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Abstract

When reflection images are studied, often only the zero-offset reflectivity is considered, however,
taking into account the angle-dependent reflectivity can add additional information about the Earth’s
subsurface. This additional information can be used to extract the properties of the subsurface using
the amplitude variation with offset (AVO) analysis techniques. However, the presence of a complex
overburden can significantly deteriorate the AVO response, especially for deep targets. To overcome
this problem, the overburden effects can be removed by redatuming the reflection response at a
depth level below the overburden. The Marchenko method has the potential to correctly retrieve the
angle-dependent reflectivity in acoustic media without distortions due to multiple scattering caused
by the overburden. The method estimates the downgoing and upgoing Green’s functions of a virtual
source located in the subsurface from surface reflection data and an estimate of the direct arrival from
the location of the virtual source. The estimated Green’s functions represent accurate upgoing and
downgoing wavefields as they contain all orders of internal multiple reflections of the subsurface.
These internal multiple reflections contribute to retrieving the reflectivity accurately in the redatumed
reflection response. By deconvolving the retrieved upgoing Green’s function with the downgoing
Green’s function, a new reflection response is obtained, with virtual sources and virtual receivers
in the subsurface. The resultant reflection response is free of spurious events related to internal
multiples in the overburden and contains the correct amplitudes. The angle-dependent reflectivity of
the redatumed response can be obtained by summing the reflection coefficients along lines of constant
ray parameter or angle. Potentially, the retrieved angle-dependent reflection coefficients obtained by
this method can be used as input in a subsequent inversion process to obtain the velocity and density
of the subsurface.
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Chapter 1

Introduction

One of the objectives of exploration geophysicists is to image the Earth’s subsurface and identify its
physical properties in order to locate resources and monitor reservoir rocks. This can be achieved
by transmitting seismic wavefields into the subsurface and measuring the reflected wavefields with
receivers at the surface. The amplitudes of the reflected wavefields are associated with the reflectivities
which describe the variations of the physical properties across the boundary (Bacon and Simm, 2014).
When reflection images are studied, often only the zero-offset reflectivity is considered (Claerbout,
1978), however, the zero-offset reflectivity can only provide limited information about the subsurface
(i.e. zero-incidence acoustic impedance only). In order to obtain more details about the subsurface, the
angle-dependent reflectivity has to be taken into account (Castagna and Backus, 1993). This additional
information can be used to extract the detailed medium parameters such as velocity and density using
the conventional amplitude variation with offset (AVO) analysis techniques (Bortfeld, 1961; Aki, K.
and Richards, 1980; Shuey, 1985). These techniques use equations that link the reflectivity to the
medium parameters based on a linear approximation of the Zoeppritz expressions (Zoeppritz, 1919).
One of these equations is the well-known Shuey approximation (Shuey, 1985) that can be expressed
in acoustic media as (see section A-1 for derivation)

A (θ) = A0 +B tan2(θ), (1-1)

where A is the reflection amplitude coefficient at a certain angle of incidence θ (degree), A0 is the
zero-incidence reflection amplitude coefficient, also known as the intercept, and B is the gradient that
describes how A varies with θ. The intercept and gradient are known as the AVO attributes from
which the velocity and density can be estimated using a subsequent inversion process (Castagna and
Backus, 1993; Cambois, 2000). These attributes are given by

A0 =
1

2
(
∆c

c
+

∆ρ

ρ
), (1-2)

B =
1

2
(
∆c

c
), (1-3)
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where ∆c is the difference of compressional velocity across the boundary (m/s), ∆ρ is the difference
of density across the boundary (kg/m3), c is the average compressional velocity across the boundary
(m/s), and ρ is the average density across the boundary (kg/m3). The Shuey approximation assumes
that the velocity and density contrasts across the layer boundary are small and propagation angles
are below the critical angle. In practice, the angle-dependent reflectivity is obtained by estimating
the AVO response from normal moveout (NMO) corrected prestack data after correcting for source
directivity and geometrical spreading (Yu, 1985; Yilmaz, 2001). The information is then used as
input in Equation 1-1. However, obtaining the reflectivity correctly from the AVO response can be
challenging. When seismic wavefields travel into the subsurface, they can be distorted due to the
presence of a strongly complex overburden (Van Der Neut et al., 2014). The effect can be illustrated
using the example in Figure 1-1, where two cases are considered. The first case indicates a target
located below a homogeneous overburden and another case where the target is located below a high-
contrast layer (i.e. an approximation of the strongly complex overburden). The reflection responses
for both cases have been modeled using a finite-difference scheme (Thorbecke and Draganov, 2010)
with a dipole source and monopole receivers at the surface. The source wavelet used to model the
reflection response is a Ricker wavelet with a peak frequency of 25 Hz. The free-surface multiples
have not been modeled and the direct wave has been removed from the modeled data. By estimating
the AVO of the target for each case, it can be seen that the presence of a strongly complex overburden
can produce anomalous AVO responses. This could be explained by the gross transmission losses
in the overburden (Hatchell, 2000). As a result, this may lead to a false estimation of the medium
parameters when using the anomalous AVO in Equation 1-1. Additionally, the primary reflections
may be misinterpreted when they interfere with the internal multiples in the overburden. As such, the
internal multiples should be handled before any AVO analysis is applied (Castagna and Backus, 1993;
Avseth et al., 2005; Yilmaz, 2001; Chopra, S., Castagna, 2014).

In order to overcome these problems, the overburden effects can be removed by redatuming the surface
reflection response to a depth level below the overburden. De Bruin et al. (1990) showed that for
an inhomogeneous lossless medium, the angle-dependent reflectivity could be correctly retrieved by
means of prestack migration. The approach involves redatuming the surface reflection response to the
target using wavefield extrapolation (Wapenaar and Berkhout, 1989) and then estimating the angle-
dependent reflectivity by adding all frequency components along lines of constant ray parameter or
angle (De Bruin, 1992). Compared to conventional AVO techniques, the approach produced good
results up to the critical angle. This suggests that seismic redatuming can potentially recover the
reflectivity for each reflector in the subsurface. In standard imaging, the surface reflection response is
redatumed using approximations of the downgoing and upgoingwavefields in the subsurface (Wapenaar
et al., 2014b). However, this requires a detailed model of the medium between the acquisition surface
and target zone, which is not always available in practice.

The Marchenko redatuming method is a novel technology that estimates the downgoing and upgoing
Green’s functions related to a virtual source located in the subsurface from a surface reflection response
with limited information about the medium (Broggini and Snieder, 2012; Wapenaar et al., 2014b,a).
These estimated Green’s functions represent accurate upgoing and downgoing wavefields as they
contain all orders of internal multiple reflections of the subsurface. This gives the Marchenko method
an advantage over standard imaging. The Marchenko method also estimates the focusing functions
which serve as redatuming operators in the method (Wapenaar et al., 2014a; Slob et al., 2014). The
retrieval of the Green’s and focusing functions is achieved by solving the coupledMarchenko equations
using, for example, an iterative substitution scheme (Wapenaar et al., 2014a; van der Neut et al., 2015).
The scheme requires the surface reflection response and direct arrival of the inverse transmission
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Figure 1-1: Estimated acoustic AVO response in two cases: a homogeneous overburden (Column A)
and a high-contrast overburden (Column B). Top row: density model with a background
velocity of 1500 m/s. The source (white star) and receivers (black triangles) are located
at the surface. The target is located at 1100 m. Middle row: surface reflection response.
Note that the yellow arrow in case (B) indicates the primary reflection of the target which
corresponds to the one in case (A). Bottom row: AVO response of the target, obtained by
estimating the envelope.
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response of the overburden as input. In practice, the latter is unknown but can be approximated by the
time reversal of the direct arrival from the virtual source, modelled in a smoothed version of the correct
velocity model (Wapenaar et al., 2014b). This approximation introduces errors to the AVO response of
the Green’s functions which are proportional to the transmission losses at the interfaces. Mildner et al.
(2019) has shown that this problem can be overcome by determining the AVO transmission losses in
a laterally invariant overburden using an augmented Marchenko method (Dukalski et al., 2018). This
approach corrects the direct arrival that is estimated from a smooth velocity model. By using this
correct direct arrival. the true AVO response of the Green’s functions is obtained. However, the effect
of the density model on the AVO response is not considered in this approach.

In contrast to Mildner et al. (2019), the error in the direct arrival can be significantly eliminated by
deconvolving the retrieved upgoing Green’s function with the downgoing Green’s function (Wapenaar
et al., 2014b) without correcting the direct arrival. The result is a new reflection response, free of
spurious events related to internal multiples in the overburden and contains true amplitudes. This
can be demonstrated using the 1D numerical example in Figure 1-2 where a target is located below
a high-contrast overburden. Here, the Marchenko method and standard method are used to redatum
the reflection response using deconvolution. The standard redatuming is applied using only the direct
arrival as the focusing function. Compared to direct modelling, the Marchenko method was able to
reconstruct the reflection response perfectly in the zone of interest, unlike standard redatuming which
did not resolve the overburden effects. The redatumed reflection response obtained by the Marchenko
method can be used for reflection imaging in the zone of interest. Because the reflection response
has been correctly reconstructed at the redatumed level, the image will represent the zone of interest
correctly. See Figure 1-3. This 1D example has shown that the Marchenko method is capable of
removing the overburden effects (i.e. internal multiples and transmission losses) and compensates
for the error in the direct arrival using deconvolution. In practice, however, the angle-dependent
reflectivity requires at least 2D data.

Following a similar approach as De Bruin et al. (1990), the Marchenko method will be evaluated for
imaging angle-dependent reflectivity in 2D laterally invariant acoustic media using deconvolution.
In chapter 2, the theory of the Marchenko method will be explained in 2D according to Wapenaar
et al. (2014b) and van der Neut et al. (2015). First, the classic Green’s function representation will
be reviewed according to Wapenaar and Berkhout (1989) and how this representation can be replaced
by a single-sided Green’s representation in an inhomogeneous lossless medium. Next, the focusing
functions will be explained and how they can be constructed in a truncated version of the actual
medium. Then, it will be shown how the coupled Marchenko equations work and how these equations
can be solved for the focusing and Green’s functions using an iterative substitution scheme. After
that, the Marchenko redatuming will be covered. In chapter 3, the properties of the angle-dependent
reflectivity in angle domain, wavenumber domain, and ray parameter domain will be explained and
how these three different domains can be related to each other. Then, the estimation of angle-dependent
reflectivity using the Marchenko method will be explained and how the reflectivity can be presented
in terms of z − p gathers (i.e. ray-parameter reflection information as a function of depth), and in
terms of z − θ gathers (i.e. angle reflection information as a function of depth). In chapter 4, the
imaging process will be demonstrated with numerical examples. Each numerical example introduces
a particular problem for which the Marchenko method is tested and compared to standard imaging.
Finally, chapter 5 gives the conclusions and some final remarks.
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Figure 1-2: Marchenko redatuming in 1D with a constant velocity of 1800 m/s. The dashed line
represents the redatuming level. (A) Density model. (B) Reflection response with a
source and receiver located at the surface. A Ricker wavelet has been used as a source
wavelet with a peak frequency of 10 Hz. (C) Zoomed version of the zone of interest in
(B). (D) Marchenko-based redatumed response (dashed red), standard-based redatumed
response (dotted blue), and direct modeling (dashed black). Both redatumed responses
were obtained by deconvolution.

Figure 1-3: Image of the zone of interest in Figure 1-2. The image was produced by extracting the
zero-time component from the redatumed response at every depth level, with a step size
of 1 m. (A) Marchenko imaging. (B) Standard imaging. The red arrows indicate the
effects of the overburden. Note that these effects have been removed by the Marchenko
method. Also, the amplitude is preserved at the depth of each reflector.
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Chapter 2

Marchenko method

2-1 Notations and Fourier transforms

In a 2D medium, the space vector is denoted by x = (x, z) with x as the horizontal coordinate and
z as the vertical coordinate pointing downward. The temporal Fourier transform of a space- and
time-dependent real-valued function u(x, t) is defined as

û(x, ω) =

∫ ∞
−∞

exp(−jωt)u(x, t)dt, (2-1)

where t is time, j is the imaginary unit, and ω is the angular frequency. The inverse of û(x, ω) is
defined as

u(x, t) =
1

2π

∫ ∞
−∞

exp(jωt)û(x, ω)dω. (2-2)

The two-dimensional Fourier transform of u(x, t) is defined as

ũ (kx, z, ω) =

∫ ∞
−∞

∫ ∞
−∞

u(x, t) exp (−j (ωt− kxx)) dtdx, (2-3)

where kx is the horizontal wavenumber. The inverse of ũ (kx, z, ω) is defined as

u(x, t) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

ũ (kx, z, ω) exp (j (ωt− kxx)) dωdkx. (2-4)

2-2 Green’s function

TheGreen’s functionG is defined as the solution of the 2D acousticwave equation in an inhomogeneous
lossless medium, according to (Wapenaar et al., 2014b)

ρ(x)∇ ·
(

1

ρ(x)
∇G

(
x, x′′0, t

))
− 1

c2(x)

∂2G (x, x′′0, t)
∂t2

= −ρ(x)δ
(
x− x′′0

) ∂δ(t)
∂t

, (2-5)
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where x′′0 represents the location of a source point, ρ is the mass density (kg/m3), c is the velocity
(m/s), and δ is a Dirac delta function. Equation 2-5 states that the Green’s function G (x, x′′0, t) is the
impulse response at observation points x as a function of time t, related to a source point located at x′′0 .
This is known as the causal Green’s function, which propagates away from the source and is zero for
t < 0. See Figure 2-1A. By the principle of time-reversal (Wapenaar and Berkhout, 1989; Fink et al.,
2000), the time-reversed Green’s function is given by G (x, x′′0,−t). This is known as the anti-causal
Green’s function, which propagates towards the source and is zero for t > 0. See Figure 2-1B. If the
Green’s function is known, the acoustic wavefield can be calculated anywhere in the interior, according
to (Wapenaar and Berkhout, 1989)

P̂ (x′′0 , ω) =

∮
S

1

ρ(x)
[Ĝ (x, x′′0 , ω)∇P̂ (x, ω)− P̂ (x, ω)∇Ĝ (x, x′′0 , ω)] · ndS, (2-6a)

P̂ (x′′0 , ω) =

∮
S

1

ρ(x)
[Ĝ∗ (x, x′′0 , ω)∇P̂ (x, ω)− P̂ (x, ω)∇Ĝ∗ (x, x′′0 , ω)] · ndS, (2-6b)

where P̂ (x′′0 , ω) represents the total acoustic wavefield (i.e. the Green’s function convolved with
a source wavelet) at point x′′0 inside boundary S with n as the normal to the boundary, and P̂ (x, ω)
represents thewavefield observed at the boundary. The asterisk superscript indicates complex conjugate
which replaces the time-reversal in the frequency domain. Hence, the products in Equation 2-6b
correspond to cross-correlations in the time domain, while the products in Equation 2-6a correspond to
convolution in the time domain. These two expressions are known as theKirchhoff–Helmholtz integral,
based on the Green’s theorem (Morse and Feshbach, 1953; Berkhout and Wapenaar, 1989). They state
that if the wavefield and its normal derivative are known at the boundary, the total acoustic wavefield
can be reconstructed anywhere inside the boundary using the Green’s function. Consequently, if the
Green’s function to the reconstruction points is known, there is no need to know a model between the
acquisition surface (i.e. boundary S) and reconstruction points in the interior. In reality, however, the
wavefield cannot be perfectly reconstructed as this requires having receivers enclosing the medium of
interest. For the correlation-type representation (Equation 2-6b), the closed boundary can be replaced
by an open boundary, but this depends on a number of assumptions that are not always fulfilled
in practice, for example one-sided illumination (Wapenaar et al., 2010). For the convolution-type
representation, the closed boundary can be easily replaced by an open boundary (Wapenaar et al.,
2010).

With reference to Figure 2-2, a single-sided acquisition surface is considered (Wapenaar et al., 2014b),
where the source and receivers are located at one side of the medium, usually the surface of the Earth.
In this configuration, the surface boundary is denoted by ∂D0, belowwhich an inhomogeneous lossless
half-space. The half-space above the surface boundary is assumed to be homogeneous. The boundary
∂D0 is assumed to be a transparent surface which means there will be no free-surface related multiples.
The coordinates along ∂D0 are defined as x0 = (x, z0) , with z0 = 0. The source point is located
just above the surface at x′′0 = (x′′, z → 0). In addition, an arbitrary depth level ∂Di is defined. The
coordinates along ∂Di are denoted by xi = (x, zi) , with zi as the depth of ∂Di.

With reference to Figure 2-3, the field generated from the point source propagates upward to the
homogeneous half-space and downward into the inhomogeneous medium. Because the medium above
∂D0 is homogeneous, there will be no contribution from it. Assuming the one-way Green’s functions
are pressured normalized, the Green’s function associated with the downgoing part of the radiating
source is given by (Wapenaar et al., 2014b)
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2-2 Green’s function 9

Figure 2-1: Classic Green’s function. (A) The causal Green’s function. The star represents a source
point located at x′′0 whereas the triangle represents an observation point (receiver) located
at x. The medium is enclosed by boundary S. The arrows represent the direction of
the wavefields. (B) The anti-causal Green’s function obtained by the principle of time
reversal. Here, location x is interpreted as a source point while location x′′0 is interpreted
as an observation point.

Figure 2-2: Single-sided acquisition surface, with a source point (white star) located at x′′0 and re-
ceivers (black triangles) at x0. The black dashed line on the top represents the transparent
surface whereas the dotted line represents the arbitrary depth level.
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10 Marchenko method

Figure 2-3: Single-sided Green’s function in an inhomogeneous medium due to a source point (star)
located at x′′0 . The Green’s function is described by four components as shown here.
The solid black lines represent interfaces. Note that the dashed arrows above the source
represent the field propagating to the homogeneous half-space.

∂zG
+,+ (x, x′′0 , t)

∣∣
z=z0

= −1

2
ρ (x′′0) δ (x− x′′) ∂δ(t)

∂t
, (2-7)

with the Dirac delta function located at z0. The first superscript (+) refers to the downgoing field
observed at x, whereas the second superscript (+) refers to the downgoing field of the source at x′′0 .
The Green’s function associated with the upgoing field at ∂D0 is defined as (Wapenaar et al., 2014b)

∂zG
−,+ (x, x′′0 , t)

∣∣
z=z0

=
1

2
ρ (x0)

∂R (x′′0 , x0, t)
∂t

, (2-8)

where R (x′′0, x0, t) is the reflection response of the inhomogeneous medium with a dipole source at
x0 and observed by a monopole receiver at x′′0 . Here the first superscript (−) refers the upgoing field
observed at x0 whereas the second superscript (+) refers to the downgoing field of the source at x′′0 .
The total Green’s functionG (x, x′′0, t) can be expressed as the superposition of the pressure-normalized
downgoing and upgoing components (Wapenaar et al., 2014b)

G (x, x′′0 , t) = G+,+ (x, x′′0 , t) +G−,+ (x, x′′0 , t) . (2-9)

The fields G+,+ (xi, x′′0, t) and G−,+ (xi, x′′0, t) represent the downgoing and upgoing components of
the Green’s function, respectively, observed at ∂Di with a source located at x′′0 . These two fields are
the desired Green’s functions in the Marchenko method. They act as redatuming operators for the
surface reflection response R (x′′0, x0, t). In the next section, it will be explained how the focusing
functionswork and how these focusing functions served as redatuming operators for the desiredGreen’s
functions.
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2-3 Focusing function 11

2-3 Focusing function

The focusing functions f serve as the essential redatuming operators in the Marchenko method. They
were introduced based on the reciprocity theorem for one-way wavefields (Wapenaar et al., 2014a;
Slob et al., 2014). The focusing functions are designed to focus the wavefields at a certain point in
the subsurface and to subsequently be used to retrieve the desired Green’s functions. The point at
which the wavefields are focused is called the focal point. The depth level at which the focal point is
located is called the focal level. Analogous to equation Equation 2-9, the focusing function f1 can be
expressed as the superposition of the pressure-normalized downgoing and upgoing parts (Wapenaar
et al., 2014b)

f1 (x, x′i, t) = f+1 (x, x′i, t) + f−1 (x, x′i, t) , (2-10)

where x′i = (x′, zi) represent the location of the focal point at ∂Di. In contrast, the focusing function
f2 (x, x′′0, t) that focuses the wavefields at a focal point located at ∂D0 can be expressed by its upgoing
and downgoing components as follows (Wapenaar et al., 2014b)

f2 (x, x′′0 , t) = f+2 (x, x′′0 , t) + f−2 (x, x′′0 , t) . (2-11)

The subscripts 1 and 2 are used to distinguish between the two types of focusing functions. Wapenaar
et al. (2014b) showed that f1 and f2 are related, according to

f+1 (x′′0 , x′i, t) = f−2 (x′i, x′′0 , t) , (2-12)

− f−1 (x′′0 , x′i,−t) = f+2 (x′i, x′′0 , t) . (2-13)

Using Equation 2-12 and Equation 2-13, Equation 2-11 can alternatively be expressed as follows

f2 (x′i, x′′0 , t) = f+1 (x′′0 , x′i, t)− f−1 (x′′0 , x′i,−t) . (2-14)

To understand the principle of the focusing functions, two states are introduced based on the reciprocity
theorem for one-way wavefields (Slob et al., 2014; Wapenaar et al., 2014b; van der Neut et al., 2015).
The first state is denoted by A and refers to a truncated version of the actual medium, see Figure 2-4A.
Here, the medium is bounded between ∂D0 and ∂Di, with RA (x′′0, x0, t′) as reflection response at
the surface in the truncated medium, and T (xi, x′′0, t) as the transmission response of the truncated
medium. The medium below ∂Di is assumed to be reflection free (i.e. no contribution from below
the focal level). The second state is denoted by B and refers to the actual medium, see Figure 2-4B.
Here, the medium covers everything below ∂D0, with R (x′′0, x0, t′) as the reflection response of the
actual medium at the surface. At the focal level, the wavefields are described by the Green’s functions
G+,+ (xi, x′′0, t) and G−,+ (xi, x′′0, t). Note that the reflection and transmission responses include all
primary reflections and possible internal multiples in both states. The downgoing focusing function
f+1 is defined as the inverse of the transmission response T, satisfying (van der Neut et al., 2015)

δ (x− x′) δ (t) =

∫
∂D0

∫ t

−∞
f+1 (x′′0 , x′i, t− t′)T (xi, x′′0 , t′) dt′dx′′0 , (2-15)
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12 Marchenko method

whereas the upgoing part f−1 is defined as the response of the truncated medium to f+1 , satisfying
(van der Neut et al., 2015)

f−1 (x0, x′i, t) =

∫
∂D0

∫ ∞
−∞

f+1 (x′′0 , x′i, t− t′)RA (x0, x′′0 , t′) dt′dx′′0 . (2-16)

Note that the delta function in Equation 2-15 is located at zi and should be considered as a spatially
band-limited delta function, where the evanescent field has been ignored (Wapenaar et al., 2014b).
From Equation 2-15 and Equation 2-16, it can be seen that obtaining of f−1 requires the computation
of f+1 first. In practice, the function f+1 is unknown. However, it can be approximated by employing
an initial estimation of the function. The initial estimation of the downgoing focusing function f+1d
represents the direct arrival of the inverse of the transmission response in the truncated medium,
according to (Wapenaar et al., 2014b)

f+1d (x′′0 , x′i, t) = T inv
d (x′i, x′′0 , t) , (2-17)

where T invd is the direct arrival of the inverse of the transmission response with travel time td =
td(x′i, x′′0). The abbreviation inv stands for the inverse of Td. With reference to Figure 2-5A, the initial
focusing function f+1d is sent from ∂D0 at time t = −td and arrives at the focal point at t = 0. As the
field f+1d propagates, the upgoing focusing function f−1 is generated and arrives at ∂D0, see Figure 2-
5B. However, as f−1 propagates, it generates spurious events that are not desirable, see Figure 2-5C.
These events can be eliminated by sending downgoing cancelling operators known as the scattering
coda M+, which has specific travel times and amplitudes to prevent the generation of the spurious
events, see Figure 2-5D. In general, the function f+1 can be expressed as follows

f+1 (x′′0 , x′i, t) = T inv
d (x′i, x′′0 , t) +M+ (x′′0 , x′i, t) . (2-18)

Wapenaar et al. (2014b) showed that the transmission response T invd is related in a specific way to the
Green’s function between ∂D0 and ∂Di and can be sufficiently approximated as

T inv
d (x′i, x′′0 , t) ≈ Gd (x′′0 , x′i,−t) , (2-19)

where Gd (x′′0, x′i,−t) is the time reversal of the direct arrival of Green’s function. Hence, expression
Equation 2-18 can be simply expressed as follows

f+1 (x, x′i, t) ≈ Gd (x, x′i,−t) +M+ (x, x′i, t) . (2-20)

Equation 2-20 states that the downgoing focusing function is approximated by the time reversal of
the direct arrival of Green’s function and scattering coda. This will introduce errors in the result that
are proportional to the transmission losses at the interfaces (Wapenaar and Berkhout, 1989). When
estimating the redatumed reflection response, these errors can be avoided as will be explained in
section 2-5. At the focal point x′i, the field f

+
1 (x′′0, x′i, t) acts as a virtual source of an impulse response

operating at t = 0. Beyond the focal point x′i, the field diverges and after reflection it arrives at the
surface, as shown in Figure 2-6. This is the first response of the focusing function which is the Green’s
function G−,+ (x′′0, x′i, t). In contrast, the time-reversed upgoing focusing function f−1 (x′′0, x′i,−t)
acts as a virtual source generating the Green’s function G−,− (x′′0, x′i, t) along with the time-reversed
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2-3 Focusing function 13

Figure 2-4: Illustration of the two states that are explained in the main text. (A) State A. (B) state B.
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14 Marchenko method

Figure 2-5: Illustration of the focusing function in the truncatedmedium. The black dashed and dotted
lines represent ∂D0 and ∂Di, respectively. The black solid lines represent interfaces. (A)
Initiating f+1 by sending f+1d (cyan) from the surface to the focal point (solid circle) at
x′i. (B) Generation of f−1 (purple) as the response of the truncated medium to f+1d. (C)
Generation of spurious events (dashed purple and cyan) due to the propagation of f−1 .
(D) Scattering coda M+ (yellow) is sent to cancel these spurious events. The focusing
function f+1 is composed of the cyan and yellow events.

Figure 2-6: The Green’s function G−,+ (green) as the response of f+1 (cyan+yellow). The purple
arrows represent f−1 .
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2-4 The coupled Marchenko equations 15

Figure 2-7: The Green’s functionG−,− (red) and the time-reversed f+1 (cyan+yellow) as the response
of the time-reversed f−1 (purple). Note that the dashed (cyan+red) arrows represent the
overlap between G−,− and the time-reversed f+1 .

downgoing focusing function f+1 (x′′0, x′i,−t), see Figure 2-7. This is the second response of the
focusing function. In the next section, the estimation of the Green’s and focusing functions using the
coupled Marchenko equations will be explained.

2-4 The coupled Marchenko equations

The coupled Marchenko equations form the basis for obtaining the focusing functions and Green’s
functions. The equations relate three functions to each other: the Green’s function in the actual
medium, the reflection response in the actual medium, and the focusing function in the truncated
medium. Mathematically, the equations can be expressed as (Wapenaar et al., 2014b)

G−,+ (x′′0 , x′i, t) + f−1 (x′′0 , x′i, t) =

∫
∂D0

∫ t

−∞
R (x′′0 , x0, t− t′) f+1 (x0, x′i, t′) dt′dx0, (2-21)

G−,− (x′′0 , x′i, t) + f+1 (x′′0 , x′i,−t) =

∫
∂D0

∫ t

−∞
R (x′′0 , x0, t− t′) f−1 (x0, x′i,−t′) dt′dx0. (2-22)

The ultimate goal of the equations is to retrieve G−,+ and G−,−. Since the focusing functions are
initially unknown, the system is an under-determined problem. However, the system can be solved
using an iterative scheme of the coupled Marchenko equations (Wapenaar et al., 2014b; van der Neut
et al., 2015). The scheme is based on the causality relations between the Green’s functions and
focusing functions. The focusing wavefield arrives before the Green’s wavefield; therefore, they can
be separated in time from each other by applying a mute window Θ = Θ(x′i, x′′0). This window is
designed to remove all causal events that arrive at and after td. In addition, the window removes
all anti-causal events that arrive at and before −td. However, because in practice seismic data are
band-limited, a small positive constant ε has to be applied to the window to account for the width of
the wavelet. Assuming that the wavelet is zero-phase, the value of ε has to be half the wavelet duration
to avoid removing part of the events. For causal events, the window should remove all events that
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16 Marchenko method

arrive at and after td − ε. For anti-causal events, the window should remove all events that arrive at
and before −td + ε, see Figure 2-8. By applying Θ on the Green’s functions and focusing functions,
causality dictates

Θ
{
G−,+ (x′′0 , x′i, t)

}
= 0, (2-23)

Θ
{
G−,− (x′′0 , x′i, t)

}
= 0, (2-24)

Θ
{
f+1 (x′′0 , x′i, t)

}
= Θ

{
Gd (x′′0 , x′i,−t) +M+ (x′′0 , x′i, t)

}
= M+ (x′′0 , x′i, t) , (2-25)

Θ
{
f−1 (x′′0 , x′i, t)

}
= f−1 (x′′0 , x′i, t) . (2-26)

Figure 2-8: The definition of the mute window Θ. The vertical dotted lines represent the arrival
time td while the vertical dashed lines represent the limits of the mute window Θ after
applying the positive constant ε. Note that the difference between the dashed and dotted
lines is half the duration of the wavelet. The wavelet used here is a Ricker wavelet with a
peak frequency of 10 Hz. In this case, the operator Θ will mute f+1d (cyan), G−,− (red),
G−,+ (green) and pass f−1 (purple) andM+ (yellow).

The coupled Marchenko equations (Equation 2-21 and Equation 2-22) after applying Θ becomes

f−1 (x′′0 , x′i, t) = Θ

{∫
∂D0

∫ t

−∞
R (x′′0 , x0, t− t′) f+1 (x0, x′i, t′) dt′dx0

}
, (2-27)

M+ (x′′0 , x′i,−t) = Θ

{∫
∂D0

∫ t

−∞
R (x′′0 , x0, t− t′) f−1 (x0, x′i,−t′) dt′dx0

}
. (2-28)

The latter two expressions can be posed as an iterative substitution to estimate the focusing functions
as follows
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2-4 The coupled Marchenko equations 17

f−1,k (x′′0 , x′i, t) = Θ

{∫
∂D0

∫ t

−∞
R (x′′0 , x0, t− t′) f+1,k (x0, x′i, t′) dt′dx0

}
, (2-29)

M+
k (x′′0 , x′i,−t) = Θ

{∫
∂D0

∫ t

−∞
R (x′′0 , x0, t− t′) f−1,k−1 (x0, x′i,−t′) dt′dx0

}
, (2-30)

with k as the iteration number, and

f+1,k (x, x′i, t) = Gd (x, x′i,−t) +M+
k (x, x′i, t) . (2-31)

The scheme is initiated with the assumption that the value ofM+
0 = 0 and f+1,0 = Gd. The estimate

of f−1,0 can be obtained by Equation 2-29. This estimate is then substituted into Equation 2-30 to
obtain the value of M+

1 . In the second iteration, the value of M+
1 is added to Gd to estimate f+1,1.

This estimate is then substituted into Equation 2-29 to obtain f−1,1 . This process is repeated until the
scheme converges. Once the focusing functions are estimated, the Green’s functions G−,+ and G−,−
can be calculated using Equation 2-21 and Equation 2-22. In the integral of the coupled Marchenko
equations, there are stationary points at the depth of interest that should be sampled in the acquisition
survey at the surface in order to retrieve particular events of the Green’s functions. However, reflection
data, in practice, are recorded with a finite aperture. This may introduce some practical issues when
using the Marchenko method as particular events of the Green’s functions would require a certain
range of aperture, as illustrated in Figure 2-9.

Figure 2-9: Illustration of the stationary points. (A) Reflection response (blue) due to a source (white
star) located at ∂D0. The triangles represent the acquisition surface at ∂D0. The black
solid circles represent focal points at ∂Di, while the purple ones represent stationary
points at ∂D0 that are outside the acquisition surface. (B) The retrieved parts (solid
green) and lost parts (dotted green) of function G−,+.
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18 Marchenko method

2-5 Marchenko redatuming

As explained in the previous section, the Green’s functions G−,+ (x′′0, x′i, t) and G−,− (x′′0, x′i, t) are
interpreted as the responses of a source point located at x′i and observed at x′′0 , see Figure 2-10A.
According to the source-receiver reciprocity theorem (Wapenaar and Berkhout, 1989), the functions
can alternatively be expressed as

G−,+ (x′′0 , x′i, t) = G−,+ (x′i, x′′0 , t) , (2-32)

G−,− (x′′0 , x′i, t) = −G+,+ (x′i, x′′0 , t) . (2-33)

The Green’s functions G−,+ (x′i, x′′0, t) and G+,+ (x′i, x′′0, t) are interpreted as the responses of source
points at x′′0 and a receiver at x′i, see Figure 2-10B. These two Green’s functions are related to a
reflection response that is located at the focal level according to (Wapenaar et al., 2014b)

G−,+ (xi, x′′0 , t) =

∫
∂Di

∫ ∞
−∞

R (xi, x′i, t− t′)G+,+ (x′i, x′′0 , t) dt′dx′i, (2-34)

where R (xi, x′i, t) is the reflection response due to the virtual source at x′i and measured at xi. The
response R (xi, x′i, t) is estimated by the multidimensional deconvolution (MDD) which involves
inverting Equation 2-34 as follows

R (xi, x′i, t) =

∫
∂D0

G−,+ (xi, x′′0 , t) ∗
[
G+,+ (x′i, x′′0 , t)

]inv
dx′′0 , (2-35)

where the abbreviation inv stands for the inverse of G+,+, and the asterisk denotes temporal con-
volution. Equation 2-35 does not only produce the redatumed response at ∂Di but also removes the
overburden effects between ∂D0 and ∂Di, see Figure 2-11B. Additionally, the deconvolution process
compensates significantly for the amplitude errors in the Green’s functions, related to approximat-
ing the direct arrival of the inverse transmission response by the time-reversal of the direct arrival
of the Green’s function (Wapenaar et al., 2014b). Consequently, the redatumed reflection response
R (xi, x′i, t) can be used to extract the correct angle-dependent reflectivity. This information can then
be used as input for AVO inversion to determine the detailed medium parameters in the zone of inter-
est. The MDD process is typically carried out in the space-frequency domain (x-ω) as a least-squares
matrix inversion. This process can sometimes be unstable and requires stabilization (Minato et al.,
2013). The inverse problem can be expressed as follows

R̂ =
Ĝ−,+

[
Ĝ+,+

]H
Ĝ+,+

[
Ĝ+,+

]H
+ e

, (2-36)

where R̂, represents the matrix containing R̂ (xi, x′i, ω), Ĝ+,+, represents the matrix containing
Ĝ+,+ (x′i, x′′0, ω), Ĝ−,+ represents the matrix containing Ĝ−,+ (xi, x′′0, ω), e is a small positive real
constant known as the stabilization parameter, and the capital H superscript indicates the Hermitian
transpose (conjugate transpose). Alternatively, for a laterally invariant medium, the deconvolution
process can be carried out in the wavenumber-frequency (kx-ω) as a spectral division as follows
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2-5 Marchenko redatuming 19

R̃ (kx, zi, ω) =
G̃−,+ (kx, zi, ω)

G̃+,+ (kx, zi, ω)
, (2-37)

where R̃ (kx, zi, ω) is the redatumed reflection response in thewavenumber-frequency domain. Similar
to Equation 2-36, the errors related to the transmission losses will be cancelled in this process. The
spectral division can also be unstable when G̃+,+ (kx, zi, ω) is very small. The solution can be
regularized as follows

R̃ (kx, zi, ω) =
G̃−,+ (kx, zi, ω) [G̃+,+ (kx, zi, ω)]∗

|G̃+,+ (kx, zi, ω) |2 + e
, (2-38)

where the bar on each side of G̃+,+ indicates the modulus of G̃+,+, and asterisk superscript indicates
complex conjugate. In the next chapter, the estimation of the angle-dependent reflectivity from the
results obtained by Equation 2-36 and Equation 2-37 will be explained.
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20 Marchenko method

Figure 2-10: Source-receiver reciprocity theorem. (A)G−,+ (green) andG−,− (red) are the responses
of a source point located at x′i and observed at x′′0 . (B) G−,+ (green) and G+,+ (red)
are the responses of source points located at x′′0 and observed at x′i
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2-5 Marchenko redatuming 21

Figure 2-11: Illustration of the source-receiver redatuming using MDD. (A) Surface reflection re-
sponse. (B) Redatumed reflection response. Note that the overburden has been com-
pletely removed.
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Chapter 3

Imaging angle-dependent reflectivity

3-1 Properties of the angle-dependent reflectivity

The angle-dependent reflectivity for two homogeneous acoustic half-spaces separated by an interface
located at zi is given by (De Bruin et al., 1990)

r (zi, θ) =
ρ2c2 cos θ − ρ1

√
c21 − c22 sin2 θ

ρ2c2 cos θ + ρ1

√
c21 − c22 sin2 θ

, (3-1)

where θ is the angle of incidence. The subscript 1 refers to the upper half-space, and 2 refers to the
lower half-space, see Figure 3-1. The value of r ranges from −1 to 1, where a negative r means the
upper half-space has higher acoustic impedance than the lower half-space and a positive r means the
lower half-space has higher acoustic impedance than the upper half-space. A total reflection occurs
when r = 1 or r = −1, whereas a total transmission occurs when r = 0. If c1 < c2, the reflectivity
becomes a complex value (i.e. consisting of real and imaginary parts) for

sin |θ| > c1/c2. (3-2)

A total internal reflection with a magnitude of 1 occurs after the critical angle, see Figure 3-2. The
critical angle is defined as

θc = sin−1(c1/c2). (3-3)

For |θ| > θc, the lower half-space can support an evanescent wavefield only, that is, one whose
amplitude decays as z increases (Wapenaar and Berkhout, 1989). For an interface between two
acoustic homogeneous half-spaces with c1 = 1500 m/s, c2 = 2000 m/s, ρ1 = 1000 kg/m3, and ρ2 =
1500 kg/m3, the modulus of r (θ, zi) is shown in Figure 3-3A. If c1 > c2, the critical angle does not
exist. In this case, the reflectivity is always real for |θ| ≤ 900. For an interface between two acoustic
homogeneous half-spaces with c1 = 2000 m/s, c2 = 1500 m/s, ρ1 = 1000 kg/m3, and ρ2 = 1500
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24 Imaging angle-dependent reflectivity

Figure 3-1: Reflection of an incident downgoing plane wave at an interface (horizontal line) between
two acoustic homogeneous half-spaces. The arrow represents the path of the wave. The
vertical dashed line represents the normal. Snell’s law describes the relationship between
the angles of incidence θ1 and transmission θ2.

Figure 3-2: A refracted wave that enters and leaves a high-velocity medium at the critical angle
is known as a head wave. Here, the angle of refraction approaches 900, at which the
refracted ray becomes parallel to the interface. Beyond the critical angle, the lower
half-space supports an evanescent wave only.
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3-1 Properties of the angle-dependent reflectivity 25

kg/m3, the modulus of r (θ, zi) is shown in Figure 3-3B. When there is a density contrast only (i.e.
ρ1 6= ρ2 and c1 = c2,), the reflection function becomes angle independent, according to De Bruin
et al. (1990)

r(zi) =
ρ2 − ρ1
ρ2 + ρ1

. (3-4)

In this expression, the reflectivity is equivalent to the normal-incidence reflectivity. For an interface
between two acoustic homogeneous half-spaces with c1 = c2 = 2000 m/s, ρ1 = 1000 kg/m3, and
ρ2 = 1500 kg/m3, the modulus of r (θ, zi) equals 0.2 for all angles.

Figure 3-3: Reflection coefficient in angle domain. (A) Angle-dependent reflectivity with c1 < c2.
Note that the evanescent wave occurs after θc with amplitude of 1. (B) Angle-dependent
reflectivity with c1 > c2. Only the moduli have been plotted.

In the wavenumber-frequency domain, the reflection operator can be expressed as follows (De Bruin
et al., 1990)

r̃ (kx, zi, ω) =
ρ2
√
k21 − k2x − ρ1

√
k22 − k2x

ρ2
√
k21 − k2x + ρ1

√
k22 − k2x

, (3-5)

where
kx = k1 sin θ, (3-6a)

with

k1 = ω/c1, (3-6b)

k2 = ω/c2. (3-6c)

Note that r̃ (kx, zi, ω) is frequency-dependent in contrast with r (zi, θ). If c1 < c2, the wavenumber-
domain reflection operator becomes complex for k2 < |kx| < k1, as shown in Figure 3-4. On the other
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26 Imaging angle-dependent reflectivity

Figure 3-4: Reflection operator in thewavenumber-frequency domainwith c1 < c2. (A) Themodulus
of r̃ for a single-frequency of f = 70 Hz. The total reflection occurs for k2 < |kx| < k1
with amplitude of 1. The evanescent wavefield occurs for all |kx| > k1. (B)Wavenumber-
frequency spectrum of the reflection operator. Note that the total reflection occurs within
the yellow area with amplitude of 1. Only the moduli have been plotted.

Figure 3-5: Reflection operator in thewavenumber-frequency domainwith c1 > c2. (A) Themodulus
of r̃ for a single-frequency of f = 70 Hz. The total reflection occurs for k1 < |kx| < k2
with amplitude of 1. The evanescent wavefield occurs for all |kx| > k2. (B)Wavenumber-
frequency spectrum of the reflection operator. Note that the total reflection occurs within
the yellow area with amplitude of 1. Only the moduli have been plotted.
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3-2 Imaging principle 27

hand, if c1 > c2, the wavenumber-domain reflection operator becomes complex for k1 < |kx| < k2,
as shown in Figure 3-5. Beyond the maximum bounds in both situations the wavenumber-domain
reflection operator is real and acts on the evanescent waves only (Wapenaar and Berkhout, 1989).

In the ray-parameter domain, the reflection operator can be expressed as follows (De Bruin, 1992)

r̆ (p, zm) =
ρ2
√

1/c21 − p2 − ρ1
√

1/c22 − p2

ρ2
√

1/c21 − p2 + ρ1
√

1/c22 − p2
(3-7)

where p is the ray parameter (slowness) given by

p =
kx
ω

=
sin θ

c1
=

1

cx
. (3-8)

The breve denotes the ray-parameter domain. For the situation that c1 < c2, the value of r̆ (p, zi)
becomes complex for 1/c2 < |p| < 1/c1, as shown in Figure 3-6A. For the situation that c1 > c2,
the value of r̆ (p, zi) becomes complex for 1/c1 < |p| < 1/c2, as shown in Figure 3-6B. Note that
r (θ, zi) and r̆ (p, zi) are frequency independent whereas r̃ (kx, zi, ω) is frequency dependent. The
three reflection functions will be used in chapter 4 for the verification of the imaged angle dependent
reflection properties.

Figure 3-6: Reflection operator in the ray-parameter domain. (A) The modulus of r̆ with c1 < c2.
The total reflection occurs for 1/c2 < |p| < 1/c1 with amplitude of 1. The evanescent
wavefield occurs for all |p| > 1/c1. (B) The modulus of r̆ with c1 > c2. The total
reflection occurs for 1/c1 < |p| < 1/c2 with amplitude of 1. The evanescent wavefield
occurs for all |p| > 1/c2

3-2 Imaging principle

According to Wapenaar and Berkhout (1989), the measured wavefield at a certain depth level in the
subsurface can be decomposed into upgoing and downgoing wavefields. When the first arrival of the
upgoing and downgoing wavefields coincide in time and space, a reflector exists (Claerbout, 1971).
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28 Imaging angle-dependent reflectivity

In other words, when the redatuming level intersects the reflector, the imaging condition will return
a non-zero amplitude. This holds for impulse responses but for band-limited data there will be some
overlap due to wavelet thickness. Typically, the imaging process is carried out recursively through the
subsurface with small depth steps. For each lateral position, the upgoing wavefield is deconvolved
with the downgoing wavefield in the space-frequency domain or in the wavenumber-frequency domain
(Berkhout, 1985). In order to extract the angle-dependent reflectivity, the imaging principle has to
be extended by adding all frequency components along lines of constant ray parameter or angle (De
Bruin et al., 1990). By using the Marchenko method, the procedure is implemented as follows:

1. Estimating the downgoing and upgoingwavefields. At every depth level zi, the upgoingwavefield
G−,+ (x′i, x′′0, t) and downgoingwavefieldG+,+ (x′i, x′′0, t) are estimated for every lateral position
by employing to the coupled Marchenko equations (Equation 2-21 and Equation 2-22).

2. Deconvolving the upgoing wavefield with the downgoing wavefield. The first arrivals of
G−,+ (x′i, x′′0, t) and G+,+ (x′i, x′′0, t) are isolated and transformed into the space-frequency do-
main (x-ω) using to Equation 2-1. After that, the deconvolution process is carried out using
Equation 2-36 to obtain the reflectivity in the space-frequency domain. In practice, the fre-
quency ω is bounded according to−ωN < ω < +ωN , where ωN is the Nyquist frequency. The
frequency sampling ∆ω is given by

∆ω =
2π

∆tNt
, (3-9)

where ∆t is the temporal sampling, and Nt is the number of samples in the time domain.

3. Transforming into the wavenumber-frequency domain. The result obtained from the previous
step is transformed into the wavenumber-frequency domain (kx-ω), using to Equation 2-3. In
practice, the wavenumber kx is bounded according to −kN < kx < +kN , where kN is the
spatial Nyquist frequency. The wavenumber sampling ∆kx is given by

∆kx =
2π

∆xNx
, (3-10)

where ∆x is the spatial sampling, and Nx is the number of samples in the space domain.

4. Mapping the horizontal wavenumber kx into ray parameter p or angle θ. In order to preserve the
angle dependent reflection information in the imaging step all frequency contributions, which
are represented as complex values, must be summed along lines of constant ray parameter. If
the variable kx is replaced by p according to,

R̃ (kx, zi, ω)→ R̆ (p, zi, ω) , (3-11)

then imaging can be carried out in the ray parameter-frequency domain along lines of constant
p. Here, R̆ (p, zi, ω) is the frequency contributions mapped into the ray parameter domain (i.e.
p − ω spectrum). Instead of carrying out the process in the ray parameter domain, the process
can also be carried out in the angle domain by replacing the variable kx by θ according to

R̃ (kx, zi, ω)→ R (θ, zi, ω) . (3-12)

August 3, 2020
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where R (θ, zi, ω) is the frequency contributions mapped into the angle domain (i.e. θ − ω
spectrum). The mapping process is performed by a simple interpolation process (De Bruin,
1992). In the ray-parameter domain, the interpolation process consists of the following steps:

• The variable kx is replaced by p for every single frequency using Equation 3-8.
• The range of p is defined as (−pmax, pmax), where pmax is the maximum slowness. The
range should only span the dip components of interest in the data. As a rule of thumb,
pmax = 1/min(c) (Yilmaz, 2001).

• The number of samples in the ray parameter domain Np equals Nx.
• The increment in the ray parameter domain ∆p is calculated as follows

∆p =
2pmax

Np
. (3-13)

• The frequency contributions R̃ (kx, zi, ω) and p are used as input in a linear interpolation
process to obtain the p− ω spectrum, as shown in Figure 3-7

Similarly, the process in the angle domain consists of the following steps:

• The variable kx is replaced by θ for every single frequency using Equation 3-8. Because
some of the angles will be complex values, the real part will be considered only: Re

{
θ
}
.

• The range of θ is defined as (−900, 900).
• The number of samples in angle domain Nθ equals Nx.
• The increment in the angle domain ∆θ is calculated as follows

∆θ =
1800

Nx
. (3-14)

• The frequency contributions R̃ (kx, zi, ω) and Re
{
θ
}
are used as input in a linear interpo-

lation process to obtain the θ − ω spectrum, as shown in Figure 3-8

5. Summing all frequency contributions (positive frequencies only). For every value of p or θ, a
complex averaging of all positive frequency contributions is applied according to (De Bruin,
1992)

〈r̆ (p, zi)〉 =
1

Nω

Nω∑
n=1

R̆ (p, zi, ωn) , (3-15)

〈r (θ, zi)〉 =
1

Nω

Nω∑
n=1

R (θ, zi, ωn) , (3-16)

whereNω represents the number of positive frequency components, n is the index of summation,
and the angle bracket indicates approximation. The result is a true amplitude estimate of the
angle-dependent reflectivity, as shown in Figure 3-9B and Figure 3-10B. Bear in mind that
the angle-dependent reflectivity information is contained in the complex value (i.e. the real
and imaginary parts). The amplitude of the reflectivity can be obtained by estimating the
modulus, and its polarity is derived from the real part. When the summation is carried out
in the wavenumber-frequency domain, the reflectivity information is distorted, as shown in
Figure 3-9A and Figure 3-10A.
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6. Repeat the same process for each depth level of interest. By repeating this procedure for each
depth level of interest, z − p panel or z − θ panel is obtained, as shown in Figure 3-11. The
panel represents an image of the angle-dependent reflectivity as a function of depth. By picking
procedure, the angle-dependent reflectivity can be obtained, as shown in Figure 3-12.

As explained in section 2-5, the deconvolution process can be also carried out in the wavenumber-
frequency domain. The procedure can be explained explicitly as follows:

1. Estimating the downgoing and upgoing wavefields. At every depth level, the upgoing wave-
field G−,+ (x′i, x′′0, t) and downgoing wavefield G+,+ (x′i, x′′0, t) using the coupled Marchenko
equations (Equation 2-21 and Equation 2-22).

2. Transforming into the wavenumber-frequency domain. The first arrivals of G−,+ (x′i, x′′0, t)
and downgoing wavefield G+,+ (x′i, x′′0, t) are isolated and transformed into the wavenumver-
frequency domain (kx-ω) using Equation 2-3.

3. Deconvolving the upgoing wavefield with the downgoing wavefield. The upgoing wavefield is
deconvolved with the downgoing wavefield using Equation 2-37.

4. Mapping the horizontal wavenumber kx into ray parameter p or angle θ. The mapping process
is applied to R̃ (kx, zi, ω) as described by Equation 3-11 and Equation 3-12.

5. Summing all frequency contributions (positive frequencies only). The true reflectivity is obtained
using Equation 3-15 and Equation 3-16.

6. Repeat the same process for each depth level of interest.

Figure 3-7: Mapping the variable kx into ray parameter p using a linear interpolation process. (A)
Wavenumber-frequency domain with c1 = 1500 m/s, c2 = 2000 m/s, ρ1 = 1000 kg/m3,
and ρ2 = 1500 kg/m3. (B) Ray-parameter-frequency domain obtained by the mapping
process explained in the main text. Only the moduli have been plotted.

August 3, 2020
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Figure 3-8: Mapping the variable kx into angle θ using a linear interpolation process. (A)
Wavenumber-frequency domain with c1 = 1500 m/s, c2 = 2000 m/s, ρ1 = 1000 kg/m3,
and ρ2 = 1500 kg/m3. (B) Angle-frequency domain obtained by the mapping process
explained in the main text. Only the moduli have been plotted.

Figure 3-9: Summation of all positive frequency components along lines of constant (A) wavenumber
and (B) ray parameter. Note that the reflectivity is preserved in (B) whereas it is distorted
in (A). These results are based on Figure 3-7.
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32 Imaging angle-dependent reflectivity

Figure 3-10: Summation of all positive frequency components along lines of constant (A) wavenum-
ber and (B) angle. Note that the reflectivity is preserved in (B) whereas it is distorted in
(A). These results are based on Figure 3-8.

Figure 3-11: Imaged angle-dependent reflectivity for a two-layer acoustic medium with c1 = 1500
m/s, c2 = 2000 m/s, ρ1 = 1000 kg/m3, and ρ2 = 1500 kg/m3. The reflector is located
at 400m. The imaging process has been applied with a depth step of 5m. (A) Image of
the real part. Note that the polarity is positive. (B). Image of the imaginary part. (C)
Image of the moduli.
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3-2 Imaging principle 33

Figure 3-12: Estimated angle-dependent reflectivity obtained by picking procedure along the event
in Figure 3-11C. The polarity is derived from Figure 3-11A. Note that the estimated
reflectivity (dashed red) matches the exact one (solid black) very well up to the critical
angle.
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Chapter 4

Numerical examples

In this chapter, the imaging process explained in the previous chapter will be demonstrated with
numerical examples based on 1.5 acoustic layered models. Each numerical example introduces a
particular aspect for which the approach is tested using the Marchenko and standard imaging. The
estimated angle-dependent reflectivity will be compared to the analytic expressions (Equation 3-1
and Equation 3-7) for verification. In the first two numerical examples, the imaging process will be
demonstrated explicitly to understand the workflow shown in Figure 4-1. The workflow summarizes
the procedures that have been explained in the previous chapter.

The reflection data R (x′′0, x0, t) and direct arrival Gd (x′′0, x′i, t) are obtained through numerical mod-
elling, using a finite-difference program (Thorbecke and Draganov, 2010). The input source signature
S(t) used to modelR (x′′0, x0, t) andGd (x′′0, x′i, t) is approximately a sinc function with a flat spectrum
of amplitude 1 between 5 Hz and 80 Hz, as shown in Figure 4-2. A shift of 0.3 s is added to the source
wavelet to make it casual and suitable for the finite-difference scheme. The reflection data and direct
arrival have a temporal sampling of 4 ms, with a maximum recording time of 4 s. The recording of the
data is delayed with 0.3 s to place the peak of the wavelet at the correct time. For better visualization,
the wavefields shown in the t− x plots are convolved with a Ricker wavelet with a peak frequency of
25 Hz. The reflection data are modeled with 1001 dipole sources located at the surface and recorded
by 1001 monopole receivers located at the surface as well. For both sources and receivers, the spatial
sampling is 5 m, with offset range from -2500 m to 2500 m in the x direction. The free-surface
multiples are not modeled and the direct wave is removed from the modeled reflection data. The direct
arrivals are modeled with 1001 monopole sources located in the subsurface at the same depth and
recorded by 1001 monopole receivers at the surface. The same spatial sampling and offset range of
the reflection data are used.

The Marchenko method is applied using the iterative implementation by Thorbecke et al. (2017). The
program requires the reflection data R (x′′0, x0, t) and direct arrival Gd (x′′0, x′i, t) as input to estimate
the functions G−,+ (x′′0, x′i, t), G−,− (x′′0, x′i, t), f

+
1 (x′′0, x′i, t), f

−
1 (x′′0, x′i, t), and f2 (x′i, x′′0, t). The

number of iterations required for convergence depends on the reflectivity and number of events in the
model (Thorbecke et al., 2017). The program also gives the option to apply standard redatuming by
setting the number of iterations to zero. In this case, the function f+1 (x′′0, x′i, t) is entirely equivalent to
the time-reversed direct arrivalGd (x′′0, x′i,−t). Because the direct arrivalsGd (x′′0, x′i, t) are estimated
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frommonopole sources, the estimated Green’s functionsG−,+ (x′′0, x′i, t) andG−,− (x′′0, x′i, t) contain a
monopole signature. In order to have a redatumed reflection responseR (xi, x′i, t) as if there is a dipole
source at x′i, amonopole-to-dipole conversion has to be applied, seeAppendixB. Themultidimensional
deconvolution (MDD) is carried out using the MDD program developed by Thorbecke (2017). The
results obtained by deconvolution are stabilized before estimating the angle-dependent reflectivity, see
AppendixC. The programs use the data format fromSeismicUnix (SU) and some additional operations
are performed using this software suite (Cohen and Stockwell, 2016). The spectral division, mapping
process, and imaging condition are implemented using Matlab scripts developed by the author. These
scripts can be found in section E-2.

4-1 Imaging reflectivity in the presence of a complex overburden

A horizontally layered model of four layers is considered with a constant velocity of 1500 m/s and
varying density, see Figure 4-3. The second layer is characterized by a high-impedance contrast at the
top and bottom, which is an approximation of a complex overburden. Out of the total modeled data
set, three shot records are plotted in Figure 4-4. Because the velocity is constant, the head wave does
not exist. The direct arrivals are estimated from truncated media based on the models in Figure 4-3.
This means that the modeled direct arrivals are accurate in terms of arrival times and amplitudes. For
the sake of demonstration, the imaging process will be applied to the reflector depth. Out of the total
modeled direct arrivals, nine shots are plotted in Figure 4-5 with their corresponding truncated media.
Bear in mind that these truncated media are reflection free below the focal level zi.

The reflection data R (x′′0, x0, t) and time-reversed direct arrival Gd (x′′0, x′i,−t) are used as input to
initiate the Marchenko iterative scheme, as described by Equation 2-29 and Equation 2-30. For the
first reflector, which is located at 400 m, the scheme converges immediately at k = 0. This is expected
as f−1 (x′′0, x′i, t) does not exist due to the fact that there is no reflector above the focal level. In this case,
the total focusing function is only composed of f+1 (x′′0, x′i, t) which is equivalent to Gd (x′′0, x′i,−t),
as shown in Figure 4-6-I. For the second reflector, which is located at 700 m, the scheme converges
at k = 4. In this case, f−1 (x′′0, x′i, t) is generated due to the presence of a reflector above the focal
level. Because f−1 (x′′0, x′i, t) does not cross any interfaces as it propagates, it will not produce any
spurious events. Consequently, the scattering codaM+ does not exist, and thus f+1 (x′′0, x′i, t) will also
be the same as Gd (x′′0, x′i,−t). Here, the total focusing function is composed of f+1 (x′′0, x′i, t) and
f−1 (x′′0, x′i, t), as shown in Figure 4-6-II. For the third reflector, which is located at 1100 m, the scheme
converges at k = 10. At this depth level, f+1 (x′′0, x′i, t) is no longer equivalent to Gd (x′i, x′′0,−t)
due to the generation of internal multiples as f−1 (x′′0, x′i, t) crosses the second reflector. In this case,
f+1 (x′′0, x′i, t) = Gd (x′′0, x′i,−t) +M+ (x′′0, x′i, t), as shown in Figure 4-6-III.

The Green’s functions are estimated at the depth of each reflector using Equation 2-21 and Equation 2-
22. Since the focusing function at the first reflector consists of Gd (x′′0, x′i,−t) only, the Marchenko
and standard redatuming will produce the same Green’s functions, as shown in Figure 4-7-I. However,
for the deeper reflectors, the focusing function includes f+1 (x′′0, x′i, t) and f

−
1 (x′′0, x′i, t), and thus the

Marchenko and standard redatuming will not produce the same Green’s functions. At every iteration,
the focusing functions are updated in terms of events and amplitudes. As a result, the Green’s functions
will be updated with the correct events and amplitudes, as shown in Figure 4-7-II and Figure 4-7-
III. Before applying the imaging process, the source signature of the Green’s functions is converted
into dipole. First, the imaging process is carried out based on the MDD (see Equation 2-36). Bear
in mind that only the first arrivals of G−,+ (x′′0, x′i, t) and G−,− (x′′0, x′i, t) are used in this process.
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4-1 Imaging reflectivity in the presence of a complex overburden 37

Figure 4-1: The workflow of imaging angle-dependent reflectivity using the Marchenko method. (A)
Imaging based on the MDD. (B) Imaging based on the spectral division. Note that FFT
stands for fast Fourier transform.
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Figure 4-2: Source wavelet with a flat frequency spectrum between fmin = 5 Hz and fmax = 80
Hz. (A) Time domain. (B) Frequency domain.

Figure 4-3: A Laterally invariant medium with a complex overburden. (A) Density model. (B)
Velocity model. Note that the velocity is constant here.
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Figure 4-4: Modeled reflection data R (x′′0 , x0, t) of the medium in Figure 4-3 with a source located
at the surface and (A) x = −2500 m, (B) x = 0 m, and (C) x = 2500 m.

Therefore, the redatumed reflection response R (xi, x′i, t) will consist of a single reflection event, as
shown in Figure 4-8. Compared to standard redatuming, it can be seen that the AVO response, as
shown in Figure 4-8C, is preserved by the Marchenko method. In addition, the Marchenko method
produces a redatumed reflection response free of artefacts (see Figure 4-8III-A and III-B). Since the
medium is laterally invariant, the redatumed reflection response with the virtual source located at
x′i = (x = 0, zi) is sufficient for estimating the angle-dependent reflectivity. The mapping process
is applied on R (xi, x′i, t) (see Equation 3-11 and Equation 3-12) to obtain the p − ω and θ − ω
spectra, as shown in Figure 4-9. Finally, the angle-dependent reflectively is estimated in the ray
parameter and angle domains using Equation 3-15 and Equation 3-16, as shown in Figure 4-10.
Unlike the standard imaging, it can be seen that the Marchenko method successfully recovered the
angle-dependent reflectivity. It is important to mention that the reflectivity is only recovered when
the scheme has converged, as shown in Figure 4-11. The imaging process can be repeated for every
x′i. However, the Green’s function G−,+ (x′′0, x′i, t) with x′i located at the far offset is not completely
retrieved due to the existence of stationary points, see Figure 4-12. As a result, the redatumed response
R (xi, x′i, t) will not be reconstructed completely.

Next, the imaging process is carried out based on the spectral division (see Equation 2-38) since the
medium is laterally invariant. The Green’s functions with the virtual source located at x′i = (x = 0, zi)
are sufficient for estimating the angle-dependent reflectivity. After applying spectral division, the result
is mapped into the ray parameter and angle domains, as shown in Figure 4-13. Finally, the angle-
dependent reflectivity is obtained using Equation 3-15 and Equation 3-16, as shown in Figure 4-14.
Compared to theMDD, the spectral division covers a wider range of offset. This is because the Green’s
functionG−,− (x′′0, x′i, t) is not retrieved completely at the far offset due to the effect of themutewindow
Θ. At the far offset, the window starts intersecting G−,− (x′′0, x′i, t), causing partial removal of the
function, as shown in Figure 4-15. Because the MDD approach uses all the G−,− (x′′0, x′i, t), instead
of only the center one, the lack of the far offset retrieval affects the offset at which the reflectivity can
be obtained.

By repeating the imaging process for all depth levels, the image of the angle-dependent reflectivity can
be reconstructed. For faster computation, the process is applied based on the spectral division with a
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depth step of 5 m. The images of the real and imaginary parts of the reflectivity are shown in Figure 4-
16 and Figure 4-17, respectively. Note that the real part indicates the polarity of the reflectivity. By
using the real and imaginary parts, the modulus can be estimated, as shown in Figure 4-18. Because
the source wavelet has a finite length (see Figure 4-2), there is energy away from the interface in the
image domain, reflecting the band-limitation in this imaging process. Note that at oblique angles in
the z− θ gather, the width of the imaged event increases for increasing θ value. This can be explained
by the apparent wavelength along the z−direction λz = λ/ cos θ, with λ as wavelength along the
propagation direction. Under oblique angles, the denominator becomes smaller (i.e. cos θ → 0 for
θ → 900). Consequently, the apparent length λz increases, reflecting the loss of resolution at the far
offset. By amplitude picking along the events in Figure 4-18 and taking the polarity from the events in
Figure 4-16, the angle-dependent reflection coefficients are obtained (Figure 4-14A). A similar process
can be applied to obtain the image in the ray parameter domain.

4-2 Imaging reflectivity in a medium with varying velocity and density

In the previous example, the reflectivity was constant for all angles because there were only density
contrasts in the medium. In reality, however, the velocity of the subsurface is inhomogeneous. When
there are velocity contrasts, head waves are generated at the critical angle θc (see Equation 3-3) and
evanescent waves are generated at angles larger than θc. The Marchenko method cannot deal with
these types of waves (Wapenaar et al., 2014b). In this example, the approach is evaluated for retrieving
the reflectivity when both density and velocity vary with depth, as shown in Figure 4-19. Out of the
total data set, three shot records are plotted in Figure 4-20. The direct arrivals are estimated from
truncated media extracted from the same model in Figure 4-19.

Similar to the previous example, the imaging process is applied at the depth of each reflector. The
reflection data and time-reversed direct arrivals are used as input in the Marchenko scheme to obtain
the focusing and Green’s functions, which are shown in Figure 4-21. First, the redatumed reflection
response is estimated using the MDD and then mapped into the angle and ray parameter domains,
see Figure 4-22. Note that when the velocity varies across an interface, the spectrum is no longer flat
(see Figure 4-22I and Figure 4-22III). Only the second reflector (Figure 4-22II) shows a flat spectrum
because the velocity does not change across it. The frequency contributions are summed along lines of
constant angle and ray parameter to obtain the angle-dependent reflectivity, as shown in Figure 4-23.
For the first reflector, it can be seen that both the Marchenko and standard methods recovers the
angle-dependent reflectivity up to the critical angle. For the second reflector, where only the density
varies, the Marchenko method estimates the reflectivity correctly, unlike the standard method which
shows lower amplitude and artefacts. This shows that the Marchenko method is not affected by the
velocity contrasts surrounding this reflector. For the third reflector, the reflectivity estimated by the
Marchenko method is retrieved correctly below the critical angle. This is due to the effect of the wave
propagation through the subsurface, especially in a medium with a varying velocity. As the wave
propagates into the subsurface, it refracts according to Snell’s law (see Figure 3-1). As a result , the
wave starts bending while propagating and when it reflects from the deep reflector it arrives outside
the acquisition surface. In order to obtain such events, a larger aperture is required. This introduces a
practical limitation to surface seismic acquisition.

Next, the redatumed reflection response is estimated using the spectral division and mapped into the
ray parameter and angle domains, see Figure 4-24. The angle-dependent reflectivity is then estimated,
as shown in Figure 4-25. Compared to the MDD, the spectral division covers a wider range of angles.
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Figure 4-5: Modeled direct arrivalsGd (x′′0 , x′i, t) from (I) zi = 400 m, (II) zi = 700 m, and (III) zi =
1100 m. The (A) density model and (B) velocity model are extracted from the models
in Figure 4-3. The red asterisks and blue triangles indicate the locations of the sources
and receivers, respectively. Note that the truncated velocity media are the same as the
actual medium because the velocity is homogeneous in this example. (C) Source located
at x = −2500 m. (D) Source located at x = 0, (E) Source located at x = 2500 m.
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Figure 4-6: Focusing functions estimated in a medium with a complex overburden. The focal point
is located at x = 0 and (I) zi = 400 m, (II) zi = 700 m, and (III) zi = 1100 m.
(A) Gd (x′′0 , x′i,−t). (B) f+1 (x′′0 , x′i, t). (C) f−1 (x′′0 , x′i, t). The horizontal dashed line
indicates t = 0. Note that f+1 (x′′0 , x′i, t) in (III-B) consists of two eventswhich correspond
to Gd andM+.
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Figure 4-7: Comparison between the Marchenko and standard methods in estimating the Green’s
functions with a complex overburden. The focal point is located at x = 0 and (I) zi =
400 m, (II) zi = 700 m, and (III) zi = 1100 m. (A) Marchenko G−,+. (B) Standard
G−,+. (C) Marchenko G−,−. (D) Standard G−,−. Note the desired events obtained
by the Marchenko method and the artefacts existing in the standard method. For deeper
reflectors, the Marchenko method retrieves more than one event in G−,−.
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Figure 4-8: The redatumed reflection response R (xi, x′i, t) in the presence of a complex overburden.
The virtual source is located at x = 0 and (I) zi = 400 m, (II) zi = 700 m, and (III)
zi = 1100 m. (A) Marchenko redatuming. (B) Standard redatuming. (C) AVO response
obtained by estimating the envelope from (A) and (B).
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Figure 4-9: Applying the mapping process on R (xi, x′i, t) which is estimated in a medium with a
complex overburden. The focal point is located at x = 0 and (I) zi = 400 m, (II) zi = 700
m, and (III) zi = 1100 m. (A) Wavenumber-frequency domain. (B) Angle-frequency
domain. (C) Ray parameter-frequency domain. Only the moduli have been plotted.

August 3, 2020



46 Numerical examples

Figure 4-10: The angle-dependent reflectivity obtained by the Marchenko and standard redatuming
methods in a medium containing a complex overburden. (I) zi = 400 m. (II) zi = 700
m. (III) zi = 1100 m. (A) Reflectivity as a function of angle. (B) Reflectivity as a
function of ray parameter.
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Figure 4-11: The angle-dependent reflectivity at zi = 1100 with different iteration numbers. Note
that the reflectivity is correctly retrieved at k = 10, which represents the maximum
iteration number at this depth level.

Figure 4-12: Estimated G−,+ in a medium with a complex overburden. (A) x′i =(-1500 m,1100
m). (B) x′i =(0,1100 m). (C) x′i =(1500 m,1100 m). Note that G−,+ is completely
retrieved in (B), while it is not in (A) and (C) due the stationary points. The yellow
arrows indicate the missing parts.
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Figure 4-13: Applying the mapping process on G−,+ and G−,− which are estimated in a medium
with a complex overburden. The focal point is located at x = 0 and (I) zi = 400 m,
(II) zi = 700 m, and (III) zi = 1100 m. (A) First arrival of G̃−,+(kx, zi, ω). (B) First
arrival of G̃−,−(kx, zi, ω). (C) Spectral division. (D) Angle-frequency domain. (E)
Ray parameter-frequency domain. Only the moduli have been plotted.
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Figure 4-14: The angle-dependent reflectivity obtained by the spectral division andMDD in amedium
containing a complex overburden. (I) zi = 400 m. (II) zi = 700 m. (III) zi = 1100 m.
(A) Reflectivity as a function of angle. (B) Reflectivity as a function of ray parameter.
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Figure 4-15: The effect of the mute window Θ (yellow dashed hyperbola) on the retrieval of
G−,− (x′′0 , x′i, t). (A) x′i =(-2500 m,1100 m). (B) x′i =(0,1100 m). (C) x′i =(2500
m,1100 m).

Figure 4-16: Real part of the angle-dependent reflectivity as a function of depth with the presence
of a complex overburden. (A) First reflector. (B) Second reflector. (C) Third reflector.
Note that the real part shows the polarity of the reflectivity, with white as a negative
polarity and black as a positive polarity.
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Figure 4-17: Imaginary part of the angle-dependent reflectivity as a function of depth with the
presence of a complex overburden. (A) First reflector. (B) Second reflector. (C) Third
reflector.

Figure 4-18: Modulus of the angle-dependent reflectivity as a function of depth with the presence
of a complex overburden. (A) First reflector. (B) Second reflector. (C) Third reflector.
Note that the first and second reflectors show very high contrasts associated with the
complex overburden.

August 3, 2020



52 Numerical examples

This is due to the effect of the mute window Θ on G−,−, as explained in the previous example. It is
important to mention that because of the varying velocity, the direct arrival Gd bends as it propagates
from deeper reflectors. Consequently, the mute window is also affected by the wave propagation.

By repeating the process for all depth levels, the image of the angle-dependent reflectivity can be
reconstructed. For faster computation, the process is applied based on the spectral division with a
depth step of 5 m. The images of the real and imaginary parts of the reflectivity are shown in Figure 4-
26 and Figure 4-27, respectively. By using the real and imaginary parts, the modulus can be estimated
as shown in Figure 4-28. By amplitude picking along the events in Figure 4-28 and taking the polarity
from the events in Figure 4-26, the angle-dependent reflection coefficient is obtained (Figure 4-14A).

Based on the results of this example and the previous one, it can be concluded that the Marchenko
method has the potential to retrieve angle-dependent reflectivity correctly, unlike the standard method.
In the next examples, only the approach using the Marchenko method will be considered.

Figure 4-19: A Laterally invariant medium with varying density and velocity. (A) Density model.
(B) Velocity model.

4-3 Imaging reflectivity in the presence of a low-velocity layer.

Following a similar example as De Bruin et al. (1990), a horizontally layered model is considered with
a low-velocity layer located between 500 m and 1400 m, as shown in Figure 4-29. At this layer, the
critical angle does not exist as described by Equation 3-1. For the purpose of this example, the imaging
process is only applied on the depth of the low-velocity layer. The angle-dependent reflectivity at this
layer is depicted in Figure 4-30. It can be seen that the approach successfully obtained the reflectivity
using the Marchenko method. By repeating the imaging process around this layer, the image of the
angle-dependent reflectivity can be reconstructed. For faster computation, the process is applied based
on the spectral division with a depth step of 5 m, see Figure 4-31
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Figure 4-20: Modeled reflection dataR (x′′0 , x0, t) of the medium in Figure 4-19 with a source located
at the surface and (A) x = −2500 m, (B) x = 0 m, and (C) x = 2500 m. The yellow
arrows highlight the head waves, observed from around t = 1 s and x = ±850 m.

4-4 Imaging reflectivity using an inaccurate density model

In section 4-1, the density model from which the direct arrivals have been estimated was assumed to
be correct. In practice, however, the density model can be inaccurate. In this example, the reflection
response is modeled based on the models in Figure 4-32, whereas the direct arrivals are estimated
based on the models in Figure 4-33. The density model shows an absolute error of 500 kg/m3 in each
layer. This will introduce an error in the amplitudes of the direct arrivals, as shown in Figure 4-34.
Thus, the amplitudes of the focusing and Green’s functions will also contain errors. However, by
applying the imaging process at the depth of each reflector, the reflectivity is obtained correctly, as
shown in Figure 4-35. This is because the deconvolution process compensates for the amplitude errors
in G−,+ (x′′0, x′i, t) and G−,− (x′′0, x′i, t) as long as they contain the same error.

4-5 Imaging reflectivity using an inaccurate velocity model

In section 4-2, the velocity model from which the direct arrivals have been estimated was assumed
to be correct. In practice, however, the velocity model often contains errors. Here, the example in
section 4-2 is repeated, but now the direct arrivals are estimated from truncated media based on the
models in Figure 4-36. The velocity model shows an error of +100 m/s in each layer (about +5.5
percent in each layer). This will introduce errors in the amplitudes and travel times of the direct
arrivals, which are shown in Figure 4-37. In the previous example, it was established that an error
in the amplitude of the direct arrival does not have any consequences on the method because the
error is canceled by the deconvolution process. However, the arrival time of the direct arrival has a
significant influence in the Marchenko scheme. The window operator, which separates the focusing
and Green’s functions from each other, is defined by the travel time of the direct arrival. An error in
the travel time of the direct arrival will introduce an erroneous time shift and residual moveout in the
estimated Green’s functions, thus introducing the same impact on the redatumed reflection response.
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Figure 4-21: EstimatedGreen’s and focusing functions in amediumwith varying density and velocity.
The focal point is located atx = 0 and (I) zi = 400m, (II) zi = 700m, and (III) zi = 1100
m. (A) f−1 (x′′0 , x′i, t). (B) f+1 (x′′0 , x′i, t). (C) G−,+ (x′′0 , x′i, t). (D) G−,− (x′′0 , x′i, t).
The horizontal dashed line indicates t = 0.
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Figure 4-22: Applying the mapping process on R (xi, x′i, t) which is estimated in a medium with
varying density and velocity. The focal point is located at x = 0 and (II) zi = 700
m, and (III) zi = 1100 m. (A) Wavenumber-frequency domain. (B) Angle-frequency
domain. (C) Ray parameter-frequency domain. Only the moduli have been plotted.
Note that in (I) and (III) the spectra are not flat because of the velocity contrasts.
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Figure 4-23: The angle-dependent reflectivity obtained by the Marchenko and standard redatuming
methods in a medium with varying density and velocity. (I) zi = 400 m. (II) zi = 700
m. (III) zi = 1100 m. (A) Reflectivity as a function of angle. (B) Reflectivity as a
function of ray parameter.
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Figure 4-24: Applying the mapping process on G−.+ and G−.− which are estimated in a medium
with varying density and velocity. The focal point is located at x = 0 and (I) zi = 400
m, (II) zi = 700 m, and (III) zi = 1100 m. (A) First arrival of G̃−.+(kx, zi, ω). (B)
First arrival of G̃−.−(kx, zi, ω). (C) Spectral division. (D) Angle-frequency domain.
(E) Ray parameter-frequency domain. Only the moduli have been plotted.
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Figure 4-25: The angle-dependent reflectivity obtained by the spectral division andMDD in amedium
with varying density and velocity. (I) zi = 400 m. (II) zi = 700 m. (III) zi = 1100 m.
(A) Reflectivity as a function of angle. (B) Reflectivity as a function of ray parameter.
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Figure 4-26: Real part of the angle-dependent reflection coefficient as a function of depth in amedium
with varying density and velocity. (A) First reflector. (B) Second reflector. (C) Third
reflector. The vertical dashed line indicates the critical angle.

Figure 4-27: Imaginary part of the angle-dependent reflection coefficient as a function of depth in a
medium with varying density and velocity. (A) First reflector. (B) Second reflector. (C)
Third reflector. The vertical dashed line indicates the critical angle.
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Figure 4-28: Modulus of the angle-dependent reflection coefficient as a function of depth in amedium
with varying density and velocity. (A) First reflector . (B) Second reflector. (C) Third
reflector. The vertical dashed line indicates the critical angle.

Figure 4-29: ALaterally invariantmediumwith a low-velocity layer. (A)Densitymodel. (B)Velocity
model.

August 3, 2020



4-5 Imaging reflectivity using an inaccurate velocity model 61

Figure 4-30: The angle-dependent reflectivity obtained by the spectral division and MDD at the low-
velocity layer. (A) Reflectivity as a function of angle. (B) Reflectivity as a function of
ray parameter.

Figure 4-31: Image of the angle-dependent reflectivity for a reflector located above a low-velocity
layer. (A) Real part. (B) Imaginary part. (C) Modulus.
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Figure 4-32: The models from which the reflection data are modeled in section 4-4. (A) Correct
density model. (B) Correct velocity model.

Figure 4-33: The models from which the truncated media are extracted in section 4-4. (A) Wrong
density model. (B) Correct velocity model.
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Figure 4-34: Comparison between the direct arrivals estimated from the wrong density model and
correct density model. (A) The response of the direct arrival. (B) The AVO response of
the direct arrival. The focal point is located at x = 0 and (I) zi = 400 m, (I) zi = 700
m, (I) zi = 1100 m. Note that there is a significant difference in amplitude between the
correct and wrong direct arrivals.
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Figure 4-35: The angle-dependent reflectivity obtained using the direct arrivals modeled in the wrong
density model and correct density model. The virtual source is located at (I) zi = 400
m, (II) zi = 700 m, and (III) zi = 1100 m. (A) Reflectivity as a function of angle. (B)
Reflectivity as a function of ray parameter.
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Consequently, the image of the angle-dependent reflectivity of each reflector will be placed in the
wrong depth with residual downward curvature (frown) at the far angles. In this case, the imaging
process cannot be applied immediately to the depth of each reflector. In fact, the process should be
done recursively through the subsurface. For faster computation, the process is applied based on the
spectral division with a depth step of 5 m. The real and imaginary parts of the reflectivity are shown
in Figure 4-38 and Figure 4-39, respectively. Compared to the results obtained by the correct velocity
(see Figure 4-26 and Figure 4-27), it can be seen that the reflectors are placed in the wrong depth levels
and have downward curvatures at the far angles. Also, the maximum angle that is retrieved is around
60 degrees, while it reaches 80 degrees when the direct arrival is estimated from the correct velocity
model. By using the real and imaginary parts, the modulus can be obtained, as shown in Figure 4-40.
By amplitude picking procedure, see Appendix D, the angle-dependent reflectivity can be obtained,
as shown in Figure 4-41. It can be seen that the amplitude of the reflectivity can still be recovered
correctly up to 60 degrees.

Figure 4-36: The models from which the truncated media are extracted in section 4-5. (A) Correct
density model. (B) Wrong velocity model.

4-6 Imaging reflectivity using smooth velocity and density models

In the previous examples, the velocity and density models used to estimate the direct arrivals were
composed of different homogeneous layers separated by interfaces. In practice, however, the velocity
and density models are often estimated as smooth versions of the exact models. Here, the example in
section 4-2 is repeated, but now the truncated media are extracted from the models shown in Figure 4-
42. The velocity and density models are smooth versions of the models in Figure 4-19. This was done
by applying a moving average filter with a length of 100 m. The direct arrival, in this case, will have
smooth ray paths and smooth reflectivity. Therefore, there will be some errors in the amplitudes and
arrival times of the direct arrivals.

As established in section 4-4, the error in the amplitude is compensated in the deconvolution process.
Similar to section 4-5, the imaging process are applied recursively through the subsurface using the
spectral division with a depth step of 5 m. The image of the real part of the angle-dependent reflectivity
is shown in Figure 4-43. It can be seen that the image of the first and second reflectors are placed at the
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Figure 4-37: Comparison between the direct arrivals estimated from the wrong velocity model and
correct velocity model. The focal point is located at x = 0 and zi = 1100 m. (A) Direct
arrival based on a correct velocity model. (B) Direct arrival based on a wrong velocity
model. (C) Projection of the travel time from (A) and (B). The blue curve refers to the
incorrect velocity model while the red curve refers to the correct velocity model. (D)
Amplitude of the direct arrival as a function of offset.

Figure 4-38: Real part of the angle-dependent reflection coefficient as a function of depth obtained
using direct arrivals modeled from a wrong velocity model. (A) First reflector. (B)
Second reflector. (C) Third reflector. The horizontal yellow dashed line represents the
true depth of the reflector.
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Figure 4-39: Imaginary part of the angle-dependent reflection coefficient as a function of depth
obtained using direct arrivals modeled from a wrong velocity model. (A) First reflector.
(B) Second reflector. (C) Third reflector. The horizontal yellow dashed line represents
the true depth of the reflector.

Figure 4-40: Modulus of the angle-dependent reflection coefficient as a function of depth obtained
using direct arrivals modeled from a wrong velocity model. (A) First reflector. (B)
Second reflector. (C) Third reflector.
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Figure 4-41: The angle-dependent reflectivity obtained using the direct arrivals modeled in the wrong
velocity model and correct velocity model. (I) First reflector. (II). Second Reflector.
(III) Third reflector. (A) Reflectivity as a function of angle. (B) Reflectivity as a function
of ray parameter.
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correct depth levels. However, at the second reflector, the event starts curving up at the very far angles.
This could be explained by the inaccuracy in the arrival times of the direct arrival estimated from the
smooth models. At the third reflector, the effect is more pronounced with a downward curvature at
the far angles. In addition, the third reflector is located 10 m below the true depth level. The image
of the modulus is shown in Figure 4-44. By a picking procedure, the angle-dependent reflectivity
is obtained, as shown in Figure 4-45. It can be seen that the range of angles that can be covered is
almost the same as the one estimated by the correct models. Bear in mind that the smooth density and
velocity models are based on these correct models. Therefore, the error is much less than when they
are estimated from inaccurate models.

Figure 4-42: Smooth version of the density and velocity models in Figure 4-19. A moving average
filer of length 100 m has been applied. (A) Density model. (B) velocity model.

4-7 Imaging reflectivity in the presence of random noise

In this example, the same model in section 4-2 is considered but noise added to the reflection data, see
Figure 4-46. The signal-to-noise ratio (SNR) is 20 dB. The noise amplitude distribution is Gaussian.
Note that the response from the deepest reflector can barely be seen. The angle-dependent reflectivity
results, obtained by the Marchenko method from these noisy data, are shown in Figure 4-47. The
effect of the noise can be observed from the deviations around the exact results. At deeper reflectors,
the estimation of the reflectivity becomes more uncertain, however, the trend can still be determined
from these results.

4-8 Imaging reflectivity in an invisible medium

Following a similar example as Zhang et al. (2019), a horizontally layered model is considered with
a constant layer thickness of 200 m and constant velocity of 1500 m/s; only the mass density in the
different layers varies, as shown in Figure 4-48. The model parameters are chosen such that the
primary reflection of the third reflector cancels the first internal multiple between the first and second
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Figure 4-43: Real part of the angle-dependent reflection coefficient as a function of depth obtained
using direct arrivals modeled from smooth density and velocity models. (A) First
reflector. (B) Second reflector. (C) Third reflector. The horizontal yellow dashed line
represents the true depth of the reflector. Note that at the second reflector, the event
starts curving up at the very fat angles, while it is curving down in the third reflector.
Also, the third reflector is located 10 m below the true depth.

Figure 4-44: Modulus of the angle-dependent reflection coefficient as a function of depth obtained
using direct arrivals modeled from smooth density and velocity models. (A) First
reflector. (B) Second reflector. (C) Third reflector. The vertical dashed line indicates
the critical angle.
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Figure 4-45: The angle-dependent reflectivity obtained using the direct arrivalsmodeled in the smooth
models and correct models. (I) First reflector. (II). Second Reflector. (III) Third
reflector. (A) Reflectivity as a function of angle. (B) Reflectivity as a function of ray
parameter.
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Figure 4-46: The modeled reflection response in Figure 4-20 after adding noise with SNR of 20 dB
and Gaussian distribution. The source is located at the surface and (A) x = −2500 m,
(B) x = 0, and (C) x = 2500 m.

reflectors. The third reflector causes a new internal multiple, that is canceled by the primary reflection
from the fourth reflector, and so on. Consequently, the reflection response is invisible from the third
reflector onward, as shown in Figure 4-49.

The approach is tested by applying the imaging process on the first six reflectors. By estimating
the redatumed response at the depth of each reflector, it can be seen that the method does not only
estimate the redatumed response of the visible reflectors but also recovers the redatumed response
of the invisible reflectors, see Figure 4-50. Note that the deeper reflectors require larger number of
iterations. For example, the scheme converges at k = 14 for the third reflector and k = 27 for the sixth
reflector. By applying the imaging process on these six reflectors, the angle-dependent reflectivity is
correctly obtained, as shown in Figure 4-51.

4-9 Imaging reflectivity in the presence of a dipping interface

In this example, a model is considered with a dipping interface and constant velocity; only the mass
density in the different layers varies, as shown in Figure 4-52. The dipping interface has a dip of
about 2.2 degrees. Because of the presence of the dipping interface, the surface reflection response
R (x′′0, x0, t) is asymmetric with respect to x = 0, and the zero-offset travel times are not the same
for the different shot records, see Figure 4-53. The imaging process is applied immediately to the
reflectors. Note that the spectral division does not work here because the medium is laterally variant.
For the dipping interface, the imaging process is applied by placing the sources and receivers parallel
to the reflector (i.e. virtual dipping acquisition surface). In this case, the direct arrivalGd (x′′0, x′i, t) is
modeled from every grid point along the dipping interface, as shown in Figure 4-54. The estimated
angle-dependent reflectivity of the three reflectors are depicted in Figure 4-55. It can be seen that
the Marchenko method successfully retrieves the angle-dependent reflectivity of the reflectors located
below the dipping interface (Figure 4-55II-C and III-C). For the dipping interface, the reflectivity
is only recovered around the zero-incidence angle, see Figure 4-55I-C. This shows that redatuming
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Figure 4-47: The angle-dependent reflectivity in the presence of random noise. (I) zi = 400 m. (II)
zi = 700 m. (III) zi = 1100 m. (A) Reflectivity as a function of angle. (B) Reflectivity
as a function of ray parameter.
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Figure 4-48: Invisible medium with a constant layer thickness of 200 m. (A) Density model. (B)
velocity model.

Figure 4-49: The modeled reflection response of the invisible medium. Note that only the primary
reflection of the first two reflectors are visible. The source is located at the surface and
(A) x = −2500 m, (B) x = 0, and (C) x = 2500 m.
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Figure 4-50: Redatumed reflection response R (xi, x′i, t) obtained by the Marchenko method in the
invisible medium. The virtual source is located at x = 0 and (A) zi = 200 m, (B) zi =
400 m, (C) zi = 600 m, (D) zi = 800 m, (E) zi = 1000 m, and (F) zi = 1200 m.

Figure 4-51: Angle-dependent reflectivity obtained by the Marchenko method in the invisible
medium. (A) zi = 200 m, (B) zi = 400 m, (C) zi = 600 m, (D) zi = 800 m,
(E) zi = 1000 m, and (F) zi = 1200 m.
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the reflection data to a dipping acquisition surface is not sufficient to estimate the angle-dependent
reflectivity. When considering an inhomogeneous velocity model, a shown in Figure 4-56, the effects
of the dipping layer propagates significantly to the deeper horizontal layers, as shown in Figure 4-57. In
this case, the reflectivity is only estimated correctly around the zero-incidence angle for all reflectors.

Figure 4-52: Dipping interface in a medium with constant velocity and varying density. (A) Density
model. (B) velocity model.

Figure 4-53: Themodeled reflection response in the presence of a dipping interface (see Figure 4-52).
The source is located at the surface and (A) x = 2500m, (B) x = 0, and (C) x = 2500m.
Note the reflection response is asymmetric and the zero-offset travel time is not the same
for these three shot records.
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Figure 4-54: Modeled direct arrivals Gd (x′′0 , x′i, t) from sources (red asterisks) located along the
dipping interface and recorded by receivers (blue triangles) at the surface. The (A)
density model and (B) velocity model are extracted from the models in Figure 4-52. (C)
x′i =(-2500 m, 400 m). (D) x′i =(0 m, 600 m). (E) x′i =(2500 m, 800 m).
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Figure 4-55: Angle-dependent reflectivity in the presence of a dipping interfacewith constant velocity
and varying density. (I) First reflector. (II) Second reflector. (III) Third reflector. (A)
Densitymodel. (B) Velocitymodel. (C) Angle-dependent reflectivity. Bear inmind that
the effects of the layers above the redatuming level are removed by the MDD process.
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Figure 4-56: Dipping interface in a medium with a varying velocity and density. (A) Density model.
(B) velocity model.

August 3, 2020



80 Numerical examples

Figure 4-57: Angle-dependent reflectivity in the presence of a dipping interface with varying velocity
and density. (I) First reflector. (II) Second reflector. (III) Third reflector. (A) Density
model. (B) Velocity model. (C) Angle-dependent reflectivity.
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Chapter 5

Discussion and Conclusion

It has been shown that the angle-dependent reflectivity can be correctly retrieved using the Marchenko
method. A surface reflection response and an approximation of the direct arrival from the location of
the virtual source are required for this method. This information is used as input in the Marchenko
iterative scheme to obtain the upgoing and downgoing Green’s functions related to a virtual source
located in the subsurface. By deconvolving the upgoing Green’s function with the downgoing Green’s
function, a redatumed reflection response is obtained with the correct events and amplitudes. The
errors in the Green’s functions are significantly eliminated by the deconvolution process, as long as
both Green’s functions contain the same error. In this case, no correction is necessary for the direct
arrival before estimating the Green’s functions. The application of the imaging principle allows one to
preserve the angle-dependent reflectivity from such a redatumed response by summing all frequency
components along lines of constant ray parameter or angle. This information can be potentially
used as input in a subsequent AVO inversion process to obtain the medium parameters of the target.
These parameters can be linked to geological properties in order to identify the characteristics of the
subsurface.

With numerical examples, the approach has shown the potential to retrieve the true angle-dependent
reflectivity in the presence of a high-contrast medium. This suggests that the approach can image
the angle-dependent reflectivity of a target located below a strongly scattering medium. In addition,
the approach can be applied immediately to the target zone without resolving the overburden. In
the invisible medium example, the approach has shown that the Marchenko method worked excellent
to retrieve the invisible events, which in the data were canceled because of the internal multiples,
with the correct reflectivity. In a medium with varying velocity and density, the approach has been
able to correctly estimate the angle-dependent reflectivity up to the critical angle. This limitation
is due to the fact that the Marchenko method cannot deal with head waves and evanescent waves.
In practical situations, the approach had shown that the angle-dependent reflectivity could still be
preserved even when the direct arrival was estimated from inaccurate density and velocity models.
The use of an inaccurate density model introduced errors to the amplitudes of the direct arrivals,
which were canceled by the deconvolution process. However, the presence of random noise could not
be completely eliminated by this process because the error was no longer the same for both Green’s
functions. The random noise effect was more pronounced at deep targets, where the signal-to-noise
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ratio is typically low. The use of an inaccurate velocity model, which caused an erroneous time shift
and residual moveout, produced an image with wrong depth and reduced the maximum angle for which
the reflectivity can be retrieved. Despite these effects, the approach correctly estimated the angle-
dependent reflectivity. In the presence of a dipping interface above horizontal layers, the approach
obtained the correct reflectivity along the horizontal layers. However, when the velocity varies with
depth, the effect of the dipping interface significantly propagates to the horizontal layers. In this case,
only the zero-incidence reflectivity is obtained. This shows that the approach is still insufficient for
estimating the angle-dependent reflectivity in laterally variant media, and more work is needed.

The Marchenko iterative scheme, which serves as the driving algorithm in the Marchenko method,
solves the coupled Marchenko equations for the focusing and Green’s functions. At every iteration, the
focusing functions are updated, and the Green’s functions are subsequently updated. It has been seen
that in order to fully retrieve the reflectivity, the scheme had to converge. The number of iterations
required for convergence depends on the reflectivity and number of events in the model. For example,
the deeper targets in the invisiblemedium required a larger iteration number. Thismakes theMarchenko
method a costly process, especially when applying the imaging process to many depth levels in the
target zone. Alternatively, the imaging process should be applied with relatively small depth steps.
Such a solution requires selecting the depth steps with care; otherwise, the angle-dependent reflectivity
may be incorrectly estimated.

The maximum angle that can be achieved depends on the design of the surface acquisition. The
evaluated integrals in the coupled Marchenko equations contain stationary points that should be
recorded at the surface in order to retrieve particular events of the Green’s functions and focusing
functions. Typically, deep reflectors will require a wide-angle seismic acquisition due to the effect
of the wave propagation. If the velocity increases with depth, the refraction of the waves helps with
obtaining more angles. The window operator in the Marchenko algorithm plays a fundamental role
in the scheme. At the very far angles, the window operator starts intersecting the downgoing Green’s
function causing a partial removal of the Green’s function. Because the MDD approach uses all the
downgoing Green’s functions instead of only the center one, the lack of the far offset retrieval affects
the offset at which the reflectivity can be obtained.

The multidimensional deconvolution (MDD), which was used to resolve the redatumed reflection
response, is an inversion process that can be unstable. This inverse problem is fundamentally ill-
posed, and it has to be stabilized to be successfully solved. In the numerical examples, the source and
receivers used were dense and well-spaced. In practice, the acquisition geometry is sparse and can
be irregular, which remarkably contributes to the instability of the MDD method such that it becomes
more problematic to obtain a correct solution to the inverse problem.
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Appendix A

Derivation

A-1 Derivation of the Shuey approximation in acoustic media

The 3-term Shuey equation can be written as (Avseth et al., 2005)

A(θ) = A0 +G sin2 θ +B
(
tan2 θ − sin2 θ

)
, (A-1)

with

A0 =
1

2

(
∆c

c̄
+

∆ρ

ρ̄

)
, (A-2)

G =
1

2

∆c

c̄
− 2

∆c2s
∆c2

(
2

∆cs
c̄s

+
∆ρ

ρ̄

)
, (A-3)

B =
1

2

∆c

c̄
, (A-4)

where A is the reflection amplitude coefficient at a certain angle of incidence θ, A0 is the zero-
incidence reflection amplitude coefficient, also known as the intercept,B is the gradient that describes
how A varies with θ, ∆c and ∆cs are the differences of compressional and shear velocities across the
boundary, respectively, ∆ρ is the difference of density across the boundary, c and cs are the average
compressional and shear velocities across the boundary, respectively, and ρ is the average density
across the boundary. Assuming acoustic media, the shear velocity becomes zero. As a result,

G =
1

2

∆c

c̄
= B. (A-5)

By substituting EquationA-5 into EquationA-1, the Shuey approximation in acoustic media is obtained
as follows

A(θ) = A0 +B tan2 θ. (A-6)
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Appendix B

Monopole-to-dipole conversion

The estimated Green’s functions G−,+ (x′′0, x′i, t) and G−,− (x′′0, x′i, t) will behave with a monopole
signature since the direct arrival Gd (x′′0, x′i, t) is modeled with a monopole source. In order to have
a redatumed reflection response R (xi, x′i, t) as if there is a dipole source at x′i, a monopole-to-dipole
conversion has to be applied, according to

P̂−,+2 (x′′0 , x′i, ω) =
2

jωρ
∂zP̂

−,+
1 (x′′0 , x′i, ω) |z=zi , (B-1a)

P̂−,−2 (x′′0 , x′i, ω) =
2

jωρ
∂zP̂

−,−
1 (x′′0 , x′i, ω) |z=zi , (B-1b)

where P̂2 (x′′0, x′i, ω) is the wavefield with a dipole signature,

P̂−,+1 (x′′0 , x′i, ω) = Ĝ−,+ (x′′0 , x′i, ω) Ŝ(ω), (B-2a)

P̂−,−1 (x′′0 , x′i, ω) = Ĝ−,− (x′′0 , x′i, ω) Ŝ(ω), (B-2b)

with Ŝ(ω) as the source signature, and ρ is the local density. The conversion can be sufficiently carried
out in the wavenumber-frequency domain by applying the rule ∂z −→ jkz for a source radiating
downward:

P̃−,+2 (kx, zi, ω) =
2kz
ωρ

P̃−,+1 (kx, zi, ω) , (B-3a)

P̃−,−2 (kx, zi, ω) =
2kz
ωρ

P̃−,−1 (kx, zi, ω) , (B-3b)

where kz is the vertical wavenumber given by

kz =

√
ω2

c2
− k2x, (B-4)

with c as the local velocity and kx as the horizontal wavenumber (Equation 3-6a).
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Appendix C

Deconvolution and stabilization

The deconvolution process can produce unstable results that require stabilization before estimating the
reflectivity. Here, the process is demonstrated step by step using the spectral division (Equation 2-38).
Similar steps can also be implemented for the MDD (Equation 2-36). The example in section 4-1
is considered with a focal level located at zi = 1100 m. Figure C-1 shows the result after applying
deconvolution and mapping into the angle-frequency domain. Note the artifacts in the very low
frequencies (below approximately 7 Hz) and very high frequencies (above approximately 100 Hz),
see Figure C-1B. Moreover, there are other artifacts at the very far angles, see Figure C-1A. All of
these artifacts are due to the very small values outside the bandwidth of the signal. Division by these
very small values produces a very large noisy spectrum that contaminates the whole signal. The
problem can be reduced either by filtering or by adding a small positive non-zero constant e to the
denominator (see Equation 2-38). Also, the two methods can be combined to solve the problem. First,
the problem is stabilized by trying different values of e. Figure C-2 shows the result after adding a
value of e = 10−5. Note that the high frequencies and the artifacts at the very far angles are reduced
notably without affecting the other frequencies. However, the very low frequencies are still amplified.
In order to stabilize the very low frequencies, the value of e has to be increased. Figure C-3 shows the
result after increasing the constant to e = 10−4. In this case, the very high frequencies are reduced
even further, and the very low frequencies are also reduced to some extent. However, it can be seen
that the other frequencies are affected slightly, see Figure C-3B. This will affect the estimation of the
angle-dependent reflectivity. Alternatively, the problem should be stabilized first by applying tapering
in both frequency and angle domains. This can be done by defining a band-pass filter in both domains,
see Figure C-4. Beyond the limits of the filter, a sinusoidal taper is applied, see Figure C-5. Note
that the very low frequencies and very high frequencies are stabilized without affecting the other
frequencies. There are still some small artifacts at the very far angles which could not be reduced
by the filter. However, these small artifacts can be reduced by applying a small value of e = 10−6,
see Figure C-6. It can be seen that the small artifacts are eliminated without causing any impact
on the other frequencies. This solution is considered to be suitable for estimating angle-dependent
reflectivity.
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Figure C-1: The result of the deconvolution process before applying stabilization. (A) The redatumed
reflection response after mapping into the angle-frequency domain. Note the artifacts at
the very low frequency and very high frequency. Also, there are artifacts at the very far
angles (at the left edge of the panel). (B) The frequency domain for θ = 0. The dotted
red ellipses highlight the artifacts.

Figure C-2: The impact of the stabilization parameter e on the deconvolution result. (A) The reda-
tumed reflection response after applying stabilization using e = 10−5. Note the artifacts
are reduced notably except the very low frequency. (B) The frequency domain for θ = 0
before and after adding e. Note the impact on the high frequencies.
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Figure C-3: The impact of using a larger value of e on the deconvolution result. (A) The redatumed
reflection after applying stabilization using e = 10−4. Note the the very high frequency
are reduced significantly and the very low frequency are also reduced to some extent.
(B) The frequency domain for θ = 0 after increasing e. Note that the other frequencies
(7Hz to 80Hz) have slightly decreased.

Figure C-4: Defining the limits of the band-pass filter. (A) The redatumed reflection response in
the angle-frequency domain with no stabilization. The horizontal black dashed lines
represent the limits of the band-pass filter in the frequency domain while the vertical
red dashed lines indicate the limits of the band-pass filter in the angle domain. (B) The
frequency domain for θ = 0. The vertical black dashed lines represent the limits of the
band-pass filter.
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Figure C-5: The impact of the band-pass filter. (A) The redatumed reflection response after applying
the band-pass filter. Note that the artifacts in both low and high frequencies are eliminated
except small artifacts in the far angles. (B) The frequency domain for θ = 0 after applying
the band-pass filter.

Figure C-6: The impact of combining the stabilization parameter e and filtering. (A) The redatumed
reflection response after applying e and filtering. Note that the small artifacts in Figure C-
5A are removed after adding e = 10−6. (B) The frequency domain for θ = 0. Note that
the other frequencies are not affected by the stabilization parameter e.
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Amplitude picking procedure

The amplitude picking procedure is applied after obtaining the image of the angle-dependent reflec-
tivity. This can be done using the functions envelope and max in Matlab (or any similar functions
in other programming languages). Figure D-1A shows an image of a reflector located at 400 m with
c1 = 1800 m/s, c2 = 2300 m/s, ρ1 = 1000 kg/m3, and ρ2 = 3000 kg/m3. The envelope is estimated
for every depth level as shown in Figure D-1B. After that, the envelope with the maximum amplitude
is considered for the reflectivity. Compared to the exact reflectivity, see Figure D-1C, it can be seen
that the reflectivity is estimated correctly up to the critical angle. The procedure can also be applied
when the image contains downward curvature (i.e. non-flat event) due to estimating the direct arrival
from a wrong velocity model, see Figure D-2.
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Figure D-1: Amplitude picking procedure on a flat event, with c1 = 1800 m/s, c2 = 2300 m/s,
ρ1 = 1000 kg/m3, and ρ2 = 3000 kg/m3. (A) Image of the reflector (modulus).
(B) The envelope for every depth level (solid thin curves with different colors) and
maximum envelope (red dashed curve). The maximum envelope represents the modulus
of the angle-dependent reflectivity. (C) Plotting the maximum envelope with the exact
reflectivity.

Figure D-2: Amplitude picking procedure on a non-flat event, with c1 = 1800 m/s, c2 = 2300
m/s, ρ1 = 1000 kg/m3, and ρ2 = 3000 kg/m3. (A) Image of the reflector (modulus).
(B) The envelope for every depth level (solid thin curves with different colors) and
maximum envelope (red dashed curve). The maximum envelope represents the modulus
of the angle-dependent reflectivity. (C) Plotting the maximum envelope with the exact
reflectivity.
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Matlab scripts

E-1 1D Marchenko

E-1-1 Marchenko redatuming in 1D

Forward modelling

1function [ T , R ]= layerc ( cp , rho , dz , nt , dt , np , dp , p0 , norm , mul )
% LAYERCODE Compute the response of
% an 1D acoustic medium
%
% syntax: [T,R]=layercode(Cp,Rho,dz,nt,dt,np,dp,p0,norm)

6%
%
% R = Reflection response (t,p)
% T = Transmission response (t,p)
%

11% Cp = Velocity log
% Rho = Density log
% dz = depth step
% nt = number of time samples
% dt = time sampling

16% np = number op rayparameters
% dp = rayparameter sampling
% p0 = first rayparameter
% norm = 0: flux normalization; 1: pressure normalization
% mul = 0: no multiples; 1: multiples

21%

%number of layers
%------------------

26if length ( cp ) ~=length ( rho )
disp ( ’WARNING: discripance between density and velocity log’ ) ;
disp ( ’ Smallest is chosen!’ ) ;

end ;
N = min ( [ length ( cp ) length ( rho ) ] ) ;

31
%frequencies
%------------------
om = ( 0 : ( nt / 2 ) ) .∗ ( 2∗ pi / ( nt∗dt ) ) ;
om = om . ’ ;

36nf = ( nt / 2 ) +1 ;
p = ( 0 : np−1) .∗ dp + p0 ;

%initialise the GLOBAL quantities
%-------------------------

41Rd = zeros ( nf , np ) ; % Upgoing Reflection response
Ru = zeros ( nf , np ) ; % Downgoing Reflection response
Td = ones ( nf , np ) ; % Downgoing Transmission response
Tu = ones ( nf , np ) ; % Upgoing Transmission response
T2 = ones ( nf , np ) ; % Two-way Transmission response ????
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46
%start the recursion loop over the N-1 layers
for n=1:N−1

% if 10*round(n/10) == n
51% fprintf(’n = %g\n’,n)

% end

%calculate the local operators
%-vertical slowness- (number of layers (N), number of p(np))

56
q1 = sqrt ( cp ( n ) .^(−2)−p . ^ 2 ) ;
q2 = sqrt ( cp ( n+1) .^(−2)−p . ^ 2 ) ;

%-reflection coefficients - and
61%-flux normalised transmission coefficients -

r = ( rho ( n+1) .∗ q1−rho ( n ) .∗ q2 ) . / ( rho ( n+1) .∗ q1+rho ( n ) .∗ q2 ) ;
if norm == 0

td = sqrt ( rho ( n+1) .∗ q1 .∗ rho ( n ) .∗ q2 ) . / ( 0 . 5 . ∗ ( rho ( n+1) .∗ q1+rho ( n ) .∗ q2 ) ) ;
66tu = td ;

else
td = 1 + r ;
tu = 1 − r ;

end
71if mul==0

td=1;
tu=1;

end
t2 = tu .∗ td ;

76
% calculate the phase shift operator

q = ones ( nf , 1 ) ∗q1 ;
q = real ( q ) + 1i∗ ( sign ( real ( om ) ) ∗ones ( 1 , np ) ) .∗ imag ( q ) ;

81r = ones ( nf , 1 ) ∗r ;
td = ones ( nf , 1 ) ∗td ;
tu = ones ( nf , 1 ) ∗tu ;
t2 = ones ( nf , 1 ) ∗t2 ;
om1 = om∗ones ( 1 , np ) ;

86w = exp (1 i∗om1 .∗ q∗dz ) ;
w2 = w . ^ 2 ;

%calculate the multiple operator
if mul == 1

91M = (1−w2 .∗ r .∗ Ru ) .^(−1) ;
else

M = 1 ;
end

96%calculate the R downgoing
Rd = Rd + T2 .∗ w2 .∗ r .∗ M ;
%calculate the R upgoing
Ru = −r + t2 .∗ w2 .∗ Ru .∗ M ;
%calculate the T downgoing

101Td = td .∗ w .∗ Td .∗ M ;
%calculate the T upgoing
Tu = tu .∗ w .∗ Tu .∗ M ;
%calculate the T square
T2 = Td .∗ Tu ;

106
end

%calculate the inverse fft’s
111

T = [ Td ( 1 : nt / 2 , : ) ; real ( Td ( nt / 2 + 1 , : ) ) ; conj ( Td ( nt / 2 :−1 : 2 , : ) ) ] ;
T = real ( ifft ( conj ( T ) ) ) ;

R = [ Rd ( 1 : nt / 2 , : ) ; real ( Rd ( nt / 2 + 1 , : ) ) ; conj ( Rd ( nt / 2 :−1 : 2 , : ) ) ] ;
116R = real ( ifft ( conj ( R ) ) ) ;

Ricker wavelet

function s=rickerJ ( npts , freq , dt , nsw )
% Function ricker.m computes a symmetric Ricker wavelet of predominant
% frequency freq. The number of points in the wavelet is npts. The

4% sampling interval is dt (be sure npts and dt are large enough to
% adequately represent the entire wavelet). Be sure dt is small enough
% to avoid aliasing. nsw is the number of points on each end of the
% wavelet for applying a taper to smooth any possible edge effects of the
% wavelet. In general, to determine dt and npts for a given frequency:

9% dt >= 1/(10*freq); npts ~ (3/freq)/dt
% The wavelet is shifted by half the wavelet length so that the travel
% times for reflections are located at the center of the wavelet.
timesh=npts∗dt / 2 ;
pi2=sqrt ( pi ) / 2 ;

14b=sqrt ( 6 ) / ( pi∗freq ) ;
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const=2∗sqrt ( 6 ) / b ;
s=zeros ( npts , 1 ) ;
for i=1: npts

tim1=(i−1)∗dt ;
19tim2=tim1−timesh ;

u=const∗tim2 ;
amp = ( ( ( u ^2 ) / 4 ) −(0.5) ) ∗pi2 ∗ ( exp(−u ^ 2 / 4 ) ) ;
s ( i ) =amp ;

end
24sm=max ( abs ( s ) ) ;

s=s / sm ;
if nsw>0

for i=1: nsw
j=nsw−i ;

29fac =0 . 5∗ ( cos ( ( pi∗j ) / nsw ) +1) ;
s ( i ) =s ( i ) ∗fac ;

end
for i=1: nsw

j=i−1;
34fac =0 . 5∗ ( cos ( ( pi∗j ) / nsw ) +1) ;

k=npts−nsw+i ;
s ( k ) =s ( k ) ∗fac ;

end
end

1D Marchenko

function [ Gp , Gm , f1p , f1m , f2p , f2m , a ] = Marchenko ( x , k , R , Rs , T , P , Pd , Dw , D0w , td , dt )
2

% Preparation for the scheme
FFC = @ ( x ) ifft ( conj ( fft ( x ) ) ) ; % Time Reversal for Gp
Om = @ ( x ) T .∗ Rs ( T .∗ R ( x ) ) ; % Create the Omega operator (Theta R* Theta R)
Oms = @ ( x ) T .∗ R ( T .∗ Rs ( x ) ) ; % Create the Omega* operator (Theta R Theta R

*)
7Gp = zeros ( length ( x ) ,k+1) ; % Pre-allocate memory

Gm = Gp ;
f1p = Gm ;
f1m = f1p ;
f2p = f1m ;

12f2m = f2p ;

% Determine the scaling factor for the first arrival
z = Dw ; % Set the first arrival unscaled
xi = −Pd .∗ R ( T .∗ Rs ( Dw ) ) ; % The first iteration

17for n1=1:k % Start the iteration loop
z = Oms ( z ) ; % Update the event
xi = xi − Pd .∗ R ( T .∗ Rs ( z ) ) ; % Update the amplitude of the first arrival

end
xi = circshift ( xi,−round ( td / dt ) ) ; % Shift the first arrival to zero time

22xi = ifft ( fft ( D0w ) + fft ( xi ) ) ; % Add the delta wave to the updated events
a = sqrt ( max ( D0w ) / max ( xi ) ) ; % Use the proportion between the amplitudes to

scale the first arrival

% Start the Marchenko scheme
Gm ( : , 1 ) = P .∗ R ( x ) ; % Set the first iteration cases for all the

events
27Gp ( : , 1 ) = FFC ( x ) ;

f1p ( : , 1 ) = x ;
f1m ( : , 1 ) = T .∗ R ( x ) ;
f2p ( : , 1 ) = −FFC ( f1m ( : , 1 ) ) ;
f2m ( : , 1 ) = f1p ( : , 1 ) ;

32y = x ; % Set the events for the iterations
x1 = x ;
for n=1:k % Start the iteration loop

Gp ( : , n+1) = FFC ( x1 − P .∗ Rs ( T .∗ R ( y ) ) ) ; % Update the downgoing Green’s function
x = Om ( x ) ; % Update the events

37y = y + x ;
Gm ( : , n+1) = P .∗ R ( y ) ; % Update the upgoing Green’s function
f1p ( : , n+1) = y ; % Update the downgoing first focusing function
f1m ( : , n+1) = T .∗ R ( y ) ; % Update the upgoing first focusing function
f2p ( : , n+1) = −FFC ( f1m ( : , n+1) ) ; % Update the downgoing second focusing

function
42f2m ( : , n+1) = f1p ( : , n+1) ; % Update the upgoing second focusing function

end
end

E-2 Imaging angle-dependent reflectivity

E-2-1 Mapping the wavenumber into the angle domain

1
function [ df , faxis , dk , kaxis , datafk , dataftheta , m , re , im ] = kx2theta ( data , nx , dx , nt , dt , c1 , c2 , rho1 , rho2 )
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% This program maps the horizontal wavenumber into angle in
6% the wavenumber -frequency domain using linear interpolation. The program

% also estimates the angle-dependent reflectivity and compares the results
% to the exact ones.

% For thoery, the user can refer to De Bruin, C. G., Wapenaar, C. P., and Berkhout , A.
11% J. (1990). Angle-dependent reflectivity by means of prestack migration.

% Geophysics , 55(9): 1223 1234 .

% Note: the program is designed for a 2D medium (x-z) only. Also, the
% results may need stabilization before estimating the reflectivity

16

%% Inputs
% data: input data in the space-time domain
% nx: number of samples in the space domain

21% dx: spatial sampling in m
% nt: number of samples in the time domain
% dt: temporal sampling in s
% c1: velocity of the upper layer in m/s
% c2: velocity of the lower layer in m/s

26% rho1: density of the upper layer in kg/m3
% rho2: density of the lower layer in kg/m3

%% Outputs
% df: frequency sampling

31% faxis: frequency axis
% dk: wavenumber sampling
% kaxis: wavenumber axis
% datafk: data in wavenumber -frequency domain
% dataftheta: data in angle-frequency domain

36% m: Moduli
% re: real part
% im: imaginary part

41
%% The Program starts from this line

% Estimate the frequency sampling in Hz
df = 1 / ( nt∗dt ) ;

46
% Generate the frequency axis in Hz
faxis= 0 : df : ( nt−1)∗df ;

51% Estimate the spatial sampling in the wavenumber -frequency domain in 1/m
dk=2∗pi / ( nx∗dx ) ;

% Generate the wavenumber axis in 1/m
kaxis=zeros ( 1 , nx ) ;

56kaxis ( 1 : ( nx−1) / 2+1 ) =−((nx−1) / 2 ) ∗dk : dk : 0 ;
kaxis ( ( nx−1) / 2+2 : end ) =dk : dk : ( ( nx−1) / 2 ) ∗dk ;

% Apply 2D Fourier transform
datafk=fftshift ( fft2 ( data ) , 2 ) ∗dx∗dt ∗2 ;

61

% Find the size of the datafk
[ v h ] = size ( datafk ) ;

66% Estimate the angular frequency
omega = faxis∗2∗pi ;

% Initiate the matrix of the angle of incidence
theta=zeros ( v , h ) ;

71
% Generate the angle axis using a linear spacing with nx
phi = linspace (−90 ,90 ,nx ) ;

76
% Estimate the angle of incidence for every frequency
for i=1:v / 2

theta ( i , : ) =asind ( c1∗kaxis / omega ( i ) ) ;
81

end

% Map kx into theta using positive frequency only
86

for i=2:v / 2

% Select real part
91X = real ( theta ( i , : ) ) ;
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% Select frequency contributions
V = datafk ( i , : ) ;

96% Exclude repeated angle.
[ x , index ] = unique ( X ) ;

dataftheta ( i , : ) = 2∗interp1 ( X ( index ) ,V ( index ) , phi , ’linear’ , ’extrap’ ) ;

101end

106
% Estimate the modolus of the reflectivity
m=abs ( sum ( dataftheta ) / nt ) ;

% Estimate the real part of the reflectivity
111re=real ( sum ( dataftheta ) / nt ) ;

% Estimate the imaginary part of the reflectivity
im=imag ( sum ( dataftheta ) / nt ) ;

116
% Estimate the exact reflectiviy
for j=1: length ( phi )
R ( j ) = abs ( ( rho2∗c2∗cosd ( phi ( j ) )−rho1∗sqrt ( c1^2−c2^2∗sind ( phi ( j ) ) ^2 ) ) / ( rho2∗c2∗cosd ( phi ( j ) ) +rho1∗sqrt ( c1^2−c2^2∗sind ( phi ( j

) ) ^2 ) ) ) ;
end

121

figure

subplot ( 1 , 3 , 1 )
126imagesc ( kaxis , faxis , abs ( datafk ) )

xlabel ( ’Wavenumber (1/m)’ , ’Fontsize’ , 1 8 )
ylabel ( ’frequency (Hz)’ , ’Fontsize’ , 1 8 )
title ( ’Wavenumber -frequency (Modulus)’ )
xlim ( [ min ( kaxis ) max ( kaxis ) ] )

131ylim ( [ 0 max ( faxis ( 1 : v / 2 ) ) ] )
ax = gca ;
ax . FontSize = 25 ;

subplot ( 1 , 3 , 2 )
136imagesc ( phi , faxis ( 1 : v / 2 ) , abs ( dataftheta ) )

xlabel ( ’Angle (Degree)’ , ’Fontsize’ , 1 8 )
ylabel ( ’frequency (Hz)’ , ’Fontsize’ , 1 8 )
title ( ’Angle-frequency (Modulus)’ )
xlim ([−90 90 ] )

141ylim ( [ 0 max ( faxis ( 1 : v / 2 ) ) ] )
ax = gca ;
ax . FontSize = 25 ;

146subplot ( 1 , 3 , 3 )
plot ( phi , R , ’k’ , ’linewidth’ , 5 )
hold on
plot ( phi , m , ’r’ , ’linewidth’ , 5 )
xlabel ( ’Angle (Degree)’ , ’Fontsize’ , 1 8 )

151ylabel ( ’Amplitude’ , ’Fontsize’ , 1 8 )
xlim ([−90 90 ] )
title ( ’Modulus as function of ray parameter’ )
ylim ( [ 0 1 . 2 ] )
ax = gca ;

156ax . FontSize = 25 ;

end

E-2-2 Mapping the wavenumber into the ray parameter domain

1
function [ df , faxis , dk , kaxis , datafk , paxis , datafp , m , re , im ] = kx2p ( data , nx , dx , nt , dt , c1 , c2 , rho1 , rho2 , vmin )

% This program maps the horizontal wavenumber into ray parameter (slowness) in
6% the wavenumber -frequency domain using linear interpolation. The program

% also estimates the angle-dependent reflectivity and compares the results
% to the exact ones.

% For thoery, the user can refer to De Bruin, C. G., Wapenaar, C. P., and Berkhout, A.
11% J. (1990). Angle-dependent reflectivity by means of prestack migration.

% Geophysics , 55(9): 1223 1234 .

% Note: the program is designed for a 2D medium (x-z) only. Also, the
% results may need stabilization before estimating the reflectivity

16

%% Inputs

August 3, 2020



102 Matlab scripts

% data: input data in the space-time domain
% nx: number of samples in the space domain

21% dx: spatial sampling in m
% nt: number of samples in the time domain
% dt: temporal sampling in s
% c1: velocity of the upper layer in m/s
% c2: velocity of the lower layer in m/s

26% rho1: density of the upper layer in kg/m3
% rho2: density of the lower layer in kg/m3
% vmin: minimum velocity in the data

%% Outputs
31% df: frequency sampling

% faxis: frequency axis
% dk: wavenumber sampling
% kaxis: wavenumber axis
% datafk: data in wavenumber -frequency domain

36% paxis: ray parameter axis
% datafp: data in ray parameter -frequency domain
% m: Moduli
% re: real part
% im: imaginary part

41

%% The Program starts from this line
46

% Estimate the frequency sampling in Hz
df = 1 / ( nt∗dt ) ;

% Generate the frequency axis in Hz
51faxis= 0 : df : ( nt−1)∗df ;

% Estimate the spatial sampling in the wavenumber -frequency domain in 1/m
dk=2∗pi / ( nx∗dx ) ;

56
% Generate the wavenumber axis in 1/m
kaxis=zeros ( 1 , nx ) ;
kaxis ( 1 : ( nx−1) / 2+1 ) =−((nx−1) / 2 ) ∗dk : dk : 0 ;
kaxis ( ( nx−1) / 2+2 : end ) =dk : dk : ( ( nx−1) / 2 ) ∗dk ;

61
% Apply 2D Fourier transform
datafk=fftshift ( fft2 ( data ) , 2 ) ∗dx∗dt ∗2 ;

66% Find the size of the datafk
[ v h ] = size ( datafk ) ;

% Estimate the angular frequency
omega = faxis∗2∗pi ;

71

% Compute the ray parameter domain
pmin =0;
pmax =1/ vmin ;

76dp = ( pmax−pmin ) / ( 5 0 0 ) ;
paxis=−pmax : dp : pmax ;

81for i=2: nt / 2

p ( i , : ) =kaxis / omega ( i ) ;

end
86

for i=2: nt / 2

X = ( p ( i , : ) ) ;
V = datafk ( i , : ) ;

91
[ x , index ] = unique ( X ) ;

datafp ( i , : ) = 2∗interp1 ( X ( index ) ,V ( index ) , paxis , ’linear’ , ’extrap’ ) ;

96end

% Estimate the modolus of the reflectivity
m=abs ( sum ( datafp ) / nt ) ;

101
% Estimate the real part of the reflectivity
re=real ( sum ( datafp ) / nt ) ;

% Estimate the imaginary part of the reflectivity
106im=imag ( sum ( datafp ) / nt ) ;
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% Estimate the exact reflectiviy
for j=1: length ( paxis )

111R ( j ) = abs ( ( rho2∗sqrt ( ( 1 / c1 )^2−paxis ( j ) ^2 )−rho1∗sqrt ( ( 1 / c2 )^2−paxis ( j ) ^2 ) ) / ( rho2∗sqrt ( ( 1 / c1 )^2−paxis ( j ) ^2 )+rho1∗sqrt ( ( 1 / c2
)^2−paxis ( j ) ^2 ) ) ) ;

end

figure

116subplot ( 1 , 3 , 1 )
imagesc ( kaxis , faxis , abs ( datafk ) )
xlabel ( ’Wavenumber (1/m)’ , ’Fontsize’ , 1 8 )
ylabel ( ’frequency (Hz)’ , ’Fontsize’ , 1 8 )
title ( ’Wavenumber -frequency (Modulus)’ )

121xlim ( [ min ( kaxis ) max ( kaxis ) ] )
ylim ( [ 0 max ( faxis ( 1 : v / 2 ) ) ] )
ax = gca ;
ax . FontSize = 25 ;

126subplot ( 1 , 3 , 2 )
imagesc ( paxis , faxis ( 1 : v / 2 ) , abs ( datafp ) )
xlabel ( ’Ray parameter (1/m)’ , ’Fontsize’ , 1 8 )
ylabel ( ’frequency (Hz)’ , ’Fontsize’ , 1 8 )
title ( ’Ray parameter -frequency (Modulus)’ )

131xlim ( [ min ( paxis ) max ( paxis ) ] )
ylim ( [ 0 max ( faxis ( 1 : v / 2 ) ) ] )
ax = gca ;
ax . FontSize = 25 ;

136
subplot ( 1 , 3 , 3 )
plot ( paxis , R , ’k’ , ’linewidth’ , 5 )
hold on
plot ( paxis , m , ’r’ , ’linewidth’ , 5 )

141xlabel ( ’Ray parameter (1/m)’ , ’Fontsize’ , 1 8 )
ylabel ( ’Amplitude’ , ’Fontsize’ , 1 8 )
xlim ( [ min ( paxis ) max ( paxis ) ] )
title ( ’Modulus as function of angle’ )
ylim ( [ 0 1 . 2 ] )

146ax = gca ;
ax . FontSize = 25 ;

end

E-2-3 Imaging condition

function [ image_m_theta , image_re_theat , image_im_theta ] = imaging ( Gmin , Gplus , nz , dz , nx , dx , nt , dt , c1 , c2 , e )

% This program carried out the imaging process in the angle-frequency
5% domain and produce the image of the angle-dependent reflectiviy as a

% function of depth

%% Inputs
% Gmin: Upgoing Green’s function in the space-time domain

10% Gplus: Downgoing Green’s function in the space-time domain
% nz: number of samples in the depth domain
% dz: spatial sampling in the vertical direction m
% nx: number of samples in the space domain
% dx: spatial sampling in the horizontal direction m

15% nt: number of samples in the time domain
% dt: temporal sampling in s
% c1: velocity of the upper layer in m/s
% c2: velocity of the lower layer in m/s
% e: stabilization parameter (small positive constant)

20
%% Outputs
% image_m_theta: image of the modolus of the reflectivity
% image_re_theta: image of the real part of the reflectivity
% image_im_theta: image of the imaginary part of the reflectivity

25

%% The Program starts from this line

30% Generate depth axis in m
zaxis =0: dz : nz∗dx ;

% Estimate the frequency sampling in Hz
df = 1 / ( nt∗dt ) ;

35
% Generate the frequency axis in Hz
faxis= 0 : df : ( nt−1)∗df ;

40% Estimate the spatial sampling in the wavenumber -frequency domain in 1/m
dk=2∗pi / ( nx∗dx ) ;

% Generate the wavenumber axis in 1/m
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kaxis=zeros ( 1 , nx ) ;
45kaxis ( 1 : ( nx−1) / 2+1 ) =−((nx−1) / 2 ) ∗dk : dk : 0 ;

kaxis ( ( nx−1) / 2+2 : end ) =dk : dk : ( ( nx−1) / 2 ) ∗dk ;

50for i=1: length ( zaxis )

% Apply 2D Fourier transform
Gminfk=fftshift ( fft2 ( Gmin{i } ) , 2 ) ;
Gplusfk=fftshift ( fft2 ( Gplus{i } ) , 2 ) ;

55

divide = ( ( data1_fk ) .∗ conj ( data2_fk ) ) . / ( ( data2_fk .∗ conj ( data2_fk ) ) +e ) ;

60

% Find the size of the datafk
[ v h ] = size ( divide ) ;

65% Estimate the angular frequency
omega = faxis∗2∗pi ;

% Initiate the matrix of the angle of incidence
theta=zeros ( v , h ) ;

70
% Generate the angle axis using a linear spacing with nx
phi = linspace (−90 ,90 ,nx ) ;

75
% Estimate the angle of incidence for every frequency
for i=1:v / 2

theta ( i , : ) =asind ( c1∗kaxis / omega ( i ) ) ;
80

end

% Map kx into theta using positive frequency only
85

for i=2:v / 2

% Select real part
90X = real ( theta ( i , : ) ) ;

% Select frequency contributions
V = divide ( i , : ) ;

95% Exclude repeated angle.
[ x , index ] = unique ( X ) ;

dataftheta ( i , : ) = 2∗interp1 ( X ( index ) ,V ( index ) , phi , ’linear’ , ’extrap’ ) ;

100end

105
% Estimate the modolus of the reflectivity
m=abs ( sum ( dataftheta ) / nt ) ;

% Estimate the real part of the reflectivity
110re=real ( sum ( dataftheta ) / nt ) ;

% Estimate the imaginary part of the reflectivity
im=imag ( sum ( dataftheta ) / nt ) ;

115

% Image of the modolus
image_m_theta{i} = m ;

120% Image of the real part
image_re_theat{i} = re ;

% Image of the imaginary part
image_im_theta{i} = im ;

125

end
130

end
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