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Exploring normalizing flow for anomaly detection

Abstract

Anomaly detection is a task of interest in many do-
mains. Typical way of tackling this problem is using
an unsupervised way. Recently, deep neural network
based density estimators such as Normalizing flows
have seen a huge interest. The ability of these mod-
els to do the exact latent-variable inference and exact
log-likelihood calculation with invertible architecture
makes them interesting for the task of anomaly detec-
tion. In this work we explore the such normalizing
flow-based model approach for anomaly detection in
the novel BoroscopeV1 dataset which contains videos
of the actual industry boroscope video material and
has large noise. We verify the correctness of the mod-
els on a toy dataset. We found that the black pixels and
high frequency in the image affect the model likelihood
adversely. The experimental evidence shows that the
normalizing flow-based approach can be used for the
task of anomaly detection.

1. Introduction

Anomaly detection, also known as outlier detection
or novelty detection is a problem of detecting data sig-
nificantly different from the normal data. Given a col-
lection of data it is always desirable to automatically
determine which instances of it are unusual. This is
a fundamental machine learning task that has applica-
tions in fields ranging from medicine, astronomy, fault
detection, intrusion detection [10, 16, 17, 45] Tradi-
tional algorithms used for anomaly detection face dif-
ficulties when applied on high-dimensional data such
as images. Along with that these algorithms require
manual feature engineering [12].

Deep neural networks have shown a great ability to
solve the complex visual tasks. It automates the fea-
ture learning process and thus has become de facto

approach for many computer vision task. Supervised
models have proven themselves for object recognition
models, but they require labels of the data samples. In
anomaly detection this is the biggest challenge since
most of the times the anomalies are unknown and un-
common [11]. Thus, making the construction of siz-
able dataset is a difficult task. In this work, we make
use of novel boroscope dataset. It shares little similar-
ities with other publicly available dataset. The dataset
specifics are explained later in the article in section 5.

Anomaly detection is typically solved by the unsu-
pervised methods by first training the model with the
normal data and at test time estimating the deviance
of each test sample from the trained model. Recon-
struction based approach using the autoencoder is the
most common way tackling this problem in the liter-
ature. [8] This works explores the anomaly detection
problem using normalizing flow-based model. With
the ability to do exact latent-variable inference and the
exact log-likelihood calculation the flow-based models
have seen some interest from the research community
in recent past [14, 15, 24, 25, 44, 49].

The advantage of flow-based model for anomaly
detection over autoencoder based approaches is that,
minimizing the reconstruction error does not guarantee
that the anomaly score of normal data to be less than
that of anomaly data samples, as the anomaly score
of anomalous data is not considered while calculat-
ing the reconstruction error [52]. However, minimiz-
ing the negative log-likelihood for the normalizing-
flows based model for the normal data samples im-
plies the maximizing the negative log-likelihood of the
other data samples, which also includes the anoma-
lous samples. Therefore, this work demonstrate the
use of flow-based model for the task of anomaly de-
tection using the simple objective function of negative
log-likelihood.

The major contributions of this thesis work are: 1)
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We show that the black pixels adversely affect the like-
lihood values of the flow-based model. 2) We show
that the convolutional autoencoder is unable to detect
small anomalies in the images and thus establish the
need for a approach different that reconstruction based
approach for anomaly detection. 3) We show that fre-
quency of the image does play a role in the case of
the normalizing flow-based model and convolutional
autoencoder

2. Related Work

Anomaly detection (AD) has long been a topic of
interest in various fields [9]. The importance of un-
derstanding the normal behaviour of a system has al-
ways been a point of interest. Traditional machine
learning techniques such as Support Vector Machines
(SVM) [50], k-nearest neighbors (KNN) have shown
great success at outlier detection tasks [7, 40]. How-
ever, as the size of the dataset started getting larger
and more complex, these traditional methods are no
longer the state of the art when it comes to the task of
anomaly detection as they do not scale well [8]. Es-
pecially when it comes to high dimensional complex
data such as images. With the rise of deep learning in
the last decade, many computer vision problems have
seen a huge boost in performance and accuracy [5].
Tasks such as object detection, recognition, and seg-
mentation are solved with the help of convolutional
neural networks (CNNs) with state of the art results
compared to traditional machine learning because of
the automatic feature extraction capacity of the neural
networks [8, 38].

Traditional methods for anomaly detection

Traditional machine learning approaches for
anomaly detection include methods such as one-class
classification using SVM [41] where radial basis
function (RBF) kernel is used to learn a region that
contains the data instances. At test time, anomalous
samples are identified only if they fall outside the
learned region. A variation of this method, Support
Vector Data Description (SVDD) [48] defines the
smallest hypersphere in the latent space describing the
training samples and the anomalies are identified if
they fall outside the defined hypersphere.

KNN is an unsupervised approach which is tradi-
tionally used for anomaly detection [4, 6, 18, 54].

In this approach, an anomaly score is determined us-
ing the sum of the distances from the k nearest neigh-
bors from the test instance. In other work, V.Skvara,
et al. [47] shows the applicability of the KNN for
anomaly detection tasks in comparison to deep gener-
ative models such as Generative Adversarial Networks
(GANs) [21], Variational Autoencoders (VAEs) [26]
and Autoencoders (AEs) [23]. However, this compari-
son was not done on image datasets, while in our prob-
lem setting we use image data only, here deep learning
methods have a clear upper hand [8]. Along with that,
these traditional methods also require explicit feature
engineering [39], which is not required when work-
ing with deep neural networks and for an approach in-
volving SVM, the support vectors need to be stored for
the class prediction in the classification tasks which in-
troduces memory constraints [43]. All this makes the
deep neural nets a better choice with larger and more
complex data set.

Deep methods for anomaly detection

There are various approaches based on deep learn-
ing for anomaly detection. Based on the nature of the
input data and the availability of labels these are classi-
fied as supervised, semi-supervised, or unsupervised.

In supervised deep anomaly detection, the anomaly
detection problem is predominantly posed as a binary
classification problem where all the anomaly samples
are combined into one class and normal samples as an-
other [11]. In a different setting, “none of the above
category” can also be appended to the classification
model. Methods such as defectnet [3] anomaly de-
tection via image resynthesis [29] and, detection of
manufacturing defect using CNN and Transfer Learn-
ing [19] are some of the examples which use super-
vised approach to detect anomalies. In [19] authors
make use of transfer learning with ImageNet [13] and
COCO [28] data set, and 4 CNN modules to overcome
the problem of fewer samples to get the mean average
precision of 0.957 on gdxray [33] dataset of only 2800
samples at a cost of high memory and longer time to
train. The biggest drawback of this approach is that
the model requires the distribution of anomalies to be
known before training. This poses a big problem as
one of the main challenges while working on anomaly
detection is that the anomalies are rare and not known
prior to the dataset [8].

3



The semi-supervised AD methods assume all that
the training samples have only normal class labels and
work on the assumption that points which are close
to each other both in input and latent space share the
same label. This method can be implemented using
any of the models such as autoencoders, generative ad-
versarial networks, or CNNs [8]. GAN-based methods
such as ganomaly [1] and skip-ganomaly [2] produce
good results with a semi-supervised approach. How-
ever Lu et.al [30], puts forward a fundamental limita-
tion that, unless the said assumption of the relation be-
tween labelled and unlabeled data distribution holds,
semi-supervised methods cannot provide any signifi-
cant benefits over supervised learning. This applies to
the deep neural networks as well [8].

The main challenge while working with anomaly
detection is the lack of samples from the anoma-
lous class, because of which supervised and semi-
supervised methods struggle. Unsupervised methods
thus are the most widely applicable approach for AD
as they detect anomalies based solely on the intrin-
sic properties of the data [8]. There are different
unsupervised methods which are used in AD such
as Deep autoencoder, GANs, VAEs, auto-regressive
models [36, 37, 44, 49] and normalizing flow-based
models [14, 15, 24, 25].

One use case of unsupervised methods is density
estimation. The generative model pθ(x) trained on
some data distribution p(x) ideally should assign a
high likelihood to the samples from same the distri-
bution as the model learns the joint probability dis-
tribution of the given data. Thus, when any out-of-
distribution (OOD) sample Y from q(y) is fed to a
density estimation model it assigns a low likelihood to
it. This property of generative models is very useful
for a problem setting such as anomaly detection.

Deep Autoencoders [23] are the most common and
fundamental unsupervised deep models that are used
for AD consisting of an encoder-decoder architec-
ture [56, 55, 32, 22]. This model works as a dimen-
sionality reduction method which learns the common
variations from the training data. VAEs on the other
hand, optimize the variational lower bound on the like-
lihood of the data. The samples are encoded in such
a way that the data may be generated from a simple
gaussian prior using the similar encoder-decoder ar-
chitecture. The difference between the input and the

output generated by the decoder is called the recon-
struction error. For normal samples, this error ide-
ally is zero as the model has learned the representation
of normal class and can thus reconstruct it, while for
anomalous samples it should be a higher value as the
model does not know the distribution of anomaly sam-
ples and as a result has difficulties in reconstructing it.
Based on this, when a model is not able to reconstruct
the input properly for a test sample, then that sample
is identified as an anomaly.

The same reconstruction-based approach is also
used with GANs in methods such as AnoGAN [46]
and efficient anomaly detection with GANs [53].
GANs have shown greater ability to generate images
with better fidelity to the train distribution hence there
is a lot of interest in developing reconstruction based
approach using GANs. In AnoGAN [46] first, a GAN
is trained to create samples similar to training (normal)
instances. During test time, best possible generated
image matching the test sample is found out iteratively.
For a normal test instance, this should result in lower
anomaly score which is a simple L2 distance between
the test input sample and reconstructed sample, while
for an anomalous sample anomaly score will be high.
This has the disadvantage that, for every test sample,
the best matching image needs to be generated which
makes it slow.

The main difficulty regarding the reconstruction-
based encoder-decoder models is the degree of com-
pression which works as another hyperparameter that
needs to be manually tuned to get the best results be-
cause of the unsupervised nature of the problem [43].
Along with that, the approximation in the inference in
VAEs limits its ability to learn high dimensional deep
representations. In GANs the sidestepping from the
likelihood objective in the training altogether, makes it
difficult to train and also there is no encoder in GANs
to that maps input to the latent variables directly. None
of these models provide a way to tractably calculate
exact log-likelihood of a data point.

There is a recent development on the invertible gen-
erative models [15, 24, 25, 44, 49] which enables the
calculation of the exact log-likelihood of the input dis-
tribution using the change of variables formula. These
models can be classified into autoregressive flows and
normalizing flows. Autoregressive flows such as Pix-
elCNN, PixelCNN++ [44, 49] have the advantage of
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simplicity but synthesis with these models has lim-
ited ability to parallelize and thus they are not effi-
cient for the high dimensional data such as images.
On the other hand, Normalizing flow-based models
such as RealNVP [15], GLOW [25] provide the best
of both worlds: it is possible to perform exact latent-
variable inference and log-likelihood evaluation of the
given data distribution and it is efficient to parallelize
for both inference and synthesis.

There are a couple of papers [11, 34] which shows
that normalizing flow-based methods failed to detect
OOD samples when the anomalous samples had the
distribution of the data with similar mean and less vari-
ance than the training data distribution. The training
and test samples in that work have distinctly differ-
ent images for e.g. training set images from CIFAR-
10 [27] had images of dogs, trucks and horse compared
to the house numbers from SVHN [35] in the test set.
In our case of BoroscopeV1 the train and test classes
contains the images of the similar blades. In case of
blades with the defects there is a small part of the im-
age which is different from the normal blade image.
Thus, we can assume that, in this work the distribu-
tion of the normal and anomaly samples is very simi-
lar and it is unlikely that this problem will be faced in
this work. Therefore, this work explores the problem
of anomaly detection using simple objective function
of negative log-likelihood using a normalizing flow-
based model called GLOW.

3. Normalizing-flow based model for anomaly
detection

In this section we explain the working of a normal-
izing flow-based model and how it is used for anomaly
detection in this work.

Normalizing flow is composed by a series of invert-
ible transformation functions f which transforms the
target y to a latent code z sampled from a simple dis-
tribution such as Gaussian or logistic distribution. The
Figure 1 shows a general block diagram of a normal-
izing flow-based model. Input X is passed through
a series of invertible transformation to get to a latent
space z. While sampling z is passed through the in-
verse transformation that produces output X′.

Let x be a high-dimensional random vector with
some distribution p(x). The log-likelihood objective

Figure 1: Flow based generative model [51].

to minimize for a flow-based model is given as:

L =
1

N

n∑
i=1

− log pθ(x
(i)) (1)

Z is a latent variable from a simple distribution,
commonly a multivariate Gaussian given as p(z) =
N (z; 0, I). The x is given as x = g(z). The func-
tion g(z) is an bijective. Thus, these transformations
from input space to latent space and back can be given
as:

z ∼ p(z) (2)

x = g(z) (3)

z = f(x) = g−1(x) (4)

where the f(x) and g−1(x) are the bijective func-
tions. These invertible functions are chained together
to obtain a transformation of input data sample x to
latent space z as:

x⇐⇒ h1 ⇐⇒ h2 ⇐⇒ h3...⇐⇒ z (5)

with the help of the change of variables theorem , we
can define this distribution p(x) entirely in terms of
an auxiliary, simpler distribution like p(z) which is a
multivariate Gaussian. Thus the probability density of
the model given a data-point is given as:

log p(x) = log p(z) + log |det(
dz

dx
)| (6)

log p(x) = log p(z) +

K∑
i=1

log |det(
dhi

dhi−1
)|

(7)
The normalizing-flows based model used in this work
is GLOW [25]. It is an extension of the previous two
flow-based models NICE [14] and RealNVP [15] re-
spectively. With GLOW authors have reported a sig-
nificant improvement in likelihood and sample quality
of natural images. The Figure 2 shows the architecture
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Figure 2: left one step of flow, right the multi-scale
architecture of the GLOW [25]

of the GLOW model. Model consists of three com-
ponents. Let us assume p and q be as the input and
output of a layer with shape h x w x c, where c is the
number of channels and (h,w) represent the spatial
dimensions.

First component as shown in left part of the figure 2
is the activation normalization layer called as actnorm.
Each actnorm layer performs an affine transformation
of activations using two 1 x c parameters given as: a
scalar s, and a bias b. This transformations is written
as

pi,j = s� qi,j + b,

where� is the element-wise product.
Second component is the invertible 1x1 convolu-

tional layer. This is a generalization of a permutation
operation given as,

pi,j = Wqi,j,

where W is a c x c weight matrix.
Third component is the Affine coupling layer imple-

mented similar to the one used in NICE and RealNVP.
This layer captures the correlations among the spatial
dimensions. The transformation is given as:

pa, pb = split(p)

s, b = NN(pb)

qa = s� pa + b

q = concat(qa, qb),

where NN is a neural network. Function split() and
concat() perform operations along the channel dimen-
sion. GLOW uses multi-scale architecture given by the

authors of RealNVP [15]. Squeeze layer is used for
shuffling the variables and split layers help to reduce
the computational cost.

For anomaly detection the model is trained with the
normal samples only, with the negative log-likelihood
as an objective function. We expect that the model
learns the underlying structure of the training data
samples. Thus, while testing normal samples will
be more likely to be from the same distribution than
the anomalous samples and thus we will get a higher
negative log-likelihood value for anomalous samples.
Therefore, a hypothesis can be put forward that, if the
model is trained using the defect-free (normal) sam-
ples only then, during the test time, defect-free sam-
ples will produce lower negative log-likelihood than
the samples containing defects. With this we can de-
tect anomaly samples using negative log-likelihood
only.

4. Experimentation

In this section we explain the different experiments
performed in this work.

4.1. Experiment 1: Effect of anomaly samples in
the training data

In this experiment we aim to find the effect of
anomalous samples present in the dataset while train-
ing. We make a hypothesis that, if the fraction of
anomalies present in the training data is considerably
lesser than the normal samples, then at test time neg-
ative log-likelihood for normal samples will be lesser
than the anomaly samples. It is important to know this
as cleaning a dataset to have only good samples, is a
difficult and time-consuming task. Thus, it is impera-
tive for any model to know the effect of these anoma-
lies or noise samples present in the dataset on the in-
tended results, where a model is supposed to be trained
on normal samples only.

For this experiment we make use of the MNIST
dataset. We train the model with the images of one
digit only, which is assumed as the normal class (digit
1). The small varying fraction of a different digit sam-
ples which is assumed to be the anomalous class (digit
8) is added to the dataset while training as shown in
Table 1.

As it can be seen from Table 1 the number of
anomalies (digit 8 samples) present in the training set
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Case Normal Total samples Anomaly Total samples % Anomalies in
class digit class digit the dataset

1 1 6742 8 7 0.10%
2 1 6742 8 67 1.00%
3 1 6742 8 674 9.99%
4 1 6742 8 1348 20.00%
5 1 6742 8 2696 40.00%
6 1 6742 8 5851 86.78%

Table 1: Composition of training data in every case.
Total samples from the normal digit class plus the total
samples from the anomaly digit class create the train-
ing samples for one case

are gradually increased from 0.1% to 87% of the nor-
mal samples. Thus, the total number of training sam-
ples in each case is equal to the total normal samples
(6742) and anomaly samples combined.

The Figure 3 shows the plot of negative log-
likelihoods of test samples from normal and anoma-
lous class when trained with the training data as shown
in the Table 1. Ideally, the more frequent class i.e.
the normal class should result in lower negative log-
likelihood as model sees those samples more fre-
quently than others. Also, As the number of anoma-
lous samples in the training dataset increases, the neg-
ative log-likelihood of the anomalous class samples
should also get better.

In Figure 3 only three cases from table 1 are shown
for the ease of interpretation. From Figure 3 it can
be seen that the model behaves as expected and we
see that negative log-likelihood for normal samples, i.e
digit one, is consistent as the number of normal sam-
ples in the dataset is constant. On the other hand, for
anomalous samples we see the negative log-likelihood
does get better as the plot gets pushed down, with more
number of samples in the training dataset.

This shows that the model is able to learn the dis-
tribution of normal samples in spite of the presence of
anomaly samples in the training data. From this we
can say that the model is able to neglect the ‘noise’
and focus on the actual data samples while training.

This relation should hold true when the normal and
anomalous class from the previous case is reversed.
However, we found that this was not the case. We no-
ticed that if we use digit 8 samples only as training data
and use digit 1 as the anomaly data set while testing the
model still produced better negative log-likelihood to
the digit 1 test sampled which is the anomaly class in
this case. This unusual behaviour is seen with other

pairs of digits also. Another thing that we noticed that
this behaviour is not necessarily reversible.

The Figure 4 shows that the anomaly samples i.e
samples of digit 1 produced the better likelihoods than
the test samples of normal class(digit 8), even when
there are zero samples of anomaly class (digit 1) in the
training data. We speculate that three probable reasons
that could cause the model to behave in this way:

• MNIST samples are not complex enough for the
model and thus the model is overfitting and sim-
ply remembering the data.

• Number of black pixels: As it is easier for
the model to learn the black pixels (zero pix-
els). Thus the class getting better negative log-
likelihood all the time has more number of black
pixels.

• The class getting better negative log-likelihood is
a subset of the class which is being used for train-
ing.

4.1.1 Investigating the issue of better likelihood to
anomaly class samples

To check whether it is a more generalized problem
for the model and not related to the complexity of the
dataset we used Fashion-MNIST, a more challenging
dataset than MNIST, in a similar fashion by assum-
ing one class as normal and using another class as the
anomaly class. We chose pairs of classes as shown in
the Table 2. While making pairs we made sure that
the pairs has the mixture of similar and different ob-
jects for training and test e.g sneaker and ankle boots,
or sneaker and trousers. This way of pairing also made
sure that there are classes with similar number of aver-
age black pixels in training and test image sample and
there are pairs with different number of average black
pixels in training and test samples as shown in Table 2.

From Figure 5 it is clear that the Fashion-MNIST
dataset also shows this problem thus, the MNIST
dataset and its simplicity is not the cause of the un-
expected behaviour of the model. We also see that
the cases where the model failed Further, if observed
closely the cases where the model is behaving unex-
pectedly have one thing in common. The normal class,
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Figure 3: Negative log-likelihoods for three cases (0.10%, 20% and 86% anomalies) from Table 1. Lines represent
the trend of absolute negative log-likelihood of the test samples. The Lower three plots represent the Negative log-
likelihoods (NLL) of the test samples from the normal class (digit 1). Upper three plots represent the NLL of the
test samples from the anomaly class (digit 8) with fraction of anomalies 0.10%, 20% and 86%. As the fraction of
anomalies in the training data increases with each case, from the trend-lines we can see that the NLL of anomaly
class (digit 8) test samples got better, while normal class test samples’ NLL remained in the same range as the
number of samples for it remained constant. We can say that the model is able to focus on the normal data and
does not get affected by “noise” in the training set.

Figure 4: Negative log-likelihood plot when the nor-
mal and anomalous classes are reverse. Red represent
the negative log-likelihood of anomaly class (digit 1)
and blue represents the negative log-likelihood of the
normal class (digit 8).

the one which is used for training has less number of
black pixels than the test anomaly class. Thus, we
can assume that the problem arises due to the presence
of black pixels. As they are easy to learn the model
will produce better likelihood if the number there are
higher number of black pixels.

To validate that the problem is indeed because of the
black pixels again a small is carried out. We cropped
the image samples of Fashion-MNIST dataset for class

Sr No. Normal class Average number of Anomaly class Average number of
black pixels black pixels

1 Sandals 532 Sneaker 519
2 Sneaker 519 Sandals 532
3 Coat 312 Shirt 290
4 Shirt 290 Coat 312
5 Sandals 532 Ankle boot 403
6 Sneaker 519 Ankle boot 403
7 Ankle boot 403 Sandals 532
8 Ankle boot 403 Sneaker 519
9 Trouser 510 Sneaker 519
10 Sneaker 619 Trouser 510
11 Sandals 532 Coat 312
12 Coat 312 Sandals 532

Table 2: Different cases used investigate the problem
that causes the model to produce better log-likelihood
for the anomalous samples. The table shows pairs the
object class from fashion-MNIST used as normal and
anomaly class. The model is trained using the samples
from the normal class only. Column 3 and 5 show the
average number of black pixels for the image samples
from that class.

shirts and class coats by keeping a tight boundary
around the image sample and cropping out black pix-
els’ area as much as possible. We resized the cropped
images back to the shape of 28*28. We performed the
same test as in case 4 from the Table 2 and found out
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Figure 5: The plot shows the cases (in red) from 2
when the anomaly class got less negative log-
likelihood than the training class. Case 4, 7, 8 and, 12
from table 2 did not behave as expected. Data-points
in blue represents the cases from table 2 where model
behaves as expected. All cases when model failed have
have higher average number of black pixels in anomaly
class than normal class.

that the model behaves as expected.
There is one recent paper [42] which shows the ef-

fect of background pixels on the likelihood of the au-
toregressive pixelCNN model. Other than that, there is
no work that shows this limitation related to the black
pixels of the flow-based models.

4.2. Experiment 2: Effect of the size of anomalies.

The convolution autoencoder tends to generalize
while reconstructing the images as a result we may
not able to identify small anomalies present on the im-
ages whereas flow-based model because of the exact
log-likelihood evaluation does not suffer through this
problem. Thus, we make a hypothesis that the flow-
based model will be able to detect anomalies which
CAE because of the generalization will not be able to
detect.

For this experiment, we manually created the
anomalies in the Fashion-MNIST dataset and use that
to test whether the CAE is able to detect those anoma-
lies or not. The class 6 (shirt) from Fashion-MNIST
has 6000 training and 1000 test samples. The number
of black pixels present in the image is not going to af-
fect the result in this case as the training and test sam-
ples are from the same class of shirts. Out of the 1000
test samples around 400 are marked with the anomaly.

(a) Normal train (b) Normal test

(c) Test Anomaly (d) Test Anomaly

Figure 6: The samples from the shirt class of Fashion-
MNIST dataset, used in the experiment. Top row
shows the normal train and test samples without the
anomalies. Bottom row shows the test samples with
black and white square of anomalies introduced on
them

The anomalies are generated randomly over the object
in the image. The anomalies varies in size of 2x2 pix-
els to 4x4 pixels. The Figure 6 show the image sam-
ples of training data, normal test data and anomalous
test data.

This problem setting is closer to the actual problem
setting of the BoroscopeV1.0. There also, the blades
having anomalies are going to be exactly as similar
as the normal blades, except the part where there is
the addition of a scratch or dent mark somewhere ran-
domly on the image, which is also going to vary in size
from very small to large.For this experiment we trained
a convolutional autoencoder with 3 convolutional lay-
ers in the encoder, max pooling with kernel size 2 and
stride 2 and ReLU [20] activation along with the de-
coder with 3 transposed convolutional layer of upsam-
pling, ReLU and Sigmoid activation at the last layer.
Mean Squared Error (MSE) is used as the objective
function. The GLOW model used for this experiment
has 2 levels with 32 steps of flows in each. For cou-
pling layers a simple convolutional network with one
hidden layer is used.

The Figure 7 (a) and (b) shows the distribution of
the reconstruction error and negative log-likelihood
of test normal and anomaly samples for both CAE
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(a) Distribution of the reconstruction error for CAE

(b) Distribution of the Negative Log-likelihood for GLOW

Figure 7: Fig (a) it can be seen that the distribution
of test normal(orange) and test anomaly(blue) sam-
ples has a clear overlap because CAE tends to gener-
alize over the anomalous part in the image and pro-
duces reconstruction error almost similar to normal
samples. In Fig (b) we can see that flow-based model
has a clear difference between the range of negative
log-likelihood for test normal(blue) samples and test
anomaly samples(green). Also test normal samples
produces the negative log-likelihood values in a range
similar to the training samples (red).

and GLOW, while Figure 8 shows a sample from test
anomaly class with its reconstruction. From the re-
constructed sample from Figure 8 we can see that the
autoencoder generalized over the part of the anomaly

Figure 8: Left: Test sample with white anomaly square
mark. Right: Reconstructed output from the CAE that
generalized over the anomalous region.

and more often than not makes the pixels as similar to
surrounding pixels. Even in the histogram of the re-
construction error we can see majority of the anomaly
samples get the reconstruction error close to the recon-
struction error of the normal test samples.

The Figure 7 (b) shows the distribution of the nega-
tive log-likelihoods for normal and anomaly test sam-
ples with the help of normalized histogram. From the
Figure 7 (b) it is clear that the flow-based model is
able to differentiate between normal and anomalous
test samples based on the negative log-likelihood only.
The model produced consistently high negative log-
likelihood values for the test anomaly samples. Thus,
it is possible to detect anomalies based on negative log-
likelihood values only.

This experiment shows the limitations of the au-
toencoder based approach when anomalies in the im-
ages are very small. As a result, it underlines the im-
portance of finding a better approach for the task of
anomaly detection in a critical setting such as of tur-
bine inspection where it is vital to detect smallest pos-
sible anomalies. Thus, in this work flow-based ap-
proach is used as BoroscopeV1 has contains anomalies
varying in the size from very small to big deformities
in the image as shown in Figure 12.

4.3. Experiment 3: Effect of frequencies

In this experiment we investigate the effect of fre-
quencies in the image on the unsupervised deep neu-
ral nets. In experiment 1 we saw the effect of the
black pixels and how does that affects the negative log-
likelihood of the GLOW. The paper [42] shows that the
autoregressive model pixelCNN also follow a similar
behaviour. Thus, we put a hypothesis that the unsu-
pervised deep neural nets rewards low frequency im-
ages than the images with high frequencies in it. will

10 1. Scientific Paper



be reconstructed better or will get better negative log-
likelihood values compared to the high frequency im-
ages.

This means that the generative models used in this
experiment i.e 1.Fully connected autoencoder, 2.Con-
volutional autoencoder(CAE), and 3.GLOW will be
able to reconstruct the images with low frequencies
with a lower reconstruction in case of AE and CAE, or
will get better negative log-likelihood values in case
of glow compared to the high frequency images. To
test this hypothesis, we created set a small dataset ex-
plained as follows.

Toy Frequency dataset

The Figure 9 shows the samples from both classes,
low and high. The low frequency class has frequencies
ranging from one to five, whereas frequencies in range
11 to 15 belongs to high frequency class. To make sure
that there are enough samples in the dataset, variations
in the intensity are used as a form of data augmentation
as well as 90 degree rotation. As a result, both low and
high frequency class has 600 images each, with 120
images for each frequency.

Figure 9: Samples from the toy frequency dataset. Top
row shows the samples from the low frequency class
with frequency one, two and three from left to right.
Bottom row shows the frequency from the high fre-
quency class with frequency eleven, twelve and thir-
teen from left to right

The Fully connected autoencoder has 3 fully con-
nected layers in encoder with ReLU as an activation
function. The decoder also similarly has 3 fully con-
nected layers with the ReLU as non-linearity. Only
difference is the final fully connected layer has the

sigmoid activations. Convolutional autoencoder and
GLOW architecture is same as from experiment 2.

The Figure 10 shows the distribution of the er-
ror values, i.e the reconstruction error for fully con-
nected and convolutional autoencoder and negative
log-likelihood for GLOW, in a scatter plot, for all the
frequencies separately. From the Figure 10(a) we see
that frequency has no effect on the fully connected au-
toencoder as all the frequencies were reconstructed in
a similar range of reconstruction error values. How-
ever, from Figure 11 we can observe that the intensity
of the pixels played a part in the ability of the model to
reconstruct the test samples. For every frequency we
feed the model in the ascending order of the intensity,
we observe that with the increase in the intensity irre-
spective of the frequency the reconstruction error for
test samples became higher.

In Figure 10(b) we see that frequency 14 and 15
affected the reconstruction ability of the CAE signifi-
cantly. Similarly in case of Figure 10(c) frequency 14
and 15 test samples produced negative log-likelihood
significantly higher than the rest. However, in both
Figure 10(b) and (c) we can see an upward trend of the
error values indicating that the frequencies does play a
role in the ability in the ability of the models to either
reconstruct or predict likelihood.

Thus, we can conclude that the fully autoencoder
was not susceptible at all to the higher frequencies but
is clearly gets affected by the intensities in the of the
pixels in the image. Whereas CAE and GLOW did
not show any such effect because of the intensities but
showed a bias towards the low frequency in the im-
ages.

5. Results with BoroscopV1

In this, we show the results obtained with the Boro-
scopeV1 dataset.

BoroscopeV1

BoroscopeV1 dataset has 380 videos of blades of 2 to
10 minutes each from the various view points. Out of
which, 330 videos are of clean blades while 50 contain
anomalies.
The BoroscopeV1 has a test set which has a total of
800 images. Out of those 800 images, 283 have defects
while the rest are validated to be free from any defect.
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(a) Distribution of reconstruction error from Fully connected autoen-
coder. We see no effect of frequency on the reconstructions of fully
connected autoencoder.

(b) Distribution of reconstruction error for Convolutional Autoen-
coder. We can see that the reconstructions of the CAE are affected
with the frequencies

(c) Distribution of Negative log-likelihood for GLOW, Similar to
CAE we see that frequency does affect the likelihood of the model

Figure 10: Figure shows the distribution of the error
values for all three models for all the frequencies from
low (1-5) and high (11-15) separately. Frequencies
from 6 to 10 were not considered to have a clear dis-
tinction between low and high class of frequency in the
images.

Figure 11: Reconstruction error by the fully connected
autoencoder for all the frequencies separately, when
each test sample for each frequency is fed in the order
of increasing intensity. Y axis shows the reconstruc-
tion error. The each frequency represented by different
colour on X axis has the intensity ranging from 75 to
256. We clearly see a trend that as the intensity goes
up the reconstruction error goes high

This test set is used as it is while testing the model.
For training, BoroscopeV1 has 98902 images ex-

tracted at a constant rate of 300 images from each
video. In this work, we use only ten percent of these
frames for training purpose, meaning we effectively
use only 30 images from each video. These images
are first cropped with the size depending on the aspect
ratio of the video and also to get rid of the unnecessary
markings present on the frames in all four corners. The
images in the Figure 12 shows the variety of the view-
points and also the type of defects that are present in
the dataset.

In this work we apply a patch based approach with
a patch size of 32x32 rather than feeding the whole
image to the model. Because, of the two reasons.
First, it saves the training time. Flow-based model
has the large number of transformations chained to-
gether called as “flow”, which takes a considerably
more time to train even for small datasets compared to
other unsupervised models. With patch size of 32x32
we hope to keep the training time reasonable. Second,
the BoroscopeV1 has the images of the blades from
different viewpoints. Thus, on a whole image level it is
possible that two image samples look completely dif-
ferent. However, on a patch level, these images are al-
most similar. This reduces the complexity while train-
ing, as we do not need to have multiple Gaussian dis-
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Figure 12: Samples from the BoroscopeV1 after crop-
ping. Top rows shows the healthy samples, bottom row
shows the different anomalies. Right image on top and
bottom row show the difference between a normal and
anomalous sample.

tributions as a prior to map these two different blades.
Also with this approach we are able to locate anoma-
lous area within the image at a patch level.

The train and test sets were composed as mentioned
in the previously with around 800 samples in the test
set and 9800 samples for training set. Figure 13 show
the heatmap generated by the model on some samples.

In some case such as figure 13 first row, the model
works extremely well. It exactly detect the patch with
the anomaly. Similarly in the second and third row
of the figure 13 we observe that the anomaly patches
did got identified correctly. However, in second and
third row the texture of the blade did produce some
some false positives. Also the fact that majority of the
anomalous region for all three samples from figure 13
ended up under a single patch helped in identifying
those anomalies correctly.

figure 14 shows some of the failure cases. We see
from the first two rows from figure 14 that the reflec-
tion from the blades was detected as an anomalous re-
gion. The reflections on these blades does resemble the
scratched surface of a blade and thus model identifies
the reflections as anomalies too. This can be resolved
by either adding more training samples because it will
help model see more samples with bright patches and
thus not identify anomalies solely on the intensity val-
ues or by creating a better dataset by keeping a precau-
tions that the reflections will not occur.

Other than that, if the anomalous region is partially

Figure 13: Left column: Test input samples contain-
ing anomalies, Right column: Corresponding gener-
ated heatmap. Anomalous part of the blade results in a
darker red patch in the corresponding heatmap. Darker
the red patch higher the negative log-likelihood. We
see that model is able to detect the anomalies. There
is clear distinction in the predicted likelihood of the
normal patch and anomalous patch.

covered by the patch then that also affects the ability of
the model to detect the anomalies. All three samples
from figure 14 show this issue. This can be resolved by
keeping the stride length as minimum as possible but,
it has the trade off response time. For e.g a 320x320
image generates 100 patches if the stride is kept as 32.
i.e. For every actual test sample we need to create, test
and then generate heatmap for 100 patches. This trade
off depends on application.

Third factor affecting the model is the black pixels.
From experiment 1 we showed that the black pixels be-
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ing easy to learn cause a problem when predicting the
likelihood of the data sample. Sometimes the back-
ground of a blade is black shadow and that gets ex-
posed because of the anomaly in the blade. As a result
what model sees is the black shadow and not the actual
blade and thus the model does not identify that as an
anomaly.

Figure 14: Left column: Test input samples contain-
ing anomalies, Right column: Corresponding gen-
erated heatmap. Part of the blades having anoma-
lies results in a darker red patch in the corresponding
heatmap. Darker the red patch higher the negative log-
likelihood. This figure shows some of the failed cases.
Reflections from the shiny surface of blades, the area
of the anomalous region under the patch, black pixel,
texture of the blade played a role in the ability of the
model in identifying the correct anomalies.

One important thing to note here is that because the
images are investigated in patches and there is no in-

formation sharing regarding the nearby patches while
calculating the likelihood, it may happen that the big-
ger anomalies might go undetected or partially de-
tected as the model does not have a global context
understanding and thus it may miss some anomalies.
Other than that the model does perform well in de-
tecting small anomalies because of the patch-based ap-
proach. The middle image in 14 and the first image in
13 are the perfect examples of that.

6. Conclusion

This work explores the problem of anomaly detec-
tion with the normalizing flow-based model. In this
work we first verified the approach on the toy datasets
with help of small experiments. We were able to show
that the flow-based model is able to detect the acute
anomalies present in the images which convolutional
autoencoder did not. This establishes the need of a
approach other than the reconstruction based methods.
We believe through this work that the ability of the
normalizing flow-based model to be able to do the ex-
act log-likelihood evaluation could provide that alter-
native approach. We showed that black pixels causes
the flow-based models to give a better negative log-
likelihood value. We also showed that convolutional
autoencoder and GLOW show a bias towards the low
frequencies in the image whereas fully connected au-
toencoder does not. However, fully connected autoen-
coder is affected by the intensities of the pixels in the
image.

In case of a more complex BoroscopeV1 dataset,
we showed promising results where normalizing flow-
based model was able to detect the anomalies in the
image precisely. However, in some cases it failed to
differentiate between the normal and anomalous sam-
ples we speculate it could be either because of the re-
flections from the blades or the black pixels. Also,
because of the patch based approach some anomalies
which landed on the border of the patches could not be
detected.

Recommendations

Anomaly detection is a not an easy problem than it
seems from the first glance. The unavailability is of the
anomalous data samples is the biggest challenge while
working on problem like this. In this work we explored
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this problem with the normalizing the flow-based mod-
els. The some of the disadvantages discussed below
can be resolve with simple steps which could be the
immediate direction for the future research such as the
effect of reflections in detecting the anomalies in the
images can be resolved with the help of more data, as
we are only using 10 percent of the BoroscopeV1 it
is possible to add more training samples to generate
better results, or the problem of anomalous region par-
tially covered by the patches can be resolved by chang-
ing the stride lengths to make sure there is an over-
lap between the patches such that, anomalous part is
not missed because of the patch border or making the
patch size bigger depending upon the size of anoma-
lies in the dataset.

Keeping in mind the different viewpoints from the
BoroscopeV1 we another direction for future work
which could be interesting to explore is the condi-
tional normalizing flow. This paper [31] shows the
use of conditional glow for structured prediction task
of inpainting. The flow-based models have shown the
state of the art results in the synthesis of the new sam-
ples because of their invertability and the exact log-
likelihood calculation ability. Thus it will be interest-
ing to explore this approach for anomaly detection.
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2
Introduction

2.1. Introduction
Determining which instances stand out as dissimilar compared to other while when analyzing real-world
data-sets has become a common need. Such insances are known as anomlaies. The domain of the
project is to detect anomalies on the jet engine blade images. These anomalies occur mainly due
to different types wear and tear on the blades, and in size from a small scratch or dents to a large
deformation of the blade. A new dataset called BoroscopeV1 consisting the images 2.1 of jet engine
blades was created for this purpose.

Figure 2.1: Sample images showing variations in the anomalies from the BoroscopeV1 dataset

Jet engine blades some times get scratched or deformed during their operation. As its malfunction
can cause a engine failure which could prove life threatening to the passengers travelling in the aircraft.
Detection of it while inspection is important. Thus accurate detection of these anomalies occurring in
the form of wear and tear in the image of an jet engine blade is extremely important. As the whole
operation is done on images this can be modelled as a computer vision problem.

Over the past decade, deep learning techniques have seen a significant rise in the real-world ap-
plications specifically in the field of computer vision owing to rising computational power, increased
storage and extensive methods of data collection. Convolutional neural networks have shown great
applicability when it comes to the tasks such image classification, object detection, segmentation and
some more. Detection of features and classification of an image based on that, is a computer vision
problem. Feature representation of an image can be done in many ways. One could also use human
annotations for describing each image and then classifying based on that, but it is not a practical and
feasible approach. Traditional machine learning approaches expects the features to be fed directly to
the classifier instead of learning those based on the given data. A neural network can generate its own
hidden features which can be effectively used for the detection and classification tasks.
In supervised learning all the labelled training examples are fed into the model, with this model learns
the representation of all the classes of the data. This is certainly a desired way as one can optimize the
patterns and structures based on the labels. The BoroscopeV1 dataset has a very uneven distribution
of the data samples with high percentage of images with no defects which are referred as ‘healthy’ or
‘normal’ samples, and very small percentage of images with defects which are referred as ”unhealthy”,
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or ‘anomalous’ samples. As the data distribution is so uneven, supervised model will not see enough
images from unhealthy class during training to learn its representation. And consequently will not be
able to detect the anomalies accurately as the discriminative model such as supervised classification,
tends to bias the predictions towards the class with more number of samples. Thus instead of learning
to predict an output depending on input data, an approach which will learn the inherent structure of the
input data will be much more useful in this kind of problem setting. Unsupervised learning does exactly
that.

Uneven distribution of the training data with high number of normal samples is a classic setting
for an anomaly detection problem. Unsupervised representation learning has become very dominant
in the task of anomaly detection in the recent years with rise of variational autoencoders, generative
adversarial networks, autorgressive and normalizing flow-based models. Anomaly detection a well
known sub-domain of the unsupervised learning is a challenging task because of the high dimensional
structure of the images. This work shows the normalizing flow-based approach for the detecting the
anomalies.

2.1.1. Motivation
Reconstruction using convolutional autoencoder is the most widely approach for the anomaly detec-
tion on images. However, the convolutional autoencoder have the disadvantage when detecting small
defects in the image as they tend to generalize over that small region which results in lower reconstruc-
tion error values. Along with that, choosing a right degree of compression is also a cause of problem
because it works as a hyperparameter that needs to be manually tuned and choosing the right value is
hard due to the unsupervised nature of the problem setting. Thus, it is important to look for an approach
that tries to learn the underlying structure of the data accurately such that we can predict the likelihood
of the test samples. Thus, normalizing flow-based approach is used in this work.
The flow-based generative models are able to do exact latent variable inference and log likelihood
evaluation. Whereas in variational autoencoders it is possible to only approximate the value of latent
variables corresponding to a datapoint. GANs have no encoder at all to infer the latents.

2.1.2. Research Question
The sole objective of this research work is to be able to detect and locate the anomalies of various
shapes and size on the images. The aim is to show that normalizing flow-based models can be used
to detect to anomalies with a simple objective function of negative log-likelihood.

• Canwe use normalizing flow-basedmodels with simple objective function of negative log-likelihood
for anomaly detection?

While working it was broken down in small experiments as:

• How does the model behave in the presence of anomalies or noise in the training set.

• How does the model detect the acute anomalies present on the image compared to conventional
reconstruction based approach.

• What is the effect of low and high frequency images on the ability of the model to predict the
likelihood?



3
General Background on Deep Learning

This chapter provides a general background theoretical information on neural networks needed for
clear insight. We start with the basic overview of what neural networks are, how they work. Followed
by a detailed explanation on the working of convolutional neural networks (CNNs) in classification. We
also look into different types of convolution operations that are used in different unsupervised models
which are discussed in the next section and also in the related work section in the 1st chapter of the
report 1.

3.1. Neural Networks
Neural networks or artificial neural network is made up of a connected acyclic graph of nodes also
called as neurons. The neuron is a basic unit of a neural network where computation happens[11].
Figure 3.1 shows the mathematical model of such neuron. The output of a neuron is given by the
equation 3.1. This output is then passed through a nonlinear activation function 𝑓 which gives the final
output y as equation 3.2. The equation 3.1 can be interpreted as an affine transformation as scaling
with the weights 𝑤 and then the shifting of the origin with bias 𝑏.

𝑢 =
፧

∑
።ኻ
𝑤።𝑥። + 𝑏 (3.1)

𝑦 = 𝑓(𝑢) (3.2)

The deep learning is is a subset of neural networks where a multiple layers are stacked one to each

Figure 3.1: Mathematical model of a single neuron in an artificial neural network. A neuron consists of inputs ፱Ꮃ , ..., ፱ᑟ and
weights ፰  ፰Ꮃ , ..., ፰ᑟ, a bias  and an activation function ፟ [6]

other to create a hierarchy between the input and the output layer. The Any model that uses more
than two layers used in the model is referred as a deep model. Figure 3.2 illustrates a simple three-
layer Neural network. Each layer consists of several neurons. Every connection between the neurons
exchanges information with the help of weights and activation function. These weights are trained
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with the help of backpropagation during training with different objective function depending on the task.
The neural network in Figure 3.2 is a fully connected neural networks where every neuron from the
previous layer is connected to the every neuron in the next layer. These neurons respond to the different
combinations of the inputs from previous layers also neurons within a layer do not share any connection.

Figure 3.2: A simple three layer fully connected network with 2 hidden layers and an output layer

3.2. Activation Functions
Activation function determines the output that a node will generate, based on its input. It also intro-
duces the non-linearity in the output which helps in capturing the complex arbitary functional mappings
between the input and output. Sigmoid, Hyperbolic tangent (Tanh), Rectified Lienar Units (ReLU),
Softmax are some of the most commonly used activation functions [10]. Figure 3.3 illustrates these
activation functions.
The sigmoid fuction as can be seen from the figure (a) of 3.3 does not have a zero-centered input
and suffere from the problem couple of drawbacks such as vanishing gradients and slow convergence
[12]. Tanh ovrcomes the problem of slow convergence but still suffers from the problem of vanishing
gradients. The main advantage of tanh over sigmoid is the zero centered output there by aiding the
back-propagation process.
The ReLU proposed by [10] is the most widely used activation function. It overcomes the problem slow
convergence of the sigmoid as well as over come the vanishing gradients problem by use of identity for
positive values and thus offers better performance and generalization capacity in deep learning than
Sigmoid and tanh [2, 17],

(a) Sigmoid (b) Tanh (c) ReLU

Figure 3.3: Sigmoid (a) squashes real numbers to range between [0,1] where as tanh (b) maps the real numbers to range
between [-1,1]. ReLU (c) is zero when x < 0 and linear with slope 1 when x > 0. [6]

3.3. Training a Neural Network
The trainable parameters of the neural network i.e weights and biases are initialized with random values
and updated during the training. The problem of training is exactly as same as minimizing loss function.
The learning process of a neural network tries to minimize this loss function. The loss function is usually
the difference between the ground truth and the value predicted by the model which is computed as
the sum of the squared difference between the target values and network output. This can be solved
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using the traditional optimization methods of gradient descent, by optimizing the parameters based on
the gradient.
In deep learning due high number of parameters and complexity it is computationally inefficient to
calculate all the gradients. Backpropagation [9] is used to solve this problem. There are different tech-
niques which facilitate the training of deep complex neural networks with the help of backpropagation.
Stochastic Gradient Discent (SGD) [1](cite), Adagrad [4], Adam [7] are a few frequently used examples.

3.4. Convolutional Neural Networks
The convolutional neural networks (CNNs) are the special type of neural networks which are built upon
the artificial neural networks. Different hidden layers are used in CNNs than ANNs. These hidden
layers are ‘Convolutional Layer’, ‘Pooling layer’, and ‘Fully connected layer’. Figure 3.4 shows a
general block diagram of a CNN in a classification task. Let’s look at all the layers one by one.

Figure 3.4: A typical block digram of CNN consisting multiple convolutional layers with ReLU activation function, pooling layer
and full connected layer at the end with the softmax predictions. [13]

3.4.1. Convolutional Layer
It is impractical to connect all the neurons from the previous layer to the next as in 3.2 for high dimen-
sional data such as images. CNNs consists of convolutional layers which provide an efficient solution
for this. Figure 3.5 shows the illustration of a convolutional layer. As it can be seen from the figure, the
filter of size WxHxD (here D is 1) is convolved over a region of the input volume to generate a single
pixel value. Numerous convolution operations are per formed over an input where each convolution
operation uses different filter. Thus, we end up different feature maps. These different feature maps
are put together to generate an output of one convolutional layer. These filter are slided over the whole
input volume to generate output from that local region of pixels. This is the parameter sharing scheme
used in convolutional layers to reduce the number of parameters.

It is important to discuss to special types of convolutions which are used in the models discussed in
the 1.

Transposed Convolution
It is also known as deconvolution. As it can be seen from the figure 3.4, convolution operation shrinks
the input volume. However, in may cases such as generating high resolution images, semantic seg-
mentation or in the decoder part of an auto-encoder we need to perform the up-sampling. Traditionally
up-sampling can be done with different interpolation schemes. Modern architectures such as neural
networks however, tend to learn this transformation.
A transposed convolution however does not exactly deconvolves the previous convolution operation
done on the image. If an input of 5x5 is undergone an convolution operation to create a feature map
of 2x2. Transposed convolution on the output feature map 2x2 carries out a regular convolution op-
eration only but reverses its spatial transformation. The transpose convolution we make sure that the
output feature map is same as what we started with (5x5 in this case). Such that, it reconstructs the
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Figure 3.5: Illustration of the convolution operation in a 2D case. [3].

(a) Convolution (b) Transpose Convolution

Figure 3.6: Left shows the normal convolution operation on a 5x5 feature map resulting in 2x2 area. Right shows the transpose
convolution on 2x2 feature map generating the an output of 5x5

spatial resolution from before and performs convolution with the help of some padding. This is not the
mathematical inverse of the convolution process but for encoder-decoder architectures it’s very useful.

1x1 Convolution
The figure 3.7 shows the illustration of 1x1 convolution where input tensor has the dimensions WxHxD
and the filter size is 1x1xD. After convolution the output tensor is of size WxHx1. If N such convolutions
are applied we will end up with the output layer of dimension WxHxN. 1x1 convolutions facilitates the
dimensionality reduction for efficient computation and the feature pooling capacity. One more advan-
tage of this as described in [14] is that, we can again apply the non-linearity after the convolution which
helps the model to learn more complex function.

3.4.2. Pooling layer
Convolutional layers are generally followed by pooling layer. This layer helps in reducing the spatial
dimension of the input volume to limit the parameter size and control overfitting. It operates indepen-
dently on every depth slice of the input using MAX operation. 2x2 filter size with a stride of 2 is the
most commonly used pooling operation. It reduces the spatial dimensions by 2 folds in both X and Y
direction as shown in image 3.8
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Figure 3.7: Illustration of 1x1 convolution where filter size is 1x1xD.

Figure 3.8: Pooling layer down-samples the volume spatially. Left image shows reduction in the spatial dimension except depth
using pooling. Right image shows how MaxPooling works [6]





4
Unsupervised Deep Learning Models

In previous chapter we discussed the basic of deep learning and a working of simple convolutional neu-
ral network. In this chapter we will look at the models which work when there are no labeled training
examples. These are the unsupervised models used in deep learning. This chapter will give a brief
explanation of the working principle of a few such models such as, Autoencodres, Variational autoen-
coders (VAE) [8], Generative Adversarial Networks (GANs) [? ] and which are referred throughout this
report.

4.1. Autoencoders
Autoencoders are the most widely used unsupervised models. Autoencoders apply backpropagation,
by setting the output values to be equal to the inputs. Figure 4.1 shows a simple fully connected au-
toencoder with one hidden layer. There are many use cases of the autoencoders such as anomaly
detection, image denoising to name a few.
Autoencoder, by design, is a dimensionality reduction algorithm which learns to model the common
variation in the data samples and ignore the noise. An autoencoder consists of 4 parts ‘Encoder’, ‘Bot-
tleneck’, ‘Decoder’, ‘Reconstruction loss’. Encoder is the part where model learns to reduce the input
dimensions and map the compressed input data on the bottleneck layer.
Bottleneck layer is the layer which holds the compressed representation of the input data from an en-
coder. Decoder is the more often than not a mirror image of encoder. It learns to reconstruct the data
from the compressed representation to be as close to the original input as possible. Reconstruction
loss is the loss function which is used to measure the reconstruction quality of the decoder.

Figure 4.1: Fully connected autoencoder with one hidden layer
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Figure 4.2: Caption

4.2. Generative models
There is a set models that learns the underlying structure of the data and are able to generate the
samples from the distribution similar training samples. These are knows as generative models. The
Figure 4.2 show the generative models. Generating new samples, density estimation, clustering,
dimension reduction are a few typical use cases of generative models.
All generative models aim at learning the true data distribution of the training set so as to generate new
data samples one way or another. However, it is not always possible to explicitly learn the probability
density function of the real data. Thus different models have different ways to capture the probability
density function of the data without being able to do the explicit density estimation. The figure 4.2
shows the classification of these generative models based on that.

4.2.1. Variational Autoencoders (VAE)
Vanilla autoencoder maps the corresponding input to its encoded vector only. It is not possible to gener-
ate new samples with a vanilla autoencoder. To be able to generate similar images with some variabliity
we need to learn the probability distribution of the training data. VAE is a probabilistic graphical model.
It learns a low-dimensional latent representation of the training data called as latent variables. These
latent variables 𝑧, store the useful information about the input data 𝑥, which is related to be able to
generate correct reconstructed samples.
When doing inference about the latent variables 𝑝(𝑧|𝑥), we use the posterior 𝑝(𝑧|𝑥) = 𝑝(𝑥, 𝑧)/𝑝(𝑥).
Most of the times, the denominator is intractable in a high dimensional space because of which VAE
use approximate inference of the posterior. In approximate inference we start with a family of distri-
butions over latent variable and optimize the parameters of such that we end up with a distribution as
close as possible to the posterior with the help of kullback leibler (KL) divergence. However, we have
no knowledge of the posterior thus we use evidence lower bound.
The figure 4.3 shows the general block diagram of a VAE. The architecture of a VAE is similar to

Figure 4.3: Block diagram of an variational autoencoder [16].
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autoencoder except a few important differences such as, vanilla autoencoders use only pixel recon-
structions without any f-divergence to measure the loss. VAE uses the reparameterization trick to allow
the flow of gradients. To sample the data VAE uses decoder 𝑧 𝑄(𝑍|𝑋) where 𝑍 = 𝜇(𝑥) + 𝜎ኼ.𝑒 with
𝑒 𝑁(0, 𝐼) compared to the autoencoder which requires encoder-decoder to generate an output.

4.2.2. Generative Adversarial Networks
Generative adversarial networks (GANs) [5] a structured probabilistic generative model consists of two
parts: discriminator and generator. It is a counterfeit game between generator and discriminator where
generator tries to fool the discriminator. These models dont rely on any explicit density estimation
methods instead in GANs adopts the game theory approach to find the nash equilibrium between the
two networks, Generator and Discriminator.
Both generator and discriminator are two neural networks given as 𝐺Ꭻ and 𝐷᎕ respectively. For the
generator a pre-defined distribution p(z) with an input vector is defined and passed through a differ-
entiable function 𝐺᎕ ∶ 𝑧− > 𝑋. The discriminator is a normal classifier which takes input from a real
data (𝑋፫፞ፚ፥) and fake data (𝑋፟ፚ፤፞). The discriminator is trained to distinguish between these real and
fake samples. The algorithm for GAN training is as follows: For epochs 1,...,N. First, sample real and
fake data and from the discriminator D(x), where the aim of the discriminator is to learn the difference
between real and fake samples. Then, sample a batch of images from generator G(z), by keeping the
labels of these generated samples same as real data samples. As we want to fool the discriminator.
The aim of the generator is to generate samples as similar as possible to the real data samples. Figure
?? shows a simple block diagram of a GAN.

Figure 4.4: Block diagram of a vanilla Generative Adversarial Network [5]

4.2.3. Normalizing flows
Variational autoencoders can learn the feature representation however they have intractable marginal
likelihoods, whereas autoregressive models provide the tractable likelihoods but no direct mechanism
for learning features. Normalizing flows tries to combine the best of both worlds by providing a way for
the exact likelihood estimation and feature learning with the help of change of variables formula.

Change of variables
In normalizing flow, we map the simple distribution to the complex one with the help of invertible trans-
formations. To be able to do that we make we of change of variables theorem.Given a random variable
𝑧 with known probability density function 𝑧 ∼ 𝜋(𝑧), we would transform it into a different random vari-
able with the 1 to 1 invertible mapping function 𝑥 = 𝑓(𝑧). The function 𝑓 is invertible, so 𝑧 = 𝑓ዅኻ(𝑥).
However the problems it creates is that, how to infer the unknown probability density function of the
new variable, 𝑝(𝑥).

∫𝑝(𝑥)𝑑𝑥 = ∫𝜋(𝑧)𝑑𝑧 = 1 (4.1)

Definition of probability distribution.

𝑝(𝑥) = 𝜋(𝑧) ∣ 𝑑𝑧/𝑑𝑥 ∣ = 𝜋(𝑓ዅኻ(𝑥)) ∣ 𝑑𝑓ዅኻ/𝑑𝑥 ∣ (4.2)
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Figure 4.5: Transforming a simple distribution pᎲ(፳Ꮂ)፭፨ፚ፨፦፩፥፞፱፨፧፞፬፭፞፩፲፬፭፞፩፮፬።፧፠፧፨፫፦ፚ፥።፳።፧፠፟፥፨፰ [15].

𝑝(𝑥) = 𝜋(𝑓ዅኻ(𝑥)) ∣ (𝑓ዅኻ)ᖣ(𝑥) ∣ (4.3)

By definition, the integral ∫𝜋(𝑧)𝑑𝑧 is the sum of an infinite number of rectangles of infinitesimal
width Δ(𝑧). The height of such a rectangle at position 𝑧 is the value of the density function 𝜋(𝑧). after
substituting the variable, 𝑧 = 𝑓ዅኻ(𝑥) yields ጂ፳

ጂ፱ = (𝑓
ዅኻ(𝑥))′ and Δ𝑧 = (𝑓 − 1(𝑥))ᖣΔ𝑥. Here ∣ (𝑓ዅኻ(𝑥))ᖣ ∣

indicates the ratio between the area of rectangles defined in two different coordinate of variables 𝑧 and
𝑥 respectively. In a multivariate case:

𝑧 𝜋(𝑧), 𝑥 = 𝑓(𝑧), 𝑧 = 𝑓ዅኻ(𝑥) (4.4)

𝑝(𝑥) = 𝜋(𝑧) ∣ 𝑑𝑧𝑑𝑥 ∣ = 𝜋(𝑓
ዅኻ(𝑥)) ∣ 𝑑𝑒𝑡𝑑𝑓

ዅኻ

𝑑𝑥 ∣ (4.5)

here, 𝑑𝑒𝑡 ፝፟፝፳ is the Jacobian of the function 𝑓, where Jacobianmatrix is thematrix of the first-order partial
derivatives of a function mapping 𝑓, which maps the n-dimensional input vector 𝑥 to a 𝑚-dimensional
output vector.
Normalizing flow transforms a simple distribution into a complex one by applying a sequence of in-
vertible transformation functions. We repeatedly change replace the variable through this chain of
transformations and eventually obtain a probability distribution of final target variable
We know the relation between each pair of consecutive variables given such a chain of probability
density functions.

𝑥 = 𝑧፤ = 𝑓፤ ∗ 𝑓፤ዅኻ ∗ ... ∗ 𝑓ኻ(𝑧ኺ)
Using change of variables we can say that,

log 𝑝፱ = log 𝜋፤(𝑧፤) = log 𝜋፤ዅኻ − log ∣ 𝑑𝑒𝑡
𝑑𝑓፤
𝑑𝑧፤ዅኻ

∣ (4.6)

Thus we can step by step back-trace the initial distribution by expanding the equation of the output x
from figure 4.5 [15] and give the log 𝑝(𝑥) as:

log 𝑝(𝑥) = log 𝜋ኺ(𝑧ኺ) −
ፊ

∑
።ኻ
log ∣ 𝑑𝑒𝑡 𝑑𝑓።𝑑𝑧።ዅኻ

∣ (4.7)

The path traversed by random variables 𝑧። = 𝑓።(𝑧።ዅኻ) is the flow. Full chain formed by successive
distributions 𝜋። is called normalizing flow. The transformation function 𝑓 should satisfy the follow specific
structural requirements such as: The input and output dimnesions must be same, transfomation must
be invertible and the computing the determinant of jacobian needs to be efficient. [15].
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