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General-Sum Multi-Agent Continuous Inverse
Optimal Control

Christian Neumeyer , Frans A. Oliehoek , and Dariu M. Gavrila , Member, IEEE

Abstract—Modeling possible future outcomes of robot-human
interactions is of importance in the intelligent vehicle and mobile
robotics domains. Knowing the reward function that explains the
observed behavior of a human agent is advantageous for modeling
the behavior with Markov Decision Processes (MDPs). However,
learning the rewards that determine the observed actions from
data is complicated by interactions. We present a novel inverse
reinforcement learning (IRL) algorithm that can infer the reward
function in multi-agent interactive scenarios. In particular, the
agents may act boundedly rational (i.e., sub-optimal), a character-
istic that is typical for human decision making. Additionally, every
agent optimizes its own reward function which makes it possible to
address non-cooperative setups. In contrast to other methods, the
algorithm does not rely on reinforcement learning during inference
of the parameters of the reward function. We demonstrate that
our proposed method accurately infers the ground truth reward
function in two-agent interactive experiments.1

Index Terms—Inverse reinforcement learning, learning from
demonstration, reinforcement learning.

I. INTRODUCTION

PREDICTING the future behaviour of agents (e.g., humans,
robots) is essential when deploying autonomous robots in

environments shared with humans (indoors, outdoors, traffic).
The interactions between the agents make this problem particu-
larly challenging.

One significant area of research uses planning based meth-
ods based on MDPs to describe (human) agents that interact
with their environment and other agents [1]–[7] (see [8] for an
overview with a focus on human motion trajectory prediction).
In particular, the agents maximize a reward (avoid collision, be
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considerate) that may transfer to many different settings. Given
a reward function, a predictor (policy) can be trained inside a
simulator. We can create many environmental configurations
that the policy learns to handle before being deployed in the real
world. However, humans do not act optimally when steering a car
or walking across a street, so we focus on the maximum-entropy
framework [9]. A vital issue is inferring the reward function
from observation data. These algorithms are often referred to
as inverse reinforcement learning (IRL) [9] or inverse optimal
control (IOC) [10].

Previous work on multi-agent maximum-entropy inverse rein-
forcement learning (MaxEntIRL) relies on reinforcement learn-
ing (RL) or MCMC sampling [1], [2], [11] as an additional
component of the overall algorithm. RL/MCMC can be hard to
optimize for multi-agent setups. Therefore, we will focus on ap-
proaches that estimate the reward function without RL/MCMC
sampling.

[10], [12] established an efficient single-agent MaxEntIRL
algorithm that infers a single agent’s reward function, assuming
that the agent acts according to the MaxEnt framework.

We present a multi-agent formulation of [10], [12] that can
infer the reward function of a diverse set of agents without
assuming a cooperative reward or instant communication. The
algorithm retains important properties of [10], [12] in that it
can deal with sub-optimal demonstrations (agents maximize
reward and entropy of policy) and does not rely on a complex
RL/MCMC algorithm during reward inference. The main idea
is to approximate the reward function with a second-order Tay-
lor expansion and to linearize the dynamics at the observed
demonstration data. This results in a formulation similar to
that of linear-quadratic games (see [13]) where we obtain an
analytical solution for the Nash equilibrium that the agents
prefer to play. This approximation simplifies the computations
drastically compared to other MA-IRL approaches as we do not
search for globally optimal Nash equilibria far away from the
observed data during the reward inference.

II. RELATED WORK

The literature on inverse reinforcement learning is extensive.
As such, we will focus on work that is most relevant to ours.

Multiple algorithms have been proposed for inverse reinforce-
ment learning in multi-agent settings [1], [2], [11], [14]–[19].
Both [14] and [15] extend the single-agent IRL algorithm of [20]
to the multi-agent setting. [14] assumes that the problem can be
described in terms of a centralized controller and a weighted

2377-3766 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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cooperative reward function. In particular, there is no interac-
tion between the agents. In contrast to that, [15] considers the
non-cooperative setting but assumes that other agents’ policies
are known in advance. [19] considers MA-IRL for different
equilibria types that the agents agree on beforehand (e.g., Nash
equilibrium). They derive convex optimization algorithms to
find these equilibira but assume that all agents’ policies are
known beforehand. Additionally, the algorithms do not scale
to continuous states and actions. [1], [2] consider the interaction
of a mobile robot with people walking around in an indoor
environment. The problem formulation assumes a cooperative
setup with a centralized controller. [16] tackle the problem of a
robot learning to help a human achieve a task, i.e., a cooperative
setup. The problem formulation assumes that the human knows
the underlying reward function while the robot does not. This
results in a game where the human may perform educational
demonstrations instead of expert demonstrations to increase the
information content about the reward function. The problem for-
mulation is therefore different to that of standard MA-IRL. [18]
applies the deep RL algorithm introduced by [21] to modelling
the trajectories of people indoor. While the approach is decen-
tralized, it relies on discrete states and actions and (approximate)
value iteration. [11] extends the adversarial inverse reinforce-
ment learning (AIRL) [22] algorithm to the multi-agent setting.
The algorithm alternates between training a policy (generator)
through RL and updating the reward (discriminator) through
binary logistic regression.

An essential aspect of any IRL method is the ambiguity of
the reward function. A set of demonstrations can correspond
to an infinite number of reward functions. MaxEntIRL [9]
tackles this by maximizing the entropy of the policy of each
agent. This also allows us to incorporate sub-optimal demon-
strations naturally. The most daunting task in MaxEntIRL for
high-dimensional continuous action and state spaces (i.e., no
dynamic programming) is the derivation of the partition func-
tion Z =

∫
p(τ) exp(r(τ)). [1], [2] approximate the partition

function using MCMC sampling. [11], [22] alternate between
RL and updating the reward function where the partition func-
tion is approximated with policy rollouts. In general, this
corresponds to solving the full reinforcement learning prob-
lem in an inner loop of the inverse reinforcement learning
algorithm [23].

[10], [12], [24] avoid the expensive and often-times hard to
optimize RL/ MCMC sampling step. [24] approximate the dis-
tribution over trajectories with weighted sums of delta-functions
representing the observed data points, optimizing the data like-
lihood by gradient ascent. A more advanced algorithm — which
we will use in this paper — is the use of the Laplace approxima-
tion [25] (second-order Taylor expansion) around the observed
data points that models the curvature of the reward function [10],
[12]. The Laplace approximation has been used in multi-agent
settings before [4], [7]. Although, [4], [7] consider multi-agent
interactions in so-called Stackelberg games for their prediction
algorithms, they infer the rewards from real-world data using
the single-agent CIOC algorithm [10]. Other agents are reduced
to dynamic obstacles simplifying the reward inference (i.e.,
non-reacting).

III. BACKGROUND

We are considering a N-agent stochastic game with shared
states xt, agent specific actions ukt (k ∈ (1, . . ., N) - agent
index), agent specific rewards rk(xt, ut) and stochastic tran-
sitions p(xt|ut, xt−1) to the state xt given the actions ut =
[u1t, . . ., ukt] and state xt−1. In general, both the transitions and
the reward function depend on the actions of all agents.2

Also, the rewards of the agents are discounted with a discount
factor γ. In the following, we give an overview of the most
important formulas for the single-agent case. These will translate
to the N-agent setting naturally.

Given a statext−1 at time-step t− 1 and an actionut, an agent
will transition to the next state according to the stochastic envi-
ronment transitions p(xt|xt−1, ut).3 The agent will also receive
a reward r(xt, ut) depending on the action ut and the state xt

that the environment (including the agent) transitions to. In this
work, we assume that an agent does not act fully rationally and
may choose sub-optimal actions. A natural description of this
type of bounded rationality is the maximum-entropy (MaxEnt)
framework [9] which can be used to describe the sub-optimal
decisions of humans (e.g., [26]). In the MaxEnt framework, a
trajectory is sampled from a probability distribution given by

p(τ) ∼ Πtp(xt|xt−1, ut) exp(r(xt, ut)) (1)

with the trajectory τ corresponding to the sequence of actions
ut and states xt over multiple time-steps t. One can show that a
policy that leads to (1) can be simplified as follows [27].

πt(ut|xt−1) =
exp(Qt(xt−1, ut))∫
exp(Qt(xt−1, u′t)du′t)

(2)

The policy πt(ut|xt−1) of an agent, i.e., the conditional proba-
bility density function that describes the most likely actions ut

that an agent takes given its current state xt−1 depends on the
Q-functionQt(xt−1, ut). The Q-function may be derived by per-
forming dynamic programming, iterating over the soft-Bellman
equation until convergence.

Qt(xt−1, ut)=

∫
p(xt|ut, xt−1) (r(xt, ut) + γVt+1(xt)) dxt

(3)

The second term inside the first integral is the value function.

Vt+1(xt) = log

∫
exp(Qt+1(xt, ut+1))dut+1 (4)

The reason we refer to (3) as the soft-Bellman equation is the
soft-maximization operator log

∫
exp. In contrast, the standard

Bellman equation employs the “hard” maximization operator
max. A connection can be established by scaling the reward
function and considering the limit of limα→0(

1
αr) which will

recover the “hard” maximization in the soft-Bellman equation
and a policy that satisfies the standard Bellman equation given
the unscaled reward function. Please refer to the tutorial on

2A fully cooperative reward is an example where one agent may receive a
reward for an action that another agent executes.

3We follow the notation by [10] in which the action is indexed with the stage
to which it takes us.
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maximum-entropy reinforcement learning and its connection
to probabilistic inference [27] for a thorough derivation of the
soft-Bellman equation and its connection to (1).

Solving the Bellman equation for high-dimensional contin-
uous state and action spaces is in general intractable. Though
for linear dynamics and quadratic reward functions the value
function, Q-function and policy can be derived analytically.
Following this insight, [10], [12] developed an algorithm that
uses the so-called Laplace approximation [25] that deals with
the difficulty of calculating the integrals in (3) and (4) by
approximating the reward function with a second-order Taylor
expansion and linearizing the dynamics.

xt ≈ Atxt−1 +Btut

r(xt, ut) ≈ rt +
1

2
uT
t H̃tut + uT

t g̃t +
1

2
xT
t Ĥtxt + xT

t ĝt

The Bellman equations are solved in a recursive manner starting
from the last time-step T and going back to the first time-step.
The resulting policy is a unimodal Gaussian distribution.

πt(ut|xt−1) ∼ exp
(
(μt − ut)

TΣ−1t (μt − ut)
)

Given demonstration data, (xt, ut) ∈ τ (τ - trajectory) we are
interested in inferring the reward parameters θ of a reward
function Rθ(xt, ut). We can do so by maximizing the likelihood
of the data.

θ∗ = argmax
θ

∑
t

lnπθ,t(ut|xt−1)

The algorithm is referred to as continuous inverse optimal con-
trol (CIOC). We will discuss the mathematics of the multi-agent
version in length in the following sections. The single-agent
version is explained in detail in [10].

IV. CONTRIBUTIONS

We will show how to extend CIOC to multi-agent settings.
We will refer to this algorithm as general-sum multi-agent
continuous inverse optimal control (GS-CIOC). Our method
� learns the reward functions of a diverse set of agents. It

neither considers the other agents as dynamic obstacles,
nor does it assume instant communication between agents.

� allows us to choose different reward functions for each
agent.

� accounts for variation in the decisions of an agent because
it belongs to the family of maximum-entropy algorithms.

In particular,
� we extend the continuous inverse optimal control (CIOC)

[10] algorithm to the general-sum N-agent setting.
� we verify the algorithm on simulations and show its use-

fulness.

V. GENERAL-SUM MULTI-AGENT CONTINUOUS INVERSE

OPTIMAL CONTROL

We extend CIOC to the N-agent setting where each agent may
receive a different reward. A major difference to the derivation
of CIOC is that the environment transitions are not deterministic

anymore. We assume that the other agents are part of the environ-
ment and act according to a stochastic policy. A major advantage
of CIOC and its extension is the relative ease of inferring the
reward parameters from demonstrations. We can backpropagate
the gradients directly through the policy, eliminating the need to
run a multi-agent reinforcement learning algorithm every time
we update the reward parameters.

We will present two algorithms that are interconnected. The
first is GS-CIOC (algorithm 1) that returns policies for quadratic
rewards and linear environment transitions. The other is the
reward inference algorithm 2 that uses GS-CIOC for obtaining
local policy approximations around observed real-world data
for any reward functions and transitions. Given the policy ap-
proximations, the algorithm infers the parameters θ of a reward
function Rθ. While the approximations may lead to biased re-
sults, we would like to point out that non-linear reward functions
and dynamics can be used with this algorithm.

N-Agent Soft-Bellman Equation

We illustrated how an agent might choose its actions in the
maximum-entropy framework. Next, we want to investigate how
we can deal with the presence of other agents. We assume that
the other agents are part of the environment, similar to the
multi-agent setting in interacting partially observable Markov
decision processes (POMDPs) as described by [28]. We show
how we may describe the N-agent problem from the perspec-
tive of one agent. Let ut = [u1t, . . ., uNt] be the actions of
agent 1 through N. One issue is that the reward function of
agent 1 may depend on the actions of another agent r1(xt, ut).
Therefore, we introduce a state variable x̃t = [xt, u−1t] that
incorporates the actions of other agents except agent 1 with
u−1t = [u2t, . . ., uNt]. The corresponding stochastic environ-
ment transitions are p(x̃t|x̃t−1, u1t).

We assume the soft-Bellman equation for agent 1 (other agents
analogous) to be as follows

Q̃1t(x̃t−1, u1t)

=

∫
p(x̃t|x̃t−1, u1t)

(
r̃1(x̃t, u1t) + γṼ1(x̃t)

)
dx̃t (5)

Ṽ1t+1(x̃t) = log

∫
exp(Q̃1t+1(x̃t, u1t+1))du1t+1 (6)

With Q̃1t(x̃t−1, u1t) := Q1t(xt−1, u−1t−1, u1t) and
r̃(x̃t, u1t) := r(xt, u−1t, u1t). Reformulating the environment
transitions in terms of the policies of the other agents we get

p(x̃t|x̃t−1, u1t) (7)

:= p(xt, u−1t|xt−1, u−1t−1, u1t) (8)

= p(xt, u−1t|xt−1, u1t) (9)

= p(xt|xt−1, u1t, u−1t)p(u−1t|xt−1, u1t) (10)

= p(xt|xt−1, ut)Π
N
k=2p(ukt|xt−1, u−kt) (11)

= p(xt|xt−1, ut)Π
N
k=2p(ukt|xt−1) (12)

= p(xt|xt−1, ut)Π
N
k=2πk,t(ukt|xt−1) (13)

Authorized licensed use limited to: TU Delft Library. Downloaded on April 09,2021 at 11:31:19 UTC from IEEE Xplore.  Restrictions apply. 
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Algorithm 1: GS-CIOC

Input: Reference trajectory τ ∗ = (x∗0, u
∗
k1, . . ., x

∗
T ),

k ∈ {1, . . ., N} and reward functions r1,..., rN
Taylor expansion (17) of r1,..., rN along τ ∗

Linearization of dynamics (23) along τ ∗

Initialize value function matrices V̂(kl)T , v̂kT ← 0
for t← T to 1 do

{Update Gaussian policy:}
for k = 1, . . ., N do
μkt ← Determine mean action (28)
M̃(kk)t ← Determine precision matrix (29)

end for
{Recompute value function, given updated policy:}
if t > 1 then
V̂(kl)t−1, v̂kt−1 ← Value recursion (31)

end if
end for
Return: Policies π1, ..., πN (30)

In particular, the u−1t−1 dependency disappears. The soft-
Bellman equation can now be reformulated as

Q1t(xt−1, u−1t−1, u1t) =∫
p(xt|xt−1, ut)Π

N
k=2πk,t(ukt|xt−1)

(
r1(xt, ut) + γṼ1t+1(xt, u−1t)

)
du−1tdxt (14)

As we can see, the Q-function does not depend on u−1t−1.
Therefore, we can drop the dependency in both the Q and the
value function.

Q1t(xt−1, u1t) =

∫
p(xt|xt−1, ut)Π

N
k=2πk,t(ukt|xt−1)

× (r1(xt, ut) + γV1t+1(xt)) du−1tdxt

(15)

V1t+1(xt) = log

∫
exp(Q1t+1(xt, u1t+1))du1t+1 (16)

From here on we will assume the environment transitions
p(xt|xt−1, ut) to be deterministic. In other words, if we know
the current state and are given the actions of all agents, there is
no uncertainty left which state we transition to next. Though, we
never assume that the actions of the other agents are given. Their
policies are stochastic, and the actions are not revealed before
they are executed (see 15). Additionally, we will only consider
finite horizon problems, i.e., each agent will collect rewards for a
limited amount of time. Furthermore, we set the discount factor
to γ = 1.

Value Recursion Algorithm

The procedure that we obtain in this section is illustrated in
algorithm 1. We take a reference trajectory τ ∗ - a sequence of
states x∗t and actions u∗kt - of each agent k ∈ (1, . . ., N) and ap-
proximate the reward function rk close to the reference trajectory

τ . This will allow us to derive a local policy approximation πk

— an approximation that works best if the agent stays close to
the reference trajectory — by working our way from the end of
the reference trajectory to the beginning calculating the value
function Vk(xt) for each time-step. In other words, the formulas
are recursive.

We sketch the derivation of algorithm 1 starting at the final
time-step (the horizon) of the reference trajectory τ . All formulas
will be presented from the perspective of agent 1. Though, we
can easily obtain the formulas for any agent k by swapping the
indices (1←→ k).

First, we introduce the approximations that are fundamentally
important to solve the soft-Bellman equation analytically. The
reward function is assumed to be a second-order polynomial in
the states and actions. If this is not the case, we approximate the
reward function with a Taylor expansion.4

r̄1(x̄T , ūT ) ≈ r̄1T + x̄T
T

(
1

2
ĤT

)
x̄T

+ ūT
T

(
1

2
H̃T

)
ūT + ūT

T g̃T + x̄T
T ĝT (17)

x̄T = xT − x∗T , ūT = uT − u∗T (18)

r̄1(x̄T , ūT ) := r1(x̄T + x∗T , ūT + u∗T ) (19)

where x∗ and u∗ refer to the fixed reference trajectory. The state
x̄T = [x̄1T , . . ., x̄NT ] is split into the agent-specific sub-states
which are directly controlled by each agent. H and g refer to the
Hessians and gradients w.r.t the states and actions of all agents.

ĝkT =
∂r̄1(0, 0)

∂x̄kT
, g̃kT =

∂r̄1(0, 0)

∂ūkT
(20)

Ĥ(kl)T =
∂2r̄1(0, 0)

∂x̄kT∂x̄lT
, H̃(kl)T =

∂2r̄1(0, 0)

∂ūkT∂ūlT
(21)

The derivatives are evaluated at the reference trajectory through-
out the paper. An additional approximation that is necessary is
the linearization of the dynamics.

x̄kT (x̄kT−1, ūkT ) ≈ AkT x̄kT−1 +BkT ūkT (22)

AkT =
∂x̄kT (0, 0)

∂x̄kT−1
, BkT =

∂x̄kT (0, 0)

∂ūkT
(23)

Given the quadratic reward function and the linear dynamics,
the Q-function can be calculated as follows

Q̄1T (x̄T−1, ū1T ) =

∫
p̄(x̄T |x̄T−1, ūT )

×ΠN
k=2πk,t(ūkT |x̄T−1)r̄1(x̄T , ūT )dū−1T dx̄T (24)

with

p̄(x̄T |x̄T−1, ūT ) := p(x̄T + x∗T |x̄T−1 + x∗T−1, ūT + u∗T )
(25)

Q̄1T (x̄T−1, ū1T ) := Q1T (x̄T−1 + x∗T−1, ū1T + u∗1T ) (26)

4Here, we stay close to the single-agent LQR derivation in [10] where actions
and states separate in the reward function r(xt, ut) = g(xt) + f(ut). This is
also the structure that we assume in the experimental section.
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The definitions for the policy π̄ and the value function V̄ further
down will follow the same logic. Thanks to the approximations
introduced above, the integration is tractable except for the
policies of the other agents π2, . . ., πN . We assume the poli-
cies to be unimodal Gaussian distributions. We show that this
assumption is consistent further down. Given this assumption,
the Q-function is a second-order polynomial in the states and
actions

Q̄1T (x̄T−1, ū1T )

= −1

2
(ū1T − μ1T )

T M̃(11)T (ū1T − μ1T ) + f(x̄T−1) (27)

where f is a second order polynomial in the state at T − 1. The
variables μ1T and M̃(11)T are defined as follows

g̃1T +BT
1T ĝ1T +

N∑
k=1

BT
1T Ĥ(1k)TAkT x̄kT−1

+
N∑

k=1

M̃(1k)TμkT = 0 (28)

M̃(kl)T = BT
kT Ĥ(kl)TBlT + H̃(kl)T (29)

In particular, equation (28) is a system of linear equations in the
variables μkT (replace index 1 by k ∈ (1, . . ., N) to obtain other
equations) which we can solve (solution omitted for brevity).
The solution corresponds to the mean action that each agent
chooses in a linear-quadratic game. A similar derivation exists
for the classical (non-maximum entropy) Bellman-equation,
given quadratic rewards and linear dynamics [13].

Given that π ∼ exp(Q) the resulting policy is

π̄1,T (ū1T |xT−1)

∼ exp

(
−1

2
(ū1T − μ1T )

T M̃(11)T (ū1T − μ1T )

)
(30)

with μ1T being the mean and M̃(11)T the precision matrix of a
multivariate normal distribution.

We can conclude that the policy of agent 1 is a Gaussian policy.
The same is true for the other agents since we apply the same
approximations, i.e., π2, . . ., πN is a Gaussian policy validating
our assumption that this is the case further up. In particular, we
would like to emphasize that this follows from the second-order
Taylor expansion of the rewards and the linearization of the
dynamics and does not constitute an additional approximation.

In the next step, we move the procedure above backwards in
time along the reference trajectory, calculating the Q-function
(15) the mean actions, the precision matrix for time-step T − 1.
There is only one ingredient missing to evaluate equation (15),
namely, the value function at T , which we can derive via (16).

V̄1T (x̄T−1) = x̄T
T−1

(
1

2
V̂T−1

)
x̄T−1 + x̄T

T−1v̂T−1 (31)

The value function is a second-order polynomial in the states.
Thus, the Q-function given by (15) can be derived analytically
for time-step T − 1. Due to space constraints we do not provide

Algorithm 2: GS-CIOC Reward Inference
Input: τ from data, initial θ
repeat
π1,θ,..., πN,θ ← GS-CIOC(τ , Rθ)
Gradient ascent step on objective (32)

until max iterations or convergence of θ
Return: Reward parameters θ

the exact make-up of the resulting value function matrices V̂ , v̂.
Though, we discussed all steps that are necessary for their
derivation.

The procedure repeats itself until the beginning of the refer-
ence trajectory for T, T − 1, . . ., 1.

VI. RECOVERING REWARD PARAMETERS

Until now, we have discussed how to construct a local policy
given a set of reference trajectories τ and a reward function
(see algorithm 1). Next, we will infer the parameters θ of a
reward function Rθ given expert demonstrations. Specifically,
given observation data we can infer the reward parameters by
maximizing the log-likelihood of the observed data

θ∗ = argmax
θ

1

|τ |
∑

τ,(u,x)∈τ
ln pθ(x0:T−1, u1:T )

= argmax
θ

1

|τ |
∑

τ,(u,x)∈τ

∑
k,t

lnπk,t,θ(ukt|xt−1) (32)

θ refers to the reward parameters and |τ | to the number of
trajectories τ in the data set. π1,θ,..., πN,θ ← GS-CIOC(τ ,
Rθ) correspond to the policies of agent 1 through N and are
calculated with GS-CIOC. Indeed, it is possible to perform
backpropagation through the entire GS-CIOC algorithm. The
procedure is illustrated in algorithm 2. We optimize the objective
(32) using gradient ascent. Overall, the approach is similar to the
single-agent reward inference of CIOC.

Depending on the reward function, reward parameter initial-
ization and the training data the algorithm may get numerically
unstable if the precision matrix in (30) is not positive definite
temporarily. It is possible to prevent this using the augmented
Lagrangian method as outlined in [10].

Relationship to Linear Quadratic Game

We can scale the reward function with a “temperature” param-
eter r → 1

αr. Forα→ 0 the entropy of the policies will collapse,
and the soft-Bellman equations will converge to the standard
Bellman equations [27]. In particular, the N-agent game solution
in the previous section will resemble that of the deterministic
LQ-game as described by [13]. Therefore, it is reasonable to ask
whether GS-CIOC can recover the ground-truth reward of an
LQ-game demonstration.

Scaled ground-truth reward maximizes log-likelihood
First, we observe that (28) is independent of α (g, H , M scale
linearly with 1

α ) at time-step T. The same is true for all time-steps.
Hence, μkt is independent of α and will correspond to the
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LQ-game Nash equilibrium solution (α→ 0) given the ground-
truth reward. Therefore, transforming the ground-truth reward
r → 1

αr + c;α ∈ R+, c ∈ R will maximize the log-likelihood
in (32) as the GS-CIOC mean actions are identical to the LQ-
game demonstrations.5

VII. EXPERIMENTS

We show in this section that GS-CIOC infers useful reward
parameters. Additionally, we show that GS-CIOC has a clear
advantage over its single-agent counterpart CIOC. Indeed, pre-
vious work [4], [7] uses of CIOC to infer reward parameters
to describe the interaction of vehicles (other agent assumed
as dynamic obstacle during reward inference). We demonstrate
why this can be a sensible approach and point out the limitations,
i.e., where GS-CIOC is at a significant advantage. We used
JAX [30] for the implementation of GS-CIOC.

Evaluation Setup

The purpose of GS-CIOC is to infer reward parameters that
explain observed multi-agent behaviour. Ideally, we know the
reward parameters beforehand to judge the performance of
the algorithm better. Therefore, we will define several setups
where we know the underlying reward function. A ground-truth
reward function is not enough, since GS-CIOC needs actual
data to reason about likely reward parameters. We create the
data with a multi-agent RL algorithm as described in algorithm
3. The algorithm derives the policies of the agents, and the data
corresponds to roll-outs from these policies. GS-CIOC succeeds
if it infers reward parameters given the data that are close to the
ground-truth.

A difficulty arises when the number of reward parameters
increases. Alternative parameter values may explain the data
equally well. It is often not obvious why an alternative con-
figuration may be reasonable even though it seems to deviate
significantly from the ground-truth. Therefore, we also look
at the policies that result from the inferred parameters. Again,
algorithm 3 is applied to the reward that GS-CIOC deems most
likely. We can evaluate the log-likelihood on some test data
(from ground-truth policy roll-outs) to see if GS-CIOC inferred
a reasonable parameter configuration.

Lk =
1

T

∑
t

log πk,t(ukt|xt−1) (33)

Crossing Scenario

It is not uncommon to use single-agent IRL algorithms in
multi-agent scenarios in the intelligent vehicles domain [4], [7].
This approach can be feasible as we can see in the following ex-
periment. We assume that two agents move on a one-dimensional
line. The overall configuration imitates the intersection of two

5This does not mean that GS-CIOC will recover the ground-truth reward from
a single demonstration. The number of reward parameters is likely to lead to an
ill-defined problem (a general property of IRL algorithms). Additionally, there
may be transformations of the reward function that will lead to the same policy
(reward shaping, as discussed in [29]).

Algorithm 3: Alternating Soft-Value Iteration
Initialize policy matrices π1, π2 as (discrete) uniform
distributions
Initialize value matrices V1, V2 as all zeros arrays
ε is chosen so that policy updates below converge
repeat

for k← {1, 2} do
for M do

Execute soft-Bellman equation (15) to update value
matrices

end for
Averaging of new and previous policy
πk,new = exp(Qk)/

∑
u exp(Qk)

πk ← επk,new + (1− ε)πk, ε ∈ (0, 1]
end for

until convergence of π1, π2

Return: Policy matrices π1 and π2

TABLE I
CROSSING SCENARIO

roads. One agent moves from the left to the right towards its
goal position and the other agent moves from the bottom to the
top towards its goal position. Both need to pass the intersection
point where they may collide. We use the following ordinary
differential equation to describe their movement

d

dt
[s, v] = [v, a] (34)

Where s is the position, v is the velocity and a is the acceleration.
The acceleration corresponds to the action of the agent u and
the position and velocity correspond to the state x. Each agent
receives rewards that determine the preferred movement speed,
acceleration/ deceleration, goal position and interaction.
� Quadratic acceleration reward that punishes acceleration
� Quadratic reward that punishes velocities other than zero
� Quadratic reward that rewards being close to a goal position
� Gaussian reward that punishes the agents for being close

to each other (at intersection point) - ik
The reward function for each agent is the linear combination

of the rewards described above.
We create a training and testing dataset (11 time-steps for

each roll-out) and infer the parameter ik that the interaction
reward (Gaussian) is scaled with. The remaining parameters are
fixed to the ground-truth. We are only interested in the ability of
GS-CIOC and CIOC to reason about interactions. In particular,
CIOC infers hard to interpret reward parameter configurations
if no parameter is fixed (see the results of the next experiment
in table II).

We find that the interaction reward of our setup is critical,
i.e., it cannot be ignored to model the observed behaviours. The
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TABLE II
ATTRACTION SCENARIO

table below lists the results of CIOC and GS-CIOC for the case
where we fix all reward parameters except the interaction reward
parameter during reward inference. CIOC is surprisingly close
to the performance of GS-CIOC. In particular, both methods
provide a clear benefit to the baseline where no interaction
reward is present (all other parameters correspond to the ground
truth).
ik are the reward parameters that GS-CIOC and CIOC try

to infer from demonstration data. Lk is the log-likelihood as
defined in (33). GT corresponds to the ground-truth, i.e., algo-
rithms close to values listed as GT perform best. GT int = 0 is
an additional baseline where the interaction is set to zero. This
baseline demonstrates the significance of the interaction reward
in the experiments.

The reader may wonder why GS-CIOC did not derive the
exact ground-truth interaction reward parameter. For one, the
value iteration algorithm discretizes states and actions, whereas
GS-CIOC reasons in terms of continuous states and actions. This
can result in a biased estimate. Additionally, GS-CIOC relies
on a second-order approximation of the reward function, which
introduces a systematic bias for non-quadratic rewards (same
for CIOC). We discuss this further in the following experiment.

Attraction Scenario

While it is nice to show that GS-CIOC has an edge on CIOC
the improvement appears minor. The following experiments
provide an intuition when the benefits are certain to show up.
We consider two agents that live on a one-dimensional line. In
contrast to the previous experiment, both agents move on the
same line (no intersection of two different lines). The dynamics
model is the same as in (34). The rewards are as follows.

Non-interaction rewards
� Quadratic acceleration reward that punishes acceleration -
ak (the reward parameter this reward is scaled with)

� Quadratic reward punishing velocities 	= zero - vk
Interaction rewards
� Quadratic (or Gaussian) reward that rewards agent 2 for

being close to agent 1 - i1
� Quadratic reward that rewards agent 1 if agent 2 is close to

a certain goal position. Agent 2 does not receive the reward.
- i2

Agent 2 is attracted to agent 1 and moves to the position of
agent 1. Agent 1 on the other hand gets rewarded if agent 2 is at
a certain position. Therefore, agent 1 will move to that position,
and agent 2 follows along. In other words, agent 1 guides
agent 2.

We create training and testing data from the ground-truth
reward function (4 time-steps for each roll-out) and infer the
reward parameters using GS-CIOC and CIOC. The result can be
seen in table II. Given these results it is clear that CIOC is not able
to reason about the interaction between the agents. It cannot learn
all interaction rewards (CIOC does not produce any gradient for
the i2 parameter during optimization). The intuition is rather
simple. CIOC works well in scenarios where other agents can
be treated as dynamic obstacles (agent 2 does not change its
behaviour no matter what agent 1 does). The assumption was
sufficient for the first experiment in this section. Here it is simply
wrong. GS-CIOC on the other hand can reason about this type
of behaviour and infers reward parameters that are close to the
ground-truth. In particular, when choosing all quadratic rewards
the parameters are remarkably close. This is to be expected as
the second-order Taylor approximation of the reward function
is exact. Again, differences remain and are probably due to
the discretization of states and actions for the value iteration.
Though, choosing a Gaussian interaction reward will result in a
biased reward parameter estimate, which we have observed in
the crossing experiment as well. Nevertheless, the rewards and
log-likelihood indicate that the inferred parameters are useful.
The following experiment will illustrate this further.

Repulsion Scenario

We explore another scenario that is identical to the attraction
scenario above (with Gaussian interaction reward) except that
the attractive interaction reward is changed into a repulsive one
(change sign). One agent pushes the other agent to a desired goal
position.

As we can see in figure 1, CIOC struggles with properly
modelling the interaction. Agent 2 is supposed to move down
to push agent 1 towards a certain goal position. Instead, agent
2 remains standing still when using the reward parameters
inferred by CIOC (figure 1 (c)). GS-CIOC on the other hand
infers reward parameters that imply a behaviour close to the
ground-truth (figure 1 (a)). There are two lessons to take away
from the experiments. Single-agent IRL algorithms can be useful
in multi-agent scenarios, and it is a good idea to apply such an
algorithm and see if it produces reasonable results. But generally
speaking, agents will manipulate each other to achieve their
goals, resulting in a breakdown of single-agent algorithms such
as CIOC. GS-CIOC can fill the gap.

Runtime

Executing algorithm 1 is the computationally most expensive
step. Given 500 data points that we evaluate in parallel: On
an Intel i7-7820X using one core it takes around 160 ms and
40 ms on a Nvidia TITAN Xp for the attraction and repulsion
experiments. Though, we do not consider our implementation
fully optimized. Overall, we expect a similar scaling behaviour
for time, state and action dimension as CIOC, which has been
applied to real-world use-cases before [4], [7], [10], [12]. Other
than CIOC, the complexity will also increase with the faculty of
the number of agents, i.e., in step with the number of potential
agent-agent interactions. This may be addressed by pruning
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Fig. 1. Repulsion scenario: (a) Agent 2 moves down to push agent 1 towards the position at -1.5 (b). The curves illustrate the mean path that agent 2 (a) and
agent 1 (b) take, whereas the shaded areas correspond to one standard deviation around these paths. Grey corresponds to roll-outs from the ground-truth reward
parameters and blue to those inferred by GS-CIOC. (c) and (d) represent the same analysis for CIOC (red). While GS-CIOC infers parameters that result in a policy
close to the ground-truth, CIOC cannot reason about the behavior of agent 2 (stands still).

the number of interaction partners by e.g., considering nearest
neighbours only.

VIII. CONCLUSION

We presented a novel algorithm for inferring the reward
function in stochastic games with boundedly rational agents
efficiently. While the single-agent CIOC algorithm can be use-
ful in some interactive scenarios with limited interaction, we
have demonstrated the superiority of multi-agent GS-CIOC for
multiple experimental setups where the algorithm recovered a
reward function close to the ground-truth.

In future work, we want to investigate alternatives to the
Laplace approximation to improve the performance for non-
quadratic rewards and probe the performance of GS-CIOC on
multi-agent interaction scenarios similar to [4], [7].

REFERENCES

[1] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially compliant
mobile robot navigation via inverse reinforcement learning,” The Int. J.
Robot. Res., 2016.

[2] M. Pfeiffer, U. Schwesinger, H. Sommer, E. Galceran, and R. Siegwart,
“Predicting actions to act predictably: Cooperative partial motion planning
with maximum entropy models,” in Proc. IEEE Int. Conf. Intell. Robot.
Syst., 2016, pp. 2096–2101.

[3] W. C. Ma, D. A. Huang, N. Lee, and K. M. Kitani, “Forecasting interactive
dynamics of pedestrians with fictitious play,” in Proc. 30th IEEE Conf.
Comput. Vision Pattern Recognit., 2017, pp. 4636–4644.

[4] D. Sadigh, N. Landolfi, S. S. Sastry, S. A. Seshia, and A. D. Dragan,
“Planning for cars that coordinate with people: Leveraging effects on
human actions for planning and active information gathering over human
internal state,” Auton. Robot., vol. 42, no. 7, pp. 1405–1426, 2018.

[5] A. Rudenko, L. Palmieri, and K. O. Arras, “Joint long-term prediction
of human motion using a planning-based social force approach,” in Proc.
IEEE Int. Conf. Robot. Automat., 2018, pp. 1–7.

[6] C. Muench and D. M. Gavrila, “Composable Q-functions for pedestrian
car interactions,” in Proc. IEEE Intelli. Vehi. Sympo., 2019, pp. 905–912.

[7] W. Schwarting, A. Pierson, J. Alonso-Mora, S. Karaman, and D. Rus,
“Social behavior for autonomous vehicles,” Proc. Nat. Acad. Sci. United
States Amer., vol. 116, no. 50, pp. 24972–24978, 2019.

[8] A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila, and
K. O. Arras, “Human motion trajectory prediction: A survey,” The Int J.
Robot. Res., vol. 39, no. 8, pp. 895–935, 2020.

[9] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning,” in Proc. Conf. Artif. Intelli., 2008,
pp. 1433–1438.

[10] S. Levine and V. Koltun, “Continuous inverse optimal control with
locally optimal examples,” in Proc. 29th Int. Conf. Mach. Learn.,
2012, pp. 475–482.

[11] L. Yu, J. Song, and S. Ermon, “Multi-agent adversarial inverse reinforce-
ment learning,” in Proc. 36th Int. Conf. Mach. Learn., vol. 97, 2019,
pp. 7194–7201.

[12] A. D. Dragan and S. S. Srinivasa, “Formalizing assistive teleoperation,”
Robotics: Sci. Syst., vol. 8, pp. 73–80, 2013.

[13] T. Basar and G. J. Olsder, “Dynamic Noncooperative Game Theory, 2nd
Edition.” Philadelphia, PA, USA: SIAM, 1999, vol. 23.

[14] S. Natarajan, G. Kunapuli, K. Judah, P. Tadepalli, K. Kersting, and J.
Shavlik, “Multi-agent inverse reinforcement learning,” in Proc. 9th Int.
Conf. Mach. Learn. Applicat., 2010, pp. 395–400.

[15] T. S. Reddy, V. Gopikrishna, G. Zaruba, and M. Huber, “Inverse reinforce-
ment learning for decentralized non-cooperative multiagent systems,” in
Proc. IEEE Int. Conf. Syst., Man, Cybernet., 2012, pp. 1930–1935.

[16] D. Hadfield-Menell, S. J. Russell, P. Abbeel, and A. Dragan, “Cooperative
inverse reinforcement learning,” in Adv. Neural Inf. Process. Syst., vol. 29,
2016, pp. 3909–3917.

[17] X. Wang and D. Klabjan, “Competitive multi-agent inverse reinforcement
learning with sub-optimal demonstrations,” in Proc. 35th Int. Conf. Mach.
Learn., vol. 80, 2018, pp. 5143–5151.

[18] M. Fahad, Z. Chen, and Y. Guo, “Learning how pedestrians navigate: A
deep inverse reinforcement learning approach,” IEEE/RSJ Int. Conf. Intell.
Robot. Syst., 2018, pp. 819–826.

[19] X. Lin, S. C. Adams, and P. A. Beling, “Multi-agent inverse reinforcement
learning for certain general-sum stochastic games,” J. Artif. Intell. Res.,
vol. 66, pp. 473–502, 2019.

[20] A. Y. Ng et al., “Algorithms for inverse reinforcement learning,” in Proc.
Int. Conf. Mach. Learn., vol. 1, 2000, pp. 663–670.

[21] M. Wulfmeier, D. Rao, D. Z. Wang, P. Ondruska, and I. Posner, “Large-
scale cost function learning for path planning using deep inverse reinforce-
ment learning,” The Int. J. Robot. Res., vol. 36, no. 10, pp. 1073–1087,
2017.

[22] J. Fu, K. Luo, and S. Levine, “Learning robust rewards with adverserial
inverse reinforcement learning,” in Proc. Int. Conf. Learn. Representat.,
2018.

[23] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse
optimal control via policy optimization,” in Proc. 33rd Int. Conf. Mach.
Learn., 2016, pp. 49–58.

[24] M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard, “Feature-based
prediction of trajectories for socially compliant navigation,” Robotics: Sci.
Syst., vol. 8, pp. 193–200, 2013.

[25] P. S. Laplace, “Memoir on the probability of the causes of events,” Stat.
Sci., vol. 1, no. 3, pp. 364–378, 1986.

[26] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert, “Activity
forecasting,” in Proc. Eur. Conf. Comput. Vis., 2012, pp. 1–14.

[27] S. Levine, “Reinforcement learning and control as probabilistic inference:
Tutorial and review,” 2018, arXiv:1805.00909.

[28] P. J. Gmytrasiewicz and P. Doshi, “A framework for sequential plan-
ning in multi-agent settings,” J. Artif. Intell. Res., vol. 24, pp. 49–79,
2005.

[29] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in Proc. Int.
Conf. Mach. Learn., vol. 99, 1999, pp. 278–287.

[30] J. Bradbury et al., “JAX: Composable Transformations of Python NumPy
Programs,” 2018.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 09,2021 at 11:31:19 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




