
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Formalizing typical crosscutting concerns

Marius Marin

Report TUD-SERG-2006-010

SERG

TUD-SERG-2006-010

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

c© copyright 2006, Software Engineering Research Group, Department of Software Technology, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the publisher.

Formalizing typical crosscutting concerns

Marius Marin
Software Evolution Research Lab
Delft University of Technology

The Netherlands

A.M.Marin@ewi.tudelft.nl

ABSTRACT
We present a consistent system for referring crosscutting
functionality, relating crosscutting concerns to specific im-
plementation idioms, and formalizing their underlying rela-
tions through queries. The system is based on generic cross-
cutting concerns that we organize and describe in a catalog.

We have designed and implemented a tool support for
querying source code for instances of the proposed generic
concerns and organizing them in composite concern models.
The composite concern model adds a new dimension to the
dominant decomposition of the system for describing and
making explicit source code relations specific to crosscutting
concerns implementations.

We use the proposed approach to describe crosscutting
concerns in design patterns and apply the tool to an open-
source system (JHotDraw).

1. INTRODUCTION
Aspect-oriented programming languages provide mecha-

nisms to enable modularization of crosscutting concerns,
such as pointcut and advice or introductions [14, 7, 13].
These mechanisms address general symptoms of crosscut-
tingness, like scattering (i.e., a concern lacks localization be-
ing spread over several modules) and tangling (i.e., a module
implements a core concern, but also crosscutting aspects).

These symptoms and language mechanisms alone, how-
ever, do not ensure consistency for defining and describing
crosscutting concerns. To understand concerns specific to
logging mechanisms, design patterns, or implementation of
business rules, one has to rely on unconstrained descriptions
or sample code examples [10, 16, 20, 1]. Moreover, similar
concerns are sometimes described by different names (e.g.,
contract enforcement [1] and policy enforcement [16]).

The absence of a consistent and coherent system for defin-
ing and referring crosscutting concerns hinders their com-
prehension and identification in existing code (a.k.a. aspect
mining). The wide variety of examples describing crosscut-
ting functionality and proposed aspect solutions does not
distinguish common properties to group similar concerns

Technical Report TUD-SERG-2006-010

c© copyright 2006, Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and
Computer Science, Delft University of Technology. All rights reserved. No
part of this series may be reproduced in any form or by any means without
prior written permission of the publisher.

and to separate between different groups. Hence, it is diffi-
cult to define requirements for aspect mining techniques, to
describe and compare their results [17, 2] without an answer
to the research question:

What are the crosscutting concerns that we try to iden-
tify and how to consistently describe and reason about these
concerns?

To address this question we have previously outlined a
classification system for crosscutting concerns based on sorts,
and proposed an informal set of sorts [18, 19]. Crosscut-
ting concern sorts are generic and atomic concerns described
by their specific symptoms (i.e., implementation idiom in a
non-aspect-oriented language), and a (desired) aspect mech-
anism to modularize a sort’s instances with an aspect-based
solution.

This work provides a formalized description of the cross-
cutting concern sorts and turns the list of sorts into a cat-
alog. The catalog describes each sort as a relation between
code elements and provides query templates to formalize
these relations. The catalog is built on an in-depth analysis
of crosscutting concerns reported in literature and practi-
cal experience with source code exploration and analysis for
identification of crosscutting concerns in software systems of
considerable size like PetStore, JHotDraw and Tomcat [17].

The contributions of the paper lie in several directions:

A catalog of generic crosscutting concerns to ensure con-
sistency and coherence in addressing crosscutting func-
tionality. The paper describes unified criteria for group-
ing crosscutting concern as relations between code el-
ements and provides detailed examples for each entry
in the catalog.

A query component and templates for each sort to for-
malize the relation underlined by the concerns of the
sort. The templates support the development of query
libraries for crosscutting concerns. Moreover, the for-
malization of the queries identifies relations relevant
for describing crosscutting concerns and allows for ex-
tensions of existing query languages for capturing such
concerns.

Crosscutting concerns documented using sort queries
for the catalog of design patterns described by Gamma
et al. [8] and for a popular open-source system of rele-
vant size. This documentation is available for further
references as a common benchmark for aspect min-
ing [2]. The paper also discusses in significant extent
a number of relevant concerns in this system and how
sorts help in describing and documenting them.

SERG Marin – Formalizing typical crosscutting concerns

TUD-SERG-2006-010 1

Advanced tool support for querying sort instances in code
under analysis and building concern models to describe
crosscutting relations in software systems. A concern
model allows for grouping sort instances described by
queries into composite concerns. This model adds a
new dimension to the traditional representation based
on a dominant decomposition of an object-oriented
system [25]. This dimension relates relevant program
elements in the context of a concern implementation
and makes this relation explicit.

The organization of relevant relations describing generic
crosscutting concerns and the proposed formalization using
queries is aimed at supporting crosscutting concern compre-
hension. Nevertheless, the descriptions of concerns using
sorts contribute a first step towards refactoring to aspect-
oriented programming by documenting typical crosscutting
relations. Aspect-oriented languages could use the contri-
butions of this paper to further support the refactoring of
concern sorts to aspect solutions.

The rest of the paper is organized as follows: The next
section presents related work on describing crosscutting con-
cerns and how the existing approaches compare to the one
proposed in this paper. In Section 3 we introduce the clas-
sification of crosscutting concerns on sorts, followed in Sec-
tion 4 by the query component and the template to describe
the sorts. Then, we present a catalog of crosscutting con-
cerns sorts together with examples of relevant concerns and
template queries for each sort.

In Section 5 we look at how the proposed sorts cover the
crosscutting elements occurring in the implementation of de-
sign patterns. Then, in Sections 6-7, we present the tool
support and the results of applying the tool to an open-
source system for describing instances of crosscutting con-
cerns and organizing them in a composite model. We con-
clude with lessons learnt, opportunities for improvements
and directions for future work.

2. RELATED WORK

2.1 Support for defining and describing cross-
cutting concerns

The Feature Exploration and Analysis Tool (FEAT) and
the Concern Manipulation Environment (CME) provide tool
support for grouping program elements related by a cross-
cutting concern implementation and organizing them into
more complex, composite structures.

FEAT organizes program elements that implement a con-
cern in concern graphs [22]. The user can add elements to a
concern graph by investigating the incoming and outgoing
relations to and from an element that is part of the con-
cern implementation. The elements in a concern graph are
classes, methods or fields connected by a call, read, write,
check, create, declare, or superclass relation.

Although the tool allows to add relations to the graph de-
scribing a concern, the focus is on the elements participat-
ing in the implementation of the concern. The navigation
for understanding a concern and incrementally building its
graph representation is from a root (class) element to other
elements in the relation chain. That is, a concern is de-
scribed by its elements, and an element is described by its
relations. Unlike FEAT, the sorts-based approach that we
propose uses relations as the main representation of a con-

cern and builds concern models based on these relations.
CME allows for more complex queries than FEAT to de-

fine relationships between code elements, especially by pro-
viding options for restricting the query domain [11]. The
query and its definition can be saved as an element in the
CME concern model to describe a concern intensionally. The
output of the query can also be saved to describe a concern
extensionally.

However, neither CME nor FEAT provide a coherent,
standard way to document crosscutting functionality: no
consistency is imposed for documenting instances of the
same or similar concerns and no distinction is made be-
tween different concerns documented by the same or similar
queries. This prevents uniformity in addressing and describ-
ing crosscutting functionality and reflects upon the efficiency
of documenting concerns with, for instance, CME queries:
what is the right query for describing a particular cross-
cutting concern, like, for example, a simple pre-condition
check? Is this query the same as the other queries docu-
menting pre-condition checks in the same system? Would
it be possible (and desirable) to distinguish between a stan-
dard query documenting calls for pre-condition checks and a
query to document logging calls? What queries are needed
to consistently document complex relations like a design pat-
tern implementation?

2.2 Refactoring to aspects
The work on refactoring to aspect-oriented programming

shows a significant number of examples of crosscutting con-
cerns.

The present approaches to aspect refactoring can gener-
ally be distinguished by their granularity. The group of as-
pect refactorings proposed by Laddad covers a significant
number of situations where crosscutting functionality could
occur in an application [16, 15]. Some of these refactor-
ings are low level ones, closely associated with symptoms of
a large variety of concern implementations, such as extract
method calls into aspects or extract interface implementa-
tion. Yet most of the refactorings are relatively complex
and include design patterns, transactions management, or
business rules. These complex refactorings generally involve
more than one concern to be refactored. Transaction man-
agement, for instance, implies to take care of committing or
rolling back a transaction for a given operation, to ensure
that the same connection is used for all the updates, or that
there are no undesired calls on connection objects.

In the literature describing this group of refactorings, there
is no categorization of the various refactorings proposed nor
a specific classification of the concerns involved 1.

Hannemann et al. [9, 10] propose role-based refactorings
for object-oriented design patterns [8]. The refactoring relies
on a library of abstract descriptions of the patterns and their
role elements, and instructions to refactor to an aspect solu-
tion after mapping code elements to the abstract roles. This
approach is a step further towards defining generic, abstract
solutions to typical problems that involve crosscutting func-
tionality, such as applying design patterns. However, design
patterns implementations only define the context into which
the crosscutting occurs, they are not concerns. Moreover,

1Work in [16, 1] mentions an aspect classification based on
the phase of the software lifecycle at which the aspects occur:
development and production aspects. This classification is
not related to the discussion proposed here.

Marin – Formalizing typical crosscutting concerns SERG

2 TUD-SERG-2006-010

the design patterns typically exhibit multiple crosscutting
concerns, some of them sharing common properties, as we
shall see in Section 3.1.

Finer-grained refactorings have been proposed in form of
code transformations catalogs [20] and AspectJ laws [3].
These transformations can occur as steps in the aspect refac-
toring of a crosscutting concern, but they are oblivious to the
refactored concern. They describe mechanics of migrating
Java specific units to AspectJ ones (e.g., Extract Fragment
into Advice, Move Method/Field from Class to Inter-type).

2.3 Query languages and tools
From the discussed tools and approaches to describing

and organizing crosscutting concerns, only CME provides
its own query language: Panther is a pattern-matching lan-
guage that allows to search for program units and query
relationships between them [24]. This language, however,
lacks a precisely defined syntax, as well as a complete im-
plementation.

Alike CME, JQuery is a code browser developed as an
Eclipse plug-in. JQuery uses a logic query language (TyRuBa)
similar to Prolog [4]. The TyRuBa predicates supported by
JQuery cover all the relationships defined by FEAT and in-
clude many others. For example, JQuery supports a number
of predicates for checking the type of an argument; the rec-
ognized types are compilation units, class members, errors,
tasks, warnings, etc. Among the supported binary relations
some are not present neither in FEAT nor in Panther, such
as relations for thrown exceptions.

Despite being more flexible than CME, JQuery provides
a less friendly query syntax. For example, a simple query
for returning the classes implementing a specified interface
can be written in Panther like:

sourceof(relationship
implements(type *, interface FigureChangeListener)); .

The same query in JQuery is more difficult to write and
understand:

interface(?I), name(?I,FigureChangeListener),
implements(?C, ?I); .

Sextant is a tool similar to JQuery, which also enables
to query different kinds of artifacts [5]. The tool stores an
XML representation of a software’s artifacts and uses the
XQuery 2 language to define queries across these artifacts.
However, this is less relevant to our approach, which is aimed
at describing crosscutting relations in source code.

Eclipse IDE provides an advanced programming interface
for querying source code relations and various views for vi-
sualization of results. This support is more mature than the
one in CME and provides a significantly better performance
(speed and resources) than JQuery. Moreover, both CME
and JQuery build their own internal representations of the
code to be analyzed, parallel with the one available through
Eclipse. This implies recompilation of the code to be ana-
lyzed by the two tools, and additional use of resources.

From the available options, we have chosen to use a pseudo
query language that resembles CME’s Panther language for
formalizing the sort queries. This provides us with a more
elegant syntax to ease understanding. However, we have im-
plemented our tool support as a plug-in that uses Eclipse’s

2www.w3.org/TR/xquery

Figure 1: FigureChanged Observer

infrastructure for querying source code and reporting re-
sults. This solution provides us with improved performance.

3. CROSSCUTTING CONCERN SORTS
The (dominant) decomposition of a software system pro-

vided by object-oriented languages permits to make certain
relations explicit in source code. Such relations include in-
heritance, call relationst, encapsulation of properties and
containment of actions, etc. Not all relations between pro-
gram elements, however, can be made explicit by object-
oriented languages: the relation between a set of methods
consistently invoking the same action as part of a common
requirement is hindered in the code and possibly made ex-
plicit by comments and documentation. Similarly, classes
that implement multiple roles (defined by different inter-
faces) relate secondary roles to a primary one in a given
context. We refer to such relations “hidden” in the code
as crosscutting concerns and further look at how these can
be categorized for a consistent reference. The aim of this
work is to provide a coherent system for referring crosscut-
ting functionality, to relate crosscutting concerns to specific
implementation idioms and to formalize their underlying re-
lations.

3.1 Motivating example
Design patterns, and most notably the Observer pattern,

are typical examples of problems exhibiting crosscutting func-
tionality [10]. A standard implementation of the Observer
pattern introduces specific relations through the participant-
roles and the collaborations described by Gamma et al. [8].
The classes that participate in an implementation of the
pattern play either the role of the Observer or that of the
Subject. The two roles define specific members, typically ab-
stracted in an interface definition: The Subject role knows
its observers and defines methods to allow attaching and de-
taching Observer objects, as well as a notification method
to inform the observers of changes in the Subject’s state.
Actions that change the state of the Subject consistently
invoke the notification method. The Observer defines a spe-
cific method to receive notifications from the Subject and
update its own state consistently.

SERG Marin – Formalizing typical crosscutting concerns

TUD-SERG-2006-010 3

Figure 2: Concern model for FigureChanged Ob-

server instance

Figure 1 shows an instance of the Observer pattern in a
drawing application. The Figure elements play the Subject
role and declare role-specific members like the changed()

method to notify observers, the methods for attaching and
detaching observer objects, and fields in concrete classes to
store the references to the observers. The FigureChangeLis-
tener interface defines the Observer role.

The atomic crosscutting relations that occur due to the
implementation of the Observer pattern, like the consistent
notification of observers or the implementation of multiple
roles by the classes participant in the pattern, are not, how-
ever, specific to this pattern only. Implementation of mul-
tiple roles occurs in other patterns as well, like the Visitor,
or in mechanisms for implementing persistence, like Java’s
Serializable mechanism. Such relations exhibit a common
implementation idiom, namely implementation of multiple
interfaces or direct implementation of members that can be
abstracted in an interface definition.

Similarly, the idiom for the consistent notification consists
of scattered method calls to a common functionality. This
idiom is shared by other known crosscutting concerns, like,
for example, consistent tracing operations.

The common relations and idioms specific to crosscutting
concerns like consistent notification or tracing suggest that
we can define generic crosscutting concerns, which describe
common properties. We call these generic crosscutting con-
cerns, sorts. The two sorts in an implementation of the
Observer pattern are Role superimposition and Consistent
behavior. The Role superimposition, for example, has two
instances in the Observer pattern, specific to the two roles
for the participants in the pattern.

3.2 Starting point
This section summarizes our past contribution to defining

sorts of crosscutting concerns.
A crosscutting concern sort is a generic description of a

class of concerns that share a number of properties:

• an intent (behavioral, design or policy requirements),

• a specific implementation idiom in an (object-oriented)
language and

• a (desired) aspect language mechanism that supports
the modularization of the sort’s concrete instances.

Examples of aspect mechanisms include pointcut and ad-
vice or introduction, as in AspectJ [13, 1].

Concrete implementations of a crosscutting concern sort
in source code represent sort instances.

Together with defining the sorts, we have also provided an
informal list of canonical sorts with a focus on their refac-
toring to aspect-oriented programming [18].

In the present paper we address the sorts as un-modularized
generic relations between program elements. To capture
and make explicit these relations, we provide a query com-
ponent for describing sorts.

We revise the previously proposed list of sorts and pro-
vide a formalized description of the sorts. Furthermore, we
organize the sorts in a catalog that describes each sort in
detail.

Two of the sorts in the previously proposed list have been
merged as they differed only by the refactoring solutions.
Soares et al. [23] proposed a mechanism for introduction of
throws clauses for addressing the Exception propagation sort
described in Section 4.4. This is very much an alternative
to the AspectJ approach that uses exception softening. The
distinction between the various refactoring approaches is less
important to our current focus on describing concerns by
their defining relations.

3.3 A concern model based on crosscutting
concern sorts

Crosscutting concern sorts are, by definition, atomic ele-
ments. The atomicity of a sort provides a consistent granu-
larity level for classifying crosscutting concerns by common
properties, but also gives the level of complexity for the
relations to be expressed by a sort instance. To relate sort
instances in more complex relations, like participation in de-
sign patterns implementation, we use a composite concern
model. A concern model organizes concerns in a hierarchical
structure. Relations describing sort instances are always leaf
elements and children of a composite concern model. Each
model can be a child of a super-model. A concern model for
a complex relation R can be formalized as:

ConcernModel(R) =
n

[

i=1

SIi ∪

m
[

j=1

SRj

This model describes a relation R as a composition of sort
instances SIi and composite sub-relations SRj . Figure 2
shows the concern model for the Observer implementation
previously discussed. The composite FigureChanged model
groups instances of sorts like Role superimposition and Con-
sistent behavior that participate in the implementation of
the Observer pattern for figure changes. A sort instance is
described by a a given name and an associated query to-
gether with the results of this query. A concern model is
also described by a given name.

The FigureChanged relation is part of parent, custom-
defined relations, like the one grouping all the instances of

Marin – Formalizing typical crosscutting concerns SERG

4 TUD-SERG-2006-010

Figure 3: Relationships relevant to sort queries

the Observer pattern in the JHotDraw project. In this case,
the project corresponds to the top-level concern model.

The next section introduces the query component for de-
scribing relations specific to crosscutting concern sorts. It
is up to the software engineer to organize these instances in
more complex concern models that reflect her or his design
decisions, and to provide appropriate identifier names.

4. DESCRIBING CROSSCUTTING CONCERN
SORTS

4.1 The query model
The proposed query model is aimed at providing a stan-

dard, formalized description of the underlying relations of
the crosscutting concern sorts. The model consists of a
generic query definition to describe the query model, and
a set of query templates (sort queries) to describe the rela-
tions specific to each of the sorts.

A sort query is a binary relation between two sets of el-
ements, the source and the target context. A context is a
(restricted) set of program elements, which can also be ex-
pressed as the result of a query. The two contexts in the
definition of a sort query represent the end-points of the
sort’s relation.

The generic query describing the model can be expressed
as:

relation_id (<source-ctx>, <target-ctx>);

The end-points contexts can be selected by the sourceof
and targetof operators, respectively. Elements in the set of
results of a query sort are (e1,e2) tuples, where:

(e1 in source-ctx) && (e2 in target-ctx) &&
relation_id(e1,e2)

The two elements, e1 and e2, are program elements, such
as a class or a method. The relation between them, re-
lation id, is a (binary) relation between program elements,
like call or inheritance relations, which can be extracted by
a static source code analysis.

The relevant relations for sort queries are shown in Fig-
ure 3. The same relations describe the list of predicates used
by the sort queries. The type relation, between a Parameter

or Member and a Type, shows the type of a field member
or parameter, or the return type of a method. Note that
declares relations can also be specified by using wildcards
and qualified names, e.g., p.C.* for all members declared by
class C of package p.

In addition to these predicates, a query definition also al-
lows for the transitive closure operator (+) and two “wild-
cards”:

• * matches names of identifiers (element names or re-
turn types) or modifiers (visibility);

• .. matches any parameters or arguments in a method
or constructor.

Variables are allowed and used to save (partial) results of
a query, such as the set of elements that gives the end-point
of a query. The variable can further serve as an end-point
for another query. The notation used to declare a variable
is <variable name>.

The intersection of variables and end-point sets is shown
through the && operator.

4.2 Template for the sort catalog entries
We describe the crosscutting concern sorts and their query

component by an extended template that comprises the fol-
lowing elements:

Intent of the sort, to give a generic description of the sort’s
concerns;

Relation underlined by the sort, to describe the type of
relation between the elements implementing instances
of the sort;

Idiom specific to the sort implementation in an object-
oriented (particularly Java) language;

Query associated with the sort to make explicit the relation
between the elements implementing a sort’s instance
and to formalize the sort’s definition;

Example to show a concrete instance of the sort;

Other instances to provide additional examples of (possi-
ble) occurrences of the sort.

4.3 Examples of sort instances
For exemplification of sorts we refer to a number of con-

cerns identified in well known applications or libraries. Where
examples of sorts instances are available, we refer to the
JHotDraw application, which we have used as a case-study
for documenting crosscutting concern instances using sort
queries.

JHotDraw is a drawing editor for bi-dimensional graphics,
developed as an open source project 3 with involvement from
the authors of the “Design Pattern - Elements of Reusable
Object-Oriented Software” book [8]. One of the applica-
tion’s goal is to provide a show case for good use of design
patterns in the development of graphical applications.

4.4 The catalog
This section presents a catalog of crosscutting concern

sorts described by the template introduced in Section 4.2.

4.4.1 Method Consistent Behavior

3jhotdraw.org

SERG Marin – Formalizing typical crosscutting concerns

TUD-SERG-2006-010 5

Intent
Execute consistently a specific action for a number of method
elements as part of their required functionality.

Relation
The method elements share a (secondary) concern, which
they implement through the consistent invocation of the ac-
tion executing the desired functionality. The common action
invocation shows the relation between the callers as partic-
ipants in the implementation of a crosscutting concern.

Idiom
Scattered method calls to the method implementing the
common action to be executed consistently.

Query
The sort query takes two arguments: a seed-element to de-
fine the source context, and the method implementing the
action to be executed consistently by the elements in the
source context. This method is the unique element of the
target context.

<context> = pckg.I+ || (project Proj) ||
type (pckg.Cls) || packge pckg;

We first define the (source) context based on the seed-
element passed to the query, and save the elements of the
context into a variable. The context definition shows sev-
eral possibilites to use structural relations for describing the
elements in the context; for example, the context could con-
sist of the elements in the hierarchy of the type I of package
pckg (pckg.I+), or the elements of the project Proj, or mem-
bers of the type Cls of package pckg, or elements declared
in package pckg, etc. The context seed is specific to each
of these cases, and that is, the type I, the project Proj, the
type Cls, and the package pckg, respectively.

The formalization of the context is similar to defining
pointcuts in languages like AspectJ [13]. However, the con-
text consists of program elements rather than execution
points 4.

<selcallers> = <context> && sourceof(

invokes(method *, * p.C.m(..)));
CB(contextElem, m) = invokes(<selcallers>, * p.C.m(..));

Next, we save in the <setcallers>variable all the method
members in the source context that invoke elements in the
target context (in this case, the method m).

The query returns the invocation relationships between
the elements in the source context and the method-action
in the target context.

Example
The notification mechanism in the previous example of the
Observer pattern instance is an example of consistent behav-
ior: the actions that change the state of the Subject object
have to consistently call the notification method for allowing
the observers to update their state accordingly.

A different example of this sort’s instance is common to
transaction management, a complex concern aimed at en-
suring data integrity; this implies that an operation is com-
mitted only if it is fully completed and roll-backed other-
wise. In a banking transfer operation, for example, both the
debit and credit operation have to be successful at the same

4The context definition shown for this query is common to
several sorts to be discussed next. We will refer to the <con-
text>variable, without redefining it.

time for keeping a consistent state of the data. Java pro-
vides various alternatives to transaction management, like
JDBC transactions and Java Transaction API (JTA) 5. A
JTA transaction, for example, implies that methods im-
plementing the transaction logic consistently invoke dedi-
cated methods of the javax.transaction.UserTransaction in-
terface: the begin method at the beginning and the commit

(or rollback) at the end to demarcate a JTA transaction.
These invocations represent instances of the consistent be-
havior sort covering methods whose operations have to be
under transaction management.

Other instances
Logging of exception throwing events in a system; Wrapping
of service level exceptions of business services into applica-
tion level exceptions[17]; Credentials checking as part of the
authorization mechanism[16]; etc.

4.4.2 Contract Enforcement

Intent
Comply with design by contract rules, such as executing
consistent condition checks to ensure that the assumptions
about a method are confirmed.

Relation
A set of elements are related by common condition checks.

Idiom
Similar to Consistent behavior, instances of this sort are im-
plemented as scattered calls to methods checking conditions
as part of contract enforcement.

Query
The sort is similar to the Consistent behavior sort with the
difference that the action (condition check) is not part of the
caller-elements’ functionality; that is, a method can fulfill
all its requirements in the absence of the calls checking the
conditions. Hence, the two sorts differ only in intent. The
query documents this intent by its own description while the
same query template as for Consistent behavior applies to
this sort too.

Example
The use of assertions and assertions-like calls is a typical ex-
ample of instances of this sort. An example of Contract en-
forcement instance is available through the JHotDraw draw-
ing editor application. The application defines a hierarchy
for Command operations to be executed as response to user
actions, like menu items selection. The Command elements
are participants in the implementation of the Command pat-
tern, and define a no-argument execute method to carry
out the specific action. Commands can be executed only if
a valid view is present in the drawing editor. The Command
elements check this condition through a consistent (check)
call before proceeding with their execution.

Other instances
Pre- and post-conditions complying with design by contract
rules.

5http://java.sun.com/j2ee/1.4/docs/tutorial/doc/

Marin – Formalizing typical crosscutting concerns SERG

6 TUD-SERG-2006-010

4.4.3 Entangled roles (Interfacing layer)

Intent
Extend an element (method or type) with a secondary role
or responsibility, which is entangled with its primary con-
cern.

Relation
The crosscuttingness of the concerns of this sort resides in
the tight coupling between elements implementing different
roles, like, for instance, relations between graphical user in-
terface (GUI) elements and their associated model or action-
controller elements. The GUI element knows its associated
element and sends messages to it in order to be able to pro-
vide a response to an action or report about its state. The
interfacing task of the GUI element results in its methods
being crosscut by the logic of the model element. The meth-
ods’ implementations address a different concern than the
interface declaring them. The graphical elements store ref-
erences to their model and mirror its state.

The relation specific to this sort is established between
elements in the context of a (interfacing) class that invoke
actions in the interfaced type through an object reference.
This reference is typically stored in a field of the interfacing
class.

Idiom
Redirection of calls to a specific reference.

Query
//the type of the interfaced object

<interfacedType> = sourceof (declares(*, field p.C.field));
ER(C,field)=references(class p.C, <interfacedType>));

Example
A common design practice for graphical user interface (GUI)
elements, like Java Swing components, is to use a Model-
View-Controller(MVC) design where the View and the Con-
troller are implemented by the same class. The class for the
graphical component keeps a reference to the model object,
which determines the component’s state. Hence, the graph-
ical component is a wrapper around the model’s state that
“mirrors” the model’s state and delegates actions to this
model.

Swing components like buttons and menu items imple-
ment the described behavior (e.g., AbstractButton). The
methods for setting or reporting about their state, such as
selected armed, or enabled, redirect their calls to the model
whose state they mirror.

The controller functionality in the same components del-
egates calls to its associated command-action. The action
can also play a model role: in the JHotDraw drawing editor,
a menu item is enabled or disabled if the Command object
associated with the item is or not executable.

Other instances
Swing GUI elements (like classes extending AbstractButton);
Invoker-Command relation in the Command pattern.

4.4.4 Redirection layer

Intent
Define an interfacing layer to an object (add functionality
or change the context) and forward the calls to dedicated
methods of the object.

Relation
The redirection layer acts as a front-end interface that as-
sumes calls and redirects them to dedicated methods of a
specific reference, (with or without) executing additional
functionality. The consistent (yet, method specific) redi-
rection logic crosscuts this layer’s methods.

Unlike the previous sort, instances of this sort do not
query a model for its state, but typically add functional-
ity dynamically to the calls. This sort is a specialization of
the Interfacing layer sort.

The relation specific to this sort is between the redirect-
ing layer and the target object, and resides in consistent
redirection of calls between pair methods.

Idiom
Identical logic in a number of methods that consistently redi-
rect their calls to dedicated methods of a specific type.

Query
//C-component; D-decorator
<compType> = sourceof(declares(*, field p.D.field));
//all methods of C

<compMehtods> = targetof(declares(<compType>, method *));
//all decorator (D) methods

<decorMehtods> = targetof(declares(type D, method *));
RL(D,field) = (invokes(<decorMehods>,<compMethods>)) &&

(compares(<decorMehods>,<compMethods>));

The relation is fairly complex and connects the context
of the redirection layer and that of the type of the target-
object.

The query takes as arguments the type element of the
redirecting layer, and the field in this type that stores the
reference to the object to redirect to. The two arguments
define the source context, as the redirecting class, and the
target context, as the type of the reference receiving the
redirected calls.

The query returns invocation relations between methods
with the same name in the two contexts. Most relevant for
this relation are the methods in the redirecting layer that
consistently forward their calls.

Example
Implementations of the Decorator pattern are typical exam-
ples of instances of this sort. Decorator instances in JHot-
Draw allow to attach elements like borders to Figure objects.
The decorators for figures extend DecoratorFigure that de-
fines the set of methods to consistently forward their calls
to the stored reference of the decorated object. Subclasses
of DecoratorFigure can override its methods to dynamically
extend its functionality.

Other instances
Implementations of the Decorator, Adapter, and Facade pat-
terns[17].

4.4.5 Add variability

Intent
Use method-objects to pass a method as an argument.

SERG Marin – Formalizing typical crosscutting concerns

TUD-SERG-2006-010 7

Relation
Instances of the sort implement a consistent mechanism of
building and passing method-objects as method arguments.
Method-objects are (typically) objects of a type declaring
one method. The methods expecting arguments of this type
only need and invoke the specific method for the passed
object.

This mechanism is a substitute for passing pointers to
methods as arguments. Languages like Java use this mech-
anism, which is also referred as closures or functors or func-
tion objects, to achieve a behavior similar to the use of call-
back funtions.

The sort and its query describe a contract between client-
callers and server-callees that make use of method objects
as a substitute to passing references to methods.

Idiom
A number of actions in a system require arguments of a
method-object type for invoking the type’s unique method.
The clients conforming to the expectations consistently build
and pass wrapper objects for the expected method.

Query
//methods expecting args of MethodObject Type
<target> = sourceof(params(method *, type MethObjT));
<mCreateMethObj> = sourceof(invokes(method *, MethObjT.new(..)));

<source> = <mCreateMethObj> &&
sourceof(invokes(method *, <target>));

//method-variables of MethodObject Type
<varsInMethods> = targetof(declares(<source>, var MethObjT *));
//methods being called with the previous variables as args

<target> = sourceof(args(method *, <varsInMethods>));
AV(MethObjT) = invokes(<source>,<target>);

The query documents the set of methods that create method-
objects of a specified type, and pass them as arguments to
methods declaring parameters of the same type. The tar-
get end-point of the relation consists of methods declaring
parameters of a method-object type. The source context
is given by the intersection between (1)the set of methods
creating objects of a method-object type and (2) the set of
callers of the methods in the target context.

Example
Simple commands in JHoDraw, which do not save state,
implement a number of operations like opening, printing
and closing a drawing (application). The implementation
follows the Command pattern and consists of associating
menu items with instances of anonymous command classes
that declare and implement an execute method to carry
out the operation. These instances are method-objects and
their execute method simply invokes a dedicated method
that carries out the open (or close or etc.) operation. The
Command object is hence used as a wrapper for the execute
method to be invoked in response to menu item selection
actions.

Other example instances are related to practices specific
to functional programming [12], like the use of closures (func-
tors) that can be implemented in Java using method objects
like, for instance, Runnable objects. These objects only im-
plement a run method and are used by common Java mech-
anisms, like thread safety. Consider, for example, Compo-
nent elements (like Swing objects) that need to execute in
a specific thread, i.e. the event dispatching thread, to avoid
deadlocks during painting the graphical components. Two

Java dedicated methods, invokeLater and invokeAndWait,
ensure that these components execute in the special thread.
The two methods expect an argument of type Runnable

whose run method contains the code accessing functionality
of the graphical (Swing) component to be executed.

Other instances
Similar behavior as for the Swing components is present in
the implementation and use of graphical elements of the
Eclipse Standard Widget Toolkit(SWT). The IRunnable-
WithProgress interface, for instance, has to be implemented
by classes with long-running operations for displaying a progress
bar. The interface defines a run method, and instances of
the implementing classes are passed as arguments to a dedi-
cated method of a specialized class for running long-running
operations.

SWT also defines an user-interface thread from which
the SWT API methods to be called. Runnable objects are
passed to this thread for (a)synchronous execution.

The Visitor pattern declares a specific Visitable role with
an accept method to be invoked by visitor methods receiv-
ing arguments of type Visitable. Implementations of the
pattern can rely on a (Visitable) method object to pass the
accept method to interested clients.

Laddad proposes the worker object pattern and an imple-
mentation in AspectJ of the pattern [16]. The worker object
is a method-object: an instance of a class implementing an
worker method. Examples include Asynchronous method
execution, Authorization using Java Authentication and Au-
thorization Service (JAAS) API, etc.

4.4.6 Expose context

Intent
Expose the caller’s context to a callee by passing information
to each method in the call stack of that callee.

Relation
Instances of this sort are implemented by methods that are
part of a call chain where an additional parameter is declared
and used to pass a context along the chain. The declaration
of additional parameters to pass context is crosscutting.

The elements related by this sort are the caller-method
receiving an argument with a specific name (and type) and
the callee-methods to which the caller passes the argument.
To get a full description of the context passing, a transitive
closure operator has to be applied to the relation associated
with this sort.

Idiom
Methods participating in a call chain declare additional pa-
rameters to pass a specific context required for fulfilling their
(secondary) requirements.

Query
<callees> = targetof(invokes(method p.C.caller(..), method *));

<selCallees> = <callees> &&
sourceof(args(method *, name argName))) &&
sourceof(args(method *, type ArgType)));

EC(caller, argName) = invokes(method p.C.caller(..),<selCallees>);

The query returns the relations between the input caller
method and the callees that are passed an argument with
the name specified in the query.

Marin – Formalizing typical crosscutting concerns SERG

8 TUD-SERG-2006-010

Example
To monitor progress evolution for long-running operations in
Eclipse applications, one can use a IProgressMonitor object.
The long-running operations are passed a reference to the
monitor class through an additional parameter. The opera-
tion invokes methods of this reference to indicate progress,
like the worked(int) method to indicate that a given num-
ber of work units of the executing task have been completed.
Long-running sub-operations receive the same reference to
the monitor and use it to report progress.

Other instances
Transaction management, Authorization, the Wormhole pat-
tern [16];

4.4.7 Role superimposition

Intent
Implement a specific secondary role or responsibility.

Relation
A number of elements share a common role, other than their
defining hierarchy. The sort is specific to classes that partic-
ipate in multiple collaborations and hence implement mul-
tiple roles [21]. The concrete instances occur as multiple
interfaces (or methods that can be abstracted into an in-
terface) implementations. The crosscutting element resides
in the tangling of multiple roles in the class implementing
them.

Idiom
Implementation (and definition) of members separable in
distinct interface definitions; common instances occur as
classes that implement multiple interfaces.

Query
//role = class or interface

<implementors> = sourceof(implements (*, type Role));
<selectedImpls> = <context> && <implementors>
RSI(Role,contextElem) = implements(<selectedImpls>, type Role);

Role superimposition documents elements that implement
or extend the interface or class defining a specific role.

Example
Examples of role superimposition are available through im-
plementations of design patterns defining specific roles, like
the Observer pattern previously discussed, or the Visitor
pattern.

Implementing persistence is also possible through role su-
perimposition: the Figure elements in a drawing application,
like JHotDraw, implement a Storable interface that defines
the methods for a (figure) object to write and read itself to
and from a file. Each figure implements these methods in a
specific way to provide persistence and recovery of drawings
over work session.

Other instances
Implementations of design patterns that define specific roles;
Implementations of multiple interfaces with dedicated, spe-
cific roles, e.g., Serializable, Cloneable, etc.

4.4.8 Support classes for role superimposition

Intent
Make the relationship between classes explicit (through nested
classes) to superimpose a role (to a hierarchy).

Relation
A number of elements share a common role by enclosing
support classes of a specific type.

Complex roles can be implemented through nested, sup-
port classes. The nesting mechanism enforces and makes
explicit the relationship between the role of the enclosing
class and the one implemented by the support class.

Instances of this sort occur as an alternative to multiple
roles implementations: two hierarchies can interact by hav-
ing common classes (classes that implement elements from
both hierarchies) or by having elements from one hierarchy
as support classes for the elements in the second hierarchy.

Idiom
Hierarchies interaction through containment of nested classes.

Query
<implementors> = sourceof(

implements(class p.EnclosingC+.*, type Role));
SC(EnclosingC, Role) = implements(<implementors>, type Role);

The query associated with this sort reports about nested
classes within a given context that implement a specific role.
A common context is a class hierarchy to which the role is
superimposed through the nested classes.

Example
In the JHotDraw application there are two hierarchies that
interact through support classes: the members of one hier-
archy enclose members of the second, supporting hierarchy.
The main hierarchy, Command, defines command elements
for executing various application-specific activities like, copy
and paste, or operations for setting the attributes of a fig-
ure. The second hierarchy, Undoable, defines operations for
undo-ing and redo-ing the results of executing a command.
Typically, each Command class encloses its associated Undo
class.

Other instances
Specialized iterators for various Collection types.

4.4.9 Policy enforcement

Intent
Impose a (restriction) policy between groups of elements in
the system.

Relation
The sort describes a restrictive relation that limits certain
type of interactions between a source and a target set of
elements.

Concerns of this sort implement relationship policies be-
tween sets of elements that can be described in a source and
target context, respectively. These policies cannot be en-
forced by language mechanisms, like, for instance, visibility.
They are crosscutting because they have to be consistently
documented and followed.

SERG Marin – Formalizing typical crosscutting concerns

TUD-SERG-2006-010 9

Idiom
Requirements specifications available through documenta-
tion, source code comments, etc.

Query
PE(srcContextElem, targetContextElem) =

references(<src_context>, <tgt_context>);

The query documents (reference) relations between ele-
ments in a source and target context, respectively. If the en-
forced policy prohibits relations between the two contexts,
the query will check the policy and report those elements
that break it. This control query can be used as a comple-
ment to testing components.

Example
Sun provides a list of restrictions imposed to enterprise beans6;
one of these restrictions states that: “Enterprise beans should
not use the java.awt package to create a user interface ... and
stop the Java virtual machine and ...”.

Other instances
Typical examples of instances of this sort include interac-
tion restrictions for (formalized) sets of program elements,
such as packages, and classes implementing specific func-
tionality. Eichberg et al. also discuss several examples of
enforced policies [6]. Some of their examples, however, could
be addressed by conditions checks, such as methods return-
ing non-null values.

4.4.10 Exception propagation

Intent
Propagate an exception for which no appropriate response
is available.

Relation
Concerns of this sort have specific a consistent propagation
(re-throwing) mechanism of the checked exceptions thrown
by methods that do not have appropriate answers to these
exceptions.

Similar to context passing, the described relation is part
of a call chain. The caller-elements implement the consis-
tent (enforced) logic of re-throwing exceptions if not able to
handle them. The transitive closure operator applied to this
relation provides a full description of the elements in the call
chain that re-throw exceptions.

Idiom
Declare throws clauses in the definition of a method for pass-
ing the responsibility of catching the exception to the callers.

Query
<callers> = sourceof(invokes(*, p.C.m(..)));
<throw> = sourceof(throws(method *, type p.ExceptionType));

<source> = <throw> && <callers> && <context>;
EP(m,ExceptionType,contextElem)=throws(<source>, p.ExceptionType);

The query reports relations between methods in a given
context and the thrown exception of the specified type.

6java.sun.com/blueprints/qanda/ejb_tier/
restrictions.html

Example
The file reading (writing) operations in JHotDraw implied
by the drawing persistence concern, like read(StorableInput),
throw exception of the java.io.IOException type if the read-
ing or parsing operation fails. The callers of these methods
re-throw the same exception to their callers, up to the driver
application that catches the exception and prints an error
message.

Other instances
Checked exceptions in Java

4.4.11 Design enforcement

Intent
Enforce design, such as classes in an hierarchy must declare
no-arguments constructors.

Relation
A number of elements share a design logic (e.g., no-args
constructors).

The sort describes concerns ensuring design rules compli-
ance for program elements in a defined (formalized) context.
The implementation of these concerns lacks language sup-
port, and relies on documentation, specifications, comments,
etc.

Idiom
Requirements specifications available through documenta-
tion, source code comments, etc.

Query
//method
DE(contextElem,m)=declares(<context>, member * m(..));

The design enforcement documents a relation between a
set of elements that (have to) declare specific members with
various signatures.

If member m is a constructor, the new keyword will be
used instead of the method name. The member can be a
field as well.

Example
The documentation for the Storable interface in JHotDraw
to be implemented by elements that can be stored and re-
stored to and from a file states that “objects that implement
the interface ... have to provide a default constructor with no
arguments”. Similar to JavaBeans design, the no-argument
constructor will be invoked to create objects after being read
from the file.

Other instances
Serialization rules in Java require that (special) serializable
classes implement special methods (writeObject(..) and
readObject(..)) with specific signatures. These methods
are not declared by the Serializable interfaces but the design
requirements are provided through the documentation of the
interface.

JavaBeans design (providing classes with no-argument con-
structors) is similar to the discussed persistence example.

4.4.12 Dynamic behavior enforcement

Marin – Formalizing typical crosscutting concerns SERG

10 TUD-SERG-2006-010

Intent
Enforce rules for object use, like before-use initialization and
post-use clean-up.

Relation
Shared logic of manipulating objects of a certain type.

Instances of the sort implement rules for object use, like
the use of lifecycle methods.

Idiom
Requirements specifications available through documenta-
tion, source code comments, etc.

Query
<context> = targetof(contains(type C, method *));

DBE(C,field)=set(<context>, C.field) || get(<context>, C.field);

We assume a (crosscutting) solution aimed at checking
that certain methods of an object are executed in an ex-
pected order. The solution consists of declaring a field which
to be set to a different (integer) value by each executing
method of the field’s object. The value of the field cannot
be lower with more than one unit than the value to which
a method is going to set the field. That is, each method
checks the value of the counter field before executing in or-
der to ensure proper order of the execution.

Example
(De-)Activation of tools in the JHotDraw graphical editor
requires that the deactivate method is always used to clean-
up resources when a tool has finished its execution and the
user switches to a different tool. This method should be the
last called for a given tool.

Other instances
Lifecycle concern [17];

5. COVERAGE
This section investigates how the sorts are able to cover

the crosscutting concerns present in complex structures, com-
monly referred in literature for their crosscutting properties.
To this end we consider the list of design patterns for which
Hannemann and Kiczales reported improved modularity due
to proposed aspect-oriented (AspectJ [1]) solutions [10].

Table 1 shows the list of these design patterns. Each
pattern corresponds to a composite concern model whose
crosscutting elements are described by sort instances rela-
tions. The documented crosscutting elements in the design
patterns have been identified by examining the description
of the patterns and the sample code in Gamma et al. [8], as
well as the aforementioned AspectJ solutions 7

5.1 Design patterns
Implementations of the Adapter pattern could use either

multiple roles or object composition to adapt a class to an
interface expected by clients. In the first case, the Adaptee
role is super-imposed to the class implementing the Adapter

7The solutions are available as a set of simple examples
of design patterns implementations in Java and AspectJ
at www.cs.ubc.ca/~jan/AODPs/. The crosscutting concerns
discussed in this paper are, however, not limited to these
examples only.

functionality. The Adapter class implements both a Target
interface and (extends) the Adaptee, which is an instance of
the Role superimposition sort.

The solution relying on object composition would typi-
cally use delegation from the Adapter to a stored reference
of the Adaptee object. This is an instance of the Redirection
layer sort.

The State pattern comprises a number of crosscutting el-
ements: The Context role is super-imposed and has specific
members for maintaining a reference to the object defining
the current state; second, the notification of changes of the
current state to be stored in the Context object is an in-
stance of the Consistent behavior sort. The third element is
an instance of the redirection layer: the Context object for-
wards the received calls to the methods of the object storing
the current state.

The crosscuttigness occurring in the implementation of
the Decorator pattern can be described by the Redirection
layer sort. The methods in the decorator class consistently
redirect their calls to dedicated methods in the decorated
class, through the stored reference to the decorated object.
Decorators are typical examples of instances of the Redirec-
tion layer sort.

The crosscutting element of the Proxy pattern implemen-
tation resides in the consistent forwarding of the calls to
the reference of the real subject class, stored by the Proxy
object.

Another crrosscutting concern occurs in protection prox-
ies as an instance of Consistent behavior; this consists of
a method call that checks the access permissions before ex-
ecuting the forwarding operation. Some implementations
also consistently check if the proxy’s subject has been ini-
tialized. This check is part of the method for accessing
the reference to the subject. The method is invoked by the
actions in the proxy that forward their calls.

The Visitor and Composite patterns are often used in
combination [8, 10]. Both patterns define roles that in var-
ious implementations are super-imposed like, for instance,
the Visitable role. The roles we chose to document by sort
instances, Composite and Visitable, are those defining role-
specific methods.

Certain implementations could make use of method ob-
jects for passing a reference of the Visitable object and its
accept method to the visitors’ methods. Such an imple-
mentation could be documented by an instance of the Add
varaibility sort. We show in Appendix A an AspectJ solu-
tion for the Visitor pattern, different from the one of Hanne-
mann and Kiczales [10], that addresses the Add variability
concern.

The Command pattern presents several participants, like
the Command ojects, the Invokers that require the execu-
tion of the command, and the Receivers to carry out the
requests. These participants play specific roles in the imple-
mentation of the pattern; however, not all of them declare
specific members and end up as super-imposed.

The Invoker participant keeps a reference to an associated
command to which it forwards the requests. Invokers like
buttons and menu items in graphical user interfaces are of-
ten interfacing the command object by mirroring its state
through their own display (e.g., enabled buttons correspond
to commands that can be executed with the active configu-
ration, etc.).

In some implementations, the Invoker role is super-imposed

SERG Marin – Formalizing typical crosscutting concerns

TUD-SERG-2006-010 11

Design pattern Composition of sort instances

Adapter Adapter = RSI(Adaptee, contextElem) + RL(Adapter, adapteeReference);

State State = RSI(Context, contextElem1) +

CB(contextElemStateChanger, Context.changeState(State)) +

RL(Context, stateReference));

Decorator Decorator = RL(Decorator, componentReference);

Proxy Proxy = RL(Proxy, fieldRefRealSubject);

Protection proxies:

document the consistent behavior of checking the credentials:

CB(contextElem, checkAccessPermission());

Visitor Visitor = RSI(VisitableElement, contextElem);

Specific implementations:

Visitor = AV(VisitableElement);
Command Command = RSI(Receiver, contextElem1) +

ER(Invoker, commandReference) +

RSI(Invoker, contextElem2) +

CB(invokersContext, Command.execute()));

Certain implementations using Command for method objects:

AV(Command);

Composite Composite = RSI(Composite, contextElem);

RSI(Leaf, contextElem2)) - not crosscutting

Iterator Iterator = RSI(Aggregate, contextElem);

Flyweight Flyweight = RSI(Flyweight, contextElem1) +

CB(contextElem2, FlyweightFactory.getFlyweight));

Memento Memento = RSI(Originator, contextElem1) +

CB(careTakerContextElem1, Originator.createMemento));

Strategy Strategy = RSI(Context, contextElem);

sometimes, we could also have:

RSI(Strategy, contextElem1);

Mediator Mediator = RSI(Colleague, contextElem) +

CB(contextElem, notifyMediator));

Chain of Respon-
sibility

ChainOfResponsibility = RSI(Handler, contextElem1) +

RL(Handler, successorReference));

Prototype Prototype = RSI(Prototype, contextElem);

In some languages, like C++, copy constructors are required:

DE(contextCloneableObjs, CloneableType.new(const CloneableType&));

A similar instance can be used for requiring implementation

of the Object.clone method in Java

Singleton Singleton = RSI(Singleton, contextElem1) +

DE(contextElemSingleton, private Singleton.new(..)) +

CB(contextElem2, Singleton.instance());

Observer Observer = RSI(Observer, contextElem1) + RSI(Subject, contextElem2) +

CB(notify, contextElem3)+

CB(attachObserver, contextElem1)+ CB(dettachObserver, contextElem1);

Table 1: Design patterns as compoostion of sort-instances.

through interfaces that declare methods dedicated to han-
dling events that trigger execution of commands. The im-
plementations of these methods in the command invokers
consistently call the operation in the Command class. The
behavior indicates an instance of the Consistent behavior
sort.

Particular implemenations of the Command pattern can
serve as method-objects. In this case, the class defines just
an execute method and does not save state. The Command
object is passed around for clients to access the functional-
ity of its unique method. The use as method object is an
instance of the Add variability sort.

The only crosscutting element occurring in the implemen-
tation of the Iterator pattern, is the super-imposed Aggre-
gate role. The role defines the CreateIterator() method
to create an iterator object for traversing the elements of
the aggregate (structure).

The concerns documented for the Flyweight pattern com-
prise a Role superimposition instance for the Flyweight role,
and a Consistent behavior for obtaining references to a (new)
flyweight object. This behavior consists of calling the acces-
sor method in the factory class for the flyweight instances,
instead of attempting to build new flyweight objects. A sim-
ilar behavior is discussed below for the Singleton pattern.

Marin – Formalizing typical crosscutting concerns SERG

12 TUD-SERG-2006-010

The refactoring of Memento pattern to AspectJ uses the
introduction mechanism for superimposing the Originator
role. In addition to this, we document a Consistent be-
havior instance, namely acquiring a memento object before
performing the operation that changes the state.

The Strategy pattern defines two roles, the Strategy and
the (Strategy)Context. Most commonly, the Context is a
super-imposed role, maintaining a reference to the Strategy
object (and defining methods to access the reference) and,
possibly, delegating requests from its clients to the Strategy.

The Mediator pattern implies a super-imposed role (Col-
league) to store and access the reference to the Mediator
class. Moreover, each change in the coleague class results
in a consistent notification of the mediator for coordinating
the other colleague-classes. In some implementations, the
Mediator role could also be super-imposed.

The participants in the responsibility chain are superim-
posed the Handler role, which defines the method for han-
dling specific requests, and the reference to the next Handler
in the chain. The handler-methods check the request and
consistenly pass it to the following handler in the chain. Be-
cause the one-to-one association between the passing and
receiving methods in the chain, the call passing behavior is
documented by a Redirection layer instance.

One crosscutting element in a typical implementation of
the Prototype pattern is due to the super-imposition of the
Prototype role that declares the clone method to allow ob-
jects to generate copies of themselves. In some languages,
like C++, the Prototype must declare a copy constructor for
cloning. (A copy constructor receives as unique parameter
a constant reference to an object of the class’ type.) This
would be an instance of the design enforcement sort.

In Java, the cloning is realized through the clone method
in the Object class, which is extended by all Java classes.
The class implementing an overriding method of clone has
to implement the Cloneable interface to indicate to the clone
method that it is legal to make copies of the fields of the
Cloneable class. This is a design enforcement sort instance.

The Singleton pattern has specific the access method to
the unique instance of the singleton class, which has to be
used by clients instead of calling a constructor. In some
implementations, the method is declared by an interface that
defines the super-imposed role of the Singleton.

Singletons have special designs, most notably they have to
declare the constructor as private for not allowing construc-
tor calls from outside the class. This Design enforcement
instance cannot be specified other than by comments.

Similar to the Flyweight pattern, we use a Consistent be-
havior query to document the references to the method re-
turning the unique instance. This behavior shows the rule
for accessing the singleton’s functionality.

The Observer pattern is documented as a composition of
Consistent behavior and Role superimposition intances, as
discussed in the previous sections. In addition to the consis-
tent behavior of notifying changes in the Subject’s state, we
also document the mechanisms for registration and deregis-
tration of observers.

6. TOOL SUPPORT
SoQueT (SOrts QUEry Tool) is the tool support we built

to query for sort instances and organize related instances in

composite concern models 8. The concern model supported
by SoQueT is similar to that in CME, with the differences
that complex concerns are expressed as compositions of sort
instances [11].

SoQueT provides three main user-interface components:
The interface to define a query for a specific sort based on a
list of pre-defined templates is shown at the bottom of Fig-
ure 4. The template guides the user in querying for elements
that pertain to a concrete sort-instance.

The results of the query are displayed in the Search Sorts
view, also shown in Figure 4. The view provides a num-
ber of options for navigating and investigating the results,
like display and organization layouts, sorting and filtering
options, source code inspection, etc.

The Concern model view allows to organize sort instances
in composite concerns described by their user-defined names.
The concern model is a connected graph, defining a view
over the system that is complementary to the Eclipse’s stan-
dard package explorer. The graph is displayed as a tree hi-
erarchy, with sort instances as leaf elements. A sort instance
element can be expanded to display the results of its asso-
ciated query. The node tree representing a sort instance is
labeled with a user defined name and the description of the
associated query. Note that queries can be associated only
to sort instances and not to a composite concern.

The tool introduces the concept of virtual interface to sup-
port documenting sorts like Role superimposition. Because
some super-imposed roles do not have dedicated interfaces
but are tangled within other interface or class declarations,
the tool allows to define virtual interfaces for these roles.
The user can select in a graphical interface those members
of the multi-role type that define the analyzed role.

For some of the sorts that rely on a reference to a type
for specifying relations, like Redirection or Interfacing layer,
the referred type can be specified as either the type of a field
or the return type of a method in the referring type.

7. SORTS IN PRACTICE
We have documented crosscutting concerns in the JHot-

Draw application to test the suitability of the sorts and their
associated queries for describing and documenting such con-
cerns in real systems.

JHotDraw is a relevant case for this task as it has been
developed as a show-case for applying design patterns, and
as we have seen, many of these patterns involve crosscutting
functionality. Moreover, the application has been proposed
and used as a common benchmark for aspect mining [17, 2].

We focus the discussion in this section on various instances
of design patterns in JHotDraw and how they can be mod-
eled in SoQueT. The model for the documented concerns
in JHotDraw, including all those described in this paper,
is available for download 9. This model can be loaded into
SoQueT and used to support concern understanding and ex-
ploration for the selected application, as well as a reference
for aspect mining.

7.1 Design patterns in JHotDraw
Figure 5 shows a number of core elements in the JHot-

Draw application and their collaborations. The figure is

8http://swerl.tudelft.nl/view/AMR/SoQueT
9http://swerl.tudelft.nl/view/AMR/SoQueT

SERG Marin – Formalizing typical crosscutting concerns

TUD-SERG-2006-010 13

Figure 4: SoQueT views

aimed at supporting the understanding of the pattern im-
plementations discussed next.

Strategy
The Strategy pattern in JHotDraw is implemented by a num-
ber of elements, like Connectors and Locators. Connectors
(e.g., ChopEllipseConnector, PolyLineConnector, etc.) de-
fine strategies for locating connection point on a figure, while
locators (ElbowTextLocator, PolyLineLocator, etc.) locate a
handle position on a figure.

The Strategy role is a primary role for the interfaces defin-
ing it and the classes implementing these interfaces. The
Context strategy role, however, is super-imposed, through
implementations of the ConnectionFigure and LocatorHan-
dle interfaces respectively.

We document the pattern-specific roles by instances of the
Role superimposition sort: a sort query asks for all imple-
mentors of ConnectionFigure to describe the Context, and a
second query documents the Strategy in a similar way. We
group these two instances in a composite concern bearing
the name of the pattern instance, ConnectionStrategy.

Another instance of the pattern implements the update
strategy for drawing views. The Painter interface defines
the strategy in the context of the DrawingView hierarchy.
The DrawingView interface, however, defines multiple roles
and participates in multiple implementations of the Strategy
pattern for which it defines the context role. To document
the role of interest, we use a virtual interface definition. The
virtual interface definition comprises the members that are
role-specific, namely the members to refer (maintain and
allow access to) the Strategy object.

Visitor and Composite
The two patterns can be discussed together for the JHot-
Draw case, too. The Visitor pattern in JHotDraw allows to,
for instance, insert or delete figures into or from composite
figures, such as drawings. To realize this functionality, the
top level interface for figure elements (Figure) defines the
Visitable role. The role is tangled with the other concerns
common to figures, such as drawing the figure.

The one member of Figure specific to the Visitable role is
visit(FigureVisitor)10 . This will be part of a virtual in-
terface definition for the super-imposed role of Visitable for
figure elements. Additionally, we can document the Visitor
role defined by the FigureVisitor interface.

One of the two implementations of the method for accept-
ing visitors corresponds to composite figures and passes the
visitor to all the child-figures. Composite figures in JHot-
Draw extend the CompositeFigure abstract class, which de-
fines and implements the method for manipulating child-
figures. These methods are specific to the Composite role,
in the pattern with the same name, but tangled with the
definition of figure-specific methods. A new virtual inter-
face definition for Role superimposition, which to include
the methods for children manipulation, helps us to docu-
ment this crosscutting concern.

The Add variability instance discussed for the Visitor pat-
tern in Section 5 is not applicable to this implementation of
the pattern.

10The name of the method could be misleading, as it corre-
sponds to the accept method in the GoF desciption of the
pattern

Marin – Formalizing typical crosscutting concerns SERG

14 TUD-SERG-2006-010

Decorator
JHotDraw supports decoration of figures with borders and
animations through the use of the Decorator pattern. An
abstract class, DecoratorFigure, defines the decorator inter-
face and the set of methods forwarding the requests to the
decorated figure. Concrete decorators extend the interface
and override some of the methods to add specific function-
ality.

The pattern’s implementation is a standard example of
Redirection layer sort instance. We document the instance
accordingly, by specifying in the query template the Dec-
oratorFigure type and its field that stores the reference to
the decorated Figure. The query returns all the methods
in the Decorator that consistently redirect their calls to the
reference of the decorated figure.

The specification and the results of the query are also
shown in Figure 4.

State
The Tool elements in JHotDraw realize an implementation
of the State pattern in the the context of DrawingViews.
The Tool and DrawingView interfaces define the State and
Context roles, respectively, which we describe by simple in-
stances of the Role Superimposition sort.

The collaborations in the implementation of this pattern
instance are, however, more complex: A DrawingView knows
its DrawingEditor and through this it gets access to the ac-
tive Tool object. The tools consistently notify the editor at
the end of their interaction by invoking the editor’s toolDone
method. The notification results in re-setting the active tool
to the default one. The consistent (notification) behavior is
a concern that crosscuts the tool elements. To describe the
concern using sorts, we query for the calls to the editor’s
toolDone method and restrict the query’s context to the
Tool hierarchy.

Most of the documented calls originate from mouse events
in the Tool classes. The mouse events are initiated by the
objects defining the State context, like a DrawingView for-
wards all its input events to the editor’s active tool. The
forwarding operation is an instance of the Redirection layer
sort. To document this concern, we query for the references
from mouse events listeners in the context class to the re-
turn type of the method providing the access point to the
tool (i.e., Tool DrawingView.tool()). This query, however,
will return no result because of the signature mismatch be-
tween the redirecting (delegator) method, and the method
to redirect to: for example, the mouseReleased(..) method
of the listener calls the tool’s mouseUp(..) method, and
mousePressed calls mouseDown(..). This is a limitation of
the tool in documenting redirection behavior.

Mediator and Observer
The DrawingEditor element discussed above is participant
in an implementation of the Mediator pattern by defining
the interface to coordinate the different objects that par-
ticipate in an editor. The participating elements (i.e., the
Colleague objects) are Tool, Command, or DrawingView ob-
jects. Each of the three types defines accessor methods for
the mediator object: these methods are part of the Col-
league role and we document them as instances of the Role
Superimposition sort by declaring virtual interfaces for the
methods of interest.

The Tool and Command elements communicate with the

DrawingEditor mediator by using the Observer pattern: the
two types of elements register themselves as listeners of the
mediator and receive notifications of changes of other col-
leagues. The DrawingEditor interface defines the Subject
role in the context of the Observer pattern for allowing the
mediator to communicate with the colleague objects. We
document this role by using (a virtual interface definition
for) Role Superimposition. This also documents the Me-
diator role. The calls to the notification mechanism (the
figureSelectionChanged method in DrawingEditor) are an
instance of the Consistent behavior sort. The context for the
Consistent Behavior instance is given by the union of the
three hierarchies defining the Colleague roles: Tool, Com-
mand, and DrawingView.

This is one of the several instances of the Observer pat-
tern that we have documented, one of them being shown in
Figure 1, for listeners to changes in figure elements.

Prototype
One implementation of the Prototype pattern covers Fig-
ure elements and specific Tool elements, namely Creation-
Tools to create new figures from a specified prototype. The
Figures explicitly (re-)declare the inherited Object ’s clone

method; hence, documenting the Prototype role using sort
instances only requires to define a virtual interface declaring
this method. To allow cloning using the Java mechanism,
the Figure interface has to extend Java’s Cloneable inter-
face. Although the interface does not declare any member,
the extension declaration is part of a crosscutting concern
that we document by a Role superimposition instance real-
ized through the Cloneable interface in the context of the
Figure hierarchy.

Other client types using (particular) Figure prototypes
include ConnectionTool and ConnectionHandle.

Command
The Command pattern is implemented by 40 elements in the
Command hierarchy; half of these are anonymous classes.
The Command classes implement the Command role in the
pattern. The role can be described as an instance of the
Role superimposition sort.

The Receiver functionality varies for the different com-
mands: some of them have associated a specialized Re-
ceiver, while others directly implement the command’s logic
(e.g., AlignCommand). A common receiver for commands
are the Figure or Drawing elements as, for instance, for
BringToFront and SendToBack-Commands. However, many
commands do not carry out only a single forwarding, and
the actions they delegate to are not always dedicated to the
delegating command; that is, describing the Receiver role as
super-imposed is often a per-case decision.

We document the Receiver role, for instance, in the DrawAp-
plication class. The class implements a method to cre-
ate the standard menus of the JHotDraw drawings editor.
Each menu is associated an anonymous command whose
execute method delegates execution to dedicated actions
in the DrawApplication class. These actions define the Re-
ceiver role, which we describe in a sort-query using a virtual
interface definition (in the context of the same class).

A group of Command-Invoker elements consists of Me-
nuItems and Buttons. These elements interface the associ-
ated commands by listening for action events and trigger-
ing the execution of commands. We document this behav-

SERG Marin – Formalizing typical crosscutting concerns

TUD-SERG-2006-010 15

ior with instances of the Interface layer sort. Furthermore,
the Command invokers implement the ActionListener inter-
face whose unique method, actionPerformed, consistently
invokes the execute method of the associated command.
This is an instance of Consistent behavior.

The Command hierarchy also exhibits several other cross-
cutting concerns, less relevant to the pattern itself: The
named commands conduct a pre-condition check before ex-
ecution, and a consistent notification at the end of their
execution. These concerns are instances of the Contract en-
forcement and Consistent behavior sorts, respectively. Com-
mands make use of support classes to implement undo func-
tionality, as discussed in Section 4. The undo support also
requires a proper, consistent initialization, which is a con-
sistent behavior crosscutting the execute methods of the
Command classes.

Adapter
The Adapter pattern is implemented by the Handle ele-
ments, which adapt Figures to a common interface accessed
by Tool objects. Handles allow tools, like selection tools,
to manipulate figures. The implementation of the Adapter
pattern is based on object composition: the handle element
stores a reference to its owning figure and defines an accessor
method to this reference. The tool client (HandleTracker)
delegates mouse events to specific methods in the Handle
interface, which in turn translates the events into actions
directed to the handle’s figure.

The identified crosscutting elements to be described by
sort queries include the Adapter role in Handle classes to
access the reference to the Adaptee (i.e., Figure). We use for
this a virtual interface definition that declares the accessors
method for the Adaptee reference.

Although the implementation of handles is aimed at trans-
lating events into actions for figure elements, it does not
follow consistent rules for redirecting functionality to the
adaptee. Such a rule is apparent in the implementation of
the client tool: mouse events are redirected to dedicated
methods declared by the Handle interface; however, each
mouse event (up, drag, down) delegates to a method with a
different signature (invokeStart, invokeStep and invokeEnd).
Due to limitations in the tool implementation (and the query
template for the redirection layer sort), the concern remains
undocumented.

Nevertheless, Handles act as an interfacing layer for fig-
ures: the actions carried out by handles are in fact opera-
tions in the Figure objects. For instance, the PolygonScale-
Handle for scaling and rotating PolygonFigures relies on the
scaleRotate method in the Figure class to answer mouse-
drag events.

Iterator and Singleton
The FigureEnumertor class participates in the implementa-
tion of multiple patterns. The class acts as an Adapter for
the standard Java Iterator, implements the Singleton pat-
tern, and the Aggregate role in the Iterator pattern.

The Singleton role is documented through a virtual inter-
face declaring the singleton member and the method to ac-
cess it. We further document the references to this method
as a consistent behavior for accessing the functionality of
a FigureEnumerator object. A design enforcement sort in-
stance indicates that the class should declare (only) a private
constructor. However, this implementation of the pattern

Figure 5: Collaborations in JHotDraw

uses a public constructor for resetting the Singleton. This
is rather atypical.

The access method to the unique instance of FigureEnu-
merator is also part of the Agregate role in the context of
the Iterator pattern, which is documented by a Role super-
imposition instance.

8. DISCUSSION
The experiments conducted for describing crosscutting

concerns as sort instances in complex cases, like design pat-
terns, proved that sorts were effective in most of the cases.
The analysis carried out on different sample implementa-
tions of design patterns [8, 10], as well as on real systems,
like JHotDraw, shows that sorts cover well the crosscuting
concerns described in literature by various authors. More-
over, we covered a larger variety of concerns with the exam-
ples shown in the proposed catalog.

The sort queries and their tool support can be improved
in several cases. The query for the Redirection layer sort,
for instance, was not flexible enough for the cases where the
methods in the redirecting layer had different names than
the target methods. This limitation is due to the name
matching criteria, also common in many aspect-oriented lan-
guages, such as AspectJ. However, this matching is a com-
mon practice and we expect it to be present in most cases.

The formalization of the context to restrict the domain
of a relation can benefit from more flexible definitions as
well. Although the tool support for sort queries allows to
define contexts as enumerations of program elements, like
classes, packages, etc., elegant formalization of contexts give
a clearer description of the concern. Since context defini-
tions are often similar to pointcuts definitions in aspect-
oriented languages, improved support for defining pointcuts
is equally useful for expressing contexts.

We mainly used structural relations for formalizing the
definition of a query’s context; however, many aspect (query)
languages also allow for definitions that use name-based cri-
teria, such as all methods whose name starts with get. An-
other extension could consist of using support for source
code annotations to relate elements in a context by a com-
mon intent, like modifiers of the Subject state in implemen-
tations of the Observer pattern.

Marin – Formalizing typical crosscutting concerns SERG

16 TUD-SERG-2006-010

The catalog of crosscutting concern sorts can contribute to
aspect refactoring efforts and extension of query languages
for aspect-oriented programming. For instance, sorts like
Design enforcement cannot be expressed by CME’s query
language or aspect languages like AspectJ.

The sort instances allow to group elements participating
in relevant crosscutting relations, which are not explicit in
source code. In this respect, the sorts are modular units
comparable with aspects. However, sorts are mainly aimed
at supporting crosscutting concern comprehension by de-
scribing atomic elements in a standard, consistent way. Such
elements can be associated template refactoring solutions
based on their description provided by sort queries. This is
a first step towards refactoring concerns to more complex
aspect solutions.

The sorts describe crosscutting concerns both intention-
ally and extentionally. The extent of the concern consits of
the elements captured by the sort query. The intent is given
by the query itself. New elements to be added to a system
should be aware of the intent of the concerns documented
by sort queries and be consistent with existent rules and
policies. To this end, the user should be able to query the
concern model for concerns that “touch” program elements
of interest to a development or maintainance task.

9. CONCLUSIONS
This paper proposed a system for addressing crosscutting

functionality in source code based on crosscutting concern
sorts. Such a system can provide consistency and coherence
for referring and describing crosscutting concerns. As a re-
sult, sorts are useful in program comprehension and areas
like aspect mining and refactoring.

We have described crosscutting concern sorts as relations
between sets of program elements and formalized these re-
lations through a query component. We have organized the
sorts in a catalog and discussed each sort in significant detail,
describing specific implementation idioms and examples of
concrete instances. Sorts have been assessed for crosscutting
relations present in design patterns and in a real application
system.

10. ACKNOWLEDGMENTS
I thank Arie van Deursen, Juri Memmert and anonymous

reviewers for comments and feedback on this and earlier
versions of this work.

11. REFERENCES
[1] The AspectJ Team. The AspectJ Programming Guide.

Palo Alto Research Center, 2003. Version 1.2.
[2] M. Ceccato, M. Marin, K. Mens, L. Moonen,

P. Tonella, and T. Tourwé. A Qualitative Comparison
of Three Aspect Mining Techniques. In Proceedings
13th International Workshop on Program
Comprehension (IWPC 2005), Los Alamitos, CA,
2005. IEEE Computer Society.

[3] L. Cole and P. Borba. Deriving Refactorings for
AspectJ. In Proc. Int. Conf. on Aspect-Oriented
Software Development (AOSD), Mar. 2005.

[4] P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog,
The Standard : Reference Manual. Springer Verlag,
1996.

[5] M. Eichberg, M. Haupt, M. Mezini, and T. Schäfer.
Comprehensive software understanding with sextant.

In ICSM ’05: Proceedings of the 21st IEEE
International Conference on Software Maintenance
(ICSM’05), pages 315–324, Washington, DC, USA,
September 2005. IEEE Computer Society.

[6] M. Eichberg, M. Mezini, T. Schäfer, C. Beringer, and
K.-M. Hamel. Enforcing system-wide properties. In
P. Strooper, editor, 2004 Australian Software
Engineering Conference, pages 158–167, Melbourne,
Australia, April 2004. IEEE Computer Society.

[7] R. E. Filman, T. Elrad, S. Clarke, and M. Akşit,
editors. Aspect-Oriented Software Development.
Addison-Wesley, Boston, 2005.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading,
MA, 1994.

[9] J. Hannemann. Role-Based Refactoring of Crosscutting
Concerns. PhD thesis, Faculty of Graduate Studies,
University of British Columbia, Nov. 2005.

[10] J. Hannemann and G. Kiczales. Design Pattern
Implementation in Java and AspectJ. In Proceedings
of the 17th Annual ACM conference on
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 161–173, Boston,
MA, 2002. ACM Press.

[11] W. Harrison, H. Ossher, S. M. S. Jr., and P. Tarr.
Concern Modeling in the Concern Manipulation
Environment. In IBM Research Report RC23344,
Yorktown Heights, NY, 2004. IBM Thomas J. Watson
Research Center.

[12] J. Hughes. Why functional programming matters.
Comput. J., 32(2):98–107, 1989.

[13] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of aspectj.
In ECOOP ’01: Proceedings of the 15th European
Conference on Object-Oriented Programming, pages
327–353, London, UK, 2001. Springer-Verlag.

[14] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In 11th Europeen Conf.
Object-Oriented Programming, volume 1241 of LNCS,
pages 220–242. Springer Verlag, 1997.

[15] R. Laddad. Aspect-Oriented Refactoring.
www.theserverside.com, Dec. 2003.

[16] R. Laddad. AspectJ in Action - Practical Aspect
Oriented Programming. Manning Publications Co.,
Greenwich, CT, 2003.

[17] M. Marin, A. van Deursen, and L. Moonen. Identifying
Aspects using Fan-In Analysis. In Proceedings of the
11th Working Conference on Reverse Engineering
(WCRE2004)., pages 132–141, Los Alamitos, CA,
2004. IEEE Computer Society Press.

[18] M. Marin, L.Moonen, and A. van Deursen. A
classification of crosscutting concerns. In Proceedings
International Conference on Software Maintenance
(ICSM 2005). IEEE Computer Society, 2005.

[19] M. Marin, L. Moonen, and A. van Deursen. An
approach to aspect refactoring based on crosscutting
concern types. In Int. Workshop on the Modeling and
Analysis of Concerns in Software, ICSE. Software
Engineering Notes (volume 30, issue 4), 2005.

[20] M. Monteiro and J. Fernandes. Towards a Catalog of
Aspect-Oriented Refactorings. In International
Conference on Aspect-Oriented Software Development,
2005.

[21] D. Riehle and T. Gross. Role model based framework
design and integration. In Proceedings of the 13th

SERG Marin – Formalizing typical crosscutting concerns

TUD-SERG-2006-010 17

ACM SIGPLAN OOPSLA:, pages 117–133, New
York, NY, USA, 1998. ACM Press.

[22] M. Robillard and G. Murphy. Concern Graphs:
Finding and Describing Concerns. In Proc. Int. Conf.
on Software Engineering (ICSE). IEEE, 2002.

[23] S. Soares, E. Laureano, and P. Borba. Implementing
Distribution and Persistence Aspects with AspectJ. In
Proc. 17th Conf. on Object-oriented programming,
systems, languages, and applications. ACM Press,
2002.

[24] P. Tarr, W. Harrison, and H. Ossher. Pervasive Query
Support in the Concern Manipulation Environment.
In IBM Research Report RC23343, Yorktown Heights,
NY, 2004. IBM Thomas J. Watson Research Center.

[25] P. Tarr, H. Ossher, W. Harrison, and J. Stanley
M. Sutton. N degrees of separation: multi-dimensional
separation of concerns. In ICSE ’99: Proceedings of
the 21st international conference on Software
engineering, pages 107–119, Los Alamitos, CA, USA,
1999. IEEE Computer Society Press.

Marin – Formalizing typical crosscutting concerns SERG

18 TUD-SERG-2006-010

APPENDIX

A. AN ASPECTJ SOLUTION TO THE VISITOR PATTERN
This example shows a simplified AspectJ solution for a pricing visitor: any call to the getPrice method of a (Compos-

ite)Equipment object are advised for building a Visitable object and pass it to visitors that just invoke the accept method of
the passed argument.

pointcut price(Equipment equipment):
call(int Equipment+.getPrice())

&& target(equipment);

int around(final Equipment equipment) : price(equipment) {
Visitable visitable = new Visitable() {

public void accept(EquipmentPriceVisitor v) {

if(equipment instanceof CompositeEquipment) {
List subcomponents = equipment.getComponents();

for(int i=0; i<subcomponents.size(); i++)
(((Equipment)subcomponents.get(i))).getPrice();

}
v.addToPrice(proceed(equipment));

}

};
visitor.visitEquipment(visitable);

return visitor.getTotalPrice();
}

SERG Marin – Formalizing typical crosscutting concerns

TUD-SERG-2006-010 19

Marin – Formalizing typical crosscutting concerns SERG

20 TUD-SERG-2006-010

TUD-SERG-2006-010
ISSN 1872-5392 SERG

