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ABSTRACT With the rapid development of deep learning technologies, researchers have begun to utilize
convolutional neural network (CNN)-based object detection methods to detect multiple catenary support
components (CSCs). The literature has focused on the detection of specified large-scale CSCs. Additionally,
CNN architectures have faced difficulties in identifying overlapping CSCs, especially small-scale compo-
nents. In this paper, a unified CNN architecture is proposed for detecting all components at various scales of
CSCs. First, a detection network for CSCs with large scales is proposed by optimizing and improving Faster
R-CNN. Next, a cascade network for the detection of CSCs with small scales is proposed and is integrated
into the detection network for CSCs with large scales to construct the unified network architecture. The
experimental results demonstrate that the detection accuracy of the proposed CNN architecture can reach
92.8%; hence, it outperforms the popular CNN architectures.

INDEX TERMS High-speed railway catenary, catenary support component detection, deep learning archi-
tecture.

I. INTRODUCTION
The catenary system is an essential part of a high-speed
railway, which provides a stable power transmission line for
the operation of trains. Failure events in the catenary system
could lead to the interruption of a complete railway line,
which could cause substantial economic losses and affect the
availability and safety of the railway services [1]. Therefore,
for preventing failures, many monitoring systems have been
proposed in the literature [2]–[6]. The effective inspecting
and monitoring systems provide the railway infrastructure
manager with the possibility of repairing components prior to
their failure. However, due to the complexity of the catenary
system (see Figure 1), which includes many components
and distributes over several kilometers of railway tracks,
accurately detecting and continuously monitoring all compo-
nents is a massive challenge. Without the robust detection of
components, the early prognosis of failures is not possible.
The current research on the detection of catenary support
components (CSCs) focuses mainly on the detection of a

The associate editor coordinating the review of this manuscript and
approving it for publication was Santhosh Kumar Gopalan.

single CSC or several easy-to-detect CSCs with large scales
(LSCSCs). Han et al. [7] presented an effectivemethod for the
detection of catenary rod-insulators (component number 2 in
Figure 1). The method used a segment clustering algorithm
to divide the images and detected the rod-insulators using
deformable part models. Zhang et al. [8] used the contourlet
transform to extract insulator feature information based on
the anisotropy and directionality of catenary rod-insulators
(component number 2 in Figure 1). The Chan-Vese model
was used to detect the insulator boundaries to locate each
insulator. Kang et al. [9] presented a novel architecture for
catenary insulator (component number 2 in Figure 1) surface
defect detection. The architecture consisted of two stages:
The first stage used a convolutional neural network to localize
the key catenary components. Then, the second stage used
a deep multitask neural network to obtain the classification
score and anomaly score and to determine the defect state
of the insulators. Liu et al. [10] presented a high-precision
loose strand diagnosis approach for catenary isoelectric lines
(component number 7 in Figure 1) by improving the ZF-Net
convolutional network. Han et al. [11] proposed an automatic
visual inspection method for fracture detection in catenary
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FIGURE 1. Catenary support components. 1) Insulator base; 2) Insulator;
3) Brace sleeve; 4) Brace sleeve screw; 5) Rotary double-ear; 6) Binaural
sleeve; 7) Isoelectric line; 8) Steady arm base; 9) Bracing wire hook;
10) Double sleeve connector; 11) Messenger wire base; 12) Windproof
wire ring.

clevises (components number 5 and 6 in Figure 1). This
method utilized the contextual information of the regions
of interest in the image to modify the faster region-based
convolutional neural network to detect the clevises. A crack
detection process was proposed for recognizing cracks by
utilizing the wavelet entropy. Chen et al. [12] proposed a
defect detection method for catenary fasteners (components
number 3, 5, 6, and 10 in Figure 1) that uses a three-level
cascade deep convolutional neural network. The first network
was used to detect the LSCSCs (diagonal tubes, clevises,
and joints) and the second network was used to detect the
small-scale fasteners of the CSCs based on the results of the
first network. Last, the located and cropped images of the
components were sent to the third light-network for defect
detection of the fasteners.

Zhong et al. [13] proposed a high-precision three-stage
automatic defect detection method for catenary split pins
(components 3, 5, and 6 in Figure 1) that is based on
an improved deep convolutional neural network, namely,
PVANET++. The detection scheme was similar to that in
reference [12]. First, the LSCSCs were detected by the first
network. Then, the CSCs with small scales (SSCSCs) were
detected by the second network. Last, the defect state of
the split pins was determined. In the literature, the proposed
methods have yielded satisfactory results for the detection
of a specified component. However, for the same catenary
image data set, the use of a dedicated approach for the detec-
tion of each component is inefficient because the common
features of the CSCs that are processed by one approach
could be used to facilitate the detection of other components.
Moreover, simultaneously loading these methods into the
inspection system and applying them to the detection of
CSCs will consume a substantial amount of system resources
and increase system costs. In addition, for the detection of
the overlapping SSCSCs, an independent cascade network
is typically used to detect them in the literature, which will
pose new problems. Therefore, research on multi-component

detection under a unified architecture is crucial. With the
rapid development of deep learning (DL) technology, which
overcomes many shortcomings of traditional object detection
methods, researchers have begun to focus on the CNN tech-
nology for multi-component detection. To the best knowledge
of the authors’ knowledge, the literature is focused on the
detection of several easy CSCs, and the detection of all CSCs
has rarely been reported [1], [14].

Many state-of-the-art deep convolutional neural networks
(DCNNs) have been proposed and successfully applied to
various fields [15], [16]. In the literature, there are two
mainstream network architectures for multi-object detection:
region-based architectures (e.g., Faster R-CNN [17] and
R-FCN [18]) and regression-based architectures (SSD [19]
and YOLO [20]). Both architectures have advantages and
disadvantages [1]. As reported in [1] for CSC detection,
the region-based Faster R-CNN can more accurately detect
multiple scales of CSCs. However, it performs poorly on the
detection of overlapping SSCSCs; this is because when the
region proposal network (RPN) of Faster R-CNN predicts the
regions of interest (RoIs) of CSCs, non-maximum suppres-
sion (NMS) is used to reduce the number of these predicted
regions by merging the overlapping regions, which will cause
the overlapping SSCSCs to be absorbed by LSCSCs. In con-
trast, the regression-based architectures can detect SSCSCs;
however, the detection accuracy is not high. This is because
the regression-based architectures are sensitive to the loca-
tions of objects, and they allow only one object to be detected
in the divided areas.

To overcome these problems, a novel CNN architecture
for the detection of all CSCs is proposed. The proposed net-
work architecture follows the main body structure of Faster
R-CNN. Themain contributions of this paper are summarized
below:

(1) Through the performance analysis of Faster R-CNN,
the detection network of LSCSCs is proposed by optimizing
and improving Faster R-CNN, including a) analyzing the
feature maps of the feature extraction network (FEN) and
selecting the optimal feature map; b) adding the max-pooling
layer before the region proposal network (RPN) to deduce
the RPN size and increase the system real-time; c) analyzing
the zero fraction of the classification and regression network
(CRN) and reducing the size of CRN.

(2) Inspired by the cascade strategy, the detection network
of SSCSCs is proposed and integrated into the detection
network of LSCSCs to build a unified network architecture,
which not only compensates for the shortcomings of Faster
R-CNN but also overcomes the disadvantages of traditional
cascade networks.

The remainder of this paper is organized as follows:
First, the functional networks of the proposed network archi-
tecture are introduced in Section II. Then, the methodol-
ogy and architecture design are explained in Section III.
Next, the experiment results are analyzed and discussed in
Section IV. Finally, the conclusions of this work are summa-
rized and further research is discussed in Section V.
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FIGURE 2. Overview of the proposed CSCD-Architecture.

II. OVERVIEW OF THE PROPOSED NETWORK
ARCHITECTURE
An overview of the proposed network architecture, namely,
the CSCD-Architecture, is presented in Figure 2. The CSCD-
Architecture consists of four function networks:

1) First, catenary images are collected from the cate-
nary inspection vehicle and stored on an on-board
server. Then, the catenary images are sent to a feature
extraction network (FEN) for extraction of the low-
level and high-level features of all CSCs.

2) Next, the high-level features of CSCs are sent to a
region proposal network (RPN) for prediction of the
RoIs of the LSCSCs.

3) Then, combining the high-level features of FEN with
the RoIs of the LSCSCs from RPN, the high-level
features of the RoIs are obtained and sent to a classi-
fication and regression network (CRN) for detection of
the LSCSCs. This network is named LSCCRN.

4) Last, according to the context relationship between
LSCSCs and SSCSCs, the low-level features of FEN
and the RoIs of SSCSCs from the localization results of
LSCCRN are combined, and the low-level features of
the RoIs are obtained and sent to a CRN for detection
of the SSCSCs. This network is named SSCCRN.

III. METHODOLOGY AND ARCHITECTURE DESIGN
To build the proposed CSCD-Architecture for the detection
of all CSCs, Faster R-CNN is optimized and improved to
obtain the LSCCRN. Then, the cascade strategy is introduced
into the proposed network architecture to obtain the SSC-
CRN. Faster R-CNN and the proposed CSCD-Architecture
are illustrated in Figure 3, and the design principles of the
proposed network architecture are described below.

A. FEATURE EXTRACTION NETWORK
CNNs are widely used as the FEN to extract object features
due to their characteristics. These features are obtained via
repeated convolution and pooling operations. Theoretically,
the levels of feature maps of CNNs represent various spatial
resolutions and semantic information. The low-level feature
maps of CNNs have a higher spatial resolution but are coarser,
and they are suitable for small-scale object detection. In con-
trast, the high-level feature maps have more semantic infor-
mation but are more abstract, and the features of objects with
small scales easily disappear; they are ideal for large-scale
object detection.

In Figure 3 (a), the FEN of Faster R-CNN uses the VGG16
network, which consists of five stages, to extract object
features. In this paper, the Faster R-CNN is used to try to
detect all CSCs, and the feature maps of various layers of
the VGG16 network are presented in Figure 4. According
to the analysis of the feature maps of the VGG16 network,
the feature map (Conv 10) in Figure 4 (j) is sufficient for
identifying CSCs. Therefore, the proposed network architec-
ture crops the VGG16 network to remove the fifth stage of
the VGG16 network and chooses Conv 10 as the last feature
map, as illustrated in Figure 3 (b).

B. REGION PROPOSAL NETWORK
The RPN is widely used to reduce the computational com-
plexity of network architectures, in combination with the
characteristics of the anchor mechanism, for predicting
regions of interest (RoIs) of objects, as shown in Figure 5.
First, the anchors generate reference boxes of multiple pre-
defined scales and aspect ratios to cover various scales of
objects. These boxes are used as the criteria for deciding
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FIGURE 3. Structural comparison between (a) Faster R-CNN and (b) the proposed CSCD-Architecture.

whether an object is present in an image and are used to calcu-
late the bounding-box regression. Moreover, non-maximum
suppression (NMS) is used to reduce the predicted RoIs by
merging the overlapping RoIs based on their intersection-
over-union (IoU).

In Figure 3 (a), the RPN of Faster R-CNN from top to
bottom contains two sibling convolution operations for classi-
fication and regression. However, since the proposed network
architecture chooses Conv 10 as the last feature map, the size
of the last featuremap increases and causes the RoI prediction
of the RPN to takemore time. To improve the efficiency of the
RPN, based on an analysis of Figure 4, the feature map (Conv

11) of the VGG16 network performs excellently in predicting
the RoIs of CSCs. Therefore, we add a MaxPool layer and a
convolution operation to the proposed RPN to improve the
real-time performance and to ensure the accuracy, as illus-
trated in Figure 3(b). For the catenary data set, the resolution
of the original catenary images that are acquired from the
inspection vehicle is 6600×4400. The resolution is too large,
and it is difficult to process directly. Therefore, these images
are resized from 6600×4400 to 990×660 as input images.
By counting the image sizes of the resized CSCs, the size
range of LSCSCs is found to be approximately 45 to 200.
Therefore, in the proposed RPN, the anchors are assigned to

17052 VOLUME 8, 2020



W. Liu et al.: Unified DL Architecture for the Detection of All CSCs

FIGURE 4. Feature maps of each layer of the VGG16 FEN. (a) is the
original image; (b) is the second and bottom layer’s; (m) is the last and
top layer’s; (c-l) are the middle layers.

three scales {642, 1282, 2562} and three aspect ratios {1:1,
1:2, 2:1} of the feature map of Conv 11. When generating the
proposals, a label is assigned to each anchor according to the

FIGURE 5. Predicted RoIs from the proposed RPN.

IoU with the ground-truth. An anchor is labeled positive if it
has the highest IoU with a ground-truth box or an IoU that
is higher than 0.7 with any ground-truth box. An anchor is
labeled negative if it has an IoU that is lower than 0.3. The
remaining anchors are ignored.

With these definitions, an objective function that follows
the multi-mask loss LRPN is minimized. The proposed loss
function is expressed as follows:

LRPN(pi, ti) =
1
Ncls

∑
i

Lcls(pi, p∗i )+λ
1
Nreg

∑
i

p∗i Lreg(ti, t
∗
i )

(1)

where Lcls and Lregrepresent the losses of classification and
regression. Lcls is the log loss function over two classes
(object vs. no object), Lreg denotes the robust loss func-
tion (smooth L1) that is defined in [17], pi is the estimated
probability of an anchor being an object, p∗i denotes the
ground-truth label value, ti is a vector that represents the four
parameterized coordinates of the predicted bounding-boxes,
and λ is a balancing parameter between the two task losses.

C. CLASSIFICATION AND REGRESSION NETWORK FOR
LSCSCS
Fully connected (Fc) networks are typically used to classify
the types of objects and to regress the locations of objects.

In Figure 3 (a), the classification and regression network
(CRN) of Faster R-CNN from top to bottom involves two
serial Fc operations, followed by two sibling Fc operations.
By combining the predicted RoIs of RPNwith the last feature
map of FEN, the features of the predicted RoIs are cropped
from the last feature map and are resized to a fixed size.
Then, they are sent to the CRN for object detection. How-
ever, instead of the last feature map of the VGG16 network,
the proposed network architecture chooses Conv 10 as the
last feature map, and the resolution of the last feature map
doubles. Through an analysis of the sizes of the predicted
RoIs in Conv 10, the fixed size is adjusted to 10×10 from
7×7. In addition, through the analysis of the fractions of zero
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FIGURE 6. Fractions of zero values in two layers of the CRN.
(a) corresponds to the Fc 1 layer and (b) to the Fc 2 layer.

values in various featuremaps of the CRN in Fig. 6, it is found
that the average fractions of zero values are 0.745 and 0.84,
respectively. Therefore, the proposed network architecture
reduces the size of the CRN by half.

As discussed above, the MNS is introduced into the RPN
to reduce the predicted RoIs by merging the overlapping
RoIs. However, a special case for the detection of CSCs
is that the small-scale brace sleeve screws and the large-
scale brace sleeves overlap, as shown in Fig. 7. The brace
sleeve screws would be absorbed, which could cause the
brace sleeve screws not to be detected by the CRN. Therefore,
the CRN can only be used to identify the LSCSCs. The
proposed CRN is named LSCCRN.

Each training RoI is labeled with a ground-truth large-scale
class uLand a ground-truth bounding-box regression t∗L . The
RoI is labeled uL if the IoU is higher than 0.5 with a class uL ,
and the RoI is labeled 0 as background if the IoU is higher
than 0.1 and lower than 0.4. The multi-task loss LLSCDNon
each labeled RoI is jointly trained with classification and
bounding-box regression:

LLSCDN(pL , t
uL
L ) = Lcls(pL , uL)+ λ [uL ≥ 1]Lreg(t

uL
L , t

∗
L )

(2)

where the Iverson bracket indicator function [u ≥ 1] equals
1 when u ≥ 1 and 0 otherwise.

FIGURE 7. Overlap of the predicted boxes of the brace sleeves and the
brace sleeve screws.

D. CLASSIFICATION AND REGRESSION NETWORK FOR
SSCSCS
The proposed network architecture uses the cascade strategy
to overcome the problem that Faster R-CNN is not suitable
for the detection of overlapping SSCSCs while avoiding the
disadvantages of traditional cascade networks.

In Figure 3 (b), a CRN of the SSCSCs (SSCCRN) is pro-
posed, which is added behind the LSCCRN. The SSCCRN
network from top to bottom includes a convolution operation
and is followed by two serial Fc operations and two sibling
Fc operations for classification and regression. As described
above, the low-level feature maps of FEN have a higher
spatial resolution but are coarser; hence, they are suitable
for small-scale object detection. Thus, through analyzing the
low-level feature map, the proposed network architecture
chooses Conv 3 as the output feature map for the detection of
the SSCSCs. According to the context structure information
between the SSCSCs and the detected LSCSCs, the detected
locations of the LSCSCs are selected as the RoIs of the
SSCSCs. Then, the features of the RoIs of the SSCSCs are
cropped from feature map Conv3. Next, a sliding window of
size 7×7 slides at a stride of 1 over the cropped feature map.
These windows of feature maps are cropped and sent to the
SSCCRN for detection.

Each training RoI is labeled with a ground-truth large-scale
class uS and a ground-truth bounding-box regression t∗S . The
RoI is labeled uS if the IoU is higher than 0.5 with a class uS ,
and the RoI is labeled 0 as background if the IoU is lower than
0.1. The multi-task loss LSSCDNon each labeled RoI is jointly
trained with classification and bounding-box regression:

LSSCDN(pS , t
uS
S ) = Lcls(pS , uS )+ λ [uS ≥ 1]Lreg(t

uS
S , t

∗
S )(3)

IV. EXPERIMENTAL RESULTS AND DISCUSSION
To evaluate the performance of the proposed network archi-
tecture, comparative experiments are conducted on the cate-
nary data set. All the experiments are conducted on a server
with Intel Core i7-8700 CPU@3.70 GHz×12, GeForce GTX
1080Ti GPU, 32-GB RAM, and 2-TB hard disk. All core
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TABLE 1. Classes and samples.

FIGURE 8. Catenary inspection vehicle.

algorithm codes are developed with TensorFlow architecture
[21] on Ubuntu 17.10 system.

A. DATA SET
The catenary data set is acquired from the high-speed railway
catenary inspection vehicle shown in Figure 8. The total
amount of the image data set is 4644, among which the
training data set is 2275, the validation data set is 975, and
the test data set is 1394. The sample number of every type on
the test data set is counted in Table 1.

B. TRAINING PROCEDURE
The training parameters and scheme of the proposed network
architecture are set as follows.

First, to ensure that the proposed network architecture can
be trained and is convergence, the proposed FEN parameters
are initialized with the parameters of the VGG-16 network
pre-trained on the catenary data set. And the parameters of
other networks of the proposed network architecture, includ-
ing RPN, LSCCRN, and SSCCRN, are initialized with ran-
dom normal functions. And the Momentum algorithm is cho-
sen as the backpropagation gradient descent method, and the
term momentum and weight decay are set to 0.9 and 0.0001,
respectively. The learning rate is set to 0.0001, and the max
iteration is 15,000.

Next, a training scheme is designed for different object
detection tasks as follows. First, detection network LSCCRN
is trained 10,000 times. Then, detection network SSCCRN is
trained 10,000 times. After that, these two detection networks

are alternately trained 5,000 times. When the networks are
trained 10,000 times, the learning rate is set to 0.00001.

C. EVALUATION METRICS
The evaluation metrics include precision (P), recall (R), F1
score (F1), average precision (AP), mean average precision
(MAP) and time per frame (T).

P =
TP

TP+ FP
× 100% (4)

R =
TP

TP+ FN
× 100% (5)

F1 =
2× P · R
P+ R

(6)

AP =
∫ 1

0
P(R)dR (7)

MAP =

∑Q
q=1 AP(q)

Q
(8)

P Q is the number of component classes.

D. EXPERIMENTAL RESULTS AND ANALYSIS
To evaluate the performances of the selected parameter values
and the proposed network architecture, two sets of experi-
ments are implemented and discussed:

1) PARAMETER SELECTION AND VERIFICATION OF THE
PROPOSED NETWORK ARCHITECTURE
a: DETERMINE THE ANCHOR SCALE OF RPN
The anchor scales of the RPN in Faster R-CNN are set to
{1282, 2562, 5122} for the public data set by default. For
the catenary data set, through determining the size range of
the LSCSCs, the anchor scales of the proposed RPN are set
to {642, 1282, 2562}. To evaluate the performance of the
selection, a set of comparative experiments for various anchor
scales are conducted. The results are presented in Table 2,
Figure 9, and Figure 10.

a) In Figure 9, the prediction results with the anchor scales
{642, 1282, 2562} more accurately predict the sizes and posi-
tions of the CSC bounding boxes, which lay the foundation
for the next detection with LSCCRN.

b) According to Table 2, the classification accuracy MAP
of LSCCRNwith the anchor scales {642, 1282, 2562} reaches
91.2% and is 1.5% higher than that with the anchor scales
{1282, 2562, 5122}. According to Figure 10, the classification
loss and the location loss of LSCCRN with the anchor scales
{642, 1282, 2562} are lower than those with the anchor scales
{1282, 2562, 5122}.
These results demonstrate that the selected anchor scales

are reasonable and can accurately predict the RoIs of
LSCSCs.

b: CHOOSE THE FIXED SIZE OF THE FEATURES OF THE ROIS
After the local features of the RoIs of LSCSCs have been
cropped, they are input into the LSCCRN for LSCSC detec-
tion. Before that, these local features should be resized to
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FIGURE 9. Prediction results from the proposed RPN. (a) presents the
results with anchor scales {1282, 2562, 5122} and (b) the results with
anchor scales {642, 1282, 2562}.

TABLE 2. Detection accuracy with various anchor scales.

a fixed size, which will affect the detection accuracy of
LSCCRN. To choose an optimal size, a comparative exper-
iment on eight continuous sizes, namely, {7×7, 8×8, 9×9,
10×10, 11×11, 12×12, 13×13, 14×14}, is implemented.
These results are presented in Figure 10.

According to Figure 11, as the resized size increases,
the detection accuracy gradually increases. When the size
reaches 10×10, the detection accuracy is the highest and an
accuracy of 93.1% is realized. After that, the detection accu-
racy begins to decrease. The figure indicates that 10×10 is
the most suitable size for the detection of LSCSCs.

c: DESIGN THE STRUCTURE OF THE PROPOSED SSCCRN
Ideally, the SSCSCs can be detected directly by the pro-
posed SSCCRN at the low-level feature layers of FEN.
However, the FEN is trained for the first time to extract
the features of LSCSCs, and losses the feature information

FIGURE 10. Classification loss and location loss of the LSCCRN network
with two anchor scales, (a) presents the classification loss and (b) the
location loss.

FIGURE 11. MAPs of LSCCRN with various resized sizes.

of SSCSCs occur. Therefore, a convolutional operation is
added into SSCCRN to extract additional feature informa-
tion of SSCSCs. To evaluate the performance of the pro-
posed SSCCRN, the detection results for the brace sleeve
screw component with various feature maps are described
in Table 3.

17056 VOLUME 8, 2020
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FIGURE 12. Detection example of the proposed CSCD-Architecture for the detection of all CSCs.

TABLE 3. Classification accuracy on the data set.

According to Table 3, feature map Conv 3, in combination
with Conv 13, performs the best, and the precision, recall, and
F1 score are 96.5%, 97.9%, and 97.2%, respectively. Hence,
these original low-level feature maps of the FEN only retain
the basic shallow features of SSCSCs, and the characteristics
of SSCSCs are gradually weakened as the network layers of
FEN deepen. However, the proposed SSCCRN can preserve
the shallow features and extract more in-depth features by
adding an extra convolutional operation, which can increase
the detection accuracy of SSCSCs. Moreover, the time con-
sumption of testing is only increased by 0.007 seconds per
frame.

2) COMPARISON WITH OTHER DETECTION ARCHITECTURES
(1) First, to evaluate the overall performance of the pro-
posed network architecture, a comparative experiment with

TABLE 4. Detection result MAPs with various architectures.

the most advanced CNN architectures is conducted. The
MAPs of LSCSCs and SSCSCs are calculated in Table 4,
separately. For LSCSCs and SSCSCs, the MAPs of the pro-
posed network architecture yield the most accurate results.
Specially, compared with Faster R-CNN, the LSCSC detec-
tion accuracy of the proposed LSCCRN based on the opti-
mization and improvement of Faster R-CNN is 3.3% higher
than Faster R-CNN, and the detection time consuming is
also 0.009 seconds lower. In addition, by integrating the
proposed SSCCRN, the SSCSC detection accuracy is sig-
nificantly improved and reaches 89.4%, and the time con-
suming only needs extra 0.036 seconds. Although the total
time-consumption of the system has increased by 0.027 sec-
onds, the requirements of offline detection are still satisfied.
A detection example is presented in Figure 12.
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TABLE 5. Detection result APs of the CSCs compared with the different methods.

(2) Next, to evaluate the performance of the proposed net-
work architecture, the APs of each CSCwith various methods
are listed in Table 5. According to the table, the proposed
network architecture can detect each CSC, and its perfor-
mance reached the same level as available methods in the
literature, although the APs are not the highest. For the bin-
aural sleeves and rotary double-ears, the APs are much lower
than those in the current literature. This is because the two
linked components are treated as a whole component clevis
in the literature, which enhances the objects’ characteristics
and renders them easier to detect. For the small-scale brace
sleeve screws, the proposed network architecture overcomes
the problems of the cascade network [12] and realizes higher
precision. All the above experimental conclusions prove that
the proposed network architecture is feasible and has practical
application value.

V. CONCLUSION
In this paper, a unified fast high-precision multi-scale object
detection architecture, namely, CSCD-Architecture, for the
detection of all CSCs is proposed. First, by optimizing and
improving the FEN, RPN, and CRN of Faster R-CNN,
a faster network, namely, LSCCRN, is proposed for detect-
ing LSCSCs, which was also proven to improve the overall
precision of the LSCSC detection. Furthermore, by intro-
ducing a cascade structure, a network SSCCRN is proposed
for detecting SSCSCs, which overcomes the disadvantage
of Faster R-CNN for the SSCSC detection. LSCCRN and
SSCCRN are combined to form a unified network architec-
ture. Moreover, in contrast to the methods from the literature
on cascade networks, the proposed SSCCRN can effectively
utilize information that is obtained from previous networks
(FEN and LSCCRN): First, the proposed cascade network,
namely, SSCCRN, can directly use the detection results of
LSCSCs as the RoIs of SSCSCs and can utilize the low-level
feature maps of the FEN, which can eliminate the need for
intermediate storage of the large-scale CSC images in the pro-
posed cascade network and can share the feature maps of the

FEN to increase the system efficiency. Second, the samples
of SSCSCs are jointly labeled with the LSCSCs to reduce the
workload. Last, the SSCSCs are also detected in the original
images to retain the original location information.

Although the objective of detecting all CSCs has been
realized, an in-depth study on the hyper-parameters of the
model should be conducted. These parameters are critical
to the further improvement of the proposed network archi-
tecture. In addition, accurate object detection, as presented
in this paper, is a prerequisite for effective fault detection.
Further research will focus on fault detection of various types
of CSCs. Methods that combine physical information of the
objects and well-reported failure modes, together with data-
based methodologies, are to be considered. The detection
architecture that is proposed in this paper establishes a solid
foundation for the subsequent fault detection of catenary
support components.
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