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ON THE ASYMPTOTIC BEHAVIOR OF A RUN AND TUMBLE
EQUATION FOR BACTERIAL CHEMOTAXIS\ast 

JOSEPHINE A. EVANS\dagger AND HAVVA YOLDA\c S\ddagger 

Abstract. We prove that linear and weakly nonlinear run and tumble equations converge to a
unique steady state solution with an exponential rate in a weighted total variation distance. In the
linear setting, our result extends the previous results to an arbitary dimension d\geq 1 while relaxing the
assumptions. The main challenge is that even though the equation is a mass-preserving, Boltzmann-
type kinetic-transport equation, the classical L2 hypocoercivity methods, e.g., by J. Dolbeault,
C. Mouhot, and C. Schmeiser [Trans. Amer. Math. Soc., 367 (2015), pp. 3807--3828], are not ap-
plicable for dimension d > 1. We overcome this difficulty by using a probabilistic technique, known
as Harris's theorem. We also introduce a weakly nonlinear model via a nonlocal coupling on the
chemoattractant concentration. This toy model serves as an intermediate step between the linear
model and the physically more relevant nonlinear models. We build a stationary solution for this
equation and provide a hypocoercivity result.
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1. Introduction and main results. We consider a kinetic-transport equation
which describes the movement of biological microorganisms biased towards a chemoat-
tractant. The model is called the run and tumble equation and introduced in [1, 53]
based on some experimental observations [5] on the chemotaxis of the bacteria called
E. coli towards amino acids. The equation is given by

\partial tf + v \cdot \nabla xf =

\int 
\scrV 
(T (x, v, v\prime )f(t, x, v\prime ) - T (x, v\prime , v)f(t, x, v)) dv\prime ,

t\geq 0, x\in \BbbR d, v \in \scrV .(1.1)

where f := f(t, x, v) \geq 0 is the density distribution of microorganisms at time t \geq 0
at a position x \in \BbbR d, moving with a velocity v \in \scrV \subseteq \BbbR d. In (1.1), \scrV = B(0, V0) is a
centered ball with a unit volume and a radius V0 > 0 so that | \scrV | = 1. Microorganisms
perform a biased movement along the gradient of the chemoattractant with a con-
stant speed, and they change their orientation at random times towards the regions
where the chemoattractant concentration is higher. This biased random walk drives
the microorganisms up the gradient of the chemoattactant density. The underlying
process is also called a velocity jump process.
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7636 JOSEPHINE A. EVANS AND HAVVA YOLDA\c S

The tumbling frequency T describes the change in velocity from v to v\prime , and it
can be written as

T (t, x, v, v\prime ) := T (m,v, v\prime ) = \lambda (m)\kappa (v, v\prime ),(1.2)

where \lambda :\BbbR \rightarrow [0,\infty ) is the tumbling rate and m is the gradient of the external signal
M along the direction of v\prime and given by

m= v\prime \cdot \nabla xM,(1.3)

where M depends on the chemoattractant concentration S via

M =m0 + logS,(1.4)

wherem0 \in \BbbR +
0 represents the external signal in the absence of a chemical stimulus. In

(1.2), the tumbling kernel \kappa is a probability distribution on \scrV and gives the probability
of tumbling from velocity v to velocity v\prime so that it satisfies\int 

\scrV 
\kappa (v, v\prime )dv\prime = 1.

We assume that the distribution of the change in the velocity due to tumbling is
uniform, i.e., \kappa \equiv 1. If the chemoattractant density S(x) is a fixed function of x, then
the equation becomes linear. Together with the above assumptions, the linear run
and tumble equation takes the form

\partial tf + v \cdot \nabla xf =

\int 
\scrV 
\lambda (v\prime \cdot \nabla xM)f(t, x, v\prime )dv\prime  - \lambda (v \cdot \nabla xM)f(t, x, v),

f(0, x, v) = f0(x, v), x\in \BbbR d, v \in \scrV ,
(1.5)

where the initial datum f0 is a probability measure, i.e., f0 \in \scrP (\BbbR d \times \scrV ).1
Apart from the linear equation, we consider a model where the chemoattractant

concentration S solves

S(t, x) = S\infty (x)(1 + \eta (N \ast \rho )(t, x)),(1.6)

where \eta > 0 is a small constant, N is a positive, smooth function with a compact
support, S\infty is a smooth function, and \rho (t, x) :=

\int 
\scrV f(t, x, v)dv is the spatial marginal

density of microorganisms. We refer to the problem (1.5)--(1.6) as the weakly nonlinear
run and tumble equation. This model can be considered as an intermediate model
between the linear equation and physically relevant nonlinear equations; e.g., when the
microorganisms produce the chemoattractant by themselves, S solves a Poisson-type
equation with a source term as the density,

 - \Delta xS + \alpha S = \rho ,(1.7)

where \alpha \geq 0 is the chemical degradation rate. This nonlinear model was first intro-
duced in [1, 44] and further studied in [20].

Analytical results on the long-time behavior of kinetic models of chemotaxis are
scarce in the literature. We give a brief summary below. The main reason is that the

1\scrP (\Omega ) denotes the space of probability measures defined on \Omega .
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ASYMPTOTIC BEHAVIOR OF RUN AND TUMBLE CHEMOTAXIS 7637

classical hypocoercivity methods are not applicable to the run and tumble equation.
We dedicate section 1.3 to a detailed discussion of this matter. In the linear case, the
closest result to ours is [43] where the authors prove exponential convergence towards
a nontrivial stationary state in d \geq 1 assuming that S(x) is a radially symmetric
function. In this paper, the techniques we use allow us to remove the radial symmetry
assumption on S; thus we are able to generalize the result to d \geq 1, and a wider
class of possible tumbling rates, with completely constructive arguments. However,
these techniques cannot be utilized in the nonlinear case. Therefore, we introduce a
weakly nonlinear equation to understand the link between the linear equation and the
nonlinear one (1.5)--(1.7). A detailed discussion of this connection and how we chose
the coupling (1.6) can be found in section 4.

Summary of previous results. In this paper, we are concerned with the long-time
behavior of the run and tumble equation in the case that the solutions exist globally
in time. Therefore, we do not provide an existence result. However, we would like
to give a brief summary of the previous works, including the study of the Cauchy
problem. We remark that the global existence of solutions for the models we study
in this paper can be obtained by following the strategy, e.g., in [20, 43], since the
tumbling frequency we consider can be bounded by the necessary terms.

The linear run and tumble model was studied in numerous works including
[11, 43, 45, 46]. In [11], the authors proved the existence and uniqueness of a non-
trivial stationary state and exponential decay to equilibrium as t\rightarrow \infty in dimension
d = 1 by using a modified entropy approach due to [25]. An example of a tumbling
frequency satisfying the assumptions in [11] is given by

T (x, v, v\prime ) = 1+ \chi sgn(x \cdot v), \chi \in (0,1),(1.8)

where \chi is called the chemotactic sensitivity. Recently in [43], this result was extended
to higher dimensions d \geq 1 by considering splitting techniques due to [42]. These
techniques are based on using the Krein--Rutman theorem for positive semigroups
which do not satisfy the necessary compactness assumptions. The general form of the
tumbling frequency considered in [43] is given by

T (x, v, v\prime ) = 1 - \chi sgn(\partial tS + v \cdot \nabla xS), \chi \in (0,1).(1.9)

In [43], the authors further assumed that the concentration of the chemoattractant
S(x) is radially symmetric and decreasing in x such that S(x)\rightarrow 0 as | x| \rightarrow \infty . This
assumption simplifies the tumbling kernel (1.9) to (1.8) since the radial symmetry
assumption reduces the problem essentially to dimension d= 1. In this paper, we are
able to remove the radial symmetry assumption and obtain the exponential conver-
gence towards a unique stationary state in dimension d\geq 1. As in our case, when the
concentration of the chemoattractant S is a fixed function of x but not necessarily
radially symmetric or strictly decreasing in | x| , we refer to it as the linear problem.
However we remark that, in [43], the authors refer to a specific case of the run and
tumble equation as the linear problem. What we call the linear equation in this paper
refers to more a general form of the run and tumble equation.

For the Cauchy problem, there are global existence results in [8, 15, 20, 36] and
blow-up results in [6]. Moreover, in [10], the author showed the existence of travel-
ing wave solutions of a nonlinear run and tumble model which is coupled with two
reaction-diffusion equations. This analytical result complements the experimental ob-
servations and computational studies in [49, 50]. We refer also to [7] for a detailed
review of existence and blow-up results for various kinetic models of chemotaxis.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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7638 JOSEPHINE A. EVANS AND HAVVA YOLDA\c S

Summary of our main results. In this paper, we prove that there exists a unique,
nontrivial steady state solution to both the linear and the weakly nonlinear equations
and that both the models converge to the respective stationary states with explicitly
computable exponential rates. In the linear case, our results are obtained by means
of Harris's theorem which is a probabilistic method in the ergodic theory of Markov
processes. Moreover, we build a unique stationary solution for the weakly nonlin-
ear equation (1.5)--(1.6) via a fixed point argument, and we show that the solutions
converge to this stationary solution exponentially using a perturbation argument. In-
deed, S(t, x) in (1.6) can be treated as a perturbation of the linear equation whenever
(N \ast \rho )(t, x) is decreasing or \eta is small. The explicit rates of convergence can be
obtained in terms of the constants given in the assumptions. Our proofs are all con-
structive, and the estimates are in the weighted total variation distances, valid for
arbitrary dimension, i.e., x\in \BbbR d, d\geq 1.

1.1. Assumptions and main results. We assume that the tumbling rate in-
creases when the microorganisms move far away from the regions where the chemoat-
tractant density is high and the chemoattractant density decreases as | x| \rightarrow \infty . We
make the following hypotheses:

(H1) The tumbling rate \lambda (m) :\BbbR \rightarrow (0,\infty ) is a function of the form

\lambda (m) = 1 - \chi \psi (m), \chi \in (0,1),(1.10)

where \psi is a bounded (with \| \psi \| \infty \leq 1), odd, increasing function and m\psi (m)
is differentiable.

(H2) We suppose that M(x)\rightarrow  - \infty as | x| \rightarrow \infty , | \nabla xM(x)| is bounded from above,
and \| \nabla xM\| \infty exists. Moreover, there exist R \geq 0 and m\ast > 0 such that
whenever | x| >R we have

| \nabla xM(x)| \geq m\ast .

(H3) We suppose that Hess(M)(x)\rightarrow 0 as | x| \rightarrow \infty and | Hess(M)(x)| is bounded.
(H4) There exists a constant \~\lambda > 0, depending on \psi and \| \nabla xM\| \infty , and an integer

k > 0, depending on \psi , such that\int 
\scrV 
\psi (v\prime \cdot \nabla xM(x))v\prime \cdot \nabla xM(x)dv\prime \geq \~\lambda (\psi ,\| \nabla xM\| \infty )| \nabla xM(x)| k.(1.11)

Remark 1.1. We remark here that in addition to assumption (1.10), our theorem
in the weakly nonlinear setting also requires \psi to be Lipschitz. This is so that we can
ensure that a small difference in \rho will result in a small difference in \lambda (v \cdot \nabla xM) when
M depends continuously on \rho . This type of assumption would in fact be necessary for
the standard linearization of a coupled run and tumble equation to make sense and
we believe it is a strength of our results that we are able to deal with \psi other than
the sign function.

In order to explain where (H4) comes from and justify its use we briefly prove (1.11)
in two cases in the following lemma.

Lemma 1.2. If \psi (z) = sgn(z), then (1.11) holds with k= 1 and

\~\lambda =

\int V0

 - V0

| v1| (V 2
0  - v21)

(d - 1)/2 \pi (d - 1)/2

\Gamma ((d - 1)/2 + 1)
.

If \psi is differentiable with \psi \prime (0) > 0, then (1.11) holds with k = 2, and \~\lambda depends on
the exact form of \psi .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ASYMPTOTIC BEHAVIOR OF RUN AND TUMBLE CHEMOTAXIS 7639

Proof. Since \scrV is a ball of radius V0, by rotation we obtain\int 
\scrV 
\psi (v\prime \cdot \nabla xM(x))v\prime \cdot \nabla xM(x)dv\prime 

=

\int 
\scrV 
\psi (v1| \nabla xM(x)| )v1| \nabla xM(x)| 1\{ v2

2+\cdot \cdot \cdot +v2
d\leq V 2

0  - v2
1\} dv1.

Integrating out v2, . . . , vd gives\int V0

 - V0

\psi (v1| \nabla xM(x)| )v1| \nabla xM(x)| (V 2
0  - v21)

(d - 1)/2 \pi (d - 1)/2

\Gamma ((d - 1)/2 + 1)
dv1.(1.12)

We can bound (1.12) below by

\pi (d - 1)/2

\Gamma ((d - 1)/2 + 2)
(V0/2)

d - 1

\int V0/2

 - V0/2

\psi (v1| \nabla xM(x)| )v1| \nabla xM(x)| dv1.

From this point we extract the first result on \psi (z) = sgn(z).

For the case where \psi is differentiable, we continue using the fact that \pi d/2

\Gamma (d/2+1)V
d
0 =

1, and, changing variables from v1 to y= v1| \nabla xM | , the above bound is equal to

1

2d - 1
\surd 
\pi 

\Gamma (d/2 + 1)

\Gamma ((d - 1)/2 + 1)

1

| \nabla xM | V0

\int V0| \nabla xM | /2

 - V0| \nabla xM | /2
\psi (y)y dy.

Note that \psi (y)y is a positive, even function which is 0 at y = 0. We have an average
of \psi (y)y over  - V0| \nabla xM | , V0| \nabla xM | , and it approaches 0 as | \nabla xM(x)| \rightarrow 0. Since \psi is
differentiable, y\psi (y)\approx \psi \prime (0)y2 when y is small, so as | \nabla xM | \rightarrow 0 we obtain

1

2d - 1
\surd 
\pi 

\Gamma (d/2 + 1)

\Gamma ((d - 1)/2 + 1)

1

| \nabla xM | V0

\int V0| \nabla xM | /2

 - V0| \nabla xM | /2
\psi (y)y dy

\approx 1

2d - 1
\surd 
\pi 

\Gamma (d/2 + 1)

\Gamma ((d - 1)/2 + 1)
\psi \prime (0)

V 2
0

12
| \nabla xM | 2.

This approximation only holds true as | \nabla xM | goes to 0, but since | \nabla xM | is a bounded

function and 1
2d - 1

\surd 
\pi 

\Gamma (d/2+1)
\Gamma ((d - 1)/2+1)

1
| \nabla xM | V0

\int V0| \nabla xM | /2
 - V0| \nabla xM | /2\psi (y)y dy is a continuous

function of | \nabla xM | , we have the result.

We state the main results of the paper below. Their proofs are given at the end
of sections 2 and 3, respectively.

Theorem 1.3 (the linear equation). Suppose that t \mapsto \rightarrow ft is the solution of (1.5)
with initial data f0 \in \scrP (\BbbR d\times \scrV ). We suppose that hypotheses (H1)--(H4) are satisfied.
Then there exist positive constants C,\sigma (independent of f0) such that

\| ft  - f\infty \| \ast \leq Ce - \sigma t\| f0  - f\infty \| \ast ,(1.13)

where f\infty is the unique steady state solution to (1.5). The norm \| \cdot \| \ast is the weighted
total variation defined by

\| \mu \| \ast :=
\int 
\BbbR d

\int 
\scrV 
(1 - \gamma v \cdot \nabla xM(x) - \beta \gamma \psi (v \cdot \nabla xM(x))v \cdot \nabla xM(x))e - \gamma M(x)| \mu | dv dx,

(1.14)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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7640 JOSEPHINE A. EVANS AND HAVVA YOLDA\c S

where \gamma ,\beta are positive constants which can be computed explicitly and are sufficiently
small so that the weight in \| \cdot \| \ast is positive. Furthermore, if there exist positive
constants C, \=C, and \alpha such that

C  - \alpha \langle x\rangle \leq M(x)\leq \=C  - \alpha \langle x\rangle ,

then using equivalence of norms we can show a contraction as in (1.13) (with different
constants C and \sigma ) in the weighted total variation norm with the weight e\delta \langle x\rangle 

\| \mu \| \ast \ast :=
\int 
\BbbR d

\int 
\scrV 
e\delta \langle x\rangle | \mu | dv dx,(1.15)

where \delta is a small enough constant depending on M and \langle x\rangle =
\sqrt{} 
1 + | x| 2.

Remark 1.4. We remark briefly on the Cauchy theory for this equation. Since it
is linear we believe that the simplest way to see that the equation is well posed for
initial data in \scrP (\BbbR d\times \scrV ) is to directly construct a Markov process for which (1.5). We
can do this by generating a series of jump times J1, J2, . . . which are a Poisson process
with rate (1+\chi ) and a series of postjump velocities V1, V2, . . . which are independent
and drawn from the uniform measure on \scrV and lastly a series of thinning random
variables U1,U2, . . . which are independent and identically distributed and drawn
from the uniform distribution on [0,1 + \chi ]. Then we define a piecewise deterministic
Markov process (Xt, Vt) with (X0, V0) having the prescribed distribution of the initial
data and where if t\in (Ji, Ji+1) we have Xt =XJi

+ (t - Ji)VJi
and Vt = VJi

; then we
set VJi+1

= Vi+1 if Ui+1 \leq \lambda (VJi
\cdot \nabla xM(XJi+1

) and VJi+1
= VJi

otherwise.

Theorem 1.5 (the weakly nonlinear equation). Suppose that t \mapsto \rightarrow ft is the solu-
tion of (1.5) with the coupling (1.6) where we suppose that N(x) is a positive, smooth
function with a compact support, \eta > 0 is a constant, and S\infty (x) is a smooth function
satisfying for some C, \=C,\alpha > 0 that

C  - \alpha \langle x\rangle \leq M\infty (x) := log(S\infty (x))\leq \=C  - \alpha \langle x\rangle ,

where \langle x\rangle =
\surd 
1 + x2. We suppose that hypotheses (H1)--(H4) are satisfied and that

\psi is a Lipschitz function. Then there exist some constant \~C depending on C, \=C, and
\alpha such that if \eta < \~C, then there exists a unique steady state solution to (1.5)--(1.6).
Suppose further that for any initial data f0 \in \scrP (\BbbR d \times \scrV ) satisfying

\| f0\| \ast \ast <
1

4

\biggl( 
\sigma 2

4\eta \chi V0D\| \psi \prime \| \infty \| \nabla xN\| \infty 
 - C\ast 

\biggr) 
,

where \sigma ,D, and C\ast are found in the proofs of Theorem 1.3, Proposition 3.1, and
Lemma 3.4, respectively, we then have that

\| ft  - f\infty \| \ast \ast \leq Ce - \sigma t/2\| f0  - f\infty \| \ast \ast ,

where C and \sigma are some positive constants and \| \cdot \| \ast \ast is defined in (1.15). Here we
emphasize that in this theorem f\infty is the steady state of (1.5) with the coupling (1.6).

Remark 1.6. A discussion of the Cauchy theory for the weakly nonlinear equation
is in the appendix.

Remark 1.7. Hypotheses (H2)--(H4) can be verified also in the case of the Poisson
coupling (1.7). The solution of  - \Delta Wy(x)+\alpha Wy(x) = \delta x is called the Yukawa potential
and given by the Green's function

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ASYMPTOTIC BEHAVIOR OF RUN AND TUMBLE CHEMOTAXIS 7641

Wy(x) =

\int \infty 

0

1

(4\pi y)d/2
exp

\biggl( 
 - | x| 2

4y
 - \alpha y

\biggr) 
dy

and

 - logWy(x)\surd 
\alpha | x| 

\rightarrow 1 as | x| \rightarrow \infty 

for dimension d \geq 1 (see [39, Theorem 6.23]). We can see that | \nabla xM(x)| and
| Hess(M)(x)| are bounded and Hess(M)(x)\rightarrow 0 as | x| \rightarrow \infty , whereM(x) = logWy(x).

Moreover the solution of  - \Delta xS + \alpha S = \rho is given by

S :=Wy \ast \rho =
\int 
\BbbR d

Wy(x)\rho (t, y)dy.

This case requires extra assumptions on \rho in order to verify hypotheses (H2)--(H4).
Since we do not deal with the Poisson coupling in this paper, we skip further
details.

Structure of the paper. This paper is organized as follows. In section 1.2, we
listed the assumptions which are needed throughout the paper and presented the
main results. We dedicated section 1.3 to explaining the motivation, methodology,
and novelty of our results. In section 1.4, we comment on the connection between
the run and tumble equation and an aggregation-diffusion equation obtained as a
parabolic scaling limit of the kinetic equation. In section 2, after stating Harris's
theorem, in the subsequent two subsections we show how we verify two hypotheses
of Harris's theorem for the linear run and tumble equation. We give the proof of
Theorem 1.3 at the end of section 2. Section 3 is then devoted to the weakly nonlinear
case. In this section, we prove that there exists a unique stationary state solution and
exponential convergence to this solution. Finally, section 4 is dedicated to further
discussions, particularly the connection between our results and the nonlinear cases
when different couplings for the chemoattractant density are considered.

1.2. Motivation, methodology, and novelty.
Motivation. Our main motivation in this work is to simplify the proofs showing

convergence to equilibrium for linear run and tumble equations and to extend their
validity to a wider range of tumbling kernels and tumbling rates. We believe this
moves the theory closer to being able to study the most biologically relevant tumbling
rates and kernels, particularly existence and linear stability for the fully nonlinear
models.

Another motivation is that the equation is an interesting example within kinetic
evolution equations. It differs from similar kinetic equations in a few key ways which
we now describe. The linear equation (1.5) has a structure similar to several equations
appearing in the kinetic theory of gases. In particular, we mention a linear Boltzmann
equation of the form

\partial tf + v \cdot \nabla xf  - \nabla xV (x) \cdot \nabla vf =

\biggl( \int 
\BbbR 2

f(t, x, v\prime )dv\prime 
\biggr) 
\scrM (v) - f(t, x, v),

where f := f(t, x, v) is the density distribution of particles at time t in the phase space
(x, v), V (x) is the confining potential, and \scrM (v) is the Maxwellian velocity distribu-
tion. Long-time behavior for such equations is studied in the field of hypocoercivity.
We mention Villani's memoir [54] as the work which began the study of hypocoerciv-
ity as a coherent behavior common to many kinetic equations. The linear Boltzmann
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7642 JOSEPHINE A. EVANS AND HAVVA YOLDA\c S

equation was first shown to converge to equilibrium by H\'erau in [34]. This also falls
under the scope of the powerful general theorem in [25]. In [16], written by the au-
thors and others, we show that Harris's theorem from Markov process theory provides
an alternative way of showing convergence to equilibrium for the linear Boltzmann
equation among other equations.

The run and tumble equation differs from the linear Boltzmann, and similar
hypocoercive equations, in two key ways. Firstly, the confinement mechanism in the
linear Boltzmann is through a ``confining field""\nabla xV (x) whereas in the run and tumble
equation the confinement is induced by the bias in the tumbling rate. This more
complex confinement mechanism in the run and tumble equation is considerably more
difficult to deal with. The second important difference between the linear Boltzmann
equation and the run and tumble equation is the nature of the steady states. The
steady states for the linear Boltzmann equation are simple and explicit, and properties
such as Poincar\'e inequalities are immediate for such states. For the run and tumble
equation, existence of a steady state is a problem in and of itself. The steady states
for the run and tumble equation interact in a more complex way with the tools
of hypocoercivity. For example, a condition in the theorem in [25] for proving a
linear, mass-preserving kinetic equation is hypocoercive is that the steady state of the
equation must be in the kernel of both the transport and collision operators separately.
This is not possible for a steady state of the run and tumble equation, although we
define the transport (v \cdot \nabla x) and collision (the right-hand side of (1.5)) parts of the
operator. This behavior is similar to nonequilibrium steady states in kinetic theory
such as the ones discussed in [2, 12, 13, 14, 28]. Harris's theorem is well adapted
to dealing with complex nonexplicit steady states and gives the existence of a steady
state and the convergence to that steady state simultaneously. This fact was exploited
by the first author in [29] where we used Harris's theorem to find existence of a steady
state for a nonlinear kinetic equation with nonequilibrium steady states. Moreover, in
[16], we showed that Harris's theorem can be applied efficiently to kinetic equations
with nonlocal collision operators to obtain quantitative hypocoercivity results. In
conclusion, the classical tools from hypocoercivity are difficult to apply on the run
and tumble equation, but Harris's approach gives promising results.

Our motivation behind considering the weakly nonlinear equation is to provide a
useful intermediate step to treat the biologically more realistic couplings by means of
exploring how an approach similar to ours in this paper can be applied to the fully
nonlinear case. This point is discussed in section 4 in detail.

Methodology. We obtain the spectral gap result in the linear case by applying
Harris's thorem. In our case the Foster--Lyapunov condition which is necessary to use
Harris's theorem is inspired from the moment estimates in [43]. Using this type of
argument to study asymptotic behavior of biological models is a recent topic of re-
search. One of the important recent results in this direction was [30] where the author
used Doeblin's theorem, which is a predecessor of Harris's theorem, to obtain a spec-
tral gap result for the renewal equation. In [3, 4, 17, 19, 22], Doeblin's and Harris's
theorems were used for showing exponential contraction in weighted total variation
distances for positive conservative and/or nonconservative semigroups, with several
applications in population dynamics including the elapsed-time structured neuron
population models, growth-diffusion, and the growth-fragmentation equations. Par-
ticularly, in [19] the authors improved previous results on the weakly nonlinear model
for interacting neuron dynamics. Their approach allows them to construct a steady
solution to the nonlinear equation based on an explicit smallness assumption on the
connectivity parameter. The uniqueness of the stationary solution is then proved by
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a fixed point argument. The perturbation argument we used in the weakly nonlin-
ear setting is close to the ideas in [19]. The main difference is that our fixed point
argument is more involved and requires the use of Harris's theorem, and unlike in
[19] Doeblin's theorem does not work. Moreover, our argument requires additional
moment estimates for the perturbation term. We carry this out by finding an appro-
priate Lyapunov functional in the nonlinear case as well. This was not needed in [19]
as the authors could work with the steady solutions of the weakly nonlinear equation
explicitly.

Novelty. The novelty in the present work is twofold. Firstly, to the best of our
knowlegde, we give the most general spectral gap result (valid for arbitrary dimension
d\geq 1 while relaxing the assumptions on the chemoattactant concentration S and the
tumbling frequency T ) on the linear run and tumble equation. Particularly, our result
is an improvement of the recent work in [43]. Even though the result in [43] is stated
for d\geq 1, it is only valid under the assumption that the chemoattractant concentration
S is radially symmetric. Our result does not require this assumption to hold, and it
is valid for more general forms of tumbling frequency including the commonly used
ones involving the ``sign function"" (see, e.g., (1.8), (1.9)); in particular, the fact that
we study Lipschitz tumbling rates allows us to perform the later nonlinear analysis
and may be helpful in dealing with the fully nonlinear problem.

Secondly, our results in the nonlinear setting are all new. A nonlocal coupling
(1.6) has not been considered in the literature before, and there is not any explicit
convergence result in the nonlinear setting with any other type of nonlinearity. We be-
lieve that our results on the weakly nonlinear run and tumble equation are significant
as they can be considered as an intermediate step towards studying the physically
relevant case with Poisson coupling (1.7).

1.3. Macroscopic models for chemotaxis. Macroscopic models for chemo-
taxis have been widely studied dating back to Patlak [47] and Keller and Segel [38].
Consequently, we describe briefly the relationship between kinetic and macroscopic
models and the macroscopic models themselves. The motivation for this subsection is
that the limiting aggregation-diffusion equation of the kinetic model that we study is
an example of an more accurate macroscopic model for chemotaxis, the flux-limited
Keller--Segel system.

In [38], the authors study the aggregation behavior of a population of a cell called
D. discoideum which performs amoeboid movement by changing its shape to engulf
bacteria or other substances like nutrients. The model describing this behavior is
referred to as the Patlak--Keller--Segel (PKS) system and given in the general form

\partial t\rho =\nabla \cdot (D\rho \nabla \rho  - \phi S(\cdot )\rho ) ,(1.16)

\partial tS =DS\Delta S + g(\rho ,S),(1.17)

where \rho := \rho (t, x) is the cell density, S := S(t, x) is the chemoattractant concentra-
tion for t \geq 0, x \in \BbbR 2, and D\rho > 0, DS > 0 are the diffusivity of the cells and the
chemoattractant, respectively. The classical PKS system studied in [38] corresponds
to the case \phi S(\nabla S) = \chi \nabla S, where the constant \chi is the chemotactic sensitivity. In
(1.17), g is a function describing the production, degradation, and consumption of
the chemoattactant by the cells. Typically, the cells move towards the regions with
higher nutrient density. After consuming all the nutrient, they disperse uniformly
over the space, and, eventually, they start to aggregate and form clusters. The ag-
gregation describes the instability observed in the population level and is analogous
with many physical problems. The significance of the PKS model comes from the
fact that it allows us to investigate aggregation behavior of the population. There are
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7644 JOSEPHINE A. EVANS AND HAVVA YOLDA\c S

numerous results linking the mesoscopic and microscopic descriptions of chemotaxis
to the macroscopic one, e.g., [1, 27, 37, 45, 46, 48, 51, 52, 55] and references therein.

For the particular model we study here we can look at a limit to a particular
macroscopic model following [45, 46]. We call \tau and \xi the scaled time and space
variables, respectively. For a small \varepsilon > 0, \tau and \xi are given by

\tau = \varepsilon 2t, \xi = \varepsilon x.

We define \lambda \varepsilon (v, \xi ) := \lambda (v \cdot \nabla xM(\xi )) and assume that as \varepsilon \rightarrow 0,

\lambda \varepsilon (v, \xi )\approx 1 - \varepsilon \chi \psi (v \cdot (\nabla \xi M)(\xi )) .

This is consistent with the form of \lambda we assumed in this paper (see hypothesis (H1)).
We call F (\tau , v, \xi ) the density distribution of microorganisms with the scaled vari-

ables, and we have the following equation for F :

\varepsilon 2\partial \tau F + \varepsilon v \cdot \nabla \xi F =

\int 
\scrV 
\lambda \varepsilon (v\prime , \xi )F (\tau , v\prime , \xi )dv\prime  - \lambda \varepsilon (v, \xi )F.

We define the new spatial density:

\rho (\tau , \xi ) :=

\int 
F (\tau , v, \xi )dv.

We then have, by formal computations in the limit as \varepsilon \rightarrow 0,

\partial \tau \rho =\nabla \xi \cdot (\nabla \xi \rho  - \phi S(\xi )\rho ) ,(1.18)

where the macroscopic chemotactic velocity \phi S is given by

\phi S = \chi 

\int 
\scrV 
v\prime \psi (v\prime \cdot (\nabla \xi M)(\xi ))dv\prime .

This model is slightly different and is an example of a flux-limited Keller--Segel
equation which appears to be a more accurate description of chemotaxis by taking into
account the saturation of the cell velocity. This model was introduced and studied in
[21, 24, 35] among other work.

2. Harris's theorem. In this section, we give the statement of Harris's theorem
based on [18, 31, 32]. Harris's theorem is a probabilistic method which gives simple
conditions on ergodic (long-time) behavior of Markov processes. The original idea
dates back to Doeblin [23] who showed mixing of a Markov chain whose transition
probabilities possess a uniform lower bound. We refer to this condition as the Doeblin
condition and explain it below. The mixing of a Markov chain refers to the time until
the Markov chain reaches its stationary state distribution. In [33], Harris studied
the necessary conditions for a Markov process to admit a unique stationary state or
an invariant measure. Later in [26, 40, 41], this result was used for the first time
to obtain quantitative convergence rates based on verifying a minorization condition
and a geometric drift or Foster--Lyapunov condition. In [32], the authors provided
a simplified proof of Harris's theorem by using appropriate Kantorovich distances,
and recently in [18], the authors provided an alternative proof by using semigroup
arguments. We state the theorems below in the spirit of [18, 31].

We consider a Polish space \Omega and denote \Sigma as the \sigma -algebra of Borel subsets
of \Omega . Then (\Omega ,\Sigma ) is a measurable space, and, endowed with any probability measure,
\Omega is a Lebesgue space. We denote the space of probability measures by \scrP (\Omega ).

A natural way to construct a Markov process is via a transition probability
function.
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Definition 2.1. A linear, measurable function \scrM (x,A) is a transition probability
function on (\Omega ,\Sigma ) if for every x, \scrM (x, \cdot ) is a probability measure on (\Omega ,\Sigma ) and
\scrM (\cdot ,A) is a measurable function for every A\in \Sigma .

A Markov operatorM and its adjointM\ast can be defined by means of a transition
probability function \scrM in the following way:

(M\mu )(A) =

\int 
\Omega 

\scrM (x,A)| \mu | dx, (M\ast \phi )(x) =

\int 
\Omega 

\phi (y)\scrM (x, dy),

where \phi : \Omega \mapsto \rightarrow [0,+\infty ) is a bounded measurable function.

Definition 2.2. A family of Markov operators (Mt)t\geq 0 is called a Markov semi-
group if it satisfies the following:

i. M0 = Id or equivalently \scrM 0(x, \cdot ) = \delta x for all x\in \Omega .
ii. The semigroup property: Mt+s =MtMs for t, s\geq 0.
iii. For every \mu \in L1, t \mapsto \rightarrow Mt\mu is continuous.

We also note that Markov semigroups have the following:
i. Positivity property: Mt \geq 0 for any t\geq 0.
ii. Conservativity property:

\int 
| Mt\mu | (dx) =

\int 
| \mu | (dx) for any finite measure \mu .

In our setting Mt\mu will be the solution of the partial differential equation f at
time t with an initial data \mu which is a probability measure. Moreover for every t\geq 0,
if Mt\mu = \mu , then the probability measure \mu is called an invariant measure of (Mt)t\geq 0

or equivalently a steady state solution of f .

Theorem 2.3 (Doeblin's theorem). Suppose that we have a Markov semigroup
(Mt)t\geq 0 which satisfies the following condition:

Doeblin's condition: There exists a time T > 0, a probability distribution
\nu , and a constant \alpha \in (0,1) such that for any z0 in the domain

MT \delta z0 \geq \alpha \nu .

Then for any two finite measures \mu 1 and \mu 2 and any integer n\geq 0 we have that

\| Mn
T (\mu 1  - \mu 2)\| TV \leq (1 - \alpha )n \| \mu 1  - \mu 2\| TV .

As a consequence, the semigroup has a unique invariant probability measure \mu \infty , and
for all probability measures \mu 

\| Mt(\mu  - \mu \infty )\| TV \leq Ce - \sigma t \| \mu  - \mu \infty \| TV for all t\geq 0,

where C := 1/(1 - \alpha )> 1 and \sigma := - log(1 - \alpha )/T > 0.

Doeblin's condition is sometimes referred to as the strong positivity condition or
uniform minorization condition. It means for a Markov process that the probability of
transitioning from any initial state to any other state is positive. Doeblin's theorem
gives a unique stationary state for a Markov process and exponential convergence
to this state once Doeblin's condition is satisfied. However, proving such a uniform
positivity is often difficult, especially when the state space of the Markov process is
unbounded. Harris's theorem is an extension of Doeblin's theorem to these cases.
Instead of a uniform minorization condition, we show that Doeblin's condition is
satisfied only in a given region and verify that the process will visit this region often
enough. For the latter part we need to find an appropriate Lyapunov functional, i.e.,
verify the Foster--Lyapunov condition.
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7646 JOSEPHINE A. EVANS AND HAVVA YOLDA\c S

Theorem 2.4 (Harris's theorem). Suppose that we have a Markov semigroup
(Mt)t\geq 0 satisfying the following two conditions:

Foster--Lyapunov condition: There exists \lambda > 0, K \geq 0, some time T > 0,
and a measurable function \phi such that for all z in the domain

(M\ast 
T\phi )(z)\leq \lambda \phi (z) +K.(2.1)

Minorization condition: There exists a time T > 0, a probability distribu-
tion \nu , and a constant \alpha \in (0,1) such that for any z0 \in \scrC ,

MT \delta z0 \geq \alpha \nu ,(2.2)

where \scrC := \{ z : \phi (z)\leq R\} for some R> 2K/(1 - \alpha ).
Then there exist \beta > 0 and \=\alpha \in (0,1) such that

\| Mn
T (\mu 1  - \mu 2)\| \phi ,\beta \leq \=\alpha \| \mu 1  - \mu 2\| \phi ,\beta 

for all nonnegative measures
\int 
\mu 1 =

\int 
\mu 2 where the norm \| \cdot \| \phi ,\beta is defined by

\| \mu \| \phi ,\beta :=

\int 
(1 + \beta \phi (z))| \mu | dz.

Moreover, the semigroup has a unique invariant probability measure \mu \infty , and there
exist C > 1, \sigma > 0 (depending on T,\alpha ,\lambda ,K,R, and \beta ) such that

\| Mt(\mu  - \mu \infty )\| \phi ,\beta \leq Ce - \sigma t \| \mu  - \mu \infty \| \phi ,\beta for all t\geq 0,

Remark 2.5. The constants in Theorem 2.4 can be calculated explicitly. If we set
\lambda 0 \in [\lambda +2K/R,1) for any \alpha 0 \in (0, \alpha ) we can choose \beta = \alpha 0/K and \=\alpha =max\{ 1 - \alpha  - 
\alpha 0, (2 +R\beta \lambda 0)/(2 +R\beta )\} . Then we have C := 1/\=\alpha and \sigma = - log \=\alpha /T .

For the proofs of Theorem 2.3 and Theorem 2.4 we refer to [31, 32] and references
therein.

In the following two sections we show how the Foster--Lyapunov condition and
the minorization condition are verified for (1.5). At the end of the section we give the
proof of Theorem 1.3.

We use the notations z := (x, v) and
\int 
dz :=

\int 
\BbbR d

\int 
\scrV dxdv for the rest of the paper

whenever convenient.

2.1. Foster--Lyapunov condition. In this section, we verify the Foster--
Lyapunov condition (2.1) for (1.5). In order to look at Lyapunov functions let us
fix some notation. We remark that by Lyapunov functions we do not refer to scalar
functions which are used for stability results in ODE theory. By a Lyapunov function
in the sense of Harris's theorem, we want some function \phi (z) where \phi (z) \rightarrow \infty as
| z| \rightarrow \infty and the existence of some t > 0, C > 0, and \alpha \in (0,1) such that\int 

\phi (z)f(t, z)dz \leq \alpha 

\int 
\phi (z)f0(z)dz +C

\int 
f0(z)dz(2.3)

for any initial data f0(z)\in \scrP (\BbbR d \times \scrV ).
For f satisfying an equation

\partial tf =\scrL f,
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ASYMPTOTIC BEHAVIOR OF RUN AND TUMBLE CHEMOTAXIS 7647

we can prove (2.3) by showing that

\scrL \ast \phi \leq  - \gamma \phi +D(2.4)

for some positive constants \gamma ,D. One can verify the fact that (2.4) implies (2.3) with
\alpha = e - \gamma t and C =D/\gamma by an easy computation (see, e.g., Remark 1 in [56]).

In (2.4), \scrL \ast is the formal adjoint of \scrL . In our case

\scrL f = - v \cdot \nabla xf +

\int 
\scrV 
\lambda (v\prime \cdot \nabla xM)f(x, v\prime )dv\prime  - \lambda (v \cdot \nabla xM)f(x, v).(2.5)

Therefore,

\scrL \ast \phi = v \cdot \nabla x\phi + \lambda (v \cdot \nabla xM)

\biggl( \int 
\scrV 
\phi (x, v\prime )dv\prime  - \phi (x, v)

\biggr) 
.(2.6)

Lemma 2.6 (Foster--Lyapunov condition for (1.5)). Suppose that hypotheses (H2)--
(H4) hold. Suppose also that \| \psi \| \infty \leq 1. Then there exist constants \gamma > 0 and \beta > 0
such that

\phi (x, v) = (1 - \gamma v \cdot \nabla xM(x) - \beta \gamma \psi (v \cdot \nabla xM(x))v \cdot \nabla xM(x))e - \gamma M(x)

is a function for which the semigroup generated by \scrL in (2.5) satisfies the Foster--
Lyapunov condition (2.1) with \beta = \chi /(1 + \chi ) and

\gamma \leq min

\Biggl\{ 
\~\lambda \chi (1 - \chi )\xi 

8(1 + \chi )
,

1 + \chi 

2(2 + \chi )V0\| \nabla xM\| \infty 

\Biggr\} 
with

\xi :=

\left\{     
mk - 2

\ast if k < 2,

1 if k= 2,

\| \nabla xM\| k - 2
\infty if k > 2,

where m\ast > 0 is found in (H2).

Proof. We begin by a brief motivation of the form of \phi in the proof. It is struc-
turally similar to an estimate in Lemma 2.2 in [43]. As the confining terms are
bounded, we expect that we need to look for a Foster--Lyapunov functional which
has exponential tails, by analogy with parabolic reaction-diffusion equations with
bounded drift terms. We can also guess this form by looking at the previous results
on similar equations including [43]. We choose a function of M which will have this
behavior, e - \gamma M , and seek a Foster--Lyapunov functional which is closely related to
this. We derive the precise form of \phi by repeatedly differentiating

\int 
f(t, z)e - \gamma M(x) dz

along the flow of the equation until we find a term which doesn't change sign. We
then create our Foster--Lyapunov function from a combination of e - \gamma M(x) and the key
terms appearing in the derivatives of this moment along the flow of the equation.

First we compute the action of \scrL \ast on the different elements:

\scrL \ast 
\Bigl( 
e - \gamma M(x)

\Bigr) 
= - \gamma v \cdot \nabla xM(x)e - \gamma M(x).

Furthermore,

\scrL \ast 
\Bigl( 
v \cdot \nabla xM(x)e - \gamma M(x)

\Bigr) 
=
\bigl( 
vTHess(M)(x)v - \gamma (v \cdot \nabla xM(x))2

\bigr) 
e - \gamma M(x)

 - ((1 - \chi \psi (v \cdot \nabla xM(x)))v \cdot \nabla xM(x))e - \gamma M(x).
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7648 JOSEPHINE A. EVANS AND HAVVA YOLDA\c S

Lastly,

\scrL \ast 
\Bigl( 
\psi (v \cdot \nabla xM(x))v \cdot \nabla xM(x)e - \gamma M(x)

\Bigr) 
=
\bigl( 
\psi \prime (v \cdot \nabla xM(x))vTHess(M(x))vv \cdot \nabla xM(x)

\bigr) 
e - \gamma M(x)

+
\bigl( 
\psi (v \cdot \nabla xM(x))vTHess(M)(x)v - \gamma \psi (v \cdot \nabla xM(x))(v \cdot \nabla xM(x))2

\bigr) 
e - \gamma M(x)

+ (1 - \chi \psi (v \cdot \nabla xM(x)))

\biggl( \int 
\scrV 
\psi (v\prime \cdot \nabla xM(x))v\prime \cdot \nabla xM(x)dv\prime 

 - \psi (v \cdot \nabla xM(x))v \cdot \nabla xM(x)

\biggr) 
e - \gamma M(x).

Putting everything together gives

\scrL \ast 
\Bigl( 
(1 - \gamma v \cdot \nabla xM(x) - \beta \gamma \psi (v \cdot \nabla xM(x))v \cdot \nabla xM(x))e - \gamma M(x)

\Bigr) 
\leq  - 

\biggl( 
\beta \gamma (1 - \chi ))

\int 
\scrV 
\psi (v\prime \cdot \nabla xM(x))v\prime \cdot \nabla xM(x)dv\prime 

\biggr) 
e - \gamma M(x)

+ (\beta \gamma (1 + \chi ) - \gamma \chi )\psi (v \cdot \nabla xM(x))v \cdot \nabla xM(x)e - \gamma M(x)

+
\bigl( 
\gamma 2(v \cdot \nabla xM(x))2 + \gamma 2\beta \psi (v \cdot \nabla xM(x))(v \cdot \nabla xM(x))2

\bigr) 
e - \gamma M(x)

 - (\gamma + \beta \gamma \psi \prime (v \cdot \nabla xM(x))v \cdot \nabla xM(x)

+\beta \gamma \psi (v \cdot \nabla xM(x)))vTHess(M)(x)ve - \gamma M(x).

(2.7)

We also have (for \beta \leq 1)

 - \gamma  - \beta \gamma \psi \prime (v \cdot \nabla xM(x))v \cdot \nabla xM(x) - \beta \gamma \psi (v \cdot \nabla xM(x))

\leq \gamma + \beta \gamma sup
| z| \leq V0\| \nabla xM\| \infty 

(\psi \prime (z)z +\psi (z))\leq \gamma C1(\psi ,\| \nabla xM\| \infty )

and

\gamma 2(v \cdot \nabla xM(x))2 + \gamma 2\beta \psi (v \cdot \nabla xM(x))(v \cdot \nabla xM(x))2 \leq 2\gamma 2| \nabla xM | 2.

Combining these and choosing \beta = \chi /(1 + \chi ), so that the second term on the right-
hand side of the inequality (2.7) vanishes, we have

\scrL \ast 
\Bigl( 
(1 - \gamma v \cdot \nabla xM(x) - \beta \gamma \psi (v \cdot \nabla xM(x))v \cdot \nabla xM(x))e - \gamma M(x)

\Bigr) 
\leq 
\Bigl( 
 - \beta \gamma \~\lambda (1 - \chi )| \nabla xM | k + 2\gamma 2| \nabla xM | 2 + \gamma C1v

THess(M)(x)v
\Bigr) 
e - \gamma M(x).

Let us define

\xi :=

\left\{     
mk - 2

\ast if k < 2,

1 if k= 2,

\| \nabla xM\| k - 2
\infty if k > 2,

where m\ast is coming from (H2). Then, if we choose \gamma so that the term with \gamma 2 will be
controlled by the negative terms and so that \phi will be positive, i.e.,

\gamma \leq min

\Biggl\{ 
\~\lambda \chi (1 - \chi )\xi 

8(1 + \chi )
,

1 + \chi 

2(2 + \chi )V0\| \nabla xM\| \infty 

\Biggr\} 
,
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ASYMPTOTIC BEHAVIOR OF RUN AND TUMBLE CHEMOTAXIS 7649

then we have, at least for x sufficiently large in the case k < 2, that

\scrL \ast 
\Bigl( 
(1 - \gamma v \cdot \nabla xM(x) - \beta \gamma \psi (v \cdot \nabla xM(x))v \cdot \nabla xM)e - \gamma M(x)

\Bigr) 
\leq \gamma 

\Biggl( 
 - 3\~\lambda \chi (1 - \chi )

8(1 + \chi )
| \nabla xM | k +C1V

2
0 | Hess(M)(x)| 

\Biggr) 
e - \gamma M(x).

Then by hypothesis (H2) there exist R > 0 and m\ast > 0 such that when | x| > R we
have

| \nabla xM | >m\ast and | Hess(M)(x)| \leq 
\~\lambda \chi (1 - \chi )mk

\ast 
4C1(1 + \chi )V 2

0

.(2.8)

So we have

\scrL \ast 
\Bigl( 
(1 - \gamma v \cdot \nabla xM(x) - \beta \gamma \psi (v \cdot \nabla xM(x))v \cdot \nabla xM(x))e - \gamma M(x)

\Bigr) 
\leq A1\{ | x| <R\}  - 

\gamma \~\lambda \chi (1 - \chi )mk
\ast 

8(1 + \chi )
e - \gamma M(x),

where

A= sup
| x| \leq R

\Bigl\{ 
\gamma C1V

2
0 | Hess(M)(x)| e - \gamma M(x)

\Bigr\} 
.(2.9)

Since we can compare e - \gamma M(x) to (1  - \gamma v \cdot \nabla xM(x)  - \beta \gamma \psi (v \cdot \nabla xM(x))v \cdot 
\nabla xM(x))e - \gamma M(x) by

(1 - \gamma v \cdot \nabla xM(x) - \beta \gamma \psi (v \cdot \nabla xM(x))v \cdot \nabla xM(x))e - \gamma M(x)

\leq (1 + \gamma V0\| \nabla xM\| \infty (1 + \beta \| \psi \| \infty ))e - \gamma M(x)

\leq 3

2
e - \gamma M(x),

if we write

\phi (x, v) = (1 - \gamma v \cdot \nabla xM(x) - \beta \gamma \psi (v \cdot \nabla xM(x))v \cdot \nabla xM(x))e - \gamma M(x),

then

\scrL \ast \phi \leq A - \gamma \~\lambda \chi (1 - \chi )mk
\ast 

12(1 + \chi )
\phi = - \gamma 

\~\lambda \chi (1 - \chi )mk
\ast 

12(1 + \chi )
(A\prime  - \phi ) ,(2.10)

where

A\prime =
12C1V

2
0 (1 + \chi )

\~\lambda \chi (1 - \chi )mk
\ast 

sup
| x| \leq R

\Bigl\{ 
| Hess(M)(x)| e - \gamma M(x)

\Bigr\} 
.

Therefore\int 
f(t, z)\phi (z)dz \leq A\prime + exp

\Biggl( 
 - \gamma 

\~\lambda \chi (1 - \chi )mk
\ast 

12(1 + \chi )
t

\Biggr) \biggl( \int 
f0(z)\phi (z)dz  - A\prime 

\biggr) 
.

Thus we prove (2.3) for \alpha = exp( - \gamma \~\lambda \chi (1 - \chi )mk
\ast 

12(1+\chi ) t) and C =A\prime .
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7650 JOSEPHINE A. EVANS AND HAVVA YOLDA\c S

2.2. Minorization condition. In this section, we show the minorization con-
dition (2.2) for (1.5). We consider two semigroups (\scrT t)t\geq 0 and (\scrS t)t\geq 0. Let (\scrT t)t\geq 0,
representing the transport part, be associated to the equation

\partial tf + v \cdot \nabla xf + \lambda (x, v)f = 0,(2.11)

which means that the solution of (2.11) can be written as, for t\geq 0 and for all x\in \BbbR d,

\scrT tf0(x, v) = f0(x - vt, v).(2.12)

Here since ft is a measure we understand the change of variables x \mapsto \rightarrow x - vt by duality.
Let (\scrS t)t\geq 0 be associated to the equation

\partial tf + v \cdot \nabla xf + \lambda (v,x)f =

\int 
\scrV 
\lambda (x, v\prime )f(t, x, v\prime )dv\prime .(2.13)

Then the solution of (2.13) is

f(t, x, v) = \scrS tf0(x, v) = exp

\biggl( 
 - 
\int t

0

\lambda (x - vs)ds

\biggr) 
\scrT tf0(x, v)

+

\int t

0

exp

\biggl( 
 - 
\int t

s

\lambda (x - vr)dr

\biggr) 
\scrT t - s(\scrJ f(s,x, v))ds,

where \scrJ f(t, x, v) :=
\int 
\scrV \lambda (x, v

\prime )f(t, x, v\prime )dv\prime is the jump operator. Remark that we
have

\scrJ f(t, x, v) =
\int 
\scrV 
\lambda (x, v\prime )f(t, x, v\prime )dv\prime \geq (1 - \chi )1\{ | v| \leq V0\} 

\int 
\scrV 
f(t, x, v\prime )dv\prime .(2.14)

Since \scrS tf0(x, v) \geq e - (1 - \chi )t\scrT tf0(x, v) and \scrS tf0(x, v) \geq 
\int t

0
e - (1+\chi )(t - s)

\scrT t - s(\scrJ f(s,x, v))ds, we substitute the first of these inequalities into the second and
then iteratively substitute the result into the second to get

f(t, x, v) = \scrS tf0(x, v)\geq (1 - \chi )2e - (1+\chi )t

\int t

0

\int s

0

\scrT t - s\scrJ \scrT s - r\scrJ \scrT rf0(x, v)drds.

Lemma 2.7. Given any time t0 > 0, for all t\geq t0 it holds that\int 
\scrV 
\scrT t
\bigl( 
\delta x0

(x)1\{ | v0| \leq V0\} (v)
\bigr) 
dv\geq e - (1+\chi )t 1

td| B(V0)| 
1\{ | x - x0| \leq V0t\} for any x0, v0 > 0.

Proof. Note that we have

\scrT tf0(x, v)\geq e - (1+\chi )tf0(x - vt, v), t\geq 0.

For an arbitrary starting point and a velocity (x0, v0), x0 > 0, v0 \in B(V0) (ball of
radius V0), we have

\scrT t
\bigl( 
\delta x0

(x)1\{ | v0| \leq V0\} (v)
\bigr) 
\geq e - (1+\chi )t\delta x0

(x - vt)1\{ | v0| \leq V0\} .

By integrating this and changing variables we obtain\int 
\scrV 
\scrT t
\bigl( 
\delta x0

(x)1\{ | v0| \leq V0\} 
\bigr) 
dv\geq e - (1+\chi )t

\int 
\scrV 
\delta x0

(x - vt)1\{ | v0| \leq V0\} (v)dv

\geq e - (1+\chi )t 1

td| B(V0)| 

\int 
| x - y

t | \leq V0

\delta x0(y)1\{ | x - y
t | \leq V0\} (v)dy.

This gives the result.

Now, we prove the minorization condition for (1.5) below.
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ASYMPTOTIC BEHAVIOR OF RUN AND TUMBLE CHEMOTAXIS 7651

Lemma 2.8 (minorization condition for (1.5)). For every R\ast > 0 we can take
t = 3 + R\ast /V0 such that any solution of (1.5) with initial data f0 \in \scrP (\BbbR d \times \scrV ) with\int 
| x| \leq R\ast 

\int 
\scrV f0(x, v)dxdv= 1 satisfies

f(t, x, v)\geq (1 - \chi 2)e - (1+\chi )t 1

td| B(V0)| 
1\{ | x| \leq V0\} 1\{ | v| \leq V0\} .(2.15)

Proof. We take f0(x, v) := \delta (x0,v0), where (x0, v0) \in \BbbR d \times \scrV , is an arbitrary point
with an arbitrary velocity. We only need to consider x0 \in B(0,R\ast ); then the bound
we obtain depends on R\ast . First we have that

\scrT rf0 \geq e - (1+\chi )r\delta (x0+rv0,v0).

Applying \scrJ to this we get

\scrJ \scrT rf0 \geq (1 - \chi )e - (1+\chi )r\delta x0+rv0(x)1\{ | v| \leq V0\} .

We then apply Lemma 2.7 and obtain\int 
\scrV 
\scrT s - r\scrJ \scrT rf0 \geq (1 - \chi )e - (1+\chi )s 1

(s - r)d| B(V0)| 
1\{ | x - x0 - rv0| \leq V0(s - r)\} .

This means that

\scrJ \scrT s - r\scrJ \scrT rf0 \geq (1 - \chi )2e - (1+\chi )s 1

(s - r)d| B(V0)| 
1\{ | x - x0 - rv0| \leq V0(s - r)\} 1\{ | v| \leq V0\} .

Lastly we have that

\scrT t - s\scrJ \scrT s - r\scrJ \scrT rf0

\geq (1 - \chi )2e - (1+\chi )t 1

(s - r)d| B(V0)| 
1\{ | x - (t - s)v - x0 - rv0| \leq V0(s - r)\} 1\{ | v| \leq V0\} .

We have (remembering that all the velocities are smaller than V0)

| x - v(t - s) - x0  - rv0| \leq (s - r)V0,

which implies that

| x| \leq (s - r)V0  - (t - s)V0  - rV0  - R\ast .

Then if we ensure that (s - r)\geq 2 +R\ast /V0, r\leq 1/2, and (t - s)\leq 1/2, we will have

\scrT t - s\scrJ \scrT s - r\scrJ \scrT rf0 \geq (1 - \chi )2e - (1+\chi )t 1

(s - r)d| B(V0)| 
1\{ | x| \leq V0\} 1\{ | v| \leq V0\} .

Therefore let us set t = 3 + R\ast /V0. Then we can restrict the time integrals to r \in 
(0,1/2), s\in (5/2 +R\ast /V0,3 +R\ast /V0). Then we get

f(t, x, v)\geq 
\int t

0

\int s

0

\scrT t - s\scrJ \scrT s - r\scrJ \scrT rf0(x, v)drds

\geq (1 - \chi )2e - (1+\chi )t

\int 3+R\ast /V0

5/2+R\ast /V0

\int 1/2

0

1

(s - r)d| B(V0)| 
1\{ | x| \leq V0\} 1\{ | v| \leq V0\} drds

\geq (1 - \chi )2e - (1+\chi )t 1

td| B(V0)| 
1\{ | x| \leq V0\} 1\{ | v| \leq V0\} .
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7652 JOSEPHINE A. EVANS AND HAVVA YOLDA\c S

This gives the uniform lower bound we need for Harris's theorem. We can extend
this from delta function initial data to general initial data by using the fact that the
associated semigroup is Markov.

Proof of Theorem 1.3. We verify the two hypotheses of Harris's theorem in
Lemmas 2.6 and 2.8. The contraction in the \| \cdot \| \ast norm and the existence of a
steady state follow again by Harris's theorem.

Moreover Lemma 2.6 gives that for the steady state f\infty obtained by Harris's
theorem we have \int 

\phi (z)f\infty (z)dz \leq A\prime .

Our conditions on \gamma ensure that

1

2
e - \gamma M(x) \leq \phi \leq 3

2
\phi .

Therefore we obtain \int 
e - \gamma M(x)f\infty (z)dz \leq 2A\prime ,

and this leads to\int 
e - \gamma M(x)f(t, z)dz \leq 2A\prime + 3exp

\Biggl( 
 - \gamma 

\~\lambda \chi (1 - \chi )mk
\ast 

6(1 + \chi )
t

\Biggr) \int 
e - \gamma M(x)f0(z)dz,

which gives the contraction in the \| \cdot \| \ast \ast norm. We remark that in this proof \gamma only
depends on M through \~\lambda and \| \nabla xM\| \infty . So if \psi \prime (0) > 0 we can choose \gamma uniformly
over sets of M where \nabla xM is bounded uniformly.

3. Weakly nonlinear coupling.

3.1. Stationary solutions. In this section, we build a stationary state for the
run and tumble equation (1.5) with the weakly nonlinear coupling (1.6). We know by
Theorem 1.3 that there exists a unique steady state solution to the linear equation
satisfying the assumptions listed in Theorem 1.3. For each fixed M , we call \scrS M

t the
semigroup on measures associated to the linear equation and fM\infty its unique stationary
solution. Then we see that fM\infty satisfies

v \cdot \nabla xf
M
\infty (x, v) + \lambda (v \cdot \nabla xM(x))fM\infty (x, v) - 

\int 
\lambda (v\prime \cdot \nabla xM(x))fM\infty (x, v\prime )dv\prime = 0.(3.1)

We define a function G : \scrB \rightarrow C2(\BbbR ), where \scrB is the set of M satisfying hypothesis
(H2) given by

G(M) = log
\bigl( 
S\infty 

\bigl( 
1 + \eta N \ast \rho M

\bigr) \bigr) 
,(3.2)

where S\infty a smooth function, having exponential tails with some fixed parameter;
\eta > 0 a small constant; N a positive, compactly supported, smooth function; and
\rho M :=

\int 
fM\infty (x, v)dv. We see that if M is a fixed point of G, then fM\infty will be a steady

state of the nonlinear equation.
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ASYMPTOTIC BEHAVIOR OF RUN AND TUMBLE CHEMOTAXIS 7653

Proposition 3.1. Suppose that M is of the form M =M\infty +log (1 + \eta N \ast \rho ) for
some \rho \in \scrP (\BbbR d). Then if \eta is small enough in terms of \| N\| W 2,\infty , we have that

\| \scrS M
t f\| \ast \ast \leq De - \sigma t\| f\| \ast \ast ,

where D,\sigma are strictly positive constants only depending on M\infty ,N, and \eta . Further-
more, if fM\infty is the steady state of \scrS M

t , then

\| fM\infty \| \ast \ast \leq \~C,(3.3)

where \~C is a constant depending on M\infty ,N , \eta and \| \cdot \| \ast \ast is defined in (1.15).

Proof. The result follows from Theorem 1.3. We recall that the constants in
Lemma 2.8 in the minorization part do not depend on M , whereas the constants in
Lemma 2.6 in the Foster--Lyapunov part depend on M through \| \nabla xM\| \infty ,R, and m\ast 
so that for all | x| >R we have (recalling (2.8))

| \nabla xM | >m\ast and | Hess(M)| \leq 
\~\lambda \chi (1 - \chi )mk

\ast 
4C1(1 + \chi )V 2

0

.

We want to verify this for M solving (1.6). We can control | \nabla xM | and | Hess(M)| by
considering

M =M\infty + log (1 + \eta N \ast \rho )\sim M\infty + \eta N \ast \rho M .

Provided that \eta \leq \| N\|  - 1
\infty , which we can choose it to be, by Taylor expansion we have

that

| M  - M\infty | \leq \eta N \ast \rho \leq \eta \| N\| \infty .

In a similar way, we can take gradients to get

\nabla xM =\nabla xM\infty + \eta 
\nabla xN \ast \rho 
1 + \eta N \ast \rho 

.

Then \bigm\| \bigm\| \bigm\| \bigm\| \nabla xN \ast \rho 
1 + \eta N \ast \rho 

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

\leq \| \nabla xN \ast \rho \| \infty \leq \| \nabla xN\| \infty .

So we can ensure that

| \nabla xM  - \nabla xM\infty | \leq \eta \| \nabla xN\| \infty .(3.4)

We can also compute the Hessian to get

Hess(M) =Hess(M\infty )

+
\eta (Hess(N) \ast \rho ) + \eta 2

\bigl( 
(N \ast \rho )(Hess(N) \ast \rho ) - (\nabla xN \ast \rho )(\nabla xN

T \ast \rho )
\bigr) 

(1 + \eta N \ast \rho )2
.

Therefore, the difference between Hess(M) and Hess(M\infty ) is controlled by \eta \| N\| W 2,\infty .
Suppose that there exist R\infty and m\infty such that for all | x| >R\infty we have

| \nabla xM\infty | \geq m\infty and | Hess(M\infty )| \leq 
\~\lambda \chi (1 - \chi )mk

\infty 
32C1(1 + \chi )V 2

0

.
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7654 JOSEPHINE A. EVANS AND HAVVA YOLDA\c S

Then by choosing \eta small enough in terms of \| N\| W 2,\infty and setting m\ast =m\infty /2 and
R=R\infty we have that m\ast and R in (2.8) only depend on M\infty ,N, \eta .

Furthermore, by Theorem 1.3 for the steady state fM\infty we have\int 
e - \gamma M(x)fM\infty (z)dz \leq 2A\prime ,

where

A\prime =
6C1V

2
0 (1 + \chi )

\~\lambda \chi (1 - \chi )mk
\ast 

sup
| x| \leq R

\Bigl\{ 
| Hess(M)(x)| e - \gamma M(x)

\Bigr\} 
.

We can bound A\prime only in terms of M\infty ,N, \eta . We already know this is true for m\ast 
and R. Moreover, as \gamma \leq 1 we have

sup
| x| \leq R

\Bigl\{ 
| Hess(M)(x)| e - \gamma M(x)

\Bigr\} 
\leq sup

| x| \leq R

\Bigl\{ 
(| Hess(M\infty )(x)| + \eta \| N\| W 2,\infty )e - M\infty (x)+\eta \| N\| \infty 

\Bigr\} 
,

which we can bound in a way that only depends on M\infty ,N, \eta . Therefore,\int 
e - \gamma M\infty (x)fM\infty (z)dz \leq e\eta \| N\| \infty 

\int 
e - \gamma M(x)fM\infty (z)dz,

and we can compare \gamma M\infty (x) to \delta in Theorem 1.3. So this lets us control \| fM\infty \| \ast \ast in
terms of A\prime up to factors only depending on M\infty ,N, \eta . This finishes the proof.

Then we can prove the following proposition.

Proposition 3.2. We consider (1.5) with the weakly nonlinear coupling (1.6)
where we suppose that N is a positive, smooth function with a compact support, \eta > 0
is a constant, and S\infty is a smooth function satisfying for some C, \=C,\alpha > 0 that

C  - \alpha \langle x\rangle \leq M\infty (x) := log(S\infty (x))\leq \=C  - \alpha \langle x\rangle ,(3.5)

where \langle x\rangle =
\surd 
1 + x2. Then there exists some constant \~C depending on C, \=C,\alpha such

that if \eta < \~C, then G has a unique fixed point and there exists a unique steady state
solution to (1.5) with a weakly nonlinear coupling.

Proof. We want to use the contraction mapping theorem to show that G, defined
by (3.2), has a fixed point. Let us take, for i= \{ 1,2\} ,

Mi =M\infty + log
\bigl( 
1 + \eta N \ast \rho Mi

\bigr) 
, where \rho Mi =

\int 
\scrV 
fMi
\infty (x, v)dv.

We also know that M\infty satisfies (3.5). Then we show contractivity of G by using the
fact that

\| G(M1) - G(M2)\| \infty \leq C\eta \| N \ast \rho M1  - N \ast \rho M2\| \infty \leq C\eta \| N\| \infty \| fM1
\infty  - fM2

\infty \| \ast \ast ,

where C > 0 is a constant.
Let us call \scrS Mi

t , for i = \{ 1,2\} , the semigroups associated to the linear equation
with Mi := logSi. Then, we choose t sufficiently large so that \scrS M1

t is a contraction.
By Proposition 3.1 we know that there exist D,\sigma > 0 such that

\| \scrS M1
t (f  - g)\| \ast \ast \leq De - \sigma t\| f  - g\| \ast \ast .
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ASYMPTOTIC BEHAVIOR OF RUN AND TUMBLE CHEMOTAXIS 7655

The constants D,\sigma only depend on M\infty ,N, \eta because it was shown in Lemma 3.1
that the bounds on M required to prove Theorem 1.3 are preserved by G and do not
depend on M except through M\infty ,N, \eta . We recall

\| f\| \ast \ast =
\int 
\BbbR d

\int 
\scrV 
e\delta \langle x\rangle | f(t, x, v)| dxdv,

where \delta = \beta \gamma . Note that the definition of \delta comes from the fact that we essentially
weight by e - \gamma M\infty (x) and M\infty (x)\sim  - \beta \langle x\rangle . Let us call fMi

\infty the steady state solutions
of the linear equation with Mi for i= \{ 1,2\} . Then

\| fM1
\infty  - fM2

\infty \| \ast \ast = \| \scrS M1
t fM1

\infty  - \scrS M2
t fM2

\infty \| \ast \ast 
\leq \| \scrS M1

t (fM1
\infty  - fM2

\infty )\| \ast \ast + \| (\scrS M1
t  - \scrS M2

t )fM2
\infty \| \ast \ast 

leading to

(1 - De - \sigma t)\| fM1
\infty  - fM2

\infty \| \ast \ast \leq \| (\scrS M1
t  - \scrS M2

t )fM2
\infty \| \ast \ast .(3.6)

So it only remains to show that for a fixed time period, \scrS M
t is continuous in M .

Let us write

\Lambda (s, t,Mi)(x, v) =

\int t

s

\lambda (v \cdot \nabla xMi(x - v(t - r)))dr

and

\scrJ Mi(f)(x, v) =

\int 
\scrV 
\lambda (v\prime \cdot \nabla xMi(x))f(x, v

\prime )dv\prime .

Then we have

\scrS Mi
t f = e - \Lambda (0,t,Mi)\scrT tf +

\int t

0

e - \Lambda (s,t,Mi)\scrJ Mi\scrT t - s\scrS Mi
s f ds,

where (\scrT )t\geq 0 is defined in (2.13). Consequently we have

| \scrS M1
t f  - \scrS M2

t f | \leq 
\Bigl( 
e - \Lambda (0,t,M1)  - e - \Lambda (0,t,M2)

\Bigr) 
\scrT tf

+

\int t

0

\Bigl( 
e - \Lambda (s,tM1)  - e - \Lambda (s,t,M2)

\Bigr) 
\scrJ M1\scrT t - s\scrS M1

s f ds

+

\int t

0

e - \Lambda (s,t,M2)(\scrJ M1  - \scrJ M2)\scrT t - s\scrS M1
s f ds

+

\int t

0

e - \Lambda (s,t,M2)\scrJ M2
\bigl( 
\scrS M1
s  - \scrS M2

s

\bigr) 
f ds.

We can see that for s, t\leq T there exists a constant CT > 0 depending on T so that\bigm| \bigm| \bigm| e - \Lambda (s,tM1)  - e - \Lambda (s,t,M2)
\bigm| \bigm| \bigm| \leq CT \| \nabla xM1  - \nabla xM2\| \infty .

We also have trivially that

e - \Lambda (s,t,M) \leq 1.

Turning to the jump operator \scrJ we have

\| (\scrJ M1  - \scrJ M2)f\| \ast \ast \leq \| \lambda (v \cdot \nabla xM1) - \lambda (v \cdot \nabla xM2)\| \infty \| f\| \ast \ast 
\leq C\| \nabla xM1  - \nabla xM2\| \infty \| f\| \ast \ast 
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7656 JOSEPHINE A. EVANS AND HAVVA YOLDA\c S

and

\| \scrJ Mif\| \ast \ast \leq (1 + \chi )\| f\| \ast \ast .

We also have

\| \scrT tf\| \ast \ast \leq e2\delta V0t\| f\| \ast \ast .

Therefore we obtain, for t\leq T ,\bigm\| \bigm\| \bigm\| \Bigl( \scrS M1
t  - \scrS M2

t

\Bigr) 
f
\bigm\| \bigm\| \bigm\| 
\ast \ast 

\leq CT \| \nabla xM1  - \nabla xM2\| \infty \| f\| \ast \ast +
\int t

0

CT

\bigm\| \bigm\| \bigl( \scrS M1
s  - \scrS M2

s

\bigr) 
f
\bigm\| \bigm\| 
\ast \ast ds.

Then Gronwall's inequality gives\bigm\| \bigm\| \bigm\| \Bigl( \scrS M1
t  - \scrS M2

t

\Bigr) 
f
\bigm\| \bigm\| \bigm\| 
\ast \ast 

\leq C \prime 
T \| \nabla xM1  - \nabla xM2\| \infty \| f\| \ast \ast ,(3.7)

where C \prime 
T > 0 is a constant depending on T .

Using (3.6) and (3.7) we obtain an estimate on the steady states given by

\| fM1
\infty  - fM2

\infty \| \ast \ast \leq (1 - De - \sigma T ) - 1C \prime 
T \| \nabla xM1  - \nabla xM2\| \infty \| fM2

\infty \| \ast \ast .

Now we can see that

\| \rho M1  - \rho M2\| \ast \ast = \| fM1
\infty  - fM2

\infty \| \ast \ast .(3.8)

Consequently we have

\| G(M1) - G(M2)\| \infty \leq C\eta \| \nabla xM1  - \nabla xM2\| \infty \| \rho M2\| \ast \ast .

Similarly

\| \nabla xG(M1) - \nabla xG(M2)\| \infty \leq C\eta \| \nabla xM1  - \nabla xM2\| \infty \| \rho M2\| \ast \ast .

By Proposition 3.1, we also have that

\| \rho M2\| \ast \ast = \| fM2
\infty \| \ast \ast \leq \~C.

So we choose \eta sufficiently small to get

\| G(M1) - G(M2)\| W 1,\infty \leq 1

2
\| M1  - M2\| W 1,\infty .

This gives a unique fixed point of G which we call \~M such that G( \~M) = \~M . Thus,

f\infty = f
\~M is the unique steady state solution of the the weakly nonlinear equation.

3.2. Perturbation argument. In this section, we prove that the solution of
(1.5) with the weakly nonlinear coupling (1.6) converges exponentially to its unique
steady state solution obtained in Proposition 3.2. We showed, in Proposition 3.1, that
we can find R,m\ast and bound \| \nabla xM\| \infty uniformly over the set of log-chemoattractants
of the form

M =M\infty + log(1 + \eta N \ast \rho )

for some probability density \rho on \BbbR d. This means that we can also fix \gamma and \~\lambda 
uniformly over this set since we show in the proof of Proposition 3.1 that they only
depend on these bounds.
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ASYMPTOTIC BEHAVIOR OF RUN AND TUMBLE CHEMOTAXIS 7657

Let us first look at a moment estimate for the weakly nonlinear equation (1.5)--
(1.6). We would like to show an inequality analogous to (2.3) for the solution f of
the weakly nonlinear equation. That is to say we show\int 

e - \gamma M\infty (x)f(t, z)dz \leq \alpha 

\int 
e - \gamma M\infty (x)f0(z)dz +C

\int 
f0(z)dz.(3.9)

Let us define two operators \scrL Mt
and \scrL M\infty associated to the weakly nonlinear equation

and the equation for the stationary solution (3.1), respectively. Then we have

\scrL Mt
f = - v \cdot \nabla xf +

\int 
\lambda (v\prime \cdot \nabla xM)f(t, x, v\prime )dv\prime  - \lambda (v \cdot \nabla xM)f(t, x, v),(3.10)

where M is given by (1.6). Similarly \scrL M\infty is given by

\scrL M\infty f = - v \cdot \nabla xf +

\int 
\lambda (v\prime \cdot \nabla xM\infty )f(t, x, v\prime )dv\prime  - \lambda (v \cdot \nabla xM\infty )f(t, x, v).(3.11)

We carry out a similar argument to the one in section 2.1 for the linear equation. We
show the following.

Lemma 3.3. Suppose that \scrL Mt and \scrL M\infty are given by (3.10) and (3.11) and that
\scrL \ast 
Mt

, \scrL \ast 
M\infty 

denote their formal adjoints, respectively. Then let

\phi (x, v) = (1 - \gamma v \cdot \nabla xM(x) - \beta \gamma \psi (v \cdot \nabla xM(x))v \cdot \nabla xM(x))e - \gamma M\infty (x)(3.12)

and Mt =M\infty + log(1 + \eta N \ast \rho t), where \rho t :=
\int 
\scrV f(t, x, v)dv. Then we have

\scrL \ast 
Mt
\phi \leq \scrL \ast 

M\infty 
\phi + 4\eta \chi V0\| \psi \prime \| \infty \| \nabla xN\| \infty e - \gamma M\infty (x).(3.13)

Proof. First, using (3.4) we obtain

| \psi (v \cdot \nabla xM\infty ) - \psi (v \cdot \nabla xM)| \leq \| \psi \prime \| \infty | v| | \nabla xM  - \nabla xM\infty | \leq \eta V0\| \psi \prime \| \infty \| \nabla xN\| \infty .
(3.14)

Then, we see that

\scrL \ast 
Mt
\phi  - \scrL \ast 

M\infty 
\phi = (\lambda (v \cdot \nabla xMt) - \lambda (v \cdot \nabla xM\infty ))

\biggl( \int 
\scrV 
\phi (x, v\prime )dv\prime  - \phi (x, v)

\biggr) 
= \chi (\psi (v \cdot \nabla xMt) - \psi (v \cdot \nabla xM\infty ))

\biggl( \int 
\scrV 
\phi (x, v\prime )dv\prime  - \phi (x, v)

\biggr) 
\leq 4\eta \chi V0\| \psi \prime \| \infty \| \nabla xN\| \infty e - \gamma M\infty (x).

In the last line of the above inequality, we used the fact that \gamma is chosen so that
\phi \leq 2e - \gamma M\infty (x). This gives (3.13).

Lemma 3.4. Let f be the solution of (1.5) with the coupling (1.6). If \eta is suffi-
ciently small, then there exists a constant B > 0 (not depending on \eta ) such that\int 

\phi (z)f(t, z)dz \leq A

B
+ e - Bt

\int 
\phi (z)f0(z)dz,(3.15)

where A is given by (2.9) in the proof of Lemma 2.6 and \phi is given in (3.12). In fact
we have the bound

\| f\| \ast \leq 
A

B
+ \| f0\| \ast .(3.16)

Using equivalence of norms we also have
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7658 JOSEPHINE A. EVANS AND HAVVA YOLDA\c S

\| f\| \ast \ast \leq C\ast + 4\| f0\| \ast \ast 
for C\ast > 0 a constant.

Proof. From Lemma 2.6 and inequality (2.10) we know that

\scrL \ast 
M\infty 

\phi \leq A - \gamma \~\lambda \chi (1 - \chi )mk
\ast 

6(1 + \chi )
e - \gamma M\infty (x).

Using (3.13) in Lemma 3.3 we obtain

\scrL \ast 
Mt
\phi \leq A - 

\Biggl( 
\gamma \~\lambda \chi (1 - \chi )mk

\ast 
6(1 + \chi )

 - 4\eta \chi V0\| \psi \prime \| \infty \| \nabla xN\| \infty 

\Biggr) 
e - \gamma M\infty (x).

Therefore, if we take \eta such that

\eta \leq 
\~\lambda \chi (1 - \chi )mk

\ast 
48\chi (1 + \chi )V0\| \psi \prime \| \infty \| \nabla xN\| \infty 

,

then we have for some constant B > 0
d

dt

\int 
\phi (z)f(t, z)dz \leq  - B

\int 
\phi (z)f(t, z)dz +A

\int 
f0(z)dz.

Therefore, by Gronwall's inequality we obtain (3.15). We can also turn this into an
exponential decay on \int 

e - \gamma M\infty (x)f(t, z)dz.

This gives the result.

Lemma 3.5. Suppose that ft is the solution of (1.5) with the coupling (1.6) and
f\infty its steady state solution. Suppose that \eta is small enough so that Lemmas 3.3 and
3.4 are valid. Suppose also that

\| f0\| \ast \ast <
1

4

\biggl( 
\sigma 2

4\eta \chi V0D\| \psi \prime \| \infty \| \nabla xN\| \infty 
 - C\ast 

\biggr) 
,(3.17)

where \sigma ,D, and C\ast are found in Theorem 1.3, Proposition 3.1, and Lemma 3.4,
respectively. Then we have for some C > 0 that

\| ft  - f\infty \| \ast \ast \leq Ce - \sigma t/2\| f0  - f\infty \| \ast \ast .
Proof. We rewrite the weakly nonlinear equation (1.5)--(1.6) as

\partial tf(t, x, v) =\scrL Mtf(t, x, v) =\scrL \~Mf(t, x, v) - (\scrL \~M  - \scrL Mt)f(t, x, v),

where \~M is the fixed point of G we found in Proposition 3.2.
Let us call the last term h = h(t, x, v) := (\scrL \~M  - \scrL Mt)f . Then by Duhamel's

formula we have

ft = f(t, x, v) = \scrS \~M
t f0(x, v) +

\int t

0

\scrS \~M
t - sh(s,x, v)ds,(3.18)

where (\scrS \~M
t )t\geq 0 is the semigroup associated to (2.13). Using definitions (3.10) and

(3.11) we have

h(t, x, v) = \chi 

\biggl( \int 
\scrV 

\biggl( 
\psi (v\prime \cdot \nabla xMt) - \psi \prime (v\prime \cdot \nabla x

\~M)

\biggr) 
f(t, x, v\prime )dv\prime 

 - 
\Bigl( 
\psi (v \cdot \nabla xMt) - \psi (v \cdot \nabla x

\~M)
\Bigr) 
f

\biggr) 
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

3/
23

 to
 1

54
.5

9.
12

4.
11

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



ASYMPTOTIC BEHAVIOR OF RUN AND TUMBLE CHEMOTAXIS 7659

Then, using (3.4) and (3.8) from Propositions 3.1 and 3.2, respectively, we have

\| h\| \ast \ast \leq 2\chi \| \psi \prime \| \infty V0\| \nabla xMt  - \nabla x
\~M\| \infty \| f\| \ast \ast 

\leq 2\chi \| \psi \prime \| \infty V0\| \nabla x log (1 + \eta N \ast \rho ) - \nabla x log (1 + \eta N \ast \rho \infty )\| \infty \| f\| \ast \ast 
\leq 2\chi \eta V0\| \psi \prime \| \infty \| \nabla xN\| \infty \| ft  - f\infty \| \ast \ast \| f\| \ast \ast .

Therefore we obtain

\| h\| \ast \ast \leq C\eta \| ft  - f\infty \| \ast \ast \| ft\| \ast \ast ,(3.19)

where C is a constant depending on \chi ,\psi ,V0,N . Now we subtract f\infty from both sides
of (3.18) and take the norms to get

\| ft  - f\infty \| \ast \ast = \| \scrS \~M
t f0  - f\infty \| \ast \ast +

\bigm\| \bigm\| \bigm\| \bigm\| \int t

0

\scrS \~M
t - sh(s)ds

\bigm\| \bigm\| \bigm\| \bigm\| 
\ast \ast 
.(3.20)

We can bound the first term in the right-hand side of (3.20) by the result of Theorem
1.3 and the second term by (3.19). Therefore we obtain

\| ft  - f\infty \| \ast \ast \leq C1e
 - \sigma t\| f0  - f\infty \| \ast \ast +C\eta 

\int t

0

e - \sigma (t - s)\| fs  - f\infty \| \ast \ast \| ft\| \ast \ast ds,

where C > 0, the constant in (3.19), depends on \chi ,\psi ,V0,N . By the constraint (3.17)
on \eta and the bound on \| ft\| \ast \ast from Lemma 3.4, we have

\| ft  - f\infty \| \ast \ast \leq C1e
 - \sigma t\| f0  - f\infty \| \ast \ast +

\sigma 

2

\int t

0

e - \sigma (t - s)\| fs  - f\infty \| \ast \ast ds.

By Gronwall's inequality this leads to

\| ft  - f\infty \| \ast \ast \leq Ce - \sigma t/2\| f0  - f\infty \| \ast \ast 

for some constant C > 0. This finishes the proof.

Proof of Theorem 1.5. Proposition 3.2 gives a unique steady state solution for
the weakly nonlinear equation (1.5)--(1.6). The exponential relaxation to the steady
state solution follows from Lemma 3.5. This completes the proof.

4. Discussion and future research.

4.1. Existence of steady states for fully nonlinear models. In this section
we discuss the relationship of our work to the much more challenging problem of
finding steady states to the run and tumble equation with the fully nonlinear coupling
of the form

 - \Delta S + S = \rho .

Our goal is to describe a hopeful direction for future research as well as to give an
idea of why we consider the weakly nonlinear coupling studied here a possible stepping
stone towards this more complex model. In this regard, we believe that a Schauder
fixed point argument is a plausible strategy for finding a steady state of the fully
nonlinear coupling. We suggest looking for fixed points of the function \~G(M) = logS,
where S is the solution to

 - \Delta S + S = \rho M ,
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7660 JOSEPHINE A. EVANS AND HAVVA YOLDA\c S

where \rho M is the spatial marginal of the unique steady state of (1.5) with the log-
chemoattractant M .

The first step is to determine if the estimates we obtain in section 2.1 (the Foster--
Lyapunov part) would be good enough to run such a fixed point argument; that is,
we would like to see if the bounds we find on\int 

fM\phi dz

are sufficient to find a compact, convex set of possible chemoattractant densitites
which is preserved by \~G. Since there is a one-to-one correspondence between \~G(M)
and \rho M , this is equivalent to finding a set of possible \rho M . A standard way of showing
the necessary compactness would be to show tightness of the measures \rho M , and this
can be achieved by proving moment estimates (such as are found in the Foster--
Lyapunov part). However, we encounter the problem that at each iteration of such a
scheme, we lose weight in our moment estimate.

In this paper, we experiment with a toy nonlinear model in which we can use
the estimates coming from the Foster--Lyapunov part to be able to use a fixed point
argument. This gives us a better understanding of how this type of argument should
work. We briefly describe our process for choosing this coupling.

The first idea was to come up with a perturbative setting to try a coupling of the
form

 - \Delta S + S = \rho \ast + \eta \rho ,(4.1)

where \rho \ast is a fixed spatial density and \eta is a small number. However, we notice that
this coupling has essentially exactly the same problem with a loss of weight as the
fully nonlinear coupling. In order to create a coupling we can deal with, the \eta \rho in
the right-hand side of (4.1) needs to be multiplied by a function of x that decays
sufficiently fast at infinity. Therefore, we can try a coupling that looks like

 - \Delta S + S = \rho \ast (1 + \eta \rho ).(4.2)

Then S, which is the solution of (4.2), is given by

S =N \ast (\rho \ast (1 + \eta \rho )),(4.3)

where N = \scrF  - 1(1/(1 + | \xi | 2)), and \scrF represents the Fourier transform. Then, we
further simplify (4.3) as

S = S\infty (1 + \eta N \ast \rho ),

where N is now a positive, smooth function and S\infty is a smooth function. Considering
this simplification allows us to keep the algebra simple without losing the behavior of
(4.3). By this strategy we obtain the weakly nonlinear, nonlocal coupling introduced
in (1.6). Even though this weakly nonlinear coupling serves as a toy model we still
retain the idea of a fixed point argument on the chemoattractant profile.

Our contraction mapping argument is an adaption of what was originally an
argument to show continuity of a map \~G defined on a fully nonlinear coupling. In
order to carry out a Schauder fixed point argument, continuity of such a \~G would be
needed.

Finally, the toy model we introduced, even though biologically not realistic, allows
us to understand better how to use the arguments presented in this paper in the fully
nonlinear setting. This is a subject of ongoing work.
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4.2. Physically more realistic tumbling kernels. The methods used here
should be able to accomodate more complex tumbling kernels. In particular we would
like to look at models with unbounded velocity spaces (where we would expect to see
polynomial rather than exponential rates of convergence) and tumbling kernels where
the bacteria can only turn by a bounded angle.

The experiments conducted in [5] show that, for peritrichous bacteria such as E.
coli, the tumbling kernel \kappa depends only on the relative angle \theta between the pre- and
post-tumbling velocities v and v\prime , respectively. Particularly, for bacteria E. coli, the
tumbling kernel \kappa is given by

\kappa (v, v\prime ) =
g(\theta )

2\pi sin\theta 
, where \theta = arccos

\biggl( 
v \cdot v\prime 

| v| | v\prime | 

\biggr) 
,(4.4)

where g(\theta ) is the sixth order polynomial satisfying g(0) = g(\pi ) = 0 (see [9, 46]).
These experiments also suggest the following form of tumbling rate:

\lambda = \lambda 0 exp

\biggl( 
 - c1kD
(kD + S)2

v \cdot \nabla xS

\biggr) 
,

where \lambda 0, c1, and kD are constants and S is the chemoattractant density. In an ongoing
work we study these more realistic versions of the run and tumble model.

Appendix A. Cauchy theory for the weakly nonlinear equation. For
T > 0 fixed given f \in L\infty 

t ([0, T ];\scrP x,v) we define the function

Mf (t, x) =M\infty + log(1 + \eta 

\int 
N(x - y)ft(dy,dv)).

Then if we fix initial data f0 \in \scrP x,v we can define a function from L\infty 
t ([0, T ];\scrP x,v) to

itself via

H (f)t = exp

\biggl( 
 - 
\int t

0

\lambda (v \cdot \nabla xM
f (s,x - vs))ds

\biggr) 
f0(x - vt, v)

+

\int t

0

exp

\biggl( 
 - 
\int t

s

\lambda (v\nabla xM
f (r,x - vr))dr

\biggr) 
\int 
\scrV 
\lambda (v\prime \cdot \nabla xM

f (s,x - v(t - s)))fs(x, v
\prime )dv\prime ds.

Lemma A.1. Suppose \psi is uniformly Lipschitz; then there exists a T\ast depending
only on \psi ,\chi such that if T \leq T\ast , then H is a contraction.

Proof. We have the following computations:

sup
t\leq T

\| exp
\biggl( 
 - 
\int t

0

\lambda (v \cdot \nabla xM
f1

(s,x - vs))ds

\biggr) 
f0(x - vt, v)

 - exp

\biggl( 
 - 
\int t

0

\lambda (v \cdot \nabla xM
f2

(s,x - vs))ds

\biggr) 
f0(x - vt, v)\| TV

\leq sup
t,x,v

\bigm| \bigm| \bigm| \bigm| exp\biggl(  - \int t

0

\lambda (v \cdot \nabla xM
f1

(s,x - vs))ds

\biggr) 
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 - exp

\biggl( 
 - 
\int t

0

\lambda (v \cdot \nabla xM
f2

(s,x - vs))ds

\biggr) \bigm| \bigm| \bigm| \bigm| 
\leq T sup

t,x,v
| \lambda (v \cdot \nabla xM

f1

(t, x - vt)) - \lambda (v \cdot \nabla xM
f2

(t, x - vt))| 

\leq T\eta V0\| \psi \| Lip| \nabla xM
f1

(t, x - vt) - \nabla xM
f2

(t, x - vt)| 
\leq T\eta V0\| \psi \| Lip\| \nabla xN\| \infty sup

t\leq T
\| f1t  - f2t \| TV .

We also have\bigm\| \bigm\| \bigm\| \bigm\| \int 
\scrV 
\lambda (v\prime \cdot \nabla xM

f1

(s,x - v(t - s)))f1s (x, v
\prime )dv\prime 

 - 
\int 
\scrV 
\lambda (v\prime \cdot \nabla xM

f2

(s,x - v(t - s)))f2s (x, v
\prime )dv\prime 

\bigm\| \bigm\| \bigm\| \bigm\| 
TV

\leq | B(V0)| \| \lambda (v\prime \cdot \nabla xM
f1) - \lambda (v\prime \cdot \nabla xM

f2)\| \infty + (1+ \chi )| B(V0)| \| f1t  - f2t \| TV

\leq \BbbC (V0, \eta ,\| \psi \| Lip, \chi ) sup
t\leq T

\| f1t  - f2t \| TV

which implies working as in the first computation

sup
t\leq T

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\int t

0

exp

\biggl( 
 - 
\int t

s

\lambda (v\nabla xM
f1

(r,x - vr))dr

\biggr) 
\int 
\scrV 
\lambda (v\prime \cdot \nabla xM

f1

(s,x - v(t - s)))f1s (x, v
\prime )dv\prime ds\int t

0

exp

\biggl( 
 - 
\int t

s

\lambda (v\nabla xM
f2

(r,x - vr))dr

\biggr) 
\int 
\scrV 
\lambda (v\prime \cdot \nabla xM

f2

(s,x - v(t - s)))f2s (x, v
\prime )dv\prime ds

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
TV

\leq TC(V0,\| \psi \| Lip, \eta ,\chi ) sup
t\leq T

\| f1t  - f2t \| TV .

Then putting this together gives

sup
t\leq T

\| H (f1)t  - H (f2)t\| TV \leq TC(V0,\| \psi \| Lip, \eta ,\chi ) sup
t\leq T

\| f1t  - f2t \| TV .

Therefore if T is small enough this is a contraction.

Proposition A.2. The equation (1.5) with the coupling (1.6) has a unique global
solution in L\infty ([0,\infty );\scrP x,v).

Proof. On the time interval [0, T ] with T \leq T\ast from the above lemma we have a
unique fixed point of the map H which give us a solution of (1.5) with the coupling
(1.6) on this time interval. Then since T\ast does not depend on f0 we can iterate this
forwards in time to build solutions on arbitrarily long time intervals.
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