
INTERNATIONAL INSTI1iUTE FOR DELFT NETHERLANDS

HYDRAULIC AND ENVIRONMENTAL ENGINEERING

Self-weight Consolidation on Impervious Bases

Shaoling HU

M.Se. Thesis H.H. 42

1990

IIIE_
DELFT delft hydraulics



INTERNATIONAL INSTITUTE FOR DELFT NETHERLANDS

HYDRAULIC AND ENVIRONMENTAL ENGINEERING

Self-weight Consolidation on Impervious Bases

Shaoling HU

M.Sc. Thesis H.H. 42

1990

IIIE.
DELFT delft hydraulics



Abstract

This paper presents the study on the self-weight consolidation, which is
referred to the consolidation problem of cohesive deposits in reservoirs
and based on Gibson's theory of non-linear finite-strain consolidation.

The analytical solution of the linearized equation is carried out. The so-
lution shows that the consolidation is dominated by the dimensionless
thickness of soil Zd. When Zd is large, consolidation progresses faster.

A mathematical model based on the full equation is set up, which is veri-
fied by data and can predict the self-weight consolidation with the thick-
ness increasing with time.

The final profile of void ratio is also obtained theoretically. Subsequent-
ly, the final thickness of deposits and the final gradient of void ratio
are obtained.

The comparisons between the analytical solution of linearized equation and
the numerical solution of full equation show that the linearization is
valid for the small thickness.

In addition existing literature on consolidation are reviewed and the
Gibson's theory which is based in this study is presented in detail.
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1. Introduction

The self-weight consolidation of cohesive sediments is one of the major
problems in reservoir sedimentation.

As long as the cohesive sediments deposit on the bed of a reservoir , con-
solidation starts to undergo. Therefore the continuous deposition raises
the bed level, whereas the consolidation reduces this raising at the same
time.

On the other hand, the sluicing operations are adopted in some reservoirs
(e.g. the reservoirs on Yellow River), so as to reduce the sedimentation
(Cao,1983; Cao & Du,1986; Zhang & Chien,1985; Zhang & Du,1984; Bruk et
al,1983; Bruk,1985; Cavor & Slavic, 1983; Wang & Wang,1983). The prediction
of erosion due to sluicing has to take the consolidation into account, be-
cause consolidation strongly influences the erodibility of the cohesive
deposits (Bouchard et al, 1989; Ariathurai et al, 1976,1977,1978; Kelly &
Gularte, 1981; Kuijper et al, 1989; Mehta, 1989; Mehta et al, 1979, 1989,
1989; Otsubo & Muraoka, 1988; Partheniades, 1965, 1972).

Therefore, to predict the morphological processes in reservoirs correctly,
self-weight consolidation of cohesive sediments has to be well-investi-
gated.

This w?rk, which focusses on the self-weight consolidation on the imper-
vious bottom (in other words, it is assumed that the bed of reservoir is
impervious) comprises the following aspects:

The previous works on consolidation are reviewed and Gibson's theory on
which this work is based is presented in detail;

The analytical solution of the linearized Gibson's equation is carried
out in order to gain the insight into the physics of the self-weight
consolidation;

A mathematical model is set up and verified with data, which can pre-
dict not only the consolidation processes after sedimentation but also
simultaneous sedimentation and consolidation;
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The theoretical final profile of void ratio is obtained and is used to
compare the results of mathematical model;

Conclusions are drawn and recommendations for future study are given.
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2. Reviews of the Previous Works on Self-weight Consolidation

2.1 General

Some major theories which represent the self-weight consolidation problems
are reviewed in section 2-2. Since it has been widely applied elsewhere and
also in this work, Gibson's theory is presented in detail. The predictive
approaches of self-weight consolidation are discussed in section 2-3 .

2.2 Same theories describing consolidation

i) Terzaghi's theory
The first theoretical model of one-dimensional consolidation was
developed by Terzaghi (1923). This theory is based on the following
assumptions:

(a) The soil is complete1y saturated with water;
(b) The soil particles and the pore water are incompressible;
(c) The fluid flow equations follow Darcy's law;
(d) The soil structure is homogeneous. The permeability k is then con-

stant;
(e) The strains are small and the compressibility Mv is constant.

From above assumptions, if on1y the excess porewater pressure contributes
to the progress of consolidation and the applied load is time-independent,
Terzaghi's theory is represented by the following diffusion equation,

SPe
St (2-1)

in which, Cf = k/(Mv.g.p),
Pe excess porewater pressure;
S Eu1erian co-ordinate, at the bottom, S=O, at surface, S=So(t);
p density of water;
g the acceleration of gravity;
Mv compressibility of the soil structure;
k Darcy's coefficient, or permeability.
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In practice, the assumptions are only approximately satisfied. For the
hydraulically deposited cohesive-sediments, which usually have high initial
void ratio and the large range of void ratio during consolidation, eq(2-1)
could not be plausible. In other words, Terzaghi's theory is valid only for
the infinitesimal-strain consolidation problems.

ii) Modified Terzaghi's theory
Schiffman and Gibson (1964) followed Terzaghi's idea only to some ex-
tent but assumed that the permeability k and compressibility Mv vary
with S (or non-homogeneous clay layer), and they derived the following
equation.

1 SPe
St

1
k

dk
dS (2-2)Cf(S)

Basical1y k and Mv are time-dependent rather than time-independent.

Yong and Elmonayeri (1984) a1so analysed the consolidation after sedimenta-
tion processes and formulated a convection-diffusion relationship. However,
the parameters in the relation have to be well-defined and experimentally
determined before it is applied in practice. As mentioned by the authors,
"the relationship can model sedimentation of the pure clays-suspensions
tested to void ratios of about 3", which is much lower than those of the
hydraulically deposited cohesive-sediments.

iii) Gibson's theory
It is a comprehensive theory, either from its theoretical background
or from its verifications and applications (Lee & Sills, 1981;
Znidarcic, 1986; Bromweil, 1984; Scully et al,1984; Krizek et al,1984;
Lin, et al,1984).

Gibson et al (1967) developed a non-linear consolidation theory. It was
applied to a thin layer clay at the very beginning (1967) and extended to
thick layer with finite strain (1981) owing to the achievements on the pro-
perty studies and the validation investigations for the theory. Now it has
been widely used in sedimentation/consolidation as weIl as underload conso-
lidation problems (Gibson et al, 1984).

For the convenience of description in the next chapters, Gibson's theory is
presented in detail here.
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a) ~~8E~~g~_~~~_~~!~Ei~~_~~:~E~i~~!~~
"In the derivation which follows we shall adopt consistently the second
standpoint and consider an element of the soil structure of unit cross-sec-
tion area normal to the direction of po re fluid low which at time t=O lies
between planes embedded datum plane (Fig.2-1(a». At some subsequent time t
these same planes will be located at (unknown) distances S(a,t) and
S(a+Sa,t) from this datum plane. We have here chosen a and t as independent
variables, while S is a dependent variabie. Each plane of partieles is
labelled through its subsequent motion by its initial distance a from the
datum plane; for example the upper boundary of the layer is always AT a=aO
(Fig. 2-1b). By using these Lagrange co-ordinates we have secured the fol-
lowing advantage: the boundary can always be identified (a=aO)' and the
boundary conditions on it introduced into the analysis, although we are
ignorant of its exact location: S(ao,t)."

a: ao

D C

De! S(a.t)

A B
ba A B
a

\datum plane a:o

Fig.2-1a. Initial configuration
at time t=O

Fig.2-1b. Current conf.
at time t

Accordingly, a is a Lagrange coordinate, while S is an Eulerian coordinate.

b) Derivations
The vertical equilibrium of the soil grains and fluid currently occupying
the element ABCD (Fig. 2-1(b», it follows that

Sa SSSa + [no p + (l-n). ps]·g· Sa = 0 (2-3)

where,
a the total vertical stress, n = porosity,

densities of water and soil particles, respectively.
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The fact that the chosen co-ordinate element always embraces the same mass
of solids, leads to the following continuity

&Sp .[l-n(a,O)] = p .[l-n(a, t)].~s s ga (2-.4)

To determine the equation of continuity for the fluid phase we denote the
velocity of the solid phase by Vs (=&S/&t) and that of the pore fluid by
Vwo The rate of mass of fluid flowing into the element ABCD is then

n.(Vw-Vs).p.g

The rate of mass of fluid outflow is the above quantity augmented by

s&a [n.(Vw-Vs).p.g].&a

but this must equal the rate of change of mass of fluid in the element, so
that

s
&a

& &S[n.(Vw-Vs). p.g] + &t [no p·g·&a] o (2-5)

The pore fluid movement follows Darcy's law, which is expressed by

n.(Vw-Vs) k
p.g

&Pe
&S (2-6)

where, again, Pe is the excess porewater pressure and P denotes the total
porewater pressure. And since

Pe P - p.(So - S).g

the gradient of excess porewater pressure is that

&Pe &P
&S &S + p.g

with

&P &P &a
&S &a &S

( 2-7)

(2-8)
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From (2-7), (2-8), equation (2-6) can be rewritten as follows

6Sn.(Vw - Vs).s;- k [6P 6S]p.g. 6a + p.g. 6a (2-9)

Therefore, the constitutive relationships (2-3), (2-5) and (2-9) have been
established.

c) ~~~~E~!~g_~9~~~!~~
The governing equation is transformed into material co-ordinate Z which is
introduced by

a
Z(a) =f [1-n (a',O)]da'

o
(2-10)

this implies that a point of the soil structure is now identified as the
volume of solids Z in a prism of unit (bulk) horizontal area lying between
the datum plane and the point. Clearly, Z is time-independent and Zo (at
the surface) is the total solid volume per unit horizontal area.

In addition, n = Vr/(1+Vr)
where, Vr is the void ratio.

(2-11)

By introducing (2-11), the previously established equations can be rewrit-
ten in Z:

6a Vr. P + Ps 6S
6Z + 1 + Vr ·g·6Z o (2-3)bis

6S P (a,O)s6Z (1+vr).p (a,t)
s

o (2-4)bis

(2-5)bis

[Vr.(Vw-Vs) 1] 6S
k.(1+Vr) + . 6Z

1+ ---p.g 6P = 06Z (2-9)bis
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From (2-4)bis the relationship between Eulerian coordinate S and material
coordinate Z is that

Z
S f (1+Vr)dZ,

o

provided the soil partieles are incompressible.

If the soil strueture is homogeneous and has no ereep effeets and the con-
solidation is monotonie, then k may be expected to depend upon the void
ratio,

k=k(Vr) (2-12)

while the vertieal effeetive stress

al a - P (2-13 )

controls the void ratio,

al al(Vr). (2-14)

Then the governing equation for the void ratio is obtained by combining
eqs(2-3)bis--(2-5)bis and (2-9)bis,

(Ps 1) d [k(Vr)]p- - . dVr 1+Vr
6Vr
6Z

6 k(Vr)
+ 6Z [p.g.(1+vr)

dal 6Vr 6Vr
dVr . SZ] + St o

(2-15)

In (2-15), two eonstitutive relationships for al(Vr) and k(Vr) eq(2-12) and
(2-14) are required. Many experiments have been done by different authors
and they are summarized by Krizek & Somogyi (1984).
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2.3 Predictive Approaches

In general, there are analytical, computational and centrifugal-experimen-
tal approaches to predict the self-weight consolidation. Here only same
previous predictions based on Gibson's theory (or, equation (2-15» are
discussed.

i) Analytical solution
Analytical solution gives the insight of the physical processes, even
though substantial simplifications and linearisations are always made.

For underload consolidation Gibson (1967) omitted the first term of eq
(2-15) and defined

Cv
k(Vr) dal

dVr (2-16)p.g.(1+Vr)

ship between C and Vr, were thenv
linearity of the equation for the thin homogeneous layer is maintained, or

analytical salutions for the cases of constant C and linear relation-v
obtained. The results show that the

The

his theory is converged to Terzagyi's law in the case of infinitesimal
strain. Lee & Sills (1984) followed Gibson's simplification to (2-15) and
employed the following initial condition

Vr(Z,O) Vrini (2-17)

and boundary conditions,
on the surface,

Vr(Zo,t) Vrini (2-18)

and on the impervious bottom,

svrl-sz- Z=O = ~
(2-19)

where, constant ~ is the final gradient of void-ratio profile. Analytical
solutions for the dredged-fill consolidation and sedimantationj-
consolidation (i.e. the thickness of sediments is increasing in time,
whereas consolidation is simultaneously progressing) were obtained. Haw-
ever, some remarks have to be made.
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In the course of self-weight consolidation, the magnitude of the first
term is decreasing, while the second term is increasing. The first term
cannot be omitted particularly for cohesive sediments with very high
void ratios.
Impervious bottom boundary is obtained from assuming constant k/(1+Vr)
and (2-16). The authors did not quantify the final gradient on the bot-
tom ~, which can actually be obtained analytically as mentioned in
chapter 6.
The validation analysis of the formulations was left out by the
authors.

ii) Mathematical modelling
Before Gibson's theory, mathematical modellings were based on Terzaghi's
theory (Abbott,1960; De Leeuw & Abbott,1966; Abbott & Shrivastava, 1967),
but only the mathematical modelling based on (2-15) are mentioned here.

Gibson (1981) linearised (2-15) as follows

o (2-20)

where, T, n and Zd (as mentioned in Chapter 3) are dimensionless. His com-
putations of (2-20) show that when Zd is larger, consolidation progresses
much faster. The computation had to investigate the physical roles of the
first two terms in (2-15).

For practical purposes, mathematical models based on (2-15) were developed
by Monte & Krizek (1976) and Somogyi (1984). The applicability of mathema-
tical models for very high void ratio was also investigated by Scully
(1984) and Gibson (1984).
Either implicit or explicit finite difference schemes were employed in the
models. Although the limited imformation did not give the insight into
existing models, the following points arise in literature (Koppula &
Morgenstern, 1982, 1984j Krizek & Somogyi,1984j Bromweil, 1984).

Initial condition for the sedimentation/consolidation problem. The de-
termination of initial void ratio can be made by sedimentation experi-
ment. -Alternatively, it can be taken seven times the void ratio at the
liquid limit ( Carrier et al,1983). However, Carrier states that the
initial void ratio usually has a minor effect on the predicted rate of
consolidation and only has an effect on the profile during consolida-
tion.
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The linearizations of non-linear terms. The non-linearity of (2-15)
should not cause much trouble in mathematical modelling, because there
are no shocks during consolidation.
The boundary condition on the surface (Z=Zo),

Pe(Zo,t) = 0

leads to (2-18), which has been applied both in mathematical models and
analytical solutions. However, for the problem of consolidation after
sedimentation this boundary condition can cause numerical instability,
particularly when the spatial step is large and the initial void ratio
is very high.
The boundary condition on the undrained bottom,

SPe ISZ Z=O = 0

which leads to

SVr I Isz-- Z=O= f(Vr) Z=O (2-21)

f(Vr) is of high non-linearity since two consitutive relatioships 0'--
Vr and Vr--k are of high non-linearity.

2.4 Experimental results

Normally the experimental results are in terms of dry density profiles.
Owen (1970,1975) measured density profiles during consolidation after sedi-
mentation and revealed that dry density on the surface layer has similar
change processes to those of mean dry density. Hayter (1983,1984) re-ar-
ranged the data of the authors and suggested a power-law formula to esti-
mate dry-density profiles during consolidation.

Krone (1962) found the order of aggregate is reduced to the next lower
order due to overburden thickness, and empirically determined the proper-
ties of cohesive-sediment aggregates in quantity. He used his results in
the modelling for estuarine-morphological computations.
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It shou1d be mentioned that the experimenta1 approaches are va1id on1y for
the conso1idation processes AFTER sedimentation. In other words, deposition
in reservoirs cou1d be intensive and sedimentation and conso1idation take
p1ace simu1taneous1y. In this case theoretica11y based mathematica1 mode1-
1ing is required.
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3. Analytical Solution for the Linearized Case

3.1 Gene ral

Although the based equation for analysis is linearized, the solution can
give the insight into the physical phenomena of self-weight consolidation.
In this chapter, the Laplace's transform is employed to solve the mathema-
tical problem, but only the main idea of the analysis is presented, while a
special series expansion is applied to obtain the inverse Laplace's trans-
form (or, the Vr distribution), that is presented in Appendix I.

3.2 Basic equation

G~bson's equation is adopted, but it is supposed that

p - P d ks
dVr [l+Vr] Co Constantp

and

k do ,
p.g. (l+Vr) dVr Cv Constant

such that

(3-1)

(3-2)

6Vr
6t + 6VrCo . 6Z (3-3)

3.3 Initial and boundary conditions

i) Initial condition
Normally, initial condition is written as

Vr (Z ,t)lt=o = Vr (Z ,0),

provided, Vr(Z ,0) is given. The following initial condition is here ap-
plied for reason of simplification.

Vr (Z,O) Vrini = constant (3-4)
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Eq(3-4) physically implies that a total amount of considered sediments are
immediately deposited just at time t=O.

ii) Boundary condition
On the surface boundary condition (2-18) is used.
And on the undrained bottom.

öPe I
öZ Z=O o (3-5)

Since the total vertical stress

a = [n.p + (1-n) p ].g.(So-S)s

and the effective stress

a' a - Pe - p.g.(So-S) (1-n).(p - p).g.(So-S) - Pes

= (ps - p).g.(Zo-Z) - Pe (3-6)

Therefore. from (3-5) and (3-6). we have

ê o ' I
öZ Z=O (3-7)

that yields on the bottom (or.Z=O)

öVr I
öZ Z=O

dVr öa'l dVr= do' . sz- Z=O = - (ps - p).g.~ (3-8)

Moreover. from (3-1)

k
1+Vr Co.Vr + C (3-9)

where. C is integral constant.

Substituting (3-9) into (3-2) yields

1 . (Co.Vr + C )p.g
Ps - P

Cv . p
dVr
~ (3-10)

Substituting (3-10) into (3-8) yields

öVr I
öZ Z=O

Co.Vr +C I
Cv Z=O (3-11 )
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Since

1. &Vrl1m--
t-+...&z z=O

where, ~ is, again, the fina1 gradient of Vr on the bottom (~ is derived in
Chapter 6), thence

C -Co.Vr'" + ~.Cv

in which, Vr'" denotes the fina1 void ratio on the impervious bottom. So
that

&vrl&z z=O
Co. (Vr-Vr"')

Cv (3-12)

In dimension1ess form (3-12) is written as

&vrl&11 11=0
= a Z Co.Zo. (Vr-Vr"')I

~. 0 + C 0v 11= (3-13)

in which, 11 Z/Zo.

3.4 Analytical solution

i) Mathematica1 prob1em

The statement of the 1inearized se1f-weight conso1idation processes is the
following

&Vr &Vr &2Vr&t + Co . &Z - Cv . ~ = 0 (3-3)

Vr(Z,O) Vrini (3-4)

Vr(Zo,t) Vrini (2-18)

&vrl = ~ + Co. (Vr-Vr"')I
&Z Z=O Cv Z-O (3-12)
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ii) The solution of the corresponding Laplace's transform of the above
mathematical problem

a) ~~~_~~E!~~~~~_~E~~~Ê~~coLet v = f Vr.exp(-p.t).dt,
o

in which, p is the Laplace's constant; and V is Laplace's transform of Vr.

We then have

co
f 6Vr6t . exp(-p.t).dt - Vrini + p.V .
o

Therefore, we have the Laplace's transform of the mathematical problem as
follows

62V 6VCv . &ZT - Co . 6Z - p.V + Vrini o (3-14a)

V(Zo,t) Vrini/p (3-14b)

6VI _ ~6Z Z=O - P
Co
Cv Vroo Co Ip + Cv . V Z=O (3-1Sc)

b) ~~~_~~!~~!~~_~Ê_~9~_~~:!~2
The general solution of eqs(3-1S) is that

V = Vrini/p + C1·exp(r1·Z) + C2.exp(r2.Z)
with

(3-16)

Co ± I Coz + 4.Cv.p
r1,2 = 2.Cv (3-17)

and the boundary conditions (3-14b) and (3-14c) determine the
Cl and C2 ' i.e.

coefficients

(3-18a)

~ __.:;C...:;o...;;_.....>.(-::V..;;:.r..;;;i~n;.;;;i_-..;.V..;;:.r_co-'-)+ + (C1+C2)p Cv.p
Co
Cv (3-18b)

Therefore, the solution of eqs(3-1S) reads
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v *

* Vrini - Vr= + ~.Cv/Co
p

Co VriniCv + --p- (3-19)

c) ~~~!~~!~~!_~~!~~!~~~
The void ratio distributions of linearized self-weight consolidation, Vr,
is the inverse Laplace's transform of eq(3-19), which is obtained through
applying a special series expansion (for the details, see Appendix I)

Vr = Vrini - 2.(Vrini - Vr= + ~.Zo/Zd ).exp(n.zd/2) *

[

2.sin[b.Zd.(I-n)/2 ].[b.exp(-Zd2.(I+b.2).T/4 + lib.]
*~] J J J +

j=1 {Zd.[cos(b.Zd/2)-b.sin(b.Zd/2)]/2.0+cos(b.Zd/2)}.(I+b~)
J J J J J

Zd. (l-n)]
+ 2+Zd (3-20 )

in which, Zd = Co.Zo/Cv, T = t.Cv/Zo2 and n =z/zo are
(j=I, 2, ...) are dimensionless and the roots

dimensionless; b.
J

of the following
algebraic equation (see, Fig.3-1)

tg(Zd.b/2.0) + b o (3-21)

However, it should be noted that bsO is excluded from (3-20), which is also
mentioned in Appendix I.

y

Fig.3-1 Sketch for bj, roots of eq(3-21)
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3.5 Evidence for the analytical result

From eq(3-20), it can be seen that the consolidation processes are domi-
nated by the value of Zd, which is shown in the following profiles (Fig.3-
2) with different values of Zd.
If the void ratio is approximated by first order (or j=l), then the degree
of consolidation Dc(t) can be written as

Dc(t) So(O) - So(T)
So(O) - So(~) (3-22)

in which, Sa is the thickness of deposits.

Thus it also can be seen from eq(3-22) (or, Fig.3-3) that when Zd is large,
the consolidation is sooner completed.
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4. Mathematical Modelling for the Self-weight Consolidation.
Case I. Linearized Model

4.1 General

For the eonvenienee of deseription of the general model, some fundamental
aspeets of numerieal diseretization are deseribed in this ehapter, while
the initial and boundary eonditions are kept the same as mentioned in
ehapter 3.

4.2 Basic equation

For the reason of simplifieation, the linearized equation is rewritten in
dimensionless form sueh that

6Vr 6Vr
6T + Zd . 611 o (4-1)

in whieh, T, Zd and 11are as defined previously in Chapter 3.

4.3 Numerical scheme

The following numerieal seheme is applied (Fig.4-1) to deeritize eq(4-1),

At grid point j,

6Vr
6T (4-2)

n+1 V n+1) (1-9). ( n n9.(Vr. 1 - r. 1 vrj+1 - Vr. 1)6Vr J+ J- J-
611 2.611 + 2.611

n+1 2.Vr~+1 n+1
62Vr 9. (Vrj+1 - + Vr. 1)
~ 6112 J J- +

n 2. Vr~ n(1-9). (Vrj+1- + Vr. 1)
+ 6112 J J-

(4-3)

(4-4)
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where,
9

All
AT
n,(n+l)

weight in time;
spatial step;
time step;
denote the values at time level n and (n+l), respectively.

n+ 1 ------ tx:lti
>
QJ

QJ n -- ----
E j-l J + 1.....

Fig.4-1 Numerical operdtor

Substituting (4-2), (4-4) into (4-1) and re-arranging yield

A(j).vr~+11 + B(j).vr~+1 + C(j).vr~+ll = D(j)
J + J J-

(4-5)

in which,

A(j) 9.Zd.AT
2.All

9.AT-~,

B(j) 1 + 2.9.AT
All

C(j) _ (9.Zd + 9)2.All ~ .AT,

D(j) = Vr~ _ (1-9).Zd.AT
J 2.All

n n
(Vr. 1 - Vr. 1) +

J+ J-

+ _,_(_1-_9....;),_._A_T
All (Vr~ 1 - 2.Vr~ + Vr~ 1)

J + J J-
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4.4 Numerical accuracy

The following Taylor's expansions at (j,n) are employed in the accuracy
analysis,

V n+1r.
J

V n+1rj±1

1+ 2 !

nVr'+1J-

Vr~ 6Vr 1 62Vr 2
+ ~j.t.l1 +21 ~j.t.l1 + . .. , . ..

J

Vr~ 6Vr 6Vr 1 62Vr 2± &rlj.t.l1+ 6Tj" t.T+ 2 ! ~j.t.l1 +
J

t.T+ ... , ...

Subst Hut ing above expansions into (4-5), re-arranging and removing the
subscript j yield

6Vr Zd. 6Vr 62Vr
6T + 611 6fl'

6 (1 6Vr 9.Zd 6Vr 9 62vr)- t.T.6T óT + -2 Ól1 ~

1 ó3Vr t.T2 1 .9.t.T2.Zd. ó3Vr 1 .Zd.t.112
•

ó3Vr
6 6T3 - '2 ó116T2 - 6 Ó113 +

1 ó4Vr+ -6 • (l-9).t.T.t.112• "4 + h.o.t,011 (4-6)

where, h.o.t stands for higher order terms.

Clearly, when
stable and the truncation error

9 ~ 1/2, the numerical scheme (4-5) is unconditionally

T .E. = - t.T s (1.
óT 2

6Vr
óT

1 ó3Vr t.T2 1 9 t.T2
• Zd s=ve 1 Zd t.112

ó3Vr
- 6" ÓT3 - '2 Ól1óT2 - 6 ~+

1 (1-9) t.T t.112 64Vr + h.o.t, (4-7)+ - Ó1146

that is followed by T. E. 0 (t.T2
, t.112), for 9 =1/2.
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4.5 Numerical stability

The solutions are decomposed into Fourier series as follows,

Vr~ E An [.k.j.A!] TT] (4-8)
J k exp 1.(N-1).All

V n+1 E An+1 [.k. j .à!] TT] (4-9)r. exp 1.(N-1).àllJ k

n An [.k·U±12·à!] TT] (4-10)Vr·+1 E exp l.(N-l).àllJ- k

V n+1 E An+1 [.k.(j±1).àll ] (4-11 )r·+1 k . exp 1.(N-1).All TTJ-

in which, j = grid point (j=1,2, ...... N) , and An is the amplitude of thek
kth component at time level (n+1).

Substituting eqs(4-8)--(4-11) and introducing C = Zd.àT andAll
E = ~~i into eq(4-5), we finaliy have for the kth component of Fourier
series

A
1-(1-9).2E.[1-cos(kTTjN-1)] -i(1-9).C.sin(kTTjN-1)
1+9.2.E.[1-cos(kTTjN-1)] + i9.C.sin(kTTjN-1) (4-12)

From lAl' ~ 1, we therefore have the following stability condition (for the
details, see appendix 11),

> 1 . { 2E }9 - 2 - ml.n 4Ei +Ci± 14Ei _cil (4-13)

SELF-WEIGHT CONSOLIDATION ON IMPERVIOUS BASES 24



4.6 Computational algorithm

The "double sweep algorithm" is used to solve the tri-diagonal matrix (ex-
pressed by eq(4-5)).

Introducing

Vr~
J

L(j ).vr~:~ + M(j) (4-14)

into (4-5) yields the following re-occurrence coefficients

L(j) A(j) (4-15)

M(j)

B(j) + C(j).L(j-1)

D(j) - C(j).M(j-l)
B(j) + C(j).L(j-l) (4-16)

where, L(j) and M(j) are determined by boundary condition on the bottom
(where, the grid point is j=l).

Provided A(j),B(j),C(j) and D(j) (j=1,2, ... ,N) are determined beforehand,
in the first sweep L(j) and M(j) are calculated progressively from j=1 to
j=N, while in the second sweep Vr~+l is calculated backward from j=N-1 to

J
j=l (Note, vr~+1is determined by the boundary condition on the deposits'
surface). This procedure can be represented by Fig.(4-2)

4.7 Comparison between numerical and anlytical results

Fig.(4-3) shows the good agreement between the numerical results and ana-
lytical results.
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5. Mathematical Modelling for the Self-weight Consolidation,
Case 2, General model

5.1 General

Except for being based on the non-linear equation (2-15), this general
model includes the simultaneous deposition and consolidation. The main con-
siderations of this model are the followings:

The numerical scheme described in Chapter 4 is employed.
Taking the time-dependence of the thickness Zo(t) into account, the
vertical material co-ordinate Z in eq (2-15) is normalized by intro-
ducing n = ZjZo(t).
The constitutive relationships Vr--o' and k--Vr are assumed to be given
and to follow the power law.

5.2 Basic equation and constitutive relationships

i) Basic eguation

The non-linear equation (2-15) is based in this model,

óVr-- +ót
óVr + ~[k do' óvr] = 0·óZ óZ p.g.(1+Vr) . dVr . óZ (2-15)

Considering Zo is changing with time due to sedimentation, the co-ordinate
Z in (2-15) is normalized by introducing n = ZjZo. Equation (2-15) then
reads

_~_~_r_+ -:-~-Z-:-P. d~r[l+~r]:~r+ 1 s [ k. ~ 1+Vr .
do'
dVr óvr]. ón = 0

(2-15')
p.g.Z02

As mentioned previously,

Zo=Zo(t) (5-1)

The grid points is now presented by the following Fig.(5-1).
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Q) n+1 -------1 ! I
>
Q)

Q) n ----_-
E J -1 J +1- z ; lJ_.

Fig.5-1a Grid points (Zo=constant)

Fig.5-1b Grid point (Zo=Zo(t»

ii) The constitutive relationships

As mentioned in Chapter 2, the expressions of eq(2-12) and (2-14) have to
be established to make eq(2-15') close. There are many empirical relation-
ships suggested by different authors (summarized by Krizek and Somogyi,
1984). However, from some experimental results (Krizek and Somogyi, 1984;
Znidarcic et al 1984) the more general expressions seem to follow the power
law.

Vr Ap*(a'/a,)-Bp
c

(5-2)

in which, Ap and Bp are empirical constants and positive,
rence effective stress.

a' isc the refe-

Bkk/kc = Ak. (Vr) (5-3)

in which Ak and Bk are empirical constants and positive, kc is the refe-
rence permeability.
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Constants Ak, Bk, Ap and Bp depend upon the properties of the deposites.
Table (5-1) (roughly obtained from some literature) shows the values of the
constants with different soils.

CLAY NAME Ak Bk AP BP

-11
FLOR IDA CLAY 1.4*10 4.11 90.37 0.29

-11
KINGS BAY 2.0*10 5.40 26.07 0.19

-14
SODIUM MONTMORILLONITE 1.0*10 3.0 9567.0 1.00

-12
CALCIUM MONTMORILLONITE 1.0*10 6.0 31. 92 0.3

-12
MAUMEE RIVER,TOLEDO 5.0*10 5.70 5.16 0.14

Notes: kc 1.0 mis; Ol
c 1.0 Pa.

Table 5-1. The values of Ak, Bk, Ap and Bp

5.3 Linearizations of the nonlinear terms

Provided that eq. (5-2) and (5-3) are given before hand, eq(2-151
) can be

re-written as follows

SVr
St

F(Vr)+ ---Zo(t)
SVr
Sn

1 o (5-4)

where,

F(Vr) Ps - 1) d [l~vrl·(- dVrP

G(Vr) k dOl
p.g. (l+Vr) dVr

Then the nonlinear terms (the second and third terms of (5-4)) are linea-
rized as follows.

At grid point j (Fig.5-1)
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1 [F(Vr;+1 ) F(Vr;) ]2 +
F(Vr2 &Vr

*Zo'(t) &11 1 [ZO(At. n) Zo [At (n+1)]]2 +

[
a.(vr~+11 -

* ]+2.AI1
V n+1)r. 1J-

n n(1-a).(Vrj+1 - Vrj_1)
+ 2.AI1 ]

Or, F(Vr) is centred at (j, n+1/2), Zoet) is cent red at time level (n+1/2).

1 ~11 [G(Vr) . ~~r] {Zo(At.n)/2 + Zo[At.(n+1)]/2}' *1
Zo'(t)

{[
a.(vr~+11 - vr~+1)

* G2 J + J. AI1'

[
(1-a).(Vrn - Vr~)

j +1 J

a. (Vr~+1
Gl. J

n+ I ]- Vr. 1)J-
AI1' -

G2. AI1'
(1-e).(Vr~ - Vr~ 1)]}J J-

where,

G2 ~. [G(vr~::) + G(vrr1) + G(vr~ +1) + G(vr~)]

i .[G(vr~+l) + G(vr~~:) + G(vr~) + G(vr~_l)land G1

The values of Vr at time level (n+l) in G1 and G2 are to be determined by
iteration. See Section 5-5.

5.4 Initial and boundary conditions

i) Initial condition

For void ratio at time t=O, the initial condition eq(2-17) is applied. It
has to be mentioned that for the case of self-weight consolidation with
Zoet) increasing with time, the initial thickness Zo(O) can be very small
but not zero.
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ii) Boundary condition

a) At the surface (n = 1.0), the following boundary conditions are applied
for both cases of constant Zo and Zoet) increasing with time during con-
solidation.

(2-18)

b) ~!_!~~_~~!!~~L_!~~_~~~~~~E~_~~~~!!!~~_~~~_!~_~~_~~E!~~~_!~_!~~_
~~!!~!!~g:

From Section 3-3,

00' IoZ Z=O - (p - p).gs (3-7)

and from (5-2),

dVr Ap.Bp.(o'/o') -Bp-1/0'do' c c

- Ap.Bp.(Ap/vr)-(l+BP)/BP/o'
c

(5-6)

so that we have the boundary condition at the impervious bottom

ovrl (p p).g.Ap.Bp.(Vr/Ap)(l+Bp)!Bp/o'sz- Z=O = s - c (5-7)

or,

ovrl (l+Bp)/Bp ,-..- 0 = Zoet). (p - p).g.Ap.Bp. (Vr/Ap) /0
un n= s c

(5-8)

Therefore, suppose at bottom (n=O) grid point j=l, eq(5-8) is then
tized as follows

discre-

p - p
Z n+ l s _----,-B..,.p_*o . -----.-.g. l/B°c Ap p

* [

_ (vr~l(l+Bp)/BP
Bp

+ (l+BP).(vr{ll/BP * vr~+l ]
Bp (5-9)

in which, Zon+1 Zo[At.(n+1)], and vr{ is determined by iteration.
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5.5 Iteration processes

The values of Vr at time level (n+1) in G1 and G2 and Vr' in eq. (5-9) are
determined by the following iteration processes.

The values are initiated by those of the last step (at time level n) for
the current computations of Vr at time level (n+1). Then they are replaced
by the newly computed values at time level (n+1), whereas the computations
of Vr at time level (n+1) are repeated.

5.6 Computational results

The data of Florida Clay (Gibson et al, 1984) are used to verify this
modelling. Fig. (5-2) shows the good agreement between the computational
results and the data. In addition, Fig.(6-1) also shows the good agreement
between the computed final Vr-profile and the analyzed final Vr-profile.

Fig. (5-3) and (5-4) show the different consolidation processes of constant
Zo and Zo increasing with time.

Fig. (5-5), (5-8) show the consolidation processes in terms of void ratio
profiles and dry-density profiles for the cases of different Zo.

5.7 Remarks

i) From Fig.(5-2), the boundary condition at the surface does not look so
reasonable, but this problem is avoided in the case of consolidation
with simultaneous deposition (or, the thickness Zo is increasing with
time) which is common in reservoir. To improve on this shortcoming the
finer grid is recommanded.

ii) The linearizations of eq (2-15') do not cause any numerical instabili-
ties in the computations. The non-linearity of boundary condition at
the impervious bot tom causes a large error in the very first steps
(Fig.5-9). Therefore the time-step cannot be too large if the void
ratio at very small t is important.
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iii) This modelling is to be modified for the case of alternative eros ion
and deposition during consolidation. The idea is, in this case, as the
same as the multi-Iayer problem (Abbott, 1960).
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Fig. 5-2 Void ratio profile - Tank test, Florida Clay (After Gibson et
al, 1984)
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6. Discussions on Results

6.1 General

In Section 6-2, the analytical final profile of void ratio for the non-
linear case is carried out. Subsequently, the final thickness of deposits
and ~ (the final gradient of void ratio on the impervious bottom, intro-
duced in Chapter 2,3 and 4 ) are formulated. In this section the comparison
between analytical and non-linearly computational final profile of void
ratio, is made as weIl. In Section 6-3, the results of analytical solution
of the linearized equation and the non-linear mathematical modelling are
compared.

6.2 Final profile of void ratio

i) The analytical final profile

Af ter sedimentation, self-weight consolidation will become complete and the
void ratio reaches to the final profile. Since the physical meanings of eq.
(2-15) are not so precise, wé start with the following original equations
to obtain this final profile.

60 Vr.(ps + e)·g &S 062 + 1 + Vr 62

6S (1 + Vr) 062 -

and

[vr.(vw - Vs) + 1] 6S 1 §.E 0+k , (1 + Vr) &2 p.g 62

(2-3)bis

(2-4)bis

(2-9)bis

For the FINAL case, there is no solid particles movement in the layer, such
that

Vw - Vs o (6-1)

Therefore, from equation (2-4)bis equation (2-9)bis becomes

- p.g.(l + Vr) (6-2)
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Substracting eq. (2-3)bis by eq. (6-2) yields

6(0-p)
6Z - Vr.p.g - p .g + p.g. (1 +Vr)

s

or,

60'
6Z - (ps - p).g (6-3)

Equation (6-3) implies that when consolidation is completed, the excess
porewater pressure Pe has a uniform distribution over the deposits' thick-
ness. That is

6Pe
6Z o

From eq(6-3), we have

0' - (p - p).g.Z + Cs (6-4)

where, C-- integral constant.

At surface,

Vr(Zo) Vrini

which from eq(5-2) leads to

0' (Zo) (Ap/vrini)l/BP.O'
c

Therefore,

C = (p - p).g.Zo + (Ap/vrini)l/BP.o's c (6-5)

Substituting eq. (6-5) into eq. (6-4), from eq. (5-2) we have the following
expression of void ratio,

Vr A (6-6)

oc

l/BP] Bp+ (Ap/Vrini)
p).g.(Zo-Z)

The final thickness of the deposits is then given by
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Zo
H(~) =I (1+Vr).dZ

o

al [[P_PZo + -;----=-c_--:--_ _!E_ --=s_-r-g Zo + (~) 1/BP
(ps - p).g·1-Bp 0c . . Vnnl.

- ( AB .)(1-BP)/BP]Vrl.nl. (6-7)

ii) The final gradient of Vr-profile

dVr
dZ

Ap.Bp.(p - p).g/ al
s c

[(p - p).g.(ZO-Z)/OI + (Ap/Vrini)1/Bp]1+Bp
s c

So that ~, the gradient of Vr-profile on the impervious bottom is then
written as

dvrl
dZ Z=O

Ap.Bp.(p - p).g/ al
s c

[(p - p).g.ZO/OI + (Ap/vrini)1/Bp]1+Bp
s c

that shows ~ is inversus to Zo.

iii) Comparison between the analyzed and computed final Vr-profiles

The data of Florida clay is used to make this comparison. Fig.(6-1) shows
the good agreement between the computational results (of nonlinear model )
and the analytical results (calculated from eq(6-6».
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6.3 The validation of the analytical solution

In order to make comparisons between the analytical solution of linearized
eq. (3-3) and non-linear computational solution, the following parameters
are determined beforehand by using average void ratio Vr; they are listed
in Table (6-1).

Zo Vr Vr<D s Co Cv Zd
(m) (l/m) (mis) (m2/s)

-8 -10
0.031 18.3 13.87 107. 06 3.394*10 5.317*10 1.98

-8 -10
0.076 16.7 11.Ol 38.34 2.788*10 5.983*10 3.54

-8 -10
0.153 15.0 9.12 16.56 2.213*10 6.865*10 4.93

Table 6-1. The parameters for the Analytical solution

Fig.(6-2a) shows good agreement between the two results throughout the con-
solidation process for Zo=0.031 meter (Fig. (6-2b) shows that at t=10 days,
consolidation is nearly completed), while Fig.(6-3) and Fig.(6-4) show that
the analytical solution of the linearized equation (2-20) can represent the
consolidation process only for a small t for the case of Zo=0.07~ meter.
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7. Conclusions and Recommendations

i) Conclusions

a) The analytical solution of linearized eq(2-20) for self-weight consoli-
dation is carried out. The solution shows that the self-weight consoli-
dation is mainly dominated by the dimensionless thickness Zd. The larger
Zd is, the faster consolidation progresses.

b) A non-linear mathematical modelling for self-weight consolidation is
built up, which can simulate the self-weight consolidation of clay with
high initial void ratio both for the case of constant Zo and for the
case of Zo increasing with time. The latter case is common in
reservoirs.

c) The analytical final Vr-profile is carried out. Subsequently, the final
thickness of a certain amount of deposits and the final gradient of Vr
on the impervious bottom, ~, are formulated. The final thickness formula
could be applicable in evaluating the lifetime of the mining-waste
fills.

d) Comparison between non-linearly computational and analytical final Vr-
profiles shows that the mathematical modelling is verified for the given
data of Florida clay.

e) For Florida clay, the analytical solution can represent the self-weight
consolidation process only for small Zd. When Zd is large, it is valid
only for small t. This implies that the mathematical modelling is the
effective tooI to predict the self-weight consolidation. Besides, the
analytical solutions are only for constant Zo, while mathematical model-
ling can definitly simulate the self-weight consolidation with Zo(t)
which is increasing with time.

ii) Recommendations

a) The constitutive relationships Vr--o' and k--Vr are to be determined
beforehand. But these empirical relationships are often not so accura-
tely determined. The low accuracies directly influence the prediction.
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b) Alternative erosion and deposition in reservoirs are also possible due
to flushing and impounding operations. In this case, the self-weight
consolidation becomes the "multi-layer self-weight consolidation" pro-
blem. Therefore, the mathematical modelling as presented in Chapter 5
has to be modified.
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Appendix I. The Inverse Laplace's TransfonB of Eq(3-19)

I-I. General

The theories of complex variables are applied in these derivations of the
inverse Laplace's transform. Equation (3-19) has only singularities of
simple poles. Therefore Mittag-Leffler's expansion theorem is applied. The
following represents the prepared knowledge on complex variables and the
details of the derivations

1-2. Prepared knowledge on complex variables

i) Eulerian formulas

exp(ia) cos(a) + isin(a), (1-1)

exp(-ia) =cos(a) - isin(a), (1-2)

where, i--imaginary unit. From (I-I) and (1-2) we have

cos(a) ( exp(ia) + exp(-ia» /2 (1-3 )

sin(a) ( exp(ia) - exp(-ia) )/2i , (1-4)

and

sinh(ia) ( exp(ia) - exp(-ia) )/2 isin(a) (1-5)

cosh(ia) ( exp(ia) + exp(-ia) )/2 = cos(a) (1-6)

ii) Determination of the residue of t{a) at simple pole b

Suppose the singularity of f(a) in a finite complex plane a is simple pole
of b, then the residue of f(a) at b is written as

Re(b) lim (a -b) .f (a )
a-+b

(1-7)
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iii) Mittag-Lefflerls expansion theorem

a) Suppose that the only singularities of f(al) in the finite complex al
plane are the simple poles bl,b2, b3, ... , ...
arranged in the order of increasing absolute value.

b) Let the residues of f(al) at bl,b2, be Re(bl),Re(b2), , .

c) Let CN be circle of radius ~ which do not pass any poles and upon which
If(al)1 < M, where M is independent of N and R ~ m as N ~ m

Then Mittag-Lefflerls expansion theorem states that

f(al) f(O) +.~lRe(b.).{ l/(al-b.) + l/b.}
J" J J J

(I-8)

1-2. The inverse Laplace's transform of eq(3-19)

Eq(3-l9) reads

v

* CoCv
Vrini - Vrm + ~.Co/Cv + Vrini

p p
(3-19)

Let

factor(l) (2-9)

Let a = J 4CvP + Co' al..a/Co, Co.Zo I Co(Zo-Z)a ------ and a = -2.Cv 2.Cv

then
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Co + a
2 C and r2. v

Co-a
2.Cv

Therefore,

factor(l) 2.Cv
Co

( Co.Z) exp(-a'a')-exp(a'a')
exp 2.Cv· (a'-l).exp(-a'a)+ (a'+l).exp(a'a)

(2-10)
Let

f(a') (a'-l).exp(-a'a) +(a +l).exp(a'a)
exp(-a'a') - ex~(a'a')

Then

factor(l) 2.Cv
Co (Co.Z) ( ')exp 2.Cv ·f a (I-11)

If f(a') is transformed to complex plane, then f(a') has simple poles ib at
the complex plane, i.e.

[(a'-l).exp(-a'a) + (a'+l).exp(a'a)]la'=ib =0

or,

ib.exp(-iba) + ib.exp(iba) - exp(-iba) + exp(iba) =0

From eqs(I-3) and (1-4), above equa~ion becomes

ibcos(ba) + isin(ba) 0

so that

tg(ba) + b o (1-12)

Eq(I-12) determines b. for the
J

Fig. 3-1).
simple poles ±ib.

J
(j=1,2,·...,...) (see

From (1-7), the residue of f(a') at ib. is as follows
J
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exp(-ib.a') - exp(ib.a')
Re(ib.)

J a.[(-ib.+l)exp(-ib.a)+(l+ib.)exp(ib.a)] +exp(-ib.a)+exp(ib.a)J J J J J J

By applying eqs(I-3)--(I-6), we have

-2isin(b.a')
Re(ib.)

J a.[-2b.sin(b.a) + 2cos(b.a)] + 2cos(b.a)J J J J
(1-13)

Sirnilarly,

2isin(b.a')
Re(-ib. )

J a.[-2b.sin(b.a) + 2cos(b.a) ] + 2 cos(b.a)J J J J

or,

Re(-ib.)
J

- Re(ib.)
J

(1-14)

and

b. > 0
J

Moreover,

f(O) = Urn
a'-+o (a'-l)exp(-a'a) +(l+a')exp(a'a)

exp(-a'a')-exp(a'a')

Urn
a'-+oexp(-a'a) -a(a'-l)exp(-a a)+a(l+a')exp(a'a) +exp(a'a)

, ( " ) , (a ' )-a exp -a a I - a exp a a

2+2a
a'- --r;a- (I-IS)-2a'

So that f(a') can now be written in Mittag-Leffler's expansion,

f(a') =f(O) +.ËlRe(ib.).[l/(a'-ib.) + l/b.] +J = J J J

+.ËlRe(-ib.).[l/(a'+ib.) -I/ib.]J = J J J
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Substituting eqs(I-13)--(I-15) into the above equation yields

Re(ib.), ~ Jf(a ) =f(O) +.E1[ "bJ= a -1. .
J

Re( ib.)
-T"--::7"'"J- +a '+ibj

2Re( ib.)___ ...__]
ibj

2sin(b.a')a' -- l+a +J'~l------r[~~~~(~~)--~--~(~~~]--~----~~a. -2b.sin b.a + 2cos b.a) + 2 cos(b.a)J J J J *

(I-16 )

So that,

factor(l) ~~v .exp ( ~~~z).f(a')
2Cv ( Co.z) { a'-co--.exp 2Cv . - l+a +

+ .Ë1J=

2sin(b.a')
*a.[-b.sin(b.a) + cos(b.a) ] + cos(b.a)J J J J

(I-17)

Therefore, eq(3-19) is rewritten as

v Vrini
p + g~ . (Vrini - Vr- + Cv.~/Co) . ! factor(l)

Vrini Co-p---- + Cv . (Vrini - Vr~ + Cv.~/Co) 2Cv
Co exp (Co.Z) *2Cv

a' _ 2sin(b.a')
* {- -p-:-(-:'l-=+-a~)+j ~l----a-.T--b--.s-i-n-C""'b'--.a-:)~+--c-o-s~(:-b-.-a""")""""']--+--c-o-s"""(-b-.a-"""-)*

J J J J

(1-18)

Substituting a' .; 4Cvp + Co'
Co into the above equation yields
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v Vrini
p

+ g~.(Vrini -Vr~ + CV.~/CO).-i-.factor(1)

or,

v = Vrini
p

Co (V· . V C /C) 2Cv ( Co.Z )+ -CV-. r1n1 - r~ + v.~ 0 .-co--.exp 2Cv *

a' ~ 2sin(b.a')
* {- -p-(l""::+;;_a""-)+j ~ 1--a--. [O--"""'b-j-S"""'i-n-;"("'!-b-j-a7"")-+-c-O-S""'("""b-j-a-:-)"""'"]-+-co-s-(-:-"b-j-a""""")*

1+ b~* [ ~-~J~~---
Col (1+b~ )

4Cvp +

~--:-:-1::...,.-".-=--_]}b.(1+b~)p
J J

(1-19)

From eq(I-19), we finally obtain the inverse Laplace's transform of
eq(3-19) as follows

Vr =Vrini -2. (Vrini -Vr= + ~.Zo/Zd).exp (n.Zd/2) *

= 2sin[b.(1-n)Zd/2].[b.exp(-Zd2(1+b~)*T/4) +1/b.] 1
* {j~1 Zd.[-b.sin(b.Zd/2)+cos(b.Zd/2) ]/2 +cos(b.Zd/2)·~

J J J J J
+

+ Zd. (1-n)}
2+Zd (3-20 )

where, Zd Co. Zo/Cv, T Cv.t/Zo2 and n Zo/Zo
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Appendix 11. Stability Analysis

The stability condition for the numerical scheme presented in Chapter 4 is
derived in the following.

For the eq(4-1)

o (4-1)

the finite difference equation is written as

+ 8.Zd. 2.f1n
Vr~+1- Vr~+1
] ]

Vr~+1 - Vr~

V n+1 2 n+1 V n+1r. 1- .Vr . + r. 1
8. ] + ] ]-

An'

n nVr. 1-2.Vr. +
(1-9). ]+ An']

nVr. 1]- o
(II-1)

The solution is decomposed into Fourier series as follows

Vr~ E An .exp[i k.j.f1!] .TI ]= (N-1).f1.,] k /\
Vr~+1 E An+1 [. k.j.f1!] • TI]
]

k .exp 1 (N-1).An

n
E An .exp[i k.{j±q.f1!] • TI]Vrj±1 k (N-1)·f1n

n+1
E An+1 [. k.{j±q.f1!] • TI]Vrj±l k .exp 1 (N-1).f1n

(II-2)

(II-3 )

(II-4)

(II-S)

in nwhich, j is the grid point (js1, 2, ... , N) and Ak is the amplitude of
the kth component of Fourier series at time level n .
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Zd.AT ATIntroducing C - A~ E = ~, and substituting eqs(II-2)-- (11-5)
into eq. (11-1), we have for the kth component

2 [An+l (' k.j.n ) An (' k.j.n)] +. k .exp 1. N-l - k·exp 1. N-l

s.c [An+1 (' k(j+l).n) _ An+1 (' k(j-l)n)]+ .. k' exp 1. N-l k .exp 1. N-l +

[ n . k(j+l).n n . k(j-l)n+(l-e).C. Ak·exp(1. N-l ) - Ak .exp(1. N-l )]

2 a E [An+l (' k(j+l)n) 2 An+1 (.kjn) An+1 (.k(j-l)n)]_. .. k .exp 1. N-l -. k .exp 1N-1 + k .exp 1 N-l

2(1-9) E [An (' k(j+l)n) 2 An (.kjn) An (.k(j-l)n)]_ 0.. k·exp 1. N-l -. k·exp 1N-1 + k·exp 1 N-l -.

leading to:

(An+1 An) . a C An+1 . ( kn,) . (1-9) C An . (kn ) +k - k + 1... k' S1n N-l + 1. .. k·s1n N-l

n+l n+l kn n+ 2.e.E.Ak - 2.e.E.Ak .cos( N-l ) + 2.(1-9).E.Ak-
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Let

A

from the above equation we then have

A. {1 + i.9.C.sin( ~~1 ) + 2.9.E. [1 - eos( ~~1 )]} =

1 - i.(1-9).sin( ~~1 ) -2.(1-9).E.[1 - eos( ~~1 )

A
1-2.(1-9).E.[1-eos(~)] - i.(1-9).sin(~)

1+2.9.E.[1-eos( ~~1») + i.9.C.sin( ~~1 )

{ 1-2.(l-9).E.[1-eos(~)] }2 +{ (l-9).sin(~) }2

{ 1+2.9.E.[1-eos( ~~1 )] }2 + {9.C.sin( ~~1 ) }2

Therefore, IAI2 ~ 1 leads to

19~-2- - 4.EZ.[1-eos(kn/N-l)] +Cz {l-eosz (kn/N-1)}

o r ,

1- -
2

2.E
4.EZ + ez (4.EZ - CZ).eos(kn/N-1)

So that the stability eondition for the numerieal seheme is that

in whieh, again, C Zd.!:oT
!:on

and E-
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Appendix 111. List Of Hotation Symbols

A

Ak, Ap
Ank

amplification,

empirical constants for relationship Vr--k .
amplitude of the kth component of Fourier series at time level
n .

A(j) = coefficients for "double sweep" algorithm.
a Lagrange co-ordinate; or, complex variable.
a' complex variable.

Bk,Bp empirical constants for relationship a'--Vr
B(j) coefficients for "double sweep" algorithm.
b simple polei or, for simple poles.±ib

J
C integral constant; or, C=Zd.AT/An .

Co

Cl ,C2
Cf
CN
C(j)
D(j)
E

F(Vr)

constant, Co

integral constants for the analytical solution.
Terzaghi's constants, Cfsk/(Mv.g.p).
circle.
coefficients for "double sweep" algorithm.
Coefficients for "double sweep" algorithm.
constant, =AT/An2

•

f(a), f(a') and f(Vr) functions of a, a' and Vr
respectively.

G(Vr) k da'
dVrp.g. (l+Vr)
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G1
G2
g

H("')

i

j

k

kc
L(j)
Md
M(j)
Mv
N

p

P

Pe

S

So
t

T

AT

At
V

Vr
Vr'
Vrini
Vr'"
Vr~

J
Vs
Vw
Z

Zo
Zd

the value of G(Vr) centred at (j -1/2, n +1/2).
the value of G(Vr) centred at (j +1/2, n +1/2).
gravity acceleration.
final thickness of deposits.
imaginary unit.
grid point.
wave conponent ~umber of Fourier series;
or, permeability.

reference permeability.
coefficients for "double sweep" algorithm.
deposition rate.
coefficients for "double sweep" algorithm.
compressibility of soil skeleton.
the maximum grid point; or, series number of b ..

JLaplace's constant.
porewater pressure.
excess porewater pressure.
radius of circle CN'

Co ± J Co' +4Cvp
2Cv

Eulerian co-ordinate.
deposit's thickness.
time.
dimensionless time.
time-step (dimensionless).
time-step.
Laplace's transform of Vr .
Void ratio.
Value of void ratio determined by iteration.
initial void ration.
final void ratio on the impervious bottom.
void ratio of grid point j at time level n.
velocity of solid.
velocity of porewater.
material co-ordinate.
material height of deposits.
dimensionless thickness of deposits, =Co.Zo/Cv .
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a

a'

o
0'

0'
c

p

Co.Zo
2.Cv

Co. (Zo-Z)
2.Cv

= final gradient of void ratio on the impervious bottom.
total vertical stress.
effective vertical stress.
reference effective stress.
water density.
solid density.

- normalized material co-ordinate, =Z/Zo .
spatial step (normalized).
weight in time (in numerical scheme)
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• loc.tion 'De Voorst'

• mai n office

main office
Rotterdamlewq185
p.o. box 177
1600 MH Delft

- The Netherlandl
telephon. (31) 15- 56 93 53
telefax (31) 15- 61 96 74
telex 38176 hydel-nl

location •De Voont'
Voonterwe,18, Marknelle
p.o. box 151
8300 AD Emmeloord
The N.therlandl
tel.phon. (31) 5174-19 11
telefax (31) 5174- 35 13
telex 41190 hylwo-nl
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• Amoterdam


