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Abstract In view of the recent proliferation of low-cost mass-market receivers, the number of network receivers

and GNSS users will be growing rapidly, demanding an efficient way of data processing in terms of computational

power and capacity. One way of improving the computational capacity is to decentralize the underlying data

processing and distribute the task of the computer center across individual network receivers. In this invited

contribution we review the problem of distributed estimation and present an algorithm for distributed least-

squares estimation using the alternating direction method of multipliers. Applying the algorithm to a network

of GNSS receivers, we show how the distributed data processing of individual receivers can deliver parameter

solutions comparable to their centralized network-derived counterparts. With distributed estimation techniques,

GNSS single-receiver users can therefore obtain high-precision solutions without the need of having a centralized

computing center.

Keywords Distributed estimation, Least-squares estimation, Alternating direction method of multipliers,

Global Navigation Satellite Systems (GNSS)

1 Introduction

Parameter estimation in Global Navigation Satellite Systems (GNSS) often relies on the data processing of a

network of receivers that collect measurements from GNSS satellites (Hofmann-Wellenhof et al, 2008; Teunissen

and Montenbruck, 2017). The measurements are transferred to a computing center to deliver network-derived

parameter solutions. In the light of the recent development of new GNSS constellations as well as the proliferation

of mass-market receivers, the number of network receivers and GNSS users will be growing rapidly, demanding

an efficient way of data processing in terms of computational power and capacity. One way of improving the

computational capacity is to decentralize the underlying data processing and distribute the task of the com-

puter center across several individual network receivers. In contrast to a centralized network processing where

all receivers have to send their data to a computing (fusion) center, distributed data processing schemes en-

able the receivers to only share limited information with their neighboring receivers (i.e. a subset of all other

receivers) and yet obtain solutions that are comparable to their centralized network-derived counterparts in a

mean-squared-error sense (see Figure 1). This particular feature of the distributed data processing potentially

makes the data communication between the receivers cost-effective and develop the receivers capacity to perform

parallel computations (Molzahn et al, 2017).

Parameter estimation in decentralized and distributed form has been extensively studied in recent years,

see e.g. (Olfati-Saber and Murray, 2004; Moreau, 2005; Kingston and Beard, 2006; Boyd et al, 2011; Das and

Moura, 2017). For its applications to GNSS, see (Boomkamp, 2010) or the recent contributions (Khodabandeh

et al, 2018) and (Wang et al, 2018). In the present contribution we review the problem of distributed estimation

and present an algorithm for distributed least-squares estimation. It is intended to demonstrate how distributed
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Fusion center 

Network receivers

Data links

(a) (b)

Fig. 1 Centralized versus distributed processing. Left: Illustration of a centralized processing scheme in which all the
receivers (black dots) have to send data to a fusion center (red dot) via communication links (blue lines). Right: Illustration
of a distributed processing scheme in which the receivers send data to their neighboring receivers.

least-squares estimation can play a pivotal role in applications for which GNSS data of a network of receivers are

to be processed. This is the more so, since in GNSS the precision of network-derived solutions is generally much

higher than its single-receiver counterpart (Khodabandeh and Teunissen, 2015; Li et al, 2017). With a distributed

least-squares setup, single-receiver parameter solutions can achieve precision performances similar to that of their

network-derived versions, provided that a sufficient number of iterative communications between the neighboring

receivers are established. The importance of such ‘collaborative’ single-receiver solutions is well appreciated by

multi-GNSS services that utilize a large number of low-cost receivers (Li et al, 2015; Odolinski and Teunissen,

2016; Zaminpardaz et al, 2016). With the increase in the number and types of such receivers, many more GNSS

users can establish their own measurement setup to determine parameters that suit their needs. These users can

therefore potentially deliver high-precision parameter solutions without the need of having a computing center.

This contribution is organized as follows. We first commence with the well-known least-squares objective

function to be minimized by a computing center. The stated minimization problem is then formulated into

a constrained form which is suited for distributed processing. Given such equivalent constrained minimization

problem, an attempt to realize distributed processing is discussed by forming the corresponding augmented

Lagrangian. We will make use of the ‘Alternating Direction Method of Multipliers’ (Glowinski and Marroco, 1975;

Gabay and Mercier, 1976) and arrive at an iterative scheme for computing least-squares solutions in a distributed

manner. By taking recourse to ‘geometric’ illustrations, the convergence performance of this iterative scheme is

studied for a two-dimensional case. For a general case with n number of receivers, the data communication between

the receivers is modeled by a ‘connected graph’ so as to avoid having a fusion center. With such communication

graph, we develop an algorithm for distributed least-squares estimation and apply it to a network of 110 receivers

tracking GPS triple-frequency signals L1, L2 and L5 to determine estimable satellite code biases. The local

single-receiver (but collaborative) code-bias solutions are then compared with the centralized solutions and their

convergence under several scenarios is studied.

2 Minimization problems in distributed form

In this section, we give a brief overview of the least-squares method and its corresponding minimization problem.

We will then formulate equivalent minimization problems that are suited for distributed processing.

2.1 Least-squares estimation

Consider the sensor nodes i = 1, . . . , n each collecting observable vectors yi ∈ R
mi to estimate the common

unknown parameter vector x ∈ R
p. The corresponding linear(ized) observation equations read

yi = Aix+ ei, with E(ei) = 0 and C(ei, ej) = Ri δij , i, j = 1, . . . , n (1)

with δij being the Kronecker delta function. The expectation and covariance operators are denoted as E(.) and

C(., .), respectively. Thus the observations yi are assumed mutually uncorrelated, each having the positive-definite

variance matrices Ri. We further assume that the system of observation equations (1) is solvable for x, that is

rank(A) = p, where A = [AT
1 , . . . , A

T
n ]

T (2)
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(a)

Centralized Processor

Centralized state:

(b)

Local Processor 1 Local Processor 2 Local Processor n

Constraints:

Local states:

Consensus state

Fig. 2 The minimization problem (3) in centralized form (left) and its distributed form (right). The centralized state x is
replaced by its local versions xi (i = 1, . . . , n), while the constraints z − xi = 0 result in the additional consensus state z.

Thus the mi × p known design matrices Ai need not be of full-column rank, but their augmented version A.

We choose for the weighted least-squares criterion and take the inverse of the variance matrix of the observa-

tions yi as weight matrix to estimate x. The resultant estimator, say x̂, coincides with the so-called Best Linear

Unbiased Estimator (BLUE) of x and follows from the minimization problem (Teunissen et al, 2005)

x̂ = arg min
x∈Rp

n
∑

i=1

fi(x), with fi(x) =
1

2
||yi −Aix||

2
R

−1

i

(3)

where ||.||2
R

−1

i

= (.)TR−1
i (.). As a result, the BLUE x̂ is obtained through solving the normal equations

N x̂ = r, with N =

n
∑

i=1

Ni, r =

n
∑

i=1

ri (4)

where the normal matrices and right-hand vectors are, respectively, given by Ni = AT
i R

−1
i Ai and ri = AT

i R
−1
i yi.

According to (4), one needs to collect normal matrices Ni and right-hand vectors ri from all the sensor nodes

i = 1, . . . , n in order to compute the BLUE x̂. This is in fact done by a fusion center. From now on, the solution

x̂ in (4) is therefore referred to as the ‘centralized solution’. Likewise, we call (3) the ‘minimization problem in

centralized form’.

2.2 Equivalent minimization problems

The centralized solution x̂, given in (4), is optimal in a mean-squared-error sense (Teunissen et al, 2005). This is

what one would expect as x̂ enjoys the advantage of using all information about the nodes’ data through Ni and

ri (i = 1, . . . , n). The price one has to pay for this advantage is that data-links between the fusion center and all

the n nodes i = 1, . . . , n are required to be established, a situation that makes data communication and processing

power very expensive (particularly for a large number of nodes). The basic idea of distributed processing is to do

away with such a stringent requirement by enabling each node to run its own data processing. We therefore as a

start consider the case where node i is aimed to estimate x through its own data, that is (compare with 3)

x̂i = arg min
x∈Rp

fi(x) =⇒ Ni x̂i = ri (5)

The minimization problem stated above is subject to two restrictions. First, the information content of the

individual observation vector yi is often not enough to enable one to determine the solution x̂i, i.e. the normal

matrix Ni might be singular. In case of GNSS for instance, a single terrestrial receiver cannot simultaneously

track all the satellites revolving around the Earth. As a consequence, not all the corresponding satellite-specific

biases can be determined by measurements of a single receiver. Second, even if the normal equations (5) contain

enough information for the determination of x̂i, the precision of such single-receiver solution is generally shown

to be much lower than its network-derived counterparts (Khodabandeh and Teunissen, 2015; Li et al, 2017). In

order to tackle these two restrictions, we impose constraints on the parameters, while letting the nodes minimize

their own objective functions fi(x) individually. In doing so, the ‘centralized’ state x is replaced by its ‘local’
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versions xi, but with the equality constraints xi − x = 0 (i = 1, . . . , n). This yields the following equivalent

minimization problems

min
x∈Rp

n
∑

i=1
fi(x) ≡ min

xi∈Rp

n
∑

i=1
fi(xi) subject to xi − x = 0, i = 1, . . . , n

≡ min
xi∈Rp

fi(xi) subject to xi − x = 0, i = 1, . . . , n

(6)

where the symbol ‘≡’ means ‘equivalent to’. The last expression, in (6), follows from the fact that the sum of

the nonnegative functions fi(xi) is minimized when each individual function fi(xi) is minimized. For the sake

of notational convenience, from now on we use the symbol z instead of x to express the constraints xi − x = 0.

Thus the least-squares solutions for the local states xi follows from (compare with 5)

x̂i = arg min
xi∈Rp

fi(xi) subject to xi − z = 0, i = 1, . . . , n, (7)

The constraints xi− z = 0 gives the ‘consensus’ state z ∈ R
p as an extra parameter vector. The term ‘consensus’

is attributed to the role of z upon which the least-squares solutions x̂i (i = 1, . . . , n) would agree to become equal,

i.e. to reach consensus. Note that the minimization problem (7) is equivalent to that of (3), while at the same time

it has multiple objective functions fi(xi). We therefore call (7) the ‘minimization problem in distributed form’.

A visualization is shown in Figure 2. In fact, many more equivalent minimization problems can be formed by

choosing different constraint sets, which all (similar to xi − z = 0) lead to the equalities xi = xj (i, j = 1, . . . , n).

Such constraint sets are discussed in Sect. 4.

3 Distributed least-squares estimation

Now that the minimization problem (3) has been expressed in the distributed form (7), we can take the constraints

xi − z = 0 into account by forming an augmented Lagrangian of (7) which reads (Boyd et al, 2011)

LW =
n
∑

i=1
fi(xi) + uTi W (xi − z) + 1

2 ||xi − z||2
W

=
n
∑

i=1

fi(xi) +
1
2 ||xi − (z − ui)||

2
W

− 1
2 ||ui||

2
W

(8)

with ||.||2W = (.)TW (.) and ui ∈ R
p being the corresponding Lagrange multipliers. The term ‘augmented’ is due

to the presence of the additional penalty term (1/2)||xi−z||2
W

in (8). In (ibid) the positive-definite weight matrix

W ∈ R
p×p takes the special form W = ρ Ip, i.e. a scaled identity matrix with positive scalar ρ.

According to the Lagrange multiplier rule, the solutions x̂i in (7) follow by equating the partial derivatives of

LW (denoted as ∂xiLW , ∂zLW and ∂uiLW ) to zero, noting that the least-squares objective functions fi(xi) are

convex. Solving these three systems of equations for xi, z and ui results in the following solutions (Appendix)

x̂i = ẑ = x̂, and Wûi = ri −Ni x̂, i = 1, . . . , n (9)

Thus if one ‘simultaneously’ solves the three systems of equations ∂xiLW = 0, ∂zLW = 0 and ∂uiLW = 0

(i = 1, . . . , n), the solutions of the local states xi would then be identical to the centralized solution x̂. In

distributed processing however, the individual node i only has access to its own systems of equations. As a

consequence, the number of unknowns exceeds the number of equations. Now the idea is to let the individual

nodes i start with initial values for the unknowns and set up an iterative scheme with the intention to obtain

improved approximations for x̂i in each cycle of the iteration. To gain a better insight into the mechanism of

such iterative scheme, we first consider the case where the last system of equations (i.e. ∂uiLW = 0) is absent.

3.1 The method of multipliers: an attempt to realize distributed processing

In the absence of ∂uiLW = 0 (i = 1, . . . , n), solving the equations ∂xiLW = 0 and ∂zLW = 0 for xi and z gives a

‘class’ of solutions upon which the augmented Lagrangian (8) is minimized over xi and z, while ui are assumed
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given. We denote such a class of solutions by x̂i(u) and ẑ(u) as they are functions of the Lagrange multiplier

vector u = [uT1 , . . . , u
T
n ]

T . Likewise, the minimum value of LW over xi and z is a function of u which is given by

g(u) = min
x1,...,xn,z

LW

=
n
∑

i=1
fi(x̂i(u)) +

1
2 ||x̂i(u)− (ẑ(u)− ui)||

2
W

− 1
2 ||ui||

2
W

(10)

The function g(u) is referred to as the dual function (Boyd and Vandenberghe, 2004). The dual function g(u)

provides ‘lower bounds’ on the optimal value
∑n

i=1 fi(x̂i) as

min
x1,...,xn,z

LW ≤ min
x1=...=xn=z

LW

= min
x1=...=xn

n
∑

i=1
fi(xi)

=
n
∑

i=1

fi(x̂i)

(11)

The inequality is true since a minimum never gets smaller when adding constraints. The first equality follows

by substituting the constraints xi = z into (8), while the second equality follows from the definition of the

least-squares solutions x̂i = x̂ (i = 1, . . . , n). The lower bound g(u) is, however, not guaranteed to be sharp. Its

sharpness is driven by the Lagrange multiplier vector u. Clearly, the maximum value of g(u) delivers the best

lower bound on the optimal value
∑n

i=1 fi(x̂i). And fortunately for most ‘convex’ objective functions fi(xi) (such

as those of the least-squares method), the maximum value of g(u) coincides with the optimal value
∑n

i=1 fi(x̂i)

by the maximizer û = [ûT1 , . . . , û
T
n ]

T , that is (Boyd and Vandenberghe, 2004)

g(û) = max
u

g(u)

=
n
∑

i=1

fi(x̂i)
(12)

Upon comparison of (12) with (10), one can see that the maximizer û delivers x̂i = x̂(û) and ẑ = ẑ(û) which are

indeed the sought for least-squares solutions. Thus if the multiplier vector u is initialized by an arbitrary value

u[0] giving the corresponding approximate solutions x̂i(u
[0]) and ẑ(u[0]), an iterative scheme can be set up with

the intention to increase the dual function g(u) in each cycle of the iteration. As g(u) gets closer to its maximum

value, the updated solution for u gets closer to the maximizer û. Consequently, the approximate solutions x̂i(u)

and ẑ(u) tend to the centralized solution x̂ over a number of iterations.

We assume for the moment that an ascent direction vector of g(u), say d = [dT1 , . . . , d
T
n ]

T , is available in each

iteration. Thus g(u+ d) > g(u). Such iterative scheme, with k as the iteration index, is then outlined as follows

– Initialize: u
[0]
1 , . . . , u

[0]
n

– Set the iteration k 7→ 1

– Step 1: solve ∂xiLW = 0, ∂zLW = 0 for x
[k]
i = x̂i(u

[k−1]), z[k] = ẑ(u[k−1])

– Step 2: update u
[k−1]
1 , . . . , u

[k−1]
n as u

[k]
i = u

[k−1]
i + d

[k]
i

– Set the iteration k + 1 7→ k and go to Step 1

(13)

To realize the iterative scheme given above, the ascent direction vectors d
[k]
i are required to be available. Making

use of the definition of the dual function g(u) in (10), the differences x
[k]
i − z[k] (i = 1, . . . , n) can be shown to

lie in an ascent direction of g(u) (cf. Appendix). Thus

d
[k]
i = x

[k]
i − z[k], i = 1, . . . , n (14)

For the least-squares case, the approximate solutions x
[k]
i and z[k] can also be expressed by (Appendix)

x
[k]
i = z[k]−u

[k−1]
i +Gi(yi − Ai[z

[k]−u
[k−1]
i ]), with Gi = (Ni +W )−1AT

i R
−1
i ,

z[k] = (
n
∑

i=1

Hi)
−1(

n
∑

i=1

hi), with Hi = AT
i (Ri + AiW

−1AT
i )

−1Ai

(15)
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Primal feasibilityDual feasibility

Fig. 3 Two-dimensional visualization of the iterative scheme (13). Left: Contour lines of the objective function f1(x1) +
f2(x2) (grey ellipses), the primal feasibility line (blue solid line) and the dual feasibility line (black solid line). The primal
feasibility line is ‘tangent’ to the contour line corresponding to the optimal value f1(x̂1) + f2(x̂2) and it crosses the dual
feasibility line at the least-squares solution [x̂T

1 , x̂T
2 ]T (red star). Right: Contour lines of the dual function g(u) (grey ellipses)

together with solution û = [ûT
1 , ûT

2 ]T at the center (red star). Given the approximate values u[k−1] (k = 1, 2, 3) (red dots

in the right panel), the approximate solutions x
[k]
1 and x

[k]
2 (red dots in the left panel) move towards the least-squares

solutions [x̂T
1 , x̂T

2 ]T along the dual feasibility line over a number of iterations.

and hi = AT
i (Ri + AiW

−1AT
i )

−1(yi + Aiu
[k−1]
i ).

The iterative scheme, outlined in (13), follows the ‘method of multipliers’ (Hestenes, 1969; Powell, 1969). For

the least-squares case, a two-dimensional example (i.e. n = 2) concerning the mechanism of the method is given

in Figure 3. In the left panel of the figure, contour lines of the objective function f1(x1) + f2(x2) are shown as

grey ellipses. The objective function is aimed to be minimized, subject to the constraint x1 − x2 = 0 that is

referred to the ‘primal feasibility’ (blue solid line). The contour line, that just touches the primal feasibility line,

corresponds to the optimal value f1(x̂1)+f2(x̂2), i.e. the primal feasibility line is ‘tangent’ to that contour line at

the least-squares solutions [x̂T1 , x̂
T
2 ]

T (red star). In other words, the gradient of the objective function (denoted by

[∂xT
1

f1(x1), ∂xT
2

f2(x2)]
T ) at [x̂T1 , x̂

T
2 ]

T is orthogonal to the line x1−x2 = 0, i.e. ∂x1
f1(x̂1)+∂x2

f2(x̂2) = 0. For the

least-squares case, the equations ∂x1
f1(x1) + ∂x2

f2(x2) = 0 represent a line of points at which the contour lines

touch the dashed blue lines parallel to the primal feasibility line. The line ∂x1
f1(x1) + ∂x2

f2(x2) = 0 is referred

to the ‘dual feasibility’ (black solid line) and it crosses the primal feasibility line at the solutions [x̂T1 , x̂
T
2 ]

T .

In the right panel of Figure 3, contour lines of the dual function g(u) are shown as grey ellipses, with solution

û = [ûT1 , û
T
2 ]

T at the center indicated by a red star. The approximate values u[k−1] (k = 1, 2, 3) are indicated by

red dots. At every cycle of the iteration, the approximate solutions x
[k]
1 and x

[k]
2 (k = 1, 2, 3) follow from (15),

i.e. the red dots in the left panel of the figure. As shown, the solutions x
[k]
1 and x

[k]
2 lie in the dual feasibility

line as they fulfill the equations ∂x1
f1(x1)+ ∂x2

f2(x2) = 0 through ∂xiLW = 0 and ∂zLW = 0. Accordingly, the

approximate solutions x
[k]
1 and x

[k]
2 move towards the least-squares solutions [x̂T1 , x̂

T
2 ]

T along the dual feasibility

line over a number of iterations. Likewise, the approximate values u[k−1] are updated by the ascent direction

vectors x
[k]
i − z[k] (blue arrows in the right panel of the figure) so as to become closer to the solution û.

Although the method of multipliers ensures the convergence of the local solutions x
[k]
i (i = 1, . . . , n) to their

centralized version x̂, a closer look at its iterative scheme (13) will reveal that the method is not suitable for

distributed processing. The reason being that in each iteration k, the sensor node i has to have access to all other

nodes’ data (i.e. yj , Aj , Rj , j 6= i) in order to be able to compute z[k] given in (15). Apart from the computation

of z[k] however, each node could in parallel initialize and update its own variables xi and ui individually, if z[k]

would have been given. This suggests a slight modification to the iterative scheme (13), i.e. initialization of the

consensus state z by an arbitrary value.
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Fig. 4 Two-dimensional visualization of the iterative scheme (16). Left: Contour lines of the objective function f1(x1) +
f2(x2) (grey ellipses), the primal feasibility line (blue solid line) and the dual feasibility line (black solid line). The three

sets of points represent approximate solutions x
[k]
1 and x

[k]
2 for 1) the method of multipliers (red dots), 2) ADMM initialized

by z[0] = 3 (green squares) and 3) ADMM initialized by z[0] = −7 (magenta triangles) over eight iterations k = 1, . . . , 8.
Right: The corresponding values of the dual function g(u).

3.2 ADMM: a decomposable version of the method of multipliers

We now revisit our earlier iterative scheme (13) and let the consensus state z be initialized by an arbitrary value,

say z[0]. The modified version of (13) reads then (Appendix)

– Initialize: u
[0]
1 , . . . , u

[0]
n , z[0]

– Set the iteration k 7→ 1

– Step 1: compute x
[k]
i as x

[k]
i = z[k−1]−u

[k−1]
i +Gi(yi − Ai[z

[k−1]−u
[k−1]
i ])

– Step 2: compute z[k−1] as z[k] = 1
n

∑n
i=1 x

[k]
i + u

[k−1]
i

– Step 3: update u
[k−1]
i as u

[k]
i = u

[k−1]
i + (x

[k]
i − z[k])

– Set the iteration k + 1 7→ k and go to Step 1

(16)

Compare (16) with its counterpart (13). The expression for the approximate solutions x
[k]
i is identical in structure

to that of (15), albeit with a different value of z[k−1] as input. Note, in contrast to (13), that the two systems

of equations ∂xiLW = 0 and ∂zLW = 0 are not ‘simultaneously’ solved for xi and z. Instead, the first system

∂xiLW = 0 is solved for xi, assuming z to be given as z[k−1] (Step 1 in 16). The second system ∂zLW = 0 is

then solved for z, assuming xi to be given as x
[k]
i (Step 2 in 16). As x

[k]
i and z[k] are computed in an alternating

manner, the iterative scheme (16) follows the so-called ‘alternating direction method of multipliers’ (ADMM),

see (Glowinski and Marroco, 1975; Gabay and Mercier, 1976). For a review of ADMM, see (Boyd et al, 2011).

The mechanism of the method concerning our earlier two-dimensional example is shown in Figure 4 for eight

iterations k = 1, . . . , 8. The three sets of points represent approximate solutions x
[k]
1 and x

[k]
2 for 1) the method

of multipliers (red dots), 2) ADMM initialized by z[0] = 3 (green squares) and 3) ADMM initialized by z[0] = −7

(magenta triangles). We use the initial values u
[0]
i = 0 for all the three cases. In case of the method of multipliers,

the approximate solutions move towards the least-squares solutions [x̂T1 , x̂
T
2 ]

T along the dual feasibility line (black

solid line). For the ADMM cases however, the approximate solutions do not follow the dual feasibility line, albeit

approaching the solutions [x̂T1 , x̂
T
2 ]

T . This is because the equations ∂xiLW = 0 and ∂zLW = 0 are not solved

simultaneously to fulfill the condition ∂x1
f1(x1) + ∂x2

f2(x2) = 0. For the sake of comparison, the corresponding

values of the dual function g(u) over the iterations are also given in the right panel of Figure 4. As shown, the dual

function does not necessarily increase at each cycle of the iteration in case of ADMM (magenta triangles). Thus in

case of ADMM, the differences x
[k]
i −z[k] do not necessarily point in an ascent direction of g(u). Nevertheless, the

convergence of ADMM over a sufficient number of iterations has been proven for most convex objective functions

such as those of the least-squares method (Boyd et al, 2011).
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Fig. 5 A communications graph of 9 sensor nodes. The edges (blue lines) represent two-way data links between the nodes
(black dots). Left: The set C = {1, 3, 4, 6, 9} is chosen such that every edge of the graph has at least one constraint node
(red triangles). Right: The node 6 is excluded from the set of constraint nodes. However, the new set C = {1, 3, 4, 9} still
satisfies the conditions (18).

4 Communication graphs

So far we have not addressed how the consensus state z[k], given in (16), is computed in a distributed manner.

Upon the iterative scheme (16), each node i can in parallel compute and update its states x
[k]
i and u

[k]
i individually.

This is what one needs for running a distributed processing setup. However, the individual states x
[k]
i and u

[k−1]
i

are required to be collected somewhere in order to compute z[k] as the ‘average of their sums’. One may therefore

be inclined to conclude that the applicability of (16) is limited to the case where the nodes i = 1, . . . , n, have

‘direct’ communication connections to one another so as to receive/send their states x
[k]
i and u

[k]
i . So what have

we gained? Instead, the nodes could have had a fusion center to compute and provide z[k].

Fortunately, we can do away with the requirement of having a fusion center, if the nodes are linked to each

other at least through a ‘path’ so that information can flow from each node to all other nodes. Each node along

the path would then play the role of an agent transferring information to other nodes. The way the nodes interact

with each other to transfer information can be described by a ‘communication graph’ whose vertices and edges,

respectively, represent the nodes and communication links, see e.g. (Jadbabaie et al, 2003; Olfati-Saber and

Murray, 2004; Kingston and Beard, 2006).

The graph is said to be connected if and only if every node i is linked to all other nodes j 6= i at least through

one path. In order for information to flow from each node to all other nodes, we assume that the communication

graph of the nodes is connected. An example of such communication graphs with 9 sensor nodes (black dots) is

shown in Figure 5. The edges (blue lines) represent two-way data links between the nodes. We define the neighbors

of node i as those to which the node i has direct data links and we denote them by the set Ni. We also adopt

the convention that each node is its own neighbor as each node has access to its own data. For instance for the

graph in Figure 5, node 1 has only two neighboring nodes as N1 = {1, 2}, whereas node 3 has six neighboring

nodes as N3 = {2, 3, 5, 6, 7, 8}. The number of the neighbors of node i (i.e. the cardinality of Ni) is denoted by

|Ni|. Thus |N1| = 2, whereas |N3| = 6.

4.1 Equivalent constraint sets

According to (16), the consensus state z[k] follows as the ‘average’ of the sums x
[k]
i + u

[k−1]
i (i = 1, . . . , n),

thereby requiring a fusion center. This is because only one consensus state is commonly defined across the nodes

i = 1, . . . , n. The idea is now to define multiple consensus states across the nodes and yet the corresponding

constraint set leads to the equalities xi = xj (i, j = 1, . . . , n). As stated previously in Sect. 2, there are many

(in fact infinite) constraint sets equivalent to the original constraint set xi − z = 0 (i = 1, . . . , n). To form such

constraint sets, let C be a subset of the nodes, i.e. C ⊂ {1, . . . , n}, for which consensus states are to be defined.

We call the members of C the constraint nodes and indicate them by index s. For every constraint node s ∈ C,

we define the consensus state zs ∈ R
p imposing the constraints

xi − zs = 0, i ∈ Ns (17)
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Distributed least-squares estimation

• Initialization (every node i)

– Compute its own G-matrix: Gi = (AT
i R−1

i Ai +W )−1AT
i R−1

i

– Set its own x- and u-states to arbitrary values: x
[0]
i , u

[−1]
i,s for s ∈ Ni

• Initialization (every constraint node s)

– Set its own z-states to arbitrary values: z
[0]
s

– Send z
[0]
s to its neighboring nodes i ∈ Ns

Set k 7→ 1

• Step 1) u- and x-updates (every node i)

– u-update: u
[k−1]
i,s = u

[k−2]
i,s + (x

[k−1]
i − z

[k−1]
s ) for s ∈ Ni

– compute l
[k−1]
i =

1

|Ni|

∑

s∈Ni

(z
[k−1]
s −u

[k−1]
i,s )

– x-update: x
[k]
i = l

[k−1]
i +Gi(yi − Ai l

[k−1]
i )

– send z
[k]
i,s = x

[k]
i + u

[k−1]
i,s to its own constraint nodes s ∈ Ni

• Step 2) z-update (every constraint node i)

– z-update: z
[k]
s =

1

|Ns|

∑

i∈Ns

z
[k]
i,s

– send z
[k]
s to its neighboring nodes i ∈ Ns

Set k + 1 7→ k

Go to Step 1

Fig. 6 Algorithmic steps of distributed least-squares estimation, given the observation vectors yi, design matrices Ai,
variance matrices Ri (i = 1, . . . , n) and weight matrix W as input.

Thus the local states of all ‘neighbors’ of s ∈ C are constrained to be equal, i.e. xi = xj (i, j ∈ Ns). According to

(17), the set C must be chosen such

1) :
⋃

s∈C

Ns = {1, . . . , n},

2) : ∀ s1, s2 ∈ C with Ns1

⋂

Ns2 = ∅, ∃ s3 ∈ C : Ns1

⋂

Ns3 6= ∅, Ns2

⋂

Ns3 6= ∅

(18)

so as to fulfill the equalities xi = xj (i, j = 1, . . . , n). The first condition states that every node i must have at

least one constraint node s as its neighbor to ensure that its local state is equal to one of the consensus states,

i.e. xi = zs. The second condition states that the neighbors of every two constraints nodes s1 and s2 must have

either overlaps or neighbors of another constraint node s3 in common. Thus on the one hand, we have xi = zs1
and zs1 = zs3 for every node i as a neighbor of s1. On the other hand, we have xj = zs2 and zs2 = zs3 for every

node j as a neighbor of s2. The two conditions together imply that xi = zs1 = zs2 = xj (i, j = 1, . . . , n). Similar

conditions concerning the choice for constraint sets are originally given by Schizas et al (2008).

One rather trivial choice that can satisfy (18) is C = {1, . . . , n}, i.e. choosing all the n nodes as the constraint

nodes, thus defining n consensus states zsi (i = 1, . . . , n). Alternatively, the set C can be chosen such that every

edge of the communication graph has at least one constraint node. In the left panel of Figure 5, such a choice of

constraint nodes are indicated by red triangles. As shown in the right panel of the figure, one can exclude node

6 from the set of constraint nodes and yet obtain a new set C satisfying the conditions (18). In the following it

becomes clear why such a choice is not favorable and which choice would be considered ‘best’.
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4.2 An algorithm for distributed least-squares estimation

Given a choice for constraint nodes C, our earlier constraints xi− z = 0 (i = 1, . . . , n) are replaced by xi− zs = 0

(i ∈ Ns, s ∈ C). Likewise, the augmented Lagrangian, given in (8), takes the following form

LW =
n
∑

i=1
fi(xi) +

∑

s∈C

∑

i∈Ns

uTi,sW (xi − zs) +
1
2 ||xi − zs||

2
W

=
n
∑

i=1
fi(xi) +

∑

s∈C

∑

i∈Ns

1
2 ||xi − (zs − ui,s)||

2
W

− 1
2 ||ui,s||

2
W

(19)

Thus the Lagrange multipliers ui ∈ R
p (i = 1, . . . , n) are replaced by their new versions ui,s ∈ R

p (i ∈ Ns, s ∈ C).

With the augmented Lagrangian (19), we apply the iterative scheme (16) and arrive at an algorithm for

distributed least-squares estimation (see Figure 6). As shown in the figure, the node i only communicates with its

own constraint nodes s ∈ Ni by providing the sums x
[k]
i + u

[k−1]
i,s . On the other hand, the constraint node s only

communicates to its own neighboring nodes i ∈ Ns by providing the averages z
[k]
s . Therefore, the requirement

of having a fusion center among all nodes is relaxed. We can now address why the choice C = {1, 3, 4, 9} in

Figure 5 is not favorable. Upon this choice, the data links (i.e. edges) (5,6) and (6,7) become obsolete, since

there is no constraint node defined among the nodes 5, 6 and 7 to communicate with. As this choice satisfies the

conditions (18) and thus the equalities xi = xj (i, j = 1, . . . , n), the convergence of the local solutions x
[k]
i to the

centralized solution x̂ is guaranteed. However, the associated convergence rate would never be higher than the one

corresponding to the choice C = {1, 3, 4, 6, 9}, as use is made of fewer data links between the nodes. Would one

choose the ‘maximization’ of communication links between the nodes as ‘optimality criterion’, the ‘best’ choice

for the set C is then the one upon which every edge has at least one constraint node. With this choice, one takes

full advantage of the existing data links among the sensor nodes.

4.3 On the computation of the local states

Consider the computations involved in the algorithm presented in Figure 6. Apart from matrix inversions that

are required for the G-matrix computation at the initialization step, each node only needs to carry out simple

mathematical operations (e.g. addition and averaging). From a computational point of view, this makes the

distributed least-squares algorithm very demanding. As to the G-matrix computation, consider the following

matrix identity (Teunissen et al, 2005, p. 188)

Gi = (AT
i R

−1
i Ai +W )−1AT

i R
−1
i

= W−1AT
i (Ri + AiW

−1AT
i )

−1
(20)

The first expression is suited for the case where the inverse-matrix R−1
i is given as input and when the inversion

of the p× p matrix AT
i R

−1
i Ai +W does not require so much computational effort. This is particularly the case

when there are fewer unknowns x than the individual observations yi, i.e. when p < mi. The second expression is

suitable when matrices Ri and W−1 are given as input, while the inversion of the mi×mi matrix Ri+AiW
−1AT

i

would be more straightforward than that of AT
i R

−1
i Ai +W , e.g. when the individual observation vector yi has

fewer entries than the unknowns x (i.e. mi < p).

Instead of computing the G-matrix explicitly, one can take an alternative approach by solving the linear

system of equations concerning the x-update in Figure 6. To this end, the term δ = Gi(yi − Ai l
[k−1]
i ) in the

x-update x
[k]
i = l

[k−1]
i + δ can be interpreted as the unknowns of the following system of equations

(AT
i R

−1
i Ai +W ) δ = AT

i R
−1
i (yi − Ai l

[k−1]
i ) (21)

Since matrix (AT
i R

−1
i Ai + W ) is symmetric and positive-definite, it can be written as the product LLT (i.e.

its Cholesky decomposition), where L is a lower triangular matrix. The term δ is then computed relatively easy

by solving the system using ‘forward-backward-substitution’. Accordingly, the lower triangular system LδL =

AT
i R

−1
i (yi−Ai l

[k−1]
i ) is solved by forward substitution, followed by solving the upper triangular system δL = LT δ

through backward substitution, see e.g. (Teunissen et al, 2005). Another alterative approach is to formulate the

algorithm in ‘information form’ so as to eliminate the burden of inversions, see e.g. (Khodabandeh et al, 2018).
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Next to the G-matrix computation, the initial values x
[0]
i , z

[0]
s and u

[−1]
i,s have to be set. Although these values

can be chosen in an arbitrary fashion, a good choice for these values can—as the following section will show—

expedite the convergence of the local solutions x
[k]
i . The initial values are preferred to be as close as possible to

the solutions x̂ and û. With regard to the second expression of (9), the solution for ui can be expressed as

Wûi = AT
i R

−1
i êi with êi = yi − Aix̂, i = 1, . . . , n (22)

This shows that ûi are linear functions of the least-squares residuals êi. If one has any confidence in one’s

measurement model E(yi) = Aix, one would like the least-squares residuals êi to be as close as possible to zero.

This suggests that the Lagrange multipliers are preferred to be initialized by u
[−1]
i,s = 0. In case of x

[0]
i and z

[0]
s

however, a good choice for initial values relies to a large extent on experience from past experiments. For instance,

if parameters x behave rather stable over time, solutions of previous experiments are appropriate candidates for

the initial values x
[0]
i = z

[0]
s .

The linearized case. The algorithm, in Figure 6, holds for the linear measurement models E(yi) = Aixi subject

to xi − zs = 0 (i ∈ Ns, s ∈ C). Now consider the case where the linear maps Aixi are replaced by the nonlinear

maps Ai(xi) (Ai : Rp 7→ R
mi). In that case, one can still apply the algorithm to the linearized versions of the

measurement models E(yi) = Ai(xi). Given an approximate value for xi, say xoi , the role of the observation vector

yi and parameter vector xi is taken by the ‘increments’ ∆yi = yi −Ai(x
o
i ) and ∆xi = xi − xoi , respectively. As a

consequence, the constraints ∆xi− zs = 0 (i ∈ Ns, s ∈ C) must holds. But this implies that the nodes must have

‘identical’ approximate values, i.e. xoi = xo, since xi = xj (i, j = 1, . . . , n). Under this condition, the linearized

version of distributed least-squares estimation follows by repeated application of the algorithm in Figure 6. First,

the nodes linearize their measurement models by the same approximate value xo. Given the resultant linearized

models, the algorithm in Figure 6 is then applied with the initial values ∆x
[0]
i = z

[0]
s = 0. After a sufficient number

of iterations k, the local solutions ∆x
[k]
i reach consensus, i.e. ∆x

[k]
i ≈ ∆x

[k]
1 (i = 2, . . . , n). Each node would then

update the approximate value as (xo+∆x
[k]
i ) 7→ xo. Given this new approximate value, the nodes again linearize

their measurement models, set the initial values ∆x
[0]
i = z

[0]
s = 0 and apply the algorithm. This procedure is

repeated until the nodes consider their solutions converged and decide to stop the iteration, a decision which is

largely driven by the nonlinearity of the measurement models and the approximate value xo (Teunissen, 1990).

The nonlinear case. As an alternative approach to the linearized case discussed above, one might think of the

case where each node individually solves its own nonlinear minimization problem. As shown through (31) given

in Appendix, the x-update in Figure 6 follows by solving a regularized least-squares problem. This implies, in

case the maps Ai(xi) (Ai : R
p 7→ R

mi) are nonlinear, that the distributed least-squares algorithm may still be

employed, provided that the corresponding objective function
∑n

i=1 fi(xi) is assumed to satisfy the ADMM and

nonlinearity convergence conditions. Under this assumption, the x-update is generalized as

x-update: x
[k]
i = arg min

xi∈Rp

{

||yi −Ai(xi)||
2
R

−1

i

+ ||l
[k−1]
i − xi||

2
W

}

(23)

The above equation represents a ‘regularized nonlinear least-squares problem’. The presence of the regularization

term ||l
[k−1]
i − xi||

2
W

is due to the vector l
[k−1]
i that is known through u

[k−1]
i,s and z

[k−1]
s (cf. Figure 6).

5 GNSS code-bias determination

This section is intended to demonstrate how distributed least-squares estimation, discussed previously, can play a

pivotal role in applications for which GNSS data of a network of receivers are to be processed. In a GNSS network

setup, each receiver serves as a sensor node for receiving observables from visible GNSS satellites to determine

a range of different parameters such as positions and velocities, atmospheric delays, timing and instrumental

biases, see e.g. (Hofmann-Wellenhof et al, 2008; Teunissen and Montenbruck, 2017). As an illustrative example,

here we restrict our focus to the determination of instrumental biases that are experienced as delays on GNSS

pseudo-range measurements. These delays are referred to as code biases and often behave rather stable over time,

see e.g. (Schaer, 1999; Zhang and Teunissen, 2015; Nadarajah et al, 2018).

5.1 Data-sets and measurement models

Let ȳi,j ∈ R
mi contain pseudo-range measurements on frequency j (j = 1, 2, 3) that are collected by receiver i

from mi visible satellites. Estimable combinations of the code biases can then be shown to be determined by the
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Fig. 7 A communications graph of 110 GNSS receivers distributed over the globe (IGS stations). The edges (blue lines)
represent two-way data links between the receivers (black dots). The 9 red triangles indicate the set of constraint nodes.

following observation equations (Khodabandeh and Teunissen, 2015)

E(y
1
) = A1 x, with y

1
= ȳ

1,3 − ȳ
1,IF − µ3 ȳ1,GF

E(yi) = Ai x, with yi = DT
mi

(ȳi,3 − ȳi,IF − µ3 ȳi,GF
), i = 2, . . . , n

(24)

in which x ∈ R
p contains the unknown (but estimable) satellite code biases. Thus here p is the total number

of satellites that are tracked by the receivers i = 1, . . . , n. The ‘ionosphere-free’ (IF) and ‘geometry-free’ (GF)

combinations of the first two-frequencies j = 1, 2 are given by

ȳi,IF = 1
µ2−µ1

(µ2 ȳi,1 − µ1 ȳi,1)

ȳi,GF
= 1

µ2−µ1
(ȳi,2 − ȳi,1)

(25)

The frequency-dependant coefficients are defined as µj = (f1/fj)
2, with fj being the frequency band (j = 1, 2, 3).

The mi×(mi−1) matrix Dmi is the ‘between-satellite’ differencing operator. For instance when mi = 3 or mi = 4,

it takes the following forms

DT
3 =

[

−1 +1 0

−1 0 +1

]

, DT
4 =





−1 +1 0 0

−1 0 +1 0

−1 0 0 +1



 (26)

Due to the linear dependence that exists between the design matrices of the code biases, we choose for an specific

S-basis (Baarda, 1973; Teunissen, 1985) upon which the code biases of the first receiver are lumped with the

satellite code biases. The design matrices would then read A1 = Ā1 and Ai = DT
mi

Āi (i 6= 1), where the mi × p

matrix Āi is formed by choosing those rows of the identity matrix Ip which correspond to the satellites visible

to receiver i (i = 1, . . . , n).

A GPS data-set of 110 IGS stations are used (cf. Figure 7) to compute the estimable satellite code biases x.

We only consider the GPS block IIF satellites (currently 12 satellites) so as to collect pseudo-range measurements

on the three frequencies L1 (j = 1), L2 (j = 2) and L5 (j = 3). These pseudo-range measurements, i.e. ȳi,j in (24),

are assumed to be mutually uncorrelated with a zenith-referenced standard-deviation of 20 cm. To model the

dependency of the measurements on the satellites’ elevation, we take the elevation-dependent weighting function

as given in (Euler and Goad, 1991).

For the sake of comparison, we first compute centralized solutions of the estimable satellite code biases.

Examples of such solutions (solid lines), together with their 3-sigma confidence intervals (dashed lines) are shown

in Figure 8. It can be seen that the solutions behave rather stable over time. Kalman filtering is used to compute

the solutions over time. Thus the solution corresponding to an epoch is obtained on the basis of the measurements

collected up to and including that epoch. That is why the 3-sigma confidence intervals decrease as the number

of epochs increases.
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Fig. 8 Centralized solutions of the estimable code biases (solid lines) of PRN 1 (left) and PRN 24 (right), together with
their 3-sigma confidence intervals (dashed lines) over time. The results correspond with a GPS L1/L2/L5 data-set of the
receivers shown in Figure 7, 10 January 2018, interval 00:00:00 – 02:30:00 UTC.
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Fig. 9 The norm-differences ||x
[k]
i − x̂|| (i = 1, . . . , 110) as a function of the iteration number k for different choices of

the weight matrix W = ρ Ip, given the initial values x
[0]
i = z

[0]
s = 0. Each colour indicates 110 curves corresponding to a

specific value for ρ.

5.2 Convergence of distributed least-squares estimation

To show the role played by the weight matrix W and the initial values x
[0]
i and z

[0]
s in the convergence of the

local solutions x
[k]
i (i = 1, . . . , n), a weakly connected communication graph for the 110 receivers (i.e. n = 110) is

established. As shown in Figure 7, only 118 data links (edges) between the receivers are considered, whereas the

maximum number of potential data links is n(n−1)/2 = 5995. Accordingly, only 9 constraint nodes (red triangles)

are required so that every edge has at least one constraint node. Similar to u
[−1]
i , we first set the initial values x

[0]
i

and z
[0]
s to zero and compute the ‘magnitude’ of the differences x

[k]
i − x̂ over the number of iteration k. Figure 9

shows the norm-differences ||x
[k]
i − x̂|| (i = 1, . . . , 110) as a function of k for different choices of the weight matrix

W = ρ Ip. When we give more weight to the initial values x
[0]
i = z

[0]
s = 0 (e.g. ρ = 5.0), the norm-differences (red

lines) very slowly converge to zero (left panel of the figure). This is the case as the initial values x
[0]
i = z

[0]
s = 0

are far different from the actual solutions x̂ (consider the magenta triangles in Figure 4 as their two-dimensional

analogue). Decreasing the weight to ρ = 0.5, the local solutions rely more on the actual measurements, thus

converging faster to the centralized solution. As shown in the right panel of the figure however, a further decrease

of ρ does not necessarily expedite the convergence (blue and orange curves in the left panel). This is the due to

the fact that measurements of the receivers do not contain all the information required to obtain the centralized

solution x̂ (i.e. their normal matrices Ni are singular.) Therefore, the regularization parameter ρ is needed so as

to allow the receivers to communicate their information to one another. For a discussion on the optimal values

of ρ to achieve fast convergence, see e.g. (Ghadimi et al, 2015).

Next to different choices of the weight matrix W , we also compute the norm-differences ||x
[k]
i − x̂|| for different

initial values x
[0]
i = z

[0]
s , given the weight matrix W = 0.5 Ip (see Figure 10). As illustrated, the solutions x

[k]
i
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Fig. 10 The norm-differences ||x
[k]
i − x̂|| (i = 1, . . . , 110) as a function of the iteration number k for different initial values

x
[0]
i = z

[0]
s , given the weight matrix W = 0.5 Ip. Each colour indicates 110 curves corresponding to a specific value for x

[0]
i .

The symbol ‘x
[0]
i ∼ prev.’ refers to the case where solutions of a previous experiment are taken for the initial values x

[0]
i .
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Fig. 11 The individual differences x
[k]
i − x̂ (i = 1, . . . , 110) as a function of the iteration number k (colored lines), given

the initial values ‘z[0] = x
[0]
i ∼ prev.’ and the weight matrix W = 0.5 Ip. The 3-sigma confidence intervals of the centralized

solutions x̂ are indicated by the dashed lines. Each colour corresponds to a different receiver.

converge faster to their centralized counterpart x̂, when the initial values x
[0]
i = z

[0]
s are close to x̂ (consider the

green squares in Figure 4 as their two-dimensional analogue).

To conclude this section, the convergence dependency on the ‘strength’ underlying the observation equations

E(yi) = Ai x (i = 1, . . . , n) is briefly considered. To that end, the local code-bias solutions of a satellite that is

tracked by most receivers (e.g. PRN 1) are compared with that of a satellite that is tracked by fewer receivers

(e.g. PRN 24) during the observational time-span. The corresponding individual differences x
[k]
i − x̂ (colored

lines) are shown in Figure 11. Due to a better visibility, the measurement models E(yi) = Ai x contain more

information concerning the code-bias parameter of PRN 1. As a result, the corresponding local code-bias solutions

converge faster to their centralized counterpart than those of PRN 24. This shows, next to W , x
[0]
i and z

[0]
s , that

measurement model’s strength does also play a role in the convergence of the local solutions.

6 Conclusions and future outlook

In this contribution we developed an algorithm for distributed least-squares estimation. In this regard, we com-

menced with the well-known least-squares minimization problem and formulated it into a form that is well-suited

for distributed processing (cf. Figure 2). Accordingly, the unknown parameter vector x, i.e. the centralized state,

was replaced by multiple parameter vectors xi (i = 1, . . . , n), i.e. local states. Equality constraints xi − z were

then imposed on the problem at the cost of having the consensus state z as an extra unknowns. By forming the

corresponding augmented Lagrangian, it was shown why the method of multipliers is not suited for distributed
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processing (cf. 13 and Figure 3). The reason being that in each iteration, each receiver has to have access to all

other receivers’ data to be able to compute solutions for the consensus state z . With a slight modification to

the method of multipliers, i.e. initialization of the consensus state z by an arbitrary value, the ADMM iterative

scheme follows with which each receiver can in parallel initialize and update its own states xi and ui individually

(cf. 16 and Figure 4).

To avoid having a fusion center, the receivers (nodes) are assumed to be linked to each other at least through

a ‘path’ so that information can flow from each receiver to all other receivers. Accordingly, the data links between

the receivers are modeled by a ‘connected graph’. A subset of the receivers were then chosen as the constraints

nodes s of the graph, each representing its own consensus state zs. With multiple consensus states among the

receivers, the algorithmic steps of distributed least-squares estimation (Figure 6) follow as a generalization of

the iterative scheme (16). The algorithm was applied to a network of 110 receivers tacking GPS triple-frequency

signals L1, L2 and L5 to determine estimable satellite code biases. It was shown that the local single-receiver (but

collaborative) code-bias solutions converge to their centralized network-derived counterparts, after a sufficient

number of iterative communications between the receivers. The role taken by 1) the weight matrix, 2) the initial

values and 3) the strength of the underlying measurement model in the local solutions’ convergence was also

highlighted.

In this contribution, attention was focused on the distributed computation of the solution only. Addressing

open research questions such as ‘how to compute the precision of the solution in a distributed manner’ or ‘how

a distributed quality control procedure for validating the solution looks like’ are topics of future works.
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Appendix

In this appendix, the differentiation rules ∂x xTWy = Wy and ∂x ||x||2
W

= 2Wx are frequently applied.

Proof of (9). Equating the partial derivatives of the Lagrangian (8) to zero gives

∂xi
LW = (Nix̂i − ri) +W (x̂i − ẑ + ûi) = 0, i = 1, . . . , n

∂ziLW = −
n∑

i=1
W (x̂i − ẑ + ûi) = 0,

∂ziLW = W (x̂i − ẑ) = 0, i = 1, . . . , n

(27)

The first set of equations follows from the equality ∂xfi(x) = Ni x − ri for fi(x) = (1/2)||yi − Ai x||2
R

−1

i

. Summation of

the first set of equations over i = 1, . . . , n, together with the second set of equations, gives

n∑

i=1

Nix̂i − ri = 0 (28)

From the third set of equations (27), it follows that x̂i = ẑ (i = 1, . . . , n). Substitution into (28), together with (4), gives
the equalities x̂i = ẑ = x̂. The equalities Wûi = ri −Ni x̂ follow by substituting x̂i = ẑ = x̂ into the first set of equations
(27). ⊓⊔

Proof of (14). An ascent direction of g(u) can be characterized by d = Q∂ug(u), with Q being an arbitrary positive-definite
matrix and ∂ug(u) being the gradient vector (Teunissen, 1990). To have short-hand expressions for g(u) and ∂ug(u), we
use the auxiliary notations v = [xT

1 , . . . , xT
n , zT ]T and v̂ = [x̂T

1 (u), . . . , x̂T
n (u), ẑT (u)]T . Thus (10) can be expressed as

g(u) = LW (v̂, u). Application of the chain rule of differentiation to (10) gives then

∂ui
g(u) = ∂ui

v̂ ∂vLW (v̂, u)
︸ ︷︷ ︸

0

+ ∂ui
LW (v̂, u)

︸ ︷︷ ︸

W (x̂i(u)−ẑ(u))

(29)

The equality ∂vLW (v̂, u) = 0 follows as v̂ represents the minimizer of LW over xi and z by definition. Thus

∂ui
g(u[k−1]) = W (x

[k]
i − z[k]) (30)

Setting Q = W−1 gives the ascent direction (14). ⊓⊔

Proof of (15). With known multipliers ui = u
[k−1]
i , the minimization of LW over xi and z is reduced to the following

regularized least-squares problem

min
x1,...,xn,z

{
n∑

i=1
||yi − Ai xi||2

R
−1

i

+ ||u
[k−1]
i

− (z − xi)||2W

}

(31)
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Expressions (15) follow then as the corresponding least-squares solutions. Thus W can be interpreted as the weight matrix

of the regularization term ||u
[k−1]
i − (z − xi)||2W with the weighted constraint u

[k−1]
i ≈ z − xi. ⊓⊔
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dualité d’une classe de problèmes de Dirichlet non linéaires. Revue française d’automatique, informatique, recherche
opérationnelle Analyse numérique 9(R2):41–76

Hestenes MR (1969) Multiplier and gradient methods. Journal of optimization theory and applications 4(5):303–320
Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS: Global Navigation Satellite Systems: GPS, Glonass, Galileo,

and More. Springer, New York
Jadbabaie A, Lin J, Morse AS (2003) Coordination of groups of mobile autonomous agents using nearest neighbor rules.

IEEE Transactions on automatic control 48(6):988–1001
Khodabandeh A, Teunissen PJG (2015) An analytical study of PPP-RTK corrections: precision, correlation and user-

impact. J Geod 89(11):1109–1132
Khodabandeh A, Teunissen PJG, Zaminpardaz S (2018) Consensus-Based Distributed Filtering for GNSS. In: Kalman

Filters-Theory for Advanced Applications, InTech, pp 273–304, DOI 10.5772/intechopen.71138
Kingston DB, Beard RW (2006) Discrete-time average-consensus under switching network topologies. In: American Control

Conference, 2006, IEEE, pp 3551–3556
Li W, Nadarajah N, Teunissen PJ, Khodabandeh A, Chai Y (2017) Array-aided single-frequency state-space RTK with

combined GPS, Galileo, IRNSS, and QZSS L5/E5a observations. Journal of Surveying Engineering 143(4):04017,006
Li X, Ge M, Dai X, Ren X, Fritsche M, Wickert J, Schuh H (2015) Accuracy and reliability of multi-GNSS real-time precise

positioning: GPS, GLONASS, BeiDou, and Galileo. J Geod 89(6):607–635
Molzahn DK, Dörfler F, Sandberg H, Low SH, Chakrabarti S, Baldick R, Lavaei J (2017) A survey of distributed opti-

mization and control algorithms for electric power systems. IEEE Transactions on Smart Grid 8(6):2941–2962
Moreau L (2005) Stability of multiagent systems with time-dependent communication links. IEEE Transactions on auto-

matic control 50(2):169–182
Nadarajah N, Khodabandeh A, Wang K, Choudhury M, Teunissen PJG (2018) Multi-GNSS PPP-RTK: From Large- to

Small-Scale Networks. Sensors 18(4):1078
Odolinski R, Teunissen PJG (2016) Single-frequency, dual-GNSS versus dual-frequency, single-GNSS: a low-cost and high-

grade receivers GPS-BDS RTK analysis. J Geod 90(11):1255–1278, DOI 10.1007/s00190-016-0921-x
Olfati-Saber R, Murray RM (2004) Consensus problems in networks of agents with switching topology and time-delays.

IEEE Transactions on automatic control 49(9):1520–1533
Powell MJ (1969) A method for nonlinear constraints in minimization problems. Optimization pp 283–298
Schaer S (1999) Mapping and predicting the Earth’s ionosphere using the Global Positioning System. PhD thesis, University

of Bern, Bern, Switzerland
Schizas ID, Ribeiro A, Giannakis GB (2008) Consensus in ad hoc WSNs with noisy links–Part I: Distributed estimation of

deterministic signals. IEEE Transactions on Signal Processing 56(1):350–364
Teunissen PJG (1985) Generalized inverses, adjustment, the datum problem and S-transformations. In: Optimization and

Design of Geodetic Networks, EW Grafarend and F Sanso (Eds), Springer
Teunissen PJG (1990) Nonlinear least squares. Manuscripta geodaetica 15:137–150
Teunissen PJG, Montenbruck O (eds) (2017) Springer Handbook of Global Navigation Satellite Systems. Springer
Teunissen PJG, Simons DG, Tiberius CCJM (2005) Probability and observation theory. Delft University, Faculty of

Aerospace Engineering, Delft University of Technology, lecture notes AE2-E01
Wang Y, Hespanha J, Chakrabortty A (2018) Distributed estimation of power system oscillation modes under attacks on

GPS clocks. IEEE Transactions on Instrumentation and Measurement 67(7):1626–1637
Zaminpardaz S, Teunissen PJ, Nadarajah N (2016) GLONASS CDMA L3 ambiguity resolution and positioning. GPS

Solutions pp 1–15
Zhang B, Teunissen PJG (2015) Characterization of multi-GNSS between-receiver differential code biases using zero and

short baselines. Science Bulletin 60(21):1840–1849

Page 16 of 16AUTHOR SUBMITTED MANUSCRIPT - MST-108158.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


