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Abstract

In this thesis I use a novel approach to estimate the economic impact of the 2021

Limburg flood using high-frequency transaction data from ABN AMRO bank. High-

frequency bank transaction data have previously been proven valuable in accessing the

economic impact of the COVID-19 pandemic (Neuteboom et al., 2021). To the best of

my knowledge, this type of data has not been used to estimate the economic impacts

of a natural catastrophe. I focus on a synthetic difference-in-differences methodology

to estimate the impact. I find that the economic impact is 18,045 EUR on average of

extra spending per inundated individual in Valkenburg aan de Geul, the most heavily

hit area. This is very similar to the damage estimate of the ENW (2021) of 18,713

EUR on average per person for the inundated in Valkenburg aan de Geul. Further-

more, the duration of the economic impact for the inundated is roughly 35 weeks

on average. Finally, I did not find a measurable economic impact to uninundated

and evacuated individuals. In summary, high-frequency bank transaction data paired

with a synthetic difference-in-differences model is a reliable gauge of the economic

impact of a flood and should be used to estimate the economic impact of future natu-

ral disasters. Additionally, it can be the empirical foundation for calibrating existing

damage models.
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1 Introduction

1.1 Context

North-west Europe was hit by heavy rainfall and floods in July of 2021 causing extensive

damage and loss of life. In particular, the province Limburg in the south-east of The

Netherlands, several provinces in west Germany and the north-east of Belgium were hit.

Overall losses are estimated to be approximately 46 billion EUR and insured losses are

estimated to be approximately 11 billion EUR1, ranking this event second and third glob-

ally in 2021 for overall and insured losses, respectively (MunichRE, 2021). Kreienkamp

et al. (2021) find that heavy rainfall was caused by the low-pressure system ‘Brend’ which

is expected to occur once every 400 years in the current climate. Additionally, they find

that historical climate change potentially contributed significantly to the likelihood of

this event. ENW (2021) find precipitation was predictable between Jul 10 and Jul 11

for the Netherlands, although peak discharge was systematically underestimated. On the

12th, the Veiligheidsregio warned for high water in brooks and the Meuse. Valkenburg

was flooded on the 14th of July. Residents from Valkenburg, Roermond and some areas

by the Meuse were evacuated on the 15th. After the 17th people were able to return to

their homes. Figure 1 shows an overview map of the affected area in The Netherlands.

ENW (2021) find the economic impact is estimated to be in the order of 350 to 600

million EUR, affecting more than 2,500 houses, 5,000 inhabitants and 600 businesses.

These damages are estimated with HIS SSSM, first introduced by Vrisou van Eck and

Kok (2001). Physical damage, business interruption and damage to infrastructure and

crop losses are found to be most significant. Additionally, physical damages to residential

and commercial structures are very irregular, meaning damages vary widely between

buildings. Different from the floods in 1993 and 1995 which mostly affected the Meuse

floodplain, the largest damage occurred in the Geul floodplain, especially in the city of

Valkenburg.

The HIS SSSM method relies on assumption of the maximum damage per unit (e.g.

1Using a proprietary method, see Sampson et al. (2014) for more information.
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Figure 1: Map of emergency ordinances and evacuations (red) and flood contours (blue) in Limburg

and Noord Brabant ENW (2021).

square meter of a house) which can influence the final damage estimate substantially. As

one example, maximum damage for a house may be 1,000 EUR per square meter. How-

ever, in the aftermath of a flood there may be labour cost inflation causing the replacement

value to be substantially higher (Grogan & Angelo, 2005). Additionally, macroeconomic

impacts such as recessions or pandemics may inflate or deflate the replacement values.

1.2 Research questions and hypothesises

The aim of this research is to estimate the economic impact caused by the 2021 Limburg

flood using geo-located high-frequency transaction data. I define the economic impact as

the extra money spend by impacted individuals because of the 2021 Limburg flood. My

goal is to answer the following main research questions:
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Research question 1: How can high-frequency transaction data be used to estimate

the duration of the 2021 Limburg flood impact to individuals?

Research question 2: How can high-frequency transaction data serve as a proxy for

the economic impact to individuals caused by the 2021 Limburg flood?

Research question 3: What is the economic impact and duration of the impact caused

by the 2021 Limburg flood to individuals using high-frequency transaction data?

I use the following hypothesis to support me in answering the aforementioned research

questions:

Hypothesis 1: High-frequency transaction data allow me to compare between flood-

affected individuals and similar but unaffected individuals to measure the economic impact

caused by the flood in a statistically sound manner.

Hypothesis 2: There is a measurable effect to individuals in transaction data following

the 2021 Limburg flood.

Hypothesis 3: The effect is shorter than the length (in time) of the data. Therefore,

I can measure the duration of the effect.

1.3 Literature summary

Flood events can lead to a large spectrum of consequences. Jonkman et al. (2008) give

an overview of flood damages that are commonplace in the literature such as clean-up

costs and damage to residences and vehicles. The economic impact is assumed to be a

subset of these flood damage dimensions. Many of the dimensions may be measurable

using high-frequency bank transaction data since they are paid for by consumers using

bank transfers and cards at point-of-sale (POS) locations (e.g. PIN machine at grocery
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store). Additionally, the ENW (2021) estimate damages for individuals at the Geul area

of the 2021 Limburg flood to be 54-68 million EUR. They use HIS SSSM to estimate

these damages which is based on a bottom-up approach that uses flooded surface area,

propose of use and hydraulic conditions like inundation depth (Slager & Wagenaar, 2017).

Additionally, a damage factor is determined for each building that maps the hydraulic

condition onto a factor that measures the percentage of damage done to a particular

building. Moreover, total damage is calculated by taking the product of the damage

factor and maximum building damage and taking the sum over all affected buildings in

the flooded area. Other models exist to estimate the impact of floods and other natural

disasters. All of these have limited empirical basis and rely on many assumptions, such

as the shape of the damage functions Sampson et al. (2014).

High-frequency transaction data has been used before in different settings. For ex-

ample, Gelman et al. (2014) and Sobolevsky et al. (2017) use high-frequency transaction

data to test consumption smoothing theories and predict socioeconomic indices, respec-

tively. Additionally, Neuteboom et al. (2021) use similar data to infer the impact of the

COVID-19 pandemic to consumer spending. To the best of my knowledge, this type of

data has not been used to estimate the economic impact of natural disasters.

1.4 Methodology

I investigate a novel approach which combines the fields of Econometrics and Hydraulic

Engineering, to evaluate flood damage dimensions using high-frequency transaction and

account records data of ABN AMRO bank (AAB) clients. Even though flood damage

dimensions cannot be precisely measured using this approach, I may be able to estimate

the economic impact using the data as a proxy. A proxy is a variable that is not imme-

diately relevant on its own, but can be used as an indirect measure, when I assume that

the observed variable is strongly correlated with the variable of interest. A well-known

example is gross domestic product (GDP), the net value of all goods and services created

in an economy, which is commonly used as a proxy for well-being. In this case, GDP is

the observed variable and well being is the variable of interest.
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Given that I am interested in estimating the economic impact flood impacted individ-

uals, I require a methodology that can separate the effects of a flood from all other effects

in the transaction data. In particular, I need a method to compare the spending of the

inundated residents and inundated and evacuated residents with a control group (unob-

served counterfactual) that models the behaviour of the group of impacted individuals

(treatment group) as if the flood did not occur. Then, I can subtract the spending from

the treatment group from the unobserved counterfactual to obtain the causal effect of the

flood. To achieve this several methods are commonly used in literature. Two of the most

commonly used methods are difference-in-differences (a.k.a. a fixed-effects panel model)

and synthetic control. Both methods rely on strong assumptions that easily invalidate

the models. When applying difference-in-differences we have to make a parallel trend

assumption. In simple terms, this means that the spending of the treatment group is

equal to the spending of the unobserved counterfactual plus a level shift. When applying

synthetic control I assume that I can match the spending of the unobserved counterfactual

to the treatment cohort using a weighting function (Abadie & Gardeazabal, 2003). Thus

I assume that I can find a group that behaves like the impacted individuals without being

flooded. Arkhangelsky et al. (2021) propose a combination of the aforementioned meth-

ods called synthetic difference-in-differences (SDID) that alleviate these issues to some

extend while keeping the benefits of both models.

1.5 Data

To estimate the economic impact of the 2021 Limburg flood, I use flood and evacua-

tion area coordinates from Slager and Wagenaar (2017). These data contain areas of

inundation, evacuations, blackouts and sludge blockages in the Amersfoort coordinate

system. Additionally, I obtain obtain client information data from ABB. These data con-

tain information such as account numbers, types of clients (individuals/business), names,

birthdates, and residential zip-codes. Moreover, I use the Basisregristratie Adressen en

Gebouwen (BAG) to infer the residential location of AAB clients in the Amersfoort coor-

dinate system. Furthermore, I obtain high-frequency Single Euro Payments Area (SEPA)
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and Point-of-sale (POS) transaction data from AAB from Jan 1, 2018 to Apr 3, 2022.

SEPA is a system that facilitates cashless transactions in Europa. These flows include

items such as online transactions, rent, mortgage & insurance payments, and salaries,

but exclude POS transactions. POS transactions include all purchases made using debit

cards. Each observation contains a transacted amount and meta data such as a time

stamp, account number and textual description.

2 Literature

In the following section I discuss relevant literature which helps me answer the research

questions from section 1.2. First, different flood damage dimensions are discussed. Second,

commonly used damage estimation methods are discussed. Third, the results from ENW

(2021) is summarised. Fourth, an updated version of HIS SSSM, Standaardmethode 2017

Schade en Slachtoffers, a bottom-up method for flood damage estimation, by Slager and

Wagenaar (2017) is discussed. Finally, an overview of economic impact estimation using

surveys and transaction data is given.

2.1 Flood damage dimensions

In this section I give a general overview of flood damage dimensions. Flood events can lead

to a large spectrum of consequences ranging from tangible damages to intangible damages.

Jonkman et al. (2008) give an overview of different dimensions of flood damage that are

commonplace in the literature. For example, if a residential area floods, tangible damage

to homes or infrastructure is hard to avoid. Additionally, floods can lead to intangible

psychological damages which are difficult to value. Table 1 shows different dimensions of

flood damages, inspired by Jonkman et al. (2008), that I measure using high-frequency

bank transaction data. This is because most payments in the Netherlands are done

digitally (DNB, 2021), which means they show up in transaction data records. These

flood damage dimensions are directly paid for by the impacted individuals. Therefore,

transaction data includes the flood damage dimensions from Table 1.
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Table 1: Different dimensions of flood damage inspired by Jonkman et al. (2008) that may be

measurable with high-frequency bank transaction data.

Flood damage dimension Example

Residences Repair costs of flooring, windows, doors, etc.

Durable goods
Replacement costs of washing machines,

kitchen appliences, bycecles, books, etc.

Non-durable goods
Replacement costs of food, bevarages,

clothing, shoes, etc.

Vehicles
Repair or replacement costs of cars or

motorcycles

Clean up costs
Labour costs for professional cleaners or

do-it-yourself items such as drying machinery

Adjustment in consumption patterns
Change in money spend at grocery stores

because of increase/decrease in home cooking

Temporary housing of evacuees
Hotel costs that are made during

repair/dry-up period

2.2 Damage models

There exist many different flood damage estimation methodologies. In this section I

provide a brief overview of some commonly used flood damage estimation methods: pro-

prietary reinsurance catastrophe models, vendor catastrophe models, the simple stage-

damage curve model called Multi-Coloured Manual and a spacial scale model HIS SSSM

which was used to estimate damages in Limburg.

A large part of damages caused by natural disasters is insured. For example, in 2021,

global damages caused by natural disasters were $280 billion of which $120 billion were

insured (MunichRe, 2022). A large portion of this risk is not retained by local insurance

companies but ceded to reinsurance companies such as Munich Reinsurance Company and

Swiss Re Ltd, as these risks are difficult to diversify for local insurance companies (Brahin,
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2015). To value damages, reinsurance companies use propriety models. Unfortunately

this means I do not know how they model damages. However, damage estimates between

reinsurance companies vary substantially. For example, in 2012 Munich Reinsurance

Company and Swiss Re Ltd. estimated damages of floods in Australia to be valued at

$2.8 and $6.1 billion, respectively (Sampson et al., 2014).

Not every reinsurance company has the capability to develop propriety catastrophe

models. To fill this void, vendor models were created, which are proprietary in nature

also. The most commonly used models are created by AIR Worldwide and Risk Man-

agement Solutions (Bermuda:Re+ILS, 2021). Sampson et al. (2014) discuss the modules

proprietary catastrophe models should contain. First, a stochastic module, that is capable

of generating a database of plausible events. Second, a hazard module, used to simulate

a series of events. For example, it should be able to simulate a map of water depths

in case of a flood. Third, a vulnerability module, which calculates expected damages,

similar to damage function, as a function of the water depths in the stochastic module.

These models are developed for a global scale, which creates uncertainty in the damage

functions because these are influenced by a large number of local factors (Sampson et al.,

2014). For example, building type, construction method and precautionary measures.

The previously discussed proprietary reinsurance models are likely of similar composition

to the vendor models (Sampson et al., 2014).

The Multi-Coloured Manual (MCM) is a step-by-step guide to estimates benefits of

flood risk management for the United Kingdom (MCM, 2022). MCM contains methods

for estimating damages to property, vehicle damage, evacuation costs and more. It returns

relatively simple damage estimates as a function of water depth (damage function) for

different objects. On the one hand, the MCM is relatively easy to use and it applies to 75%

to 80% of cases (MCM, 2022). However, it relies on damage functions assumptions. One

can argue this is less problematic than in vendor models, since MCM is only applicable

to the UK.

HIS SSSM a method for estimating expected damage and victims as a result of flooding

(Vrisou van Eck & Kok, 2001). It is a more sophisticated method that MCM as it uses
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spacial data files to infer damages across large regions. Similar to MCM it relies on

damage function assumptions focused on the Netherlands. An estimate of the residential

damages for the Geul area and a more in-depth explanation of the model is given in the

following sections.

2.3 Flood assessment

ENW (2021) discuss the cause and effect of the 2021 Limburg flood. They investigate

different impact categories. In particular, hydrological, civil-technical, economic, social,

crisis response and health. ENW assess the damage caused by the 2021 Limburg flood

using HIS SSSM. They estimate total tangible flood damage to be in the range of 200-

250 million EUR for the Geul area. Additionally, roughly 27% of this damage, or 54-

68 million EUR is attributed to residents. Moreover, roughly 3,150-3,411 adults were

affected in the area (see subsection 4.3). This equates to on-average 15,830-21,596 EUR

per affected individual. Additionally, there is a substantial variability between individual

residential damages estimates. This estimates contains some of the damages in Table 1.

However, HIS SSSM does not include clean up costs, adjustment in consumption patterns

and temporary housing of evacuees. In the following section, we will briefly discuss HIS

SSSM.

2.4 Standard flood damage method

Slager and Wagenaar (2017) propose an update to the methodology of HIS SSSM to

estimate flood damages that is based on a bottom-up approach that uses the flooded

surface area, purpose of use and hydraulic conditions such as inundation depth. Below I

briefly discuss this method.

HIS SSSM estimates damages by taking the sum of all affected building or units that

is assigned a damage value. To obtain this sum several steps are taken. First, the sever-

ity of the flood is investigated and the replacement value of each object is determined.

Particularly, the water depth at each xy-coordinate in the inundation area should be de-

termined using software such as SOBEK. For example, the water depth is estimated at
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the location of each object during the flood. Second, a building register like the Basis-

registratie Adressen en Gebouwen (BAG) is used to label all buildings in the inundated

area (see section 4.3 for more information). Specifically, the BAG records information

such as a ZIP code, xy-coordinates, surface area and purpose of use for every building in

The Netherlands by law . As such, every object can be assigned a purpose-of-use, surface

area and water depth. Additionally, homes can be partitioned into single-family homes

and apartments. In summary, the number of units, the water depth at inundation and a

maximum damage value per surface area is obtained.

Second, total flood damage (S) is estimated by,

S =
N∑
i=1

αinisi, (1)

where αi ∈ [0, 1] is the damage factor for category i, ni is the number of units in category

i, si is the maximum damage per unit (per m2) for category i and N is the total number

of categories. The damage factor αi maps the hydraulic conditions onto a number that

represents the percentage of maximum damage done.

For example, Figure 2 shows a sketch of a damage factor function as a function of

water depth that HIS SSSM may use. Imagine an apartment building with two floors.

The green line represents the ground floor and the blue line represents the first floor.

Water damage will affect the ground floor first, and increasingly so when it rises. The

first floor will only be affected by higher water levels. In this example, 40% of maximum

damage is reached for a 1 meter water level and a 3 meter water level for the ground floor

and first floor, respectively.

To explain this method further, I assume the maximum damage of a two-floor apart-

ment building is 1,000 EUR/m2 (Slager & Wagenaar, 2017). Additionally, I assume a

regional flood with a maximum water depth of 3 m affects 20 apartment buildings with

eight 60 m2 apartments on each floor. Figure 2 shows that the αground floor = 0.9 and

αfirst floor = 0.4. As such, I can estimate the value of total damage to be 12.5 million EUR

by,
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Figure 2: Schematic of water depth versus damage factor inspired by Slager and Wagenaar (2017).

S =

N∑
i=1

(αground floor · ni · si + αfirst floor · ni · si) ,

=

160∑
i=1

(0.9 · 60 · 1, 000 + 0.4 · 60 · 1, 000) ≈ 12.5 million EUR.

(2)

The final value of the flood damage is heavily influenced by the assumptions on the

maximum damage amount of a given object. This can differ substantially between dif-

ferent units of similar categories. In the Netherlands, maximum damage amounts are

determined on the basis of macro-figures provided by the CBS, a governmental organ-

isation charged with publishing statistical information (De Bruin et al., 2015). Similar

to the example before, the maximum damage amount for a single family home is 1,000

EUR per m2 (Slager & Wagenaar, 2017). This does not take into account heterogeneity

between different units. This is especially relevant for a local case like the 2021 Limburg

flood, where damage amounts may be substantially different from national averages. For

example, the difference between replacing laminate and hard-wood flooring alone can run

up into the 100+ EUR per m2. Therefore, differences can be substantial if hardwood floor-
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ing is more popular in Limburg than it is on average in The Netherlands. Additionally,

replacement costs of objects may increase substantially after a catastrophe due to high

demand and labour shortages (Grogan & Angelo, 2005). Moreover, these estimates only

include some of the damages in Table 1. For example, adjustment in consumption pat-

terns or temporary housing is not modelled. Taken together, the underlying assumptions

can significantly influence the total flood damage estimation.

2.5 Sample surveys and transaction data

Sample surveys have been at the core of measuring economic activity ever since the

pioneering work by Hansen et al. (1953). This method is used to collect information from

a subset of a population, to draw conclusions about the entire population. Although,

sample surveys are known to be efficient tools to gather scientifically robust information

if properly executed and well designed, they have several limitations. First, surveys have

seen declining response rates, leading to lower quality and increased costs (Jarmin, 2019),

especially for small areas like Valkenburg. Second, a bias arises in surveys because of the

difference between stated preference and revealed preference. This means people act in a

different way than they proclaim. For example, individuals say they spend less on goods

and services after a flood. However, in reality they spend more. For example, Loomis

(2011) give an overview of the difference between individuals stated willingness to pay

and what they actually pay for products in an experiment setting and find significant

differences. Third, outcomes are usually available with lag and at low frequencies (Chetty

et al., 2020).

Banks and other financial intermediaries are collecting large datasets of individual

transaction and account records as an increasing portion of economic activity is recorded

digitally (Carvalho et al., 2021). This is one of the reasons that national statistical agencies

agree that these data will play a more pronounced role in the 21st century (Jarmin, 2019).

To the best of my knowledge, Gelman et al. (2014) are the first to use high-frequency

transaction and account balance records from a large heterogeneous sample for measuring

economic activity. They use data from Check, an app that collects financial data for its
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users from different financial service providers, to test consumption smoothing theories.

One drawback of this study is overrepresentation of males and younger adults.

Data analogous to the AAB transaction data has been used also. Sobolevsky et al.

(2017) use data by Banco Bilbao Vizcaya Argentaria over the year 2011 to find a correla-

tion between official socioeconomic indices and individual consumer spending. They claim

their modelling approach performs well in predicting the socioeconomic indices. However,

they do not formally test the significance of the output.

Neuteboom et al. (2021) use high-frequency geo-located transactions from AAB clients

in the Netherlands to measure the consumer response to the COVID-19 pandemic. They

find that consumer spending decreases because of self-isolation, not the imposed lock-

downs by the Dutch government. Additionally, they find that consumers adapt their

behaviour as the pandemic evolves. Consequently, latter stages of the pandemic are less

damaging to the economy than earlier stages.

3 Methodology

I am interested in evaluating the effects of floods on consumption by retail and business

clients of AAB using high-frequency transaction and account record data. Therefore, I

require a modelling approach that allows me to evaluate differences in outcomes between

clients that are exposed to a flood (e.g. residents of the city centre of Valkenburg) and

similar clients that are not exposed. In particular, I want to know what would have

happened to the exposed individuals if the flood did not occur. In literature, these

individuals are referred to as units.

I want to compare the period preceding the flood with the period afterwards. As such,

I need to model in two dimensions simultaneously, both in time and across different units.

Data with observations about different units across time are also called panel data. If I

manage to infer how the affected units would have behaved differently after the flood, I can

establish the causal relation between the flood and changes in consumption. In particular,

I can estimate how much affected units spend compared to what they otherwise would
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have.

One issue that arises with this approach is that I only observe one outcome for each

unit. For example, if a resident of Valkenburg is affected by a flood and sequentially

adjusts consumption, I do not observe the consumption of the same resident that is

unaffected by the flood. In statistics this variable is called the unobserved counterfactual.

There are a few additional factors I need to consider when handling panel data. First,

the share characteristics of the group that I am investigatin. Such a group of units is also

called a cohort. For example, the units in a single cohort having similar characteristic

such as age, income and wealth. Second, there are patterns in consumption over time

across different cohorts. Specifically, the Valkenburg cohort will likely spend more in the

weeks before Christmas, but so would other cohorts in the Netherlands. When I add

parameters that can capture these effects, I can automatically remove those effects from

the flood-induced differences (e.g. Heij et al. (2004)). In other words, it removes most of

the omitted-variable bias from the model.

In practice, there are two panel-data models commonly used to work with unob-

served counterfactuals and fixed effects: difference-in-differences and synthetic control

(Arkhangelsky et al., 2021). Additionally, Arkhangelsky et al. (2021) propose a new

method called synthetic difference-in-differences. These methods are generally used to

measure the effect of a policy (Arkhangelsky et al., 2021). For example, the effect of a

smoking tax on cigarette consumption. Difference-in-difference is the most parsimonious

model with the smallest amount of parameters. It is generally applied when there are

many cohorts (or units) that receive a treatment (e.g. the smoking tax), and when a par-

allel trend assumption can be made (Arkhangelsky et al., 2021). This assumption means

that the cohorts are parallel in trend before the treatment. If I want to investigate the

effect of the smoking tax in the Netherlands, I can use cigarette consumption of countries,

where no cigarette tax is introduced, that have a similar trend in consumption before the

smoking tax starts. For example, when cigarette consumption was decreasing every year

before the smoking tax, this should also be the case in the other countries. Synthetic

control is generally used on a smaller number of units and compensates for the lack of
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parallel trends by re-weighting the units. The main difficulty with this model is that

the consumption before the treatment have to match exactly by applying the weights.

Synthetic difference-in-differences combines the attractive features of these models while

relying on fewer assumptions (Arkhangelsky et al., 2021). To the best of my knowledge,

synthetic difference-in-differences has never been applied to estimate the economic impact

of a flood. In the following sub-sections, I will delve deeper into the mechanics of these

models.

3.1 Difference-in-differences

One of the most popular methods to measure the aggregate causal effect of a treatment

on a cohort is difference-in-differences, first introduced by Snow (1855). The unobserved

counterfactual is another cohort that has a parallel trend in the endogenous variable

relative to the treatment cohort. The endogenous variable is the variable to be explained

by the model (y). In our case the treatment is the inundation or evacuation of residents

and the endogenous variable is consumption via transaction and accounts record data. To

explain this method, I will use the schematic in Figure 3. Let’s say the red line represents

aggregate amount of transactions for the treatment cohort (e.g. the Valkenburg group).

Furthermore, the blue line is a control cohort made up from a random selection of clients

and I assume that the transactions before the treatment are parallel to the treatment

cohort. After the beginning of the treatment there appears to be a positive level shift

for the treatment cohort relative to the control cohort. Because the consumption for the

treatment and control cohort is parallel ex-ante, I can imagine consumption would have

followed the black striped line if the treatment did not occur. Thus, I assume that the

black striped line is the unobserved counterfactual. The average effect of the treatment

τ is the average difference between the consumption of the treatment cohort and the

unobserved counterfactual.

Mathematically I can decompose the consumption y of cohort i ∈ 1, . . . , N at period

t ∈ 1, . . . , T as,
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Figure 3: Schematic of difference-in-difference treatment effect.

yit = µ+ αi + βt +Witτ
dd + εit, (3)

where µ ∈ R is a constant that is time invariant and equal across cohorts, αi ∈ RN is

a time invariant cohort fixed effect, βt ∈ RT is a time fixed effect that is equal across

cohorts, Wit ∈ {0, 1} is a treatment indicator where 0 indicates no treatment and 1

indicates treatment, τdd ∈ R is the average difference-in-differences treatment effect on

the treated cohort, εit is the residual (captures what I cannot explain with the model).

The control cohort can be an average of different untreated cohorts. For example,

when I apply this method to a treatment cohort such as the Valkenburg group, I create a

control cohort by randomly sampling N groups with similar size and taking the arithmetic

mean over each period to obtain the averaged control cohort time series.

The average treatment effect τdd can be estimated with the following estimator,

τ̂dd =

 1

Tpost

T−1∑
t=Tpre

y0,t+1 −
1

Tpre

Tpre∑
t=1

y0t

−
 1

Tpost

T−1∑
t=Tpre

yc,t+1 −
1

Tpre

Tpre∑
t=1

yct

 , (4)
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where i is equal to 0 and c for the treatment and averaged control cohort respectively,

Tpost is the length of the series after the treatment, Tpre is the length of the series before

the treatment (Arkhangelsky et al., 2021). As one example, when I consider the con-

sumption of the Valkenburg cohort, I can estimate τdd by first computing the average

consumption ex-post minus the average consumption ex-ante for the Valkenburg cohort.

Then I subtract the average consumption ex-post minus the average consumption ex-ante

of the averaged control cohort. One benefit is that τdd does not depend on the estimates

of the fixed effects. This is because these terms disappear from the estimator. Specifically,

the fixed effect for the Valkenburg cohort αi will disappear because I assume it is equal

ex-post and ex-ante. Additionally, the time fixed effects βt disappears because I assume

it is equal for the Valkenburg cohort and control cohorts.

3.2 Synthetic control

The main downside of difference-in-differences is the parallel trends assumption. Abadie

and Gardeazabal (2003) first introduced synthetic control to alleviate this issue. Synthetic

control methods re-weights the untreated cohorts to compensate for the lack of parallel

trends. Particularly, this re-weighted control cohort is set to match the treatment cohort

ex-ante. Figure 4 shows a schematic of the synthetic control method. Again, let’s assume

that the untreated cohorts are made up from a random selection of clients with a similar

size to the treated cohort. Now I do not make the parallel trend assumption as before.

Instead I add a degree of freedom for every untreated cohort and allow the model to find a

weight for each untreated control cohort such that the weighted sum of their consumption

y matches that of the treatment cohort. When I am able to perfectly match the weighted

control cohort to the treated cohort I obtain something similar to Figure 4.

Because I re-weight the untreated cohorts to match the treated cohort I no longer take

into account unit fixed effects (αi). Mathematically, I decompose the consumption y of

cohort i at period t as,

yit = µ+ βt +Witτ
sc + εit (5)
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Figure 4: Schematic synthetic control treatment effect.

where τ sc ∈ R is the average synthetic control treatment effect on the treated cohort

which can be estimated with,

τ̂ sc =

 1

Tpost

T−1∑
t=Tpre

y0,t+1

−
 1

Tpost

T−1∑
t=Tpre

yc,t+1

 where yct =
N∑

n=1

ω̂sc
n ynt, (6)

where ωsc
n ∈ R are weights (Arkhangelsky et al., 2021). In words, when I match the

consumption of the weighted control cohort with the treated cohort ex-ante, and I assume

that this relation remains stable ex-post, I can simple subtract the average consumption

of the weighted control cohort from the average consumption of the treated cohort ex-

post in order to estimate the treatment effect. Thus, I assume that the weighted control

cohorts consumption ex-post is equal to the unobserved counterfactual of the treatment

cohort.

I use slightly modified version of Arkhangelsky et al. (2021) formulation of the esti-

mator of the control weights ωsc which is given by,
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ω̂sc = argmin
ω∈Ω

l(ω) where l(ω) =

Tpre∑
t=1

(
N∑

n=1

ωnynt − y0t

)2

,

Ω =

{
ω ∈ RN

+ :
N∑

n=1

ωi = 1

}
,

(7)

where R+ denotes the positive real line and the elements of vector ω are the weights

for the untreated control cohorts. The vector ωsc is the argument of the function l(ω)

at the location where the output is minimal. In particular, I search ωsc for which the

summed consumption of the weighted control cohorts (i = n for n ∈ 1, 2, .., N) is closest

to the treatment cohort (i = 0) ex-ante. By bounding the elements of ω between zero and

one and constraining the sum of the elements of ω to one, I obtain a weighted average

consumption when I sum the product of the elements of ω with the consumption of cohorts

for each period (
∑N

n=1 ωnynt for t = 1, 2, . . . , T ). I can solve Equation 7 numerically with

the Sequential Least Squares Programming algorithm (Dieter, K., 1988).

3.3 Synthetic difference-in-differences

While synthetic control removes the parallel trend assumption, it add other issues. First, I

assume that I can match the consumption of the weighted control cohorts to the treatment

cohort. In practice, this is quite difficult. This can result in a bias, where I will find a

treatment effect in periods where the treatment did not occur. Second, if the data is

noisy, Equation 7 can cause over-fitting. Let’s say I can decompose all data into a signal

and noise component. The signal represents the information in the data I am interested in

and the noise is the meaningless information in the data. Figure 5 shows two schematics.

On the left, I happen know what the true signal is and can directly measure the noise

in the data as the distance between the data and the signal. On the right, I allow the

model to exactly fit the data. This may reduce the distance between each data point and

the black model line but loses most of the signal. Preferably, I only capture the signal

when modelling. When dealing with many parameters such as in synthetic difference I

should be watchful. In particularly, the ω vector adds N parameters to the model. I can

also interpret this as adding N degrees of freedom to the model to find a ‘better’ fit. If I
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Figure 5: Left ‘true’ signal, data and noise. Right, example of an overfitted model that loses the

information contained in the signal.

predict the unobserved counterfactual (Figure 4) with an over-fitted model I introduce a

bias into the treatment effect.

Arkhangelsky et al. (2021) propose a new method called synthetic difference-in-differences

that combines the attractive features of difference-in-differences and synthetic control

while alleviating the aforementioned issues. I use the same decomposition of consump-

tion as with difference-in-differences which is given by,

yit = µ+ αi + βt +Witτ
sdid + εit, (8)

where τ sdid ∈ R is the average synthetic difference-in-differences treatment effect on the

treated cohort which can be estimated by,

τ̂ sdid =

 1

Tpost

T−1∑
t=Tpre

y0,t+1 −
1

Tpre

Tpre∑
t=1

y0t

−
 1

Tpost

T−1∑
t=Tpre

yc,t+1 −
Tpre∑
t=1

λ̂tyct

 where,

yct =
N∑

n=1

ω̂sdid
n ynt,

(9)

where λ̂t ∈ (0, 1) for t = 1, 2, . . . , Tpre is an estimated period weight and ω̂sdid
n ∈ (0, 1)

is an estimated control weight (Arkhangelsky et al., 2021). The intuition behind the
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Figure 6: Schematic of the synthetic difference-in-differences treatment effect (τ).

control weights is similar as before. However, they add a constant and alleviate the over-

fitting problem with regularisation. Additionally, the time weights λt allow the model to

focus on consumption in periods ex-ante that are similar in consumption ex-post for the

control cohorts. Intuitively this makes sense, if the flood occurs in the summer, I prefer

to measure the effect against previous summers that did not experience a flood.

Figure 6 shows a schematic of the synthetic difference-in-differences (SDID) model.

The observations of the treatment cohort are shown in red and the observations of the

weighted control cohort in blue. The model finds weights such that the weighted con-

trol cohorts consumption matches the treatment cohorts consumption. However, different

from synthetic control, SDID adds an extra parameter ω0 to take into account a level dif-

ference between the two series. Additionally, period weights λt and constant λ0 are added

which allows the model to find periods that are similar on average to the consumption of

the weighted control cohort ex-post.

I use the formulation of Arkhangelsky et al. (2021) for the estimator for ωsdid and ω0,

which is given by,
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(
ω̂0, ω̂

sdid
)
= arg min

ω0∈R,ω∈Ω
l (ω0, ω) where ,

l (ω0, ω) =

Tpre∑
t=1

(
ω0 +

N∑
n=1

ωnynt − y0t

)2

+ ζ2Tpre ||ω||22,

Ω =

{
ω ∈ RN

+ :
N∑

n=1

ωi = 1

}
,

(10)

where ζ is set to roughly match the size of a typical one-period change in consumption

for the untreated control cohorts ex-ante, ||ω||22 is the squared second norm of the unit

weights vector which ensures the weights do not deviate too much from 1/N to prevent

over-fitting while ensuring a unique solution. For example, the global minimum of ||ω||22
with 4 elements is obtained at (1/4, 1/4, 1/4, 1/4). The value of ||ω||22 increases when the

difference between the elements in ω increases. In other words, regularisation adds a cost

to the optimisation function when more weight is put on a specific untreated cohort(s).

Additionally, regularisation ensures the uniqueness of the weights (Doudchenko & Imbens,

2016). The regularisation parameter ζ is estimated by,

ζ = T
1/4
post σ̂ with,

σ̂2 =
N∑

n=1

Tpre −1∑
t=1

(
∆nt − ∆̄

)2
, where ∆nt = yn(t+1) − ynt,

and ∆̄ =
1

Tpre − 1

N∑
n=1

Tpre −1∑
t=1

∆nt,

(11)

which measures the intensity of one-period changes in the endogenous variable scaled

by the number of periods in the ex-post window. This means that the regularisation

parameter increases when the expected intensity over the period Tpost increases. In other

words, we trust the weights of ωsdid less when consumption y for the untreated cohorts is

expected to fluctuate more ex-post. Consequently, we penalize the optimisation function

l(ω0, ω) in Equation 10 such that it limit the captured noise. Additionally, I follow

Arkhangelsky et al. (2021) to estimate λ and λ0 by,
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(
λ̂0, λ̂

)
= arg min

λ0∈E,λ∈Λ
l (λ0, λ) where,

l (λ0, λ) =

N∑
n=1

λ0 +

Tpre∑
t=1

λtynt −
1

Tpre

T−1∑
t=Tpre

yn,t+1

2

,

Λ =

λ ∈ RN
+ :

Tpre∑
t=1

λt = 1

 .

(12)

In words, I try to find λ̂0 and λ̂ such that the difference between the weighted sum of

the untreated control cohorts ex-ante plus a level
(
λ0 +

∑Tpre

t=1 λtynt

)
is as close as possible

to the arithmetic mean of the untreated control cohorts ex-post
(

1
Tpre

∑T
t=Tpre +1 ynt

)
. It

is possible to regularise Equation 12 as well. However, I want to allow the model to load

up on periods ex-ante that are like the observations after the flood. For estimating τ sdid

I follow algorithm 1 from Arkhangelsky et al. (2021).

Algorithm 1: SDID estimator steps

Data: Wit, yit for i ∈ 0, 1, . . . , N , and t ∈ 1, 2, . . . , Tpre , Tpre + 1, . . . , T

Result: Point estimate τ̂ sdid

Compute ζ using Equation 11;

Estimate ω̂sdid using Equation 10;

Estimate λ̂ using Equation 12;

Estimate τ̂ sdid using Equation 9;

3.4 Large-sample inference

The estimated treatment effect using the methods in the previous section will most prob-

ably yield a result different from zero in any scenario. This raises the question: how do I

know with certainty that the effect of the treatment can be attributed to the treatment.

To answer this question I need to have a method which I can use to formally test our

result. Specifically, I want to apply a formal test to the null hypothesis τ = 0 against

the alternative τ ̸= 0. For this, it is useful to know the distributional properties of τ .
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Arkhangelsky et al. (2021) formally show that,

τ̂ sdid → N (τ, Vτ ) (13)

where τ is the real but unknown treatment effect, Vτ is the real but unknown variance of

the real treatment effect and (N(·)) is the normal distribution. I follow Arkhangelsky et al.

(2021) placebo variance estimation method to estimate Vτ in algorithm 2. For example,

let’s say I have 20 untreated control cohorts. First, I remove the treatment cohort from

y and give the placebo to the first untreated cohort and estimate the effect with the

remaining untreated cohorts. Second, I repeat this for the remaining 19 untreated cohort.

Finally, I estimate the variance of the treatment effect by estimating the variance of the

placebo treatment effects.

Algorithm 2: Placebo variance estimation

Data: yit for i ∈ 1, . . . , N , and t ∈ 1, 2, . . . , Tpre , Tpre + 1, . . . , T

Result: Variance estimate V̂ placebo
τ

j ← 0;

while j < N do

Control cohort j receives placebo and is set as the treatment cohort;

Estimate τ̂j against remaining untreated control cohorts;

j ← j + 1;

end

V̂placebo
τ ← 1

N

∑N
j=1

(
τ̂j − 1

N

∑N
j=1 τ̂j

)2

I now have all the information to formally test the null hypothesis against the alter-

native hypothesis by,

tτ̂
def
=

τ̂√
V̂ placebo
τ

∼ t(n− k), (14)

where tτ̂ is the test statistic, t is the student-t distribution with n−k degrees of freedom,

n is the number of observations and k is the number of estimated parameters. I use

the student-t distribution because I approximate the relation in Equation 13 with an
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estimate of Vτ . However, in practice n−k becomes very larges which causes the student-t

distribution to converge back the normal distribution. Using Equation 13 I can build a

1− α confidence interval by,

τ ∈ τ̂ ± Zα/2

√
V̂ placebo
τ (15)

where zα/2 follows the standard normal distribution (for large samples). When this con-

fidence interval does not include zero, I can reject the null hypothesis with significance

level of α. For example, the 99% confidence interval is given by,

τ ∈ τ̂ ± 2.58

√
V̂ placebo
τ (16)

In other words, there is a 99% probability that the interval τ ∈ τ̂±2.58
√
V̂ placebo
τ contains

the true parameter τ .

The validity of the placebo variance estimation relies on the homogeneity of variances

assumption. This means that the control cohorts have similar variance relative to the

treatment cohort. We can test this assumption by performing a test of the difference of

two variances for each treatment/control pair (Heij et al., 2004). The hypothesis of the

tests are: H0 : σ2
1 = σ2

2 against H1 : σ2
1 ̸= σ2

2. I can perform the test by computing the

test statistic by,

F =
s21
s21

, (17)

where si for i ∈ {1, 2} are the estimated variances of the transaction data before the flood.

I reject the null when the p-value is smaller than α (commonly 0.05 or 0.01). The p-value

is computed by,

p−value = Fcdf(F, df1, df2), (18)

where Fcdf is the CDF of the F distribution, df1 are the degrees of freedom of the first

sample and df2 are the degrees of freedom of the second sample. The degrees of freedom

can be computed with n− 1, where n is the length of the sample. For example, take two

samples of n = 100. The first sample has a variance of 1 and the second sample has a
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variance of 3. First, I compute the test statistic which is F = 0.33. Second, I compute the

p-value which is Fcdf(0.33, 99, 99) = 0.00. Thus, I can formally reject H0 at an α = 0.01

significance level. Consequently, the assumption of homogeneity does not hold and we

cannot use this sample in the placebo variance estimator.
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4 Data

4.1 Flood and emergency ordinances

To answer the research questions, I need to know which areas where impacted by the 2021

Limburg flood. Therefore, I obtain flood and evacuation area coordinates from Slager et

al. (2021). These data contain areas of inundation, evacuations, blackouts and sludge

blockages in the Amersfoort coordinate system. Figure 7 shows a subset of the data of

flood and evacuation information of the area surrounding Valkenburg (ENW, 2021). The

line shows the river Geul, red and yellow are evacuated areas, lightblue inundated areas,

light green indicates power blackouts and darkblue ares are blockages caused by sludge.

Some inundated areas were not evacuated while others were. This was caused by an

underestimation of the severeness of the flood which surprised many as the crisis moved

from south to north (ENW, 2021). Additionally, because of the relatively small scale of

the flood, I do not differentiate between inundated and evacuated areas and inundated

and unevacuated areas. The two areas of interest I use in this thesis are inundated and

uninundated and evacuated.

4.2 Clients

To infer the economic impact of a flood I need to find ABN AMRO Bank (AAB) clients

that live in the affected area. Consequently, I obtain client information data from ABB

(9.197 · 106 clients). These data contain information such as account numbers, types of

clients (individuals/business), names, birthdates, and residential zip-codes. I transform

the data by filtering for individuals from the Netherlands. Furthermore, I remove all

deceased clients that were in the data prior to the flood.

4.3 Building information

I require residential coordinates of ABBs clients to create groups containing the inundated

and evacuated. For this purpose, I obtain the Basisregistratie Adressen en Gebouwen

(BAG) (Kadaster, 2022). The BAG (9.096 · 106 observations) is maintained by munici-
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Figure 7: Map of flood and evacuation information from ENW (2021) for the area surrounding

Valkenburg. The darblue line shows the river Kleine Geul, red and yellow are evacuated areas,

lightblue inundated areas, light green indicates power blackout and darkblue ares are blockages

caused by sludge.

palities and is updated daily. It contains information such as status, construction year,

use-purpose, zip-code and most importantly, coordinates (Amersfoort coordinate system)

on every building in the Netherlands. Different buildings can have the same zip-code. As

such, different clients can live on the same zip-code with slightly different locations (e.g.

on the same street at a different number). Therefore, I do not know exactly where a client

lives, but do know all coordinates of the buildings on the street where the clients lives.

As such, I transform the data by computing the centre point of all coordinates of a single

zip-code and use that as the estimate for the location of all the addresses in a zip-code.

Next, I join the client data with these location estimates by matching zip-codes of the

client data with the transformed zip-codes. Thus, I obtain an estimate for the residen-

tial location in Amersfoort coordinate system for each ABB client. Moreover, I retrieve
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Figure 8: Age distribution of Valkenburg aan de Geul population and AAB inundated cohort

(CBS, 2022).

all clients that live in the inundated Valkenburg area and evacuated-but-not-inundated

areas. Additionally, I sample 30 random cohorts for both the evacuated and inundated

cohort with a similar sizes from the entire Dutch AAB population. Finally, I anonymize

the data by removing all names and postal codes from the final cohorts. In summary, I

store 249 inundated Valkenburg clients and 30x249 control clients. Additionally, I obtain

1,996 evacuated-but-not-inundated clients and 30x1,996 control clients.

Figure 8 shows the age distribution of the population of the municipality of Valken-

burg aan de Geul and the inundated cohort (CBS, 2022). The total populaton size of

Valkenburg aan de Geul is equal to 16,353. Furthermore, ENW (2021) find that roughly

3,840 to 4,160 individuals were impacted. I am only interested in the adult population.

Therefore, I assume the distribution of the entire population is similar to the inundated

population. Therefore, I remove the CBS ratio of the 0 to 20 year from the ENW esti-

mate, which is approximately 18%. This results in a adult inundated population of 3,150

to 3,411 people. Additionally, Figure 8 shows that the inundated cohort is younger on

average than the population.
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4.4 Transactions

To infer economic impact of the 2021 Limburg flood, I obtain high-frequency SEPA and

POS transaction data from AAB from 1 Jan 2018 to 1 Feb 2022 (6.480 · 109 and 4.285 ·

109 observations, respectively). These data cannot be shared publicly because they are

proprietary and privacy sensitive. SEPA is a system that facilitates cashless transactions

in Europa. Table 2 shows summary statistics for the raw SEPA and POS transactions.

SEPA clearly shows outlier behaviour with a minimum and maximum in the order of tens

of billions. Additionally, mean and median of transaction amounts are quite different.

Consequently, skewness is likely present in the data. Furthermore, the distance between

minimum and 25% quantile and the 75% quantile and maximum show signs of high

kurtosis. The PIN data seems more realistic. However, since outliers are present in the

SEPA data may also be the case in the PIN data. Additionally, the data shows signs of

skewness and high kurtosis as well.

To get a better understanding of the data I split the SEPA transactions into two sets.

One bounded between -100,000 and 0 EUR, the other bounded between 0 and 100,000

EUR. Additionally, I bound the PIN transactions from -5,000 to 0 EUR (as these are

mostly negative). By bounding I keep more than 99% of the data while removing most

outliers. Additionally, the data is easier to interpret. SEPA+, which is bounded between

0 and 100,000, includes transactions such as salaries, pensions and allowances. Mean

transactions size is relatively high at 740 EUR while the median is approximately 64

EUR, which indicates that large transactions positively skew the distribution. Moreover,

Table 2: Summary statistics of raw SEPA and PIN transaction amounts from 1 Jan 2018 to 1 Feb

2022 for the Netherlands.

Type
Size

(·109)

Mean

[EUR]

Stdev

[EUR]

Min

[EUR]

25%

[EUR]

50%

[EUR]

75%

[EUR]

Max

[EUR]

SEPA 6.48 −79.80 1.34 · 107 −4.90 · 1010 −53.11 −7.99 48.50 4.90 · 1010

POS 4.30 −25.49 123.70 −50, 000 −25.42 −11.40 −5.00 50, 000
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Table 3: Summary statistics of bounded SEPA and POS transactions from 1 Jan 2018 to 1 Feb

2022 for the Netherlands. SEPA low and high are bounded between -100,000 and 0 EUR and 0

and 100,000 EUR, respectively. Additionally, POS is bounded between -5,000 and 0 EUR.

Type
Size

(·109)

Mean

[EUR]

Stdev

[EUR]

Min

[EUR]

25%

[EUR]

50%

[EUR]

75%

[EUR]

Max

[EUR]

SEPA+ 2.28 739.96 3780.24 0.00 20.00 63.80 300.00 100, 000

SEPA− 3.63 −454.27 3072.61 −100, 000 −144.94 −45.00 −15.24 0.00

POS 4.27 −25.05 68.57 −5, 000 −25.50 −11.48 −5.00 0.00

standard deviation is high at approximately 3800 EUR, indicating some transactions run

into the tens of thousands. SEPA−, which is bounded between -100,000 and 0 EUR,

includes transactions such as online purchases and rent payments. Interestingly, the

absolute value of the mean and median are lower than in SEPA+. However, skewness is

still present in the data. Summary statistics do not change substantially by bounding

PIN transactions but for the standard deviation which is much lower as expected.

I transform the data by matching the account numbers from the cohorts from the

previous section to the SEPA and POS data. As such, I obtain high-frequency anonymized

SEPA and PIN data from 1 Jan 2018 to 1 Feb 2022 for each cohort. Furthermore,

I combine SEPA− and POS data for each cohort with the bounds from the previous

paragraph. In the following section, these transaction amounts will be referred to as

transactions. All transformations have been programmed in Python for this thesis.

Each transaction contains textual information. It may contain a description of why

the transaction was made or the name of the counterparty that was on the other side of

the transactions. Unfortunately, because of data quality issues, these labels are sparse

and often wrong. This means many transactions are not labelled or incorrectly labelled.

This is especially true for SEPA transactions, where I expect most of the damages will be

recorded.

31



Figure 9: Four-week rolling-window of weekly transaction amounts for the control cohort with

estimated SDID unit weights (ω̂sdid) and the treatment cohort from Jan 1, 2019 to Apr 4, 2022.

5 Results

The following section shows the results from the model explained in section 3. First,

the duration of the economic impact caused by the 2021 Limburg flood is investigated.

Second, the value of economic impact caused by the flood is determined. Finally, I look

into the impact to different transaction sizes.

5.1 Duration economic flood impact

Figure 9 shows a four-week rolling-window of total weekly transactions for the inun-

dated treatments cohort and weighted control cohort. The latter is created by taking

the weighted sum of the control cohorts total weekly transaction using ω̂sdid from Equa-

tion 10. Total transactions are increasing slowly over time for both cohorts. Additionally,

around Christmas the transactions peak. Moreover, the transactions of the treatment

cohort follow the modelled control relatively well before the flood, albeit with more fluc-

tuations. This is expected since the modelled control cohort is a weekly weighted sum

of the original control cohorts, which can lower the standard deviation because of sub-

additivity (σ1+2 ≤ σ1 + σ2). This does not influence the estimated effect, because it
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Figure 10: Economic impact point estimates (τ̂ sdid) for an expanding window.

only takes into account level differences. Furthermore, I formally test for differences in

the weekly standard deviations between the treatment cohort and all the control cohorts

before the flood, separately. I cannot reject the null hypothesis of equal variances for any

of the pairs at a 1% significance level. Consequently, the assumption of homogeneity in

the variances holds. In other words, the variances of the treatment and control cohorts

are statistically the same. Moreover, weekly transactions seem to increase substantially

after the flood for a period lasting several months before reverting back to that of the

weighted control cohort.

Figure 10 shows model estimates τ̂ sdid from algorithm 1 in an expanding window

for the inundated treatment cohort. The expanding window starts with the transaction

amounts of the fist week after the flood to compute τ̂ sdid1 . Then, it computes τ̂ sdid2 using

the transaction amounts from first and second week. Next, τ̂ sdid3 is computed using

transaction amounts from the first, second and third week. This is done until all weeks

after the flood are included in the final estimate τ̂ sdidN where N is the total number of weeks

after the flood. The result of Figure 10 can be interpreted as the cumulative economic

impact caused by the flood up to week t. Interestingly, the economic impact is increasing

and concave down in time before normalising. This means, the economic impact levels

off to a value around 18,000 EUR per person after 35 weeks, which is in line with the

visualisation in Figure 9. Taken together, these findings show that the transaction data

33



Table 4: SDID model results using aggregated and anonymized total transactions for the inun-

dated and uninundated & evacuated sample. Total transactions is the average of the sum of all

transactions for the treatment cohort. Additionally, τ shows the point estimate and standard error

of the SDID model for the economic impact of the flood (see Equation 16). Moreover, the duration

is the number of weeks which is included in estimating the effect. ∗∗∗ shows a 1% significance

level for the estimate. Duration of uninundated and evacuated is not available since there is no

significant effect.

Sample Total trans. amount [EUR/p] τ (s.e.) [EUR/p] Duration [weeks]

Inundated 57, 099 18, 045∗∗∗ (2, 161) 35

Uninundated

& evac.
39, 612 348 (1, 516) N/A

allows measurement the duration of economic impact caused by the 2021 Limburg flood

and support hypothesis 2 and 3 from section 1.

5.2 Economic flood impact

Table 4 shows the model estimates of the economic impact caused by the 2021 Limburg

flood. For the inundated cohort, the economic impact is approximately 18,045 EUR per

person on average at a 1% significance level from 19 Jul to 3 Apr. Consequently, from the

total transaction amount of 57,099 EUR per person, approximately 32% can be attributed

to the flood (18,045/57,099). How do I determine the significance level? Arkhangelsky et

al. (2021) show that the SDID estimator is asymptotically normal. Therefore, I can draw a

distribution of the economic impact using τ̂ sdid and V̂ placebo
τ as estimates for the mean and

variance of the asymptotic normally-distributed economic impact. Figure 11 shows the

inferred distribution of the total average economic impact per inundated residents after

the 2021 Limburg flood. Specifically, the null hypothesis of τ = 0 against the alternative

hypothesis τ ̸= 0 is rejected when the probability (p-value) that τ = 0 is small. In this

case, the value is equal to 0.00%, which is well below 1%. Therefore, I formally reject

the null hypothesis of τ = 0 with a 1% significance level. This supports hypothesis that
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high-frequency transaction data allows me to compare between flood-affected individuals

and similar but unaffected individuals to measure the economic impact caused by the

flood. Another way to interpret the estimate is that there is a 99% probability that the

interval 12,470 to 23,620 EUR per person contains the true economic impact caused by

the 2021 Limburg flood.

Table 4 shows no significant economic impact for the uninundated and evacuated

cohort caused by the 2021 Limburg flood. The estimated effect is equal to approximately

348 EUR per person on average with a standard error of 1,516 EUR. This indicates the

model estimates a 99% confidence interval for the economic effect to be -3,563 to 4,260

EUR per person. Thus, using this approach, there is no way of telling whether there is

an effect (since zero is contained in the interval). Consequently, I am not able to measure

the economic impact for this group using high-frequency bank transaction data. However,

the larger size of the cohort reduces the standard error relative to the inundated cohort

(1,516 versus 2,161).

Interestingly, the point estimate of the total economic impact per person of the inun-

dated is contained in the range estimated by the ENW (2021) of 15,830-21,596 EUR per

person (average of 18,713 EUR). However, the range of the SDID estimate is wider, which

could be caused by the following reasons. First, the HIS SSSM, used by the ENW to es-

timate damages, may underestimate the variability in maximum damage values. Second,

the outliers in high-frequency transaction data creates noise which inflates the placebo

variance. This is because the placebo variance is computed by estimating τ̂ sdid for all

control cohorts and estimating the standard deviation. If the transaction data of the

control groups contains outliers, this will increase the standard deviation. It is important

to note that the variance of the economic impact is derived from the variance of control

cohorts after the flood. Consequently, it is not a function of the economic impact itself

and should not be interpreted as the range of the economic impact. However, it is useful

to formally test hypotheses. Furthermore, larger sample sizes should lower the standard

error, similar to the uninundated and evacuated cohort.

Table 5 shows SDID model estimates for three transaction bins. These bins contain
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Figure 11: Distribution of estimate economic impact for inundated residents caused by the 2021

Limburg flood in EUR per person. ENW (2021) flood damage estimate is indicated by the green

box.

transaction sizes between certain amounts and allow me to get more insights into which

categories of transactions are causing the significant economic impact. First, the economic

impact between 0 and 1,000 EUR per transaction, is approximately 969 EUR per person

on average, at the 5% significance level. Additionally, I estimate that the duration of the

impact is roughly 23 weeks in a similar manner as before. Second, the economic impact of

the 2021 Limburg flood, for transactions between 1,000 and 5,000 EUR, is approximately

2,268 EUR per person on average, at a 5% significance level. The duration for this

bin is roughly 31 weeks. Finally, 5, 000 − 100, 000 per transaction, shows a significant

difference in transactions between the treatment and control cohort of approximately

13,614 EUR per person on average at the 1% level with a duration of approximately 34

weeks. However, the assumption of homogeneity across variances does not always hold.

Consequently, some control cohorts are removed that do not pass the test. As such, the

results should not be compared one-on-one with the results in Table 4.

The first bin (0 − 1, 000 EUR) in Table 5 includes transactions like the purchases of
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Table 5: SDID model results using aggregated and anonymized total transactions for the inundated

sample segregated in bins. Total transactions is the average of the sum of all transactions for the

treatment cohort. Additionally, τ shows the point estimate and standard error of the SDID model

for the economic impact of the flood (see algorithm 1 and algorithm 2). Moreover, the duration

is the number of weeks which is included in estimating the model. ∗∗∗ and ∗∗ shows a 1% and 5%

significance level of the estimate, respectively.

Transaction bins [EUR]

0− 1, 000 1, 000− 5, 000 5, 000− 100, 000

τ [EUR/p] 969∗∗ (406) 2, 268∗∗ (1, 092) 13, 614∗∗∗ (1, 515)

Total trans. amount [EUR/p] 23,364 9,789 22,923

Duration [weeks] 23 31 35

appliances, home renovation goods, minor construction work and relocation costs. These

transactions are probably relatively easy to finance for the affected individuals, since it

only takes up approximately 4% of total transactions in that bin. Additionally, it takes

a relatively short amount of time for the transactions of the treatment group to return

to levels of the control groups relative to the other bins. This indicates the relative ease

of replacement of durable goods (e.g. washing machine) in a local flood, since supply

at stores is enough to meet the demand of the affected region. Furthermore, it could

indicate affected individuals are able to pay for the replacements themselves instead of

waiting for the insurance money to arrive to make the transaction. Moreover, it may

indicate individuals returning to their homes since relocation costs have diminished.

The second bin (1, 000−5, 000 EUR) in Table 5 includes transactions like home renova-

tions such as flooring repair or major car repairs. They represent 23% of total transactions,

are probably more difficult to finance than the first bin, but are manageable still with

savings. Duration is higher than the smallest bin. This may be caused by the longer times

of completion of home renovation projects. It may be possible that local labour shortages

prolong this effect since the region is not able to source enough workers to renovate so
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Table 6: SDID model estimates for POS transactions with a 99% confidence interval and groceries

category.

Sample Total trans. amount [EUR/p] τ (s.e.) [EUR/p] Duration [weeks]

Total POS 6, 135 1, 096∗∗∗ (171) 35

Groceries 1, 446 −101∗∗ (43) 37

many homes at once.

The third bin (5, 000 − 100, 000 EUR) in Table 5 includes larger home renovations

such as kitchen and bathroom replacements. These transactions represent roughly 60%

of total transactions made in this bin. It seems plausible that these transactions are

harder to finance than the previous two bins. On the one hand, affected individuals are

likely to hold off on renovations until they have received insurance payouts. On the other

hand, there can be be smaller upfront payments that are done to finance big renovation

projects that leak into the first or second bin. For example, a kitchen renovation may

require an up-front payment of 5,000 EUR before renovations begin, for a total cost of

20,000 EUR. The duration of the third bin is the longest at 35 weeks. As stated before,

local labour shortages can prolong the duration since the region is not be able to source

enough workers to renovate so many homes at once.

Unfortunately, I am unable test whether the examples of the previous three paragraphs

are true because of data limitations. This is because the labelling of the transactions is

very sparse for SEPA transactions. However, I can go deeper into the POS transaction

data, because the descriptions of transactions are generally more informative than in

SEPA transactions. Table 6 shows that the economic impact to POS transactions of the

2021 Limburg flood is approximately 1,096 EUR per person, at the 1% significance level.

All of these transactions are in the first two bins of Table 5. While POS transactions

are roughly 19% of total transactions in the first two bins, the economic impact caused

by the 2021 Limburg flood is roughly one-third of the total effect of POS transactions.

This is expected since these bins also contain regular SEPA transactions such as health
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insurance and rents, that are unlikely to be affected.

Interestingly, the economic impact to groceries transactions is -101 EUR per person on

average for a duration of minimally 37 week, at a 5% significance level. Groceries represent

roughly 30% of total POS transactions when the flood effect is excluded. Consequently, it

is a very important measure of non-durable goods spending (e.g. food, clothing and toilet

paper). Additionally, the effect does not appear to end before Apr 3, indicating longer-

term behaviour, especially since these goods are replaced at a high frequency. Groceries

transactions are approximately 7% lower for the treatment cohort relative to the control

cohort ( 1,446
1,446+101 − 1). In summary, the significant negative effect shows there are (longer

term) changes in consumer behaviour caused by the flood.
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6 Discussion

In this sections I discuss the findings of this thesis and the limitations of my analysis. The

aim of this research was to estimate the economic impact caused by the 2021 Limburg

flood using geo-located high-frequency transaction data.

In summary, I have been able to leverage high-frequency bank transaction data to

estimate the duration and size of economic impact of the 2021 Limburg flood. High-

frequency bank transaction data give a complete view of consumer spending. Addition-

ally, differences in consumer spending between an inundated cohort and its unobserved

counterfactual can be used to estimate the economic impact of a flood for inundated indi-

viduals. Furthermore, transaction data allows for the comparison between flood affected

individuals and similar but unaffected individuals to measure the economic impact and

duration caused by the flood.

Modelling high-frequency bank transaction data using synthetic difference-in-difference

I found that the economic impact of the 2021 Limburg flood is approximately 18,045 EUR

on average for the inundated cohort. The economic impact for the inundated is approxi-

mately 32% of transactions during the 35 week period after the flood, or approximately

46% of transactions relative to the transactions of the control cohorts. Furthermore, I

found that the duration of the economic impact is approximately 35 weeks starting from

the week after the flood. Additionally, a large portion of the impact, or 13,614 EUR per

person on average, is in the form of transaction sizes over 5,000 EUR. Furthermore, the

impact with transaction sizes ranging between 1,000 and 5,000 is approximately 2,268

EUR per person on average. Moreover, the impact for transactions smaller than 1,000

EUR is approximately 969 EUR per person on average.

The fact that I find an economic impact over a long period for the inundated may be

explained by (i) large transactions of durable goods that are normally done over several

years are compressed into a smaller period, (ii) renovations are constrained by insurance

payouts and labour shortages, (iii) long dry-up times of inundated residences. For ex-

ample, a kitchen may be replaced once every 20 years by a local construction company.
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The loss of many kitchens at once in the area will increase demand for local shops and

contractors more than supply can catch up. Additionally, walls and floors may be soaking

wet, causing wait times because of the drying process. I conclude that high-frequency

bank-transactions data when modelled with a synthetic difference-in-differences model is

most helpful when evaluating the economic impact and duration of floods for inundated

individuals.

Data quality issues are likely the cause of not being able to partition transactions into

the flood damage dimensions from Jonkman et al. (2008). Each transaction carries textual

information. For example, an insurance payout from a particular insurance company

will have a relevant description and company bank account number. However, for each

insurance company, these descriptions and bank account number are different and hard

to label accurately. On the one hand, these issues make me unable to test differences in

flood damage dimensions. On the other hand, banks are continuously improving labelling

function. Therefore, more should be possible in the future and a repeat of this analysis

should lead to more detailed results.

ENW (2021) found a damage estimate of 15,830 to 21,596 EUR per affected individual

with HIS SSSM, similar to the SDID estimate of 12,470 to 23,620 EUR per affected

individual. However, the range of the SDID estimate is larger and includes more flood

damage dimension. For example, clean up cost, adjustment in consumption patterns

and temporary housing of evacuees is not included in HIS SSSM. It may be that the

adjustment in consumption patterns is negative and of similar magnitude as clean up

costs and temporary housing of evacuees. The wider range of the SDID can be explained

by the relatively small sample I have used (249 clients in the cohorts), which makes the

placebo variance more susceptible to outliers.

My inundated sample is different in composition than the average of the inundated

population. Nationally, AAB is a large bank with roughly 22% market share, but this

is mostly contributed to larger cities (Neuteboom et al., 2021). Additionally, the AAB

sample in Valkenburg aan de Geul is younger on average than the population, 3,280

adult individuals were impacted in the Geul area, my sample holds approximately 250
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individuals, or 8% of the population reported by ENW (2021). Furthermore, standard

errors may reduce when the sample size increases, because the control cohorts size also

increases.

This approach may be structurally over or under estimating the economic impact.

On the one hand, insurance companies or governments may overestimate damages. The

difference may be used by the inundated to pay off mortgages or pay for holidays. There-

fore, transaction data cannot yet be used as an independent economic impact estimate.

However, when better labelling functions are available, it may be possible to filter out

these transactions. On the other hand, the inundated may not be able to finance damages

when insurance companies or the government underestimate the claim. If these individ-

uals have inadequate savings or income to replace or repair damaged items, then the

damages would not show up in the data. For example, if someone loses a newly installed

kitchen worth 20,000 EUR, and replaced it with an inferior kitchen of 15,000 EUR, the

SDID model would report the 15,000 EUR as the damage value. The approach is also

likely to miss damages to rented houses and apartments because these damages will not

be paid for by the renter but by the real estate investor. One possible solution in future

research is to filter out individuals that pay a monthly rent. This should be possible when

labelling functions improve.

Another reason that the approach may be structurally over estimating the economic

impact is because I cannot separate between households and individuals. A household

can have several bank accounts. For example, take a household with one wage-earner and

one homemaker. Both have a private bank account and one shared account. In a perfect

scenario, all accounts are held at AAB. However, the couple can have bank account at

different banks. If only the account of the wage-earning is held ABB, and all damage

dimensions are paid for using that account, it will overestimate the economic impact of

that individual, because in reality it is shared by two individuals.

I was unable to find an economic impact or duration for the uninundated and evacuated

using high-frequency bank transaction data and the SDID model. This may be explained

by the evacuations leading to changes in consumption that are smaller than the average
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variability of the control cohorts or nonexistent. Therefore, I cannot differentiate between

the impact of the evacuation and other unrelated impacts. This issue may be addressed by

looking into specific categories when labelling functions are sufficient. For example, it may

be possible to find a change in consumption at hardware stores, while total consumption

are unaffected.

Looking forward, high frequency bank transaction data should be the basis for esti-

mating the economic impacts of future natural disasters. Additionally, when labelling

functions improve, and flood damage dimensions can be estimated separately, it can lay

the foundation for calibrating excising damage models. For example, I recommend cali-

brating existing damage functions, similar to Wing et al. (2020) study using claims from

the National Flood Insurance Program in the United States. This can improve future

damage estimate from governments, insurance companies and reinsurance companies to

better price disasters, possibly making infrastructure project and insurance policies more

efficient. Additionally, I recommend repeating an experiment similar to Sampson et al.

(2014) to evaluate the output of proprietary reinsurance and vendor catastrophe models.

Furthermore, investigating the income side of the bank transaction data will give more

insight into how affected individuals financially manage the impact or natural disasters.

In particular, it could give more insight into the differences between social layers. For

example, it can show detailed differences between home owners and renters, or wealthy

and poor individuals. I also recommend pooling transaction data of major banks to limit

over estimating the economic impact when a household holds accounts at several banks.
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7 Conclusion

In the following section I revisit the research questions from section 1 followed by answer-

ing the questions one-by-one.

Research question 1: How can high-frequency transaction data be used to estimate

the duration of the 2021 Limburg flood impact to individuals?

Answer: Using synthetic difference-in-differences, the economic impact can be esti-

mated by computing the difference in transactions between the affected individuals and

the unobserved counterfactual. Furthermore, it is assumed that the unobserved counter-

factual observes the behaviour of the affected individual as if the flood did not occur.

To do this exercises, it is required to have both Point-of-Sale and direct cashless trans-

action date between individuals and companies (SEPA in Europe). Furthermore, it is

required to have access to not only the transaction data of the affected individuals but

also unaffected individuals. To construct the unobserved counterfactual, several cohorts

of unaffected individuals must be created of similar size as the affected cohort. The data

is then aggregated per cohort and used as input in the model. The model constructs the

unobserved counterfactual and computes the effect for each week after the flood up to

now. This results in a time series of economic effects, that levels off some time after the

flood, indicating the duration of the effect.

Research question 2: How can high-frequency transaction data serve as a proxy for

the economic impact to individuals caused by the 2021 Limburg flood?

Answer: The answer to this question is mostly similar to the previous question. How-

ever, the result of the previous question is used to answer this question. When the

economic duration in known, the final estimate of the economic effect can be determined

by using the final value of economic impact from the time series of economic effects. Ad-

ditionally, the standard deviation can be estimated using the placebo variance estimator.

The economic impact of the disaster exists and is measurable when the estimate is sta-
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tistically significant.

Research question 3: What is the economic impact and duration of the impact caused

by the 2021 Limburg flood to individuals using high-frequency transaction data?

Answer: The economic impact caused by the 2021 Limburg flood to inundated indi-

viduals was equal to 18,045 EUR on average per person and lasted 35 weeks. Furthermore,

there is no measurable economic impact to uninundated and evacuated individuals.
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Jonkman, S., Bočkarjova, M., & Bernardini, P. (2008). Integrated hydrodynamic and

economic modelling of flood damage in the netherlands. Ecological Economics, 66,

77–99.

Kadaster. (2022). Basisregistratie adressen en gebouwen [Accessed: 2022-03-01].

Kreienkamp, F., Philip, S., Tradowsky, J., Kew, S., Lorenz, P., & Arrighi, J. (2021). Rapid

attribution of heavy rainfall events leading to the severe flooding in western europe

during july 2021. World Weather Attribution.

Loomis, J. (2011). What’s to know about hypothetical bias in stated preference valuation

studies? Journal of Economic Surveys, 25 (2), 363–370.

MCM. (2022).

MunichRE. (2021). Retrieved March 8, 2022, from https ://www.munichre . com/en/

company /media - relations /media - information - and - corporate - news /media -

information/2022/natural-disaster-losses-2021.html

MunichRe. (2022).

Neuteboom, N., Kapetanios, G., Ritsema, F., Golec, P., & Ventouri, A. (2021). How the

consumer response to the covid-19 pandemic changes over time.

Sampson, T., C.C.and Fewtrell, O’Loughlin, F., Pappenberger, F., Bater, P., Freer, J.,

& Cloke, H. (2014). The impact of uncertain precipitation data on insurance loss

estimates using a flood catastrophe model. Hydrol. Earth Syst. Sci., 18, 2305–

2324.

Slager, K., & Wagenaar, D. (2017). Standaardmethode 2017 schade en slachtoffers als

gevolg van overstromingen.

Snow, J. (1855). On the mode of communication of cholera. 1 (7).

47

https://www.munichre.com/en/company/media-relations/media-information-and-corporate-news/media-information/2022/natural-disaster-losses-2021.html
https://www.munichre.com/en/company/media-relations/media-information-and-corporate-news/media-information/2022/natural-disaster-losses-2021.html
https://www.munichre.com/en/company/media-relations/media-information-and-corporate-news/media-information/2022/natural-disaster-losses-2021.html


Sobolevsky, S., Massaro1, E., Bojic, I., Arias, J., & Ratti, C. (2017). Predicting regional

economic indices using big data of individual bank card transactions.

Vrisou van Eck, N., & Kok, M. (2001). Standaardmethode schade en slachtoffers ten

gevolge van overstromingen.

Wing, O., Pinter, N., Bates, P., & Kousky, C. (2020). New insights into us flood vulner-

ability revealed from flood insurance big data. 11 (1444).

48


	Introduction
	Context
	Research questions and hypothesises
	Literature summary
	Methodology
	Data

	Literature
	Flood damage dimensions
	Damage models
	Flood assessment
	Standard flood damage method
	Sample surveys and transaction data

	Methodology
	Difference-in-differences
	Synthetic control
	Synthetic difference-in-differences
	Large-sample inference

	Data
	Flood and emergency ordinances
	Clients
	Building information
	Transactions

	Results
	Duration economic flood impact
	Economic flood impact

	Discussion
	Conclusion

