6.2 and 6.3 presented above.

Since for the limiter itself holds that the minimum is taken between R+ and R−, we get obvi-
ously the following result out of Figure 6.3

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

l
i+1/2

l
i−1/2

Figure 6.4: The limiter for the first iteration

68 CHAPTER 6. NUMERICAL RESULTS

For the second iteration (final iteration due to ϵ = 0.001) we have the following results

0 2 4 6 8 10
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

P+
P−
Q+
Q−

Figure 6.5: P± and Q± for the second iteration

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

R+
R−

Figure 6.6: R± for the second iteration

6.1. ONE-LIMITER FCT APPROACH 69

For the verification of these figures we also need the following figure

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cn

cn+1,1

Figure 6.7: The initial condition and the solution after 1 iteration

On the interval where the intermediate solution c̃n+1 is increasingly rising we have

Q+
i

P+
i

=
cni − cni−1

(cni − cni−1)/2 + (cn+1,1
i − cn+1,1

i−1)/2

=
2(cni − cni−1)/∆x

(cni − cni−1)/∆x+ (cn+1,1
i − cn+1,1

i−1)/∆x

>
2(cni − cni−1)/∆x

2(cni − cni−1)/∆x
= 1. (6.14)

So Q+
i > P+

i , hence R+
i = 1.

On the interval where c̃n+1 is decreasingly rising we have

Q+
i

P+
i

=
cni − cni−1

(cni − cni−1)/2 + (cn+1,1
i − cn+1,1

i−1)/2

=
2(cni − cni−1)/∆x

(cni − cni−1)/∆x+ (cn+1,1
i − cn+1,1

i−1)/∆x

<
2(cni − cni−1)/∆x

2(cni − cni−1)/∆x
= 1. (6.15)

So Q+
i < P+

i , hence R+
i < 1.

70 CHAPTER 6. NUMERICAL RESULTS

On the interval where c̃n+1 is increasingly declining we have

Q+
i

P+
i

=
cni−2 − cni−1

(cni − cni+1)/2 + (cn+1,1
i − cn+1,1

i+1)/2

=
2(cni−1 − cni−2)/∆x

(cni+1 − cni)/∆x+ (cn+1,1
i+1 − cn+1,1

i)/∆x

<
2(cni−1 − cni−2)/∆x

2(cn+1,1
i+1 − cn+1,1

i)/∆x
< 1. (6.16)

So Q+
i < P+

i , hence R+
i < 1.

On the interval where c̃n+1 is decreasingly declining we have

Q+
i

P+
i

=
cni−2 − cni−1

(cni − cni+1)/2 + (cn+1,1
i − cn+1,1

i+1)/2

=
2(cni−1 − cni−2)/∆x

(cni+1 − cni)/∆x+ (cn+1,1
i+1 − cn+1,1

i)/∆x

>
2(cni−1 − cni−2)/∆x

2(cn+1,1
i+1 − cn+1,1

i)/∆x
> 1. (6.17)

So Q+
i > P+

i , hence R+
i > 1.

For the maximum of c̃n+1 holds P+ > 0 and Q+
i = 0, so R+

i = 0.
For the minimum holds P+ = 0, so R+

i = 1.

The values for Q+, P+ and R+ indeed agree with Figures 6.5 and 6.6 above. In a similar
way the values for the ”minus” quantities can be verified. Also for these cases we have agree-
ment with these figures.

6.1. ONE-LIMITER FCT APPROACH 71

Since for the limiter itself holds that the minimum is taken between R+ and R−, we get
obviously the following result out of Figure 6.6

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

l
i+1/2

l
i−1/2

Figure 6.8: The limiter for the second iteration

The analysis above shows that due to the behavior in the derivative of the intermediate
solution c̃n+1 the limiter is not everywhere equal to 1. This makes the numerical solution less
accurate than desired. Below we will show the effect of this disadvantage on the numerical result
after 1 period.

In the analysis above we only deal with two iterations in the first time step due to the stop-
criterion. If a much smaller value is used for ϵ then we expect more iterations. In the figure
below we present the error ||cn+1,m+1 − cn+1,m||1 as function of the number of iterations m.
The figure shows that the error is a decreasing function of the number of iterations. Hence a
smaller value for ϵ corresponds with a larger number of iterations. We used for all the time steps
ϵ = 0.001, which corresponds according to the figure below with 2 or 3 iterations per time step.

0 5 10 15 20
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

Figure 6.9: The log-error as function of the number of iterations per time step. Figure shows
the errors for all time steps (N = 75). The vertical axis is on logarithmic scale.

72 CHAPTER 6. NUMERICAL RESULTS

After 1 period we have the following result for the FCT solution compared to the exact
and the first order upwind solution. Remember that the numerical methods are implicit, since
θ = 0.5. The upwind solution can be obtained by numerical scheme (6.5), but with limiter
li+1/2 = 0 at each cell interface. This upwind method can also be seen as the least achievable
result by the FCT method.

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Exact
FCT

1A

Upwind

Figure 6.10: The numerical solution after 1 period

We are also interested in the numerical results after grid refinement. The results for the ac-
curacy are presented in the table below. As measure for the accuracy of the numerical solution
the Root Mean Squared Error (RMSE) value is used, which is defined by

RMSE =
√

(

∑
i(qi − ci)

2

nc
), (6.18)

where qi and ci is the exact solution and numerical solution respectively for xi. Further is nc
the total number of cells.

Table 6.1: The global error of the numerical solutions

Total grid cells RMSEupwind RMSEFCT RMSEFCT with l = 1

150 0.0435 0.0054 0.0019

300 0.0225 0.0017 0.00049

600 0.0114 0.00052 0.00012

In the final column of the table we find the errors of the FCT method if the limiter is set
equal to 1 at each cell interface. This can also be seen as the best achievable result by the FCT
method. Due to the gradient behavior of the sinusoid this accuracy is not attained as discussed
in the section above. The results in the table are presented in the figure below as the log-RMSE

6.1. ONE-LIMITER FCT APPROACH 73

against the log-∆x.

−1.8 −1.7 −1.6 −1.5 −1.4 −1.3 −1.2 −1.1
−4

−3.5

−3

−2.5

−2

−1.5

−1

log delta x

lo
g

rm
se

Upwind
FCT
Central

Figure 6.11: The error against the gridsize both on logarithmic scale

The slope of each plot indicates the order of accuracy of the numerical methods. For the
upwind implicit method we have a slope of 0.97, i.e. O(h). For the central implicit method we
have a slope equal to 1.99, i.e. O(h2). Though, for the method were we are most interested in
has a slope of 1.7. This implies that the FCT method has no second order accuracy for smooth
solutions as desired and therefore no full potential of the limiter is attained. This decrease in
accuracy is caused by the gradient of the sinusoid which follows from the analysis in the begin-
ning of this section.

Conclusions for smooth solutions

The reason for using a sinusoidal function is that we deal with different types of behavior
in the numerical solution. From these results we can draw accurate conclusions about the FCT
method and furthermore these conclusions can be extended to general smooth solutions. From
the results above we can conclude the following:

• At extremal points the limiter is equal to zero, which has a negative effect on the accuracy.
Even if grid-refinement is applied this problem will be maintained.

• For some parts of the sinusoid the limiter is not ”optimal”, i.e. li+1/2 = 1, hence no
second order accuracy. It seems that in the neighborhood of a maximum and minimum
this drawback is more likely to appear. On the other hand, where the absolute gradient
is maximal the limiter is fully attained (li+1/2 = 1). An explanation can be found in the

rate Q±
i /P

±
i . A larger absolute gradient corresponds with a larger absolute value for Q±

i ,
which implies a higher value for its limiter.

• More improvement in the FCT method must be possible for smooth solutions, since unnec-
essarily smaller values for the limiter are used. The computation of the limiter is mainly
based on the gradient behavior of the intermediate solution c̃n+1. A possibility is to make
the value for Q±

i less sensitive to the gradient of c̃n+1.

74 CHAPTER 6. NUMERICAL RESULTS

We will also present briefly the results for a block-shaped solution. For this case we use again
numerical scheme (6.5) with 150 grid cells(so θ = 0.5 and CFL = 2). We have the following
results

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

The initial solution

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Exact
FCT

1A

Upwind

Figure 6.12: Left: The initial solution. Right: The numerical solution after 1 period for 150
grid cells.

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

l
i+1/2

l
i−1/2

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

l
i+1/2

l
i−1/2

Figure 6.13: The limiters for iteration step 1 and 2 for the first time-step.

In the figures presenting the value for the limiter we notice that the limiter is set equal to 1,
except at the locations where a discontinuity appears in the numerical solution. For these points
the limiter is zero. If a higher value for the limiter would appear at the discontinuity location,
then this would cause wiggles in the numerical solution. Therefore, the first order method must
be applied to prevent non-physically behavior, which is the case since the limiter is zero.

6.1. ONE-LIMITER FCT APPROACH 75

Below we have a table showing the errors of the FCT method and the upwind method,
which can be seen as the least achievable results by the FCT method. The FCT method is
approximately a factor 1.5 better then the upwind method. Though, this statement which is
based on Table 6.2 is only valid for grids from 150 cells to 600 cells.

Table 6.2: The global error of the numerical solutions

Total grid cells RMSEupwind RMSEFCT

150 0.1872 0.1317

300 0.1592 0.1065

600 0.1351 0.0857

Conclusion for block-shaped solutions

Finally we can conclude that for block-shaped solutions the FCT method is performing as
expected with limiter equal to zero in the neighborhood of discontinuities. This means that
around these points the solution is approximated by only first order upwind in order to ensure
positivity and monotonicity.

76 CHAPTER 6. NUMERICAL RESULTS

6.1.2 Method 1B

Below we present the numerical results by method 1B, which uses accumulation. Again the same
parameters are used as in method 1A, i.e. uniform grid, θ = 0.5 and CFL = 2. The numerical
scheme reads

2cn+1,m+1
i − cn+1,m+1

i−1 = bmi + lmi+1/2[
cni − cni+1

2
+

cn+1,m
i − cn+1,m

i+1

2
− gmi,i+1] +

lmi−1/2[
cni − cni−1

2
+

cn+1,m
i − cn+1,m

i−1

2
− gmi,i−1], (6.19)

with

bmi = bm−1
i + lm−1

i+1/2[
cni − cni+1

2
+

cn+1,m−1
i − cn+1,m−1

i+1

2
− gm−1

i,i+1] +

lm−1
i−1/2[

cni − cni−1

2
+

cn+1,m−1
i − cn+1,m−1

i−1

2
− gm−1

i,i−1], with b0i = c̃n+1
i (6.20)

and

gmi,i±1 = gm−1
i,i±1 + lm−1

i±1/2[
cni − cni±1

2
+

cn+1,m−1
i − cn+1,m−1

i±1

2
− gm−1

i,i±1], g0i,i±1 = 0. (6.21)

For the following results we use the same sinusoidal function as before for the initial condi-
tion c0. The results are compared with the exact solution and with the implicit upwind scheme,
i.e. li±1/2 = 0 for every cell interface.

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Exact
FCT

1B

Upwind

Figure 6.14: The numerical solution after 1 period for 150 grid cells

6.1. ONE-LIMITER FCT APPROACH 77

Below we have the corresponding limiters at the first time step

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

l
i+1/2
1

l
i+1/2
2

Figure 6.15: The limiter for the first and second iteration for the first time-step

We notice from the figure above that the limiter is improved after 2 iterations. Though, the
limiters correspond in this case to the flux differences ∆fm

i+1/2 instead of the usual fluxes fm
i+1/2.

According to the figure above we have for the final iteration (m=2 due to stop criterion) no lim-
iting of the flux difference, except at extremal points. An explanation that for later iterations
(in this case only the second iteration) the flux corrections ∆fm

i±1/2 are almost fully allowed, is
because the corrections become smaller in magnitude for each iteration step.

In Table 6.3 we find the results for method 1B and other numerical methods after refining
the grid.

Table 6.3: The global error of the numerical solutions after 1 period

Total grid cells RMSEupwind RMSEFCT RMSEFCT

method 1B method 1A

150 0.0435 0.0035 0.0054

300 0.0225 0.0011 0.0017

600 0.0114 0.00034 0.00052

78 CHAPTER 6. NUMERICAL RESULTS

Based on the previous table we present the log-error against the log-grid size

−1.8 −1.7 −1.6 −1.5 −1.4 −1.3 −1.2 −1.1
−3.5

−3

−2.5

−2

−1.5

−1

Upwind
FCT

1A

FCT
1B

Figure 6.16: The error against the grid-size both on logarithmic scale

By the figure above we can compare the results on basis of their order of accuracy. The
order of accuracy is equal to the slope of each plot. The slopes are equal to 0.97, 1.7 and 1.7 for
upwind, method 1A and method 1B respectively. Method 1A and 1B have the same order of
accuracy, but according to Table 6.3 the errors are for the latter method approximately a factor
1.5 lower than the former method.

6.1. ONE-LIMITER FCT APPROACH 79

Next we present the results for the block-shaped solution by method 1B compared to 1A.
Together with the exact solution also the implicit upwind solution is shown. Further we have
also given the limiters for the first time step.

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Exact
FCT

1A

Upwind
FCT

1B

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

l
i+1/2
1

l
i+1/2
2

Figure 6.17: Left: The numerical solution after 1 period for 150 grid cells. Right: The limiters
for iteration step 1 and 2 for the first time-step.

In the figure to the left we see that the numerical solution by method 1B is slightly better
than method 1A. The limiter is as expected, with only zero values at the discontinuities. In Table
6.4 we present the errors for method 1B compared to other numerical methods after refining the
grid. The errors confirm that method 1B is more accurate.

Table 6.4: The global error of the numerical solutions after 1 period

Total grid cells RMSEupwind RMSEFCT RMSEFCT

method 1B method 1A

150 0.1872 0.1150 0.1317

300 0.1592 0.0933 0.1065

600 0.1351 0.0754 0.0857

Conclusions

• For both the smooth and non-smooth solution we get a higher accuracy for the FCT
solution by method 1B compared with the results for method 1A. For the sinusoid the
errors by method 1B are approximately a factor 1.5 lower than method 1A and for the
block-shaped situation the errors are approximately 1.2 lower. Though, the methods have
for smooth solutions the same order of accuracy.

• An important aspect of method 1B for smooth solutions is that as the number of iterations
increases the flux differences become less limited, so that more correction is allowed. This
is a consequence of the decrease in magnitude of the correction terms for each iteration
step.

• Also with method 1B we have zero limiter at extremal points for smooth solutions.

80 CHAPTER 6. NUMERICAL RESULTS

6.1.3 Improving method 1A

In the conclusion for method 1A applied on a sinusoidal function we mentioned that the limiter
is highly dependent on the gradient behavior of the intermediate solution c̃n+1. A possible rem-
edy for this problem is to make the values for Q±

i less sensitive to the gradient of c̃n+1. In the
definition we have that Q±

i depends only on c̃n+1
i , so one can also include other solutions in the

computation for Q±
i , which is the allowed flux increase/decrease. Since this is an approximation

for the actual allowed flux increase/decrease (which is unknown) this new approach seems an
acceptable alternative. In this new approach we let the computation for Q±

i depends also on
cni , so Q±

i will be less sensitive to the gradient behavior of the intermediate solution. This new
approach is defined by

New approach:

cmax
i = max

i−1,i,i+1
[max(cnj , c̃

n+1
j)], (6.22)

cmin
i = min

i−1,i,i+1
[min(cnj , c̃

n+1
j)]. (6.23)

The old approach is:

cmax
i = max

i−1,i,i+1
c̃n+1
j , (6.24)

cmin
i = min

i−1,i,i+1
c̃n+1
j . (6.25)

Below we show the effect of the new approach, implemented in method 1A, on the limiter. For
comparison the old approach is given.

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

l2
i+1/2

l1
i+1/2

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

l2
i+1/2

l1
i+1/2

Figure 6.18: The limiters for iteration step 1 and 2 for the first time-step. Left: old approach,
Right: new approach

From the figures above we clearly notice that for the new approach the limiter is improved after
two iterations. Compared to the old approach we have a better limiter after two iterations. In

6.1. ONE-LIMITER FCT APPROACH 81

the table below we give the errors of this new approach compared to the other numerical methods.

Table 6.5: The global error of the numerical solutions after 1 period

Total grid cells RMSEFCT RMSEFCT RMSEFCT RMSEFCT

1A: old approach 1A: new approach method 1B 1A: with l = 1

150 0.0054 0.0032 0.0035 0.0019

300 0.0017 0.00097 0.0011 0.00049

600 0.00052 0.00030 0.00034 0.00012

The new approach leads to a significantly better solution than the old approach. The errors are
even lower than method 1B. The final column represents the lowest achievable error by the FCT
method. In the figure below we plot the numerical solution for this new approach.

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Exact
FCT

1A
 New

Upwind

Figure 6.19: Numerical solutions after 1 period for 150 grid cells

Based on the table above we are able to plot the error against the grid-size on logarithmic scale
in order to determine the order of accuracy for each method in Table 6.5

82 CHAPTER 6. NUMERICAL RESULTS

−1.8 −1.7 −1.6 −1.5 −1.4 −1.3 −1.2 −1.1
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Upwind
FCT

1A
 OLD

FCT
1A

 NEW

FCT
1B

Central

Figure 6.20: The error against the grid-size both on logarithmic scale

In the picture above we can compare the numerical methods against each other. The results
by method 1A and 1B (”central” excluded) seems to have similar order of accuracy, which can
be observed from the slope of each plot. The slopes for these methods are indeed equal. They
have a slope of 1.7, hence no second order accuracy. The upwind and central method (1A with
l = 1) have a slope of 0.97 and 1.99 respectively. Based on these results we prefer method 1A
with the new approach above method 1B.

Next we apply the new approach to the block-shaped solution. The results are given below.

Table 6.6: The global error of the numerical solutions after 1 period

Total grid cells RMSEFCT RMSEFCT RMSEFCT

1A: old approach 1A: new approach method 1B

150 0.1317 0.1156 0.1150

300 0.1065 0.0936 0.0933

600 0.0857 0.0755 0.0754

6.1. ONE-LIMITER FCT APPROACH 83

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Exact
FCT

1A
 New

Upwind

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

l
i+1/2
1

l
i+1/2
2

Figure 6.21: Left: The numerical solution by the new approach for 150 grid cells. Right: The
limiters for iteration step 1 and 2 for the first time step.

Also for the block-shaped solution we get a higher accuracy by the new approach compared
to the old approach, but similar to method 1B. Based on these results the methods in the final
two columns of Table 6.6 can be chosen. The same holds for the sinusoidal case. For the limiter
based on the new approach (Figure 6.21) we see no difference in comparison with the limiter
based on the old approach (Figure 6.13). The limiter gives values equal to 1 except at the
discontinuities where the limiter is zero.

Conclusions

• Method 1A (both approaches) has the same order of accuracy as method 1B.

• Method 1A with the new approach for cmax
i and cmin

i gives similar results (errors) as method
1B.

84 CHAPTER 6. NUMERICAL RESULTS

6.1.4 Variable and different theta

The results we have seen so far are valid for θ = 0.5 on the whole domain for both the first-order
method as the high-order method. According to the analysis in Section 4.3.4 where we derived
the modified equation, we know that for this choice of theta the theta scheme with central dis-
cretization has zero numerical diffusion. The only numerical diffusion for the FCT scheme is
caused by the upwind method.

Remember the numerical fluxes which where defined according to Section 5.1.1 by

Fi−1/2 = (1− θi−1/2)[FL(c
n
i−1/2) + li−1/2(FH(cni−1/2)− FL(c

n
i−1/2))]

+ θi−1/2[FL(c
n+1
i−1/2) + li−1/2(FH(cn+1

i−1/2)− FL(c
n+1
i−1/2))]

= (1− θi−1/2)[(1− li−1/2)FL(c
n
i−1/2) + li−1/2FH(cni−1/2)]

+ θi−1/2[(1− li−1/2)FL(c
n+1
i−1/2) + li−1/2FH(cn+1

i−1/2)] (6.26)

This formulation for the fluxes shows that a convex combination is used between the first-order
and high-order method. Hence, this will also holds for the numerical diffusion terms of both
methods. These artificial diffusion terms are given in the modified equations given in Section
4.3.4. For the theta-scheme with first-order fluxes we have a numerical diffusion given by

u∆x

2
(1− (1− 2θ)

u∆t

∆x
). (6.27)

For the theta-scheme with central fluxes we have

(θ − 1

2
)u2∆t. (6.28)

Using a convex combination of both numerical diffusion terms (6.27) and (6.28) we get the nu-
merical diffusion for the implicit FCT scheme with central fluxes for FH

(1− l)[
u∆x

2
(1− (1− 2θ)

u∆t

∆x
)] + l(θ − 1

2
)u2∆t =

(1− l)
u∆x

2
+ (θ − 1

2
)u2∆t. (6.29)

From the RHS in Expression (6.29) we see that for θ = 0.5 and l = 1 the artificial diffusion
is zero. Since it is hard to get maximal limiter on the whole domain by the FCT method, i.e.
li−1/2 = 1, we have that the numerical diffusion caused by the upwind method is always present,
unless θ = 0 with CFL = 1. Though, the amount of numerical diffusion by upwind can be
reduced by the numerical diffusion term of the central method for θ < 0.5. If the reduction by
the latter term is too large then the summed numerical diffusion becomes negative, which is
in this case called anti-diffusion. For θ > 0.5 there will occur only smearing of the numerical
solution, because the numerical diffusion is in this case always positive.

In the figures below we present the numerical diffusions by Equations (6.27)-(6.29) as func-
tion of theta and CFL respectively. The results in the figure below are presented under the

6.1. ONE-LIMITER FCT APPROACH 85

condition θ = max{1− 1
CFL , 0} (see also (5.7)).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.05

0

0.05

0.1

0.15

theta

DiffUpw
DiffCen
DiffFCT with l = 0.5

0 1 2 3 4 5
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

cfl

DiffUpw
DiffCen
DiffFCT with l = 0.5

Figure 6.22: Left: The numerical diffusion as function of theta and CFL respectively

In the left figure we see that the numerical diffusion is an increasing function of theta. In the
right figure we present the numerical diffusion as function of the CFL number. For both figures
hold that for small values of the limiter the numerical diffusion graph of the FCT method is
closer or equal (l = 0) to the graph of the upwind method, while for larger values it is closer or
equal (l = 1) to the graph of the central approach. Further, from each plot we can see for which
values of theta or CFL the numerical diffusion is zero or positive.

Below we see the results for the numerical solution for different values of theta. For method 1A
we use the new approach given in the previous section. As initial condition we use a combination
of a sinusoid and a block-shaped solution.

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Exact
θ = 0.5
θ = 1/3
θ = 0.6

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Exact
θ = 0.5
θ = 1/3
θ = 0.6

Figure 6.23: Numerical solution after 1 period by method 1A and 1B respectively. Total cells
used: 150. θ = 1/3 and θ = 0.6 corresponds respectively with CFL = 1.5 and CFL = 2.5.

We indeed have for θ < 0.5 smearing of the numerical solution, while for θ > 0.5 we deal
with anti-diffusion. This anti-diffusion is causing a block-shaped numerical solution which is
only in favor of the block-part. Despite of this negative effect to the sinusoidal part we obtain

86 CHAPTER 6. NUMERICAL RESULTS

nevertheless the lowest RMSE-error for θ = 1.3. This holds for both methods.

Actually, the present of anti-diffusion is not desired, especially for initial conditions contain-
ing a smooth part. Therefore we introduce another approach by using different theta values for
the upwind and the central method. For the central method we take θ = 0.5 fixed so that the
numerical diffusion caused by this method is zero, while the theta value for the upwind method
is defined by Equation (5.7). In this case we deal only with non-negative numerical diffusion for
the FCT scheme, hence no anti-diffusion. According to this approach we have that the numerical
diffusion term for the FCT scheme is now defined by

(1− l)
u∆x

2
(1− (1− 2θ)

u∆t

∆x
). (6.30)

In the figure below we compare the numerical diffusion of (6.30) with the numerical diffusion of
(6.29). Again under the condition θ = max{1− 1

CFL , 0}.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.05

0

0.05

0.1

0.15

theta

DiffFCT equal theta l = 1
DiffFCT different theta l = 1
DiffFCT equal theta l = 0.5
DiffFCT different theta l = 0.5
DiffFCT equal theta l = 0.2
DiffFCT different theta l = 0.2

0 1 2 3 4 5
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

cfl

DiffFCT equal theta l = 1
DiffFCT different theta l = 1
DiffFCT equal theta l = 0.5
DiffFCT different theta l = 0.5
DiffFCT equal theta l = 0.25
DiffFCT different theta l = 0.25

Figure 6.24: Left: The numerical diffusion as function of theta and CFL respectively

In the figures above we present the results for different values for the limiter. We see that
(6.30) and (6.29) are equal for θ = 0.5 and CFL = 2. For larger values than these “intersection
points” the different theta approach leads to a lower amount of numerical diffusion than with
equal theta for FL and FH .

The fluxes differences ∆fm
i,i±1 in method 1A are now defined by

∆fm
i,i±1 = ∓ ∆t

∆xi
[
1

2
FH(cni , c

n
i±1)− (1− θi±1/2)FL(c

n
i , c

n
i±1)

+
1

2
FH(cn+1,m

i , cn+1,m
i±1)− θi±1/2FL(c

n+1,m
i , cn+1,m

i±1)].

For method 1B holds a similar formulation for the flux differences which we will not mention here.
With this new formulation for ∆fm

i,i±1 we obtain other results as Figure 6.25 below demonstrates.

The numerical solutions in Figure 6.23 and Figure 6.25 are equal for θ = 0.5 (CFL = 2) as
Figure 6.24 indicates. For θ = 1/3 we have no block-shaped numerical solution since no anti-
diffusion is available. Instead we have smearing of the numerical solution. For θ = 0.6 we

6.1. ONE-LIMITER FCT APPROACH 87

expect more accurate results with different theta for FH and FL, since the presence of numer-
ical diffusion is now only caused by the upwind method (see also Figure 6.24). At first sight
both results by method 1A seems equal, but the RMSE-error is for Figure 6.25 slightly lower
(0.223495 against 0.223503). According to Figure 6.24 the different theta approach must be
more accurate. For method 1B we get also more accurate results for θ = 0.6 compared with the
situation in Figure 6.23, but the differences are for method 1B much larger.

Another important result is that more accurate results are obtained with method 1B than
with method 1A. So with the different theta approach for FL and FH the former method is
preferred.

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Exact
θ = 0.5
θ = 1/3
θ = 0.6

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Exact
θ = 0.5
θ = 1/3
θ = 0.6

Figure 6.25: Numerical solution after 1 period by method 1A and 1B respectively. Total cells
used: 150. θ = 1/3 and θ = 0.6 corresponds respectively with CFL = 1.5 and CFL = 2.5.

88 CHAPTER 6. NUMERICAL RESULTS

Non-uniform grid

In Chapter 5 we used in the definition of the flux difference ∆fm
i,i±1 a local theta value per

flux, which means that we can have a variable theta over the domain of interest. Variable theta
only occurs for non-uniform grids. For uniform grids we know that the theta values are constant
due to the cell size which is equal everywhere. Below we present the numerical results with
central fluxes for FH on a non-uniform grid. Further, we use the different theta approach for
FL and FH discussed above such that anti-diffusion is avoided.

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Exact
θ

[0,5]
 = 0.5, θ

[5,10]
 = 0

θ
[0,5]

 = 1/3, θ
[5,10]

 = 0

θ
[0.5]

 = 0.6, θ
[5,10]

 = 0.2

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Exact
θ

[0,5]
 = 0.5, θ

[5,10]
 = 0

θ
[0,5]

 = 1/3, θ
[5,10]

 = 0

θ
[0.5]

 = 0.6, θ
[5,10]

 = 0.2

Figure 6.26: Numerical solutions after 1 period by method 1A and 1B respectively. Non-uniform
grid with 100 cells on [0,5] and 50 cells on [5,10]

In the figure above we present the results for different CFL values. On the domain [0,5] we
have (following the legend in the figures) respectively CFL = 2, CFL = 1.5 and CFL = 2.5,
whereas on [5,10] the CFL values are CFL = 1, CFL = 0.75 and CFL = 1.25 respectively. For
the non-uniform case we obtain more accurate results than the uniform case given in Figure 6.25,
especially for method 1B (right figures). For method 1A (left figures) this is confirmed by the
RMSE-error: 0.1287, 0.1140 and 0.2235 in Figure 6.25 against 0.737, 0.0984 and 0.1594 in Fig-
ure 6.26. Note that the values for theta belong to FL, since for FH the theta value is equal to 0.5.

Again we noticed that method 1B leads to higher accuracy compared with method 1A, which
we already observed for the uniform case (Figure 6.22).

An important aspect for the non-uniform case with different theta for FL and FH is that for
theta equal to zero the implicit part of the numerical scheme is constantly present due to theta
for FH which is equal to 0.5 (see also the flux formulation given in this section). So the numerical
solution at the new time-level is always included in the computation. This means for the figure
above that for those locations where theta is equal to zero an implicit scheme is used, whereas
normally for θ = 0 we have an explicit time scheme. So, for different theta for FL and FH

applied on a non-uniform grid we always deal with an implicit numerical method.

For the non-uniform case we can apply instead of central fluxes also another high-order flux
function FH in method 1A and 1B. This is done by using Lax-Wendroff flux correction for FH

when θ = 0 and central correction for FH when θ > 0. This approach is chosen since for θ = 0
the numerical diffusion for Lax-Wendroff fluxes is equal to zero (see also Section 4.3.4). Lax-

6.1. ONE-LIMITER FCT APPROACH 89

Wendroff fluxes for FH are inserted in (6.26) and are defined by

FH(cni , c
n
i−1) = ucni−1 +

1

2
u(cni − cni−1)(1− u

∆t

∆xi
). (6.31)

This procedure is only possible with equal theta for FL and FH . We know from above that
with the different theta approach the numerical scheme is always implicit and because of that a
Lax-Wendroff flux correction is not suitable. Moreover, this approach would lead to a numerical
scheme with Lax-Wendroff flux correction at the old time level and central discretization at the
new time-level, which might be mathematically not a valid numerical method.

From here we get the following results

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Exact
θ

[0,5]
 = 0.5, θ

[5,10]
 = 0

θ
[0,5]

 = 1/3, θ
[5,10]

 = 0

θ
[0.5]

 = 0.6, θ
[5,10]

 = 0.2

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Exact
θ

[0,5]
 = 0.5, θ

[5,10]
 = 0

θ
[0,5]

 = 1/3, θ
[5,10]

 = 0

θ
[0.5]

 = 0.6, θ
[5,10]

 = 0.2

Figure 6.27: Numerical solutions after 1 period by method 1A and 1B respectively. Non-uniform
grid with 100 cells on [0,5] and 50 cells on [5,10].

In the figure above we present the results for different CFL values. On the domain [0,5] we
have (following the legend in the figures) respectively CFL = 2, CFL = 1.5 and CFL = 2.5,
whereas on [5,10] the CFL values are CFL = 1, CFL = 0.75 and CFL = 1.25 respectively. For
the numerical solution with θ = 0.5 and θ = 0 we get a smooth solution, since we only have
positive numerical diffusion caused by the first-order upwind method. The numerical diffusion
caused by FH is on both domains equal to zero due to the corresponding theta value. For the
other two cases in the figure above the smoothness is destroyed by the presence of anti-diffusion
(see also (6.29)).

The approach with Lax-Wendroff flux correction for θ = 0 and central flux correction for θ > 0
is only suitable for cell boundaries with θ = 0 or cell boundaries with θ ≥ 0.5 since then only
numerical diffusion appears in the solution. So we can try the following strategy. For cells with
θ = 0 we use Lax-Wendroff fluxes for FH . For cells with θi±1/2 > 0 we use central fluxes for FH

and increase the theta value to a minimum of 0.5, i.e.

θi±1/2 := max{0.5, θi±1/2}. (6.32)

In this case we only have smearing of the numerical solution. Below we present the results

90 CHAPTER 6. NUMERICAL RESULTS

according to this strategy for the situations given in Figure 6.27.

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Exact
CFL

[0,5]
 = 2, CFL

[5,10]
 = 1

CFL
[0,5]

 = 1.5, CFL
[5,10]

 = 0.75

CFL
[0.5]

 = 2.5, CFL
[5,10]

 = 1.25

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Exact
CFL

[0,5]
 = 2, CFL

[5,10]
 = 1

CFL
[0,5]

 = 1.5, CFL
[5,10]

 = 0.75

CFL
[0.5]

 = 2.5, CFL
[5,10]

 = 1.25

Figure 6.28: Numerical solutions after 1 period by method 1A and 1B respectively. Non-uniform
grid with 100 cells on [0,5] and 50 cells on [5,10].

We indeed obtain according to (6.32) smooth solutions. By raising the value of theta to a
minimum of 0.5 we get the anti-diffusion replaced by numerical diffusion. For the numerical
solution with CFL = 2 and CFL = 1 (θ = 0.5 and θ = 0) we maintain the same result as in
Figure 6.27.

The same strategy (6.32) can also be applied with central fluxes for θi±1/2 = 0 instead of
Lax-Wendroff fluxes. Remember from this section above that we applied central fluxes with
different theta for FL and FH in order to prevent the presence of anti-diffusion (see also Fig.
6.26). In this new situation we use an equal theta for FL and FH and by using the strategy
above for cells with θi±1/2 ∈ [0, 0.5) we have another approach to avoid anti-diffusion. From
here we obtain the following results

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Exact
CFL

[0,5]
 = 2, CFL

[5,10]
 = 1

CFL
[0,5]

 = 1.5, CFL
[5,10]

 = 0.75

CFL
[0.5]

 = 2.5, CFL
[5,10]

 = 1.25

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Exact
CFL

[0,5]
 = 2, CFL

[5,10]
 = 1

CFL
[0,5]

 = 1.5, CFL
[5,10]

 = 0.75

CFL
[0.5]

 = 2.5, CFL
[5,10]

 = 1.25

Figure 6.29: Numerical solutions after 1 period by method 1A and 1B respectively. Non-uniform
grid with 100 cells on [0,5] and 50 cells on [5,10].

The numerical solutions we obtain are of similar accuracy as the results in Figure 6.28. But

6.1. ONE-LIMITER FCT APPROACH 91

the different theta approach leads to higher accuracy as Figure 6.26 demonstrates.

Conclusions

• By using a different theta for FL and FH we can avoid anti-diffusion in the numerical
solution, but note that the numerical scheme is always implicit, even for θ = 0.

• The different theta approach for the FCT scheme is only useful for θ > 0.5 or CFL > 2,
since in this case the numerical diffusion is smaller than the numerical diffusion by the
approach with equal theta.

• The one-limiter FCT methods can also be applied on non-uniform grids in order to obtain
more accuracy.

• By using Lax-Wendroff fluxes instead of central fluxes for FH if θi±1/2 = 0 and raising the
theta value to a minimum of 0.5 for cells with θ > 0, we have another approach to obtain
accurate results. This strategy of raising the value for theta can also be applied for central
fluxes only. Both approaches give similar results.

92 CHAPTER 6. NUMERICAL RESULTS

6.2 Two-limiter FCT approach

Below we present the results according to method 2A and method 2B. Remember that the
number 2 stands for the two-limiter approach. The difference with the previous section is that
flux-limiting is done separately at the old and at the new time level. The results are based on
the 1D water quality model (6.1) with periodic boundary conditions given in the beginning of
this chapter.

6.2.1 Constant theta

For the first results we use a sinusoidal function as initial condition. For the low-order fluxes
FL we take first-order upwind and for the high-order fluxes FH we take central discretization.
Furthermore, we use in the mentioned methods CFL = 2 (θ = 0.5) on a uniform grid. We know
that for this CFL number the numerical diffusion caused by central discretization is zero. We
get the following results

Table 6.7: The global error of the numerical solutions after 1 period

Total grid cells RMSEFCT RMSEFCT RMSEFCT RMSEFCT RMSEFCT

1A: old approach 1A: new approach method 1B method 2A method 2B

150 0.0054 0.0032 0.0035 0.0035 0.0049

300 0.0017 0.00097 0.0011 0.0011 0.0016

600 0.00052 0.00030 0.00034 0.00033 0.00050

Besides the two-limiter approaches also the results by the one-limiter methods are given for
comparison purposes. Method 2A give results that are similar as method 1A (new approach).
For method 2A the alternative approach for cmax

i and cmin
i is used (see also Section 6.1.3).

Method 2B seems to be even of similar accuracy as method 1A (old approach), which is the
lowest accurate method.

Below we present the numerical results according to method 2 and their corresponding lim-
iters

6.2. TWO-LIMITER FCT APPROACH 93

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Exact
FCT

2A

Upwind

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Exact
FCT
Upwind

Figure 6.30: Numerical solution after 1 period. Total cells used 150. Left: Method 2A. Right:
Method 2B

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

l
i+1/2
n

l
i+1/2
n+1,1

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

l
i+1/2
n

l
i+1/2
n+1,1

Figure 6.31: The limiter for the first time step. Left: Method 2A. Right: Method 2B

The figures show accurate results with the two-limiter approach. For the limiters at the first
time step we notice that its value is equal to 1 except in the neighborhood of extremal points of
the solution.

For a block-shaped initial condition under the conditions described above (CFL = 2, etc.) we
have the following global errors

Table 6.8: The global error of the numerical solutions after 1 period

Total grid cells RMSEFCT RMSEFCT RMSEFCT RMSEFCT RMSEFCT

1A: old approach 1A: new approach method 1B method 2A method 2B

150 0.1317 0.1156 0.1150 0.1153 0.1150

300 0.1065 0.0936 0.0933 0.0935 0.933

600 0.0857 0.0755 0.0754 0.0754 0.0754

For this situation we have by method 2A similar results as method 1A (new approach),

94 CHAPTER 6. NUMERICAL RESULTS

which we also have seen with the sinusoid. For method 2B we get similar accuracy as method
1B, which is different in comparison with the sinusoidal case. Again the new approach for cmax

i

and cmin
i (see Section 6.1.3) is applied to method 2A.

Below we have the numerical results according to method 2 and their corresponding limiters

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Exact
FCT

2A

Upwind

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Exact
FCT

2B

Upwind

Figure 6.32: Numerical solution after 1 period. Total cells used 150. Left: Method 2A. Right:
Method 2B

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

l
i+1/2
n

l
i+1/2
n+1,1

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

l
i+1/2
n

l
i+1/2
n+1,1

Figure 6.33: The limiter at the first time step. Left: Method 2A. Right: Method 2B

Also for this case we get accurate results with the two-limiter approach. Furthermore the
limiter is almost everywhere equal to 1 as expected. Only in the neighborhood of discontinuities
we get zero limiter.

Conclusion

The results according to the two-limiter approach are not improved compared with the re-
sults by the one-limiter approach. Method 2A is of similar accuracy as method 1A (both with
the new approach), whereas method 2B gives at most equal results as method 1B.

6.2. TWO-LIMITER FCT APPROACH 95

In the rest of this section we will apply the methods 2A and 2B for different (but constant)
values for theta. The results will be presented for an initial condition containing a sinusoid and
a block shape as we have seen in Section 6.1.4. For the high-order flux function FH we will use
central discretization. Again the new approach for cmax

i and cmin
i (see Section 6.1.3) is applied

to method 2A. We have the following numerical results

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Exact
θ = 0.5
θ = 1/3
θ = 0.6

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Exact
θ = 0.5
θ = 1/3
θ = 0.6

Figure 6.34: Numerical solution after 1 period. Total cells used 150. Left: Method 2A. Right:
Method 2B

From the figures above we note that method 2A and 2B give similar results. Furthermore,
the numerical solutions above are similar as the solutions by the one-limiter approach (see also
Figure 6.23).

6.2.2 Variable theta

In this section we continue with the previous example and apply the two-limiter approach dis-
cussed in Section 5.2 on a non-uniform grid. On the domain [0,5] we take 100 cells and on the
domain [5,10] we take 50 cells. The methods are applied only for θi±1/2 ≥ 0.5, so that only
smearing of the solution takes place, i.e. positive numerical diffusion. This means that for cell
boundaries with θi±1/2 ∈ [0, 0.5) we increase the theta value to a minimum of 0.5 by

θi±1/2 := max{0.5, θi±1/2}. (6.33)

If this strategy is not applied, then for the lower values of theta (θi±1/2 ∈ [0, 0.5)) we deal with
both numerical diffusion and anti-diffusion which can reduce the accuracy of the numerical so-
lution. With central fluxes for FH we get the following results

96 CHAPTER 6. NUMERICAL RESULTS

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Exact
CFL

[0.5]
 = 2.5, CFL

[5,10]
 = 1.25

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Exact
CFL

[0.5]
 = 2.5, CFL

[5,10]
 = 1.25

Figure 6.35: Numerical solution after 1 period. Non-uniform grid with 150 cells. Left: Method
2A. Right: Method 2B

From the results above we see that the strategy approach (6.33) leads to reasonable results.
An explanation is that a large amount of numerical diffusion is introduced with (6.33). The
two-limiter approach gives unfortunately only with CFL > 2 for the smallest cell(s) a reasonable
accuracy. With lower values for the smallest cell(s) inaccurate results are obtained.

Conclusions

• On a uniform grid we get accurate results by the two-limiter approach. The results are
similar as the one-limiter approach.

• On a non-uniform grid inaccurate results are obtained with the two-limiter approach. Only
if a CFL > 2 is used for the smallest cell(s) then we get a reasonable accuracy.

Chapter 7

Conclusions

In this thesis we discussed the water quality model and treated some important numerical meth-
ods for solving the corresponding equations, the advection-diffusion-reaction equations. The
objective for this thesis was to obtain a robust (accurate and stable) and fast method for solving
these equations, where the focus is on the advection part. This because the advection part of
the partial differential equation is causing most difficulties for numerical methods.

The Water Quality Model (WQM) is discretized by the Finite Volume Method (FVM) to obtain
a discrete model. One particular technique we used for the spatial discretization was the Flux
Corrected Transport (FCT) method which is a flux limiter approach. The FCT method is able
to reduce sufficiently well the non-physically behavior (wiggles) of the numerical solution near
discontinuities caused by steep gradients in the concentration. Furthermore, the WQM model is
solved by an implicit time scheme to allow larger time steps in the computation of the solution,
especially for the smaller gridcells. In combination with the FCT method one can obtain in an
efficient way an accurate numerical solution. Two important properties of the FCT method are
that positivity and monotonicity of the solution are preserved. Below we discuss the results that
we obtained with an implicit FCT approach applied to the advection equation.

We used a local theta-scheme as time discretization in combination with the FTC method
for the spatial discretization. From here a non-linear equation is obtained which is solved by
an iterative procedure. We presented two different main approaches, the one-limiter approach
and the two-limiter approach. In the former method the limiter is based on the fluxes at the
old and new time level together, whereas the latter one applies the limiting of fluxes on both
time levels separately. Since the two-limiter approach leads only for a uniform grid to satisfac-
tory results for the numerical solution, the one-limiter approach is used since this one is more
accurate. Besides, non-uniform grids are also very important and for this case only the one-
limiter approach is appropriate for. Below we discuss the results for only the one-limiter method.

For the computation of the limiter values the FCT method looks at the gradient behavior
in the concentration profile in order to apply the proper spatial discretization, i.e. high order
method for smooth parts and first order method for parts with steep gradients. From the test
results we observed that the ordinary FCT method (method 1A) can not deal in an optimal way
with the gradient behavior of the solution, especially at extremal points. Therefore we looked
at another possibility to tackle this problem. By including the numerical solution cn at the old
time level in the computation of the limiter we noticed that the accuracy is improved compared
with the former approach.

97

98 CHAPTER 7. CONCLUSIONS

Further, we also looked at an approach which uses accumulation (method 1B) in the itera-
tion procedure by adding for each iteration step a flux correction to the intermediate solution
c̃n+1. Also for this case we obtain higher accuracy than the ordinary FCT approach, since the
numerical solution is for each time step corrected as much as possible. This method with accu-
mulation is based on the algorithm of Kuzmin et al. 2004 [6] and is another good alternative to
obtain an improved numerical solution.

On a uniform grid with constant theta the accumulated method is similar in accuracy as the
improved FCT method mentioned earlier. On a uniform grid with different theta for the high-
order flux FH and for the low-order flux FL we obtained higher accuracy with the accumulated
method than method 1A. The different theta approach for FH and FL is introduced in order to
reduce the amount of numerical diffusion for θ > 0.5. On a non-uniform grid with the different
theta approach we also get higher accuracy with the accumulated FCT method. Using for non-
uniform grids equal theta for FH and FL is only useful if theta is raised to a minimum of 0.5
since then anti-diffusion is avoided. Though, for this case we get similar accuracy for the accu-
mulated method and the ordinary method. Method 1B and the improved version of method 1A
lead both under several circumstances to sufficient accuracy for the numerical solution and are
therefore recommended, but method 1B is for non of the cases less than method 1A (improved
version).

For the efficiency of the solution methods on the other hand, we know that by raising the
value for the CFL larger time steps can be used. But we have seen that the numerical diffusion
of the numerical schemes is increasing with the CFL value, hence a decrease of the accuracy. So
a faster solution method is only appropriate to a certain extent. An approach for this problem is
not to use a relatively large amount of very small cells in the grid-domain, since for these small
cells a large CFL value is required for higher efficiency.

Chapter 8

Recommendations

In this section we will discuss several cases that can be taken for further research. First we
mention one recommendation for the methods used in this thesis and next we present some
complex problems for which the FCT method can be applied to.

First of all, the “improved” and “accumulated” FCT methods (one-limiter approach) can be
optimized for (especially) smooth functions. In the neighborhood of extremal points the limiter
values are unnecessary low, so obtaining more accuracy must be possible.

Further, the implicit FCT scheme must be applied to the two-dimensional advection equation
to observe the effect on the numerical solution. Keeping the practical situations in mind, it is
important to extend both the ”improved” and ”accumulated” FCT method to multi-dimensional
problems.

Finally, one can include source terms and/or diffusion terms to the advection equation. As
mentioned in the second chapter, the WQM includes water quality processes, so it is important
to include these source terms in the numerical model. The sources can be either slow or fast
processes, but this should not be a problem if the local theta scheme is used.

99

100 CHAPTER 8. RECOMMENDATIONS

Appendix A

Matlab codes

A.1 Limiter by Zalesak

function [l_rechtsNew, l_linksNew, DeltaF_rechts,DeltaF_links] = ...\\

limiter(DeltaF_rechts,DeltaF_links,C,Ctilde)

%l_rechtsNew = limiter at rigth boundary

%l_linksNew = limiter at left boundary

%DeltaF_rechts = flux difference at rigth boundary

%DeltaF_links = flux difference at left boundary

%Ctilde = intermediate solution

%C = solution at previous timestep or intermediate solution

%prelimiting

for i = 1:length(C)-1

if (DeltaF_rechts(i)*(Ctilde(i)-Ctilde(i+1))<=0)

DeltaF_rechts(i) = 0;

end

end

if (DeltaF_rechts(length(C))*(Ctilde(length(C))-Ctilde(1))<=0)

DeltaF_rechts(length(C)) = 0;

end

if (DeltaF_links(1)*(Ctilde(1)-Ctilde(length(C)))<=0)

DeltaF_links(1) = 0;

end

for i = 2:length(C)

if (DeltaF_links(i)*(Ctilde(i)-Ctilde(i-1))<=0)

DeltaF_links(i) = 0;

end

end

cmax = max(C’,Ctilde’);

cmin = min(C’,Ctilde’);

cmaxNew(1) = max([cmax(length(C)),cmax(1),cmax(2)]);

cminNew(1) = min([cmin(length(C)),cmin(1),cmin(2)]);

for i = 2:length(C)-1

cmaxNew(i) = max([cmax(i-1),cmax(i),cmax(i+1)]);

101

102 APPENDIX A. MATLAB CODES

cminNew(i) = min([cmin(i-1),cmin(i),cmin(i+1)]);

end

cmaxNew(length(C)) = max([cmax(length(C)-1),cmax(length(C)),cmax(1)]);

cminNew(length(C)) = min([cmin(length(C)-1),cmin(length(C)),cmin(1)]);

PplusNew = max(0,DeltaF_links)+max(0,DeltaF_rechts);

PminNew = min(0,DeltaF_rechts)+min(0,DeltaF_links);

QplusNew = cmaxNew-Ctilde;

QminNew = cminNew-Ctilde;

RplusNew = zeros(1,length(C));

RminNew = zeros(1,length(C));

for i = 1:length(C)

if PplusNew(i) > 0

RplusNew(i) = min(1,(QplusNew(i)/(PplusNew(i))));

else

RplusNew(i) = 1;

end

if PminNew(i) < 0

RminNew(i) = min(1,(QminNew(i)/(PminNew(i))));

else

RminNew(i) = 1;

end

end

l_rechtsNew(1) = (DeltaF_rechts(1)>=0)*min(RplusNew(1),RminNew(2))+ ... \\

(DeltaF_rechts(1)<0)*min(RplusNew(2),RminNew(1));

for i = 2:length(C)-1

l_rechtsNew(i) = (DeltaF_rechts(i)>=0)*min(RplusNew(i),RminNew(i+1))+ ...\\

(DeltaF_rechts(i)<0)*min(RplusNew(i+1),RminNew(i));

end

l_rechtsNew(length(C)) = (DeltaF_rechts(length(C))>=0)*min(RplusNew(length(C)), ... \\

RminNew(1))+(DeltaF_rechts(length(C))<0)*min(RplusNew(1),RminNew(length(C)));

l_linksNew = circshift(l_rechtsNew,[1 1]);

% disp(l_rechtsNew)

end

A.2. METHOD 1A 103

A.2 Method 1A

% Method 1A for the 1D homogeneous advection equation

clc; clear all; close all

%parameters

np = 151; %number of gridpoints

p = 1; %number of periods later

u = 1; %velocity

nc = np-1; %number of volume cells

nc1 = 100; %number of cells of first half of domain

nc2 = nc-nc1; %number of cells of second half of domain

xeind = 10;

deltax = [0.5*xeind/nc1*ones(nc1,1); 0.5*xeind/nc2*ones(nc2,1)];

dx = zeros(1,np);

for k = 1:np

dx(k) = sum(deltax(1:k-1));

end

factor = 2.5; %determines cfl-number, for implicit schemes factor >= 1

dt = factor*min(deltax)/u;

cfl = u*dt./deltax;

N_eind = round(p*xeind/(u*dt));

NumIt = 20; %number of iterations per timestep

epsilon = 1e-3;

max_iter = 10;

NORM = 1; %L1-norm

constTheta = 1; % 1 = equal theta, 0 = different theta

%Choice of high-order numerical fluxes

% cen_old = 2, LW_old = 3, cenLW_old = 4, cen_new = 5

fluxes_old = 2;

fluxes_new = 5;

%Determing theta

thetaR = 0*ones(1,nc);

thetaL = 0*ones(1,nc);

thetaR(1) = max([1-deltax(1)/(u*dt),1-deltax(2)/(u*dt),0]);

thetaL(1) = max([1-deltax(1)/(u*dt),1-deltax(nc)/(u*dt),0]);

for i = 2:nc-1

thetaR(i) = max([1-deltax(i)/(u*dt),1-deltax(i+1)/(u*dt),0]);

thetaL(i) = max([1-deltax(i)/(u*dt),1-deltax(i-1)/(u*dt),0]);

end

thetaR(end) = max([1-deltax(nc)/(u*dt),1-deltax(1)/(u*dt),0]);

thetaL(end) = max([1-deltax(nc)/(u*dt),1-deltax(nc-1)/(u*dt),0]);

%for Lax-Wendroff fluxes

% for i = 1:nc

104 APPENDIX A. MATLAB CODES

% if thetaR(i) > 0

% thetaR(i) = max(0.5,thetaR(i));

% else

% thetaR(i) = thetaR(i);

% end

%

% if thetaL(i) > 0

% thetaL(i) = max(0.5,thetaL(i));

% else

% thetaL(i) = thetaL(i);

% end

% end

%for central fluxes

for i = 1:nc

if thetaR(i) >= 0

thetaR(i) = max(0.5,thetaR(i));

else

thetaR(i) = thetaR(i);

end

if thetaL(i) >= 0

thetaL(i) = max(0.5,thetaL(i));

else

thetaL(i) = thetaL(i);

end

end

%%%

%exact solution

y = zeros(1,np);

for x = (2/5*nc1):(4/5*nc1)

y(x) = 0.5*(1-cos(pi*x*0.5*xeind/nc1));

end

for x = (nc1+1/5*nc2):(nc1+3/5*nc2)

y(x) = 1;

end

% for x = 1:np

% y(x) = 0.5*(1-cos(0.2*pi*(x-1)*xeind/nc));

% end

% for x = 1/3*nc:2/3*nc

% y(x) = 1;

% end

% plot(dx,y,’red’)

% hold on

A.2. METHOD 1A 105

%Trapezium integration rule; average concentration

Q = zeros(1,nc);

for x=1:nc

Q(x)=(y(x)+y(x+1))/2;

end

%upwind discretisation

A1 = diag(-thetaR’.*u./deltax.*ones(nc,1));

A2 = diag(thetaL(2:end)’.*u./deltax(2:end).*ones(nc-1,1),-1);

A2(1,end) = thetaL(1)*u./deltax(1);

K_L = A1+A2;

A3 = diag(-(1-thetaR)’.*u./deltax.*ones(nc,1));

A4 = diag((1-thetaL(2:end)’).*u./deltax(2:end).*ones(nc-1,1),-1);

A4(1,end) = (1-thetaL(1))*u./deltax(1);

K_L_2 = A3+A4;

%FCT by Zalesak

C = zeros(N_eind+1,nc);

FL_rechts = C;

FL_links = C;

FH_rechts = C;

FH_links = C;

DeltaF_rechts = C;

DeltaF_links = C;

us_old = C;

NumIter = zeros(1,N_eind);

C(1,:) = Q; %IC

for n = 1:N_eind

%upwind

FL_rechts(n,1) = u*C(n,1);

FL_links(n,1) = u*C(n,end);

for i = 2:nc

FL_rechts(n,i) = u*C(n,i); %i-th volume cell

FL_links(n,i) = u*C(n,i-1); %(i-1)-th volume cell

end

us_old(n+1,:) = C(n,:) - dt./deltax’.*((1-thetaR).*FL_rechts(n,:)- ... \\

(1-thetaL).*FL_links(n,:));

%central discretization

if fluxes_old == 2

FH_rechts(n,1) = 0.5*u*(C(n,1)+C(n,2));

FH_links(n,1) = 0.5*u*(C(n,end)+C(n,1));

for i = 2:nc-1

FH_rechts(n,i) = 0.5*u*(C(n,i)+C(n,i+1));

106 APPENDIX A. MATLAB CODES

FH_links(n,i) = 0.5*u*(C(n,i-1)+C(n,i));

end

FH_rechts(n,end) = 0.5*u*(C(n,end)+C(n,1));

FH_links(n,end) = 0.5*u*(C(n,end-1)+C(n,end));

%explicit Lax-Wendroff

elseif fluxes_old == 3

FH_rechts(n,:) = u*C(n,:)+0.5*u*(C(n,i+1)-C(n,i))*(1-cfl(i)); %i-th cell

FH_links(n,:) = u*C(n,i-1)+0.5*u*(C(n,i)-C(n,i-1))*(1-cfl(i)); %i-th cell

FH_rechts(n,1) = u*C(n,1)+0.5*u*(C(n,2)-C(n,1))*(1-cfl(1));

FH_links(n,1) = u*C(n,end)+0.5*u*(C(n,1)-C(n,end))*(1-cfl(1));

for i = 2:nc-1

FH_rechts(n,i) = u*C(n,i)+0.5*u*(C(n,i+1)-C(n,i))*(1-cfl(i)); %i-th cell

FH_links(n,i) = u*C(n,i-1)+0.5*u*(C(n,i)-C(n,i-1))*(1-cfl(i)); %i-th cell

end

FH_rechts(n,end) = u*C(n,end)+0.5*u*(C(n,1)-C(n,end))*(1-cfl(end));

FH_links(n,end) = u*C(n,end-1)+0.5*u*(C(n,end)-C(n,end-1))*(1-cfl(end));

%LW or Central

elseif fluxes_old == 4

FH_rechts(n,1) = (thetaR(1)==0)*(u*C(n,1)+0.5*u*(C(n,2)-C(n,1))*(1-cfl(1)))+ ... \\

(thetaR(1)~=0)*(0.5*u*(C(n,1)+C(n,2)));

FH_links(n,1) = (thetaL(1)==0)*(u*C(n,end)+0.5*u*(C(n,1)-C(n,end))*(1-cfl(1)))+ ...\\

(thetaL(1)~=0)*(0.5*u*(C(n,end)+C(n,1)));

for i = 2:nc-1

FH_rechts(n,i) = (thetaR(i)==0)*(u*C(n,i)+0.5*u*(C(n,i+1)-C(n,i))* ...\\

(1-cfl(i)))+(thetaR(i)~=0)*(0.5*u*(C(n,i)+C(n,i+1))); %i-th cell

FH_links(n,i) = (thetaL(i)==0)*(u*C(n,i-1)+0.5*u*(C(n,i)-C(n,i-1))* ...\\

(1-cfl(i)))+(thetaL(i)~=0)*(0.5*u*(C(n,i-1)+C(n,i))); %i-th cell

end

FH_rechts(n,end) = (thetaR(end)==0)*(u*C(n,end)+0.5*u*(C(n,1)-C(n,end))*...\\

(1-cfl(end)))+(thetaR(end)~=0)*(0.5*u*(C(n,end)+C(n,1)));

FH_links(n,end) = (thetaL(end)==0)*(u*C(n,end-1)+0.5*u*(C(n,end)-C(n,end-1))*...\\

(1-cfl(end)))+(thetaL(end)~=0)*0.5*u*(C(n,end-1)+C(n,end));

end

DeltaF_rechts(n,:) = FH_rechts(n,:) - FL_rechts(n,:);

DeltaF_links(n,:) = FH_links(n,:) - FL_links(n,:);

C_aprox(n+1,:) = (eye(nc)-dt.*K_L)\us_old(n+1,:)’;

%%%%%%%%%%%%%%%%%%%%%%%%Iteration procedure%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

m = 1;

A.2. METHOD 1A 107

CH = zeros(max_iter+1,nc);

CH(1,:) = C(n,:); %startoplossing iteratieproces

us(1,:) = us_old(n+1,:); %circshift(Q,[1 2*(n-1)+1]); %RHS

dc(1,:) = ones(1,nc);

while (norm(dc(m,:),NORM) > epsilon) && (m<=max_iter) %m<=k

%upwind

FL_rechtsNew(m,1) = u*CH(m,1);

FL_linksNew(m,1) = u*CH(m,end);

for i = 2:nc

FL_rechtsNew(m,i) = u*CH(m,i); %i-th volume cell

FL_linksNew(m,i) = u*CH(m,i-1); %(i-1)-th volume cell

end

if fluxes_new == 5

%central discretization

FH_rechtsNew(m,1) = 0.5*u*(CH(m,1)+CH(m,2));

FH_linksNew(m,1) = 0.5*u*(CH(m,nc)+CH(m,1));

for i = 2:nc-1

FH_rechtsNew(m,i) = 0.5*u*(CH(m,i)+CH(m,i+1));

FH_linksNew(m,i) = 0.5*u*(CH(m,i-1)+CH(m,i));

end

FH_rechtsNew(m,nc) = 0.5*u*(CH(m,nc)+CH(m,1));

FH_linksNew(m,nc) = 0.5*u*(CH(m,nc-1)+CH(m,nc));

end

if constTheta == 1

%Equal theta

DeltaF_rechtsNew(m,:) = -dt./deltax’.*(thetaR.*(FH_rechtsNew(m,:) - ...\\

FL_rechtsNew(m,:))+(1-thetaR).*DeltaF_rechts(n,:));

DeltaF_linksNew(m,:) = dt./deltax’.*(thetaL.*(FH_linksNew(m,:) - ...\\

FL_linksNew(m,:))+(1-thetaL).*DeltaF_links(n,:));

else

%Different theta

DeltaF_rechtsNew(m,:) = -dt./deltax’.*((0.5*FH_rechtsNew(m,:) - ...\\

thetaR.*FL_rechtsNew(m,:))+0.5*FH_rechts(n,:) - (1-thetaR).*FL_rechts(n,:));

DeltaF_linksNew(m,:) = dt./deltax’.*((0.5*FH_linksNew(m,:) - ... \\

thetaL.*FL_linksNew(m,:))+(0.5*FH_links(n,:) - (1-thetaL).*FL_links(n,:)));

end

deltaf_rechts(m,:) = DeltaF_rechtsNew(m,:);

deltaf_links(m,:) = DeltaF_linksNew(m,:);

%FCT fluxlimiter

[l_rechtsNew(m,:), l_linksNew(m,:), deltaf_rechts(m,:),deltaf_links(m,:)] = ...\\

limiter(deltaf_rechts(m,:),deltaf_links(m,:),C(n,:),us(m,:));

108 APPENDIX A. MATLAB CODES

limF_rechtsNew(m,:) = l_rechtsNew(m,:).*deltaf_rechts(m,:);

limF_linksNew(m,:) = l_linksNew(m,:).*deltaf_links(m,:);

us(m+1,:) = us(m,:);

if m == 1

CH(2,:) = (eye(nc)-dt.*K_L)\(us(1,:)+limF_rechtsNew(1,:)+limF_linksNew(1,:))’;

else

if constTheta == 1

CH(m+1,:) = (max([1-deltax./(u*dt), zeros(nc,1)],[],2) > 0)’.* ...\\

((eye(nc)-dt.*K_L)\(us(m,:)+limF_rechtsNew(m,:)+limF_linksNew(m,:))’)’ + ...\\

(max([1-deltax./(u*dt), zeros(nc,1)],[],2) == 0)’.*CH(2,:);

else

CH(m+1,:) = (eye(nc)-dt.*K_L)\(us(m,:)+limF_rechtsNew(m,:)+limF_linksNew(m,:))’;

end

end

dc(m+1,:) = CH(m+1,:)-CH(m,:);

%Iteration error

It_err(m,n) = norm(dc(m+1,:),NORM);

m = m+1;

if sum(thetaL+thetaR)== 0

break

end

end

C(n+1,:) = CH(m,:);

%number of iterations per time step

NumIter(n) = m-1;

end

plot(dx(2:end)’-0.5*deltax,C(n+1,:),’- b’); %numerical solution

hold on

axis([0 10 -0.2 1.6])

A.3. METHOD 1B 109

A.3 Method 1B

% Method 1B for the 1D homogeneous advection equation

clc; clear all; close all

%parameters

np = 151; %number of gridpoints

p = 1; %number of periods later

u = 1; %velocity

nc = np-1; %number of volume cells

nc1 = 75; %number of cells of first half of domain

nc2 = nc-nc1; %number of cells of second half of domain

xeind = 10;

deltax = [0.5*xeind/nc1*ones(nc1,1); 0.5*xeind/nc2*ones(nc2,1)];

dx = zeros(1,np);

for k = 1:np

dx(k) = sum(deltax(1:k-1));

end

factor = 2; %determines cfl-number, for implicit schemes factor >= 1

dt = factor*min(deltax)/u;

cfl = u*dt./deltax; %cfl(i)-number <= 1

N_eind = round(p*xeind/(u*dt));

NumIt = 20; %number of iterations per timestep

epsilon = 1e-3;

max_iter = 10;

NORM = 1; %L1-norm

constTheta = 1; % 1 = equal theta, 0 = different theta

%Choice of high-order numerical fluxes

% cen_old = 2, LW_old = 3, cenLW_old = 4, cen_new = 5

fluxes_old = 2;

fluxes_new = 5;

%Determing theta

thetaR = 0*ones(1,nc);

thetaL = 0*ones(1,nc);

thetaR(1) = max([1-deltax(1)/(u*dt),1-deltax(2)/(u*dt),0]);

thetaL(1) = max([1-deltax(1)/(u*dt),1-deltax(nc)/(u*dt),0]);

for i = 2:nc-1

thetaR(i) = max([1-deltax(i)/(u*dt),1-deltax(i+1)/(u*dt),0]);

thetaL(i) = max([1-deltax(i)/(u*dt),1-deltax(i-1)/(u*dt),0]);

end

thetaR(end) = max([1-deltax(nc)/(u*dt),1-deltax(1)/(u*dt),0]);

thetaL(end) = max([1-deltax(nc)/(u*dt),1-deltax(nc-1)/(u*dt),0]);

%for Lax-Wendroff fluxes

% for i = 1:nc

110 APPENDIX A. MATLAB CODES

% if thetaR(i) > 0

% thetaR(i) = max(0.5,thetaR(i));

% else

% thetaR(i) = thetaR(i);

% end

%

% if thetaL(i) > 0

% thetaL(i) = max(0.5,thetaL(i));

% else

% thetaL(i) = thetaL(i);

% end

% end

% %for central fluxes

% for i = 1:nc

% if thetaR(i) >= 0

% thetaR(i) = max(0.5,thetaR(i));

% else

% thetaR(i) = thetaR(i);

% end

%

% if thetaL(i) >= 0

% thetaL(i) = max(0.5,thetaL(i));

% else

% thetaL(i) = thetaL(i);

% end

% end

%%%

%exact solution

y = zeros(1,np);

% for x = (2/5*nc1):(4/5*nc1)

% y(x) = 0.5*(1-cos(pi*x*0.5*xeind/nc1));

% end

% for x = (nc1+1/5*nc2):(nc1+3/5*nc2)

% y(x) = 1;

% end

for x = 1:np

y(x) = 0.5*(1-cos(0.2*pi*(x-1)*xeind/nc));

end

% for x = 1/3*nc:2/3*nc

% y(x) = 1;

% end

plot(dx,y,’red’)

hold on

A.3. METHOD 1B 111

%Trapezium integration rule; average concentration

Q = zeros(1,nc);

for x=1:nc

Q(x)=(y(x)+y(x+1))/2;

end

%upwind discretisation

A1 = diag(-thetaR’.*u./deltax.*ones(nc,1));

A2 = diag(thetaL(2:end)’.*u./deltax(2:end).*ones(nc-1,1),-1);

A2(1,end) = thetaL(1)*u./deltax(1);

K_L = A1+A2;

A3 = diag(-(1-thetaR)’.*u./deltax.*ones(nc,1));

A4 = diag((1-thetaL(2:end)’).*u./deltax(2:end).*ones(nc-1,1),-1);

A4(1,end) = (1-thetaL(1))*u./deltax(1);

K_L_2 = A3+A4;

%FCT by Zalesak

C = zeros(N_eind+1,nc);

FL_rechts = C;

FL_links = C;

FH_rechts = C;

FH_links = C;

DeltaF_rechts = C;

DeltaF_links = C;

us_old = C;

C(1,:) = Q; %IC

for n = 1:N_eind

%upwind

FL_rechts(n,1) = u*C(n,1);

FL_links(n,1) = u*C(n,end);

for i = 2:nc

FL_rechts(n,i) = u*C(n,i); %i-th volume cell

FL_links(n,i) = u*C(n,i-1); %(i-1)-th volume cell

end

us_old(n+1,:) = C(n,:) - dt./deltax’.*((1-thetaR).*FL_rechts(n,:)- ...\\

(1-thetaL).*FL_links(n,:));

%central discretization

if fluxes_old == 2

FH_rechts(n,1) = 0.5*u*(C(n,1)+C(n,2));

FH_links(n,1) = 0.5*u*(C(n,end)+C(n,1));

for i = 2:nc-1

112 APPENDIX A. MATLAB CODES

FH_rechts(n,i) = 0.5*u*(C(n,i)+C(n,i+1));

FH_links(n,i) = 0.5*u*(C(n,i-1)+C(n,i));

end

FH_rechts(n,end) = 0.5*u*(C(n,end)+C(n,1));

FH_links(n,end) = 0.5*u*(C(n,end-1)+C(n,end));

%explicit Lax-Wendroff

elseif fluxes_old == 3

FH_rechts(n,1) = u*C(n,1)+0.5*u*(C(n,2)-C(n,1))*(1-cfl(1));

FH_links(n,1) = u*C(n,end)+0.5*u*(C(n,1)-C(n,end))*(1-cfl(1));

for i = 2:nc-1

FH_rechts(n,i) = u*C(n,i)+0.5*u*(C(n,i+1)-C(n,i))*(1-cfl(i)); %i-th cell

FH_links(n,i) = u*C(n,i-1)+0.5*u*(C(n,i)-C(n,i-1))*(1-cfl(i)); %i-th cell

end

FH_rechts(n,end) = u*C(n,end)+0.5*u*(C(n,1)-C(n,end))*(1-cfl(end));

FH_links(n,end) = u*C(n,end-1)+0.5*u*(C(n,end)-C(n,end-1))*(1-cfl(end));

%LW or central

elseif fluxes_old == 4

FH_rechts(n,1) = (thetaR(1)==0)*(u*C(n,1)+0.5*u*(C(n,2)-C(n,1))*(1-cfl(1)))+ ...\\

(thetaR(1)~=0)*(0.5*u*(C(n,1)+C(n,2)));

FH_links(n,1) = (thetaL(1)==0)*(u*C(n,end)+0.5*u*(C(n,1)-C(n,end))*(1-cfl(1)))+ ...\\

(thetaL(1)~=0)*(0.5*u*(C(n,end)+C(n,1)));

for i = 2:nc-1

FH_rechts(n,i) = (thetaR(i)==0)*(u*C(n,i)+0.5*u*(C(n,i+1)-C(n,i))* ...\\

(1-cfl(i)))+(thetaR(i)~=0)*(0.5*u*(C(n,i)+C(n,i+1))); %i-th cell

FH_links(n,i) = (thetaL(i)==0)*(u*C(n,i-1)+0.5*u*(C(n,i)-C(n,i-1))*...\\

(1-cfl(i)))+(thetaL(i)~=0)*(0.5*u*(C(n,i-1)+C(n,i))); %i-th cell

end

FH_rechts(n,end) = (thetaR(end)==0)*(u*C(n,end)+0.5*u*(C(n,1)-C(n,end))*... \\

(1-cfl(end)))+(thetaR(end)~=0)*(0.5*u*(C(n,end)+C(n,1)));

FH_links(n,end) = (thetaL(end)==0)*(u*C(n,end-1)+0.5*u*(C(n,end)-C(n,end-1))*...\\

(1-cfl(end)))+(thetaL(end)~=0)*0.5*u*(C(n,end-1)+C(n,end));

end

DeltaF_rechts(n,:) = FH_rechts(n,:) - FL_rechts(n,:);

DeltaF_links(n,:) = FH_links(n,:) - FL_links(n,:);

C_aprox(n+1,:) = (eye(nc)-dt.*K_L)\us_old(n+1,:)’;

%%%%%%%%%%%%%%%%%%%%%%%%Iteration procedure%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

g_rechts(1,:) = zeros(1,nc);

g_links(1,:) = zeros(1,nc);

m = 1;

A.3. METHOD 1B 113

CH = zeros(max_iter+1,nc);

CH(1,:) = C(n,:);

us(1,:) = us_old(n+1,:); %RHS

dc(1,:) = ones(1,nc);

while (norm(dc(m,:),NORM) > epsilon) && (m<=max_iter) %m<=k

%upwind

FL_rechtsNew(m,1) = u*CH(m,1);

FL_linksNew(m,1) = u*CH(m,end);

for i = 2:nc

FL_rechtsNew(m,i) = u*CH(m,i); %i-th volume cell

FL_linksNew(m,i) = u*CH(m,i-1); %(i-1)-th volume cell

end

%central discretization

if fluxes_new == 5

FH_rechtsNew(m,1) = 0.5*u*(CH(m,1)+CH(m,2));

FH_linksNew(m,1) = 0.5*u*(CH(m,nc)+CH(m,1));

for i = 2:nc-1

FH_rechtsNew(m,i) = 0.5*u*(CH(m,i)+CH(m,i+1));

FH_linksNew(m,i) = 0.5*u*(CH(m,i-1)+CH(m,i));

end

FH_rechtsNew(m,nc) = 0.5*u*(CH(m,nc)+CH(m,1));

FH_linksNew(m,nc) = 0.5*u*(CH(m,nc-1)+CH(m,nc));

end

if constTheta == 1

%Equal theta

DeltaF_rechtsNew(m,:) = -dt./deltax’.*(thetaR.*(FH_rechtsNew(m,:) - ...\\

FL_rechtsNew(m,:))+(1-thetaR).*DeltaF_rechts(n,:));

DeltaF_linksNew(m,:) = dt./deltax’.*(thetaL.*(FH_linksNew(m,:) - ...\\

FL_linksNew(m,:))+(1-thetaL).*DeltaF_links(n,:));

else

%Different theta

DeltaF_rechtsNew(m,:) = -dt./deltax’.*((0.5*FH_rechtsNew(m,:) - ...\\

thetaR.*FL_rechtsNew(m,:))+(0.5*FH_rechts(n,:) - (1-thetaR).*FL_rechts(n,:)));

DeltaF_linksNew(m,:) = dt./deltax’.*((0.5*FH_linksNew(m,:) - ...\\

thetaL.*FL_linksNew(m,:))+(0.5*FH_links(n,:) - (1-thetaL).*FL_links(n,:)));

end

deltaf_rechts(m,:) = DeltaF_rechtsNew(m,:)-g_rechts(m,:);

deltaf_links(m,:) = DeltaF_linksNew(m,:)-g_links(m,:);

%FCT fluxlimiter

[l_rechtsNew(m,:), l_linksNew(m,:),deltaf_rechts(m,:),deltaf_links(m,:)] =...\\

limiter(deltaf_rechts(m,:),deltaf_links(m,:),us(m,:),us(m,:));

114 APPENDIX A. MATLAB CODES

limF_rechtsNew(m,:) = l_rechtsNew(m,:).*deltaf_rechts(m,:);

limF_linksNew(m,:) = l_linksNew(m,:).*deltaf_links(m,:);

us(m+1,:) = us(m,:)+limF_rechtsNew(m,:)+limF_linksNew(m,:);

if m == 1

CH(2,:) = (eye(nc)-dt.*K_L)\us(2,:)’;

else

if constTheta == 1

CH(m+1,:) = (max([1-deltax./(u*dt), zeros(nc,1)],[],2) > 0)’.* ...\\

((eye(nc)-dt.*K_L)\us(m+1,:)’)’+(max([1-deltax./(u*dt), zeros(nc,1)],[],2) == 0)’.*CH(2,:);

else

CH(m+1,:) = (eye(nc)-dt.*K_L)\us(m+1,:)’;

end

end

dc(m+1,:) = CH(m+1,:)-CH(m,:);

g_rechts(m+1,:) = g_rechts(m,:) + limF_rechtsNew(m,:);

g_links(m+1,:) = g_links(m,:) + limF_linksNew(m,:);

%Iteration error

It_err(m,n) = norm(dc(m+1,:),NORM);

m = m+1;

if sum(thetaL+thetaR)== 0

break

end

end

C(n+1,:) = CH(m,:);

%number of iterations per time step

NumIter(n) = m-1;

end

plot(dx(2:end)’-0.5*deltax,C(n+1,:),’- b’); %numerical solution

hold on

axis([0 10 -0.2 1.6])

A.4. METHOD 2A 115

A.4 Method 2A

% Method 2A for the 1D homogeneous advection equation

clc; clear all; close all

%parameters

np = 151; %number of gridpoints

p = 1; %number of periods later

u = 1; %velocity

nc = np-1; %number of volume cells

nc1 = 100; %number of cells of first half of domain

nc2 = nc-nc1; %number of cells of second half of domain

xeind = 10;

deltax = [0.5*xeind/nc1*ones(nc1,1); 0.5*xeind/nc2*ones(nc2,1)];

dx = zeros(1,np);

for k = 1:np

dx(k) = sum(deltax(1:k-1));

end

factor = 2.1; %determines cfl-number, for implicit schemes factor >= 1

dt = factor*min(deltax)/u;

cfl = u*dt./deltax; %cfl(i)-number <= 1

N_eind = round(p*xeind/(u*dt));

NumIt = 20; %number of iterations per timestep

epsilon = 0.001;

max_iter = 10;

NORM = 1; %L1-norm

constTheta = 1; % 1 = equal theta, 0 = different theta

%Choice of high-order numerical fluxes

% cen_old = 2, LW_old = 3, cenLW_old + equal theta = 4, cen_new = 5

fluxes_old = 2;

fluxes_new = 5;

%Determing theta

thetaR = 0*ones(1,nc);

thetaL = 0*ones(1,nc);

thetaR(1) = max([1-deltax(1)/(u*dt),1-deltax(2)/(u*dt),0]);

thetaL(1) = max([1-deltax(1)/(u*dt),1-deltax(nc)/(u*dt),0]);

for i = 2:nc-1

thetaR(i) = max([1-deltax(i)/(u*dt),1-deltax(i+1)/(u*dt),0]);

thetaL(i) = max([1-deltax(i)/(u*dt),1-deltax(i-1)/(u*dt),0]);

end

thetaR(end) = max([1-deltax(nc)/(u*dt),1-deltax(1)/(u*dt),0]);

thetaL(end) = max([1-deltax(nc)/(u*dt),1-deltax(nc-1)/(u*dt),0]);

% % for Lax-Wendroff fluxes

116 APPENDIX A. MATLAB CODES

% for i = 1:nc

% if thetaR(i) > 0

% thetaR(i) = max(0.5,thetaR(i));

% else

% thetaR(i) = thetaR(i);

% end

%

% if thetaL(i) > 0

% thetaL(i) = max(0.5,thetaL(i));

% else

% thetaL(i) = thetaL(i);

% end

% end

%for central fluxes

for i = 1:nc

if thetaR(i) >= 0

thetaR(i) = max(0.5,thetaR(i));

else

thetaR(i) = thetaR(i);

end

if thetaL(i) >= 0

thetaL(i) = max(0.5,thetaL(i));

else

thetaL(i) = thetaL(i);

end

end

%%%

%exact solution

y = zeros(1,np);

for x = (2/5*nc1):(4/5*nc1)

y(x) = 0.5*(1-cos(pi*x*0.5*xeind/nc1));

end

for x = (nc1+1/5*nc2):(nc1+3/5*nc2)

y(x) = 1;

end

% for x = 1:np

% y(x) = 0.5*(1-cos(0.2*pi*(x-1)*xeind/nc));

% end

% for x = 1/3*nc:2/3*nc

% y(x) = 1;

% end

plot(dx,y,’red’)

A.4. METHOD 2A 117

hold on

%Trapezium integration rule; average concentration

Q = zeros(1,nc);

for x=1:nc

Q(x)=(y(x)+y(x+1))/2;

end

%upwind discretisation

A1 = diag(-thetaR’.*u./deltax.*ones(nc,1));

A2 = diag(thetaL(2:end)’.*u./deltax(2:end).*ones(nc-1,1),-1);

A2(1,end) = thetaL(1)*u./deltax(1);

K_L = A1+A2;

l_eig= real(eig((eye(nc)-dt.*K_L)));

A3 = diag(-(1-thetaR)’.*u./deltax.*ones(nc,1));

A4 = diag((1-thetaL(2:end)’).*u./deltax(2:end).*ones(nc-1,1),-1);

A4(1,end) = (1-thetaL(1))*u./deltax(1);

K_L_2 = A3+A4;

%FCT by Zalesak

C = zeros(N_eind+1,nc);

FL_rechts = zeros(1,nc);

FL_links = zeros(1,nc);

FH_rechts = zeros(1,nc);

FH_links = zeros(1,nc);

us = zeros(N_eind,nc);

us_old = zeros(N_eind,nc);

FL_rechtsNew = zeros(1,nc);

FL_linksNew = zeros(1,nc);

FH_rechtsNew = zeros(1,nc);

FH_linksNew = zeros(1,nc);

tic

C(1,:) = Q; %IC

% for k = 1:NumIt

for n = 1:N_eind

%upwind

FL_rechts(1) = u*C(n,1);

FL_links(1) = u*C(n,end);

for i = 2:nc

FL_rechts(i) = u*C(n,i); %i-th volume cell

118 APPENDIX A. MATLAB CODES

FL_links(i) = u*C(n,i-1); %(i-1)-th volume cell

end

us(n+1,:) = C(n,:) - dt./deltax’.*((1-thetaR).*FL_rechts-(1-thetaL).*FL_links);

%central discretization

if fluxes_old == 2

FH_rechts(1) = 0.5*u*(C(n,1)+C(n,2));

FH_links(1) = 0.5*u*(C(n,end)+C(n,1));

for i = 2:nc-1

FH_rechts(i) = 0.5*u*(C(n,i)+C(n,i+1));

FH_links(i) = 0.5*u*(C(n,i-1)+C(n,i));

end

FH_rechts(end) = 0.5*u*(C(n,end)+C(n,1));

FH_links(end) = 0.5*u*(C(n,end-1)+C(n,end));

%explicit Lax-Wendroff

elseif fluxes_old == 3

FH_rechts(1) = u*C(n,1)+0.5*u*(C(n,2)-C(n,1))*(1-cfl(1));

FH_links(1) = u*C(n,end)+0.5*u*(C(n,1)-C(n,end))*(1-cfl(1));

for i = 2:nc-1

FH_rechts(i) = u*C(n,i)+0.5*u*(C(n,i+1)-C(n,i))*(1-cfl(i)); %i-th cell

FH_links(i) = u*C(n,i-1)+0.5*u*(C(n,i)-C(n,i-1))*(1-cfl(i)); %i-th cell

end

FH_rechts(end) = u*C(n,end)+0.5*u*(C(n,1)-C(n,end))*(1-cfl(end));

FH_links(end) = u*C(n,end-1)+0.5*u*(C(n,end)-C(n,end-1))*(1-cfl(end));

%LW or central

elseif fluxes_old == 4

FH_rechts(1) = (thetaR(1)==0)*(u*C(n,1)+0.5*u*(C(n,2)-C(n,1))*(1-cfl(1)))+ ...\\

(thetaR(1)~=0)*(0.5*u*(C(n,1)+C(n,2)));

FH_links(1) = (thetaL(1)==0)*(u*C(n,end)+0.5*u*(C(n,1)-C(n,end))*(1-cfl(1)))+ ...\\

(thetaL(1)~=0)*(0.5*u*(C(n,end)+C(n,1)));

for i = 2:nc-1

FH_rechts(i) = (thetaR(i)==0)*(u*C(n,i)+0.5*u*(C(n,i+1)-C(n,i))* ...\\

(1-cfl(i)))+ (thetaR(i)~=0)*(0.5*u*(C(n,i)+C(n,i+1))); %i-th cell

FH_links(i) = (thetaL(i)==0)*(u*C(n,i-1)+0.5*u*(C(n,i)-C(n,i-1))* ... \\

(1-cfl(i)))+ (thetaL(i)~=0)*(0.5*u*(C(n,i-1)+C(n,i))); %i-th cell

end

FH_rechts(end) = (thetaR(end)==0)*(u*C(n,end)+0.5*u*(C(n,1)-C(n,end))* ...\\

(1-cfl(end)))+(thetaR(end)~=0)*(0.5*u*(C(n,end)+C(n,1)));

FH_links(end) = (thetaL(end)==0)*(u*C(n,end-1)+0.5*u*(C(n,end)-C(n,end-1))*...\\

(1-cfl(end)))+(thetaL(end)~=0)*0.5*u*(C(n,end-1)+C(n,end));

end

if constTheta == 1

%Equal theta

DeltaF_rechts = - dt./deltax’.*(1-thetaR).*(FH_rechts - FL_rechts);

DeltaF_links = dt./deltax’.*(1-thetaL).*(FH_links - FL_links);

else

A.4. METHOD 2A 119

%Different theta

DeltaF_rechts = - dt./deltax’.*(0.5*FH_rechts - (1-thetaR).*FL_rechts);

DeltaF_links = dt./deltax’.*(0.5*FH_links - (1-thetaL).*FL_links);

end

%FCT fluxlimiter

[l_rechts, l_links,DeltaF_rechts,DeltaF_links] = ...\\

limiter(DeltaF_rechts,DeltaF_links,C(n,:),us(n+1,:));

limF_rechts = l_rechts.*DeltaF_rechts;

limF_links = l_links.*DeltaF_links;

us_old(n+1,:) = us(n+1,:)+limF_rechts+limF_links;

%%%%%%%%%%%%%%%%%%%%%%%%Iteration procedure%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

m = 1;

CH(1,:) = C(n,:);

usNew(1,:) = us_old(n+1,:); %RHS

if sum(thetaR+thetaL) == 0

dc(1,:) = zeros(1,nc);

else

dc(1,:) = (max([1-deltax./(u*dt), zeros(nc,1)],[],2) > 0)’.*ones(1,nc);

end

while (norm(dc(m,:),NORM) > epsilon) && (m<=max_iter) %m<=k

%upwind

FL_rechtsNew(1) = u*CH(m,1);

FL_linksNew(1) = u*CH(m,end);

for i = 2:nc

FL_rechtsNew(i) = u*CH(m,i); %i-th volume cell

FL_linksNew(i) = u*CH(m,i-1); %(i-1)-th volume cell

end

if fluxes_new == 5

%central discretization

FH_rechtsNew(1) = 0.5*u*(CH(m,1)+CH(m,2));

FH_linksNew(1) = 0.5*u*(CH(m,nc)+CH(m,1));

for i = 2:nc-1

FH_rechtsNew(i) = 0.5*u*(CH(m,i)+CH(m,i+1));

FH_linksNew(i) = 0.5*u*(CH(m,i-1)+CH(m,i));

end

FH_rechtsNew(nc) = 0.5*u*(CH(m,nc)+CH(m,1));

120 APPENDIX A. MATLAB CODES

FH_linksNew(nc) = 0.5*u*(CH(m,nc-1)+CH(m,nc));

end

if constTheta == 1

%Equal theta

DeltaF_rechtsNew = -dt./deltax’.*(thetaR.*(FH_rechtsNew - FL_rechtsNew));

DeltaF_linksNew = dt./deltax’.*(thetaL.*(FH_linksNew - FL_linksNew));

else

%Different theta

DeltaF_rechtsNew = -dt./deltax’.*(0.5*FH_rechtsNew - thetaR.*FL_rechtsNew);

DeltaF_linksNew = dt./deltax’.*(0.5*FH_linksNew - thetaL.*FL_linksNew);

end

deltaf_rechts = DeltaF_rechtsNew;

deltaf_links = DeltaF_linksNew;

%FCT fluxlimiter

[l_rechtsNew, l_linksNew,deltaf_rechts,deltaf_links] = ...\\

limiter(deltaf_rechts,deltaf_links,C(n,:),usNew(m,:));

limF_rechtsNew = l_rechtsNew.*deltaf_rechts;

limF_linksNew = l_linksNew.*deltaf_links;

usNew(m+1,:) = usNew(m,:);

CH(m+1,:) = (max([1-deltax./(u*dt), zeros(nc,1)],[],2) > 0)’.* ...\\

((eye(nc)-dt.*K_L)\(usNew(m,:)+limF_rechtsNew+limF_linksNew)’)’ + ...\\

(max([1-deltax./(u*dt), zeros(nc,1)],[],2) == 0)’.*us_old(n+1,:);

dc(m+1,:) = CH(m+1,:)-CH(m,:);

%Iteration error

It_err(m,n) = norm(dc(m+1,:),NORM);

m = m+1;

end

C(n+1,:) = (sum(thetaL+thetaR)~=0)*CH(m,:)+(sum(thetaL+thetaR)==0)*us_old(n+1,:);

%number of iterations per time step

NumIter(n) = m-1;

end

plot(dx(2:end)’-0.5*deltax,C(n+1,:),’- g’); %numerical solution

axis([0 10 -0.3 1.5])

A.5. METHOD 2B 121

A.5 Method 2B

% Method 2B for the 1D homogeneous advection equation

clc; clear all; close all

%parameters

np = 151; %number of gridpoints

p = 1; %number of periods later

u = 1; %velocity

nc = np-1; %number of volume cells

nc1 = 100; %number of cells of first half of domain

nc2 = nc-nc1; %number of cells of second half of domain

xeind = 10;

deltax = [0.5*xeind/nc1*ones(nc1,1); 0.5*xeind/nc2*ones(nc2,1)];

dx = zeros(1,np);

for k = 1:np

dx(k) = sum(deltax(1:k-1));

end

factor = 2.1; %determines cfl-number, for implicit schemes factor >= 1

dt = factor*min(deltax)/u;

cfl = u*dt./deltax; %cfl(i)-number <= 1

N_eind = round(p*xeind/(u*dt));

NumIt = 20; %number of iterations per timestep

epsilon = 0.001;

max_iter = 10;

NORM = 1; %L1-norm

constTheta = 1; % 1 = equal theta, 0 = different theta

%Choice of high-order numerical fluxes

% cen_old = 2, LW_old = 3, cenLW_old + equal theta = 4, cen_new = 5

fluxes_old = 2;

fluxes_new = 5;

%Determing theta

thetaR = 0*ones(1,nc);

thetaL = 0*ones(1,nc);

thetaR(1) = max([1-deltax(1)/(u*dt),1-deltax(2)/(u*dt),0]);

thetaL(1) = max([1-deltax(1)/(u*dt),1-deltax(nc)/(u*dt),0]);

for i = 2:nc-1

thetaR(i) = max([1-deltax(i)/(u*dt),1-deltax(i+1)/(u*dt),0]);

thetaL(i) = max([1-deltax(i)/(u*dt),1-deltax(i-1)/(u*dt),0]);

end

thetaR(end) = max([1-deltax(nc)/(u*dt),1-deltax(1)/(u*dt),0]);

122 APPENDIX A. MATLAB CODES

thetaL(end) = max([1-deltax(nc)/(u*dt),1-deltax(nc-1)/(u*dt),0]);

% for Lax-Wendroff fluxes

% for i = 1:nc

% if thetaR(i) > 0

% thetaR(i) = max(0.5,thetaR(i));

% else

% thetaR(i) = thetaR(i);

% end

%

% if thetaL(i) > 0

% thetaL(i) = max(0.5,thetaL(i));

% else

% thetaL(i) = thetaL(i);

% end

% end

%for central fluxes

for i = 1:nc

if thetaR(i) >= 0

thetaR(i) = max(0.5,thetaR(i));

else

thetaR(i) = thetaR(i);

end

if thetaL(i) >= 0

thetaL(i) = max(0.5,thetaL(i));

else

thetaL(i) = thetaL(i);

end

end

%%%

%exact solution

y = zeros(1,np);

for x = (2/5*nc1):(4/5*nc1)

y(x) = 0.5*(1-cos(pi*x*0.5*xeind/nc1));

end

for x = (nc1+1/5*nc2):(nc1+3/5*nc2)

y(x) = 1;

end

% for x = 1:np

% y(x) = 0.5*(1-cos(0.2*pi*(x-1)*xeind/nc));

% end

% for x = 1/3*nc:2/3*nc

% y(x) = 1;

A.5. METHOD 2B 123

% end

plot(dx,y,’red’)

hold on

%Trapezium integration rule; average concentration

Q = zeros(1,nc);

for x=1:nc

Q(x)=(y(x)+y(x+1))/2;

end

%upwind discretisation

A1 = diag(-thetaR’.*u./deltax.*ones(nc,1));

A2 = diag(thetaL(2:end)’.*u./deltax(2:end).*ones(nc-1,1),-1);

A2(1,end) = thetaL(1)*u./deltax(1);

K_L = A1+A2;

l_eig= real(eig((eye(nc)-dt.*K_L)));

A3 = diag(-(1-thetaR)’.*u./deltax.*ones(nc,1));

A4 = diag((1-thetaL(2:end)’).*u./deltax(2:end).*ones(nc-1,1),-1);

A4(1,end) = (1-thetaL(1))*u./deltax(1);

K_L_2 = A3+A4;

%FCT by Zalesak

C = zeros(N_eind+1,nc);

FL_rechts = zeros(1,nc);

FL_links = zeros(1,nc);

FH_rechts = zeros(1,nc);

FH_links = zeros(1,nc);

us = zeros(N_eind,nc);

us_old = zeros(N_eind,nc);

FL_rechtsNew = zeros(1,nc);

FL_linksNew = zeros(1,nc);

FH_rechtsNew = zeros(1,nc);

FH_linksNew = zeros(1,nc);

tic

C(1,:) = Q; %IC

% for k = 1:NumIt

for n = 1:N_eind

%upwind

FL_rechts(1) = u*C(n,1);

FL_links(1) = u*C(n,end);

124 APPENDIX A. MATLAB CODES

for i = 2:nc

FL_rechts(i) = u*C(n,i); %i-th volume cell

FL_links(i) = u*C(n,i-1); %(i-1)-th volume cell

end

us(n+1,:) = C(n,:) - dt./deltax’.*((1-thetaR).*FL_rechts-(1-thetaL).*FL_links);

%central discretization

if fluxes_old == 2

FH_rechts(1) = 0.5*u*(C(n,1)+C(n,2));

FH_links(1) = 0.5*u*(C(n,end)+C(n,1));

for i = 2:nc-1

FH_rechts(i) = 0.5*u*(C(n,i)+C(n,i+1));

FH_links(i) = 0.5*u*(C(n,i-1)+C(n,i));

end

FH_rechts(end) = 0.5*u*(C(n,end)+C(n,1));

FH_links(end) = 0.5*u*(C(n,end-1)+C(n,end));

%explicit Lax-Wendroff

elseif fluxes_old == 3

FH_rechts(1) = u*C(n,1)+0.5*u*(C(n,2)-C(n,1))*(1-cfl(1));

FH_links(1) = u*C(n,end)+0.5*u*(C(n,1)-C(n,end))*(1-cfl(1));

for i = 2:nc-1

FH_rechts(i) = u*C(n,i)+0.5*u*(C(n,i+1)-C(n,i))*(1-cfl(i)); %i-th cell

FH_links(i) = u*C(n,i-1)+0.5*u*(C(n,i)-C(n,i-1))*(1-cfl(i)); %i-th cell

end

FH_rechts(end) = u*C(n,end)+0.5*u*(C(n,1)-C(n,end))*(1-cfl(end));

FH_links(end) = u*C(n,end-1)+0.5*u*(C(n,end)-C(n,end-1))*(1-cfl(end));

%LW or central

elseif fluxes_old == 4

FH_rechts(1) = (thetaR(1)==0)*(u*C(n,1)+0.5*u*(C(n,2)-C(n,1))*(1-cfl(1)))+ ...\\

(thetaR(1)~=0)*(0.5*u*(C(n,1)+C(n,2)));

FH_links(1) = (thetaL(1)==0)*(u*C(n,end)+0.5*u*(C(n,1)-C(n,end))* ...\\

(1-cfl(1)))+(thetaL(1)~=0)*(0.5*u*(C(n,end)+C(n,1)));

for i = 2:nc-1

FH_rechts(i) = (thetaR(i)==0)*(u*C(n,i)+0.5*u*(C(n,i+1)-C(n,i))*...\\

(1-cfl(i)))+(thetaR(i)~=0)*(0.5*u*(C(n,i)+C(n,i+1))); %i-th cell

FH_links(i) = (thetaL(i)==0)*(u*C(n,i-1)+0.5*u*(C(n,i)-C(n,i-1))*...\\

(1-cfl(i)))+(thetaL(i)~=0)*(0.5*u*(C(n,i-1)+C(n,i))); %i-th cell

end

FH_rechts(end) = (thetaR(end)==0)*(u*C(n,end)+0.5*u*(C(n,1)-C(n,end))*...\\

(1-cfl(end)))+(thetaR(end)~=0)*(0.5*u*(C(n,end)+C(n,1)));

FH_links(end) = (thetaL(end)==0)*(u*C(n,end-1)+0.5*u*(C(n,end)-C(n,end-1))*...\\

(1-cfl(end)))+ (thetaL(end)~=0)*0.5*u*(C(n,end-1)+C(n,end));

end

if constTheta == 1

%Equal theta

A.5. METHOD 2B 125

DeltaF_rechts = - dt./deltax’.*(1-thetaR).*(FH_rechts - FL_rechts);

DeltaF_links = dt./deltax’.*(1-thetaL).*(FH_links - FL_links);

else

%Different theta

DeltaF_rechts = - dt./deltax’.*(0.5*FH_rechts - (1-thetaR).*FL_rechts);

DeltaF_links = dt./deltax’.*(0.5*FH_links - (1-thetaL).*FL_links);

end

%FCT fluxlimiter

[l_rechts, l_links,DeltaF_rechts,DeltaF_links] = ...\\

limiter(DeltaF_rechts,DeltaF_links,us(n+1,:),us(n+1,:));

limF_rechts = l_rechts.*DeltaF_rechts;

limF_links = l_links.*DeltaF_links;

us_old(n+1,:) = us(n+1,:)+limF_rechts+limF_links;

%%%%%%%%%%%%%%%%%%%%%%%%Iteration procedure%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

m = 1;

CH(1,:) = C(n,:);

usNew(1,:) = us_old(n+1,:); %RHS

if sum(thetaR+thetaL) == 0

dc(1,:) = zeros(1,nc);

else

dc(1,:) = (max([1-deltax./(u*dt), zeros(nc,1)],[],2) > 0)’.*ones(1,nc);

end

g_rechts = zeros(1,nc);

g_links = zeros(1,nc);

while (norm(dc(m,:),NORM) > epsilon) && (m<=max_iter) %m<=k

%upwind

FL_rechtsNew(1) = u*CH(m,1);

FL_linksNew(1) = u*CH(m,end);

for i = 2:nc

FL_rechtsNew(i) = u*CH(m,i); %i-th volume cell

FL_linksNew(i) = u*CH(m,i-1); %(i-1)-th volume cell

end

%central discretization

if fluxes_new == 5

FH_rechtsNew(1) = 0.5*u*(CH(m,1)+CH(m,2));

FH_linksNew(1) = 0.5*u*(CH(m,nc)+CH(m,1));

for i = 2:nc-1

126 APPENDIX A. MATLAB CODES

FH_rechtsNew(i) = 0.5*u*(CH(m,i)+CH(m,i+1));

FH_linksNew(i) = 0.5*u*(CH(m,i-1)+CH(m,i));

end

FH_rechtsNew(nc) = 0.5*u*(CH(m,nc)+CH(m,1));

FH_linksNew(nc) = 0.5*u*(CH(m,nc-1)+CH(m,nc));

end

if constTheta == 1

%Equal theta

DeltaF_rechtsNew = -dt./deltax’.*(thetaR.*(FH_rechtsNew - FL_rechtsNew));

DeltaF_linksNew = dt./deltax’.*(thetaL.*(FH_linksNew - FL_linksNew));

else

%Different theta

DeltaF_rechtsNew = -dt./deltax’.*(0.5*FH_rechtsNew - thetaR.*FL_rechtsNew);

DeltaF_linksNew = dt./deltax’.*(0.5*FH_linksNew - thetaL.*FL_linksNew);

end

deltaf_rechts = DeltaF_rechtsNew-g_rechts;

deltaf_links = DeltaF_linksNew-g_links;

%FCT fluxlimiter

[l_rechtsNew, l_linksNew,deltaf_rechts,deltaf_links] = ... \\

limiter(deltaf_rechts,deltaf_links,usNew(m,:),usNew(m,:));

limF_rechtsNew = l_rechtsNew.*deltaf_rechts;

limF_linksNew = l_linksNew.*deltaf_links;

usNew(m+1,:) = usNew(m,:)+limF_rechtsNew+limF_linksNew;

CH(m+1,:) = (max([1-deltax./(u*dt), zeros(nc,1)],[],2) > 0)’.* ...\\

((eye(nc)-dt.*K_L)\usNew(m+1,:)’)’ + ...\\

(max([1-deltax./(u*dt), zeros(nc,1)],[],2) == 0)’.*us_old(n+1,:);

dc(m+1,:) = CH(m+1,:)-CH(m,:);

g_rechts = g_rechts + limF_rechtsNew;

g_links = g_links + limF_linksNew;

%Iteration error

It_err(m,n) = norm(dc(m+1,:),NORM);

m = m+1;

end

A.5. METHOD 2B 127

C(n+1,:) = (sum(thetaL+thetaR)~=0)*CH(m,:)+(sum(thetaL+thetaR)==0)*us_old(n+1,:);

%number of iterations per time step

NumIter(n) = m-1;

end

plot(dx(2:end)’-0.5*deltax,C(n+1,:),’- g’); %numerical solution

axis([0 10 -0.3 1.5])

128 APPENDIX A. MATLAB CODES

Appendix A

Current numerical schemes in
Delft3D-WAQ

At present, 23 different numerical schemes can be used in Delft3D-WAQ. The most used schemes
are briefly presented below.

Scheme 1 The explicit first order upwind scheme.

Scheme 2 Like scheme 1, except that it uses the predictor corrector method for time integration.

Scheme 3 The explicit Lax-Wendroff scheme.

Scheme 4 An Alternation Direction Implicit (ADI) method. It can only be applied in two
dimensions on a structured grid. This scheme uses the theta scheme for θ = 1

2 .

Scheme 5 An explicit FCT scheme a la Boris and Book with Lax-Wendroff flux correction.

Scheme 10 Theta upwind scheme with θ = 1.

Scheme 11 The horizontal and vertical direction are treated separately. In horizontal direction
the explicit upwind scheme. In vertical direction the theta scheme with θ = 1

2 and central fluxes.

Scheme 12 Like scheme 11, except that it uses an explicit FCT scheme (scheme 5) in the
horizontal direction.

Scheme 13 Like scheme 11, except that it uses the theta upwind scheme with θ = 1 in the
vertical direction.

Scheme 14 Like scheme 12, except that it uses the theta upwind scheme with θ = 1 in the
vertical direction.

Scheme 15 Like scheme 10, except that in horizontal direction the linear systems are solved
by means of GMRES with a symmetric GS preconditioner. In the vertical direction a direct
method is used.

Scheme 16 Like scheme 15, except that it uses the theta scheme with θ = 1
2 and central

discretization in the in the vertical direction.

129

130 APPENDIX A. CURRENT NUMERICAL SCHEMES IN DELFT3D-WAQ

Scheme 19 The horizontal and vertical direction are treated separately. In the horizontal
direction an ADI method is used. In the vertical direction central fluxes are used.

Scheme 20 Like scheme 19, except that it uses first order upwind discretization in the ver-
tical direction.

Scheme 21− 22 The local theta scheme combined with the FCT scheme a la Boris and Book.

Scheme 23 DHI Quickest solver.

Bibliography

[1] K. Alhumaizi, Flux limiting solution techniques for simulation of reaction − diffusion−
convection system, Communications in Nonlinear Science and Numerical Simulation, volume
12, page 953-965, 2007

[2] J.P. Boris and D.L. Book, Flux Corrected Transport , I . SHASTA, A fluid transport algorithm
that works, Journal of Computational Physics volume 11, page 38-69, 1973

[3] Delft3D-WAQ user manual, Versatile water quality modelling in 1D , 2D or 3D
systems including physical , (bio)chemical and biological processes, Deltares, Delft, 2009

[4] R. Eymard, T. Gallouet and R. Herbin, Finite Volume Methods, page 4-11, 2006

[5] D. Kuzmin, Explicit and implicit FEM − FCT algorithms with flux linearization, Jour-
nal of Computational Physics 228, page 2517-2534, 2009

[6] D. Kuzmin, M. Möller, S. Turek, High − resolution FEM − FCT schemes for multidimensional
conservation laws, Technical Report 2011, Institute of Applied Mathematics, University of
Dortmund, 2004.

[7] D. Kuzmin, S. Turek, Flux correction tools for finite elements, Journal of Computational
Physics 175, page 525-558, 2002.

[8] R.J. Leveque, Finite Volume Methods for hyperbolic problems, Cambridge University Press,
New York, 2002.

[9] L. Postma, Water quality of surface waters, Technical report, Deltares, Delft, 2011

[10] P. van Slingerland, An accurate and robust finite volume method for the advection
diffusion equation, Delft Institute of Applied Mathematics, June 2007.

[11] S. van Veldhuizen, Efficient numerical methods for the instationary solution of
laminar reacting gas flow problems, Delft Centre for Computational Science and Engineer-
ing, 2009.

[12] C. Vuik, P. van Beek, F. Vermolen, J. van Kan, Numerieke methoden voor
differentiaal vergelijkingen, VSSD, Delft, 2006

[13] P. Wesseling, Elements of computational fluid dynamics, Delft University of Technology,
2001

[14] S.T. Zalesak, Fully multidimensional flux corrected transport algorithm for fluids, Journal
of Computational Physics volume 31, page 335-362, 1979

131

