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Abstract

SRAM PUF has a potential to become the main player in hardware security. Unfor-

tunately, currently available solutions are usually locked to specific entities, such

as companies or universities. Here, we introduce the first open source project to de-

velop software-based SRAM PUF technology using off-the-shelf SRAM. We also

present testing results on two brands of off-the-shelf SRAMs quality to be a PUF

component; the Microchip 23LC1024 and the Cypress CY62256NLL. Between

these two, only Cypress CY62256NLL shows a viable result as a PUF component.

Testing on two bit-selection algorithms (data remanence analysis and neighbor ana-

lysis) are also performed. Based on the testing results, we introduce a PUF enroll-

ment scheme using data remanence analysis as the bit selection algorithm which

will identify the locations of the stable bits. We also propose a procedure to de-

velop SRAM PUF-based applications using any off-the-shelf SRAM. The proced-

ure consists of three main steps; testing the off-the-shelf SRAM quality to be a PUF

component, creating a PUF-generated key using enrollment-reconstruction mech-

anism, and developing any PUF-based application utilizing the PUF-generated key.

In addition, an idea to create numerous CRPs using SRAM PUF is also proposed

in this thesis. Numerous CRPs can be achieved when a permutation of stable bits

is utilized as a challenge. Furthermore, we also present a secure data and key stor-

age scheme using SRAM PUF. The proposed scheme is influenced by multi-factor

authentication. Using a combination of a PUF-generated key and user’s password,

a final key was produced to encrypt and decrypt user’s data. As the last experiment

of this thesis, we present a demo of storing a private key of Bitcoin. We shows that

the Bitcoin key can not be reconstructed successfully if the password is incorrect

or the SRAM is not exactly the same with the one that use to encrypt the Bitcoin

key.
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Chapter 1

Introduction

This chapter starts by presenting background and motivation on doing this thesis

project. Afterwards, the problem statement and thesis’ goals will be explained.

Explanations on our contributions to the state-of-the-art will continue this chapter.

This chapter will be closed by description of thesis’ outline.

1.1 Need for Self-Sovereign Identity

Hardly anyone can live without having their identity. Identity defines who we are

and helps to describe the uniqueness of everyone. The importance of identity in

our daily life is unquestionable. Society requires identity to enable millions trans-

actions at scale, ensuring that only verified persons can perform specific arrange-

ment. In modern society, identity is commonly related to social security cards,

driver’s licenses, and other state-issued credentials. These elements, however, are

issued and controlled by the governments.

Along with the rise of the digital age, identity also redefines itself. Identity in

the digital world (digital identity) is split into multiple domains. Our Facebook

identity does not correlate directly with our Twitter identity or with many other

domains. Digital identities are scattered and vary from one Internet domain to an-

other. Scattered identities locked to multiple entities leads to a problem where users

are helpless in front of an authority who can deny their identity and confirm a false

identity. This phenomenon ignites a problem where users are not in control of their

identity. There is no clear construction and agreement on how to build a digital

identity that is usable across platforms. This is unfortunate since the lack of digital

identity also limits the development and delivery of efficient, secure, digital-based

economy and society [1]. The failure to solve the digital identity problem issue is

surprising given that we already have public key cryptography since 1984, intro-

duced by Chaum [2]. It enables secure communication between parties without the

hassle of key distribution problem and also provide valid digital signatures. Using

public key cryptography, anyone who wants to send a message to a recipient needs

to encrypt their message using the recipient’s public key. Afterwards, the recipient
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can decrypt the received message using its private key and subsequently read its

content.

To fix the scattered identity issue, a solution was proposed: one should be able

to store their encrypted data on their own devices. To use the data, a service has

to ask the data owner for the private key which will be used to decrypt the data.

Using this concept, everyone has to keep their secret keys secure and solely in their

possession. A centralized storage of private keys is out of question since it will be

a magnet for cyber attacks. Essentially, keeping secret keys secure is the cardinal

problem to solve here.

All problems mentioned before lead to the following problem statement: iden-

tity and secure key storage need to be solved in a decentralized manner. In 2012, a

new concept called self-sovereign identity (SSI) emerged [3]. Self-sovereign iden-

tity is a decentralized identity concept which capable of authenticating statements,

without any central organization, point-of-failure or any possibility of data track-

ing [4]. Self-sovereign identity will be able to give users full control over their

identity. In simple words, users can store their identity data on their devices, and

decide whether to give access to anyone who is willing to use it or not. In ad-

dition, there will be no need for a centralized storage since each user database is

distributed among themselves. A high possibility to get this concept popular is

also present with the introduction of the European Union General Data Protection

Regulation [5].

At the end of 2017, Johan Pouwelse and Martijn de Vos proposed an SSI design

which focused on data protection [4]. Data protection itself is related to secur-

ing data against unauthorized access [6]. Their proposal is described by a concept

where the user data are encrypted and never leave the device/domain. Any oper-

ation which requires the data, such as authentication, will require symmetric en-

cryption on the encrypted data. This encrypted data should be securely protected

and the domain should be trustworthy. In addition, the key used to encrypt and

decrypt data should be kept securely.

The most common way to store the key is by using a non volatile memory

(NVM). NVM is a type of computer memory that keep intact its information

without requiring a continuous power supply. An example of a product which

uses NVM to store the key is a debit card where it uses its chip to store inform-

ation. Unfortunately, this NVM is prone to physical attack. Since the key is per-

manently stored in the memory, an attacker can use some technique to clone the

memory, such as microprobing [7]. An attacker may also use a side channel in-

formation to retrieve any information about the key. This attack can be even worse

if someone that knows the system design is involved. Due to this problem, more

secure, tamper-evident, tamper-proof solutions need to be presented.
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1.2 Rise of PUF as a Security Solution

In 2001, Physical Unclonable Function (PUF) emerged as an inexpensive yet ef-

fective security solution to overcome the afore mentioned problem by generating

and processing secret keys in security hardware. It was introduced by Pappu [8].

Unlike cryptographic algorithm security which usually relies on a hard-to-solve

mathematical problem, PUF use hardware features designed to utilize the physical

random nanoscale disarray phenomena [9]. These disarray phenomena can be used

as a derivation of keys without having to keep any security-critical information ex-

plicitly. This physical randomness is unclonable, even by the original manufacturer

due to manufacturing process variations. Furthermore, since the secrets can only be

produced when the PUF device is turned on, active manipulation of circuit structure

will cause dysfunction of challenge-response mechanism and destroy the secret.

Related to self-sovereign identity concept, [4] present an idea to use PUF and

biometric-based authentication to securely protect the data in the self-sovereign

identity. Figure 1.1 shows the detailed technology stack in their trust creation pro-

posal on how to build trust in the blockchain era.

Figure 1.1: Detailed technology portfolio for trust creation in the blockchain age

[4]. As shown in the bottom of this figure, Physical Unclonable Functions and

biometric-based authentication are utilized to secure the self-sovereign identity.

An example of PUF type is SRAM PUF. SRAM, stands for static random-access

memory, is a type of semiconductor memory that uses bistable latching circuitry

(flip-flop) to store each bit. When a static RAM (SRAM) is turned on, the memory

cells have undefined states [10]. The initialized values on the memory cells are also

random and unique to each SRAM. Based on these properties, SRAM is considered

as a reasonable candidate for PUF. The value of these bits itself is determined

by the SRAM cell which consists of two cross-coupled inverters along with two
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access transistors. This concept was first introduced by Guajardo and Holcomb in

2007 [11]. In order for SRAM to be used as a cryptographic security key, SRAM

PUFs need to have certain characteristics such as the key generated by every SRAM

should be reliable and unique. Reliable means the generated key should always be

consistent, while unique refers to there should be no correlation between one device

and another. Unfortunately, SRAM PUF is also problematic since it contains noise

in its bit value. To handle the noise, error correction code is usually utilized.

1.3 Problem Statement

Since introduced by Guajardo and Holcomb in 2007, there have been many innov-

ations in SRAM PUF field. A simple patent search using patents.google.com with

query ’sram; puf’ results in 546 results [12]. The number of articles in scholar.goog

le.com also exhibit a high occurrences, shown by a total of 2,120 articles (citations

and patents are not included) [13]. Even though these facts indicate a promising

future for this concept, one also should notice that current state-of-the-art in this

field mostly consists of one-off prototypes or specific proprietary implementations.

To get an SRAM PUF product from the market, one has to order a specific request

from a company. For example, Intrinsic-ID, one of the main leaders in SRAM PUF

technology, has a software-based solution which able to generate unique keys and

identities for nearly all microcontrollers without a need for security-dedicated sil-

icon [14]. Even though this solution exists and seems easy to use, unfortunately,

they do not say specifically how much will it cost to use this solution. They also

have another solution for SRAM PUF which is focused on hardware IP (and sup-

porting software/firmware) to enable designers to implement PUFs within their

design. This solution has a high possibility to obstruct a small company or a single

user to use their solution since usually this type of product are intended to use with

a specific contract. Similar to the software-based solution they offer, they also do

not put the explicit price to use this product. An example of a product that uses this

solution is FPGA Microsemi Polarfire [15].

The SRAM PUF field lacks an Arduino, Linux, or GCC type of open reference

implementation. A quick lookup in Github shows that there is no extensive open

source project related to SRAM PUF there. There are projects corresponding to

PUF concepts, but most of them also only delve into a simulation. The communit-

ies seem to have not established a wide agreement on which approach yields the

strongest security properties.

An additional issue that we would like to address is SRAM PUF’s application.

As mentioned in Section 1.1, the importance of securing key and user’s data is

getting higher, especially with the introduction of self-sovereign identity. There are

already many SRAM PUF applications published, but sadly, there is no working

project that tries to integrate SRAM PUF in self-sovereign identity concept. Most

PUF applications are designed for authentication [16] [17] [18] [19] [20] [21] and

generating cryptographic keys [18] [22].
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Based on these facts, we believe the next challenge for this field is to discover

a common approach. The field needs to move beyond isolated single-person pro-

jects and single-company approaches towards a mature and sharing ecosystem.

The field SRAM PUF requires a single implementation which is continuously im-

proved upon for many years to come and is supported by the majority of the aca-

demics and commercial parties. Furthermore, we also try to initiate an integration

between PUF and self-sovereign identity by providing a scheme to protect user’s

data and key. This project will be useful in the process of self-sovereign identity

development.

To understand our intention in this thesis better, this thesis’ problem statement

is presented here. The problem statement of this thesis is:

How to develop an open-source secure data and key storage scheme

using off-the-shelf SRAM component and software-based SRAM PUF

technology?

Derived from the problem statement, there are two goals defined in this thesis.

The first goal is to devise a secure data and key storage scheme based on SRAM

PUF technology. The data and the key protected by the scheme has to be safe

even though the PUF device is lost. Moreover, the scheme should work using off-

the-shelf SRAM. This sub-goal leads us to another question, can we build SRAM

PUF using off-the-shelf SRAM? If it is possible, what characteristics need to be

fulfilled by off-the-shelf SRAM to be eligible as a PUF candidate? In addition,

the constructed SRAM PUF has to work without any hardware design, or in other

words, software-based construction. The secure data and key storage functions in-

side the scheme will be helpful in addressing the problem of self-sovereign identity

and keeping the secret key. The second goal is to create a sharing ecosystem for

the evolution of our data and key storage scheme. The ecosystem should be easily

accessed and understood to encourage the academics and commercial parties to use

and develop the ecosystem together.

1.4 Contributions

In our work, we strongly believe in open source idea and communities involvement

when developing a system. Combined with the problems and potential of SRAM

PUF mentioned before, this thesis generates several additions into the state of the

art of SRAM PUF knowledge. This thesis’ contributions are explained below:

• The first open source project on software-based SRAM PUF using off-the-

shelf SRAM. This software-based SRAM PUF project consists of Arduino

and Python codes and can be found on a Github repository [23]. It provides

the off-the-shelf SRAM testing, enrollment and reconstruction mechanism

which can be utilized to develop other applications. The testing part can

be utilized to check whether an SRAM is capable to be a PUF root-of-

trust or not. The enrollment stage will generate the helper data and the
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challenge which stored on a microSD connected to Arduino. The recon-

struction part can generate a PUF-generated key based on the challenge and

the helper data. In our construction, the selected off-the-shelf SRAM is

Cypress CY62256NLL. We also tested another type of SRAM called Mi-

crochip 23LC1024 but we abandoned it due to insufficient results to be eli-

gible as a PUF candidate. The enrollment stage also requires a bit selection

algorithm called data remanence analysis. In the experiment part, there is

another bit selection algorithm tested named neighbor analysis. This method

is not selected due to worse performance than data remanence analysis.

• Procedure to develop an SRAM PUF-based application using any off-the-

shelf SRAM. The procedure consists of three main steps. First, one should

test the off-the-shelf SRAM quality to be a PUF component. If passed, the

procedure continues to the next step which consists of enrollment and recon-

struction mechanism which will be able to create a PUF-generated key. Last,

using the PUF-generated key, one can develop any PUF-based application.

• A scheme to enable secure data and key storage using off-the-shelf SRAM

and software-based SRAM PUF. This scheme is influenced by multi-factor

authentication. Using a combination of the PUF-generated key and user’s

password, a derived key is produced and utilized as the final key to protecting

user’s data or/and user’s key.

• A concept to devise numerous CRPs using SRAM PUF. One of SRAM PUF

drawbacks is the limitation of possible challenge-response pairs. We propose

to use a set of bit locations as the challenge since when using this concept,

the number of possible pairs is the permutation of total bit locations over the

required number of bit locations. The total possible CRPs using this concept

is a significant large number which can be bigger than the total number of

atom in earth.

1.5 Outline

After explaining a brief review of SRAM’s potentials and problems, problem state-

ment and our contributions in this chapter, Chapter 2 continues with an overview of

security, cryptography, symmetric encryption, key derivation function and multi-

factor authentication. Explanations of PUF and SRAM PUF are also presented in

that chapter. Chapter 3 describes our proposed SRAM PUF development system,

our idea on how to create numerous CRPs using SRAM PUF, and a scheme to

enable secure data and key storage using SRAM PUF. Chapter 4 shows our im-

plementation, experiments and results. Last chapter, Chapter 5, summarizes this

thesis and also gives our view on possible improvements on this project.
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Chapter 2

Related Work

This chapter examines some background theory related to security, cryptography,

and PUF. A brief review of security is presented, followed by explanations on

symmetric cryptography, key derivation function and multi-factor authentication.

Then, theories related to PUF and SRAM PUF are described, continued by eval-

uation on some PUF-based applications. We also present previous publications

which related to SRAM PUF built using off-the-shelf SRAM.

2.1 Security Requirements and Cryptography

A perfect and 100% secure system is the holy grail of all computing system. Un-

fortunately, such thing does not exist. The best way to achieve that goal is by

designing a system to be as secure as possible in a limited scope. To help defining

a secure system, common security requirements are mentioned. According to [24],

there are four elements on common security, which are:

• Confidentiality: a piece of information should be accessible only to an au-

thorized user. For example, an encrypted data can only be decrypted by the

secret key owner.

• Authentication: assurance of the sender of a message, date of origin, data

content, time sent, data information, etc. are correctly identified.

• Integrity: any assets can only be modified by authorized subjects. For ex-

ample, data should be kept intact during transmission.

• Non-repudiation: a subject should be prevented from denying previous ac-

tions. For example, a sender cannot deny the data which it sent.

One way to achieve these four security requirements is by using cryptography.

In traditional definition, cryptography can be defined as the art of writing or solv-

ing codes [25]. But this definition is inaccurate to use nowadays because instead

of depending on creativity and personal skill when constructing or breaking codes,
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the modern cryptography focuses their definition using science and mathematics.

According to [26], modern cryptography can be defined as “the scientific study

of techniques for securing digital information, transactions, and distributed com-

putations.” The algorithm which uses cryptography as their main point is called

cryptographic algorithm.

Since the birth of cryptography, its main concerned is usually related to securing

communication which can be achieved by constructing ciphers to provide secret

communication between parties involved. The construction of ciphers to ensure

only authorized parties also can be called as encryption schemes. A secure encryp-

tion scheme should be able to provide indistinguishability on the produced cipher-

text. The highest indistinguishability level that can be achieved by encryption

scheme is IND-CCA (indistinguishability under chosen ciphertext attack). There

are two types of encryption algorithm; symmetric and asymmetric encryption al-

gorithm. Symmetric, also known as private key encryption or private key cryp-

tography, requires the same key for encryption and decryption. Meanwhile, in the

asymmetric algorithm (can be referred as public key encryption or public key cryp-

tography), there are two keys utilized; private key and public key. A public key is

utilized for encryption and a private key is used for decryption. One of the main

advantages of symmetric encryption over asymmetric encryption is it requires less

computational power which makes it suitable to use in embedded devices.

Besides encryption, another application of cryptography is for authenticating a

message. A message can be proven its integrity by creating a message authentica-

tion code (MAC).

2.2 Symmetric Encryption

According to [26], symmetric encryption consists of three algorithms which are:

• Gen: key-generation algorithm

• Enc: encryption algorithm

• Dec: decryption algorithm

To illustrate this better, an example using two parties, Alice and Bob are given.

Before using the encryption or decryption algorithm, both parties will agree on

a shared secret key k. This phase can be referred as Gen. Afterwards, Alice

can use the encryption algorithm (Enc) Ek using the shared secret key k on

a message m which will generates a ciphertext c. This procedure can be

noted as c = Ek(m). Bob can read the message by using the decryption

algorithm ((Dec)) Deck using the same shared secret key k. Decryption will

result in the plaintext message m. This can be noted as m = Dk(c).
There are many examples of symmetric encryption algorithms, such as

RC2, DES, 3DES, RC6, Blowfish, and AES. AES algorithm will be ex-

plained below.
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AES

AES, stands for Advanced Encryption Standard, is an encryption algorithm

based on a substitution-permutation network and established by the U.S.

National Institute of Standards and Technology (NIST) in 2001. AES is

an example of block ciphers (iteratively works on blocks of plaintext to

produce blocks of ciphertext) [27]. The block size inside AES has a size of

128 bits, while the key size can be either 128, 192, or 256 bits. The key size

itself describes the number of rounds which convert the plaintext into the

ciphertext. If 128-bit key is used, there are 10 rounds utilized. 192-bit key

leads to 12 rounds, while 14 rounds is used when 256-bit key is applied.

There are four major parts inside AES; KeyExpansions, InitialRound,

Rounds and FinalRound. In KeyExpansions, the round keys are generated

using Rijndael’s key schedule based on the AES key. Inside a round, there

are four stages required to do; SubBytes, ShiftRows, MixColumns, and Ad-

dRoundKey. SubBytes refers to a non-linear substitution procedure using a

lookup table. ShiftRows means an act of shifting cyclically the last three

rows of the state. MixColumns contains a mixing activity on the columns

of the state. AddRoundKey involves a fusing process of each byte of the

state with a block of the round key utilizing bitwise XOR operation. The

difference between InitialRound, Rounds, and FinalRound is InitialRound

only contain AddRoundKey, FinalRound does not has MixColumns inside,

and Rounds just filled with those four stages.

An encryption can be done by following all these four parts. To convert

ciphertext into the original plaintext, it is only required to apply a set of

reverse rounds using the same encryption key.

2.2.1 Modes of Operation

Modes of operation refer to various ways to use a block cipher, like AES or

DES. Below are five examples of modes of operation [27]:

• ECB (Electronic Codebook): Plaintext is divided into multiple blocks,

then encryption is done on each block separately.

• CBC (Cipher Block Chaining): Plaintext is divided into multiple blocks,

then encryption is done on the result of an XOR between a plaintext

block and the previous ciphertext block.

• OFB (Output Feedback): Plaintext is divided into multiple blocks.

Then, it generates keystream of blocks by encrypting the previous

block of key. A block of ciphertext is produced by XOR-ing a block

of keystream with a block of plaintext.
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• CFB (Cipher Feedback): Plaintext is divided into multiple blocks,

then a block of ciphertext is produced by XOR-ing the encryption of

the previous block of ciphertext and the plaintext.

• CTR (Counter)): Plaintext is divided into multiple blocks. Later, it

creates keystream of blocks by encrypting consecutive values of a

”counter”. A block of ciphertext is produced by XOR-ing a block

of keystream with a block of plaintext.

From these five modes of operation, four of them requires an IV (initializa-

tion vector). The only one that does not need an IV is ECB mode.

2.2.2 Encrypt-then-MAC

The highest indistinguishability level that can be achieved using AES and

five modes of operation mentioned before is IND-CPA (indistinguishability

under chosen plaintext attack) [27]. IND-CPA can be achieved when using

CBC, OFB, CFB, and CTR mode with a random IV. CTR mode can also

achieve IND-CPA level when using nonce-based IV. To achieve IND-CCA

level, a technique called Encrypt-then-MAC can be utilized. This technique

will prevent an adversary to create any ciphertext without knowing the un-

derlying key.

To use this procedure, two keys K1 and K2 need to be generated first.

Afterwards, use K1 to encrypt the plaintext P which result in C and K2 for

computing the MAC of the ciphertext C which result in H . During decryp-

tion, one should provide K̃1 and K̃2. The input ciphertext during decryp-

tion will be referred as C̃. Next, ensure the MAC of the given ciphertext C̃

using K̃2 is similar with the stored MAC (H). Similar MAC means that the

ciphertext C is not altered (same as C̃) and the adversary use correct K2. If

similar, give the result of the decryption of ciphertext C̃ using K̃1.

2.3 Key Derivation Function

Besides the encryption algorithm, a key derivation function (KDF) is one

of the most utilized components of cryptographic applications. Its import-

ance is due to its ability to convert a stable secret Z, usually contain suffi-

cient amount of randomness but non-uniformly distributed, into one or more

cryptographically strong secret keys k ǫ 0, 1K where K is the length of the

generated keys. Cryptographically strong itself refers to indistinguishabil-

ity by reasonable computation from a random uniform string with similar

length [28]. KDF can also be referred as a strong extractor. A popular ex-

ample of KDF is a keyed cryptographic hash function (can be referred as

HMAC, stands for hash-based message authentication code).
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There are three elements which defined the cryptographic strength of the

HMAC; the utilized hash function’s cryptographic strength, the output size,

and the key’s size and quality. Currently, the latest cryptographic hash func-

tion standard published by the National Institute of Standards and Techno-

logy (NIST) as a U.S. Federal Information Processing Standard (FIPS) is

SHA-3 (introduced in 2015). SHA-3 (Secure Hash Algorithm 3) is a part of

another cryptographic primitive family called Keccak [29]. Keccak is built

on top of a method called sponge construction. Sponge construction it-

self is based on multiple layers of pseudorandom function where each layer

capable of mapping variable-length input to variable-length output using

fixed-length permutation (or transformation) and a padding rule [30].

There are three requirements need to be fulfilled as a secure cryptographic

hash function: preimage resistant, second preimage resistant, and collision

resistant. Preimage resistant means it should be hard to find a message

with a given hash value. In second preimage resistant, if one message is

provided, it should be hard to find another message with the same hash

value. Last, collision resistant refers to difficultness to find two messages

with the same hash value. HMAC built using SHA-3 with key length of 256

bits has collision resistance of 128 bits, preimage resistance of 256 bits, and

second preimage resistant of 256 bits [31].

2.4 Multi-factor Authentication

As mentioned in Section 2.1, authentication refers to assuring any piece

of information is correctly identified. Authentication can be done using

any of these elements/factors; knowledge (a piece of information which

only known by the user, e.g. password), possession (any object which

only owned by the user, e.g. RFID card), or inherence (something which

uniquely describe the user, e.g. fingerprint). If two or more elements are

combined together for authentication, this leads to multi-factor authentic-

ation. To understand the security level among all possible combinations,

Figure 2.1 is provided. The highest possible security level is when these

three factors are combined together.

2.5 Physically Unclonable Function

A physically unclonable function (PUF) is an entity that utilizes manufac-

turing variability to produce a device-specific output. The idea to build PUF

arise from the fact that even though the mask and manufacturing process is

the same among different ICs, each IC is actually slightly different due to

normal manufacturing variability [9]. PUFs leverage this variability to de-

rive secret information that is unique to the chip. This secret can be referred
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Figure 2.1: Authentication systems security levels: (1) knowledge; (2) possession;

(3) knowledge + inherence; (4) inherence; (5) possession + inherence; (6) know-

ledge + inherence; (7) knowledge + possesion + inherence [32].

as a silicon biometric. In addition, due to the manufacturing variability that

defines the secret, one cannot produce two identical chips (identic in nano-

scopic scale), even with full knowledge of the chips design. PUF architec-

tures exploit manufacturing variability in multiple ways. For example, one

can utilize the effect of gate delay, the power-on state of SRAM, threshold

voltages, and many other physical characteristics to derive the secret.

Due to this feature, PUFs are a promising innovative primitive that is

used for authentication and secret key storage. Currently, the best practice

for providing a secure memory or authentication source in such a mobile

system is to place a secret key in a nonvolatile electrically erasable pro-

grammable read-only memory (EEPROM) or battery-backed static random-

access memory (SRAM) and use hardware cryptographic operations such

as digital signatures or encryption.

There are two main parts of PUF, physical part, and operational part.

Physical part refers to a physical system that is very difficult to clone due

to uncontrollable process variations during manufacturing. Operational part

means a set of challenges (PUF input) Ci has to be available to which the

system responds with a set of sufficiently different responses (PUF out-

put) Ri. This combination of challenge and response is called challenge-

response-pair (CRP).

Ri ← PUF (Ci) (2.1)

The common application on using PUF usually requires two phases; the

first phase is called enrollment and the second one is usually referred as

validation. In enrollment, a number of CRPs are gathered from a PUF and

then stored. In validation phase, a challenge from the stored CRPs is given

to the PUF. Afterwards, the PUF response from this challenge is compared

with the corresponding response from the database. The response is con-

sidered to be valid if there is a CRP from the stored CRPs related to this

challenge and response. The validation phase can also be referred as re-

construction phase since this phase involves a reconstruction of a response
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given a challenge.

According to [9], to be qualified as PUF, a device should fulfill several

characteristics below:

• Reliable: A response to the same challenge should be able to be re-

produced over time and over a various range of conditions.

• Unpredictable: A response to a challenge on a PUF device should be

unrelated to a response to another challenge from the same device or

the same challenge from a different device.

• Unclonable: Challenge-response pairs mapping of a device should be

unique and cannot be duplicated.

• Physically Unbreakable: Any physical attempts to maliciously modify

the device will result in malfunction or permanent damage.

2.5.1 PUFs Classification

In this subsection, two subtypes of PUFs so-called “Weak PUFs” and “Strong

PUFs” are presented. The explanations on both types can be found be-

low [33]:

• Strong PUFs

Strong PUFs can be recognized by possessing a tremendous number

of CRPs which prevent an adversary to read all possible CRPs even if

he has open access to the challenge-response interface. Anyone can

freely give any challenge and read the response without affecting its

security. In addition, even if he has a large subset of CRPs, he still

cannot predict another yet unknown CRPs. Strong PUFs typically

used for authentication.

• Weak PUFs

Weak PUFs can be identified by having few CRPs. Unlike the strong

PUFs, weak PUFs require an access-restricted to the challenge-response

mechanism. This means that even if an adversary holds a possession

of the PUF device, he cannot read the response from a challenge or

give any challenge to the PUF device. Weak PUFs commonly used

for key storage and key generation.

Besides the number of CRPs, PUFs can also be categorized based on

their physical design. There are two major categories, extrinsic and intrinsic

PUFs [34].

Extrinsic PUFs are built based on the explicitly introduced randomness

in the system. Explicit randomness can be generated using various ways,
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e.g. use specific materials or size of particles, but the location and the distri-

bution of this randomness cannot be controlled. There are two subcategor-

ies of extrinsic PUFs, non-electronic and analog electronic PUFs. Some

examples in non-electronic PUFs are optical PUF, paper PUF, CD PUF,

RF-DNA PUF, magnetic PUF, and acoustic PUF. Some design instances in

analog electronic PUFs are VT PUF, power distribution PUF, coating PUF,

and LC PUF.

In intrinsic, PUF component has to be available naturally during the

manufacturing process. In addition, PUF and the measurement equipment

should be fully integrated with intrinsic PUF. There are two subcategories

in intrinsic PUFs, delay based and memory based PUFs. An example of

delay based PUF is arbiter PUF. The main principle of arbiter PUF is by

presenting a race condition on two different routes on a chip where the win-

ner will be decided by an arbiter circuit [35]. As in memory based PUFs,

some examples of this design are SRAM PUF, butterfly PUF and latch PUF.

SRAM PUF utilized the random physical mismatch in the cell introduced

by manufacturing variability which controls the power-up behavior (can be

zero, one, or no preference) [35]. Butterfly PUF use the effect of cross

coupling between two transparent data latches. Using the functionalities of

the latches, an unsteady condition can be initiated after which the circuit

resolves back to one of the two stable states [35]. In latch PUF, the concept

is based on using two NOR gates which are cross-coupled. These gates will

lead to a stable condition depending on the internal discrepancy between

the electronic components.

2.5.2 Hamming Distances as an Identification Helper

As explained before, PUF main purpose is dedicated for identification, shown

by having a device-specific output. In PUF, hamming distance is commonly

used as a way to help defining this idea. Hamming distance itself is the

number of positions at which the corresponding symbols are different on

two equal length strings [36]. There are two types of hamming distance

utilized, intra-chip and inter-chip hamming distance. Inter-chip hamming

distance is the distance between two responses resulting from giving a sim-

ilar challenge to two distinct PUF devices [35]. Intra-chip hamming dis-

tance refers to the difference between the two responses resulting from ap-

plying a challenge twice to a PUF device [37]. To ease the identification

purpose, fractional hamming distance is also introduced. Fractional ham-

ming distance is the number of differences between two strings divided by

the length of the bit strings. In ideal PUFs, the intra-chip fractional ham-

ming distance (HDintra) is 0% and inter-chip fractional hamming distance

(HDinter) is 50%. The identification goal will not be achieved if there is an

overlap between HDintra and HDinter [38]. Overlap will happen if the HDintra
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is too large and HDinter is too small, e.g. HDintra is 35% and HDinter is 30%.

2.5.3 Helper Data Algorithms and Fuzzy Extractor

There are two issues if PUF raw responses are used as a key in cryptographic

primitive. First, both weak and strong PUFs rely on analog physical prop-

erties of the fabricated circuit to derive secret information. Naturally, these

analog properties have noise and variability associated with them. This can

be a problem due to sensitivity of cryptographic functions on noises of their

inputs. Another issue is the PUF raw responses usually are not uniformly

distributed, which makes it unqualified as a cryptographically secure key.

These two issues can be solved using Helper Data Algorithm (HDA). One

can also refer Helper Data Algorithm as fuzzy extractor since both are cap-

able of converting noisy information into keys usable for any cryptographic

application [39].

Fuzzy extractor solves both issues mentioned before by using two phases,

information reconciliation and privacy amplification. In information re-

conciliation phase, possible bit errors are corrected to form a robust bit

string [40]. Information reconciliation is tightly related to error correc-

tion. In fact, a procedure to do information reconciliation based on error-

correcting codes is called code-offset technique [41]. Using code-offset

technique, one should be able to reconstruct a bit string w from a noisy ver-

sion w’ as long as the Hamming distance between w and w’ is limited to

t where t is the maximum error correcting capability of the error correct-

ing codes. The second phase, privacy amplification, is a process to evolve

this robust bit string into a full entropy key. Privacy amplification, also can

be called as randomness extraction [42], can be done by utilizing two-way

hash function.

Beside these two phases, fuzzy extractor also consists of two procedures,

generation and reproduction. Generation is a probabilistic procedure which

outputs an “extracted” string / key (secret) R and a string (public) helper

data P on input fuzzy data w. Reproduction is a deterministic function

capable of recovering secret key R from the string helper data P and any

vector w′ as long as the Hamming distance between wand w’ is limited to t

where t is the maximum error correcting capability of the fuzzy extractor.

In [43], Taniguchi et. al. illustrated the generation and reproduction pro-

cedure of fuzzy extractor on PUF which is shown in Figure 2.2. During

generation phase, the secret key is produced by hashing the PUF response

while helper data is generated by XOR-ing PUF response with encoding

result of a random number. During reproduction stage, the secret key can

be reconstructed by hashing the XOR result between helper data and encod-

ing of the reproduced random number. The random number can be rebuild

by decoding the XOR result between helper data and the PUF response.
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Figure 2.2: Generation and reproduction procedures of fuzzy extractor on PUF

[43].

2.5.4 Error Correcting Codes

To handle noises occurred inside a PUF, error-correcting codes (ECC) is

employed. Error-correcting codes are a class of schemes for encoding mes-

sages in an attempt to enable message recovery when there is noise intro-

duced in the sending or receiving of the message [44]. ECC can be divided

into two subcategories, hard-decision and soft-decision. Hard-decision works

on a predetermined set of values (usually 0 or 1 in a binary code), while a

soft-decision decoder may take inputs on a span of values in-between (usu-

ally refers to float value).

There are some well-known ECC, such as in hard-decision code, Reed-

Solomon code and BCH code; while in soft-decision, Viterbi code and turbo

code. Soft-decision code has an advantage over hard-decision code where

it can process extra information which indicates the reliability of each input

data point and used to form better estimates of the original data. But it has

drawback where one should provide a probability function on the data (on

SRAM, a probability function on each cell should be provided) to enable a

good decoding result.

One of the popular hard-decision error correcting code is BCH codes.

BCH, stands for Bose-Chaudhuri-Hocquenghem, codes are a family of cyc-

lic error correcting codes which constructed using polynomials over a finite

field and work in a binary field [44]. BCH codes are a very flexible set

of codes in that within certain bounds there is a great amount of choice

in code parameters and are relatively efficient in message length and error

correction. The code parameters are as follows:

• q: The number of symbols used (e.g., in binary field, q = 2)
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• m: The power to which to raise q to generate a Galois Field for the

construction of the code.

• d: The minimum Hamming distance between distinct codewords.

These parameters lead to several derived parameters which are standard

parameters of linear codes:

• n: The block length of the code; for our special case, n = q ∗m−1

• t: The number of errors that can be corrected, d ≥ 2t+ 1

• k: The number of message bits in a codeword, k ≥ n−mt

Both BCH codes and Reed-Solomon codes have the capability to cor-

rect multiple errors. Reed-Solomon codes are also a flexible ECC and

have similar parameters as BCH codes, e.g. n, k, d. Unlike BCH codes,

Reed-Solomon codes can work in both binary and non-binary fields. Reed-

Solomon codes also perform better in correcting burst errors while BCH

codes are better at fixing random errors. BCH codes have an advantage

where it requires less computing resource when working on the same para-

meter compared to Reed-Solomon codes.

2.6 SRAM PUF

SRAM PUF was first proposed by Guajardo and Holcomb in 2007. SRAM

PUF uses existing SRAM blocks to generate chip-specific data. Normally,

when using SRAM to store data, a positive feedback is given to force the

cell into one of the two states (a ’1’ or a ’0’) available. Once it is there,

the cell will be stable and prevented from transitioning out of this state

accidentally.

SRAM can be used as a PUF by utilizing its start-up values. After powering-

up the circuit, each cell stabilizes at a state which is defined by the mis-

matches between the involved transistors and provides one bit of output

data. Since this mismatch determines the value of the power-up state of an

SRAM cell, the power-up state of a cell will be biased towards 0 or 1 de-

pends on the mismatch value. Since all SRAM cells have been affected by

random process mismatches and non-identical, these start-up SRAM values

can be utilized to generate a unique fingerprint [45].

2.6.1 Requirements for SRAM to be a PUF Component

To be eligible as a PUF component, an SRAM has to have stable outputs

which means any noise has to have little effect on its start-up behavior

(shown by the value of HDintra). In addition, the distribution of 1’s and 0’s
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in the SRAM values ideally has to be equal (around 50:50) to ensure there

is sufficient amount of randomness exist in the SRAM [46]. The distribu-

tion of 1’s and 0’s can also be referred as hamming weight. Moreover, the

difference between responses from different chips given the same challenge

should be large enough to show that each SRAM is unique (there should be

no overlap between HDintra and HDinter).

2.6.2 SRAM Cell

SRAM uses its SRAM cells to store the binary information. The most com-

mon SRAM design is six-transistor (6-T) CMOS SRAM, shown in Figure

2.3. This design utilizes the concept of cross-coupled inverters, construc-

ted by two inverters, each established by two transistors; inverter 1 by Q2

and Q6, inverter 2 by Q1 and Q5. Using this design means the input of an

inverter is the output of the other and vice-versa, which also indicates that

the output of one inverter is exactly the opposite of the other inverter [37].

Transistors Q3 and Q4, referred as the access transistors, are used as the

entry gate to the cell every time a read or write operation will be performed.

The bitline (BL), the compliment bitline (BLB) and the wordline (WL) are

employed as an entry to the cell. In addition, an SRAM cell will lose its

state shortly after power down [34].

Figure 2.3: A 6-T CMOS SRAM cell [37].

During manufacturing, there are small differences between each SRAM

cell due to process variation which leads to a mismatch in the cell [45]. This

mismatch also means that the two inverters will always behave distinctly.

The mismatch itself does not disturb the normal storage functionality of

SRAM cell. Based on this bias, SRAM cells can be classified into three

categories as shown below [45]:

1. Non-skewed cell

A non-skewed cell has no preference during its startup due to the im-

18



pact of process variations does not cause any mismatch between the

two inverters. This cell has a heavily fluctuated start-up value depend-

ing upon the noise introduced in the system.

2. Partially-skewed cell

A partially-skewed cell has a small mismatch between the inverters

which lead to a preference over value ’0’ or ’1’ but the cell can flip its

value upon variation in external parameters.

3. Fully-skewed cell

A fully-skewed cell is a heavily mismatched SRAM cell in a way that

the cell inclined towards value ’1’ or ’0’ and has a resistance against

external influence/noises.

In ideal SRAM PUF scenario, the utilized SRAM cells should be fully-

skewed. Fully-skewed cells lead to a guarantee that the PUF response of a

given challenge will have small or no difference even though noises present.

2.6.3 Problem: Noise

Similar to most electronic components, SRAM PUF is also affected by any

external influence/noises. These noises will flip unstable bits inside the

SRAM PUF. Below are some factors presenting noises:

• Voltage

The noise introduced by voltage is called power supply noise [47].

This noise is related to changes in the delay characteristics of the gate.

The changes will occur when there are switchings in the circuit after

the device is turned on which increase dynamic power and cause a

voltage drop on power lines and voltage increase on ground lines.

• Temperature

Temperature variation can be introduced by the surroundings or voltage

variation. The preference of a cell inside SRAM has a high probability

to be affected by temperature [45].

• Crosstalk

Crosstalk appears when a signal transmitted on a circuit introduces

unwanted side effects in another circuit. Crosstalk happens due to

a tight gap between the SRAM cell (tiny interconnect spacing and

width). This event becomes more popular due to wider use of faster-

operating speeds and smaller geometries (advancement in nanometer

technologies) which lead to higher density. Crosstalk is a major con-

tributor to signal integrity problems in modern designs [47]. In ad-

dition, higher density in SRAM also influences how environments
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affect SRAM performance (more prone to voltage and temperature

difference) [48].

• Aging

Aging is related to changes in the silicon after usage for a long time

[49]. There are three main effects related to the aging of a circuit;

time-dependent dielectric breakdown (TDDB), bias temperature in-

stability (BTI) and hot carrier injection (HCI) [50]. TDDB is associ-

ated with the creation of a conduction path through the gate transistor

structure which causes an increase in power consumption and the cir-

cuit delay [51]. BTI causes a degradation of the transistor threshold

voltage [52]. HCI generates a change in the transistor threshold voltage

[53]. HCI is caused by a high current in the transistor channel inject-

ing charges into the gate oxide during the switching.

2.6.4 Bit Selection Algorithm

As mentioned before, during enrollment, challenge-response pairs are gathered.

In SRAM PUF, there are two types of challenges that can be applied to the

system. The challenge can be either the whole SRAM memory or specific

addresses. If a set of addresses is given as a challenge, an address in there

can refer to an address of a byte, a bit, or a sequence of bytes or bits.

If specific addresses of SRAM cells are used for PUF challenge, one of

the major steps on using SRAM PUF is looking for stable bits. Stable bits

itself refers to fully skewed cells explained before. Even though the error

correction code is present to correct the noise of bit responses, it also has

a limitation on how many bits it can correct. Choosing the most stable bits

is important to ensure that the PUF result is always the same throughout its

lifetime. Below we present two known algorithms to search for stable bits:

1. Neighbor Analysis

The first algorithm is using the rank of total stable neighbors which

proposed by Xiao et. al. [54]. They argue that the cells which are most

stable across environmental conditions are surrounded by more stable

cells during enrollment. A stable cell surrounded by more stable cells

has a tendency to become more stable because its neighboring cells

are likely to experience similar aging stress and operating conditions.

In this algorithm, all the stable cells are given weight according to the

number of stable bits surrounding it. The more stable neighbor cells

it has, the higher weight it gets. For example, if a cell is not stable, it

is given zero as its score. If it is stable, at least it will get score one. If

it only has one stable neighbor on each left and right side, it will get

score two as result of an addition of one from being a stable cell and

one from having a stable neighbor on both sides. To get score three, it
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needs to be stable and has two stable neighbors on left and right sides.

After determining the weight of each cell, a heuristic algorithm that

greedily chooses cells for the PUF ID/key with weight greater than a

threshold is used.

Before the algorithm is performed, one should collect lots of SRAM

cells value first. The data should be retrieved in various condition,

for example, different voltages, temperatures, and time differences

between enrollment. Afterwards, using the data gathered, the location

of all stable bits in SRAM need to be located. A stable bit has to has

the same value in all enrollment. Last, the neighbor analysis algorithm

is performed to get the most stable bits in SRAM.

2. Data Remanence Approach

Another bit selection algorithm is by using data remanence of SRAM

cell [55]. There are only two remanence tests involved in this ap-

proach: first, writing a value (1 or 0) to the whole memory and second,

briefly turning off the power until a few cells flip. The most robust

cells are the cells which effortlessly flipped when written with the op-

posite data. Strong 1’s are bits that are flipped fast after 0 is written

to its location. On the contrary, if 1 is written to a bit location and the

bit flipped fast, it means that the bit is a strong 0. When using this

approach, one should carefully determine the temporal power down

time. On one hand, if the temporal power down period is too little,

then the data will stay in the previously written state. On the other

hand, if the temporal power down time is too lengthy, then the data

written in the array will disappear and the SRAM values will go back

to its uninitialized state.

A significant advantage using this algorithm compared to the previous

one is a much shorter time required to locate stable bits. Using neigh-

bor analysis, there are many SRAM values need to be gathered first

which might take hours or days. Locating stable bits from hundreds

of data probably also take time as well. If data remanence approach

is utilized, there is no need to gather many data. One only need to

determine the temporal power down required to get strong bits re-

quired. Since usually the temporal down period required is less than

0.5 seconds, this analysis only takes few minutes.

2.7 PUF Applications

In this section, we present three applications which are constructed based

on PUF technology. The first application is about generating a key using

SRAM PUF, the second one is related to secret key binding based on fuzzy
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commitment scheme, and the last application is secure key storage using

optical PUF and coating PUF.

2.7.1 Key Generation using SRAM PUF

In this section, there are two schemes for key generation presented. Both

constructions were built by Hyunho Kang et. al. in 2014. The first con-

struction, shown in Figure 2.4, utilizes random number generator (RNG).

In this example, a key is produced by applying SHA256 hash function on

a result of XOR operation between PUF response and a random number.

The helper data is generated by XOR-ing PUF response with an encoding

of a randomly generated number. This design was perfected in the second

design shown in Figure 2.5. In the second design, random number gener-

ator was removed to make the construction more efficient without affecting

the security. In this design, a key is directly generated based on the PUF

response while the helper data is created by XOR-ing the encoding result of

PUF-generated key with the PUF response. Both designs use BCH codes

as the error correcting codes with block length (n) of 255.

Figure 2.4: Implementation diagram using fuzzy extractor (N = 255) [56].

2.7.2 Secret Key Binding based on Fuzzy Commitment Scheme

Fuzzy commitment was originally introduced by Juels and Wattenberg in

1999 [58]. An example of fuzzy commitment application in PUF domain

is presented in [59]. Figure 2.6 shows the flow of this scheme. To securely

bind the secret, the secret key SK needs to be chosen first. Afterwards, the

secret key is encoded into a binary codeword CN . Then, the helper data

MN is generated by masking (XOR-ing) the codeword with the PUF value
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Figure 2.5: Implementation diagram for efficient fuzzy extractor based on the syn-

drome (N = 255) [57].

XN . To reconstruct the secret, a noisy version of the codeword C̃N need

be calculated by masking the helper data with the noisy version of PUF

observation Y N . The secret ŜK can be regenerated by decoding the C̃N .

Figure 2.6: Fuzzy commitment scheme [59].

2.7.3 Secure Key Storage using Optical PUF and Coating PUF

In [60], Skoric et. al. present a secure key storage scheme using two ex-

trinsic PUFs; coating PUF and optical PUF. Coating PUF technology is

built upon on-chip capacitive quantifications of arbitrary dielectric charac-

teristics of a covering layer which located on top of an IC [61]. Optical PUF

itself consists of a 3-D physical structure containing randomly distributed

light-scattering particles that produces a speckle pattern (response) when

irradiated with a laser beam [60]. This speckle pattern can be considered

as the unique fingerprint of the structure. Both PUFs are also considered a

strong PUF (has a large CRPs), but optical PUF is considered to be superior
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than coating PUF due to a much higher number of CRPs and more entropy

per response.

In their scheme, to securely store the key, they proposed to store the long-

term key in encrypted form. To access the long-term key, a short-term key

extracted from the PUF is required.

2.8 Previous Experiments on Off-The-Shelf SRAM PUF

There are many experiments related to SRAM PUF which are performed

on off-the-shelf SRAM. Most of these experiments are using off-the-shelf

SRAM that are embedded in a microcontroller. For example, in [62], Her-

rewege et. al. demonstrate a testing of SRAM characteristics on five dif-

ferent microcontrollers; ARM Cortex-A, ARM Cortex-M, Atmel AVR, Mi-

crochip PIC16 and Texas Instruments MSP430. They show that not every

SRAM embedded in a microcontroller is ideal for an SRAM PUF such as

Microchip PIC16F1825. Fortunately, the other microcontroller’s SRAMs

show an acceptable result to be a PUF candidate (is stable, unique and

has enough randomness). Another example is a work done by Anagnosto-

poulos et. al. [63] in which they present low-temperature data reman-

ence attacks against intrinsic SRAM PUFs, specifically ARM Cortex-M4F

LM4F120H5QR microcontroller.

Even though not as many as experiments done on microcontroller’s SRAM,

there are also some related works that doing the experiments using off-the-

shelf SRAM that is not embedded in a specific device. Akhundov in [64]

presents a concept of using SRAM Microchip 23LC1024 as the root-of-trust

of his public-key based authentication architecture. He shows the result of

HDintra, HDinter and the distribution of 0’s and 1’s experiment of Microchip

23LC1024. Unfortunately, the testing was not performed in various con-

dition (different voltage, temperature, and aging effect). Schrijen and van

der Leest in [65] shows a comparative analysis of seven different SRAMs

which manufactured using different technology; Cypress CY7C15632KV1

8 (65nm), Virage HP ASAP SP ULP 32-bit (90nm), Virage HP ASAP SP

ULP 64-bit (90nm), Faraday SHGD130-1760X8X1BM1 (130nm), Virage

asdsrsnfs1p1750x8cm16sw0 (130nm), Cypress CY7C1041CV33-20ZSX

(150nm), and IDT 71V416S15PHI (180nm). All of them are tested on the

reliability (temperature and voltage variance) and uniqueness (HDinter and

hamming weight). The results between each SRAM type is different but

it can be summarized that all of the tested SRAM memories are suitable

as a PUF candidate. Another interesting result from these work is the fact

that the most reliable SRAM is achieved by IDT 71V416S15PHI followed

by Cypress CY7C1041CV33-20ZSX and Cypress CY7C15632KV18. An-

other publication is presented by Holcomb et al. [66] where they show start-
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up measurements from ISSI SRAM, TI microcontrollers, and Intel WISP

devices. Unfortunately, the manufacturing technology on these devices is

not mentioned.

2.9 Conclusion

It is a challenging task to design a secure data and key storage based on

SRAM PUF technology, especially since to solve this task, we need to un-

derstand the term of software and hardware security. Therefore, we invest-

igate several background theory related to security, cryptography, and PUF.

We started by presenting four elements on common security; confidentiality,

authentication, integrity, and non-repudiation. Then, the history of crypto-

graphy is explained, followed by explanations on symmetric cryptography,

key derivation function, and multi-factor authentication. Later on, theor-

ies related to PUF, hamming distance, error correcting codes and SRAM

PUF are described. We continue the chapter by a portrayal of several PUF

applications, such as key generation and key storage. We also show some

previous works related to SRAM PUF which are built using off-the-shelf

SRAM. In the next chapter, our proposed ideas on how to build a secure

data and key storage using SRAM PUF and off-the-shelf SRAM will be

explained.
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Chapter 3

Proposed System

This chapter contains our proposed system to achieved our goals which ex-

plained in Chapter 1. First, assumptions, requirements and steps to achieve

thesis’ main goal on our system are presented. The chapter continues with

reasonings on our chosen embedded platform, Arduino. Then, the selected

error correcting code which will be used in the system is explained. Af-

terwards, we present our data and key storage scheme and also our way

to generate key using SRAM PUF. Last, our idea to use bits locations as a

PUF challenge is shown.

3.1 Assumptions, Requirements and Steps To Achieve Main

Goal

To focus the thesis approach, we have defined several assumptions. First,

the field of the constructed SRAM PUF application is decided to be only

available offline. Accessing the SRAM PUF requires the user to have the

device next to his/her side. Second, an attacker cannot access the SRAM

directly. An attacker may gain the knowledge of the helper data and chal-

lenge used in the PUF concept. Last, there is no analysis and/or solution

against physical attacks, e.g side channel attacks, in our secure data and key

storage scheme. The scheme is designed to be secure against theoretical

attacks.

We also have defined a set of requirements related to our system. Below

are the requirements defined:

1. Software-based construction

There should be no major hardware modification or hardware design

to implement the project.

2. Patent/license free

Any dependent component of the design should be in public domain.
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3. Open-source and collaboration oriented

If there is a reliable open source project which can be a foundation for

this thesis project, instead of building our own software, it is preferred

to use that project. This will significantly reduce the time consumed

on constructing the whole project. Using other project source code

can also increase the collaboration atmosphere. In addition, this re-

quirement may help this project to be known by others since they

might introduce our project as one of the projects that uses their code.

4. Key-length security level

The goal on the key-length security level is 256-bits. The concept

constructed should be able to use this level and the project’s security

should be uncompromised even though the key-length is only 256-

bits.

5. Off-the-shelf SRAM

The SRAM involved in the thesis should be easily available in the

market and cost insignificant.

6. Affordable

The total hardware required to produce the system should be inex-

pensive.

7. Reproducible

Anyone should be able to reproduce this thesis experiment with no

significant effort.

Another thing that we would like to address is steps required to achieve

this thesis’ main goal which related to answering this thesis’ problem state-

ment. As shown in Section 1.3, the problem statement is “How to de-

velop an open-source secure data and key storage scheme using off-the-

shelf SRAM component and software-based SRAM PUF technology?”.

Below are several steps expected to be done as an attempt to achieve this

goal:

1. Choose embedded platform on where the system will be built.

2. Select a type of error-correcting codes which will be used as an ele-

ment in the key generation scheme. The memory required by the

error correcting codes has to fit in the embedded platform’s internal

memory.

3. Search and analyze existing SRAM PUF-based key generation schemes.

Propose one of them to be used as the key generation procedure in this

thesis and also calculate the maximum error rate that can be handled

by the key generation scheme.
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4. Propose and construct a system to enable secure data and key storage

based on the selected key generation scheme and SRAM PUF tech-

nology. Any library required in the system has to be open-source.

In addition, the constructed system has to work without any explicit

hardware design, in other words, software-based construction.

5. Get off-the-shelf SRAM components available in the market.

6. Locate the stable bits inside each SRAM using bit selection algorithm.

7. Test the reliability of SRAM’s stable bits. The error rate of the stable

bits (referred as HDintra) has to be lower than the maximum error rate

that can be handled by the key generation scheme.

8. If the SRAM’s stable bits is reliable, check also the uniqueness of

the SRAM by ensuring that there is no overlap between HDintra and

HDinter.

9. Continue using this SRAM as the root-of-trust in the proposed secure

data and key storage if it is proven to be reliable and unique.

10. Test the complete secure data and key storage scheme in various scen-

arios.

3.2 Arduino Mega 2560 as the Embedded Platform

One of the important details of our system is choosing the platform on

where the system will be built. There are two major candidates, Arduino

and Raspberry Pi. Both are chosen due to its popularity, availability (easy

to get), and various types available. High popularity means the debugging

process can be done fast and many references are available online to help

the system development. Availability is important because one of the thesis’

goals is to be easily used by anyone. Low availability will reduce the re-

usability of this project and user’s interest. Various types available is a

pleasant option for system flexibility. For example, if a user wants to de-

velop a more complex system on top of this thesis’ system or desire to use

a more complex error correcting codes, he/she can choose a platform with

higher computing capability. Besides those three factors, another feature

which lead on selecting Raspberry Pi and Arduino is their GPIO. GPIO

availability will enable easy communication between the SRAM and the

embedded platform.

Compared to Arduino, Raspberry Pi offers a higher computing capability

and relatively easier development. This is because Raspberry Pi is basic-

ally a mini Linux computer. One can develop a software using C, C++,
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Python, etc. in Raspberry Pi which may fasten the project development, es-

pecially for a developer who already familiar with a specific programming

language. Unfortunately, Raspberry Pi requires a longer startup time com-

pared to Arduino. It also requires higher electrical power. If one wants to

use the developed project in the embedded area, this two factor is a major

trade-off.

Due to the these considerations, Arduino is chosen. Even though one has

to construct the system in C++, this can be a positive thing since one can

maximize the computing capability easily. Moreover, Arduino itself is an

open-source project which enable anyone to develop their own boards and

software libraries [67].

There are various Arduino types available on the market. The chosen

Arduino type is Arduino Mega 2560. It is selected because it offers larger

memory capability compared to other types, such as 256k bytes of Flash

memory, 8k bytes internal SRAM, and 4k byte EEPROM. Besides, it also

has 54 digital I/O pins and 16 analog I/O pins which ease the communica-

tion to external SRAM.

3.3 BCH Codes as Error Correcting Codes

As shown in previous chapter, there are two major categories in ECC; soft-

decision and hard-decision code. We choose to use hard-decision ECC over

the soft decision one because in hard-decision ECC, there is no requirement

to provide the error probability function on SRAM cells. Calculating the

error probability on SRAM cells will require extra step, overcomplicate the

system and the procedure on using the constructed system. Futhermore,

between two examples of hard-decision ECC, we particularly pick BCH

codes as the ECC due to lower computing resource required compared to

Reed-Solomon Codes. BCH also better at correcting random errors than

Reed-Solomon Codes.

As mentioned in the previous chapter, BCH codes are flexible Error Cor-

recting Codes (ECC) shown by multiple parameters available. The only

fixed parameter is q since the problem is in binary form (q = 2). The source

code for BCH codes utilized in our construction is a modified version of

Robert Morelos-Zaragoza’s version which can be retrieved at [68]. This

code is selected because it can support m ranging from 2-20 which mean

the length of the code that can be corrected ranging from 2 until 1048575.

When using BCH codes, one should be careful on deciding the paramet-

ers that will be used, for example, larger m or n means a bigger memory

needed. These parameters should be determined with several considera-

tions, such as the inner hamming distance of SRAMs and memory available

on Arduino Mega 2560.
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On deciding the value m, a further look on the memory required during

the error correction computation need to be done. Inside the bch codes

from [68], the decoding method requires the largest memory compared to

other procedures. There are six parameters that depend on m which are elp,

d, l, ulu, s, and err. Table 3.1 shows the required memory given the m

value.

Table 3.1: Memory required (bytes) given the value of m.

m Bytes Required m Bytes Required

2 53 12 16805897

3 129 13 67166217

4 377 14 268550153

5 1257 15 1073971209

6 4553 16 4295426057

7 17289 17 17180786697

8 67337 18 68721311753

9 265737 19 274881576969

10 1055753 20 1099518967817

11 4208649

Since the internal SRAM in Arduino only has 8k bytes capacity, the

chosen m is 6 (requires 4553 bytes, around 55% of total SRAM available

in Arduino). This parameter will result in possible n between 32 and 63. n

is chosen to be 63 to maximize the length code that can be encoded. The

combination of m = 6 and n = 63 results in various k and t that can be

chosen. The combination of all parameter possible is shown on Table 3.2.

Table 3.2: BCH parameter for m = 6 and n = 63.

k t

57 1

51 2

45 3

39 4

36 5

30 6

24 7

18 10

16 11

10 13

7 15

To maximize the error correction capability, k = 7 and t = 15 is chosen.
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All these parameter combination will enable error correction capability 23.8%

of the data length. To summarize, here are the chosen parameters:

• n: 63

• k: 7

• d: 31

• t: 15

3.4 Data and Key Storage Scheme

Figure 3.1 shows the scheme to protect user’s data and key. On an attempt

to protect the user’s data and key, our proposal is divided into three ma-

jor parts, first is generate the final key, and the rest is using the final key

either to encrypt or decrypt data. To prevent unauthorized person access-

ing the data with a stolen PUF, an idea from multi-factor authentication is

utilized. Instead of just depending on the PUF device to access the key, a

combination of PUF device and user knowledge is presented. User know-

ledge that used here is password. User’s password is combined with the

PUF-generated key to generate a final key using HMAC. The input mes-

sage to the HMAC is user’s password and the input key to the HMAC is the

PUF-generated key. The HMAC function proposed to use is HMAC SHA3

with key length 256 bits. The final key can be used to encrypt and decrypt

user data/key. To decrypt and encrypt the data, a symmetric encryption al-

gorithm is preferred over the asymmetric one. The symmetric encryption

algorithm used is AES with key length 256 bits and modes of operation

CTR with randomly generated IV. To achieve IND-CCA security level, we

also implement encrypt-then-MAC technique ( explained in Section 2.2.2).

The MAC in the encrypt-then-MAC procedure is generated using HMAC

SHA3-256 with PUF-generated key as the key.

3.5 Key Generation Scheme

As shown in the previous section, the secure data and key storage scheme

requires the PUF to generate the key which will be used to generate the final

key. The key generation scheme used in this project is a modified version

of Figure 2.5 proposed in [57]. Instead of using n = 255, the scheme used

in this project will choose n = 63. The parameter n, k, t, d is similar to the

parameter chosen in the Section 3.3. Figure 3.2 illustrates the mentioned

scheme.

Using this scheme, to generate a key with length 256-bits requires 37

blocks of this scheme, which lead to 2331 bits required. 37 blocks are
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Figure 3.1: Scheme for secure data and key storage. There are three stages in here;

generate the final key, encrypt using the final key and decrypt also using the final

key.

33



calculated from 256
7

= 36.57, rounded-up resulting in 37. 7 is the length

of the key generated from 63 bits of data using this scheme. Since one

block needs 63 bits of data, 37 blocks require 37 × 63 = 2331 bits. In

addition, a further look into the scheme will reveal that there is an entropy

loss as many as 7 bits every 63 bits of data input during the generation of

helper data. Due to this entropy loss, this scheme can only correct errors on

maximum 8 bits instead of 15 bits. Based on this reason, to ensure the key

generation scheme always produced the same key, the SRAM component

used as root-of-trust has to have maximum error rate (shown by HDintra)

12.7% (calculated from 8
63
× 100%).

Figure 3.2: Scheme for key generation. n = 63, k = 7, t = 15, d = 31.

3.6 Bits Locations as the PUF Challenge - Numerous CRPs

An example of a well known PUF construction which claimed to be res-

istant against brute force attack is Stanzione and Iannaccone’s work [69].

They mentioned that their PUF construction is resistant to 1025-trials brute

force attack. Inspired by their work, we imagine having a stronger construc-

tion. We envision an SRAM PUF which has total challenge-response pairs

possibilities more than the number of atoms on earth which predicted to be

at least 1049 [70]. To achieve this goal, we come up with an idea to use bits
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locations as a PUF challenge. Below are the reasons why this decision is

taken:

1. Stable bits tend to be scattered all around SRAM memory.

2. If there is a burst error on a bit location inside the challenge, this error

will not affect many locations in a challenge since this burst error may

only lead to a single location. If a location related to multiple bits is

used as the challenge, a burst error will affect many bits generated.

For example, if locations of bytes are used as the challenge, a burst

error might lead to 8 bits errors in the response generated.

3. There are huge possibilities of challenge-response pairs. The number

of possibilities is calculated from the permutation of the required bits

and the available bits using Equation 3.1.

P (n, r) =
n!

(n− r)!
(3.1)

As an illustration, if the number of bits required to generate/reconstruct the

key is 2331 bits (the length of the bits required to generate 256-bits key

when using the scheme shown in Figure 3.2), then a set of 2331 bits loca-

tions is required as an input (a challenge) to PUF device. And if the SRAM

has a total capacity of 65536 bits, using Equation 3.1 explained before, there

are P (65536, 2331) = 65536!
(65536−2331)!

≈ 1011209 possible combinations. The

total possible CRPs is even much higher compared to the total possibilit-

ies of the number of bits required (22331 ≈ 5.02 × 10701) or the number

of possible keys (2256 ≈ 1.16 × 1077). Due to these large possibilities of

challenge-response pairs, this idea will lead to numerous CRPs.

Using this concept, before generating the challenge, the location of stable

bits needs to be identified first. The location of stable bits can be detected

by using bit selection algorithm mentioned in Section 2.6.4. After the loc-

ation of stable bits is identified, during the generation of a challenge, the

locations’ order inside the challenge will be randomized.

3.7 Security Analysis of The Proposed Scheme

As mentioned in Section 3.1, our scheme is designed to be secure against

theoretical attacks. There are three elements in our scheme as the main

parts on ensuring the scheme’s security against such attacks; encryption

using AES-256, key derivation function using HMAC SHA3-256, and the

PUF-generated key. Based on these components, the attack scenarios are

presented below:
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• The simplest way of attacking the scheme is by applying a cryptana-

lysis directly to the ciphertext produced by the scheme. If success-

ful, this attempt will result in known final key used in the scheme

and the plaintext. In this way, the attacker has to break the secur-

ity level of AES-256. If brute-force attack is applied to AES-256,

the attacker has to try all possibilities of 2256 keys which roughly

equals to 1.157920892373163 × 1077. Even if one can try ten thou-

sand keys every second, the total time needed to try all combinations

is still 3.67 × 1065 years (longer than the age of the universe which

is 14 × 109 years old). The attacker may also apply key-recovery at-

tack using a technique called biclique attack [71]. Even though this

technique is the best-known attack on AES-256, this technique still

requires time complexity of 2254.27 and data complexity of 240. In ad-

dition, besides cracking AES-256, an attacker has to beat the security

of HMAC SHA3-256 as the MAC generator as well. Using this com-

bination (called encrypt-then-MAC), it is proven that the security level

is IND-CCA [27].

• Another attempt that may be taken by the attacker is by stealing the

PUF device. Even though the attacker has the PUF device, he still

cannot access the encrypted data directly since he has to guess the

PUF owner’s password. If PUF owner’s password entropy is high

enough, the chance for attacker to successfully gain the access to the

encrypted data is small since he basically has to break the security

level of HMAC SHA3-256 (which requires at least min(2k, 2n) time

complexity, where k is the key size and n is the hash output size [72]).

• The attacker may also try accessing the encrypted data by doing a

social engineering to gain the information of PUF owner’s password,

then guess the PUF-generated key to get the final key which used

to encrypt the data. To successfully predict the PUF generated key,

it is also a hard work. For example, if one want to brute force all

possible input combinations to the PUF key generation scheme, there

are 22331 ≈ 5.02 × 10701 possible combinations. It is actually easier

to just try all possible combinations of the PUF-generated key which

has 256-bits in length. Even though such fact exists, the number is not

small either. The total possibilities still accounts for 2256 keys which

roughly equals to 1.157920892373163× 1077 possibilities.

Based on these reasonings, we believe our proposed data and key storage

scheme is secure. The only possible way for an attacker to gain information

from the encrypted data is by having both PUF device and PUF owner’s

password.

36



3.8 Conclusion

After presenting related works in previous chapter, this chapter continues

with explanations of our proposed ideas to answer the thesis’ problem state-

ment and achieve our goals which explained in Chapter 1. In the beginning,

use cases, assumptions, requirements and steps to achieve the thesis’ main

goal on our system are presented. The chapter continues with reasonings

on our chosen embedded platform, Arduino. Specifically, we choose a

product type of Arduino called Arduino Mega 2560 because it offers lar-

ger memory capability compared to other types and has 54 digital I/O pins

which ease the communication to external SRAM. Then, the selected error

correcting code which will be used in the system is explained. We choose

to use hard-decision ECC over the soft decision since there is no require-

ment to provide the error probability function on SRAM cells. Between

two examples of hard-decision ECC, we particularly pick BCH codes as the

ECC due to lower computing resource required compared to Reed-Solomon

Codes. BCH also better at correcting random errors. The parameter used

in our BCH codes are n: 63, k: 7, d: 31, t: 15. Afterwards, we present our

secure data and key storage scheme. To secure the data, we encrypt the data

with a final key which derived using HMAC SHA-3 256 as a KDF with in-

put PUF-generated key and user password. To produce the PUF-generated

key, we choose to use a modified version of key generation scheme pro-

posed in [57]. We continue by presenting our idea to use bits locations as a

PUF challenge. Our proposed PUF challenge are based on the permutation

of stable bits which lead to a numerous number of possibilities. Last, we

present security analysis of the proposed secure data and key application.

There are three elements as the main parts of ensuring the security goal; en-

cryption using AES-256, key derivation function using HMAC SHA3-256,

and the PUF-generated key. Based on three elements, we displayed three

different attack scenarios. In the next chapter, the experiments done in this

thesis will be explained.
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Chapter 4

Implementation, Experiments

and Results

After describing our proposed system as an attempt to achieve this thesis’

goals in the previous chapter, this chapter continues with an explanation of

several experiment setups and results. This chapter starts by a presenta-

tion on two chosen SRAMs that used in experiments; Microchip 23LC1024

and Cypress CY62256NLL. Afterwards, the testing results on two bit selec-

tion algorithms (neighbor analysis and data remanence approach) and the

stable bits produced by these algorithms are displayed. The chapter contin-

ues with examination on our proposed PUF challenge and a presentation on

our complete enrollment scheme. Then, we present the procedure to develop

SRAM PUF-based applications using any off-the-shelf SRAM. Next, testing

on the designed secure data and key storage scheme is shown. Experiment

outcomes on storing Bitcoin private key will conclude this chapter.

4.1 Chosen Off-The-Shelf SRAMs

The first step to do in this thesis implementation is looking for off-the-shelf

SRAM components to be the root-of-trust in our SRAM PUF project. Due

to numerous SRAM types available in the market, we need to define several

requirements for the SRAM first. The main requirements on the SRAM are

easy to get (a simple Google search should show some e-commerce web-

sites to buy from), can be bought in small quantity (≤ 5 pieces), stand-alone

component (available without buying extra component, e.g. not embedded

in an FPGA), inexpensive (cost less than e5), reasonable memory size (≥

64kb). These criteria are chosen due to some products only sold to a com-

pany or an entity that willing to buy in a big quantity or has to be custom

made. There are two SRAM types purchased and tested here; Microchip

23LC1024 and Cypress CY62256NLL.
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Microchip 23LC1024

The Microchip Technology Inc. 23A1024/23LC1024 is a 1024 kbit Serial

SRAM device. This SRAM is very popular, shown by many references

available online and several GitHub repositories intended just to access this

SRAM. The reason of its popularity can be traced to its cheap price, small

size, and easy-to-use. The price is ranging from e1.5-3.5. This device

has eight pins which contribute significantly to its small footprint (it has

dimension of 9.271 x 6.35 x 3.302 mm). It is easy to use because it provides

SPI connection which simplified the communication, and has three modes

available; SPI (Serial Peripheral Interface), SDI (Serial Dual Interface) and

SQI (Serial Quad Interface). Its voltage range also quite large, ranging from

2.5-5.5V. Figure 4.1 shows the Microchip 23LC1024.

Figure 4.1: SRAM Microchip 23LC1024 [73].

Cypress CY62256NLL

The Cypress CY62256NLL is a 256 kbit SRAM device. Even though this

device is less popular than Microchip 23LC1024, it is still widely used.

One of the reason is that this device has an automatic power-down feature,

reducing the power consumption by 99.9 percent when deselected. Unlike

Microchip 23LC1024, Cypress CY62256NLL does not have an SPI connec-

tion which complicates the communication. To communicate, one should

utilize its twenty-eight pins available. Since it has many pins, this contrib-

utes to its significantly larger size compared to Microchip 23LC1024. Spe-

cifically, its size is 37.592 x 13.97 x 4.953 mm and produced using 90nm

technology. Its voltage range is ranging from 4.5V-5.5V. This SRAM’s

price is ranging from e2.9-5. Figure 4.2 shows Cypress CY62256NLL.

4.2 Automated PUF Profiling System

To increase the experiment’s efficiency, an automated PUF profiling system

is constructed. The system consists of a PC, act as a master, and an Arduino

connected to an external SRAM component which acts as a slave. A cus-

tom protocol was designed to communicate between them. It is specifically
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Figure 4.2: SRAM Cypress CY62256NLL [74].

designed to be generic and usable for all types of PUF profiling measure-

ments. The software on Arduino side waits for measurement commands

sent by PC on the serial link after booting. The designed protocol is ded-

icated for read bytes, write bytes, and SRAM disable/enable. The system

also supported parallel profiling which significantly increases the effectiv-

ity. Figure 4.3 shows the setup and the schematic to profile four SRAMs

Cypress CY62256NLL concurrently using four Arduino.

Figure 4.3: Automated PUF profiling setup using a PC and four Arduino. Left

picture shows the actual setup, while the right picture displays the schematic of

such setup.

4.3 Testing on Chosen Off-The-Shelf SRAMs

As mentioned in Chapter 2, to be qualified as a PUF candidate, an SRAM

has to be stable in various conditions. This means if it is given various

power input or used in varied temperatures or utilized for a long time, the

initialized SRAM values has to remain similar or only has little changes

(HDintra has to be lower than the maximum error correction capability of the

key generation scheme mentioned in Section 3.5, 12.7%). Under any con-

dition, there should be no overlap between HDintra and HDinter. Moreover,
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the SRAM has to have a sufficient amount of randomness, shown by having

equal distributions between 1’s and 0’s on its values. To ensure the qual-

ity of these two SRAMs, there are several experiments performed on each

SRAM, such as calculating HDintra and HDinter given the whole memory

value as the challenge and also the distribution of 1’s and 0’s inside SRAM

memory.

Microchip 23LC1024

There are ten SRAMs Microchip 23LC1024 that were available during the

experiment. To check whether this SRAM is a justifiable candidate for PUF,

several testings are performed. First, the number of 1’s and 0’s in memory

after a start is calculated. Unfortunately, the average distribution of 1’s

and 0’s are not similar, 1’s occupy 70% and 0’s fill the remaining 30%.

Second, HDintra and HDinter are calculated on these chips. The calculation

is done using twenty memory values on each chip which retrieved at room

temperature, 5V input and 10 seconds interval between retrieval attempts.

From these chips, the average HDintra is 6.18% and the average HDinter is

42.54%. Third, the effect of voltage variation on the HDintra and HDinter

are also evaluated. The calculation is done using memory values on each

chip which retrieved on room temperature and 10 seconds interval between

retrieval attempts. The voltage range is between 2.5V and 5V with 0.5V

increase on a step. On each step, there are three data retrieved. Using these

data, voltage variation results in an average HDintra 8.21% and an average

HDinter 42.59%. Figure 4.4 shows the HDintra between the constant and the

variated voltage.

Figure 4.4: HDintra of ten SRAMs Microchip 23LC1024. The left figure is the

testing result of HDintra with constant voltage, the right one is tested based on the

voltage variation.

Based on these experiments, SRAM Microchip 23LC1024 shows ques-
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tionable results. First, the distribution of 1’s and 0’s inside the SRAM is

not balanced. Second, a voltage variation shows that it significantly affects

the HDintra. Third, there are two SRAMs Microchip 23LC1024 (’A’ and

’B’) that shows HDintra larger than the maximum error correction capability

of the key generation scheme (12.7%) when they are tested on the effect

of voltage variation. Fortunately, there is no overlap between HDintra and

HDinter. Even though these outcomes make us doubtful on this SRAM qual-

ity as an SRAM PUF candidate, we decided to continue using this SRAM

in further experiments. Hopefully, when we locate the stable bits inside the

SRAM, the experiments done on the stable bits will show a better result

than this result.

Cypress CY62256NLL

There are five SRAMs Cypress CY62256NLL that were available during

experiment. Similar like on previous SRAM, several testing are performed

to check whether this SRAM type is a justifiable candidate for PUF. First,

the number of 1’s and 0’s in an initialization is counted. Fortunately, unlike

the 23LC1024, the average distribution of 1’s and 0’s are similar, both oc-

cupy 50% of total bits available. Next, HDintra and HDinter are calculated on

both chips. The calculation is done using twenty memory values on each

chip which retrieved at room temperature, 5V input and 10 seconds interval

between retrieval attempts. From these chips, the average HDintra is 4.85%

and the average HDinter is 39.28%. Last, the effect of voltage variation on

the HDintra and HDinter are also evaluated. The calculation is done using chip

memory values on each chip which retrieved on room temperature and 10

seconds interval between retrieval attempts. The voltage range is between

4.5V and 5V with 0.1V increase on each step. On each step, there are ten

data enrolled. The average HDinter on voltage variation is 38.59%, while

HDintra is 3.58%. Figure 4.5 shows the HDintra between the constant and the

variated voltage.

The results shown before indicate that SRAM Cypress CY62256NLL is

a qualified candidate for SRAM PUF. A well distributed 0’s and 1’s inside

SRAM memory, voltage variation has little effect on HDintra and HDinter,

and no overlap between HDintra and HDinter lead us to continue using this

SRAM for further experiments.

4.4 Testing on Bit Selection Algorithms

In this section, the test on stable bits produced by two algorithms, neighbor

stability and data remanence analysis, is shown. The test was done on a

single chip of each SRAM type. The explanation of both algorithms can be

found on Section 2.6.4.
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Figure 4.5: HDintra of five SRAMs Cypress CY62256NLL. The left figure is the

testing result of HDintra with constant voltage, the right one is tested based on the

voltage variation.

4.4.1 Neighbour Stability Analysis

To use this algorithm, first, data of SRAM bits value from various condi-

tions (voltages and time difference between data retrieval attempts) need to

be gathered. Afterwards, the bits which remained stable over all retrieved

data are located. Then, the rank of remained stable bits are calculated. Last,

n bits with highest rank can be used according to the necessity. The higher

the rank, the more stable that bit should be.

Microchip 23LC1024

As input for the algorithm, there are 500 data of SRAM bits value used for

this chip. The voltage variation is randomized between 2.5V - 5.0V. The

time difference between data retrieval attempts is ranging from 5 seconds

until 1 hour. SRAM Microchip 23LC1024 itself has capacity 1048576 bits.

After doing the calculation from those five hundred data, there are 413374

remaining stable bits. From those remaining stable bits, the rank of each

bit is calculated. The frequency of bits rank is shown in Figure 4.6. As

shown in this figure, the total bits with rank more than 5 is insignificant,

only showing 493 bits. Bits with rank more or equal to six is merged into a

single bar because the frequency among those rank is usually only a single

digit.

Cypress CY62256NLL

Similar like with SRAM Microchip 23LC1024, there are 500 memory val-

ues retrieved in SRAM Cypress CY62256NLL. Cypress CY62256NLL is

able to store 262144 bits in its memory. The remained stable bits after
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Figure 4.6: Remaining stable bits count according to their rank in SRAM Micro-

chip 23LC1024.

500 data retrieval are 102708 bits (39,18%). The result of the calculation

is shown on Figure 4.7. Compared to Microchip 23LC1024, this SRAM

shows more promising result since there are many bits with ranks more

than seven. Even to get two thousand stable bits, the lowest rank that can

be included is twelve.

4.4.2 Data Remanence Approach

The result of data remanence analysis on both SRAMs is shown below.

Microchip 23LC1024

On SRAM Microchip 23LC1024, the data remanence analysis is done on

time variance between 0-1.0 second. The result can be seen on Figure 4.8.

In this figure, it is shown that SRAM Microchip 23LC1024 will reach the

uninitialized point if it is temporarily turn off for 0.7 seconds.

Cypress CY62256NLL

On SRAM Cypress CY62256NLL, the data remanence analysis is done on

time variance between 0-10 seconds. The result can be seen on Figure 4.8.

In this figure, it is shown that SRAM Cypress CY62256NLL will reach the

uninitialized point if it is temporarily shut down for 5.0 second.
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Figure 4.7: Remaining stable bits count according to their rank in SRAM Cypress

CY62256NLL. There are 246678 bits with rank less or equal to seven.

Figure 4.8: Measured SRAM Microchip 23LC1024 data remanence for data 0 (left)

and data 1 (right). SRAM Microchip 23LC1024 will reach the uninitialized point

if it is temporarily shut down for 0.7 second.
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Figure 4.9: Measured SRAM Cypress CY62256NLL data remanence for data 0

(left) and data 1 (right). SRAM Cypress CY62256NLL will reach the uninitialized

point if it is temporarily shut down for 5.0 second.

4.4.3 Stability Test on Stable Bits

In this section, test results on the effect of time interval and voltage on stable

bits using both algorithms on each SRAM are shown. The effect of aging

and temperature is not tested due to a limitation on time and equipment.

For the effect of time interval testing, the enrollment was done on 16 days

with one day gap between enrollment. Voltage effect testing was done on

voltage ranging from 4.5V-5V for SRAM Cypress CY62256NLL and 2.5V-

5V for SRAM Microchip 23LC1024. The test is done on 4662 bits which

is twice the length of the bits required to generate 256 bits key when using

scheme shown in Figure 3.2. The result of time interval testing on SRAM

Microchip 23LC1024 is shown on Figure 4.10, while Figure 4.12 displays

the result for SRAM Cypress CY62256NLL.

Microchip 23LC1024

• Neighbor Stability Analysis

To get 4662 bits, there are three categories included; rank similar or

higher than 6 with 493 bits, rank 5 with 669 bits, and rank 4 with 3500

bits. During testing on variated voltage and time interval, the stable

bits generated using neighbor stability analysis show a poor perform-

ance by having maximum 2389 bits changing (HDintra 51.24%) which

also produces an overlap between HDintra and HDinter. The maximum

difference is produced when the difference between enrollment is 8

days.

• Data Remanence Approach

To get 4662 bits, strong 1’s are generated using power down period of
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Figure 4.10: Time interval testing results on SRAM Microchip 23LC1024. The top

figure is the testing result on stable bits generated using neighbor analysis, while

the bottom one is tested on stable bits generated using data remanence approach.

Index A on x-axis refers to enrollment on day 1, B on day 2, etc. Index A-B refers

to fractional hamming distance between enrollment on day 1 and day 2.
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Figure 4.11: Voltage variation testing results on SRAM Microchip 23LC1024. The

top figure is the testing result on stable bits generated using neighbor analysis,

while the bottom one is tested on stable bits produced by data remanence analysis.

Index on x-axis refers to two different voltages, e.g. 2.5-5.0 means the fractional

hamming distance between enrollment on voltage 2.5V and voltage 5.0V.
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Figure 4.12: Time interval testing results on SRAM Cypress CY62256NLL. The

top figure is the testing result on stable bits generated using neighbor analysis,

while the bottom one is tested on stable bits generated using data remanence ap-

proach. Index A on x-axis refers to enrollment on day 1, B on day 2, etc. Index

A-B refers to fractional hamming distance between enrollment on day 1 and day 2.
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Figure 4.13: Voltage variation testing results on SRAM Cypress CY62256NLL.

The top figure is the testing result on stable bits generated using neighbor analysis,

while the bottom one is tested on stable bits produced by data remanence approach.

Index on x-axis refers to two different voltages, e.g. 4.5-4.6 means the fractional

hamming distance between enrollment on voltage 4.5V and voltage 4.6V.
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0.185 seconds, while strong 0’s are calculated when 0.27 seconds are

used as the power down period. The difference between power down

period during generation of strong 1’s and strong 0’s is because the

number of 1’s that flipped fast are more compared to 0’s. This is also

related to the 0’s and 1’s distribution during normal initialization (0’s

count for 30% and 1’s filled 70%). Similar to the previous algorithm,

the stability of bits produced by using this algorithm is also not good.

The worst change happens when 8 days is used as the time interval

between testing, showing as many as 2328 bits (HDintra 49.93%) and

also introduce an overlap between HDintra and HDinter.

Cypress CY62256NLL

• Neighbor Stability Analysis

To get 4662 bits, there are six categories included; rank similar or

higher than 16 with 712 bits, rank 15 with 350 bits, rank 14 with

502 bits, 726 bits of rank 13, 1104 bits of rank 12, and 1268 bits of

rank 11. Under the voltage and time interval variation, the stable bits

generated using neighbor stability analysis show decent reliability by

having maximum 197 changing bits (HDintra 4.23%) when the data is

gathered on voltage 4.8V and 5V.

• Data Remanence Approach

Unlike SRAM 23LC1024, power down period when enrolling strong

1’s and 0’s on CY62256NLL is not different. To get 4662 stable bits,

both are enrolled using power down period 0.34 seconds. During the

voltage and time interval variation, the stable bits produced by using

algorithm also shows a promising result. It only accounts for max-

imum 73 bits difference (HDintra 1.56%).

Stability Test Conclusion

Based on these results, SRAM Cypress CY62256NLL is shown to be a re-

liable SRAM candidate for PUF due to its well distribution of 1’s 0’s inside

its memory and small variance when tested on various voltage and time

interval between enrollment, especially the stable bits produced by data re-

manence analysis which has HDintra less than 2% on any testing. If Cypress

CY62256NLL is used as the root-of-trust to produce PUF-generated key,

the key is ensured to always have the same value since the key generation

scheme can tolerate up to 12.7% while the error rate of stable bits of Cypress

CY62256NLL produced by data remanence algorithm is always less than

2%. Sadly, the other SRAM, SRAM Microchip 23LC1024, has displayed

a poor performance to be eligible as a PUF candidate. Unbalanced 1’s and

0’s distribution and large HDintra when the stable bits are tested (larger than
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the maximum error capability of the key generation scheme, and even in-

troduces an overlap between HDintra and HDinter) are two main reasons why

this SRAM is not recommended to use as a PUF candidate.

These different results between two types of SRAMs lead us to a think-

ing that the SRAM size and the technology used in SRAM manufacturing

affects a lot of SRAM quality as a PUF candidate. For example, Cypress

CY62256NLL has significantly larger size than Microchip 23LC1024 (a

rough approximation results in 13.38 times larger). Cypress CY62256NLL

also has a smaller capacity (256 kbit) than Microchip 23LC1024 (1024

kbit). In addition, Cypress CY62256NLL is produced using an older tech-

nology (90nm) compared to Microchip 23LC1024 which has a higher chance

to be produced using a newer technology since it has a much smaller size

but larger memory size than Cypress CY62256NLL (there is no information

on manufacturing technology used in the production on their websites and

the Microchip 23LC1024 manual descriptions). From these explanations,

we can conclude that Cypress CY62256NLL has less density than Micro-

chip 23LC1024. These reasons lead us to a confirmation of density effects

explained in Section 2.6.3 which says the more dense an SRAM, the more

environments affect the performance of the SRAM. But does it mean that

SRAM PUF cannot be produced using an SRAM with a high density? This

seems untrue due to some SRAM PUF references mentioned a newer tech-

nology in their PUF constructions, e.g. Cortez et. al. in [75] use SRAMs

which produced using 32nm and 45nm (sadly, there is no information on

the type and manufacturer of their tested SRAMs). Moreover, as mentioned

in Section 2.8, the experiments done in [65] shown that an older manufac-

turing technology does not always produced a more stable SRAM (Cypress

CY7C15632KV18 (65nm) is more stable than Virage HP ASAP SP ULP

32-bit (90nm), even though the most stable is IDT 71V416S15PHI which

produced using 180nm technology). Furthermore, since every company al-

ways has their own way of dealing with noises introduced by high density

level, we cannot conclude that high density level always lead to low quality

of an SRAM as a PUF candidate. Now, this lead to another questions, what

is the main criteria if an off-the-shelf SRAM is going to be used a PUF can-

didate? Should we trust specific company such as Cypress and mistrust an-

other company like Microchip? Or do we need to look into specific product

to determine whether an SRAM is suitable for a PUF component? Should

we always prefer SRAMs with less density? We suggest the communities

and the academics to study these problems further.

Another conclusion that can be retrieved is that data remanence analysis

is proven to be a better bit selection algorithm than neighbor analysis which

also confirms similar claim by Muqing et. al. [55]. Futhermore, based on

this outcome, further testing shown below are only done on SRAM Cypress
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CY62256NLL and the stable bits used are generated using the data reman-

ence algorithm.

4.5 Testing on Bits Locations as A Challenge

In this section, the testing results on our proposed PUF challenge is presen-

ted. As mentioned in the previous chapter, bits locations is selected as the

PUF challenge in our application. The test was done on SRAM Cypress

CY62256NLL. Cypress CY62256NLL itself has a capacity to store 262144

bits. The number of bits required in a challenge is 2331 bits (the length

of the bits required to generate 256 bits key when using scheme shown in

Figure 3.2). Using Equation 3.1 explained in previous chapter, there are

P (262144, 2331) = 262144!
(262144−2331)!

≈ 1012626 possible combinations.

The selected experiment to test this challenge is by calculating the HDinter

among five SRAMs. Figure 4.14 shows the result of this experiment. As

shown in that figure, the HDinter is ranging between 35.26% until 46.93%,

with average 42.08%. Since there is no overlap between HDintra (shown on

Section 4.4.3) and HDinter, this result shows that using bits locations as a

challenge is sufficient to distinguish an SRAM from another.

Figure 4.14: HDinter among five SRAMs Cypress CY62256NLL.
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4.6 Complete Enrollment and Reconstruction Scheme

Based on the experiment results shown before, we construct a complete

enrollment and reconstruction scheme. The enrollment scheme has a goal to

create challenge and helper data which will be used in our proposed secure

data and key storage scheme (further explanation is available on Section

3.4). The reconstruction scheme has a function to reconstruct the PUF-

generated key. Details on the key reconstruction can be seen on Figure 3.1

and Figure 3.2 in previous chapter.

Similar to the automatic profiling system, the enrollment scheme also

consists of a PC, act as a master, and an Arduino connected to an external

SRAM component which acts as a slave. The PC side will run Python

codes while Arduino side requires Arduino codes. Our complete enrollment

scheme is shown in Figure 4.15. We also present Figure 4.16 to show how

to connect an Arduino Mega 2560, an SRAM Cypress CY62256NLL and a

microSD.

The enrollment scheme starts by locating stable bits using bit selection al-

gorithm. The chosen bit selection algorithm is data remanence analysis due

to its better result and shorter time needed compared to neighbor analysis.

Using this algorithm, we detect the position of 4662 stable bits. Afterwards,

these stable bits are shuffled to form a set of 2331 bits locations which will

be used as the PUF challenge. Using Equation 3.1 explained in previous

chapter, there are P (4662, 2331) = 4662!
(4662−2331)!

≈ 8.97 × 108240 possible

stable bits combinations. The process continues with creating the helper

data based on the PUF challenge. The enrollment scheme ends with storing

the helper data and the PUF challenge to a microSD. Later, if one wants to

reconstruct the PUF-generated key from the helper data and the challenge,

he only requires an Arduino, no PC is needed (the Arduino codes used for

reconstructing the PUF-generated key is different from the Arduino codes

for testing and performing the enrollment scheme when it act as a slave).

4.7 Procedure on Developing SRAM PUF-Based Applica-

tions

After presenting the complete enrollment scheme, we also come up with

a procedure to develop SRAM PUF-based applications using any off-the-

shelf SRAM. Similar to the complete enrollment scheme, this procedure

scheme also requires a PC, acting as a master, and an Arduino connected

to an external SRAM component which acts as a slave. The PC side will

run Python code. To reconstruct the PUF-generated key, similar to the en-

rollment scheme, one also only need an Arduino, no PC is needed. This

procedure will check whether the quality of the off-the-shelf SRAM is suf-
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Figure 4.15: Complete enrollment scheme using SRAM Cypress CY62256NLL,

data remanence algorithm and stable bits locations as the PUF challenge. At the

end of the enrollment scheme, the challenge and helper data will be generated and

saved in a microSD.
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Figure 4.16: An illustration on how to connect an Arduino Mega 2560 with an

SRAM Cypress CY62256NLL and a microSD.
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ficient as a PUF root-of-trust or not. In addition, the procedure also gen-

erates the helper data and the challenge of the SRAM which can be used

to reconstruct PUF-generated key. Using this PUF-generated key, anyone

can build their applications. For example, this PUF-generated key can be

utilized as the root-of-trust in an authentication application. Below are the

steps defined in this procedure:

• Step 1: Test the off-the-shelf SRAM quality as a PUF component.

This step can be started by getting any off-the-shelf SRAM from the

market. Ensure that the Arduino and the PC are able to communicate

perfectly with off-the-shelf SRAM. Afterwards, locate the stable bits

using data remanence algorithm. Then, test the stable bits on various

conditions. If the stable bits show an acceptable result, continue using

this SRAM. Otherwise, abandon and try another off-the-shelf SRAM.

In addition, also ensure there is no overlap between HDinter and HDintra

to enable unique identification on the off-the-shelf SRAM.

• Step 2: Use enrollment-reconstruction mechanism which will be able

to create a PUF-generated key.

Using the enrollment scheme shown in Section 4.6, one can gener-

ate the challenge and the helper data. Both the helper data and the

challenge is unique to the tested SRAM component. Later, using the

challenge and the helper data, one will be able to reconstruct the PUF-

generated key.

• Step 3: Develop a PUF-based application using the PUF-generated

key.

The PUF-generated key can be applied as a root-of-trust in any ap-

plication.

4.8 Testing on Secure Data and Key Storage Scheme

To check the validity of the proposed data and key storage scheme, several

testings are performed. First, the final key generated using HMAC SHA3

is checked. Afterwards, the result of the encryption and decryption using

the final key is also tested. Last, the time required in the scheme is also

measured. During the time measurement, the stage is divided into multiple

stages to ease the analysis.

To check the validity of the final key, a comparison between the generated

final key and an online HMAC SHA3 calculator [76] is performed. As a

reminder, the key for HMAC function is the PUF generated key and the

message input for the HMAC is the user’s password. Below is the testing

result:
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• PUF generated key: d20f5656bf436516cd0f3d2e734851dc537df518

97484128ccae67ee1310f69b

– user’s password: 70617373776f7264

final key: 084536fcb3135af89e1e32d423156511f13e52246acaa

591b1d4115666727814

valid: yes

– user’s password: 6b6f6e746f6c6b61626568

final key: 1d1e467224d72c81ede61fcd5d1ac10535f3ebafa6e9f

0d5086e6086a30787c7

valid: yes

– user’s password: 71776572747975696f706173646667686a6b6c

7a786376626e6d

final key: dda21605fc56b55659cffdf57f5453a9e380aa7bd78fe5

2b7dc64ff4515ff4a0

valid: yes

• PUF generated key: 35e2f312bd28a36a359eb1a1e37f212d17da41a5

b17cb2c642f5fd8e42bbd4f0

– user’s password: 70617373776f7264

final key: c2892f1b1d52d59549591d410a40527b265b91d444d

2032f28ce7374f7246152

valid: yes

– user’s password: 6b6f6e746f6c6b61626568

final key: ec85915ae65f3e5141128a520327c4d5cd3119cb6769f

ddd948d3061dfb6fed9

valid: yes

– user’s password: 71776572747975696f706173646667686a6b6c

7a786376626e6d

final key: da9e28f76754dcd4946c1343a3dd8550338d98e46d3a

11e09f903204044ac9c7

valid: yes

After checking the validity of the final key, a testing on encryption and

decryption using the final key is performed. The input data on this testing

is users key. To check the validity of the ciphertext, an online encryption

calculator [77] is utilized. The ciphertext result of the encryption process

will be used as the input for the decryption test. If the decryption result is

similar with the users key, then both encryption and decryption process in

this scheme is valid.

• user’s key: 70617373776f726470617373776f726470617373776f726

470617373776f7264
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– final key: e2e1d413041797bdd88509a36333ff4488c02fad7dfb8

e7f4c490ba3b532dbf0

IV: 454de46011532218d7651f13b719c74f

ciphertext: 908d70d57d70de5f99879fe686df1f3cdf42ae781951

a681dadad3e264e693e6

ciphertext validity: yes

decryption result: 70617373776f726470617373776f726470617

373776f726470617373776f7264

decryption validity: yes

– final key: 5c2c9c88bf7f8af53b74c200d28d2d5f2126b319ad9bf

5153af57f8509d40855

IV: 0e6ea6ddb70ecb04cef60d16f8574480

ciphertext: 28306abb964b77d736c40cb4f9eaf9e950928e46379

eac789a822746611dcdcd

ciphertext validity: yes

decryption result: 70617373776f726470617373776f726470617

373776f726470617373776f7264

decryption validity: yes

– final key: ec41183c27222149f1f7e7d0c801807b76482532e186

302c49a4428104d394e1

IV: 199a195d30b54308030c441551b12ba9

ciphertext: b4fc405e19a1a00ee7c7c97946a300f02d61bb64eba9

f72517bd29e8f59e6ce5

ciphertext validity: yes

decryption result: 70617373776f726470617373776f726470617

373776f726470617373776f7264

decryption validity: yes

– final key: 95a68d46b3d447705342489582209f48cf654360b7af

96d803fe4bb7d5596bfe

IV: 9e5b0a358f8b4a19931787bd2b371407

ciphertext: eac69afe87a1757dd5bbfcb4f7cce0f5f8cec76860583

ed10ecfc7107f575d29

ciphertext validity: yes

decryption result: 70617373776f726470617373776f726470617

373776f726470617373776f7264

decryption validity: yes

– final key: d62ae23a0a45fc94755d0e1523fe5d908b116fda239a9

4852d849c631aec8024

IV: 199a195d30b54308030c441551b12ba9

ciphertext: 25f59967dcdd36f24761497fe310176b2282ecaef4d5

f9c22f95410161057ebe

ciphertext validity: yes

60



decryption result: 70617373776f726470617373776f726470617

373776f726470617373776f7264

decryption validity: yes

– final key: b7dc7382a1d6cb47970446797e8ab45385b0b23d8b3f

bfea05447004b8ebd17c

IV: 24c78cdea85dba0c38227b15ab0b12d2

ciphertext: 876f0510c5cc2157affbece024494db6718e9b1ad1b9

0233782926919acf8409

ciphertext validity: yes

decryption result: 70617373776f726470617373776f726470617

373776f726470617373776f7264

decryption validity: yes

Measurement of time required in this scheme is also done. During the

time measurement, the scheme is divided into eight stages. Stage one

is on the initialization of the libraries required to access SRAM Cypress

CY62256NLL and microSD. Stage two is when the challenge and the helper

data are loaded from microSD. The third one is calculated when reconstruct-

ing the PUF key. Next stage is during the derivation of the final key (de-

rived from user’s password and PUF-generated key). Stage five and stage

six refers to the processes of encryption and saving ciphertext to microSD.

Stage seven and stage eight refers to the procedure of reading ciphertext

from microSD and the decryption process (reconstructing the user’s key).

The measurement result can be seen on Table 4.1. It can be seen that the

longest time required is when loading the challenge and the helper data from

the microSD (stage 2), followed by the initialization stage (stage 1). Due to

this significant time required, a further optimization on accessing data from

microSD is suggested in possible future works.

Table 4.1: Time measurement of the secure data and key storage scheme in ms.

No Stage 1 Stage 2 Stage 3 Stage 4

1 1022.66 2205.25 978.15 33.57

2 1022.65 2205.24 974.39 33.57

3 1022.63 2205.25 981.27 33.57

Average 1022.65 2205.25 977.94 33.57

No Stage 5 Stage 6 Stage 7 Stage 8

1 0.84 39.96 13.02 1.72

2 0.85 39.88 13.02 1.71

3 0.84 39.78 13.01 1.72

Average 0.84 39.87 13.02 1.71

To ensure the functionality of the system, we also constructed test cases

for the source code. The testing is only performed on the functionality of
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the system which does not has a direct interaction with hardware (e.g. code

to read microSD and SRAM). This decision is taken because to ensure the

code is properly working, the hardware has to be in a proper condition,

while checking the hardware condition is sometimes problematic and can-

not be automated. The quality of the test cases is shown by code coverage

which generated using GCOV and LCOV. Figure 4.17 shows the code cov-

erage result. As seen there, there are directories where the line coverage

is not 100% covered. The reasons are some directories are just library to

enable code testing (folder ’gmock’ and folder ’gtest’, both are libraries

created by Google which required to enable the testing) and one directory

is a part of LLVM compiler infrastructure (folder ’v1’). Another directory

which is not fully covered is ’Crypto’, this folder is a library required to do

the encryption, decryption, and HMAC but provides more functional than

the required for constructing the system. Thus, the test is only done on the

functionality that is actually needed by the system which leads to a not full

percentage of code coverage.

Figure 4.17: Code coverage of the constructed project.

4.9 Concluding Experiment with Cybercurrency

As the final experiment of this thesis, we present a demo of storing a private

key of a cybercurrency. We believes this proves the usefulness and viab-

ility of this work for realistic use-cases. The chosen cybercurrency in this

demo is Bitcoin. In Bitcoin, the private key has a length of 256-bit or 32

bytes [78]. The experiments starts by performing an enrollment on an Ar-

duino board with an SRAM Cypress CY62256NLL and a microSD con-

nected to it, resulting in challenge and helper data which store in the mi-

croSD. Using the produced challenge and helper data, user creates a final

key which derived from the PUF-generated key and user’s password. The

final key is utilized to encrypt a Bitcoin key, then the ciphertext is stored in

62



microSD. Afterwards, the Arduino is turned off. Later, the microSD and the

SRAM are transferred to another Arduino board. The new Arduino board

is powered on, then it is used to reconstruct the final key by inputing the

correct user’s password. Finally, the reconstructed final key is applied to

the ciphertext which is loaded from the microSD. The Bitcoin key storing

experiment is considered successful if the result of decryption is the same

as the Bitcoin key. Moreover, we also shows that the Bitcoin key will not

be reconstructed successfully if user’s password is incorrect or the SRAM

is not similar with the one that use to encrypt the Bitcoin key.

This experiment was done on five SRAMs Cypress CY62256NLL which

can be identified by having index ’A’, ’B’, ’C’, ’D’, and E. The result of this

experiment is shown on Appendix A. These figures show that the stored /

secured Bitcoin key can only be reconstructed using a correct user’s pass-

word and the exact SRAM that used during the storing (encryption) stage.

If the SRAM is not similar with the one used for the encryption stage or the

input password is inaccurate, the Bitcoin key cannot be reconstructed to the

actual one. Based on these result, we conclude that the constructed data and

key storage scheme is secure and successfully built.

4.10 Conclusion

In this chapter, we provide explanations of several experiment setups and

results. We start by presenting two chosen SRAMs that used in experi-

ments; Microchip 23LC1024 and Cypress CY62256NLL. Both are tested

on the effect of voltage variations regarding the HDintra, HDinter, distribu-

tion of 1’s and 0’s. Afterwards, the testing results on two bit selection

algorithms (neighbor analysis and data remanence approach) and the re-

liability of the stable bits produced by these algorithms are displayed. From

these experiments, we concluded that the Microchip 23LC1024 is unreli-

able to be a PUF candidate while Cypress CY62256NLL has a solid ground

to be the root-of-trust of PUF. We also able to determine that data reman-

ence approach can produce more stable bits compared to neighbor analysis.

The chapter continues with examination on our proposed PUF challenge.

Since Cypress CY62256NLL has a capacity of 262144 bits and the re-

quired bits for PUF generation is 2331 bits, there are P (262144, 2331) =
262144!

(262144−2331)!
≈ 1012626 possible challenges. We also display our complete

enrollment scheme and the procedure on developing SRAM PUF-based ap-

plications using any off-the-shelf SRAM. Moreover, we also propose a pro-

cedure to develop SRAM PUF-based applications using any off-the-shelf

SRAM. The procedure consists of three main steps; test the off-the-shelf

SRAM quality to be a PUF component, create a PUF-generated key using

enrollment-reconstruction mechanism, and develop any PUF-based applic-
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ation utilizing the PUF-generated key. Next, testing on the designed secure

data and key storage scheme is shown. Last, experiment outcomes on stor-

ing Bitcoin private key conclude this chapter.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis starts by showing the potential of using SRAM PUF as a secure

way to protect our key and data. Embraced with a bright prospect, it is

unfortunate that the development of PUF in the real world seems to lack

of public involvement. Currently available solutions are usually locked to

specific entities, such as companies or universities. There is no open source

project available for tech enthusiast to embrace this amazing technology.

Here, we introduce the first open source project to develop software-based

SRAM PUF technology using off-the-shelf SRAM.

As mentioned in Chapter 1, this thesis’ problem statement says “How

to develop an open-source secure data and key storage scheme using off-

the-shelf SRAM component and software-based SRAM PUF technology?”.

Based on the experiments, the answer of this question can be explained in

few steps. The steps itself are quite similar with the one explained in Sec-

tion 4.7. First, one should test the off-the-shelf SRAM quality to be a PUF

component. If passed, the procedure continues to the next step which con-

sists of enrollment-reconstruction mechanism which will be able to create

a PUF-generated key. Last, using the PUF-generated key, we develop our

secure data and key storage scheme. To secure data/key, we decided to en-

crypt it using AES-256 with a final key as the encryption key. The final

key itself is derived using HMAC-SHA3 256 as the KDF (key derivation

function) by combining PUF-generated key and user’s password. We con-

sider this scheme is secure because the only-way someone can access the

encrypted data is by having the correct SRAM and knowing the user pass-

word. Thus, the data and the key protected by the scheme is still safe even

though the PUF device is lost. In addition, ensure all the library required in

the constructed system is open-source. Moreover, software-based SRAM

PUF technology is achieved by using off-the-shelf SRAM (requires no ad-
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ded hardware design) and constructing the whole system using Arduino and

Python codes.

In problem statement section, there are also two goals defined. First is

“to devise a secure data and key storage scheme based on SRAM PUF tech-

nology. The data and the key protected by the scheme has to be safe even

though the PUF device is lost. Moreover, the scheme should work using off-

the-shelf SRAM.” This goal is achieved and the explanation can be found

in previous paragraph.

From the first goal, several sub-questions are also arised. First question

is “Can we build SRAM PUF using off-the-shelf SRAM?”. The answer is

yes, we can. We show that the stable bits of SRAM Cypress CY62256NLL

which located using data remanence algorithm has a sufficient reliability to

be a root-of-trust of SRAM PUF.

Second question is “If it is possible, what characteristics need to be ful-

filled by off-the-shelf SRAM to be eligible as a PUF candidate?”. Unfor-

tunately, we cannot answer this question. As shown in Chapter 4, we also

do experiment on another off-the-shelf SRAM called Microchip 23LC1024.

This SRAM show an unsatisfying result to be a PUF candidate. We believe

that the SRAM size and the technology used in SRAM manufacturing af-

fects a lot of SRAM quality as a PUF candidate. For example, Cypress

CY62256NLL has significantly larger size than Microchip 23LC1024 (a

rough approximation results in 13.38 times larger). Cypress CY62256NLL

also has a smaller capacity (256 kbit) than Microchip 23LC1024 (1024

kbit). In addition, Cypress CY62256NLL is produced using an older tech-

nology (90nm) compared to Microchip 23LC1024 which has a higher chance

to be produced using a newer technology since it has a much smaller size

but larger memory size than Cypress CY62256NLL (there is no informa-

tion on manufacturing technology used in the production on their websites

and the Microchip 23LC1024 manual descriptions). From these explana-

tions, we can conclude that Cypress CY62256NLL has less density than

Microchip 23LC1024. These reasons lead us to a confirmation of density

effects explained in Section 2.6.3 which says the more dense an SRAM, the

more environments affect the performance of the SRAM. But does it mean

that SRAM PUF cannot be produced using an SRAM with a high dens-

ity? This seems untrue due to some SRAM PUF references mentioned a

newer technology in their PUF constructions, e.g. Cortez et. al. in [75] use

SRAMs which produced using 32nm and 45nm (sadly, there is no inform-

ation on the type and manufacturer of their tested SRAMs). Moreover, as

mentioned in Section 2.8, the experiments done in [65] shown that an older

manufacturing technology does not always produced a more stable SRAM

(Cypress CY7C15632KV18 (65nm) is more stable than Virage HP ASAP

SP ULP 32-bit (90nm), even though the most stable is IDT 71V416S15PHI
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which produced using 180nm technology). Furthermore, since every com-

pany always has their own way of dealing with noises introduced by high

density level, we cannot conclude that high density level always lead to

low quality of an SRAM as a PUF candidate. This open conclusion lead

us to other questions. Should we trust specific company such as Cypress

and mistrust another company like Microchip? Or do we need to look into

specific product to determine whether an SRAM is suitable for a PUF com-

ponent? Should we always prefer SRAMs with less density? We suggest

the communities and the academics to study these problems further.

The second goal defined in the problem statement is “create a sharing

ecosystem for the evolution of our data and key storage scheme. The eco-

system should be easily accessed and understood to encourage the academ-

ics and commercial parties to use and develop the ecosystem together.” We

achieved this goal by providing all our codes with explanations on how to

use them in a Github repository [23].

In addition, an idea to create numerous CRPs using SRAM PUF is also

proposed here. Using a collection of bits as a challenge, the stable bits are

permutated among themselves to create a challenge which has a tremendous

number of possibilities.

We also propose a procedure to develop SRAM PUF-based applications

using any off-the-shelf SRAM. The procedure consists of three main steps;

testing the off-the-shelf SRAM quality to be a PUF component, creating a

PUF-generated key using enrollment-reconstruction mechanism, and devel-

oping any PUF-based application utilizing the PUF-generated key.

Furthermore, as the final experiment of this thesis, we present a demo of

storing a private key of Bitcoin. We shows that the Bitcoin key will not be

reconstructed successfully if user’s password is incorrect or the SRAM is

not similar with the one that use to encrypt the Bitcoin key.

5.2 Future Work

In this section, two major parts on possible future work are presented. The

first part is about possible experiments to do on off-the-shelf SRAMs and

the next part is related to possible developments on our secure data and key

storage scheme. Explanations of these two will be provided below.

Possible Experiments on Off-The-Shelf SRAMs

In this thesis, the SRAM testing is only done on the effect of time interval

between data retrieval and voltage variation. We believe another testing

on temperature and aging is required to ensure whether SRAM Cypress

CY62256NLL is indeed a capable candidate for SRAM PUF. The capability
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to test on temperature and the aging effect is suggested to be included as an

addition of our automated enrollment system.

In addition, we also encouraged others to test other types of SRAMs to

enrich the knowledge of possible off-the-shelf SRAM as a PUF candidate

and to check if a high-density level always leads to a poor performance for

an SRAM to be a PUF candidate. Doing testing on other types of SRAMs

can also confirm whether a product from specific is qualified as a PUF root-

of-trust or not.

Improvement on Secure Data and Key Storage Scheme

As mentioned in Section 4.8, during the time measurement of our proposed

key storage scheme, two procedures which spend significant time is the pro-

cess of reading challenge from microSD and the initialization stages. We

suggest to further optimize these stages to give a better and faster perform-

ance.

This thesis only presents an idea to secure user’s data using symmet-

ric encryption. To see similar application but using asymmetric encryption

concept, one should look further to the thesis done by Akhundov [64]. He

presents a public key infrastructure (PKI) concept using the PUF-generated

key as the root of trust. A possible integration between our work and his

work is combining our ’final’ key into his construction as a root of trust.

Moreover, our secure data and key storage scheme is only designed to

work offline. We believe by making it works in an online scenario will

lead to more usable applications in real life. The first step we suggest on

evolving it to be an online scheme is by providing the Arduino with an

internet connection and by storing the helper data and the challenge in the

cloud infrastructure. This step will reduce the necessity for the Arduino

to always connected to a microSD. To reconstruct the PUF-generated key,

Arduino will just have to get the challenge and the helper data from the

cloud. We also advise to do extensive security analysis if it is decided to

work online since the risks in an online environment are numerous.

In addition, our idea of using user’s password and the PUF-generated key

is not the highest level of security in multi-factor authentication. As men-

tioned in Section 2.4, the most secure multi-factor authentication can be

achieved when all three factors are combined together; knowledge, posses-

sion, and inherence. Since there are only two factors utilize (knowledge and

possession) in this thesis’ proposed secure data and key storage scheme, an

addition of inherence factor when generating the final key can increase the

security level. As mentioned in Section 1.2, biometric-based authentica-

tion and PUF are utilized to secure self-sovereign identity in Pouwelse and

de Vos’s proposed technology stack during trust creation in blockchain era.

A further read on their article mentioned that there is a working prototype
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of fingerprint authentication using a smartphone camera. Since that project

and our work share the same principle, open source and open ecosystem, we

suggest integrating this fingerprint authentication into our proposed scheme

to enable an even higher level of security.
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Appendix A

Screenshot of Secure Data and

Key Storage Scheme

Appendix body

Figure A.1: Screenshot of the Bitcoin key storing experiment during encryption

stage using SRAM Cypress CY62256NLL ’A’. User’s password is ’password’ and

the Bitcoin key (user’s key) is ’passwordpasswordpasswordpassword’.
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Figure A.2: Screenshot of the Bitcoin key storing experiment during decryption

stage. The Bitcoin key ’passwordpasswordpasswordpassword’ is previously se-

cured by using SRAM Cypress CY62256NLL ’A’ and user’s password ’password’.

The Bitcoin key can be reconstructed because user’s password is correct and the

utilized SRAM is SRAM Cypress CY62256NLL ’A’.

Figure A.3: Screenshot of the Bitcoin key storing experiment during decryption

stage. The Bitcoin key ’passwordpasswordpasswordpassword’ is previously se-

cured by using SRAM Cypress CY62256NLL ’A’ and user’s password ’pass-

word’. Even though the utilized SRAM is the correct SRAM (SRAM Cypress

CY62256NLL ’A’), the Bitcoin key cannot be reconstructed because user’s pass-

word is wrong.
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Figure A.4: Screenshot of the Bitcoin key storing experiment during decryption

stage. The Bitcoin key ’1234567890123456’ is previously secured by using SRAM

Cypress CY62256NLL ’A’ and user’s password ’password’. Even though user’s

password is correct, the Bitcoin key cannot be reconstructed because the SRAM

utilized for the decryption is SRAM Cypress CY62256NLL ’D’.

Figure A.5: Screenshot of the Bitcoin key storing experiment during encryption

stage using SRAM Cypress CY62256NLL ’B’. User’s password is ’1234’ and the

Bitcoin key (user’s key) is ’12345678901234567890123456789012’.
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Figure A.6: Screenshot of the Bitcoin key storing experiment during decryption

stage. The Bitcoin key ’12345678901234567890123456789012’ is previously se-

cured by using SRAM Cypress CY62256NLL ’B’ and user’s password ’1234’.

The Bitcoin key can be reconstructed because user’s password is correct and the

utilized SRAM is SRAM Cypress CY62256NLL ’B’.

Figure A.7: Screenshot of the Bitcoin key storing experiment during decryp-

tion stage. The Bitcoin key ’12345678901234567890123456789012’ is previ-

ously secured by using SRAM Cypress CY62256NLL ’B’ and user’s password

’1234’. Even though the utilized SRAM is the correct SRAM (SRAM Cypress

CY62256NLL ’B’), the Bitcoin key cannot be reconstructed because user’s pass-

word is wrong.

82



Figure A.8: Screenshot of the Bitcoin key storing experiment during decryption

stage. The Bitcoin key ’12345678901234567890123456789012’ is previously se-

cured by using SRAM Cypress CY62256NLL ’B’ and user’s password ’1234’.

Even though user’s password is correct, the Bitcoin key cannot be reconstructed

because the SRAM utilized for the decryption is SRAM Cypress CY62256NLL

’A’.

Figure A.9: Screenshot of the Bitcoin key storing experiment during encryption

stage using SRAM Cypress CY62256NLL ’C’. User’s password is ’testtest’ and

the Bitcoin key (user’s key) is ’testpasswordtesttestpasswordtest’.

83



Figure A.10: Screenshot of the Bitcoin key storing experiment during decryption

stage. The Bitcoin key ’testpasswordtesttestpasswordtest’ is previously secured

by using SRAM Cypress CY62256NLL ’C’ and user’s password ’testtest’. The

Bitcoin key can be reconstructed because user’s password is correct and the utilized

SRAM is SRAM Cypress CY62256NLL ’C’.

Figure A.11: Screenshot of the Bitcoin key storing experiment during decryption

stage. The Bitcoin key ’testpasswordtesttestpasswordtest’ is previously secured

by using SRAM Cypress CY62256NLL ’C’ and user’s password ’testtest’. Even

though the utilized SRAM is the correct SRAM (SRAM Cypress CY62256NLL

’C’), the Bitcoin key cannot be reconstructed because user’s password is wrong.
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Figure A.12: Screenshot of the Bitcoin key storing experiment during decryption

stage. The Bitcoin key ’testpasswordtesttestpasswordtest’ is previously secured

by using SRAM Cypress CY62256NLL ’C’ and user’s password ’testtest’. Even

though user’s password is correct, the Bitcoin key cannot be reconstructed because

the SRAM utilized for the decryption is SRAM Cypress CY62256NLL ’D’.

Figure A.13: Screenshot of the Bitcoin key storing experiment during encryption

stage using SRAM Cypress CY62256NLL ’D’. User’s password is ’passpass’ and

the Bitcoin key (user’s key) is ’qwertyuiqwertyuiqwertyuiqwertyui’.
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Figure A.14: Screenshot of the Bitcoin key storing experiment during decryption

stage. The Bitcoin key ’qwertyuiqwertyuiqwertyuiqwertyui’ is previously secured

by using SRAM Cypress CY62256NLL ’D’ and user’s password ’passpass’. The

Bitcoin key can be reconstructed because user’s password is correct and the utilized

SRAM is SRAM Cypress CY62256NLL ’D’.

Figure A.15: Screenshot of the Bitcoin key storing experiment during decryption

stage. The Bitcoin key ’qwertyuiqwertyuiqwertyuiqwertyui’ is previously secured

by using SRAM Cypress CY62256NLL ’D’ and user’s password ’passpass’. Even

though the utilized SRAM is the correct SRAM (SRAM Cypress CY62256NLL

’D’), the Bitcoin key cannot be reconstructed because user’s password is wrong.
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Figure A.16: Screenshot of the Bitcoin key storing experiment during decryption

stage. The Bitcoin key ’qwertyuiqwertyuiqwertyuiqwertyui’ is previously secured

by using SRAM Cypress CY62256NLL ’D’ and user’s password ’passpass’. Even

though user’s password is correct, the Bitcoin key cannot be reconstructed because

the SRAM utilized for the decryption is SRAM Cypress CY62256NLL ’B’.

Figure A.17: Screenshot of the Bitcoin key storing experiment during encryption

stage using SRAM Cypress CY62256NLL ’E’. User’s password is ’qwertyuiop’

and the Bitcoin key (user’s key) is ’qwer1234qwer1234qwer1234qwer1234’.
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Figure A.18: Screenshot of the Bitcoin key storing experiment during decryption

stage. The Bitcoin key ’qwer1234qwer1234qwer1234qwer1234’ is previously se-

cured by using SRAM Cypress CY62256NLL ’E’ and user’s password ’qwerty-

uiop’. The Bitcoin key can be reconstructed because user’s password is correct and

the utilized SRAM is SRAM Cypress CY62256NLL ’E’.

Figure A.19: Screenshot of the Bitcoin key storing experiment during decryp-

tion stage. The Bitcoin ’qwer1234qwer1234qwer1234qwer1234’ is previously

secured by using SRAM Cypress CY62256NLL ’E’ and user’s password ’qwer-

tyuiop’. Even though the utilized SRAM is the correct SRAM (SRAM Cypress

CY62256NLL ’E’), the Bitcoin key ’testpasswordtest’ cannot be reconstructed be-

cause user’s password is incorrect .
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Figure A.20: Screenshot of the Bitcoin key storing experiment during decryp-

tion stage. The Bitcoin key ’qwer1234qwer1234qwer1234qwer1234’ is previ-

ously secured by using SRAM Cypress CY62256NLL ’E’ and user’s password

’qwertyuiop’. Even though user’s password is correct, the Bitcoin key cannot be

reconstructed because the SRAM utilized for the decryption is SRAM Cypress

CY62256NLL ’C’.
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