
Autonomous Vehicle Sensor Placement Opti-
misation Using Differentiable Rendering
Master Thesis
Remco Huijsen



Autonomous Vehicle
Sensor Placement
Optimisation Using

Differentiable Rendering
Master Thesis

by

Remco Huijsen
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Wednesday April 16, 2025 at 12:00.

Student number: 5650844
Project duration: December 4, 2023 – April 16, 2025
Thesis Committee: Dr. H. Caesar, TU Delft, primary supervisor

Dr. M. Weinmann, TU Delft, secondary supervisor
Dr. N. J. Myers, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Autonomous Vehicle Sensor Placement
Optimisation Using Differentiable Rendering

Remco Huijsen

Abstract—When optimising the placement of sensors on an
Autonomous Vehicle (AV), research often uses evolutionary algo-
rithms, offering a flexible way to explore complex solution spaces
with multiple candidate configurations. However, this approach
limits the ability to optimise one particular configuration directly.
Sensor placement optimisation methods generally aim to optimise
sensor-related aspects, such as visibility or coverage. When
sensor placement is optimised based on the performance of a
downstream task, this task performance is generally implicit,
using surrogate metrics such as important task elements or
probabilistic-related metrics. To address this, we propose to
use gradient-descent-based optimisation in combination with a
differentiable renderer. Making rendering differentiable allows
gradients to flow between the initial rendering settings and the
output rendered image, enabling gradient-based optimisation
methods to optimise parameters based on the gradients of the
objective function. This combination allows us to more directly
optimise the placement of sensors on an associated downstream
task. For this approach, we optimise the position of cameras on an
AV based on 2D object detection performance. We create triangle
mesh representations of traffic scenes from an AV simulator to
use with the differentiable renderer. We use an objective function
that combines optimisation losses related to in-frame rotational
differences and visibility based on the detected object area of non-
ego vehicles. This optimisation also considers constraints such
as a minimum distance between each camera pair and camera
positions that do not extend across the positioning bounds.
The objective formulation results in an improved mean Average
Precision (mAP) compared to a random sampling strategy and
an intuitive baseline represented by cameras around the highest
point on the ego vehicle.

Index Terms—Autonomous Vehicles, Sensor Placement Opti-
misation, Differentiable Rendering, Gradient-Descent-Based Op-
timisation, Traffic Scene Representations

Fig. 1. Smaller objects such as children and animals require considerations
regarding vehicle blind spots, as they may easily become occluded by the
vehicle.

I. Introduction
Sensors are essential for allowing Autonomous Vehicles (AVs)
to respond to the world around them. Camera, radar and
LiDAR sensors typically ensure this environmental percep-
tion, combining different sensor data to perceive the im-
portant elements of an environment [1]. However, defining
an optimal sensor configuration is challenging due to the
context-dependent needs of an AV. To illustrate this context-
dependence, we compare a driverless taxi and a transport
vehicle in a port environment. The robot taxi drives through
urban environments with a diverse selection of road users and
dense groups of pedestrians. This higher density of moving
objects increases unpredictability, increasing the challenge of
determining which objects are high-priority. An AV should
prioritise actors such as children or animals, as they are prone
to behave unexpectedly. In contrast, parked vehicles on the
other side of the road do not require a high priority. Addi-
tionally, smaller objects such as children and animals require
considerations regarding vehicle blind spots, as illustrated in
Figure 1. In contrast, a transport vehicle in a port encounters
substantially fewer road users and pedestrians. This results
in a more predictable environment than the urban streets.
However, non-standard scenarios, such as pallets obstructing
the road, can still arise, as illustrated in Figure 2. Such lower
objects may be challenging to perceive consistently. This port
environment also introduces environment-specific tasks that
may not be necessary for urban settings. For instance, an
AV in a port environment should account for overhead cranes
and suspended containers. In contrast, the area above an au-
tonomous taxi is rarely relevant for road navigation. Therefore,
determining a sensor configuration for an AV requires a clear
understanding of the AV-related tasks and the environment in
which the AV operates.

Due to the task-dependent sensor configuration necessities,
determining a sensor configuration for an AV relies predom-
inantly on knowledge and input from senior experts. Sensor
simulation software verifies that the design choices result in
the desired outcome. Designing a sensor configuration involves
a complex trade-off that could involve cost, sensor weaknesses,
occlusions, coverage redundancy, spatial mapping, compu-
tational power, weather conditions and misalignment. The
formerly mentioned sensor simulation software offers valuable
insights regarding coverage and occlusions. However, trans-
lating sensor positioning to downstream task performance is
less straightforward, requiring quantifying performance from
various related tasks.



While environmental visibility remains important for down-
stream task performance, perceiving the entire environment
with all actors around the vehicle does not directly dictate
task performance. Research comparing various homogeneous
sensor configurations for a downstream task shows increased
performance solely based on the position of sensors in the con-
figuration [2]. To illustrate the impact of sensor positioning,
consider training an object detection model using dash-cam
footage from behind the front windscreen. The camera position
used during the data collection stage directly impacts the
detectability of objects from certain classes. Assume we would
now like to move the sensor to another position, for instance,
to the highest point on the roof of the AV. Using the initially
trained model on this new location likely negatively affects the
detection performance. While the camera may still perceive
objects in the environment, the roof position likely results
in differing object views compared to the training set. This
results in a discrepancy between the training data and the data
during inference. Therefore, given an arbitrary object detection
model for a particular sensor configuration, considering sensor
placement requires considering object detection performance.

Fig. 2. Low objects like pallets on the road may prove challenging to perceive
consistently.

Given the broad and diverse considerations for a sensor
placement configuration, research proposes various sensor
placement optimisation strategies to address some of the
correlated challenges. Evolutionary algorithms [3]–[6] are
often used to optimise the associated objective function.
The majority of the related research optimises on coverage
or visibility-related objective functions [4], [6]–[11]. When
research considers sensor placement optimisation on down-
stream task performance [3], [5], strategies often use objective
functions that optimise task-associated aspects or hypothetical
task performance. The surrogate nature of such metrics risks
the abstraction of elements related to the downstream task. In-
corporating a differentiable renderer into the sensor placement
optimisation procedure may provide the ability to optimise
less straightforward objective functions, fueling the prospect
for more direct downstream task optimisation.

The rendering procedure converts a three-dimensional ob-
ject or scene into a two-dimensional image. Making render-

ing differentiable allows gradients to flow from the initial
rendering settings to the output rendered image. The gradi-
ent represents the computational derivative of an objective
function with respect to optimisable parameters. Combining
this with gradient-based optimisation methods and a particular
objective function allows the optimisation of all parameters
based on the gradients of this objective function. Additionally,
since the scene modelling in the renderer is differentiable,
this increases optimisation robustness. While promising, this
proposed approach presents some challenges. For instance,
the objective function needs a continuous and differentiable
representation, as small parameter changes should affect the
objective function to provide computational derivatives. Using
a differentiable renderer also requires optimisation-relevant
aspects to be represented in the rendering procedure. Finally,
translating the result of continuous optimisation to a real-
world scenario also facilitates the need to ensure real-world
constraints.

With this work, we aim to optimise the placement of sensors
on an AV for the downstream task of 2D object detection, i.e.
identifying and localising objects within 2D images. Using a
differentiable renderer [12] allows us to optimise based on the
gradient flow from the initial camera parameters to the final
rendered images. Our approach addresses the research gap of
more direct sensor placement optimisation on downstream task
performance by incorporating 2D bounding boxes in the loss
formulation. We use a pre-trained model for 2D object detec-
tion [13] to ensure good out-of-the-box performance without
requiring training. Our optimisation procedure uses triangle
mesh representations of traffic scenarios, replicating a traffic
scene defined in an AV simulator [14]. To our knowledge, this
is the first work to explore the use of differentiable rendering
for AV sensor placement optimisation on 2D object detection
performance. With our approach, we provide the following
major contributions:

• We propose a method for recreating traffic scenes usable
in a differentiable renderer. We create image sets of the
environment to create point clouds, which we afterwards
convert to triangle meshes. Additionally, this method
allows for rendering each non-ego vehicle separately from
the collective traffic scene.

• We provide multiple loss functions and show how these
losses, combined with a differentiable renderer, can op-
timise a set of cameras on the surface of an AV. We
emphasise a loss that more directly optimises camera
positions based on 2D object detection performance by
optimising bounding box visibility.

• Our experiments show that more explicitly accounting for
downstream task performance increases downstream task-
related metrics. We compare our approach to a random
sampling strategy and an intuitive baseline of cameras
around the highest point on the ego vehicle.

II. Related work
In this section, we discuss research related to differentiable
rendering and sensor placement optimisation. For sensor



placement optimisation, we distinguish between research that
explicitly optimises for downstream task performance and
research that does not do this.

Differentiable Rendering. This research addresses differ-
entiable rendering to optimise the position of cameras on an
Autonomous vehicle (AV). The two most common render-
ing techniques are rasterisation and ray tracing. The main
difference between these methods is that rasterisation is an
object-centric approach and that ray tracing is an image-
centric approach. Rasterisation is object-centric because it uses
perspective projection to convert a 3D triangle representation
into a 2D screen representation [15]. Ray tracing is an image-
centric approach because it traces a light ray’s path through
the centre of each pixel into the three-dimensional scene,
checking if it intersects with an object in this scene. Ray
tracing generally results in more realistic-looking images since
it accurately represents lighting phenomena, at the cost of
being more computationally expensive.

Both rasterisation and ray tracing do not explicitly account
for differentiability. The literature proposes several different
methods to enable differentiable rendering. For rasterisation,
for instance, research proposes to use a soft rasterisation
approach that uses a blur radius and the blending of faces to
address rendering discontinuities [16], use an approximate gra-
dient to render polygon meshes from two-dimensional images
using neural networks [17], or compute gradients analytically
by separately rasterising the foreground and background with a
weighted interpolation of local properties and a distance-based
aggregation of global geometry respectively [18]. A related
method is surface splatting, a rasterisation technique for point
clouds, made differentiable by a stochastic representation that
models the contribution of a point as a probability distribution
[19]. For ray tracing, methods address discontinuities by
using reparametrisation techniques [20] or with the Reynolds
transport theorem and boundary integrals [21].

Differentiable rendering has enabled significant advance-
ments for implicit representations, notably with NeRF [22]
and 3D Gaussian Splatting [23]. Other tasks that benefit
from differentiable rendering are tasks such as camera pose
estimation [24]–[28], object pose estimation [29]–[31], and
optical parameter estimation [32]. The versatility of optimi-
sation problems using differentiable rendering techniques in
the literature demonstrates the potential for sensor placement
optimisation with image-related objective functions. Especially
the work considering camera pose and object pose estimation
relates to this idea, showing that an adequate objective formu-
lation based on the images and the gradient flow throughout
the rendering procedure suffices.

Sensor Placement Optimisation. Sensor placement opti-
misation methods aim to optimise the position of a sensor
based on the optimisation of an associated objective function.
The concept of sensor placement optimisation dates back to
(at least) 1973 with the art gallery problem [33], [34]. The
art gallery problem asks how many guards are needed to fully
cover the visible area within an art gallery, where the gallery is

a simple polygon. Optimising for sensor visibility or coverage
has remained a predominant approach in sensor placement
optimisation strategies. This concept can be related to research
optimising for area coverage [8], [11], surround-view coverage
[4], [6], [10] or object visibility [7], [9]. The to-be optimised
sensor or sensor configuration can be related to an existing
sensor such as a (depth) camera [4], [7], LiDAR sensor [6],
ultrasonic sensor [8] or a more general sensor representation
[9]–[11]. Generally, sensor placement optimisation formula-
tions get separated into discrete and continuous formulations.

A discretely formulated problem has a fixed subset of possi-
ble sensor locations. For these discrete formulations, strategies
such as integer programming [9] and brute-force search [10]
are regularly used to sample all possible combinations. An-
other approach for discrete formulations is to have a large set
of sensors in a 3D space and use a random sample consensus
algorithm to randomly pick a subset of sensors to optimise an
objective function [7]. The main downsides of using discrete
methods are the computational expenses needed to sample
each possible combination of sensor positions. Additionally,
the fixed solution subset could result in the optimal position
not being represented. While discrete formulations allow for
more straightforward objective functions, such as binary visi-
bility for objects, one can argue about their usefulness.

In contrast to discrete problem formulations, continuous
formulations are not limited to a fixed number of camera poses.
Continuous formulations allow sensor positioning anywhere
within a specified region. For continuously formulated prob-
lems, evolutionary algorithms, such as Particle Swarm Optimi-
sation (PSO) [4], the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [11], and the Genetic Algorithm (GA)
[6], are regularly used to optimise the placement of sensors.
Evolutionary algorithms are population-based heuristic-based
methods usable for both continuous and discrete problem
formulations. These algorithms operate by iteratively evolving
candidate solutions through evolutionary-based computations
to ensure fit solutions. Gradient-based optimisation methods
[8], [9], [11], [33], optimising based on the gradients related
to an objective function, are also well represented in the
literature. The gradient represents the computational derivative
of the objective function regarding the optimisable parameters.

Which optimisation strategy is preferable depends on the
problem and the objective formulation. For less complex
problems, optimisation methods such as integer programming
or a brute-force search may be preferable in contrast to
gradient-based optimisation methods or evolutionary algo-
rithms. However, as the complexity of the problem grows,
so will the search space, making these optimisation methods
computationally expensive. While gradient-based optimisation
methods and evolutionary algorithms can mitigate this issue,
they also have associated challenges. For instance, one must
account for these optimisation methods getting stuck on local
minima rather than the global optimum. We only encountered
one research that used gradient-based sensor placement op-
timisation combined with a differentiable renderer [9], [12].
However, this work focuses on roadside sensor configuration



on rails above the road. Whilst this research illustrates the
potential of combining differentiable rendering with sensor
placement optimisation, the roadside sensing context does not
fully align with our AV context. The higher-up sensor position
along vehicle lanes inherently has a lot of coverage of the
environment and the actors within it. In contrast, sensors on
an AV have a more limited sensing range due to the lower
positioning, and this position results in many occlusions from
the surrounding road users and pedestrians.

Sensor Placement Optimisation For Downstream Task
Optimisation. A subset of sensor placement optimisation
methods consider the performance of a particular down-
stream task as their objective function. Research optimises
for downstream tasks such as tracking and detecting non-
ego vehicles for camera and radar configurations [5], and
3D object detection and semantic segmentation for LiDAR
configurations [3]. For this, they employ strategies related to
the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [3], Simulated Annealing with Greedy Random Adaptive
Search Procedure (SA+GRASP) [5], the Genetic Algorithm
(GA) [5], and Particle Swarm Optimisation (PSO) [5]. Related
research also proposes surrogate metrics where the optimisa-
tion of the proposed metric correlates with the optimisation
of a downstream task, for instance, metrics that estimate
the information gain for occupying regions in a probabilistic
occupancy grid [2], [35] and entropy-based metrics [36], [37].
Methods have correlated the result of their optimisations to
performance on the downstream task and noted that optimis-
ing with their method and/or metric generally increases the
performance on the downstream task. For instance, research
proposing a data-driven surrogate metric with maximum infor-
mation gain for the object detection performance of LiDAR
sensor configurations noted that positioning contributes up
to 10% performance discrepancy regarding average precision
in challenging environments. However, the surrogate nature
of the used metrics generally results in implied downstream
task optimisation. For instance, research proposes to optimise
based on a weighted sum of configuration characteristics to
track and detect non-ego vehicles [5]. While these aspects
may be crucial for the downstream task, this reconstruction,
as the sum of important aspects, likely fails to consider full
task performance. Even when using a more probabilistic-based
surrogate metric, such as with probabilistic occupancy grids
[2], [35], semantic occupancy grids [3], and entropy-based
metrics [36], [37], the optimisation is grounded in hypothetical
downstream task performance. Therefore, we believe there is
a gap in the literature regarding more direct optimisation on
a particular downstream task. We address this literature gap
by more directly optimising sensor positions on downstream
task performance, specifically by optimising cameras on the
downstream task op 2D object detection. Leveraging a dif-
ferentiable renderer, with gradient flow between the initial
rendering settings and the output rendered image, allows us
to optimise based on the gradients of an objective function.
Relating this objective function towards the downstream task

would allow this more direct optimisation.

III. Methodology
This section goes over our proposed methodology to:

• Optimise the placement of cameras on an AV [14].
• Optimise based on the downstream task of 2D object

detection.
• Optimise by utilising a differentiable renderer with

gradient-descent-based optimisation.
The methodology section is segmented into three sections, as
illustrated by Figure 3.

Section A focuses on representing a traffic scene from an
Autonomous Vehicle (AV) simulator as a triangle mesh. Using
a differentiable renderer requires representing optimisation-
relevant aspects. In our case, this relates to the representation
of a traffic scene with an ego vehicle and non-ego vehicles to
detect. The use of a pre-trained 2D object detection model [13]
necessitates a relatively realistic coloured scene representation
to detect objects in the environment consistently. However,
this triangle mesh representation mainly supports the sensor
placement optimisation procedure. Therefore, we prioritise
creating ideal testing data over utilising real-world data. To
this end, we aim to set up a traffic scenario in an AV simulator
[14] and convert this to a triangle mesh representation usable
in a differentiable renderer.

Section B focuses on prerequisites to enable optimisa-
tion. These prerequisites serve to allow the gradient-descent-
based optimisation procedure. This section focuses on camera
positioning on the surface, the images used to determine
optimisation-relevant aspects, and how GT bounding boxes
are created and used in the optimisation.

Finally, Section C describes the gradient-descent-based op-
timisation procedure. One difficult aspect concerning contin-
uous optimisation is enforcing constraints. We propose four
losses, two constraint losses and two optimisable losses. Our
constrained optimisation procedure aims to ensure satisfied
constraints whilst optimising for the optimisable losses. We
also allow direct scaling of the loss values, increasing the
numerical importance or the associated gradient magnitude.
Given a singular optimisable loss Lo and its associated scalar
value So, the number of constraint losses n, the associated
Lagrange multiplier λi and constraint loss value Lci with its
associated scalar Sci , the constrained optimisable loss Lco is
determined as in Equation 1. The total loss L is the sum of
m optimisable losses, as also indicated in Equation 1.

Lco = So · Lo +

n∑
i=1

λi · Sci · Lci

Minimise: L =

m∑
j=1

Lcoj

(1)

A. Traffic Scene Representation
This section describes the process of representing and cap-
turing images from the environment inside an AV simulator



RGB

Depth

Instance

Traffic Scene Representation

C - Gradient-Descent-Based OptimisationB – Optimisation Prerequisites

Sensor Placement Optimisation

Capturing The 
Camera 

Surroundings

GT 
Detection 

Assessment

Image 
Rendering

2D Plane 
Parameters

3D Surface 
Positioning

Soft 
Masking

Per-Camera 
Object 

Segregation

Camera 
Distancing Loss

Detected 
Object Area 

Loss

A – Traffic Scene Representation

Point 
Cloud 

Creation

Mesh 
Conversion

Batch 
Creation 
Strategy

Determining 
Occluded 

Areas

Image 
Rendering

Image 
Rendering

Out-of-Bounds 
Loss

In-Frame 
Rotation Loss

Constrained 
Optimisation

Update 
Parameters

Traffic 
Scene 
Image 

Capturing

Fig. 3. The figure shows an overview of our AV sensor placement optimisation method for optimising cameras on 2D object detection performance. We
segment the methodology into two parts: representing traffic scenes on the left and sensor placement optimisation on the right. We divide the sensor placement
optimisation procedure into optimisation prerequisites and gradient-descent-based optimisation.

[14], using these images to create aggregated point clouds, and
converting these point clouds into separate triangle meshes.

Traffic Scene Image Capturing. The first step in our
process is to set up the traffic scenario within the AV simulator
[14] and to capture multiple image sets during and after this
process to reconstruct this scenario effectively. For each 6
Degrees-Of-Freedom (6DOF) camera pose, we capture a set
of three distinct image types:

• A RGB image providing the colour per pixel.
• A depth image providing the absolute depth per pixel.
• An instance image providing what pixel correlates to

which uniquely spawned object.

Figure 4 illustrates these three image types for one identical
camera pose. We mitigate lighting and weather effects to
ensure environmental consistency from any camera position
in the scene. Since we are taking the images subsequentially,
simulating aspects like rain and wind will make it challenging
to represent a cohesive environment. We mitigate lighting
effects such that reflections, lens flares and shadows do not
result in noise. This noise can occur when two images from
different camera positions represent an identical part of the
traffic scene differently. Lighting can, for instance, result in
illumination changes, lens flares and slightly different colours
due to how the light from a particular angle lights and reflects.
We also try to minimise the effects of harsh shadows so that
we know that each object in the scene should be detectable.
We position the sun overhead to mitigate these harsh shadows,
minimising shadows on vehicle surfaces. Additionally, we
remove vegetation to ensure that we can effectively capture
each aspect of the environment without needing to account
for obstruction from objects, like trees that obstruct top-down
images. Starting from (1) in Figure 5, presenting a point
cloud of an unaltered simulator environment, we first remove
the vegetation as in (2), whereafter we alter the lighting and

weather parameters as in (3).
Setting up vehicle scenarios entails generating valid spawn

points and populating the scene with a consistent ego vehicle
and a set of randomly coloured non-ego vehicles within a
spawn radius relative to the ego vehicle. We define the set
of valid spawn points as the collection of set-up spawn points
in the simulator, supplemented with points based on the road
network. This collection of spawn points ensures that every
possible spawn location relates to normal driving behaviour.
We capture instance images before and after spawning each
vehicle to ensure that the non-ego vehicle is visible from the
ego vehicle’s position. We assess visibility based on whether
the second instance image has an additional vehicle instance
in the image frame. We capture various image sets from
different perspectives, including above the (non-)ego vehicles,
top-down at multiple heights, and multiple rotational steps
from the ego vehicle’s location. We explicitly capture the roof
of the ego-vehicle to represent the valid sensor positioning
area later. To better understand all used images to recreate
one traffic scene representation, we refer to Appendix VIII.
For non-ego vehicles, capturing the roof reduces the number of
non-captured aspects of the vehicle, reducing artefacts during
the mesh conversion. Note that this means we do not fully
capture all aspects of the traffic scene but focus on the aspects
visible from the ego vehicle. For each captured image, we
also store the 6DOF camera pose. This 6DOF pose is relative
to the position and orientation of the ego vehicle. This rela-
tive position ensures that each traffic scene representation is
structured similarly. Besides our collection of image sets with
their associated 6DOF camera poses, we also save additional
information about the spawned vehicles, like the spawn points,
the surrounding 3D bounding box dimensions, and all the
associated instance colours. The addition of non-ego vehicles
in the traffic scene representation is visible in (4) of Figure 5.



Fig. 4. The figure shows three image types from the same camera position, captured in an AV simulator [14]. The left image shows the RGB image providing
the colour per pixel. The middle image shows the depth image, encoding the absolute depth [38]. The right image shows the instance image, encoding unique
object instances.

Fig. 5. The figure illustrates different representations of a traffic scene initially set up in an AV simulator [14]. (1) shows a point cloud representation of an
unaltered traffic scene. The next images represent the following sequence of global operations: (2) Remove all vegetation; (3) Minimise weather effects and
move sun overhead; (4) Add non-ego vehicles; (5) Filter far-away points; (6) Convert points outside of the representation radius into a sphere representation;
(7) Filter points above a given height; (8) Downsample each point cloud; (9) Convert each downsampled point cloud into a triangle mesh with NKSR [39].



Point Cloud Creation. We create aggregated point clouds
based on our captured images and their associated 6DOF
camera poses. Given a depth image and its associated camera
pose, Field Of View (FOV) and image resolution, we can
convert these absolute distances from the camera into a point
cloud in 3D space. Combining this with the correlated RGB
image creates a coloured point cloud. Finally, the instance
images allow the separation of points for each instance of
interest. Here, we distinguish between two point cloud types:
individual point clouds of the (non-)ego vehicle(s) and a
point cloud representation of the environment around these
actors. However, creating an aggregated point cloud of the
environment by simply reprojecting points would result in
an overly large point cloud capturing everything in sight,
including large buildings and the sky. Therefore, we mitigate
the scale of point clouds twofold. Firstly, we filter out depths
in the depth images that approach the upper depth threshold.
These values mainly relate to points corresponding to the sky,
as illustrated with (5) in Figure 5. Secondly, we account for
the absolute distance between all points and the spawn point
of the ego vehicle. For all points with an absolute distance
larger than the desired representation radius, we convert these
points to spherical coordinates, adjust the radius to the desired
representation radius, and transform the point back to cartesian
coordinates. This transformation effectively creates a sphere
representing the environment beyond the radius. (6) in Figure
5 shows how this environment representation looks from the
ego vehicle’s point-of-view. Figure 6 shows this from a top-
down view, illustrating how a large environment, as observable
on the left, is essentially represented by a compact sphere, as
observable on the right. This representation gives the illusion
of an environment while limiting the actual environment space.
We perform additional filtering to filter out points above
a maximum height, as this predominantly relates to larger
structures that are unimportant for our objective, as illustrated
with (7) in Figure 5.

One important consideration when using RGB images,
depth images, and instance images to create an aggregated
point cloud is conflicting information. Suppose we have an
RGB image, a depth image and an instance image of a car
in a traffic scene. In the RGB image, we may still perceive
parts of the environment through the vehicle’s windows. Our
depth image also gives the correct depth values for the
environmental presence through the windows. However, if we
take an instance image of the vehicle, we lose the translucency
from the windows because the windows are part of the vehicle
instance. Therefore, if we solely rely on these three images, the
environment through the windows will be seen as part of the
vehicle instance. To combat this, we rely on the vehicle’s 3D
bounding box. Given this 3D bounding box, we state that only
points inside the 3D bounding box count towards belonging to
the vehicle, and only points outside the bounding box count
toward belonging to the environment. Figure 7 illustrates the
effect of this procedure, with many environmental artefacts in
the left image and these parts removed in the right image.

The ego vehicle’s point cloud is unique, as it doubles as the

valid camera positioning area. Given a point cloud of the ego
vehicle, we estimate the normals and filter for normals with an
approximate upward direction. This filtering procedure leaves
us with the roof and hood of our ego vehicle. We still use both
ego vehicle point clouds: the filtered surface point cloud for
camera placement positioning and the unfiltered surface point
cloud for visualising the ego vehicle.

Mesh Conversion. The final step in creating our traffic
scene representation is the conversion of point clouds to trian-
gle meshes. The main benefit of a triangle mesh representation
is that, compared to points in space, it has a structure which
connects these points. Since our aggregation strategy results
in a dense point cloud with some noise, this requires a fitting
mesh conversion method. Due to the point density, downscal-
ing the number of points is likely needed. However, this likely
does hamper the use of certain surface reconstruction methods.
For instance, using a Poisson surface reconstruction [40] with
a sparse or noisy point cloud likely results in overly smoothed
objects and mirrored normals, mitigating the effectiveness
of the representation. To mitigate these problems, we use a
Neural Kernel Surface Reconstruction (NKSR) method [39].
In short, NKSR is a surface reconstruction algorithm using
the Neural Kernel Field (NKF) representation [41], allowing
the reconstruction of 3D implicit surfaces from large-scale
and noisy point clouds. This surface reconstruction strategy
is a good fit, given our point cloud aggregation strategy. This
work explicitly addresses high-end reconstruction results for
AV driving scenarios, both from an AV simulation [14] and an
open data set [42], strengthening the choice for this method.
An additional benefit of this method is that it allows the
estimation of normals based on the original positions of the
sensors that perceived specific points, which we know from our
point cloud aggregation strategy. This position-based normal
estimation method results in consistently better mesh normals,
substantially mitigating mirrored normals. Before converting
the point clouds to a mesh representation, we downsample the
point cloud to a desired number of points using a Poisson Disk
strategy [43]. We chose the Poisson Disk strategy to directly
downsample the points to approximately a specified number
of points, ensuring adequate point spacing to maintain the
point cloud’s original shape. While this strategy likely results
in lessened visual fidelity, we mitigate the impact on object
detection performance by predominantly focusing on down-
sampling the environment rather than the non-ego vehicles.
(8) in Figure 5 shows the extend of the downsampling. After
the mesh conversion, we perform additional filtering to reduce
the complexity of the mesh. We first delete duplicate vertices
and faces and afterwards use a quadric-based edge-collapse
strategy [43], [44] to downsample to a specific number of
faces. The choice for the quadric-based edge-collapse strategy
is similar to the Poisson disk strategy, such that we can directly
downsample the faces to approximately a specified number of
faces whilst ensuring that the faces still represent the original
mesh. Both the point cloud and the mesh downsampling reduce
the computational expenses for the mesh conversion and the



Fig. 6. The figure illustrates the usefulness of the spherical environment representation. The left image shows the result of not accounting for the distance of
points from the ego vehicle, creating a large-scale point cloud representation. The right image shows the result of our spherical representation, where a sphere
around the environment represents the environment beyond the representation radius. This spherical representation mitigates the size of the point cloud whilst
keeping elements outside of the representation radius part of the traffic scene.

Fig. 7. The figure illustrates the need to account for points visible through vehicle windows. The left image shows the vehicles with many environmental
artefacts around them, now considered part of the vehicles. Only associating points within the 3D bounding boxes of particular vehicles results in the right
image, with most artefacts removed.

representation in the differentiable renderer. (9) in Figure 5
shows how the triangle mesh representation of a particular
traffic scene in our approach looks.

Traffic Scenes Collection. With our proposed traffic scene
representation methodology, we created around 200 traffic
scene representations. This number of scenes allows us to
divide this scene collection into a training and test set while
maintaining a varied selection of distinct traffic scenarios. We
only use the training set to train the model. The test set is not
part of the training, allowing an unbiased evaluation result. To
illustrate the occupancy of vehicles relative to the ego vehicle,
we created top-down heat maps of the vehicles in all envi-
ronments. Figure 8 shows the result of this procedure for all
traffic scenarios, the training set, and the test set. For each heat
map, dark red represents the highest occupancy presence, and
dark blue represents the lowest. The prominent low-occupancy
area in the middle of each image is the position of the ego
vehicle. Each heat map shows a comparatively higher object
presence on the left side of the ego-vehicle. This occupancy

discrepancy is likely due to our vehicle spawn point approach
and the suburban environment we used in the AV simulator. As
this environment represents a downtown area, there are limited
vehicle lanes, and the pavement often occupies the right side
of the vehicle. Only considering vehicles on the road logically
results in the left side of the vehicle generally having a higher
occupancy presence. The distinct traffic-lane-like lines in the
heat map are also likely a result of these spawn points.

B. Optimisation Prerequisites
This section addresses some of the aspects required to optimise
cameras on the performance of 2D object detection. Aspects
entail which information from the differentiable renderer we
use, how we ensure valid camera positioning, the assessment
of True Positive (TP) detections, and how we use a camera to
represent the rotational space.

Image Rendering. Using a differentiable renderer allows
us to render images given specific parameters, like the 6DOF



Fig. 8. The figure shows top-down heat map representations of the non-ego vehicle distributions in the traffic scene representations. The left heat map
represents the occupancy of all vehicles in all traffic scenes. The middle heat map shows the distribution of vehicles in the training set. The right heat map
shows the distribution of vehicles in the test set. In each heat map, dark red represents the highest occupancy, and dark blue represents the lowest occupancy.
The non-occluded space in the middle of the images is the position of the ego vehicle.

pose, the Field Of View (FOV), and the resolution, whilst
maintaining gradient flow. We require three image types:

• A silhouette image, essentially a mask of the rendered
object(s) in the image frame.

• A RGB image, essentially a render of the textured ob-
ject(s) in the image frame.

• A rasterisation z-buffer, essentially a relative depth image
of the object(s) in the image frame, scaled between the
closest and the furthest surface in the image.

Per-Camera Object Segregation. To mitigate the com-
plexity of optimising multiple cameras on object detection,
we implement a segregation strategy which couples each
vehicle from each environment to one specific camera. This
segregation strategy effectively results in the detectability of
each vehicle, which only impacts the optimisation of one
camera instance. This segregation strategy mitigates the need
to account for inter-camera coordination. For this, we position
the camera in the middle of our traffic scene representation
and create a silhouette image for each distinct vehicle in each
traffic scene representation for a set number of orientations.
This procedure informs us which vehicles from which traffic
scenes are visible in which orientations. Afterwards, for n
optimisable cameras, we find the n number of orientations that
maximises the number of vehicle instances visible in a camera
frame. Combining orientations to maximise visible vehicle
instances may leave us with multiple orientation sets that result
in the same amount of visible instances. For these sets, we
assess which combinations of camera orientations result in the
lowest number of duplicate objects in the frame. We randomly
select a set if this check still results in multiple sets. For the
final set, we identify vehicles present within multiple camera
orientations. To ensure each object correlates to one camera,
we associate the vehicle with the orientation where the object’s
visibility is the highest. After this final procedure, we have a
set of n segregated vehicle instance sets. We associate each

vehicle set with a camera index for the optimisation procedure.

Batch Creation Strategy. We use an informed batch cre-
ation strategy to compel optimising all cameras. Since we
know which vehicles from which traffic scenes correlated to
which camera indices from our segregation strategy, we also
know what scenes optimise which cameras. Therefore, we can
construct the traffic scenes batch based on this information.
If the number of cameras fits the batch size, we randomly
select a camera-correlated environment for each camera in-
dex. Otherwise, we randomly select a camera index and an
associated traffic scene. While this likely still results in specific
cameras seeing more optimisation in general, it should provide
more consistent optimisation for cameras correlated to less
populated areas.

3D Surface Positioning. Recall from Section A that we
have a point cloud representing the valid positioning area on
the ego vehicle. We aim to convert this surface representation
into a height map, where the correlated height for each 2D
position is implicit. For this, we determine the minimum and
maximum boundaries of the point cloud and create a raster
with a set raster size. We then iterate over each raster and
assess the highest point within each raster. Applying this
procedure to all rasters leaves us with a height map for all
rasters with associated points. However, imperfections or non-
captured areas likely result in empty rasters for an arbitrary
point cloud. For our point cloud specifically, we have a large
empty area without points related to the windows of the
ego vehicle. Therefore, we interpolate missing values by the
surrounding present raster values. As this might result in an
uneven representation, we iteratively smooth the interpolated
values. We continue this smoothing procedure until the max-
imum difference between two iterations is below a certain
threshold. With this, we have a smooth surface representation
of where we can position cameras, with the height implied



from the 2D position. Figure 9 shows the initial point cloud
representation with overlaid coloured pixels representing the
height at each height map raster.

Fig. 9. The figure shows the valid positioning area of the ego vehicle,
represented as a point cloud, overlaid with coloured pixels representing the
height correlated to a raster within the height map.

Determining Occluded Areas. We desire to assess which
parts of which vehicles are occluded, as occlusions affect the
visibility and detectability of vehicles. To this end, we assess
the occluded areas of a vehicle by using silhouette images and
rasterisation z-buffers. We first assess which vehicles in the
camera frame overlap. If we have two silhouette renders of two
separate in-frame vehicles, we determine that these vehicles
overlap if any part of the two silhouettes overlap. If we do
this for all vehicles, we know which vehicles potentially result
in occlusion. For a particular vehicle and a set of possible
occluding vehicles, we create separate z-buffers for each com-
bination of the vehicle of interest and each possibly occluding
vehicle. The z-buffer per combination represents the relative
depth for the two in-frame vehicles, meaning we can assess
which vehicle is closer. To assess which vehicle is closer, we
specifically look at the non-overlapping area for each object.
If a possibly occluding vehicle is closer to the camera, this
vehicle is occluding this vehicle of interest. Otherwise, the
vehicle of interest is not occluded but is occluding the other
vehicle. Applying this procedure for all possibly occluding
vehicles allows us to assess the non-occluded area of a vehicle.
Additionally, we assess how much the ego vehicle occludes the
vehicles in the environment. Assuming that the ego vehicle is
always the closest vehicle to the camera, only using silhouette
images suffices for this.

Capturing The Camera Surroundings. One of the chal-
lenges of optimising for downstream task performance on
cameras is that the optimisation is limited to what is inside
the image frame. While we could use external data, such as
positional data from the triangle meshes, such inclusions limit

the effectiveness of our approach. Therefore, we only optimise
based on data related to the image frame or the position of the
cameras. However, we must consider how we handle relevant
aspects that are not currently within the frame. Brilliant 2D
object detection performance does not entail much when most
vehicles are not perceivable. To this end, we propose to
segment the rotational space of 2π based on the FOV of
our camera and assess the three-dimensional space from the
camera’s current position. Given FOV F , we determine the
closest divisible FOV Fclosest as in Equation 2. Each rotational
addition θa for each addition a follows from Equation 3.
Combined with our traffic scene representation with separated
vehicle meshes, we can perceive the environment around a
given camera position, both the collective traffic scene and
each distinct vehicle.

Fclosest =

{
F 2π mod F = 0,

2π

round ( 2π
F )

else (2)

θa = a× Fclosest for a = 0, . . . ,
2π

Fclosest
− 1 (3)

Ground-Truth Detection Assessment. We must assess 2D
object detection performance based on our traffic scenario rep-
resentations. However, such an assessment requires knowledge
of the Ground Truth (GT) bounding boxes correlating to the
best possible detection performance. Relying on predetermined
bounding boxes becomes challenging when the continuous
optimisation can position a camera anywhere within the valid
positioning region. To combat this, we propose a method
to determine a GT bounding box from anywhere in the
environment. To accomplish this, we rely on silhouette renders
representing the non-occluded area of each distinct vehicle.
Given the non-occluded silhouette, we determine the largest
group of connected pixels of this silhouette and create a GT
bounding box based on the minimum and maximum x and y
values. When assessing detection model bounding boxes, we
deem a bounding box from an object detection model a True
Positive (TP) detection for a particular GT bounding box if:

• The detection bounding box confidence adheres to a
minimum confidence threshold.

• The Intersection over Union (IoU) adheres to a minimum
IoU threshold.

• Any part of the GT bounding box correlated object falls
within the detection model bounding box.

• Neither the GT bounding box nor the detection model
bounding box has previously been matched.

If multiple detection model bounding boxes comply with
these criteria, we match the bounding box with the highest
IoU.

Soft Masking. Masking parts of an image is an often-
used strategy for computer vision-related tasks. However, the
boolean nature poses a challenge in a differentiable opti-
misation procedure. Zero values in the mask likely disrupt
gradient flow correlated to certain parts of the image. While



there are more direct methods to compute masks differentially,
for instance, using a sigmoid, these masks are relatively
imprecise compared to discrete operations. Research has pro-
posed several methods to balance maintaining differentiability
and maintaining the shape of the bounding box [45]–[47].
Similarly, we use discretely determined masks but ensure that
each part of the image maintains gradient flow with Equation
4. By using a small positive value ϵ, this equation results
in the lower bound of mask Msoft being equal to the small
epsilon value whilst maintaining the upper bound of mask
Mdiscrete. This soft mask approach ensures gradient flow while
maintaining the boolean masking concept.

Msoft = Mdiscrete · (1− ϵ) + ϵ (4)

C. Gradient-Descent-Based Optimisation
For our research, we perform constrained gradient-descent-
based optimisation. We provide four losses for this optimi-
sation, separated into two categories: constraint losses and
optimisable losses. We formulate constraint losses to enforce
constraints during the optimisation. The formulation of the
optimisable losses is to represent 2D detection performance
optimisation.

Constrained Optimisation. For our optimisation proce-
dure, we use an AdamW optimiser [48]. We choose AdamW
as this is an adaptive optimiser, so the learning rate is adapted
over time to ensure convergence. It also includes momentum
and weight decay, ensuring more robustness for handling
local optima and the mitigation of overfitting, respectively.
To be able to perform batched gradient descent optimisation
whilst accounting for computational expenses, we perform all
relevant computations for one traffic scene at a time. While
this iterative approach may be more time-consuming, it still
results in an accumulated gradient based on all traffic scenes
in our batch.

To enable constrained optimisation, we use the Basic Dif-
ferential Multiplier Method (BDMM) [49], enforcing con-
straints by optimising Lagrange multipliers. The idea is to
perform gradient ascent on the Lagrange multipliers, such that
multiplying the Lagrange multiplier with the constraint loss
results in even higher loss values. This Lagrange multiplication
then makes the constraint losses large enough so that the
gradient descent optimisation needs to minimise the constraint
losses, which is only effectively done by complying with the
constraints. We refer to Equation 1 for the constrained loss
formation.

Constraint Loss - Out-Of-Bounds loss. Given the prospect
of continuous optimisation, we need to account for camera
positions remaining in the valid positioning area. The Out-
Of-Bounds (OOB) loss penalises camera positions beyond the
edges of our vehicle. We define the limits of the vehicle of
the ego as [xmin, xmax] and [zmin, zmax]. For each camera i,
we check its position (xi, zi), and if it extends either of the
minimum or maximum boundaries, as listed in Equation 5. The
ReLU operation ensures we only consider values extending

beyond the boundaries. The exponential operation ensures
a strict penalisation even for small boundary extensions, as
extending beyond the boundary should be discouraged. As
the minimum value of the exponential operation is one, we
subtract one to ensure that our loss can become zero. We
combine these individual camera losses to the final OOB loss
Loob, as described in Equation 6. To illustrate the need for such
a loss, we refer to Figure 10, representing the final result of
a training procedure without any constraint losses. This result
has all cameras, represented by yellow dots, extending beyond
the bounds of the ego vehicle.

Loobxmin
(xi) = exp(ReLU(xmin − xi))− 1

Loobxmax
(xi) = exp(ReLU(xi − xmax))− 1

Loobzmin
(zi) = exp(ReLU(zmin − zi))− 1

Loobzmax
(zi) = exp(ReLU(zi − zmax))− 1

(5)

Loobx =
∑
i

Loobxmin
(xi) + Loobxmax

(xi)

Loobz =
∑
i

Loobzmin
(zi) + Loobzmax

(zi)

Loob = Loobx + Loobz

(6)

Fig. 10. This figure illustrates the need to account for constraints explicitly.
Without the Out-Of-Bounds (OOB) loss, the optimisation pushed all cameras
out of the valid positioning area.

Constraint Loss - Camera Distancing Loss. A practical
constraint regarding sensor configurations is that sensors can
not occupy the same space, requiring a minimum distance be-
tween each other. The Camera Distancing (CD) loss penalises
cameras for being closer to each other than a minimum thresh-
old. For two arbitrary cameras i and j, we know their absolute



position in our 3D mesh environment as T [i] and T [j]. We can
determine the three-dimensional Euclidean distance in meters
for these two cameras as in Equation 7. To penalise cameras
being too close to each other, we formulate the loss per camera
pair as in Equation 8, where dmin is the minimum distance
needed between every two cameras. Given N cameras and(
N
2

)
unique camera pairs, we formulate the final loss as in

Equation 9, as the mean of all pairwise camera losses.

d(i, j) = ||T [i]− T [j]||2 (7)

LCD(i, j) =

{
0, d(i, j) ≥ dmin
|d(i,j)−dmin|

dmin
, else

(8)

LCD =
1(
N
2

) ∑LCD(i, j) (9)

Optimisable Loss - In-Frame Rotation Loss. To optimise
camera positions based on 2D object detection performance,
we should ensure that objects are within the camera frame. We
use FOV F in radians to sample the rotational space of 2π. We
do this by using Equation 2 and Equation 3 from Section B.
By sampling the rotational space, we perceive the environment
around us from the camera’s current position. This rotational
sampling means we perceive most of the presence of each non-
ego vehicle from this position. By knowing the orientation
θi of camera i, the rotational addition θa, the width of the
image ImgResx, and the x-value of an in-screen coordinate,
we can compute the rotation of this in-frame point θif (x)
purely from within the image frame, as shown in Equation
10. Suppose we compute this angle for the leftmost and
rightmost x-value of the silhouette for all rotational additions
a. In that case, we can determine the absolute rotation for
the leftmost and rightmost parts of the object as θmlm

and
θmrm , respectively. If we compare this with θi, we can
compute the rotational difference as described by Equation
11. Knowing the shortest rotational difference for the leftmost
and rightmost parts of the object, we can also determine the
absolute minimum rotational difference. As we predominantly
want to ensure that all vehicles are within the camera frame,
we multiply the per-mesh rotational difference with a small
positive ϵ value when the object is visible, as described in
Equation 12. We determine the smallest rotational difference
between each vehicle’s correlated cameras. Afterwards, the
minimum rotational difference is normalised by π, the largest
possible rotational difference, resulting in the per-mesh IFR
loss LIFR(m). The final loss is the sum of the per-mesh
losses divided by the number of meshes |M |, as the mean
of the normalised rotational differences for all assigned mesh
objects, as described in Equation 13.

θif (x) = θi + F
(

x

ImgResx
− 0.5

)
(10)

∆mlm
(i,m) = min(|θmlm

− θi|, 2π − |θmlm
− θi|)

∆mrm(i,m) = min(|θmrm − θi|, 2π − |θmrm − θi|)
(11)

∆min(i,m) = min(∆mlm
,∆mrm) · S(i,m)

S(i,m) =

{
ϵ, if mesh m is visible in camera i

1, otherwise
(12)

LIFR(m) =
∆min(i,m)

π

LIFR =
1

|M |
∑
m∈M

LIFR(m)
(13)

Optimisable Loss - Detected Object Area Loss. The
Detected Object Area (DOA) loss is our contribution to more
directly optimise object detection performance. We use FOV
F in radians to sample the rotational space of 2π. We do
this by using Equation 2 and Equation 3 from Section B. By
sampling the rotational space, we can perceive the environment
around us from a camera’s current position. This rotational
sampling means we also perceive most of the presence of non-
ego vehicles from this position. The idea of the DOA loss is
that we optimise object visibility, but we imply visibility from
detectability. This idea entails that if we assess that a vehicle
is detected, we know what the matched bounding box is, and
we use this bounding box as the visible area of the object.
We compute the visibility percentage of an object mesh m in
camera i’s camera frame by getting rendered silhouette images
of the non-occluded mesh object m, Sum(i,m), and one
rendered silhouette image of the portion of the non-occluded
mesh object m falling inside of its matched bounding box,
Sdm(i,m). Given these two silhouette image types, we define
the visibility percentage computation as given in Equation
14. This formulation entails that lost visibility Vdoaloss

(i,m)
equals the difference between the total sum of non-occluded
silhouette images in all rotation additions and the sum of
pixels outside the detection bounding box. The visibility
percentage Vdoa(i,m) is the difference between the total sum
of unblocked silhouette images in all rotation additions and the
computed visibility loss. Equation 15 describes loss per mesh
Ldoa(m), where we compute the visibility difference with the
minimum amount of visibility Vdoamin

. Afterwards, the losses
per mesh are summed and normalised to one by dividing by the
number of meshes |M | to get Ldoa, as described in Equation
16.

Vdoaloss
(i,m) =

∑
a

∑
Sum(i,m, θa)−

∑
Sdm(i,m, θ0)

Vdoa(i,m) =

∑
a

∑
Sum(i,m, θa)− Vdoaloss

(i,m)∑
a

∑
Sum(i,m, θa)

(14)

Ldoa(m) =

{
0, Vdoamin

− Vdoa(i,m) < 0
|Vdoamin

−Vdoa(i,m)|
Vdoamin

, else
(15)



Ldoa =
1

|M |
∑
m∈M

Ldoa(m) (16)

IV. Experiments
This section discusses the experiments we performed regarding
our proposed method and some comparative baselines. For
these experiments, we focus on the following metrics:

• The mean Average Precision at an Intersection over
Union (IoU) of 50% (mAP@50). The mAP represents
the 2D object detection performance by measuring the
precision of object detection at different recall levels. The
mAP@50 specifically only considers detection bounding
boxes with an IoU of 50% to be True-Positive (TP)
detections. We use the mAP@50 to balance good overall
detectability without requiring bounding boxes to have
near-perfect overlap. For each average mAP@50 value,
we consider the mAP values per camera for instances
where there are both valid Ground-Truth (GT) bounding
boxes and detection model bounding boxes. We average
the valid mAP@50 values per camera and retrieve the
minimum and maximum average mAP@50 from this.
The average mAP@50 is then the average of all camera
mAP@50 values.

• The TP detection rate entails how many objects in the
test set are correctly detected. We determine that these
objects are detected when, for any arbitrary camera, there
is a match between a detection bounding box and a GT
detection bounding box. While our segregation approach
ensures that each vehicle is only associated with the
optimisation of one camera, each camera can detect each
object.

• The TP in-frame rate entails how many objects in the
test set are within the image frame. We determine that
an object is present in an image frame if the sum of
a correlated silhouette image is non-zero. Like the TP
detection rate, each camera can contribute to this metric,
even when the object is not part of the camera-specific
segregation. In-frame also does not equal visibility, as a
(non-)ego vehicle might obstruct the object.

• The detection confidence entails the associated confi-
dence of each correctly detected non-ego vehicle. If
multiple cameras detect a particular vehicle, we associate
the highest detection confidence with the specific vehicle.

• The optimisable loss entails the loss value on the test set
based on the In-Frame Rotation (IFR) and/or Detected
Object Area (DOA) losses, so the loss we desire to
minimise. Due to different combinations of losses with
different scales, this value is only comparable for tests
with identically scaled losses.

• The constraint loss entails the loss value on the test
set based on the Out-Of-Bounds (OOB) and Camera
Distancing (CD) losses, so the loss we desire to elim-
inate. We scale each constraint loss based on the highest
optimisable loss scaling value to ensure compliance with
the constraints.

• The minimum camera pair distance entails the smallest
distance between any camera pair within the current
configuration. This minimum distance verifies the con-
tribution of the CD loss.

Appendix XI shows the parameters each experiment in
this section shares. The correlated sections will address the
different parameters per experiment series.

Loss function gradient magnitude. To assess the gradients
corresponding to our proposed losses, we performed a test
where we consider all losses to be unscaled optimisable losses.
We then perform per-loss backwards passes and save the
corresponding gradients. We did this for ten optimisation
runs of 100 iterations each for a traffic scene batch size
of one. Table I then shows the L1 average for all non-zero
gradient values for both gradients corresponding to positional
and rotational movement on the training set. Particular losses
only seem to contribute gradients for positional or rotational
movement. Unsurprisingly, the Out-Of-Bounds (OOB) and
Camera Distancing (CD) loss do not contribute to rotational
gradients. However, it may be unexpected that the loss of in-
frame rotation (IFR) does not seem to result in positional
movement. For the Detected Object Area (DOA) loss, the
rotational gradient magnitude seems slightly higher than the
positional magnitude.

TABLE I
AVERAGE GRADIENT MAGNITUDE FOR OPTIMISABLE LOSSES

Loss Positional Rotational
OOB 0.977 0.0
CD 0.112 0.0
IFR 0.0 0.353
DOA 0.003 0.016

Gradient-Based Optimisation. To assess the performance
of our proposed losses, we performed four experiments. For
each experiment, we performed five optimisation runs for
100 iterations with four 90-degree cameras and a batch size
of four. We started with separate experiments for the In-
Frame Rotation (IFR) and Detected Object Area (DOA) losses.
Afterwards, we combine both losses to see if the combination
improves optimisation. Lastly, we scale the DOA loss by 10
based on the gradient magnitudes from Table I, ensuring the
average gradient magnitudes are more in line.

The red ”SGD” (Stochastic Gradient Descent) part of Table
II shows the results of the four experiments. Combining the
IFRL and the scaled DOA loss results in better average values
for the most important metrics: the mean Average Precision
(mAP) and the True-Positive (TP) detection rate. We note that
only using the DOA loss generally results in the highest value
for the maximum mAP for a camera. However, IFR loss seems
to be needed to ensure objects are within the image frame, as
the test run with only the DOA loss has the lowest TP detection
rate.

The red ”SGD” part of Table III shows results related
to the constraints. Since the constraint losses are all zero,



TABLE II
TEST SET RESULTS FOR STOCHASTIC GRADIENT DESCENT (SGD), RANDOM SAMPLING STRATEGY (RANDOM), AND HIGHEST POINT ON VEHICLE

(HIGHEST)

Experiment Average
mAP@50

Min
Camera

mAP@50

Max
Camera

mAP@50

TP
Detection

Rate

TP
In-Frame

Rate

Detection
Confidence

Optimisable
Loss

Method Loss Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD
IFR 0.4801 0.0689 0.2860 0.2615 0.5935 0.0597 0.7514 0.1276 0.9988 0.0011 0.6079 0.0176 0.0003 0.0002
DOA 0.5258 0.0494 0.4304 0.1118 0.6306 0.0392 0.6274 0.0922 0.7969 0.0991 0.6245 0.0319 0.4258 0.0759

IFR+DOA 0.5262 0.0301 0.4350 0.0865 0.5946 0.0372 0.7918 0.0703 0.9992 0.0011 0.6142 0.0533 0.2578 0.0615SGD

IFR+10*DOA 0.5537 0.0340 0.5073 0.0279 0.6099 0.0478 0.8518 0.0393 0.9847 0.0155 0.6061 0.0167 2.0094 0.5328
IFR+DOA 0.5340 0.0374 0.4657 0.0908 0.5949 0.0550 0.7737 0.0863 0.9035 0.0960 0.6225 0.0249 0.3139 0.1289Random IFR+10*DOA 0.5071 0.0216 0.4566 0.0263 0.5583 0.0154 0.7470 0.1089 0.9113 0.0361 0.6282 0.0115 2.3112 0.7461

Highest IFR+DOA* 0.5131 N/A 0.4665 N/A 0.5824 N/A 0.8961 N/A 1.0 N/A 0.6414 N/A 0.1241 N/A

TABLE III
AVERAGE GRADIENT MAGNITUDE FOR OPTIMISABLE LOSSES

Experiment Constraint
Loss

Min
Camera Pair
Distance (m)

Method Loss Mean STD Mean STD
IFR 0.0 0.0 0.3816 0.2045
DOA 0.0 0.0 0.5190 0.1746

IFR+DOA 0.0 0.0 0.5778 0.2713SGD

IFR+10*DOA 0.0 0.0 0.5321 0.2942
IFR+DOA 0.0 0.0 0.5735 0.2211Random IFR+10*DOA 0.0 0.0 0.3612 0.0634

Highest IFR+DOA 0.0 N/A 0.2000 N/A

the constrained optimisation procedure with the Lagrange
multipliers resulted in satisfied constraints.

Figure 11 visually represents the result of an optimisation
procedure. Starting from an arbitrary set of camera parameters,
as on the left, the gradient-descent-based optimisation results
in the camera configuration in the middle of the figure. The
right part of the figure shows how this optimisation correlates
to test set performance.

Random Sampling Strategy. As a comparison strategy
to our proposed gradient-descent-based method, we use a
random sampling strategy. We sample a random set of camera
positions for each iteration and compute the loss for the batch
of traffic scenarios. We then select the camera configuration
corresponding to the iteration with the lowest training loss
and use this configuration to evaluate based on the test set. To
ensure we comply with our desired constraints, we explicitly
pick the lowest loss with a constraint loss of zero. We perform
two experiments: one for the unscaled combination of the IFR
and DOA losses and one for the combination of IFR loss
with the scaled DOA loss. We perform five optimisation runs
for each experiment with the same settings as the gradient-
descent-based method.

The green ”Random” part of Table II shows the average re-
sults of the two experiments. The results for randomly sampled
positions are pretty good for both loss combinations. While
there is likely some discrepancy between the performance on
a subset of the training set and the performance on the entire
test set performance, we initially expected this to be a more
significant issue than it ended up being.

The green ”Random” part of Table III shows results related
to the constraints. Since we explicitly only consider configu-

rations that satisfy the constraints, the average constraint loss
results in zero. Interestingly, the experiment with the scaled
DOA loss resulted in a substantially lower standard deviation
for the minimum camera pair distance.

Highest point testing. Combined with the random sampling
approach, we also provide a more intuitive baseline. When
placing a sensor configuration consisting of four cameras on a
vehicle, the highest point on the vehicle’s roof is a prominently
used position. Research optimising the position of LiDAR
sensors also indicated that the preferred configuration seems to
be around this highest point [6]. Therefore, we propose to have
a baseline configuration around the highest point on the ego
vehicle. We determine the highest point on our ego vehicle and
position the cameras to ensure the desired minimum camera
distance. Regarding orientation, we orient each camera with
90-degree intervals, ensuring that one camera is at least facing
forward.

The blue ”Highest” part of Table II shows the average
results for one test iteration. Note the ”N/A” values for the
standard deviation, as it is a singular deterministic configura-
tion with only one performed test run. This baseline results
in a good TP detection rate. While this method does not
use a loss, we provide the optimisation loss value to show
the hypothetical optimisation value at this position. This loss
shows that the combination of the In-Frame Rotation (IFR)
and Detected Object Area (DOA) losses result in a low loss
for this sensor configuration.

The blue ”Highest” part of Table III shows results related to
the constraints. We exactly comply with the constraints since
we deterministically position the cameras to account for the
desired minimum camera distance.

Figure 12 shows the results on the test set of this intuitive
baseline. The yellow visible area shows that the rotational
space is fully covered.

V. Discussion
Our experiments in Section IV show that for the tested
gradient-descent-based methods, the combination of the In-
Frame Rotation (IFR) loss and a scaled Detected Object
Area (DOA) loss seems to result in the best mean minimum
Average Precision (mAP) and True Positive (TP) detection
rate. Considering that only using the IFR loss essentially
entails a random position while only optimising the rotation,



Fig. 11. The figure shows three images of the gradient-descent-based optimisation procedure. The left image shows the first iteration of the training procedure,
where the camera positions are random. The middle image shows the final iteration of the training procedure, showing that all vehicles belonging to the
current batch are detected. The right-most image shows the performance of the final position on the entire test set. The red rectangles in all images represent
False Positive vehicle detections, whereas the green rectangles represent True Positive detections.

Fig. 12. The figure shows the performance of the highest position on the
ego vehicle on the entire test set. The red rectangles in all images represent
False Positive vehicle detections, whereas the green rectangles represent True
Positive detections.

this loss provides better results than initially expected. Inter-
estingly, the increase of the average mAP@50 seems to result
from maintaining a consistently higher per-camera mAP@50
lower bound rather than substantially increasing the maximum
per-camera mAP@50. The optimisation limiting the upper
mAP@50 per-camera bound is likely partially caused by our
environment representation, camera parameters, or the lower
detection confidence bound.

When comparing our best gradient-descent-based optimi-

sation result with the random sampling strategy, our method
provides better mean values regarding the mAP@50, the TP
detection rate and the TP in-frame rate. The random sampling
approach results in higher detection confidence, which could
stem from the number of TP detections and lower bound
detection confidence. When our method tries to maximise
the amount of TP detections, it likely also accumulates more
lower-confidence detections. Considering a higher confidence
threshold for our approach might lead to more high-confidence
detections. In general, the random sampling strategy still holds
up surprisingly well for both loss combinations. The context of
our optimisation problem, with four cameras with a 90-degree
FOV and a favourable height offset, might be relatively easy
to satisfy, even for 100 randomly sampled configurations. We
also expected more of a disconnect between the lowest loss
on a particular training batch and the loss on the testing set.

When comparing our best gradient-descent-based optimisa-
tion result with the highest point on the vehicle, our method
still provides better mean values regarding the mAP@50.
However, the intuitive baseline is better regarding the TP
detection rate, the TP in-frame rate and the detection con-
fidence. The confidence value is interesting, as this might
indicate a slight bias to this highest position, being more in
line with traditional camera configurations on an AV. The
TP detection and in-frame rates could also stem from the
higher position that maximises environmental coverage. For
our research, we should consider why our optimisation does
not push the cameras to a similar position. Due to gradient-
based optimisation, a likely culprit is that optimisation pushes
us to a local optimum instead of being pushed to the global
optimum. This discrepancy can also stem from some of
our optimisation-related parameters, like the minimum object
visibility threshold, the subsampling approach, or the batch
size. For the visibility threshold, ensuring this visibility for all
vehicles might push the cameras to a position with less general
environmental coverage. Our per-camera object segregation



approach might also result in less generalisability because each
camera focuses on a specific cluster of vehicles in a particular
direction.

While our best gradient-descent-based optimisation result
does not ensure optimisation on all metrics we discuss, the
improved mAP performance is the more important. While the
TP detection rate is important to consider, the metric only
really considers that there is a detection bounding box that
matches a Ground-Truth (GT) bounding box. The mAP value
considers TP detections, False Positive (FP) detections and
False Negative (FN) detections. These additional considera-
tions make mAP a more insightful metric for downstream task
performance.

VI. Future work
This section discusses potential future continuations of our
research. A critical need for improvement is the valid posi-
tioning area, as limiting this area to the roof and hood of
the vehicle limits the optimisation. In principle, the sensor
can be anywhere on the vehicle’s surface, and sensor place-
ment optimisation should account for that. However, then the
question becomes how we can represent this surface within
the context of continuous optimisation. Sensor placement
optimisation strategies should consider more than only two
positional and one rotational Degree of Freedom (DoF). The
choice of optimisable parameters directly aligns with the
sensor positioning method.

While our traffic scene reconstructions with separable mesh
vehicles contributed significantly to the results of this project,
it is hard to argue about their visual fidelity. Given our
proposed method, it is possible to provide better-looking
environments, as illustrated in Figure 13. However, one must
account for additional computational expenses. The rise of
implicit representations over the last few years, like with
NeRF [22] and 3D Gaussian Splatting [23], provide interesting
options to represent photo-real environments while gener-
ally limiting the computational expenses needed to render
them. However, the optimisation of the implicit environment
generally requires higher computational expenses, mitigated
by efficient environment sampling or hardware acceleration.
Additionally, one must account for object separation from their
respective environments for integration with this project.

Regarding the optimisation procedure, our approach could
be even more related to actual downstream task performance.
While we strive to incorporate downstream task performance
in our optimisation, our ”visibility through detectability” ap-
proach is still a surrogate metric. The ideal scenario would
be integrating an arbitrary detection model with gradient flow
in the optimisation loop and directly optimising the bounding
box loss, the classification loss, or the objectness loss rather
than using handcrafted metrics. However, the main issue with
such an approach is that this optimisation remains limited
to what a camera sees, and in scenarios without objects,
this could result in no optimisation at all. With our idea of
sampling the 360-degree rotational space with the camera’s

Fig. 13. The figure illustrates a triangle mesh representation of a traffic scene
without simplifying the point clouds and triangle meshes. Not simplifying
these representations makes the environment around the vehicles substantially
less noisy compared to our mesh representations but increases computational
expenses with the differentiable renderer.

FOV, we can assess where objects in the environment are and
directly point the camera to them. To account for occlusions,
we could assess the detectability of singular vehicles and
all vehicles simultaneously. Then, we can infer the detection
performance of the collective traffic scene by correlating it to
the detectability of the singular vehicle.

Lastly, another research direction could be integrating dif-
ferent or multiple sensor types into the optimisation, like
LiDAR and radar. Incorporating these sensors would require a
different approach than a camera, as these two sensors result
in a point cloud rather than a 2D image. If a differentiable
renderer allows for a point cloud rendering, this could allow
for a more direct integration of the sensors. Another implicit
approach would be to represent the performance of a par-
ticular downstream task via the object in the differentiable
renderer, similar to our Detected Object Area (DOA) approach.
This more implicit representation might be more suitable for
heterogeneous sensor configurations, where the detectability
of an object can rely on the detection performance of each
sensor or the combined sensor configuration. Regarding object
detection, we should consider which vehicles must be detected.
Rather than focussing on detecting all vehicles, we could
prioritise detecting certain vehicles. For instance, vehicles
close to the ego vehicle should have a higher prioritisation
compared to vehicles further away. Additionally, research has
proposed a metric that determines an intuitive ranking of how
important the detecting of each vehicle in an environment is
[50], potentially providing an interesting way to retrieve task-
dependant importance of to-be detected objects.

VII. Conclusion
This research proposes a sensor placement optimisation strat-
egy to address the research gap of more explicit downstream
task optimisation. In our approach, we combine gradient-
descent-based optimisation with a differentiable renderer to



optimise the position of cameras on an Autonomous Vehicle
(AV) on the downstream task of object detection. To enable
this optimisation, we propose creating mesh representations
of traffic scenes from an AV simulator to represent in the
differentiable renderer. With our approach, we present four
loss functions. Two constraint losses ensure camera positions
within the valid positioning area and minimum camera dis-
tance between each two cameras. Two optimisation losses min-
imise the rotational difference between the camera orientation
and the rotation needed to be in the frame and minimise the
difference between a minimum detected object area and a set
minimum threshold. We compare the best loss combination for
our approach with a random sampling strategy and an intuitive
best position around the highest point on the ego vehicle. For
both comparisons, our approach results in improved mAP@50
values. This comparison expresses the value of explicitly
accounting for downstream task performance during sensor
placement optimisation.

References
[1] H. A. Ignatious, Hesham-El-Sayed, and M. Khan, “An overview

of sensors in autonomous vehicles,” Procedia Computer Science,
vol. 198, pp. 736–741, 2022, 12th International Conference on
Emerging Ubiquitous Systems and Pervasive Networks / 11th
International Conference on Current and Future Trends of Information
and Communication Technologies in Healthcare. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050921025540

[2] H. Hu, Z. Liu, S. Chitlangia, A. Agnihotri, and D. Zhao, “Investigating
the impact of multi-lidar placement on object detection for autonomous
driving,” 2022. [Online]. Available: https://arxiv.org/abs/2105.00373

[3] Y. Li, L. Kong, H. Hu, X. Xu, and X. Huang, “Is your lidar placement
optimized for 3d scene understanding?” 2024. [Online]. Available:
https://arxiv.org/abs/2403.17009

[4] V. A. Puligandla and S. Lončarić, “A continuous camera placement
optimization model for surround view,” IEEE Transactions on Intelligent
Vehicles, pp. 1–11, 2023.

[5] J. Dey, W. Taylor, and S. Pasricha, “Vespa: A framework for optimizing
heterogeneous sensor placement and orientation for autonomous vehi-
cles,” IEEE Consumer Electronics Magazine, vol. 10, no. 2, pp. 16–26,
2021.

[6] F. Berens, S. Elser, and M. Reischl, “Genetic algorithm for the optimal
lidar sensor configuration on a vehicle,” IEEE Sensors Journal, vol. 22,
no. 3, pp. 2735–2743, 2022.

[7] C. M. Costa, G. Veiga, A. Sousa, U. Thomas, and L. Rocha, “Sensor
placement optimization using random sample consensus for best views
estimation,” in 2023 IEEE International Conference on Autonomous
Robot Systems and Competitions (ICARSC), 2023, pp. 29–36.

[8] J. Spruit and D. Gavrilla, “Ultrasonic perception for autonomous
vehicles,” 08 2023. [Online]. Available: http://resolver.tudelft.nl/uuid:
bce22af4-61b1-4cf6-85a7-0ff960a690ab

[9] E. Arnold, S. Mozaffari, M. Dianati, and P. A. Jennings, “Visual sensor
pose optimisation using rendering-based visibility models for robust
cooperative perception,” CoRR, vol. abs/2106.05308, 2021. [Online].
Available: https://arxiv.org/abs/2106.05308

[10] J. Dybedal and G. Hovland, “Gpu-based optimisation of 3d sensor place-
ment considering redundancy, range and field of view,” in 2020 15th
IEEE Conference on Industrial Electronics and Applications (ICIEA),
2020, pp. 1484–1489.

[11] V. Akbarzadeh, J.-C. Levesque, C. Gagné, and M. Parizeau, “Efficient
sensor placement optimization using gradient descent and probabilistic
coverage,” Sensors (Basel, Switzerland), vol. 14, pp. 15 525 – 15 552,
2014. [Online]. Available: https://api.semanticscholar.org/CorpusID:
313315

[12] N. Ravi, J. Reizenstein, D. Novotný, T. Gordon, W. Lo, J. Johnson, and
G. Gkioxari, “Accelerating 3d deep learning with pytorch3d,” CoRR,
vol. abs/2007.08501, 2020. [Online]. Available: https://arxiv.org/abs/
2007.08501

[13] G. Jocher and J. Qiu, “Ultralytics yolo11,” 2024. [Online]. Available:
https://github.com/ultralytics/ultralytics

[14] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the 1st
Annual Conference on Robot Learning, ser. Proceedings of Machine
Learning Research, S. Levine, V. Vanhoucke, and K. Goldberg,
Eds., vol. 78. PMLR, 11 2017, pp. 1–16. [Online]. Available:
https://proceedings.mlr.press/v78/dosovitskiy17a.html

[15] Scratchapixel. (2023) Rasterization. [Online].
Available: https://www.scratchapixel.com/lessons/
3d-basic-rendering/rasterization-practical-implementation/
overview-rasterization-algorithm.html

[16] S. Liu, W. Chen, T. Li, and H. Li, “Soft rasterizer: Differentiable
rendering for unsupervised single-view mesh reconstruction,” CoRR,
vol. abs/1901.05567, 2019. [Online]. Available: http://arxiv.org/abs/
1901.05567

[17] H. Kato, Y. Ushiku, and T. Harada, “Neural 3d mesh renderer,” 2017.
[18] W. Chen, J. Gao, H. Ling, E. J. Smith, J. Lehtinen, A. Jacobson, and

S. Fidler, “Learning to predict 3d objects with an interpolation-based
differentiable renderer,” CoRR, vol. abs/1908.01210, 2019. [Online].
Available: http://arxiv.org/abs/1908.01210

[19] J. U. Müller, M. Weinmann, and R. Klein, “Unbiased gradient estimation
for differentiable surface splatting via poisson sampling,” in Computer
Vision – ECCV 2022, S. Avidan, G. Brostow, M. Cissé, G. M. Farinella,
and T. Hassner, Eds. Cham: Springer Nature Switzerland, 2022, pp.
281–299.

[20] G. Loubet, N. Holzschuch, and W. Jakob, “Reparameterizing
discontinuous integrands for differentiable rendering,” ACM Trans.
Graph., vol. 38, no. 6, 11 2019. [Online]. Available: https:
//doi.org/10.1145/3355089.3356510

[21] T.-M. Li, M. Aittala, F. Durand, and J. Lehtinen, “Differentiable
monte carlo ray tracing through edge sampling,” ACM Trans.
Graph., vol. 37, no. 6, 12 2018. [Online]. Available: https:
//doi.org/10.1145/3272127.3275109

[22] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “Nerf: Representing scenes as neural radiance fields for view
synthesis,” 2020.

[23] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3d
gaussian splatting for real-time radiance field rendering,” ACM
Transactions on Graphics, vol. 42, no. 4, 7 2023. [Online]. Available:
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

[24] Y. Sun, X. Wang, Y. Zhang, J. Zhang, C. Jiang, Y. Guo, and F. Wang,
“icomma: Inverting 3d gaussians splatting for camera pose estimation
via comparing and matching,” 2023.

[25] Ágoston István Csehi and C. M. Józsa, “Bid-nerf: Rgb-d image pose
estimation with inverted neural radiance fields,” 2023.

[26] Y. Lin, T. Müller, J. Tremblay, B. Wen, S. Tyree, A. Evans, P. A. Vela,
and S. Birchfield, “Parallel inversion of neural radiance fields for robust
pose estimation,” 2023.

[27] D. Maggio, M. Abate, J. Shi, C. Mario, and L. Carlone, “Loc-nerf:
Monte carlo localization using neural radiance fields,” 2022.

[28] L. Yen-Chen, P. Florence, J. T. Barron, A. Rodriguez, P. Isola, and T.-Y.
Lin, “Inerf: Inverting neural radiance fields for pose estimation,” 2021.

[29] J. Tremblay, B. Wen, V. Blukis, B. Sundaralingam, S. Tyree, and
S. Birchfield, “Diff-dope: Differentiable deep object pose estimation,”
2023.

[30] S. H. Bengtson, H. Åström, T. B. Moeslund, E. A. Topp, and V. Krueger,
“Pose estimation from rgb images of highly symmetric objects using
a novel multi-pose loss and differential rendering,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2021, pp. 4618–4624.

[31] D. Beker, H. Kato, M. Morariu, T. Ando, T. Matsuoka, W. Kehl,
and A. Gaidon, “Monocular differentiable rendering for self-supervised
3d object detection,” CoRR, vol. abs/2009.14524, 2020. [Online].
Available: https://arxiv.org/abs/2009.14524

[32] Y. Shibaike and K. Iwasaki, “Optical parameter estimation for hair
and fur using differentiable rendering,” in SIGGRAPH Asia 2022
Technical Communications, ser. SA ’22. New York, NY, USA:
Association for Computing Machinery, 2022. [Online]. Available:
https://doi.org/10.1145/3550340.3564221

[33] G. Juglan, “Solving the art gallery problem using gradient descent,”
2022. [Online]. Available: https://studenttheses.uu.nl/handle/20.500.
12932/43207

https://www.sciencedirect.com/science/article/pii/S1877050921025540
https://arxiv.org/abs/2105.00373
https://arxiv.org/abs/2403.17009
http://resolver.tudelft.nl/uuid:bce22af4-61b1-4cf6-85a7-0ff960a690ab
http://resolver.tudelft.nl/uuid:bce22af4-61b1-4cf6-85a7-0ff960a690ab
https://arxiv.org/abs/2106.05308
https://api.semanticscholar.org/CorpusID:313315
https://api.semanticscholar.org/CorpusID:313315
https://arxiv.org/abs/2007.08501
https://arxiv.org/abs/2007.08501
https://github.com/ultralytics/ultralytics
https://proceedings.mlr.press/v78/dosovitskiy17a.html
https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-implementation/overview-rasterization-algorithm.html
https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-implementation/overview-rasterization-algorithm.html
https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-implementation/overview-rasterization-algorithm.html
http://arxiv.org/abs/1901.05567
http://arxiv.org/abs/1901.05567
http://arxiv.org/abs/1908.01210
https://doi.org/10.1145/3355089.3356510
https://doi.org/10.1145/3355089.3356510
https://doi.org/10.1145/3272127.3275109
https://doi.org/10.1145/3272127.3275109
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://arxiv.org/abs/2009.14524
https://doi.org/10.1145/3550340.3564221
https://studenttheses.uu.nl/handle/20.500.12932/43207
https://studenttheses.uu.nl/handle/20.500.12932/43207


[34] N. Petruzelli, “How to guard an art gallery: A simple mathematical
problem,” The Review: A Journal of Undergraduate Student Research,
vol. 23, 2022. [Online]. Available: https://fisherpub.sjf.edu/ur/vol23/
iss1/7

[35] Y. Ma, Y. B. Zheng, S. Y. Wang, Y. D. Wong, and S. M. Easa,
“Virtual-real-fusion simulation framework for evaluating and optimizing
small-spatial-scale placement of cooperative roadside sensing units,”
Computer-Aided Civil and Infrastructure Engineering, vol. n/a, no.
n/a, 2024. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1111/mice.13167

[36] T. Ma, Z. Liu, and Y. Li, “Perception entropy: A metric for multiple
sensors configuration evaluation and design,” 2021. [Online]. Available:
https://arxiv.org/abs/2104.06615

[37] S. Jin, Y. Gao, F. Hui, X. Zhao, C. Wei, T. Ma, and W. Gan, “A
novel information theory-based metric for evaluating roadside lidar
placement,” IEEE Sensors Journal, vol. 22, no. 21, pp. 21 009–21 023,
2022.

[38] CARLA. (2025) Sensors reference - Depth camera. [Online]. Available:
https://carla.readthedocs.io/en/latest/ref sensors/#depth-camera

[39] J. Huang, Z. Gojcic, M. Atzmon, O. Litany, S. Fidler, and F. Williams,
“Neural kernel surface reconstruction,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023, pp.
4369–4379.

[40] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface recon-
struction,” in Proceedings of the Fourth Eurographics Symposium on
Geometry Processing, ser. SGP ’06. Goslar, DEU: Eurographics
Association, 2006, p. 61–70.

[41] F. Williams, Z. Gojcic, S. Khamis, D. Zorin, J. Bruna, S. Fidler, and
O. Litany, “Neural fields as learnable kernels for 3d reconstruction,”
CoRR, vol. abs/2111.13674, 2021. [Online]. Available: https://arxiv.org/
abs/2111.13674

[42] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam,
H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon, A. Gao, A. Joshi,
S. Zhao, S. Cheng, Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov,
“Scalability in perception for autonomous driving: Waymo open
dataset,” 2020. [Online]. Available: https://arxiv.org/abs/1912.04838

[43] A. Muntoni and P. Cignoni, “PyMeshLab,” Jan. 2021.
[44] M. Garland and P. Heckbert, “Simplifying surfaces with color and

texture using quadric error metrics,” in Proceedings Visualization ’98
(Cat. No.98CB36276), 1998, pp. 263–269.

[45] T. Konishi, M. Kurokawa, C. Ono, Z. Ke, G. Kim, and B. Liu,
“Parameter-level soft-masking for continual learning,” 2023. [Online].
Available: https://arxiv.org/abs/2306.14775

[46] A. Athar, J. Luiten, A. Hermans, D. Ramanan, and B. Leibe,
“Differentiable soft-masked attention,” 2022. [Online]. Available:
https://arxiv.org/abs/2206.00182

[47] A. Rochow, M. Schwarz, M. Weinmann, and S. Behnke, “Fadiv-syn:
Fast depth-independent view synthesis using soft masks and implicit
blending,” 2022. [Online]. Available: https://arxiv.org/abs/2106.13139

[48] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
2019. [Online]. Available: https://arxiv.org/abs/1711.05101

[49] J. C. Platt and A. H. Barr, “Constrained differential optimization,” in
Proceedings of the 1st International Conference on Neural Information
Processing Systems, ser. NIPS’87. Cambridge, MA, USA: MIT Press,
1987, p. 612–621.

[50] J. Philion, A. Kar, and S. Fidler, “Learning to evaluate perception
models using planner-centric metrics,” 2020. [Online]. Available:
https://arxiv.org/abs/2004.08745

https://fisherpub.sjf.edu/ur/vol23/iss1/7
https://fisherpub.sjf.edu/ur/vol23/iss1/7
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.13167
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.13167
https://arxiv.org/abs/2104.06615
https://carla.readthedocs.io/en/latest/ref_sensors/#depth-camera
https://arxiv.org/abs/2111.13674
https://arxiv.org/abs/2111.13674
https://arxiv.org/abs/1912.04838
https://arxiv.org/abs/2306.14775
https://arxiv.org/abs/2206.00182
https://arxiv.org/abs/2106.13139
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2004.08745


VIII. Appendix: Environment Creation Images

Fig. 14. The following 24 images are the RGB images from a singular traffic scene. The orange image is a top-down image of the ego vehicle. The yellow
images are images from the ego vehicle’s position directly pointed toward the other vehicles in the environment. The green images are top-down images
of these non-ego vehicles. The blue images are multiple top-down images from the ego vehicle location. The purple images are multiple rotations from the
position of the ego vehicle.



Fig. 15. The following 24 images are the depth images from a singular traffic scene. The orange image is a top-down image of the ego vehicle. The yellow
images are images from the ego vehicle’s position directly pointed toward the other vehicles in the environment. The green images are top-down images
of these non-ego vehicles. The blue images are multiple top-down images from the ego vehicle location. The purple images are multiple rotations from the
position of the ego vehicle.



Fig. 16. The following 24 images are the instance images from a singular traffic scene. The orange image is a top-down image of the ego vehicle. The yellow
images are images from the ego vehicle’s position directly pointed toward the other vehicles in the environment. The green images are top-down images
of these non-ego vehicles. The blue images are multiple top-down images from the ego vehicle location. The purple images are multiple rotations from the
position of the ego vehicle.



IX. Appendix: Cut Losses
This section covers some of the losses that were not used

for the main body of this document for various reasons.

A. Surface Blockage Loss
From experience, we noticed that the ego vehicle could

block non-ego vehicles in the environment, hamper optimisa-
tion. Therefore, we specifically introduce a Surface Blockage
(SB) loss to help during such occurrences. We compute
the visibility percentage of an object mesh m in camera
i’s camera frame by getting a rendered silhouette image
of the non-occluded mesh object m, Sum(i,m), a rendered
silhouette image of the ego vehicle, Se(i,m), and a rendered
silhouette image of the two objects combined in the same
scene, Sm+e(i,m). Given these three silhouette images, we
compute the visibility percentage as in equation 17. For the
largest visibility percentage, we compare it with fixed hyper-
parameter VSBmin

. VSBmin
denotes the minimum visibility

the SB loss should ensure. We compute the SB loss as in
equation 18. Afterwards, the losses per mesh are summed and
normalised to one by dividing by the number of meshes |M |
as described in 19. We did not end up using this loss as, while
we could occasionally link a poor optimisation performance to
a higher SB loss value, optimising this loss generally worsened
overall optimisation.

VSB(i,m) =

∑
Sm+e(i,m)−

∑
Se(i)∑

Sm(i,m)
(17)

LSB(m) =

{
0, VSBmin

− VSB(m) < 0
|VSBmin

−VSB(m)|
VSBmin

, else
(18)

LSB =
1

|M |
∑
m∈M

LSB(m) (19)

B. Angular Coverage Loss
To ensure that the entire rotational space was covered as

much as possible, we propose an Angular Coverage (AC) loss.
The maximum rotational visibility for N cameras equals N
cameras times the FOV F radians until the maximum possible
coverage of 2π radians, as illustrated in Equation 20. Each
camera i covers a range based on the current plane rotation θi
and the FOV F , as illustrated by Equation 21. Computing the
unique rotational coverage requires accounting for the overlap
of rotational ranges. To account for this, we first sort all ranges
by the starting angle from small to large. Afterwards, we
normalise the smallest starting angle of a range to zero, and all
other angles are normalised relative to this smallest angle in
the [0, 2π] range. If a range starts before 2π and ends after 0,
we split it into two separate ranges. Next, we iterate over each
range. If an angular range overlaps with the previous range,
we only add the unique coverage from this range. If this range
does not overlap with the previous range, we add the entire
coverage from this range. Mathematically, this describes the

union of all ranges, so the unique coverage of the rotational
space, as described in Equation 22. For the final loss, we take
the difference between the maximum possible coverage Cmax
and the unique coverage Cunion from all cameras. Afterwards,
we divide this by the difference of maximum coverage Cmax
and Cfov, which is the inherent coverage of one camera which
equals the FOV F in radians. As the worst coverage cannot
be less than the coverage of one camera, we divide it by this
difference to have a more valuable interpretation of a loss of
one, as described by Equation 23. We did not end up using
the AC loss, as while ensuring full rotational space coverage
may be important, it may be too limiting for our tests with a
maximum of four cameras.

Cmax = min(N · F, 2π) (20)

Ci =

[
θi −

F

2
, θi +

F

2

]
(21)

Cunion =

N⋃
i=0

Ci (22)

Lac =
Cmax − Cunion

Cmax − Cfov
(23)

C. Object Visibility Loss
The Object Visibility (OV) loss is quite similar to the

Detected Object Area (DOA) loss, but instead of optimising
visibility through detectability, it optimises actual visibility.
Equation 24 shows this formulation as the percentage of
visible vehicle presence in the primary camera orientation
based on the sum of non-blocked vehicle presence in all
rotational additions θa. For the main structure of this loss,
we refer back to the DOA loss formulation in Section C. The
main idea for this loss was to provide comparison material for
a more downstream task-oriented loss, but unfortunately, we
lacked the time to perform tests with this.

Vovloss
(i,m) =

∑
a

∑
Sum(i,m, θa)−

∑
Sbm(i,m, θ0)

Vov(i,m) =

∑
a

∑
Sum(i,m, θa)− Vovloss(i,m)∑

a

∑
Sum(i,m, θa)

(24)

X. Appendix: Cut Losses Experiments
This section covers some limited experiments that were

performed with some of the cut losses. Table V presents
the gradient magnitudes of all three cut losses: the Angular
Coverage (AC) loss, the Surface Blockage (SB) loss and the
Object Visibility (OV) loss. Table IV present some results
where the SB and OV losses are included. Any results for
constraint losses comply with the conclusions of the main
body, and therefore are excluded here.



TABLE IV
APPENDIX TEST SET RESULTS FOR STOCHASTIC GRADIENT DESCENT (SGD)

Experiment Average
mAP@50

Min
Camera

mAP@50

Max
Camera

mAP@50

TP
Detection

Rate

TP
In-Frame

Rate

Detection
Confidence

Optimisable
Loss

Method Loss Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD
IFR+DOA+SB 0.5091 0.0548 0.3513 0.1815 0.6288 0.0370 0.7404 0.1012 0.9988 0.0017 0.5790 0.0263 0.3892 0.1828SGD IFR+DOA+SB+AC 0.4980 0.0357 0.4121 0.0834 0.5626 0.0268 0.7588 0.1628 1 0 0.5795 0.0670 0.3864 0.2988

TABLE V
AVERAGE GRADIENT MAGNITUDE FOR OPTIMISABLE LOSSES

Loss Positional Rotational
AC 0.0 2.116
SB 0.002 0.010
OV 0.005 0.026

XI. Appendix: Experiment Parameters
For the experiments in Section IV, we make use of the

following global settings:
• Optimisation loss optimiser starting learning rate of 0.25.
• Optimisation loss optimiser starting weight decay of 1e-3.
• Constraint loss optimiser starting learning rate of 0.25.
• Constraint loss optimiser starting weight decay of 1e-3.
• 100 iterations per training run.
• Image resolution of 256x256.
• A small epsilon value of 1e-5.
• The per-camera object segregation approach does 16

rotations at the (0.0, 0.0, 0.0) coordinate.
• The minimum amount of Detected Object Area (DOA)

visibility Vdoamin
of 50%.

• Minimum camera pair distance of 0.2 metres.
• Height offset of 0.25 metres.
• Four cameras with a Field Of View (FOV) of 90 degrees.
• YOLO11x [13] detection model without gradient flow.
• Minimum valid detection confidence of 0.1
• Minimum valid detection bounding box IoU of 0.5
• Bin size of 0, so we perform naive rasterisation.


	Introduction
	Related work
	Methodology
	Traffic Scene Representation
	Optimisation Prerequisites
	Gradient-Descent-Based Optimisation

	Experiments
	Discussion
	Future work
	Conclusion
	References
	Appendix: Environment Creation Images
	Appendix: Cut Losses
	Surface Blockage Loss
	Angular Coverage Loss
	Object Visibility Loss

	Appendix: Cut Losses Experiments
	Appendix: Experiment Parameters

