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Abstract1

The ability to evaluate stream hydrochemistry is often constrained by the capacity2

to sample streamwater at an adequate frequency. While technology is no longer a3

limiting factor, costs and sample management can still be a barrier to high-resolution4

water quality instrumentation. We propose a new framework to investigate the elec-5

trical conductivity (EC) of streamwater, which can be measured continuously through6

inexpensive sensors. We show that EC embeds information on individual ion con-7

tent which can be isolated to retrieve solute concentrations at high resolution. The8

essence of the approach is the decomposition of the EC signal into its “harmonics”,9

i.e., the specific contributions of the major ions which conduct current in water. The10

ion contribution is used to explore water quality patterns and to develop algorithms11

that reconstruct solute concentrations starting from EC during periods where solute12
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measurements are not available. The approach is validated on a hydrochemical dataset13

from Plynlimon, Wales, showing that improved estimates of high-frequency solute dy-14

namics can be easily achieved. Our results support the installation of EC probes to15

complement water quality campaigns and suggest that the potential of EC measure-16

ments in rivers is currently far from being fully exploited.17

Introduction18

River hydrochemistry is characterized by marked time variability that typically depends19

on hydrological and biogeochemical factors. In particular, one essential driver of water20

quality dynamics is streamflow, which is characterized by frequent transitions between low21

discharges (that typically reflect the composition of groundwater) and high discharges (that22

can flush large portions of soil water). It is hence well known that capturing the structure of23

hydrochemical behavior requires a sampling frequency comparable to — and possibly higher24

than the typical timescale of the hydrologic response.1 In most rivers this is equivalent to25

a few hours, which makes the sufficient collection of water samples extremely challenging.26

Instead, weekly, biweekly or monthly surveys are conducted, sometimes integrated by event-27

based high-resolution campaigns. These surveys are fundamental for first-order estimates28

of solute loads and long-term trends,2,3 but they may be insufficient to understand solute29

dynamics and for a rigorous assessment of stream water quality.4,5 Transport and water-30

quality models are widely employed as a complementary tool6 but they also strongly rely31

on high-resolution data to calibrate and validate model results. The availability of high-32

resolution hydrochemical datasets is thus crucial for both monitoring and modeling solute33

hydrochemistry.34

In the last years, high-resolution datasets have helped discover complex hydrochemical35

patterns,7–12 and unprecedented technological advances have now made continuous water36

quality measurements possible.13,14 In terms of costs and management, however, the collec-37

tion of high-frequency hydrochemical data can still be a challenge. For this reason, recon-38
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structing high-frequency solute behavior through inexpensive “surrogate measures” of solute39

concentration15 like electrical conductivity is a desirable opportunity.40

Streamflow electrical conductivity (EC, also known as specific conductance) reflects the41

presence of ions in flowing water and can be easily measured along with temperature by42

relatively cheap and durable sensors. EC probes can acquire data at high frequency and43

they have been long used to quantify the total amount of dissolved solids16 or as a quality44

check for water chemistry analyses.17 However, EC measurements are seldom used to support45

solute concentration measurements,18 with only few applications based on linear regressions46

between EC and solute concentration19,20.47

The main research question that is investigated here is whether EC measurements can48

be made useful for retrieving high-frequency water quality information. We propose a new49

way to interpret EC signal in streamflow and use it to investigate the temporal evolution of50

major ion concentrations. The driving hypothesis is that the use of continuous EC signal51

to integrate low-frequency solute measurements is able to provide improved estimates of52

high-frequency solute behavior.53

Materials and Methods54

The electrical conductivity of an aqueous solution is the capacity to transmit electrical55

current through the movement of charged ions. Various forms exist to express EC as the56

sum of the electrical conductivities of the individual ion species in water.21 In particular,57

Parkhurst and Appelo22 propose:58

EC =
∑
i

ECi =
∑
i

(Λ0mγEC) i (1)

where EC is expressed in S/m and for each solute species (denoted by subscript i): Λ0 is the59

molar conductivity [S/m/(mol/m3)], m is the molar concentration [mol/m3], and γEC [−] is60

the electrochemical activity coefficient. To remove the temperature effect on Λ0 and γEC ,61
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EC is typically reported at a standard temperature of 25◦C. Further details on the terms62

of equation 1 are described in Section S2. Equation (1) can be reformulated to stress the63

time-variability of the individual terms. By denoting with tk the times at which a water64

sample is collected, the relationship between EC and solute concentration C [mg/L] can be65

expressed as:66

EC(tk) =
∑
i

ECi(tk) =
∑
i

ai(tk)Ci(tk) (2)

where the coefficients ai = (Λ0 γEC /M)i [S/m/(g/m3)] (M indicating the solute molar mass67

[g/mol]) include known chemical properties of the solutes. The coefficients ai have a mild68

dependence on the ionic strength of the solution, so they are not strictly constant and69

independent. However, in most environmental applications the ionic strength is rather low70

and with limited variability, so the coefficients ai can be effectively considered as independent71

and with only minor time-variance.72

For each solute species, we can define:73

fi(tk) =
ECi(tk)

EC(tk)
(3)

which represents the relative contribution of each solute to total EC. The terms fi can be74

seen as weights that describe how much an individual solute species influences the mea-75

sured EC, due to its chemical properties and concentration. Besides allowing a rank of76

the solutes according to their contribution to EC, the knowledge of weights fi allows in-77

verting equation (2) and obtaining solute concentration starting from EC measurements as78

Ci(tk) = EC(tk) fi(tk)/ai(tk). The key advantage of this inversion is that it can be extended79

to any time t where EC measurements and reliable estimates of the coefficients fi and ai are80

available:81

Ci(t) =
fi(t)

ai(t)
EC(t) (4)

Given that EC probes can provide almost continuous measurements and that the coefficients82
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ai are rather constant, the ability to compute high-frequency solute concentration through83

equation (4) translates into the capacity to properly estimate the individual contributions84

fi(t).85

Proof of Concept86

To show the validity of the approach, we applied it to the water quality dataset publicly87

available for the Upper Hafren (UHF) river in the Plynlimon area, mid-Wales (UK). The88

dataset includes 7-hour frequency streamwater samples, analyzed for more than 40 elements89

of the periodic table and for additional parameters like EC (at 25◦C), pH and Alkalinity.8,23
90

We selected 7 major ions (Na+, Ca2+, Mg2+, K+, Cl−, SO2−
4 and NO−

3 ), and obtained H+
91

from pH and HCO−
3 from speciation calculation with Gran Alkalinity as input.24 Some large92

gaps in the Alkalinity series were filled through a linear regression with pH to allow extending93

the analysis to a larger number of samples (Section S3).94

EC decomposition95

The first goal of the analysis is the decomposition of the bulk EC signal into its ion con-96

tributions. To test the accuracy of equation (1), estimated EC was first compared to the97

measured values (Section S4.1). All computations refer to the standard temperature of 25◦C,98

for consistency with measurements. The result (Figure S2) is generally accurate, with 95%99

of the errors within ±10%.100

The good match between measured and calculated EC indicates that the estimated con-101

tributions of the 9 major ions is generally appropriate. The weights fi(t) were then computed102

through equation (3), where the terms ECi(t) were obtained as ai(t)Ci(t) and the term EC(t)103

was set equal to the measured EC. The procedure is applied to each solute independently, so104

it can be used to compute fi(t) for the available ion measurements even in case other major105

ion concentrations are missing. The timeseries of weights fi are shown in Figure 1, where so-106
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lutes are ranked according to their mean contribution to EC. Note that given the differences107

between measured and computed EC (Figure S2), the sum of the weights can occasionally108

be different from 1. Figure 1 shows the “harmonics” of the EC signal. Cl− and Na+ are the

Figure 1: Relative contributions (fi) of individual ions to the Electrical Conductivity (EC)
signal at UHF, computed through equation 3. Cl and Na account for more than 60% of EC
and have the lowest relative variability.

109

most influential solutes as together they provide more than 60% of EC. Although fCl and110

fNa display some variability (especially after day 200), they are the weights with the lowest111

relative variability. Other ions have lower contributions, around 10% or less, except for H+
112

which has remarkably high and variable contributions related to acidic stream conditions113

during high flows.25 Regardless of the particular dynamics, all solutes show potential for114

pattern exploration, including the dependence on stream discharge and the interdependence115

with other solutes. Because the weights fi represent the EC contribution of each solute116

compared to that of the whole solution, the variability in fi follows from contrasting solute117

behavior. This is most visible in the second part of the dataset, where most fi are charac-118

terized by sharp depressions that correspond to H+ peaks during high flows. Computations119

also showed (Figure S3) that the coefficients ai only have minor variations in time (max120

±1%), so they could be effectively considered as a solute property.121
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Retrieving high-frequency solute dynamics122

For solutes whose weights can be reliably predicted, one can use equation 4 to obtain solute123

concentration estimates at the same frequency as EC. This can be especially useful to com-124

plement long-term water quality surveys that are often conducted by environmental agencies.125

Indeed, in the absence of higher-frequency information, low-frequency solute concentrations126

are typically interpolated over the sampling interval to, e.g., estimate solute loads. The127

second goal of the analysis is then to assess whether the use of continuous EC signal to128

integrate low-frequency solute measurements is able to provide an approximation of solute129

behavior which is significantly better than the simple interpolation of low-frequency concen-130

tration measurements. This is not a trivial hypothesis as by using EC one could induce an131

unrealistic behavior to the solute and ultimately get a worse approximation. To address this132

problem, we used again the UHF dataset and selected the two ions with the highest contri-133

butions to EC, i.e., chloride and sodium. For both solutes, we first extracted low-frequency134

(e.g., weekly) “grab” subsamples of the dataset, which may represent the low-frequency grab135

samples available from a water quality campaign. Then, instead of using the grab samples136

to interpolate their solute concentration, we used them to interpolate their ion contributions137

to EC and obtain high-frequency estimates of fi(t) and ai(t). Such estimates were finally138

coupled to the measured EC signal (equation (4)) to obtain high-frequency estimates of so-139

lute concentration. This procedure was implemented for grab sample frequencies from 14140

hours to 31 days. As predictions are influenced by the choice of the first extracted sample, a141

different prediction was generated for each possible choice of the initial sample. To evaluate142

the quality of the EC-aided method, we computed a prediction error as the mean absolute143

difference between the measured and estimated high-frequency concentrations (excluding the144

data points corresponding to the grab samples, as their error is null by definition). For com-145

parison, we computed the prediction error originating from the simple interpolation of the146

grab samples’ concentrations. Results are shown in Figure 2, where the errors are plotted as a147

function of the sampling frequency. All curves start from an error of about 2% corresponding148
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to the highest extractable frequency (14-hour). For increasing sampling intervals the errors149

grow, but the curves featuring the EC-aided methodology remain substantially lower than150

the ones corresponding to the linear interpolation, with approximately 40% error reduction.151

Figure 2 also shows that the error of the EC methodology with 14-day frequency is the same152

as the one from a linear interpolation at 3-day frequency. For additional comparison, we also153

computed the error of a least-square linear regression between solute concentration and EC154

(Section S5.1). The error of the regression behaves as an asymptote for the EC-aided esti-155

mate, suggesting that these two methods approximately converge for very large (>1 month)156

sampling intervals. This is not surprising as by progressively increasing the sampling interval157

one tends to a single, mean solute contribution to EC, which in turn tends to the slope of158

the linear regression when the intercept is close to 0 (Section S5.2).159

Figure 2: Solute concentration prediction error plotted against the sampling frequency of
the grab samples. As for each frequency several predictions are available (depending on the
choice of the initial grab sample), bands indicate the 90% confidence interval of the error
distribution and lines indicate the mean error across all the possible predictions. Blue colors
refer to the error of the EC method, red colors refer to the simple linear interpolation of
the grab samples. Gray lines indicate the mean error of a linear regression between EC and
solute concentration (Section S5).

An example of chloride estimation using biweekly samples is further shown in Figure 3.160
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The plot shows that, compared to a linear interpolation, the estimated chloride concentra-161

tion is able to reproduce most of the high-frequency fluctuations of the real signal. Indeed,162

the empirical distribution of the predicted concentration is very similar to that of measured163

chloride (Figure 3, inset). Figure 3 also shows that the use of a linear regression to estimate164

chloride concentration can accurately reproduce the high-frequency fluctuations, but it can-165

not reproduce some seasonal trends like those between days 80-200, hence the mean error of166

the performance (as shown in Figure 2) remains relatively high.

Figure 3: Example of chloride prediction based on biweekly grab samples. The inset reports
the empirical distributions of the measured and estimated chloride signals. The interpolated
concentration gives an incomplete picture of chloride behavior, while the regression with EC
misses the seasonal chloride dynamics. The EC-aided methodology captures all main solute
dynamics.

167

Discussion168

The core and novelty of the approach is the interpretation of EC as a bulk signal of hy-169

drochemistry to be decrypted. Regardless of the “decoding” technique, the opportunity to170

decompose the EC signal to trace the presence of different ions in the flowing water (as171
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shown in Figure 1) is a new avenue which calls for additional research. One strength of the172

methodology is its mechanistic foundation which allows understanding the complex dynam-173

ics of the EC signal. Indeed, EC is not just correlated to Cl and Na, rather it is caused by174

those solutes.175

The proof-of-concept application to UHF provides some preliminary guidelines as to176

where the approach is expected to work. Solutes with low contributions to EC are more dif-177

ficult to isolate in the EC decomposition and are prone to high relative errors on the weights178

fi estimation (Figure S5). This directly translates into higher errors in the concentration179

estimate (Section S4.3). The variability in the weights fi (Figure 1) arises when solutes180

have contrasting behaviors and it represents the major challenge to the EC decomposition181

(Section S4.3). Simplified techniques like the linear interpolation of low-frequency fi values182

are sufficient to show the potential of the approach and can provide valid approximations183

for the highly-contributing solutes (like Cl and Na at UHF, Figure 2), but better algorithms184

are required to approximate the weights fi for poorly-contributing solutes (like Ca and NO3185

at UHF). Further developments of the approach, hence, point to improved algorithms that186

explicitly take into account the integrated solute dynamics and incorporate hydrochemical187

knowledge available for the site. Moreover, other variables may be embedded like water flow,188

temperature and pH, that typically have an influence on solute concentration26 and are often189

available at the same frequency as EC.190

The UHF stream is a natural environment where EC is low and mostly controlled by191

two solutes, but it is also characterized by acidic conditions at high flows that cause sharp192

variations in the contributions fi. Different systems are expected to have very different con-193

tributions to EC depending on their particular hydrochemistry, but the approach is general194

and can be explored in various ways, e.g., starting from the computation of the contributions195

to EC for the existing water quality datasets. The approach is also obviously related to the196

ability to accurately measure EC (which requires maintenance of the sensor) and can be197

influenced by several undesired factors, like road salting during snow seasons.27
198
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Long-term water quality campaigns are being conducted in many sites worldwide by199

research groups and water-quality agencies. By installing EC probes in such sites (if not200

already present), the methodology can be immediately applied at almost zero cost. For201

example, results suggest that continuous EC measurements at Plynlimon could be coupled202

to long-term chloride measurements28 to aid the estimation of high-frequency chloride con-203

centration. There is indeed enormous potential for deploying cheap networks of EC probes204

in streamflow (as also for precipitation or groundwaters) and identify multiple signatures205

of hydrologic transport. This is not currently done because EC is traditionally treated as206

a qualitative indicator18 of total dissolved solids, but the key result of this research is that207

there is much more information that can be recovered from the EC signal.208

Finally, results introduce a potential for using the EC signal in solute transport modeling.209

State-of-the-art models6,29 can provide outputs at high temporal resolutions and are often210

limited by data availability. Given the high information potential contained in EC and211

addressed in this paper, we envision the opportunity in the future to use information from212

continuous EC signal to support the calibration of transport models.213
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