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Notation
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Chezy coefficient

empirical constant

friction coefficient

constant in k-model

constant in turbulence model (k-¢)
constant in turbulence model (k-¢)
constant in turbulence ﬁodel (k-¢€)
roughness parameter or function
Froude number

acceleration of gravity

flow depth

step height

turbulent kinetic energy per unit mass
equivalent roughness of Nikuradse
mixing length (Prandtl)

mass flow rate per unit width
stress production of k
time-averaged static fluid pressure
fluid pressure fluctuation
discharge

discharge per unit width

Reynolds number

depth averaged turbulence

longitudinal mean flow (local) or depth-averaged velocity

longitudinal flow velocity fluctuation
friction velocity

lateral flow velocity fluctuation
vertical mean flow velocity

vertical flow velocity fluctuation
longitudinal coordinate

reattachment length

lateral coordinate

vertical coordinate

zero-velocity level



Notation (continued)
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displacement thickness or shear-layer distance
momentum thickness of a boundary layer

rate of energy dissipation per unit mass by turbulence
constant of Von Karman

kinematic molecular coefficient

eddy viscosity coefficient

fluid density

constant in turbulence model (k-¢)

constant in turbulence model (k-¢)

turbulent shear stress

bottom shear stress

Subscripts
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1.0 Introduction

The general purpose of this research project is to model mathematically
the local scour downstream of a structure (2-D). The model has to

simulate the development of the scour as a function of the time.
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Figure A Lay-out of a local scour

Basically two models are necessary namely a flow model and a
morphological model. The latter model has to describe the bed and
suspended load and the erosion of the bottom. The choice which model has

to be used, depends on the required accuracy and the computer costs.

In the present study a mathematical model is described which is based on
the two-dimensional unsteady Reynolds equations for the mean flow. The
turbulence closure is obtained by use of a two-dimensional model for the
transport of the turbulence energy (k) and its dissipation (¢).
Experimental data concerning the flow in a number of local scours
(Breusers) and in a backward-facing step (Nezu) have been used to verify
the model using a standard set of constants.

Also a description of the k-model (Jorissen) is given, which is a
simplification of the k-e¢-model. The results of this model are compared

with k-¢ calculations.

The mathematical and numerical modelling of the k-e¢-model has been done
by the 'Laboratoire National d’'Hydraulique’, a department of the

'Electricite de France’, Chatou in France and Delft Hydraulics.



The modelling of the k-model has been done by the Delft University of
Technology, Department of Civil Engineering.

The project is sponsored by the Dutch Department of Public Works Rijks-
waterstaat, Bouwspeurwerk.

The present report has been composed by G.J.C.M. Hoffmans.



2.0 k-epsilon-model

2.1 Assumptions and equations

The k-e-model (two-dimensional vertical) is a model which is based on
six mathematical equations with six unknown variables and a standard set
of five basic constants. In addition to the equation of continuity and
the two equations of motion in the longitudinal and verical direction
respectively the set equations also contains the kinetic energy (k) and
the dissipation (e) transport equations and the relation between the
eddy viscosity and the parameters mentioned above.

The exact equations for the transport of k and ¢ are derived from the
Navier-Stokes equations. Because of the fairly drastic model assumptions
these equations are not of too much relevance for this review and will
not be given here.

The flow will be considered incrompressible and steady. Then the

following equations apply.

continuity

o, ou _

ax Yoz = © (1)
motion

a5 duw 3 3

ou guw 0 = _ oo

ax ® dz pax(p Txx) T poz sz) (2)
_ —2

Jduw w _ 4 = _ _4a_

ox ' a8z ~ paz(p Tzz) ¥ pax sz) 8 (39
in which:

u = time-averaged fluid velocity in x direction

E ]
I

time-averaged fluid velocity in z direction
p = time-averaged static fluid pressure
T normal stress component (Txx’fzz)
r_ = (tangential) shear stress component (r T )

zX' Xz
= longitudinal coordinate

= vertical coordinate

fluid density

g9 ® N X
I

= acceleration of gravity



The normal and shear stresses represent a viscous and a fluctuating

(turbulence) part. These stresses are defined as:

Jdu

- au 1,1
T e 2puax pulu (4)
T = 2pvQ§ - pwlwl (5)
zz dz
du , 8w Tt
Tex = Txz = PV gz * ax) - AUV (6)
in which:
v = kinematic viscosity
ul! = turbulent velocity in x-direction
w! = turbulent velocity in z-direction

The turbulent or Reynolds stresses are modelled in a way analogous to
the viscous stresses according to the hypothesis of Boussinesq, see Rodi
(1980).
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- -piilul = ou =z
7t,xx P 2put ax 3pk (7
= dw 2
= o pulul — ow 2
Tt,zz puw 2put dz 3pk (8)
- du , dw
- ey, p=r; N Ju , Jdw
Tt,zx Tt,xz puw pyt{az + ax (9
in which:
Tt,n = turbulent normal stress (Tt,xx’ft,zz)
T . turbulent (tangential) shear stress (Tt,zx’rt,xz)
v = eddy viscosity
k = turbulent kinetic energy per unit mass

Neglecting the viscous stresses, the equations of continuity and motion
can be solved numerically provided the eddy viscosity is specified. The
viscous effects are only important in the case of a viscous sub-layer.
Then empirical laws of sufficient generality are available (logarithmic
velocity) that relate the wall conditions to the conditions just outside
the viscous sub-layer.

The two-equation (turbulence) closure is based on the transport
equations for the turbulent kinetic energy (k) and its dissipation (e€).

The exact k and ¢ are defined as:



k = {(u)? + (v1)? + (w)2}/2 (10)
B a_ul2 a_u12 a_ulz a_vl2 3_Vl2 a_vl2

6_V{(ax) +(ay) +(az) +(ax) +(ay) +(az) +
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Gx) +*Gy) +Ga)) (11)
The variables k and ¢ are modelled and related to the eddy viscosity .
by:

kz

ve = c# . (12)
in which:
y = lateral coordinate
v! = turbulent velocity in y-direction
e = dissipation rate per unit mass
c# = turbulence constant

The transport equations for the kinetic
(e¢) read (2-D):

energy (k) and its dissipation

ouk , awk _ 3 Ytk .3 Yok
ax + dz 6x{ak 6x} + az{ak az) +
convection diffusion
t, .. 88,5, , 08,1 . 88,1, 0% .
pt,xx ax pt,zx 3z + pt,xz ax T pt,zzaz € (13)
production
due . dwe 9 ,’t 3 a Yt ’
oue owe _ 0 _,_C JO€ g _ g€ £
ox T oz " ox'o, ax) Taz'o_ ez T 2 kT
convection diffusion destruction
£ r a_‘—l i il—_l T & I &
i, k { pt,xx 5% * pt,zx 3z T pt,xzax + pt,zz 62} (14)
production

in which Ci.» C2.s Oy and o, are empirical constants. Launder and

Spalding (1974) recommend the following "standard" set of constants:

c# = 0.09, Ci, = 1.44, Cz, = 1.92; op = 1.0, g, w 1.3.



These values have been obtained by computer simulation of various types
of free turbulent flows, but they can also be used for wall flows (Rodi
1980).

Assuming equal production and dissipation of the turbulence energy (k)
in the near wall region, where a logarithmic velocity profile is
supposed to apply and neglecting the convection of ¢, the transport
equation for € (l4) reduces to (Rodi 1980):

2
K (15)

€y, = €z, - ;:—72;
in which  is the constant of Von Karman. Taking account of the above
mentioned values of the turbulent constants the value of k amounts
0.435. In the calculations a « of 0.435 has been taken. Generally this
constant is put on 0.40.

Equations (1), (2), (3), (12), (13), and (l4) represent a set of six

equations with six unknowns (u, w, p, k and ¢) which can be solved

14
t’
numerically applying an appropriate set of boundary conditions.

It has already been mentioned that the transport equations of the
kinetic energy (k) and the dissipation (e) are strongly simplified. The
exact equations are of no use in a turbulence model because new unknown
correlations appear in the diffusion and dissipation terms. Equation
(16) and (17) show the modelling of the diffusion terms in the transport

equation of the turbulence energy in the x and z direction respectively.

xX-direction:

14
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a b e

3ul
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z-direction:
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in which:
term a: modelled diffusive transport
term b: turbulent transport by velocity fluctuations
term c: turbulent transport by pressure fluctuations
[p! = fluid pressure fluctuation]
term d: turbulent transport by viscous shear stress fluctuations

(negligible)

The transport equation of the dissipation (e) contains complex
correlations, the behaviour of which is little known and for which
fairly drastic model assumptions must be introduced in order to make the
equation tractable. Especially the diffusion represents a combination of
terms, which is not easy to model on theoretically grounds, (Hanjalic
1976) .

2.2 Boundary conditions

The following types of boundary conditions are applied: bottom (log
profile), free surface (rigid 1lid with free slip) inlet and outlet
boundary.

In table 1 a distinction has been made with respect to the kind of

boundary.



momentum equations k-¢ equations
inflow - ¢ %o — .
boundary u = given ; and € are given
outflow du _ dw _ 0 3k _ 3e _
boundary dx 3% ax  dx
U _ o . o _ 3k _ de _
surface 3z 0 ; w 0 9z i 0
= _ 2 3
bottom %ﬁ =u,/(kz) ; w=0 k = u*//cy ;e =u,/(kz)
table 1 Boundary conditions [u, = wall (bed) shear velocity]

The outlet boundaries are only applicable if the flow is in equilibrium
(uniform flow). Then it is allowed to neglect the convective terms.

It has been assumed that at the surface the water depth does not change
in the longitudinal direction (rigid lid approach). This is not fully
correct because in reality the flow depth will increase somewhat in the
deceleration region. Further assumptions, which have been made at the

surface, such as a local minimum of the turbulence energy (%% = 0) and a

local maximum of the longitudinal velocity (%ﬁ = 0) are also not quite
correct if an uniform flow will be considered. Measurements show that at

the surface %% is not equal to zero (Nezu 1977). And if a logarithmic

velocity profile is supposed to apply %? can not be equal to zero here.

Assuming a hydrostatic pressure distribution and a logarithmic velocity
profile it follows that the eddy viscosity is parabolic (uniform flow).
At the surface v, is then equal to zero. Substituting this value of the
eddy viscosity into equation (12), it gives either k = 0 or the
dissipation should tend to infinity. Both values for k and ¢ are not
acceptable, because at the surface the turbulent velocities are not
equal to zero (Nezu 1977) while the dissipation must tend to zero.

At the bottom, where a logarithmic velocity is supposed to apply, the
vertical velocity component is zero and the longitudinal (tangential) is

modelled by:

—T +—==0 (18)



The determination of u, in the k-e¢-model has been realised by:

_ u, 6t
u = —Iln —
T K z
o
a. smooth wall: Z = 0.11lv/u,
b. rough wall: B ™ 0.033ks
in which:
GT = longitudinal (tangential) mean flow velocity
z, = zero velocity level
ks = equivalent roughness of Nikuradse
&, = distance from the wall beyond which the flow is completely
turbulent
z  (m)
)
zol —’,/’f computed I
—> G (m/ss)
figure B Bottom modelling k-e-model

See for a more detailed numerical description the computer program
called ODYSSEE (k-e-model) Delft Hydraulics 1987.

(19)
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3.0 k-model

This model (Jorissen) has been developed to determine turbulence
parameters after a sill. It was used to relate the relative turbulence
and the length of the bottom-protection. This has been done for various
ratios of the height of the sill and the water depth. In the model a

depth-averaged turbulence ratio is defined as:

h

r, = hul/q = ¢, [ k(z)dz/q (20)
0

in which:

r, = depth-averaged turbulence

q = discharge per unit width
h = flow depth

Cy = empirical constant (ck =1.0)

The main differences between this model and the k-e-model are the
interactive relation between the velocity and the kinetic energy and, of
course, the absence of the transport equation of the dissipation. In
this k-model first the velocities are computed assuming a hydrostatic

pressure distribution and a parabolic eddy viscosity.

continuity
motion
0 = —;%g + g (23)

The eddy viscosity is computed by:

v = kq/g/C(1 - z/h) (24)
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in which C represents the Chezy coefficient. Then the kinetic energy is
computed by, see also equation (13) for the difference between the k-¢
and k-model.

"3k 3
oK _ ut{5§}2 - € (25)

Yax

The dissipation ¢ is modelled by the expression (dimensional

considerations):
/%
e = (cg k/)/1 (26)

in which:
cq = empirical constant (cd = 0.15)
lm - mixing length (Prandtl) ; 1 = kzJ(1 - z/h)

The formulation of the eddy viscosity and the mixing length, which have
been used in this model correspond with a uniform flow. After a sill or
in a decelaration zone these assumptions are not correct, see figure 6.
This model could be improved by adding equation (12). Then the model

contains a set of 5 equations with 5 unknowns namely u, w, k, €.

Vt,
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4.0 Grid-generation

When a steady fluid flow passes a backward-facing step, a recirculation
region will arise, having significantly higher levels of turbulence
energy and stress than in the upstream or far-downstream regions.
Although a recirculation does not always appear in the case of a local
scour, the velocity profiles vary rapidly and so the mean-flow becomes
highly dissipative there.

For this reason the grid distance is relatively smaller near the
separation point and in the recirculation zone than elsewhere.

The layout of the grid network used in the calculation for the flow with
the backward-facing step is shown in figure C.

-10

£
N
0.40
0.00 +
0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28
% X (M
Figure C Calculation domain and partial layout of the grid network

for backward-facing step (BS1)

This layout has been adopted from a sensitivity analysis carried out by
Spalding and Launder (1974) who investigated a simular case. They
showed, see table 2, the effect of six different grids on the turbulence
distribution at a location 5.33 step heights behind the step and within
the reciculation region. The first three columns show the effect of
forward-step size while the last three show the effect of vertical grid
‘size. The analysis shows that the 30 x 42 grid can be considered
sufficiently refined.

This table is related to the configuration of a backward-facing step in
which a total of 30 vertical stream grids are used to span 4.5 inches,

out of which 14 nodes are used for the 1.5 inch step. The smallest
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vertical grid spacing is 0.18 inch (=0.12 step height). In the
longitudinal direction the smallest grid spacing is 0.3 inch. In this

direction 42 nodes are used.

r\\é::fj 201)0] 20:62] 20:L1[ 25:51] JO:AZI 36x42
2/M | %/@d x 102
0.18 12.201 2.210 1 2.216 | 2.229 | 2.264 | 2.248
0.30 |2.795 2.840 | 2.850| 2.855| 2.860 | 2.863
0.5! |3.608 3.617 | 3.622| 3.637 | 3.669| 3.672
0.63 |3.942 3.949 | 3.953| 3.958 | 3.961 | 3.964
0.75 |3.968 3.978 ) 3.985) 3.996 ) 4.005 | 4.0%8
0.87 |3.686 3,762 3.770| 3.864 | 3.898| 3.910
0.95 |3.255 3.513 ] 3.520] 3.591 | 3.602| 3.606
1.065]2.641 2,708 | 2.716 | 2.726 | 2.744 | 2.747
1.125/1.988 2,116 2,121 2,130 2,139 2.139

table 2 Effect of grid size on the turbulence kinetic energy, k/ﬁz

(Spalding and Launder 1974).

Based on approximately 1200 nodes a grid has been generated for two
backward-facing steps and three local scour holes.

g&él‘m
backward-facing step 1 28 x 42 0.058 m rectangular
backward-facing step 2 28 x 56 0.45 m rectangular
local scour hole 1 15 x 66 0.37 m curved
local scour hole 2 15 x 76 0.45 m curved
local scour hole 3 15 x 79 0.60 m curved

Table 3 Grid generation

Launder and Spalding made their calculations with a numerical model
called PHOENICS, whereas the calculations in this project were made with
the model ODYSSEE. It is possible that these models do not yield exactly
the same results. Regarding the differences between the configuration of
a backward-facing step (rectangular grid) and a local scour (curved
grid), it is recommended to make a grid refinement study for a local
scour.
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5.0 Applications

5.1 Backward-facing step 1

Nezu et al (1987) carried out turbulence measurements of a backward-
facing step flow, including the reverse flow region in an open channel
with the aid of a two component Laser Doppler anemometer. The mean
velocity distribution and turbulence characteristics were obtained.

The experiments were conducted in a 8 m. long, 30 cm. wide and 20 cm.
deep tilting flume. The backward-facing step with a height H = 2 cm. was
located at a distance of 6.8 m. downstream from the channel entrance.
The channel bed was flat and smooth. The Froude number of the flow was
no more than Fr = 0.19 yielding a small variation of the free surface.

The most important hydraulic data of this experiment were:

h = 0.058 m ; flow depth (downstream)
H =0.020 m ; step height
-s o ™ 0.243 m/s ; mean surface velocity at initial section
u = q/h = 0.142 m/s ; depth-averaged velocity (downstream)
Re = h u/v = 8200 : Reynolds number
Fr = uw//(gh) = 0.19 . Froude number
xR/H =6.3 R reattachment length

Table 4 Hydraulic data (BS 1)

5.1.1 Mean flow velocity

Figure 1 shows measured and computed k-e-model profiles of the mean
velocity u. The mean velocity obeys the log-law distribution upstream of
the step (x<0). Immediately downstream of the step, a shear layer is
generated. A reverse flow occurs near the bed up to the reattachment
point (xR). Downstream of Xp, a new sub-boundary layer is formed, see

figure D.



15

v FREE SHEAR
= G INVISCIO CORE

co—=Nagofoom ==

DIVIDING
STREAMUINE
’.) Q _ — — NEW WALL B.L

CONNER REATTACHMENT
RECIRCULATION Z0NE
OF OPPOSITE SIGN RECIRCULATION

XRr

Figure D Typical plot of a backward-facing flow

For x = H (H = step height) the following remarks can be made.

1. The point of zero mean velocity of the computed velocity profile is
closer to the bottom than the measured one.

2. The computed circulated discharge is relatively bigger.

It has to be noted that for 7H < x < 10H the computed velocities near
the bottom are somewhat larger than the measured ones.

The profiles have also been computed by the profile method (see Van Rijn
1987, Hoffmans 1987). They differ more from the measurements (LDA) than
the values comptuted by the k-e-model, especially in the recirculation
region. Although this method is not based on the hydronamic equations
its simplicity could be a big advantage provided the calculated results

are correct.

5.1.2 Kinetic energy

Figure 2 shows the computed and measured profiles of the kinetic energy
for several verticals. The solid curves have been computed by the k-e-
model, whereas the other two curves have been determined by the
measurements. The lateral (y-direction) fluctuating velocity (v!)
namely, is unknown, because the measurements were only carried out in
the x and z direction. The lower limit of the kinetic energy is equal
to:

k = %{(u‘)2 + (w!)?) setting v! = 0, and the upper limit

k = %{(u’)2 + (w!)2?} assuming that (v!)2 = {(u!)? + (wl)?2}/2
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For an equilibrium flow this is an upper limit because the lateral
velocity fluctuation is smaller than the longutudinal (u!) and the
vertical (w!) component, respectively. The measured kinetic energy will
lie between these two boundaries.

Comparing measurements and calculations the overall agreement is quite
reasonable. The differences mainly apply in the recirculation zone near
the bottom. Here the computed kinetic energy is somewhat larger than the
k which follows from the measured values. Probably this is owing to the
coefficient c

For equilibrium shear layers, where the production (P) is equal to the

dissipation (e), the equations (12) and (13) can be combined to:
2 2 2
¢y = We/kyary) = Uo/Pkgany) (27)

in which 7, represents the bed shear stress. The value of e, = 0.09 was
chosen on the basis of experiments in uniform flows in which P and ¢
were in approximate balance. For far-field jets and wakes where the
cross-velocities differ with respect to the longitudinal velocities (=
free stream velocity), P is significantly different from e and then y
was found to be different from the standard value. The range of
applicability of the k-e-model can be extented when some of the
constants in the k-e-model are replaced by functions of suitable flow

parameters. Rodi introduced a function for an axisymmetric jet.

e, =0.09 - 0.04f (28)
cz, = 1.92 - 0.0667f (29)
f = f(5, u, x) (30)

in which § is the distance from the symmetry axis to the 1% point at the
outeredge.

Figure 3 shows some profiles of the kinetic energy in a trench for

ey = 0.09 and 0.20. For the larger value of c, the kinetic energy
decreases over the entire vertical. Near the wall the agreement between
measurements and calculations (C# = 0.20) is better. However in the
region 0.lh < z < h they deviate more from the measurements than the

standard values computed with the standard value of cp
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According to Van Rijn (1983) the influence of a larger value of c, on
the computed mean flow velocity, shear stress and eddy viscosity

profiles was negligible small.

9:1.:3 Wall (bed) shear velocity

The wall shear stress (ro) is an important quantity as it will determine
the sedimenttransport.
Figure 4 shows the wall-shear-stress coefficient (cf) which is defined

as:

cp = 2(ug/hy ) (31)

Nezu obtained u, from van Driest’s curve, as shown in figure E.

Glu,
L v
L
O x/H *1.0

20 — @ /M =8.0
r @ x/H =9.0
- A x/H =10.0
- U x/H =12.0
" O x/H =140

o = O w=so0
L

0 | il k 1 1 LJ__]
107! ! 10 10? u.z/v

Figure E Velocity distribution near the wall downstream

of the reattachment (Nezu 1987)

For a comparison, figure 4, replots several computed curves and also
experimental values which were obtained in boundary layers. One was
"calculated by using the following formula which Ludwieg and Tillmann

(1949) obtained experimentally in boundary layers.

_0.6786/0 = _0.268
cg = 0.256.10 . (us,oﬂ/u) (32)
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in which:

§ = displacement thickness

§ = momentum thickness

For a definition of the displacement and momentum thickness, see E

appendix A.
In figure 4 the dotted line shows the k-e¢ predictions. It should be

noted that the calculated values of Ce by the k-e-model coincide well

with the experimental values and the calculated curve from equation 32.

5.1.4 Reynolds stresses

Figure 5 shows computed and measured Reynolds stresses for various
verticals (H, 4H, 7H, 10H). Because the k-e¢-model does not reproduce the
Reynolds stresses directly, these values have been computed as follows:

The shear-stress is defined as:

_ du , 3w I w
Tt,zx P”c(az + ! puw (33)

in which the left term (middle) represents the computed shear stress and

the most right term the measured one.

Assuming %g << %ﬁ equation (33) simplifies into:

v 'g—;'l' = ulwl (34)

In the deceleration zone with back flow it is striking that the computed
values agree well with the measured ones. More downstream, 5H < x < 10H,
the agreement is less spectacular at the height of the threshold,

(z = H). There the measured Reynolds (rzx) is smaller than the
calculated one. As the measured and calculated flow profile were almost
identical this implies that the eddy viscosity derived from the
measurements is smaller than the calculated one. Since the eddy
viscosity will be correlated to the diffusive transport of sediment
(suspended) this might have consequences for the calculation of sediment
transport. Overall, the computed reproduction of the mixing layer is

very good.
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5.2 Backward-facing step 2

This k-€¢ calculation has been made to form a link between the
computation of the first backward-facing step and those of the local
scours. The differences between the first and second backward-facing

calculation are:
1. larger Reynolds number
2. smaller Froude number

3. relative greater calculation domain in horizontal direction

Backward-facing step

BS1 BS2
h (downstream) 0.058 0.45 (m)
H 0.02 0.15 (m)
u = q/h 0.142 0.269 (m/s)
Re = h u/v 8200 121000 (-)
Fr = u/(gh) 0.19 0.13 (-)
xR/H 5.2 4.8 (-)

6.3 (= measured)

Table 5 Hydraulic data (BS1 and BS2)

5.2.1 Results (k-e-model)

The figures 7, 8, 9, 10 and 11 show some results of the k-¢ computation
of the second backward facing step.

From figure F it can be seen that the computed reattachment length
(xR/H-4.8) is too small, this is probably owing to the empirical

constants in the k-¢-model, see also 5.1.2.
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After the recirculation zone where a new sub-layer will be developed, it
is not very clear from the velocity profiles where an equilibrium flow
occurs, see e.g the verticals at 40H (x = 6.3 m) and 60H (x = 9.3 m).
Directly after the threshold the kinetic energy is strongly growing. It
reaches its maximum approximately at x = 7H (x = 1.2 m). Then the
average kinetic energy is decreasing, see figure 12.

The computed wall shear stress (k-¢), see figure 11, for a nearly
uniform flow is approximately 8% larger than the computed values by the
roughness formulas of Darcy-Weisbach and White Colebrook respectively.

2
Darcy-Weisbach: f = 0.24/{log 1.3Re/f)) (35)
White Colebrook: C = 18 log{1l2h/(0.11lv/u,)/3.5)} (36)
.2
in which f is a roughness parameter, f = 8(u /u) .

Both formula calculate a wall shear velocity which are equal to 0.0109 -
0.0110 m/s (£ = 0.0132 and € = 76.6 m 7 / 5) respectively, whereas the
k-e-model predicts a value of 0.0121 m/s. Figure 4 already showed that
the computed (k-€¢) friction coefficient (cf) was somewhat larger than
the experimental values (Nezu 1987) and the computed values by the

Ludwieg-Tillmann's formula.
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5 il 2 Results k-model (averaged k)

Figure 12 shows the computed averaged kinetic energy after a threshold
as a function of the longitudinal distance. The function starts directly
with a maximum and decreases to an equilibrium value (uniform flow).

In the recirculation zone the mean values of the k-model are larger than
the k-e¢ results. Apparently the k-model generates in the centre-line in
the mixing layer after the threshold larger values of k. With increasing
length these values become smaller than those obtained by the k-e¢-model.
Probably this is owing to the neglect of the diffusion terms in the k-
model.

Figure G shows the influence of the diffusion of the kinetic energy
after a threshold. Especially in the outside region (at the top) the
transport by the velocity fluctuations gives an important contribution

to the kinetic energy.

=

k model

!
)
)

- = = k=-E model

owing to: lransport by

velocily fluctuations

TITTITITTIIITIITITITTTITT T

— k [Joule/kg)

Figure G Kinetic energy distribution after a threshold

5.3 Local scours
5.3.1 General

Measurements in local scours were carried out by Delft Hydraulics
(Breusers). The longitudinal velocity component was measured by a micro-
propellor. This instrument is less accurate than a Laser Doppler
anemometer. The measurement range of a micro-propellor depends mainly on
the type of propeller. On the average the measurement range is from
0.025 to 10.0 m/s. This means that it is not possible to measure

3

negative velocities.
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The slope of the local scour directly after the armour layer was
approximately 1:4.5 for all three scours. Probably it was not steep
enough to create a reverse flow; the measurements as well as the
calculations of the k-e-model indicate mean positive velocities near the
bottom.

The most important hydraulic data of these experiments were:

Local scour

Ls1 Ls2 LS3
ho 0.30 0.30 0.30 (m)
?max 0.38 0.45 0.59 (m)
u, = q/h0 (k-¢€) 0.332 0.396 0.345 (m/s)
Y o (k-¢€) 0.410 0.483 0.433 (m/s)
ks (upstream) 0.02-0.03 0.02-0.03 0.02-0.03 (m)
ks (downstream) 0.0005 0.0005 0.0005 (m)
Re = ﬁoho/v 99600 118900 103500 (-)
Fr = ﬁo//(gho) 0.19 0.23 0.20 (-)

table 6 Hydraulic data (local scours)

5.3.2 Mean flow velocities

The figures 12, 13 and 14 show several computed and measured velocity
profiles for local scour 1, 2 and 3, respectively.

At first it can be noted that the computed (k-¢) bottom velocities are
too large. This has already been discussed in 5.2. In general the
agreement between the measured and calculated velocities is fairly well.
In the case of local scour 2 it seems that the values computed by the k-
¢-model are not well predicted especially in the verticals 3, 5, 9 and
10. However, part of the differences appear to be attributed to an error
in the velocity measurements. Integrating the measured velocity profiles
of the sections above mentioned yields the following discharges

qs = 0.106 mz/s, qs = 0.105 mz/s, qg = 0.105 mz/s, qi0 = 0.104 mz/s,
whereas the discharge at the initial section is 0.118 m2/s. This means a
difference of 0.013 m2/s (= 12%).
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5.3.3 Turbulence parameters

The figures 16 through 24 show turbulence predictions by the k-e¢-model
for the three scours.

At the initial section the k has to be given in the k-e¢-model as a
boundary condition. A good approach is setting k to (u1)2, so that the
calculated value is an average of a lower limit [k = 0.5(u1)2] and an
upper limit [k = 1.5(u1)2]. Figure 16 shows that at section 1 the
calculated k near the bottom does not agree with the measurements. At
section 4 and further downstream the calculated values of k are greater
over the entire vertical than the measured ones. The same story applies
figure 17; showing also larger calculated values of k.

At the inflow boundary of local scour 3, figure 18, the given k was not
set on the average of a lower and upper limit but was made equal to the
upper limit in order to examine the effect of the initial turbulence on
the local scour in both cases. The differences appear to be negligible.
In figure 19, 20 and 21 the influence from the rough bottom upstream and
the smooth one downstream on the near-bottom velocities is very clear.
The initial profile of the dissipation in figure 21 (local scour 3)
differs from the beginning profiles of local scour 1 and 2. This is
owing to the difference in the given turbulent kinetic energy at the
initial section. If the eddy viscosity distribution is the same for all
three scours this is easy to verify with equation (12).

At the inlet-boundary the eddy viscosity profiles are modelled as
follows; parabolic in the lower half of the depth and a constant value
in the upper half of the depth. This approach has been adopted by van
Rijn (1984). The difference between this method and a parabolic eddy
viscosity distribution is small for the velocities in the outer region,
see figure 13, 14 and 15.
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6.0 Conclusions and recommendations

The k-e-model predicts the velocities fairly well. The computed
turbulence profiles, however, are less satisfactory if compared with
measurements. At this moment there are no models which can calculate the
above mentioned parameters in a better way. A disadvantage of the k-e-
model is the relatively large computation time needed to solve the
complete set of equations, see 2.1. Therefore, the k-e-model is not a
very attractive model for long-term morphological computations and a

simpler model will be required, such as

DUCT-model [Vreugdenhil]
PROFILE-model [van Rijn]
k-model [Jorissen]

However, each of them has its own shortcomings. Further research is
necessary to determine which model is most suitable to predict the
velocity field, the shear stresses and the viscosity profiles in view of
costs and reliability. The k-e¢-model can serve as a reference to

determine this choice.
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Appendix A
Definition of boundary-layer thickness

. . s *
A quantity known as the displacement thickness § can be defined as

follows. Referring to figure Al, the volume flow is given by:

& - - *
q=Judz = u (6 - §) (Al)
0
i.e.
x ¢ - —
§° = [ (1 - u/uy)dz (A2)
0
7, 5
8
b e
displacement §*
Figure Al Displacement thickness

The physical meaning of this definition is that 6* represents the
distance by which an equivalent uniform stream would have to be
displaced from the surface as indicated in figure Al to give the same
total volume flow. A similar picture may be drawn for the momentum flow
in the boundary layer. Referring to figure A2, the momentum flow (M) in

the boundary layer is given by:
6 - 2 - 2 *%

M=[pu dz=pu (6§ -6 ) (A3)
0

and assuming constant density, equation (A3) reduces to:

) -2
R NG BT T P (A4)
0



The momentum thickness or the momentum-displacement thickness § as

indicated in figure A2 is defined by § = 6** - 6*. From (A2) and (A3) 4
takes the form:
K% * 6 _ _ - -
§ =6 -6 =fu/u (1 - u/fu;)dz (A5)
0
Z
pul l put

momentum flow

put

‘l’ i

5 I
R b
. I '

Figure A2 Momentum displacement
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