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Thesis Structure

This final thesis report consists of two parts:

1. Scientific Paper: summarises the research and contains the final findings and conclusions of the project.

2. Preliminary report: covers the background to the study and provides the rationale behind research
activities and methodology.
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Dynamic Airspace Reconfiguration with Deep
Reinforcement Learning

Timon Rowntree, Marta Ribeiro, Joost Ellerbroek and Jacco Hoekstra
Control & Simulation, Faculty of Aerospace Engineering

Delft University of Technology (TU Delft), Delft, The Netherlands

Abstract—For future operations of unmanned aviation,
even higher traffic densities than previously seen in manned
aviation are expected. Previous work has shown that a
vertically layered airspace design performs best at improving
safety metrics such as the total number of conflicts and Losses
of Separation (LoSs). Furthermore, it has been shown that
machine learning techniques are capable of selecting heading
ranges for the vertically stacked layers in non-uniform traffic
scenarios, in order to reduce the number of conflicts and
LoSs compared to uniform structures. These works, however,
set structures in an ‘empty’ airspace and do not take into
account the necessary vertical deviations to get from one
structure to the next. In this work reinforcement learning
(RL) agents are used to select layer heading ranges, while
taking into account the previous airspace structure. During
this dynamic structuring, several challenges arise. First, it is
not clear how to reduce the number of vertical conflicts when
aircraft move into a new airspace structure. Second, specific
structures should be selected that reduce the necessary verti-
cal deviations from the old structure, while still minimising
the cruising conflicts for the new traffic distribution. The
present work is divided into three experiments. Experiment
I focused on analysing the number of conflicts and LoSs
that aircraft suffer during vertically moving towards their
layer in the new structure. Experiment II tested whether a RL
agent is capable of setting an aircraft structure in function of
the expected future traffic scenario. Experiment III aimed to
show the capability of a RL agent to select airspace structures,
while taking into account the previous airspace structures, in
order to decrease the number of vertical conflicts. The results
of the research show that RL methods are capable of defining
airspace structures appropriate for a given traffic scenario. For
dynamic reconfiguration, it proved challenging to simulate
traffic scenarios that cause an agent to select different struc-
tures to prevent the occurrence of vertical conflicts. Under
the experimental conditions employed, analytical methods
of structure selection performed better in terms of safety.

Keywords— Airspace Design, Airspace Structure,
Unmanned Aerial Vehicles (UAVs), Reinforcement Learning,
Dynamic Airspace Reconfiguration, BlueSky ATC Simulator

I. INTRODUCTION

With the increasing demand for air traffic in recent
years, the airspace capacity is reaching its limit [1].
Furthermore, the forecasts are that this demand will
only continue to grow in the coming decades. For the
future operations of unmanned aviation, which is the
focus of this research, even higher traffic densities than
previously seen in manned aviation are expected.

The main objective of Air Traffic Control (ATC) is
to prevent collisions between aircraft. Because there is
always uncertainty in the exact location of an aircraft,
and there should always be enough space for aircraft to
turn away from each other in the event of an imminent
collision, a safety buffer is used in the form of separation
criteria. When two aircraft are actually closer to each
other than specified in the defined separation criteria,
this is called an intrusion or a loss of separation (LoS).
A conflict, on the other hand, is defined as a predicted,
potential LoS within a specified prediction horizon, also
referred to as the look-ahead time [2]. It is considered
that, to ensure adequate safety in our future air spaces,
not only will automated conflict detection & resolution
(CD&R) become necessary, but there must also be a re-
evaluation of coordination efforts that prevent conflicts
[3]. In particular, the airspace structure, which is known
to affect conflict probability and severity, should be
further researched.

The Metropolis project [4] explored different types of
distributed structures and found that a layered airspace
concept, where aircraft are separated into vertical flight
levels by their direction of travel, performed best in
terms of safety metrics like the total number of conflicts
and LoSs. This can be attributed to the fact that this
imposes segmentation and an alignment effects. Aircraft
are segmented per layer, and groups of aircraft remain
separated from each other. Each layer has a limited
heading range, thus aircraft are aligned in their headings,
reducing the likelihood of conflict within a layer.

Previous research into layered airspace structures has
investigated evenly distributed heading ranges per layer.
This is adequate when the air traffic scenario is uni-
form. However, in reality, traffic can vary continuously.
Recently, there has been research into using machine
learning techniques to select the heading ranges per
layer based on the expected traffic scenario [5], [6]. When
doing so, the airspace structure is designed to accommo-
date a larger number of flight levels for frequently used
travel directions. This results in a more uniform distri-
bution of the aircraft altitudes for scenarios with non-
uniform heading distributions [7]. Nevertheless, these
previous works set the airspace structure in an ‘empty’
airspace and do not take into account the necessary
vertical deviations to get from one structure to the next
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in the case of a dynamic airspace. It is unclear how safety
can be guaranteed during airspace re-configurations and
when and what configurations should be selected [7].
This work aims to answer this question by developing
a reinforcement learning (RL) agent that is capable of
defining heading ranges per vertical layer, while taking
into account the previous airspace.

Sections II and III provide the necessary background
information on layered airspace structures and the
impact of vertical deviations on total conflict and LoS
count, respectively. Thereafter, section IV presents an
overview of the three experiments of this research.
These experiments and their results are further shown
in sections V through X. Finally, sections XI and XII
present the discussion and conclusion of the research,
respectively.

II. LAYERED AIRSPACE DESIGN

This section introduces the layered airspace concept
(subsection II-A), the challenges of non-uniform traffic
scenarios in a typical layered airspace (subsection II-B)
and dynamic airspace reconfiguration (subsection II-C).

A. Introducing the layered airspace concept

The Metropolis Project [4] set out to investigate the
influence of airspace structure on capacity, safety and ef-
ficiency for a high-density airspace. One of the concepts
introduced in the research is the ‘Layers’ concept. Here,
the airspace is segmented into vertically stacked bands,
where each altitude layer limits the horizontal travel to
within an allowed heading range. Figure 1 shows an
illustration of a layered airspace structure that employs
uniform heading range distribution per layer.

Fig. 1: Illustration of a layered airspace structure with
uniform layers. [8]

The core conclusion of the Metropolis project was
that vertical segmentation of the airspace results in a
lower rate of conflicts, and thus enables higher airspace
capacity. Two factors are thought to contribute to this
result. First of all, by dividing the aircraft over separate
layers of airspace, different groups of aircraft are created
that remain separated from each other (segmentation

effect). Secondly, within each layer, heading limitations
enforce a degree of alignment between aircraft, thereby
reducing the relative speed between aircraft cruising
at the same altitude. This, in turn, reduces the conflict
probability (alignment effect).

B. Non-uniform traffic scenarios
The Metropolis project shows the potential of the

layered airspace concept for reducing the total number
of conflicts and LoSs, while having minimal effect on the
efficiency. However, there are limitations in the way the
concept is used in this research. The use of uniformly dis-
tributed layers is adequate in cases where the traffic has
a uniformly distributed heading distribution. In cases
where the headings of the aircraft are not uniformly
distributed, however, the aircraft are likely to accumulate
in one of the layers, resulting in a non-optimal use of
the defined layers. This effect is illustrated in figures
2 - 4. As a baseline, figure 2 shows a traffic situation
with uniformly distributed headings (Ψ) in uniform
layer structure. This shows how the aircraft are evenly
distributed over the available layers. Note that the y-axis
represents the heading, Ψ, rather than the height.

Fig. 2: Uniform traffic with uniform layers.

When a non-uniform traffic scenario is exposed to this
same uniform structure, the challenge becomes apparent.
Such a situation is shown in figure 3. As is clearly
visible, the structure is not suitable for non-uniform
traffic scenarios, as aircraft accumulate in one of the
layers. In the non-uniform traffic scenario shown, the
over-representation of aircraft flying in the 0◦ - 90◦ range,
results in an unnecessarily full first layer. This has a
negative effect on total conflict and LoS count.

Reconfiguring the layers to be able to divide the
aircraft more suitably may solve this issue. Such a re-
configuration is shown in figure 4. For the same traffic
scenario as presented in figure 3, it can now be seen that
aircraft are divided almost equally over the layers again,
which is expected to have a positive effect on the total
number of conflicts and LoSs experienced. This has also
been shown in previous research [5] [6].
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Fig. 3: Non-uniform traffic with uniform layers.

Fig. 4: Layer utilisation of non-uniform traffic for an
uneven-layers design. Adapted from [5].

C. Dynamic Airspace reconfiguration

So far, studies have looked at (layered) airspace
configurations that are static in time. However, to
optimise the airspace utilisation, it may be beneficial
to dynamically reconfigure the constraints imposed
by a particular airspace design as the traffic scenario
changes throughout the course of a day [7]. For the
layered airspace concept, this could imply reconfiguring
the airspace several times (in reaction to varying traffic
scenarios) to achieve a more uniform distribution of
aircraft among the layers, such as shown in figures
2 and 4 in the previous subsection. Such dynamic
reconfigurations may be beneficial for the capacity of
the airspace, but it is unclear how exactly these should
happen and what structures should be selected. This
research aims to answer this question.

III. IMPACT OF VERTICAL DEVIATIONS ON TOTAL
CONFLICT COUNT & LOS

In this research, there is a strong focus on the tran-
sitioning between layered airspace structures. Because
such transitions will require aircraft in the airspace to

move vertically to the a new correct layer, ’vertical
conflicts’ are expected to occur in the process. The term
‘vertical conflicts’ is used to indicate those conflicts
in which at least one of the conflicting aircraft has a
vertical velocity component that is nonzero. This type
of conflict does not fully benefit from the segmentation
and alignment effects, which mostly positively affects
the number of ’cruising’ conflicts and LoSs count. A
‘cruising’ conflict, on the other hand, occurs when both
involved aircraft do have vertical velocity that is zero.
In general, conflicts and LoSs do not necessarily scale
proportionally (thus, double the number of conflicts does
not imply double the number of LoSs). However, it is
known from previous research that there is a strong
correlation between these two safety metrics [9].

Section III-A illustrates how the rate of reconfiguration
is likely to be an important variable in dynamic airspace
reconfiguration. Section III-B introduces the challenge
of selecting an appropriate manner of moving aircraft
across vertical layers during an airspace reconfiguration.

A. Effect of reconfiguration rate on total conflict and LoS
count

The reconfiguration rate directly affects the number of
vertical manoeuvres and thus also the number of vertical
conflicts. For a better understanding of these dynamics,
consider a simple hypothetical scenario displayed in
figures 5 and 6.

Figure 5 shows the cruising conflict rate for a traffic
scenario that changes its predominant traffic direction
every 15 minutes. By reconfiguring the airspace structure
at that same rate, and with that keeping it suitable for
the cruising traffic, the cruising conflict rate can be kept
constant. Figure 6 shows the corresponding total number
of conflicts, where the ’jumps’ at the reconfiguration
moments are the additional vertical conflicts that arise
due to aircraft moving into the new structure, in line
with equation 1.

Con f lictstotal = Con f lictscruise + Con f lictsvertical (1)

From the example in figures 5 and 6, it becomes
apparent that the reconfiguration rate affects the total
time aircraft spend in a given airspace structure. In
turn, the total time in cruise directly affects the total
number of conflicts in cruise. Furthermore, the rate of
reconfiguration will determine the number of times
the total conflict count ’jumps’ because of the vertical
conflicts associated with the reconfiguration. All in all, it
is clear that the reconfiguration rate affects the relative
importance of cruising and vertical conflicts in the total
number of conflicts.
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Fig. 5: Example - Cruising conflict rate.

Fig. 6: Example - Total number of conflicts.

B. Manner of transitioning aircraft

As established, the restructuring of an airspace that is
already filled with aircraft will require aircraft to move
from one layer to another. However, exactly how this
should be done is unclear. Several options are explored
in experiment I, which is aimed at determining the most
suitable way to move the aircraft into a new airspace
structure during an airspace reconfiguration.

IV. RESEARCH METHODOLOGY

Three experiments are performed in this research.
Experiment I is concerned with finding a suitable way
of moving traffic between vertical layers when there is
an airspace reconfiguration. In experiment II, a ’static’
RL agent is developed and tested. This agent will only
look at the current traffic in the scenario when selecting
the airspace structures. Finally, in experiment III, the
’dynamic’ RL agent is considered, which, in addition
to the current traffic situation, also takes the previous
airspace structure into account. For this experiment, the
decision on the most suitable way of moving traffic
between layers, as per the results of experiment I, will be
implemented in the dynamic scenarios. After completing
the experiments, the performance (in terms of safety,
efficiency and stability) of the static and dynamic RL
agents will be compared. Figure 7 shows a graphical

representation of the aforementioned relation between
the experiments.

Fig. 7: Relation between the experiments of the
research.

V. EXPERIMENT 1 - MANNER OF MOVING TRAFFIC

The first experiment aims to find a suitable way to
move aircraft into a new structure in the event of an
airspace reconfiguration. The method is selected by
looking at the total conflicts, rather than the vertical
conflicts only. Minimising the vertical conflicts alone
is not sufficient if, for example, this happens at the
expense of a long reconfiguration time. This will have
aircraft remain in the ’wrong’ structure for excessive
lengths of time, increasing the cruising conflicts and
thus also the total conflicts. Subsection V-A will give the
outline of the experiment. Section V-B goes into further
detail on the experiment setup. The main goal of this
experiment is to determine the settings and variables
for the control variables for experiment II and III.

A. Outline of experiment I
The first step is to define several ways of moving traf-

fic between layers. The first option is to simply instruct
all aircraft to move to their new layer at once (Option 1).
Alternatively, it is possible to take an approach whereby
aircraft move, sequentially, on a layer-by-layer basis
(Option 2). Four variants are defined for this second
option, which are given letters A-D. In ’Option 2A’, the
layers are moved through from bottom to top. That is,
at the moment of airspace reconfiguration, the aircraft in
the bottom layer are ordered to move to their new layer.
When this has been completed, the aircraft in the second
lowest layer are ordered to move, and so on until all the
layers have been covered. ’Option 2B’ is analogous to
’Option 2A’, but passes through the layers from top to
bottom. ’Option 2C’ and ’Option 2D’ also entail layer
movements in a sequential manner. However, rather
than going bottom - top (2A), or top - bottom (2B),
these options pass through the layers based on the traffic
density per layer. ’Option 2C’ starts with the layer that
has the lowest traffic density and ends with the layer
with the highest traffic density. ’Option 2D’, does the
exact opposite by starting with the layer with the highest
traffic density, while ending with the layer with the
lowest traffic density. In summary, there are then the
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following five manners of moving traffic that are to be
explored. For an overview, see table I.

TABLE I: Manners of moving traffic during a structure
reconfiguration.

Manner of moving Description
1 All at once
2A Layer-by-layer: bottom - top
2B Layer-by-layer: top - bottom
2C Layer-by-Layer: low - high traffic density
2D Layer-by-Layer: high - low traffic density

To account for the fact that the most suitable manner
of moving aircraft to new layers may depend on the
nature of the airspace reconfiguration, the structure
before and after the reconfiguration is randomly
selected during the experiment. Each manner of moving
aircraft is run for 100 scenarios, thus yielding a total
number of 500 simulations. Three dependent variables
are recorded for analysis: 1) the total number of
conflicts, 2) the number of vertical conflicts and 3) the
reconfiguration time. Finally, the selected method based
on this experiment will be used in experiment III, where
the focus lies on dynamic airspace reconfiguration.

B. Experiment Setup

This section discusses the relevant parameters of the
experiment. Specifically, it goes into the tools used for
the simulations, the airspace structures, the aircraft
types, traffic scenarios and finally the (CD&R) methods
used.

1) Use of BlueSky Open Air Traffic Simulator: For the
experiments, use is made of the BlueSky Open Air
Traffic Simulator [10]. ‘BlueSky’ has been created by
the ATM/CNS department of the Faculty of Aerospace
Engineering at Delft University of Technology, in
response to the need for comparing efforts and results
in the field of ATM research. It is an open source and
open data approach to air traffic simulation. The use
of BlueSky makes it possible to take advantage of its
performance library, which includes the specifications
of many aircraft types, and many pre-programmed
features like CD&R algorithms, a GUI and data logging.
Furthermore, by using BlueSky, results will be obtained
in a way that is easily verifiable, reproducible and can
be extended upon in future research.

2) Airspace Parameters: As mentioned previously, this
work builds upon the recommendation of the Metropolis
project [4] to look further into the ‘Layered’ airspace
concept, which has the airspace segmented into verti-
cally stacked bands, where each altitude layer limits the
horizontal travel to within an allowed heading range.
To create such an airspace for experiments, the three-
dimensional bounds of an airspace volume are defined

in BlueSky. For the horizontal plane, a square airspace
was selected, with sides of 1.8 Nm in length. The total
experiment area then covers 1.8 x 1.8 = 3.24 Nm2. The
minimum altitude, altmin, is set to 1100 f t, while the max-
imum altitude, altmax, is set to 3500 f t. A total of eight
vertical layers are defined that are distributed uniformly
throughout the airspace and each have a height of 300 f t
each. Note that the layers are distributed uniformly and
are fixed in terms of altitude, but the heading ranges are
to be varied in this work. Figure 1 in section I contains a
side view of what this looks like for a uniform airspace
structure, where the heading ranges are of equal size.

It was chosen to simulate an airspace with unmanned
(urban) aviation, as this poses several advantages in
achieving the objective of the research. The first argu-
ment is the fact that future unmanned, urban aviation
is expected to have higher traffic densities than manned
aviation. The proof of concept for dynamically reconfig-
uring airspaces with RL techniques will be stronger if the
experiments are set in a setting with very high traffic
densities. The second argument for an airspace with
unmanned aviation is that this type of aviation generally
employs more trivial routes than commercial manned
aviation [11], reducing the simulation development time.
Thirdly, the idea of dynamically changing the vertically
stacked airspace to improve safety, is founded on the
principle of moving the flight altitude of aircraft to
improve safety. The sacrifice in energy efficiency is rel-
atively larger for manned aircraft (where flight altitude
is a more dominant factor in efficiency) than it would
be for unmanned aircraft, which could lead to an earlier
adoption of RL techniques to enable dynamic airspace
reconfigurations for the latter.

For unmanned aviation, two airspace types have been
investigated in previous research: 1: ’very low level’
traffic and 2) ‘above-building’ traffic. The Metropolis
project [4], for example, looked at ‘above-building’
traffic, while [6] looks at air traffic that operates in a
grid-like pattern that you would find in a ‘very low level’
structure. In this research, it is desirable to be able to
analyse the airspace structures selected by the RL agent.
In a low-level airspace, which includes the definition of
directional streets, the aircraft may be forced away from
the heading limits to not collide with a building. These
are considerations that are not desirable to include in
the results, as they will contaminate the simulation
outcomes with decisions that are not solely a function
of the airspace structure. Because of this, it was chosen
to go with the more trivial simulation environment with
traffic that is ‘above-building’. Furthermore, this eases
the definition of routes and enables them to be linear,
greatly enhancing the feasibility of the research.

3) Aircraft type: For the experiments, it was chosen to
simulate an airspace with a large amount of ‘light-load’
drones. This is a type of drone that is expected to be
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notably present in the skies of the future. They will
likely be used for medical or lightweight industrial
deliveries and for the completion of more traditional
forms of delivering parcels of couriers to businesses and
consumers [1]. For the sake of simplicity, the drones in
the experiment will all be of the same type and will
therefore have the same performance specifications. It
was chosen to go with with the type of drone called ‘DJI
Mavic Pro’, as its specifications resemble what could
be a prominent aircraft type in our future airspace [1],
as well as its availability within the BlueSky aircraft
performance libraries.

4) Traffic scenarios: For the traffic in the scenarios, it
was chosen to only consider the cruise phase of the flight
and not to consider the take-off and landing operations.
Therefore, each aircraft in the simulation is initialised
on one of the four edges of the scenario. The aircraft
spawn locations are chosen at random on the edges
of the ‘Experiment area’ and aircraft spawn at a fixed
rate of 12 aircraft per minute. This results in a traffic
density of 50 aircraft/nm2. On which edge an aircraft is
spawned on is determined by a set of probabilities for
the edges, which is fixed per episode. For example, if the
probabilities are [North, East, South, West] = [0.85, 0.05,
0.05, 0.05], around 85% of the traffic gets initiated from
the northern edge for that episode. On the other hand,
if a [North, East, South, West] = [0.25, 0.25, 0.25, 0.25]
setting was selected, the traffic in the scenario will be
approximately uniform. For experiment I, the values of
this [1 x 4] array are set at random for every simulated
scenario.

At initialisation, the aircraft is given a random angle
between 77.5◦ - 112.5◦ degrees from the edge. An illustra-
tive example of an aircraft route is given in figure 8. The
altitude at which the aircraft is spawned corresponds
to its heading, in order to ensure that all aircraft are
within the correct layer upon initialisation. The linear
aircraft routes have three way-points, shown as green
dots in figure 8 and an exit point, shown in red in
the same figure, to guide the aircraft. The exit points
naturally follow from the initial spawn location and
heading, while the waypoints are added such that the
aircraft will stick close to its intended route, even if
the aircraft deviates from this to resolve a conflict. The
climbing and descending happens in accordance with
the specifications of the aircraft type used and are almost
vertical. The speed at which the aircraft fly along the
routes in experiment I is set to 4 kts.

5) Conflict detection: Both the term ‘conflict’ as well as
‘LoSs’ have been used extensively in previous research.
For unmanned aviation, currently no standards are in
place that define these. Furthermore, what is considered
a safe separation distance is in reality a function of the
(also currently unknown) traffic density and position
uncertainty. For the detection of conflicts and LoSs in this

Fig. 8: Illustration of the experiment area, including an
example of a flight route.

experiment, a minimum horizontal separation of 100m
was selected. For the vertical separation, one airspace
layer (300 f t) is taken. By default, aircraft cruise in the
middle of their assigned layer, which means that aircraft
cruising in adjacent layers will not be in conflict.

For the detection of conflicts, the experiment employs
a state-based conflict detection method. This is a widely
used method in the field [5]. It assumes linear propa-
gation of the current state of the aircraft. The time to
closest point of approach (CPA), tCPA, is computed with
equation 2:

tCPA = − d⃗rel · v⃗rel
v⃗rel

(2)

where d⃗rel is the Cartesian distance vector between the
aircraft (given in metres), and v⃗rel the vector difference
between the velocity vectors of the involved aircraft (in
metres per second). With this tCPA known, the distance
to CPA, dCPA, can be computed by means of equation 3.

dCPA =
√

d⃗2
rel − t2

CPA · v⃗2
rel (3)

When this dCPA is smaller than the radius of the pre-
defined ’protected zone’, RPZ, within a set ’look-ahead
time’, tlookahead, a horizontal conflict occurs. One may
compute a time-interval during which horizontal sep-
aration will be lost. This is done through equation 4.

tin,hor, tout,hor = tCPA ±

√
R2

PZ − d2
CPA

v⃗rel
(4)

The vertical time to conflict can be computed with
equation 5 and 6:

t1,2 =
−∆h ± 1

2 hPZ

VSrel
(5)

tin, ver = min (t1, t2)

tout, ver = max (t1, t2)
(6)
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where ∆h is the relative vertical distance, hPZ is the
height of the protected zone and VSrel is the relative
vertical speed. A conflict only occurs when the horizon-
tal and vertical intervals overlap. The final times of entry
and departure from the protected zone are as shown in
equation 7:

tin = max
(
tin,hor , tin,ver

)

tout = min
(
tout,hor , tout,ver

) (7)

There is then a conflict if the conditions in equation 8
are met:

tin < tout ∧ tout > 0 ∧ tin < tlookahead (8)

For this work, a look-ahead time of 30s is
implemented, as was done for [6] that also used
unmanned aviation in a setting where conflict detection
and resolution was implemented.

6) Conflict resolution: The resolution algorithm used
is the MVP algorithm, which has proved effective in
reducing the effect of resolution manoeuvres on flight
efficiency while still guaranteeing minimal LoSs [9]. The
geometric resolution corresponding to the MVP is shown
in figure 9.

Fig. 9: MVP resolution [12]

In a layered airspace design, it could occur that the
conflict resolution manoeuvre proposed by the MVP
implies a violation of the heading range corresponding
to the layer that the conflicting aircraft are currently
in. When such a case occurs, this violation is accepted
under the assumption that this option is more effective
at reducing the total number of conflicts and LoSs
than moving aircraft towards the vertical layers where
the advisory heading is allowed. This would create
vertical conflicts as aircraft traverse through vertical
layers. Based on previous research, it is furthermore
expected that the choice to violate the heading ranges
of the current airspace structure for conflict resolution
is more effective than limiting the output of the MVP
algorithm [13].

C. Variables in experiment I
The independent variable in the experiment is the

manner of moving traffic (method 1 and 2A-2D).
The dependent variables related to safety are the
reconfiguration time, vertical conflicts, vertical LoSs,
cruising conflicts, and total conflicts and Loss. The time
in conflict in conflict is also measured. This is defined
as the time aircraft spend following the resolution
advisory instead of their nominal path. After aircraft
are no longer in conflict, they must redirect their course
to the next active way-point. This, however, does count
not count for the time in conflict. For efficiency analysis,
flight times and flight distances (3D) are the dependent
variables.

D. Hypotheses for experiment I
For experiment I, it is expected that the reconfiguration

time is higher for options 2A-2D, due to the layer
movements being sequential. It is furthermore
hypothesised that fewer vertical conflicts occur for
options 2A-2D (the layer-by-layer ones) than for the
option 1 (all aircraft instantaneously). Fewer aircraft
move vertically at any one time, which reduces the
local traffic density of the moving aircraft and, with
that, the probability of secondary conflicts. Lastly, it is
hypothesised that more cruising conflicts occur with
option 2C (starting with low traffic density layers), as
aircraft will be cruising in layers where their headings
are no longer allowed for a longer duration. This may
temporarily decrease the alignment and segmentation
effects in these layers.

VI. EXPERIMENT I - RESULTS

In section V-A, five manners of moving traffic to
investigate were introduced (options 1, 2A-2D). In this
section, the outcomes of the dependent variables are
given. They are shown in figures 10 through 17.

A. Reconfiguration time
Figure 10 shows the recorded reconfiguration times for

each of the options. It reveals a shorter reconfiguration
time for manner of moving 1 when compared to 2A-2D.
This is expected, as the sequential manner of moving
(as implemented in 2A-2D) has aircraft wait until the
aircraft of a previous layer have arrived in their target
layer. Simply moving all aircraft at once (option 1), is
faster than doing it layer-by-layer (option 2).

B. Safety Analysis
In figure 11, the recorded vertical conflicts during ex-

periment I are shown. It shows no observable difference
in the recorded vertical conflicts. This is not in line with
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Fig. 10: Reconfiguration times for experiment I

the initial hypothesis. For a better understanding, figure
12 shows the mean vertical conflicts versus time (after
reconfiguration).

Fig. 11: Vertical conflicts for experiment I

Fig. 12: Mean vertical conflicts vs. time after
reconfiguration for experiment I

For figure 12, the slopes of the five curves in the
initial timestamps after reconfiguration are as expected.
There is a quick increase in vertical conflicts for the
methods 1 and 2D, which move all aircraft and the
aircraft in the highest density layer, respectively, just
after reconfiguration. The more aircraft move at once,
the higher the vertical conflict rate and the steeper the
slope. The most shallow slope just after reconfiguration

is seen for option 2C, which is due to this method mov-
ing the low traffic density layers first. This postpones
the higher vertical conflict rate to the later timestamps.
With their random number of moving aircraft just after
reconfiguration, options 2A and 2B have an initial rate
that falls in between options 1 and 2D, on the one hand,
and 2C, on the other hand.

Figure 12 further reflects the similar number of vertical
conflicts, also found earlier in figure 11, across the dif-
ferent options. For the experimental conditions at hand,
the final number of vertical conflicts is not affected much
by the number of aircraft moving at once. With the
constant traffic density aircraft in each of the non-moving
layers, there is little difference between enduring the
vertical conflicts in a short time-frame or spread out over
a longer duration. In higher traffic density scenarios,
however, this may not hold. Moving more aircraft at
once could result in more secondary conflicts.

Figure 12 also shows that option 2C finishes with
fewer vertical conflicts than the other methods. This is
due to the higher traffic density layers being moved
only after a longer time, while some aircraft in these
layers have already finished their flight. This happens
for the other sequential reconfiguration options as well,
but the effect is less visible as these start with higher
traffic density layers than 2C. The situation of aircraft
finishing their flight before reconfiguration finalises is
not trivial to avoid in its entirety. Starting from the
moment of reconfiguration, newly spawned aircraft are
given spawn altitudes according to the new structure
(or else a reconfiguration would be never-ending). A
long reconfiguration time, however, ‘dilutes’ what was
previously a layer of high traffic density, as aircraft leave
the experiment area continuously. One could opt for a
slower cruising speed or longer flights to reduce this
effect. However, limited flight time must also be taken
into account in real-life scenarios. Because of this, it was
chosen to continue with the settings of the experiment
at hand.

Figure 13 shows the ’time in conflict’ for each of the
five variants. Similarly to the vertical conflicts shown
previously, the differences between the methods are
negligible for the ‘time in conflict’.

In figure 14, the mean vertical LoSs versus time after
reconfiguration are displayed. It shows that the final
values for the mean vertical LoSs are in line with the
vertical conflict rates after reconfiguration (figure 12).
In general, the higher the vertical conflict rate is (thus
the steeper the increase in vertical conflicts), the more
LoSs are seen in figure 14. This is expected, as with
more aircraft moving at once, the local traffic density
increases and MVP will be able to resolve fewer conflicts.
Option 2C does not result in as many vertical LoSs
as its counterpart 2D (high to low traffic density layer
movement), because of the previously explained dilution
of high traffic density layers.
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Fig. 13: Time in conflict for experiment I

Fig. 14: Mean vertical LoSs vs. time after
reconfiguration for experiment I

Figure 15 shows the mean cruising conflicts versus
time after reconfiguration. It is seen that most cruising
conflicts are found for option 2C. This is the direct effect
of starting the sequential reconfiguration with the lowest
traffic density layers. More than other options, 2C has
aircraft fly around in the previous airspace structure for
a long duration, increasing the cruising conflict rate and
causing a steeper slope in the figure.

Fig. 15: Mean cruising conflicts vs. time after
reconfiguration for experiment I

Figure 16 shows the total conflicts and LoSs for ex-
periment I. It shows little noticeable difference between
the total number of conflicts and LoSs for each of the
different manners of moving. The null-hypothesis is

setup that option 1 does not cause significantly more
total conflicts and LoSs than options 2A-2D. Tables II and
III show the p-values corresponding to this hypothesis.

Fig. 16: Conflicts and LoSs for experiment I

TABLE II: P-values for total conflicts

Manners of moving traffic 1 2A 2B 2C 2D
1 1 0.85 0.98 0.81 0.47

TABLE III: P-values for total LoSs

Manners of moving traffic 1 2A 2B 2C 2D
1 1 0.98 0.94 0.66 0.69

As all p-values in tables II and III are larger than 0.05,
any differences found are not statistically significant,
indicating strong evidence for the null hypothesis. It
is concluded that, safety-wise, and for the experiment
conditions at hand, option 1 (moving all aircraft at once)
can be used as the manner of moving traffic between
vertical layers.

C. Efficiency Analysis
Figure 17 shows that no significant efficiency differ-

ence for the five methods of moving traffic into new
airspace structures in terms of flight times and flight
distances (3D). This is in line with the results of the safety
analysis, that demonstrated no substantial difference in
total conflict count or time in conflict. Similar to the
safety metrics, the null-hypothesis is setup that option 1
does not cause significantly longer flight times and flight
distances (3D) than options 2A-2D. Tables IV and V show
the p-values corresponding to the this hypothesis.

TABLE IV: P-values for flight times

Manners of moving traffic 1 2A 2B 2C 2D
1 1 0.73 0.85 0.34 0.74

TABLE V: P-values for flight distances (3D)

Manners of moving traffic 1 2A 2B 2C 2D
1 1 0.37 0.34 0.07 0.24
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Fig. 17: Flight time and flight distance for experiment I

Similar to the safety metrics, all p-values in tables IV
and V are larger than 0.05. This implies any differences
found are not statistically significant, again indicating
strong evidence for the null hypothesis. It is concluded
that, for efficiency, in the experiment conditions at hand,
option 1 (moving all aircraft at once) can be used as the
manner of moving traffic between vertical layers.

D. Relevance of results of experiment I

As shown in subsections VI-B (safety analysis) and
VI-C (efficiency analysis), no statistically significant dif-
ferences were found between option 1 and the other
manners of moving traffic. It was chosen to continue
with option 1 for experiment III. This means that all
aircraft will move to their new target layer at once during
an airspace reconfiguration.

Initially, it was expected that moving all aircraft to a
new layer configuration at the same time would create
conflict ‘hotspots’ that considerably increase the number
of LoSs. This was seen to some extent (figure 14), but
not to the point that it greatly affected the overall safety.
Moving all aircraft at once decreases safety during
reconfiguration, but also moves aircraft to the new
structure fast. The latter improves the safety during
the cruising phase. As this phase is significantly longer
than the reconfiguration phase, this has a positive effect
on overall safety.

VII. EXPERIMENT II - STATIC RL AGENT

In experiment II, an RL agent is developed to select
airspace structures by looking at the traffic scenario.
This experiment is performed with the objective to be
able to compare the learning behaviour of this agent
with those of experiment III, where vertically deviating
aircraft are added. Subsections VII-A through VII-E
elaborate on key elements of what we will name the
’Static RL’ agent, such as the agent, learning algorithm
and the state, action and reward formulations. The

experimental setup for experiment II is the same as
introduced previously in section V-B.

A. Agent

In this experiment, the agent has the objective of
setting an airspace structure that is suitable for the
expected traffic scenario. The agent is provided with
knowledge on its environment, which in this case
includes information on the headings of the aircraft, the
airspace structuring and how the aircraft are currently
spread over the layers. In a real-life application, the
agent could be seen as the operator of the airspace and
responsible for the defining the airspace structure.

B. Learning Algorithm

The learning algorithm used for this experiment is
the soft-actor critic (SAC) algorithm. In this relatively
new (2019) off-policy actor-critic algorithm ‘the actor
aims to simultaneously maximize expected return and
entropy; that is, to succeed at the task while acting
as randomly as possible’ [14]. In this algorithm, the
exploration/exploitation trade-off is such that the agent
is explicitly pushed towards the exploration of new
policies, while at the same time avoiding being stuck in
sub-optimal behaviour. In general, an RL algorithm such
as this one consists of an agent (see subsection VII-A)
that interacts with its environment in discrete timesteps.
It has the goal to learn a policy that maximises the sum
of rewards, rt, that is given to one or more action(s).

In an actor-critic architecture, there are two neural
networks: one for the actor and one for the critic. The
actor function, often named the policy, is usually written
µ(s|θµ) and specifies the output action a in regard to
the input, the current state s of the environment in the
direction proposed by the critic. The critic, on the other
hand, is often denoted by Q(s, a|θa) and tries to estimate
the expected sum of rewards given a state, s, an action,
a and the current actor policy, µ. It is updated from
the gradients obtained from a temporal difference error
signal each time step. The output of the critic drives
learning in the actor by means of gradient descent with
respect to the (negative) reward and action.

The activation functions used are ‘relu’ functions
in the two hidden layers and a ‘tanh’ function in the
output layer. The output of the network defined in this
manner results in output values in the [-1,1] range. To
convert these to positive values, which are needed for
the setting of the heading ranges per vertical layer, use
is made of a ’softmax’ function, which converts it to
values to a [0,1] scale. This final conversion, however,
happens outside of the learning algorithm and is only
done prior to the updating of the structures in the
simulation. By doing so, any adverse affects on learning
that could occur by changing the activation functions of
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a proven activation functions are mitigated [15].

C. State

It is key to select the state such that it provides
sufficient information about environment, without
becoming so large that it causes excessive computational
effort. Though a bigger state array may allow for a
more complete representation of the environment,
increasing the dimension of the state increases the
number of possible states and state-action combinations.
As the state space of the problem grows, so will the
training time [16]. In the case of this experiment, it was
chosen to include three ’parts’ of information in the
state: 1) information on the headings of the aircraft,
2) information regarding the current airspace structure
and 3) information on the number of aircraft per layer.
Each of these is briefly discussed in the following.

1) Aircraft headings: For the heading information, the
total aircraft heading range, 0◦ - 360◦, is divided into
10 bins of equal size. The aircraft are then divided over
these bins by their instantaneous heading to compute
this part of the state array at a given time. The resulting
array is then normalised before proceeding. This way, the
value of each heading bin will be the fraction of the total
number of aircraft that have a heading that falls within
the heading range for a particular bin. A graphical rep-
resentation of this is given below in figure 18, where h1,
h2, ..., h10 represent the normalised number of aircraft
of that bin. For example, the value of h1 is the number
of aircraft with headings in the 0◦ - 36◦ range divided
by the number of aircraft at that time, h2 is the number
of aircraft that have headings from 36◦ - 72◦ divided by
the number of aircraft.

Fig. 18: Aircraft heading information for the state
formulation of the static RL agent. Each of the values

h1, h2 ... h10 represent the (normalised) number of
aircraft that have a heading that is within the heading

range corresponding to that bin.

2) Current airspace structure: The information about
the airspace structure is given in the form of an array of
size [1x8]. Each of the values represents the portion of the
full 360◦ heading range that the layer covers. A graphical
representation of this formulation is given below in
figure 19, where f1, f2, ..., f8 stand for the fractions of the
full heading range. For example, if f 1 = 0.05, the first
layer will allow aircraft with headings 0◦ - 18◦. Then,
if f 2 = 0.15, the second layer will allow aircraft with
headings 18◦ - 72◦, and so on, until the complete 360◦

heading range is covered.

Fig. 19: Representation of the information on the
airspace structure. Each of the values f1, f2, ..., f8
(decimal, 0-1) represents the fraction of the total

heading range that the layer covers.

3) Aircraft per layer: For the number of aircraft per
layer, similarly to the current airspace structure, an
array of size [1x8] is used. Each of the values in this
array represents the fraction of the total number aircraft
currently in that layer, see figure 20.

Fig. 20: Representation of the information on the
number of aircraft per layer. Each of the values n1, n2,
..., n8 (decimal, 0-1) represents the fraction of the total

aircraft that are located in that layer.

4) Final state array: To formulate the final state array,
the three ’parts’ of information introduced in sections
VII-C1 through VII-C3 are combined to form one array
of size [1x26].

The objective of experiment II, to develop an RL
agent to set the airspace structure based on traffic,
does not strictly require the information of parts 2) the
airspace structure and 3) the aircraft per layer. These
were, however, added in this experiment to enable
future comparison between the decisions of this agent
and the ones of experiment III, while having the same
state formulation.

D. Action

An action is selected each time the state is given to
the agent. The final output is a one-dimensional action
array, such as shown to be part of the state-array in
figure 19. It may be noted that the choice for eight
layers was made in this research, but that this variable
is in reality dependent on the environment. With fewer
combinations of heading ranges to chose from, the
resulting fewer altitude layers would likely lead to
lower training times. However, with more layers the
aircraft will be more dispersed throughout the airspace,
possibly resulting in more optimal results in terms of
the total number of conflicts/LoSs experienced.

E. Reward

A reward based on the total number of conflicts was
chosen for experiment II. See equation 9 for the formu-
lation.

Reward = −Total number of conflicts
100

(9)
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The division by 100 was implemented upon finding
better results during a number of initial training runs.
Recent research has shown that reward re-scaling can
indeed improve the stability of a RL agent [17].

F. Episode overview for experiment II
Figure 21 shows how the above states, actions and

rewards are combined into the episodes of experiment
II. It shows that the state of the environment is observed
after 16 minutes. This length of time is line with the
time it takes to achieve a constant traffic density for
the selected experimental conditions. At this point in the
episode, this state is passed to the RL agent, upon which
an action to set the airspace structure is obtained. In this
experiment, the logging of safety parameters (and thus
also the conflicts for the reward) starts at 20 minutes.
Note that this is after the traffic has settled into the
new structure and that vertical conflicts are thus not
yet taken into account for experiment II. This is because
experiment II had the aim of training a ’static RL agent’,
which only looks at the traffic situation and selects a
suitable structure for minimising the total number of
conflicts and LoSs. The extension to a dynamic agent,
which also takes into account the previous airspace
structure (and the vertical deviations to get there) is
made in experiment III.

Fig. 21: Overview of episodes for experiment II

The settings in terms of airspace parameters, aircraft
types and CD&R are the same as in experiment I.
The simulation timestep, however, is updated from
dt = 0.05s in experiment I to dt = 5s in experiment
II. The reduction in the ability to resolve short-term
conflicts that will be a consequence of this, is accepted
in favour of a significant increase in simulation speed
and the reduction in training time.

G. Benchmarking the performance of the RL agent
After training, the final agent is presented with 1000

random traffic scenarios to see how it performs at the
task of reducing the total conflict and loss counts through
suitable airspace structure selection. To be able to put
its performance into perspective, the agent is compared
to two benchmarks; a fixed uniform structure and an
analytical method for selecting the airspace structure. To
enable a valid comparison between these two alternative
methods and the developed RL agent, they are also
presented with the same set of 1000 random scenarios

that the RL agent is tested with. For both the training and
testing episodes, the traffic distribution is different for
each episode, but within each of the scenarios the traffic
distribution (thus the probability of an aircraft spawning
on an edge) is fixed.

For the uniform structure benchmark, each of the 8
vertical layers covers exactly 45◦, uniformly dividing the
total 360◦ heading range.

For the analytical method, the airspace structure is
selected that is most probable to lead to perfect segmen-
tation of aircraft during the traffic scenario. To compute
these structures, use is made of the information on
the aircraft headings that are sampled for the state at
t = 16 minutes (see figure 21). The ’analytical structure’
is found by determining the structure that would divide
the sampled aircraft evenly over the eight layers. Given
a sample size of around 150 aircraft when the traffic has
settled in the selected experiment conditions, it may rea-
sonably be assumed that this structure will fit the traffic
for the duration of the traffic scenario. The analytical
method makes use of the same information as the RL
agent to select structures, enabling a direct comparison
of the performance of analytical and RL agents at the
task of selecting airspace structures.

It must be mentioned that perfect segmentation is
not necessarily optimal safety-wise. As mentioned
in previous research, ’a wide heading range in a
layer results in considerable heading differences
between aircraft travelling in the same layer, leading
to intercepting routes and large conflict angles. Adding
more aircraft to a layer with a wide heading range
comes at a higher cost than adding aircraft in a layer
with a smaller range’ [5].

H. Variables in experiment II

The independent variable in the experiment is the
(manner of selecting) airspace structure: uniform, by
means of RL agent or by means of an analytical method.
The dependent variables in terms of safety are the total
conflicts and total LoSs and the time in conflict. For the
efficiency, the flight time and flight distance (3D) are
investigated.

I. Hypotheses for experiment II

For experiment II, it is hypothesised that the RL agent
will be able to outperform uniform structures when it
comes to minimising the total number of conflicts and
LoSs. It is thought that uniform structures will not ‘fit’
many of the non-uniform traffic scenarios that it will
be presented with during training very well. Such non-
uniform traffic scenarios will lead to conflict ’hotspots’ in
some of the layers, reducing any benefit of the separation
and alignment effects on the total number of conflicts
and LoSs.
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It is furthermore hypothesised that the RL agent
is not able to outperform an analytical method that
perfectly segments the traffic in the current scenario.
The advantage of RL methods is their ability to
find optimal actions in environments where the
state is affected affected by multiple variables. This
extends to cases where the number of variables is far
higher than a human can consider. In this particular
experiment, however, a relatively simple environment
is used. Human made rules, such as going for perfect
segmentation, can be sufficient for this. In theory, RL is
expected to be able to achieve the same performance
as such rules. However, in practice, more training time
and a greater variability of training scenarios than are
are achievable in this work might be needed. The real
question in this work is whether RL can outperform
human made methods in experiment III, where both
the vertical conflicts (due to reconfiguration) and
the cruising conflicts in the new structure are under
consideration.

VIII. EXPERIMENT II - RESULTS

The results of experiment II are presented in this
section. Firstly, subsection VIII-A shows the results of
the training phase of the static RL agent. Thereafter, in
subsection VIII-B, a safety analysis is provided.

A. Training results
In figure 22, the reward evolution over 45000 training

episodes is displayed.

Fig. 22: Rolling mean (1000) of reward during training
of the static RL agent for 45000 episodes.

Figure 22 shows that the RL agent is able to select
actions that increase its reward over time. The training
curve is similar those shown in the paper accompanying
the release of the SAC algorithm [14], indicating that it
has, in all likelihood, been successfully applied to the
problem of selecting airspace structures.

B. Testing - Safety analysis
Figure 23 shows the total number of conflicts and LoSs

for the 1000 scenarios respectively for the RL method and
the two benchmarks.

Fig. 23: Total conflicts and LoSs for various (methods of
selecting) airspace structures

As seen in figure 23, most conflicts and LoSs occur
when uniform structures are used for all 1000 testing
scenarios. This is as hypothesised earlier in section VII-I,
where it was stated that the non-uniformity of the testing
scenarios and the uniform structure likely leads to a
relatively large number of conflicts and LoSs. This result
is also in line with findings from previous research [5],
[6]. The RL agent is able to reduce the total number of
conflicts and LoSs with respect to this first benchmark.

Figure 24 shows the time in conflict for each of the
methods.

Fig. 24: Time in conflict for various (methods of
selecting) airspace structures

Figure 24 shows similar results to the total conflicts
and total LoSs: the RL agent reduces the time in conflict
with respect to uniform structures, but is outperformed
by the analytical method. Thus, in terms of safety, the
analytical method performs best in all the presented
metrics. These findings are due to the relative simplicity
of the task at hand. Because the reward formulation is
based on conflicts, and the logging of these only starts
after the aircraft have settled into their new airspace
structure (see subsection VII-F), it is fairly trivial to come
up with this analytical method that yields results that
already strongly reduces the total number of conflicts
and LoSs, as well as decreases the time aircraft spend
in conflict.
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C. Testing - Efficiency analysis

The focus is now shifted towards the efficiency anal-
ysis. Figure 25 shows the results in terms of flight times
and flight lengths, respectively.

Fig. 25: Flight time and flight distance (methods of
selecting) airspace structures

By comparing figure 25 to figure 23, it is seen that the
analytical method of selecting airspace structures (which
scored the best safety values), has slightly higher values
for the flight times and efficiencies. This could be due
to slightly different nature of the conflicts experienced
in the simulations. It is thought that more conflicts (as
experienced for the uniform structures) in combination
with the MVP algorithm could lead to a wave-like
patterns in the experiment area. This could, locally,
lead to more space to resolve conflicts locally, and in
turn a shorter flight time and flight distance, respectively.

IX. EXPERIMENT III - DYNAMIC RL AGENT

In experiment II it was shown that an RL method can
outperform uniform structures by looking at the traffic
situation and selecting an airspace structure for the
traffic scenario. However, it was also seen that analytical
methods can still do a better job at minimising the total
number of conflicts and LoSs for situations where only
the cruising conflicts are to be minimised. In experiment
III, the complexity of the problem is increased by
including the vertical conflicts (and LoSs) in the total
conflict counts of the episodes. An RL agent must then
not only select airspace structures that fit the cruising
traffic well, but must now also take into account the
previous airspace structure and the associated vertical
deviations to move from that structure to the next.
Subsection IX-A gives an outline of the experiments,
after which subsection IX-C gives the hypotheses.

A. Outline of experiment III

For experiment III, two different RL agents are
trained. The traffic scenarios will still have a single
airspace reconfiguration, yet, by changing the logtime

after this reconfiguration, one can simulate the effects
of different airspace structure reconfiguration rates.
For the first agent, which will be named ’RL 1’, a
’slow’ reconfiguration rate is simulated by having
a relatively long (44 mins) logtime after airspace
reconfiguration. This agent has to deal with what is
expected to be a problem of relatively low complexity,
as the ratio of cruising conflicts to vertical conflicts
will be high, given the long logtime. This makes for a
situation where a suitable structure is likely one that is
optimised for the cruising traffic. The other agent, ’RL
2’ simulates dynamic airspace reconfiguration with a
’fast’ reconfiguration rate by having a shorter logtime
(8 minutes). This problem is thought to be a problem
of relatively higher complexity, as the ratio of vertical
to cruising conflicts is less trivial. This implies that
the agent must, in some cases, find a balance between
minimising the vertical conflicts and the cruising
conflicts. The above discussion is summarised in table
VI.

TABLE VI: Overview of RL agents for experiment III

Name Simulating Reconfig. rate Complexity
RL 1 ’Slow’ reconfig. rate 44 min Lower
RL 2 ’Fast’ reconfig. rate 8 min Higher

Similarly to experiment II, the episode timelines for
each of the agents are given in figures 26 and 27. Specif-
ically note the ’Start log’ events, which now happen at
the moment of airspace reconfiguration. This is slightly
different than was done for experiment II, where the log
was started after all aircraft had settled into the new
structure.

Fig. 26: Episodes for experiment III, agent RL 1

Fig. 27: Episodes for experiment III, agent RL 2

Also similar to experiment II, the agents will be eval-
uated by comparing their performance to uniform struc-
tures and the analytical method of selecting structures
introduced earlier in section VIII-B. For this, the same
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1000 testing scenarios introduced for experiment II will
be used. Apart from only comparing the agents, the
differences in structure selection by agents ’RL 1’ (slow
reconfiguration) and ’RL 2’ (fast reconfiguration) are also
investigated.

The settings in terms of airspace parameters, aircraft
types and CD&R will be the same as experiment I
and II. The simulation timestep is kept the same as
in experiment II, at dt = 5s. The state, action and
reward formulations for the RL agents are furthermore
unchanged from experiment II.

B. Variables in experiment III

The independent variables in the experiment are
the (manner of selecting) airspace structure and
the reconfiguration rate. For the airspace structure
(selection) there are 1) uniform, 2) by means of the
RL agent and 3) by means of an analytical method.
For the reconfiguration rate, both a ’slow’ (44 minutes)
and a ’fast’ (8 minutes) version is used. The dependent
variables are the total, cruising and vertical conflicts
and total LoSs, as well as the time in conflict, flight time
and flight distance (3D).

C. Hypotheses for experiment III

It is hypothesised that the results of the first agent,
simulating ’slow’ reconfiguration, are very similar to
what was found in experiment II, which only considered
the cruising phase. As the vertical conflicts in experiment
III only cover a small fraction of the total conflicts for
this episode length, it is expected that the RL agent
outperforms uniform structures in terms of the total
number of conflicts and LoSs, but will not match the
performance of the analytical method aiming for perfect
segmentation.

It is furthermore hypothesised that the RL2 agent will
show considerably different results to what was previ-
ously seen for the RL agent of experiment II and the RL1
agent introduced in this experiment. The added com-
plexity that is now introduced by the shorter episodes
(representing ’fast’ reconfiguration) is something which
the analytical methods cannot grasp. Because of this it
is thought that, this time around, the RL agent will out-
perform both the uniform structures and the analytical
methods in terms reducing the total number of conflicts
and LoSs.

Lastly, it is hypothesised that for the ’fast’ agent, on
some occasions, the selected structures will be tailored
to minimising the vertical conflicts over the cruising
conflicts. For identical traffic scenarios, this ’fast’ agent
should then minimise the number of vertical conflicts
compared to the ’slow’ agent. However, the structures
selected by RL1 will likely result in fewer conflicts and

LoSs during the cruising phase.

X. EXPERIMENT III - RESULTS

The results of experiment III are presented in this
section. Firstly, subsection X-A shows the results of the
training phase of the dynamic RL agents. Thereafter,
in subsections X-B and X-C, the safety and efficiency
analyses of the testing results are provided, respectively.

A. Training results
In figure 28, the reward evolution for agent RL1

(’slow’ reconfiguration) over 35000 training episodes is
displayed. The same is done in figure 29 for the training
of agent RL2 (’fast’ reconfiguration).

Fig. 28: Reward evolution during training of the first
dynamic RL agent (RL1) during 35000 episodes.

Fig. 29: Reward evolution during training of the second
dynamic RL agent (RL2) during 35000 episodes.

The reward evolutions during training, shown in fig-
ures 28 and 29, look as expected. It can be seen that
agent RL1 has a higher initial learning rate than agent
RL2. This is due to the lower relative complexity of the
task. As mentioned previously in section IX-C, the task
of setting airspace structures for a ’slow’ reconfiguration
rate is thought to be more trivial than doing so for
’fast’ reconfiguration. Besides that, the faster learning for
RL1 is explained by the greater range of reward values.
This is a consequence of the longer logging time, as it
yields larger differences in rewards between suitable and
unsuitable airspace structures.

The final values that the agent converges to during
training are similar to the RL agent trained in
experiment II (figure 22). Nevertheless, agent RL1
reaches an optimum around 20000 episodes, where
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this occurred after around 15000 episodes for the agent
in experiment II. This shows that indeed considering
dynamic structuring, where both cruising and vertical
adjustment phases are considered, is a more complex
task.

B. Testing - Safety analysis
The testing of the two agents is done in the same

way as experiment II. Both are presented with the 1000
random traffic scenarios to see how they perform at the
task of selecting suitable airspace structures. To put their
performance into perspective, they are again compared
to the two benchmarks used previously in experiment II:
a fixed uniform structure and the analytical method of
selecting the airspace structure (see section VII-G). Note
that the analytical method does not take into account
reducing the number of conflicts that occur during re-
configuration. This would result in a larger set of rules.

Figure 30 shows the vertical conflicts for RL1 and RL2.
It reveals that both RL agents reduce the number of
vertical conflicts with respect to the analytical method.
It is also seen that the number of vertical conflicts for
reconfigurations to the uniform structure is indeed zero.
This is due to the initial structure being uniform as
well. RL1 and RL2 show a similar number of vertical
conflicts. It was initially hypothesised that RL2 would
further reduce the number of vertical conflicts compared
to RL1, as during its training, the reconfiguration phase
is relatively longer (compared to the cruising phase).
This suggests that the information available to RL2 might
not have been enough for proper training. The reduced
vertical conflicts for both agent RL1 and RL2 are further
investigated by looking at the correlation between the
starting airspace structure (uniform) and the selected
structure. The results are shown in figure 31.

Fig. 30: Vertical conflicts experienced for agents RL1
and RL2, in relation to those from uniform or analytical

structures.

Figure 31 shows that the least correlation between
starting structure (uniform) and selected structure is
found for the analytical method. Agents RL1 and RL2, on
the other hand, show more correlation. As expected, the
correlations found for the uniform - uniform reconfigura-
tion are always 1. These results explain the earlier found

Fig. 31: Structure correlations between the starting
structure (uniform) and the selected structures.

vertical conflicts (figure 30). The more that a selected
structure is different from the starting structure, the more
aircraft will have to perform vertical deviations to get
into the new structure. As a direct consequence of this,
more vertical conflicts are experienced.

Figures 32 and 33 show the total number of conflicts
and LoSs, respectively. This is done for both the ’slow’
reconfiguration setting (on the left-hand sides), as well
as the ’fast’ reconfiguration setting (on the right-hand
sides).

Fig. 32: Total conflicts for ’slow’ and ’fast’
reconfiguration settings

Fig. 33: Total LoSs for ’slow’ and ’fast’ reconfiguration
settings

Figure 32 shows that the total number of conflicts
is reduced most by using the analytical method for
selecting airspace structures. This holds both for the
’slow’ reconfiguration settings in which agent RL1 was
trained, as well as for the ’fast’ reconfiguration setting in
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which agent RL2 was trained. A similar pattern is seen
in figure 33 for the LoSs, albeit with smaller values.

In general, the improvement that RL1 provides in
terms of safety (with respect to uniform structures) is
similar to what was found in experiment II (figure 23).
Figure 33 shows that RL2 has final conflict and LoSs
counts closer to the values obtained with uniform struc-
tures. This is a direct consequence of the short episode
length for this RL agent. It suffers from the vertical
conflicts (see figure 30) and LoSs during reconfiguration,
plus the cruising conflicts in the limited 8 minutes of
logging. The uniform structure has zero vertical conflicts
and LoSs as no reconfiguration is required. For agent
RL2, the available cruising time is too short to balance
out the present vertical conflicts.

Figure 34 shows the time in conflict for the ’slow’ and
’fast’ reconfiguration times. The pattern is, as expected,
in line with the results found for the total number of
conflicts and LoSs.

Fig. 34: Time in conflict for the ’slow’ and ’fast’
reconfiguration settings

From the findings in the safety analysis, it is deducted
that, even in the presence of a number of vertical con-
flicts, the analytical method of selecting airspace struc-
tures outperforms the RL agent and uniform structures.
Due to the way that the analytical method has been
set-up (simply aiming for perfect segmentation), it is a
method of selecting airspace structures that works well
for a wide range of traffic scenarios (see figure 31). Even
in ’extreme’ traffic situations, where there is a strong
dominant traffic direction, the analytical method is able
to segment the aircraft and limit the number of total
conflicts and LoSs. This is predominantly due to the
experimental conditions, where cruising conflicts heavily
outweigh vertical conflicts.

The RL agents, on the other hand, do not demonstrate
this flexibility to the same extent. This prominently seen
in figure 31, where the correlation between the structures
selected by the RL agents and the starting (uniform)
structure take on values over a narrower range than is
the case for the analytical method. The effect of this is
seen in the results of the vertical conflicts as well. Figure
30 showed reduced vertical conflicts for the RL agent
structures in comparison to the analytical method.

At first glance, is could seem as though the RL agents
have ’understood’ the presence of vertical conflicts and
learnt to minimise these to obtain a better rewards. This
explanation, which comes down to the method getting
stuck in a local optimum that reduces vertical conflicts,
however, seems unlikely. Upon comparing the values of
the vertical conflicts in figure 30 with the total conflicts
in figure 32, it may be observed that the vertical conflicts
are a very small fraction of the total conflicts. In the
setting that RL1 was trained (’slow’ reconfiguration),
the total number of conflicts is around two orders of
magnitude higher than the vertical conflicts, meaning
that the conflicts in the scenarios were almost all of the
’cruising’ type. The reduction of vertical conflicts for
airspace structures selected by RL1 and RL2 can then
hardly be seen as an optimum which the agents may
strive for.

Rather, the reduced vertical conflicts are a bi-product
of the RL methods’ tendency to select structures that are
similar to the uniform starting structure. As it happens,
this also has a positive influence on the number of
vertical conflicts, where fewer vertical deviations are
needed to move aircraft into the new airspace structure.
From this, fewer vertical conflicts result.

C. Testing - Efficiency analysis

Figures 35 and 36 show the total flight time and flight
distances (3D), respectively.

Fig. 35: Flight time and flight distance for various
(methods of selecting) airspace structures

Fig. 36: Flight time and flight distance for various
(methods of selecting) airspace structures
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Figures 35 and 36 reveal no significant differences
in flight times and flight distances (3D) for both the
’slow’ reconfiguration rate and the ’fast’ reconfiguration
rate. The slight increase in flight distances (3D) for the
analytical and RL methods, as compared with uniform
structures, are a direct consequence of the vertical
deviations that the aircraft make and different conflict
resolution manoeuvres.

XI. DISCUSSION

In this research, the objective has been to develop an
RL agent that is capable of defining heading ranges per
vertical layer, while taking into account the previous
airspace structure. Such new structures must optimise
the cruising phase for future traffic, while also reducing
the vertical deviations that occur when adapting to this
new structure. This is not trivial, as a suitable cruising
structure could be one that leads to excessive vertical
deviations, or vice versa: a structure that minimises the
vertical deviations could be unsuitable for the future
cruising traffic.

It was found that, for the selected experimental con-
ditions, moving all aircraft at once during a reconfig-
uration does not significantly impact the total number
of conflicts and LoSs. Furthermore, the work has shown
that an RL agent can reduce the total number of conflicts
and LoSs compared to uniform structures.

For dynamic airspace airspace reconfiguration, the
results found in this work are greatly conditioned by
the fact the number of conflicts/LoSs during the cruis-
ing phase are orders of magnitude higher than con-
flicts/LoSs during the reconfiguration phase. In this case,
the challenge was relatively straightforward, as the RL
agent simply needed to learn a policy that minimised
the cruising conflicts in order to most effectively obtain
higher rewards. From theory, it is known that when
the task complexity increases, RL methods may start
to outperform analytical ones. However, because of the
relatively lower complexity in the current experimental
conditions, it was found that an analytical method of
selecting airspace structures outperforms the trained RL
agent in terms of safety.

The fact that that analytical outperformed RL agents,
raises the question what method should be used for
dynamic airspace reconfiguration. An advantage of an
analytical method is that it is strong over a wide range
of traffic scenarios. Due to the way it is computed,
there is no difference between presenting it with an
(almost) uniform scenario and presenting it with an
’extreme’ case, where aircraft fly predominantly in a
certain direction. Furthermore, the analytical method has
the advantage that it is made up of simple rules and
therefore requires no training time. A disadvantage of
analytical methods is their performance is expected to

rapidly decline, or that the rules become hard to define,
when the task complexity increases.

The main advantage of an RL agent is that it can
perform at tasks that have a high complexity, such as
cases where many variables play a role in the state
of an environment. A disadvantage of an RL agent,
is that it tries to learn a policy that suits a wide
variety of states that it could be presented with. In
experiment III, for example, RL methods demonstrated
a more limited applicability to a diverse set of traffic
scenarios. Difficulty in selecting very different structures
from the starting (uniform) structure is observed from
the correlation between the airspace structures before
and after reconfiguration. One might say that it does
not have the ’flexibility’ that comes with the analytical
method. Furthermore, an RL agent requires training time
before it can start selecting structures, which is more of
hurdle towards implementation than is the case for the
analytical method. Nevertheless, this is a finding specific
to these experimental conditions. An RL agent trained
under different conditions, or with different state, action
and reward formulations, could potentially achieve bet-
ter results.

All in all, the decisions on what method should be
used goes hand-in-hand with the nature of the problem.
If the problem has a complexity which cannot be cap-
tured by analytical methods properly, any implementa-
tion will be limited in its performance. In more complex
experimental settings, RL methods are expected to be
more suitable. For dynamic airspace reconfiguration, the
experimental conditions employed in this work yielded
results in which analytical methods are sufficient. How-
ever, when the trade-off between minimising for vertical
conflicts upon reconfiguration and cruising conflicts in
the new structure becomes more more challenging, RL
methods are expected to be more effective.

For future work, it is suggested that an RL agent
is used for dynamic airspace reconfiguration in cases
where the ratio of vertical/cruising conflicts is higher.
The increases complexity that arises in such a setting
makes better use of the previously mentioned advan-
tages of RL methods. More vertical conflicts could occur
in settings where the maximum vertical velocity of air-
craft is lowered or differs per aircraft. This has aircraft
spend relatively more time moving between layers. In
turn, this could increase the vertical conflict rate and
increase the ratio of vertical/cruising conflicts in the
scenario. In creating these environments to train the
RL agent, it must always be kept in mind that sound
research adapts a tool (in this case RL techniques) to a
given environment. Creating non-realistic environment
to demonstrate the capabilities of a tool is, in most cases,
of inferior value.

Besides a suitable environment for vertical conflicts,
it is recommended that future research selects its
manner of moving aircraft into a new airspace structure

19



according to the experimental setup. For the research at
hand, moving all aircraft at once did not significantly
compromise the total conflicts or LoSs experienced
during a reconfiguration. It was, however, found
that the number of vertical conflicts and LoSs upon
reconfiguring increases with the number of aircraft that
are moved at once. This trend is an exponential one:
as more conflicts occur, the flight path length increases,
which in turn increases the chances of (secondary)
conflicts. Because of this, a point is expected where
sequential manners of moving traffic result in fewer total
conflicts and LoSs than moving all aircraft at once during
an airspace reconfiguration. Future research could also
investigate other options of sequential movement than
were explored in this work. For example, one could
look at moving fractions of the traffic in a layer, rather
than all the aircraft within a layer. One may also explore
options that move traffic sequentially based on the free
space for vertical deviations.

XII. CONCLUSION

This work has aimed at developing an RL agent capa-
ble of defining heading ranges per vertical layer, while
taking into account the previous airspace structure. It
showed that such an agent is capable of outperforming
uniform structures in terms of safety metrics such as the
total number of conflicts and LoSs. Analytical methods,
on the other hand, showed better performance in the task
of setting airspace structures in a relatively trivial envi-
ronment, where little vertical deviations were present.
In settings where the number of vertical deviations
increases (and the complexity of the problem increases),
however, the performance of analytical methods is ex-
pected to decline relative to an RL agent.

Future research should extend this work to different
operational environments. Different performance limits
or limitation of manoeuvres for conflict resolution will
likely affect the number of conflicts/LoSs during the
reconfiguration phase. Finally, it is of interest to see
how RL agents behave in more complex environments,
where the airspace reconfigurations result in a higher
number of vertical conflicts. In these situations, where
the development of human-made rules is not trivial, RL
techniques could prove a valuable tool in improving
the safety and efficiency of airspace structuring.
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Abbreviations

ATC air traffic control

ATCo air traffic controller

ATM air traffic management

CD&R conflict detection & resolution

CNS communication, navigation & surveillance

CPA closest point of approach

CR conflict resolution

DEP domino effect parameter

GUI graphical user interface

LoS loss of separation

MDP Markov decision process

MVP modified voltage potential

PAVs personal air vehicles

RAs research activities

RNAV area navigation

UAVs urban air vehicles
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Chapter 1

Introduction

With the increased demand for air traffic in recent years, the airspace capacity is reaching its limit [5]. Fur-
thermore, the forecasts are that this demand will only continue to grow in the coming decades. For the future
operations of unmanned aviation, which is the focus of this research, even higher traffic densities than previously
seen in manned aviation are expected. The main objective of air traffic control (ATC) is to prevent collisions
between aircraft. Because there is always an uncertainty in the exact location of an aircraft, a safety buffer is
used in the form of separation criteria. The dimensions of the so-called ‘protected zone’ are set such that there
is enough space for aircraft to resolve an imminent collision. When two aircraft actually are closer to each other
than specified in the defined separation criteria, this is called a loss of separation (loss of separation (LoS)). A
conflict, on the other hand, is defined as a predicted, potential loss of separation within a specified prediction
horizon, also referred to as the look-ahead time [6]. It is thought that, in order to ensure adequate safety in our
future air spaces, not only automated conflict detection & resolution (conflict detection & resolution (CD&R))
will become necessary, but there must also be a re-evaluation of coordination efforts that prevent conflicts. In
particular, the airspace structure, which is known for decreasing conflict probability and severity, should be
looked at. The Metropolis project [7] explored different types of distributed structures and found that a layered
airspace concept, where aircraft are separated into vertical flight levels by their direction of travel, performed
best in terms of safety metrics like the total number of conflicts and LoSs. This can be attributed to the fact
that this imposes a 1) segmentation effect, where aircraft are grouped and remain separated from each other,
thus reducing traffic density, and 2) an alignment effect within the layers, where aircraft that travel within a
layer have a limited heading range leading to a reduced likelihood of conflict within a layer.

Previous research into layered airspace structures has investigated evenly distributed heading ranges per layer.
This is adequate when the air traffic scenario is uniform. In reality, however, the traffic can vary continuously.
The department (air traffic management (air traffic management (ATM)) / control, navigation & surveillance
(communication, navigation & surveillance (CNS))) has recently started using machine learning techniques to
change the heading ranges per layer based on the expected traffic scenario [3][8]. When doing so, the airspace
structure is designed to accommodate a larger number of flight levels for popular travel directions. This results
in a more uniform distribution of the aircraft altitudes for scenarios with non-uniform heading distributions [1].
Nevertheless, previous works set the airspace in an ‘empty’ airspace and do not take into account the necessary
vertical deviations to get from one structure to the next in the case of a dynamic airspace. It is unclear how
safety can be guaranteed during airspace re-configurations and when and what configurations should be selected
[1]. This MSc Thesis aims to investigate this by developing a reinforcement learning model that is capable of
defining heading ranges per vertical layer, while taking into account the previous airspace.

This midterm report starts off with a literature review in chapter 2. It discusses several key elements to
this research, such as layered airspace design, setting such airspaces with reinforcement learning, the vertical
deviations that are necessary for re-configuration and some considerations on conflict resolution. In chapter 3,
the primary research objective and research activities are presented. Chapter 4, discusses the methodology used
for the first research activity. It goes into more detail on the reinforcement learning method, the experiment
set-up for the first research activity, the simplifying assumptions that are made and the hypotheses associated
with the experiments. Chapter 5 presents the results of these experiments and their relevance, both in the
larger ATM picture as well as for the rest of this MSc Thesis. Finally, chapter 6 explains the plans for the final
experiments of this research. It will be shown how additional knowledge on the previous airspace structure is
incorporated into the reinforcement learning model, what the final experiment scenarios will look like and what
the hypotheses for the final experiments are.
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Chapter 2

Literature Review

In this chapter, a review of relevant literature to this research is presented. It is split into several sections.
Firstly, section 2.1 discusses centralised and decentralised airspace structures. Section 2.2 then presents some
background information on layered airspace design. In section 2.3, the impact of vertical deviations on total
conflict and LoS count when re-configuring between such layered airspaces is treated. After this, in section 2.4,
a potential approach to airspace structuring problems is discussed, namely the use of reinforcement learning to
assign airspace structures. Finally, section 2.5 presents some thoughts on conflict resolution (CR).

2.1 Centralised vs. Decentralised airspace structures
In the pioneering days of aviation, pilots relied on simple ‘see-and-avoid’ principles to prevent mid-air collisions,
and navigated using landmarks such as roads, rivers and railway tracks [9]. From the 1930’s however, more
formal systems and procedures for ATC were deemed necessary and subsequently developed. With this, a new
role came to exist in aviation: that of the air traffic controller (ATCo), who’s primary task it is to control the
aircraft within a predefined area. Though aviation has come long way since those pioneering days and it has
seen many technological advancements, the principle of having a person on the ground controlling the aircraft
from one central position is still today’s reality for almost all air traffic. In ATM, this way of organising aircraft
is referred to as ‘centralised’ ATC.

With the predicted increase in demand for air traffic, many studies have suggested shifting the responsibility of
traffic separation back to the aircraft. This is generally referred to as ‘decentralised’ ATC. It is thought to have
the potential to increase the capacity of an airspace beyond the limitations that a centralised system imposes
[1]. To further clarify the difference between the centralised and decentralised ATC concept, consider figure 2.1
below.

(a) Centralised ATC (b) Decentralised ATC

Figure 2.1: Difference between the conceptual designs of centralised and decentralised ATC. [1]

In figure 2.1a it is seen that centralised control has ATCo’s that are responsible for the separation of aircraft from
the ground. This means that all decisions regarding future trajectories or conflict resolution are made there and
communicated to the aircraft. In figure 2.1b, on the other hand, this responsibility shifted towards the aircraft.
In this case, individual aircraft are responsible for their own separation. Both of these methods rely on a com-
munication network to pass messages of intent, trajectories or priorities [10]. Figure 2.1 shows manned aircraft,
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but similar communication links hold for unmanned aviation, albeit through non-verbal / digital communication.

The centralised airspace concept has as the greatest advantage that it can provide a global solution to a multi-
actor problem. When a centralised agent tries to resolve (several) conflicting aircraft, it has information on
all other aircraft in the airspace to compute a solution with. These centralised methods, however, are often
trajectory based, where trajectories are sought that cross each other as little as possible. This generally comes
at a high computational costs, as many aircraft routes need to be considered at once. With ever-higher traffic
densities, this solution might no longer suffice [11]. Furthermore, there might be issues with availability of the
information needed to perform the optimisation. This may be because of lacking technology for the information
exchange between aircraft and ground station at all or fast enough, or because of limits on what is shared with
the centralised agent. Aircraft operators, for example, are often commercial parties that are not keen to share
more information than strictly necessary.

Decentralised separation in en route airspace, on the other hand, is expected to yield several advantages in
terms of efficiency, safety and capacity [1]. For a discussion on these, consider figure 2.2. Here, it can be seen
that the decentralised ATC concept permits direct routing. The effect on the efficiency, which is a measure
of the flight distance or flight time required for aircraft to get from its origin to its destination, is evident:
decentralised ATC has the potential to improve the efficiency of flights in an airspace. In addition to improving
route efficiency, direct routing is also expected to distribute traffic more uniformly over the available airspace
[12]. This increased utilisation of the available airspace has been shown to reduce conflict probability, thereby
increasing the safety of decentralised airspace [12][13][14]. Even though the traffic patterns in the decentralised
ATC concept, see figure 2.2b, can seem chaotic, distributing the task of separation among all aircraft increases
the number of ‘problem solvers’ in the airspace. As each aircraft only takes into account its neighbouring
aircraft when avoiding conflicts, each distributed avoidance system is expected to have only a fraction of the
computational strain a centralised system would have [10]. A decentralised system also increases the overall
system robustness to hardware failures when compared to centralised ATC [12][4]. If the CD&R system fails in
a centralised system, all aircraft under its control will be affected. In a decentralised concept, on the contrary, a
failing CD&R system on-board an aircraft still has the other aircraft in the airspace that can detect and avoid
the non-nominal aircraft. Finally, the airspace capacity, which is determined by the desired levels of efficiency
and safety, is no longer constrained by ATCo workload and therefore has the potential to be increased to levels
that would be infeasible with the centralised airspace concept.

An important disadvantage of decentralised airspace concepts is, however, the fact that there is no guarantee
of a globally optimal solution when more than two aircraft are involved [10]. Although current CR methods
can guarantee implicit coordination in the case of two conflicting aircraft, the situation changes for multi-actor
conflicts. In such a case, successive CR manoeuvres can result in unpredictable trajectories, which in turn
increase uncertainty as to when and where intrusions occur. It is likely that this is then reflected in less effective
CD&R globally and, finally, also a higher total number of conflicts and LoSs. Especially in an airspace with
a high traffic density, multi-actor conflicts can be reasonably expected. The desire to return back to more
globally optimal solutions in terms of safety, even when employing a decentralised airspace structure, is driving
researchers to turn to other methods for reducing multi-agent conflicts. A more detailed discussion on such
work is provided in section 2.4.

(a) Centralised ATC relies on airway routing (b) Decentralised ATC permits direct routing

Figure 2.2: Difference between aircraft routing in centralised and decentralised ATC. [1]

The decentralised airspace concept is not new. In fact, the notion of distributing traffic separation tasks have
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been debated in literature since the introduction of automated ATC systems and area navigation (RNAV) in
the mid-1970s [15]. Before continuing however, it is necessary to introduce the concepts of conflicts and LoSs
in more detail than was done in the introduction. A proper understanding of how these differ will be needed
when considering this and the following chapters of the report.

Referring to figure 2.3a, a conflict occurs if the horizontal and vertical distances between two aircraft are ex-
pected to be less than the prescribed separation standards within a predetermined ‘look-ahead’ time. They
may be seen as predicted future LoSs. A LoS, depicted in figure 2.3b, occurs when separation requirements are
violated at the present time [1].

(a) Conflict
(b) Loss of

Separation (LoS)

Figure 2.3: The difference between conflicts and intrusions, displayed here for the horizontal plane. Sh is the
horizontal separation requirement. Adapted from [1]

Most of the research into the decentralised airspace concept, also sometimes referred to as ‘Free-flight’, has
focused on developing automated algorithms for airborne CD&R. An example is the development of the mod-
ified voltage potential (MVP) algorithm, which has proven to be effective in reducing the effect of resolution
manoeuvres on flight efficiency while still guaranteeing minimal LoSs [10]. More information on this algorithm
will be given in chapter 4. Outside the domain of CD&R, however, there remain certain open problems within
ATM, such as airspace design, airspace safety modeling and airspace capacity modeling. These three have been
tackled in [1]. One piece of work is of particular interest to this MSc Thesis, namely the Metropolis project,
which found that a layered airspace concept, where aircraft are separated into vertical flight levels by their
direction of travel, performed best in terms of safety metrics like the total number of conflicts and LoSs [7].
This layered airspace concept is discussed further in section 2.2.

2.2 Layered airspace design
This section discusses various aspects of layered airspace design. Subsection 2.2.1 introduces the layered airspace
concept and the Metropolis project [7], which forms an important foundation for the work in this MSc Thesis with
their recommendation to further investigate layered airspace structures in a decentralised ATM system. Sub-
section 2.2.2 discusses non-uniform scenarios, while section 2.2.3 introduces dynamic airspace re-configurations
in more detail.

2.2.1 Introducing the layered airspace concept
Having established that airspace structures, which are known for decreasing conflict probability and severity,
are an essential component of the design of future air traffic management systems, it becomes relevant to learn
how different airspace structuring concepts compare to one another. The Metropolis Project [7] sets out to
investigate the influence of airspace structure on capacity, safety and efficiency for a high-density airspace. The
researchers argue that the rapid emergence of personal air vehicles (PAVs) and urban air vehicles (UAVs) over
the last decade, and the fact that they are viewed as important components of the future air transportation
system, makes it relevant to look at the airspace system that is required to accommodate these.

One of the concepts introduced in the research is the ‘Layers’ concept. Here, the airspace is segmented into
vertically stacked bands, where each altitude layer limits the horizontal travel to within an allowed heading
range. In their work, climbing and descending aircraft are allowed to maintain heading in their simulations,
however cruising aircraft must stay within the airspace layer that belongs to their heading. Figure 2.4 shows an
illustration of a layered airspace structure that employs uniform heading range distribution per layer. Though
Metropolis used a variation to the layered structure in the figure (the researchers actually had two sets of layers
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that each spanned the full 360◦ heading, with which PAV and UAV traffic was separated), this example should
clarify the concept. The total heading range (360◦) is divided uniformly over the layers, resulting in a 45◦ range
for each of the, in the case of this example eight, layers.

Figure 2.4: Illustration of the airspace structure [2]

The core conclusion of the Metropolis project, which also lays the foundation for the research at hand, is that
a vertical segmentation of the airspace, by separating traffic with different travel directions into different flight
levels (the layers concept), results in a lower rate of conflicts and thus enables higher capacity. Two factors
are thought to contribute to this finding. First of all, by dividing the aircraft over separate layers of airspace,
different groups of aircraft are created that remain separated from each other (segmentation effect). Second,
within each layer, heading limitations enforce a degree of alignment between aircraft, thereby reducing the
relative speed between aircraft cruising at the same altitude, which in turn reduces the likelihood of conflicts
within a layer of airspace (alignment effect).

Contrary to performing large-scale simulation experiments, there have also been studies that have approached
the problem of airspace design from an analytical standpoint. The researchers in [6] derive an analytical ex-
pression for why the layers concept works so well. It is given below in equation 2.1 below

CRglobal =
1
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reduced relative velocity effect

· k︸︷︷︸
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(2.1)

where CRglobal is the global conflict rate, N stands for the number of aircraft, L for the number of layers and α
for the heading segment size. This equation shows the distinct influence of the two beneficial effects of a layered
airspace structure based on heading segments [6]. It shows the previously mentioned separation (or ‘spreading’
as the researchers call it) effect and the alignment (or ‘reduced relative velocity effect’) in a mathematical form.
It may be seen how the number of layers (L) and a small heading segment (α) lead to a reduced global conflict
rate CRglobal .

2.2.2 Non-uniform traffic scenarios
The Metropolis project [7] shows the potential of the layered airspace concept to reduce the total number of
conflicts and LoSs, while having minimal effect on the efficiency. There are, however, limitations in the way the
concept is used in this research. The use of uniformly distributed layers is adequate in cases with traffic with a
uniformly distributed heading distribution. In cases where the headings of the aircraft are not uniformly dis-
tributed, on the other hand, the aircraft are likely to accumulate in one of the layers, resulting in a non-optimal
use of the defined layers. This effect is best understood by looking at figure 2.5.
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(a) Uniform traffic with even layers (b) Non-uniform traffic with even layers

Figure 2.5: Layer utilisation of uniform and non-uniform traffic for an even-layers design. Adapted from [3].

It can be seen in 2.5a that traffic with uniformly distributed headings (Ψ) has the aircraft nicely distributed
over a also uniform layer structure. Looking to figure 2.5b, however, it may be noted that such a structure is
not suitable for non-uniform traffic scenarios, as aircraft may accumulate in one of the layers. In this case, the
over-representation of aircraft flying in the 0◦ - 90◦ range, results in an unnecessarily full first layer. This will
have a negative effect on total conflict and LoS count. Re-configuring the layers to be able to divide the aircraft
more suitably may solve this issue. Graphically, this would look as presented in figure 2.6.

Figure 2.6: Layer utilisation of non-uniform traffic for an uneven-layers design. Adapted from [3].

For the same traffic scenario as presented in figure 2.5b, it can now be seen that aircraft are divided over the
layers again, which is expected to have a positive effect on the total number of conflicts and LoSs experienced.
This has also been shown previously in [3] and [8].

2.2.3 Dynamic Airspace reconfiguration
So far, most studies have looked at (layered) airspace configurations that are static in time. However, to optimise
the airspace utilisation, it may be beneficial to dynamically reconfigure the constraints imposed by a particular
airspace design as the traffic scenario changes throughout the course of a day [1]. For the layered airspace
concept, this could imply re-configuring the airspace several times (in reaction to varying non-uniform traffic
scenarios) to realise a uniform distribution of aircraft among the layers, such as shown in figures 2.5a and 2.6 in
the previous section. Such dynamic re-configurations may be beneficial for the capacity of the airspace, but it is
unclear how exactly these should happen in order to ensure safe operations during the change of structure. An
important factor is likely to be the reconfiguration rate, as this will determine how often aircraft are required to
change from one structure to the next (with all the vertical deviations that are associated with it). Furthermore,
it is not known how the induced vertical conflicts play a role in the total conflict and LoS counts. Even given
that it is known when and to which airspace one should configure, another question that remains is the ordering
of the transition. Should all aircraft move instantaneously or is there some optimal logic for doing this? The
above mentioned unknowns that arise in a research into dynamic airspace re-configurations will be investigated
in more detail in the next section.
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2.3 Impact of Vertical Deviations on Total Conflict and LoS count
In this MSc Thesis that concerns dynamic airspace re-configurations, there will be a strong focus on the transi-
tioning between layered airspace structures. Because such transitions will require (some) aircraft in the airspace
to move vertically to the a new correct layer, it is expected that ‘vertical conflicts’ occur in the process. The
term ‘vertical conflicts’ is used to indicate those conflicts in which at least one of the conflicting aircraft has
a vertical velocity component that is nonzero. These type of conflicts do not benefit from the segmentation
and alignment effects, which only positively affect the number of cruising conflicts and LoSs count. A ‘cruising’
conflict, on the other hand, occurs when the involved aircraft do have vertical velocity that is zero. In general,
conflicts and LoSs do not necessarily scale proportionally in the sense that double the number conflicts means
double the number of LoSs as well. However, it is know from previous research that there is a strong correla-
tion between these to safety metrics. In this section the discussions mainly use conflicts as examples, but the
reasoning extends to a large extent to the case of LoSs.

2.3.1 Effect of reconfiguration rate on total conflict and LoS count
Depending on the ‘reconfiguration rate’ that is chosen for the scenario, the occurrence of vertical conflicts is
expected to play a role in the decisions made by reinforcement learning agent on a suitable airspace structure
for the traffic scenario. For a better understanding of these dynamics, consider a simple hypothetical scenario
displayed in figures 2.7 and 2.8. The traffic scenario is equal for ‘A’ and ‘B’ and consists of a situation where
the air traffic changes significantly every 15 minutes. The effect of the reconfiguration rate on the cruising
conflicts may be as shown in figures 2.7a and 2.7b. A slow reconfiguration rate, as shown in figure 2.7a, may
cause sub-optimality of the airspace for the cruising conflicts, as is reflected by the higher conflict rate in the
15-30 and 45-60 minute time-intervals. By increasing the reconfiguration rate, like in figure 2.7b, it would be
possible to better optimise for cruising conflicts and keep them at a lower level than would be feasible with a
slower reconfiguration rate.

(a) Example cruising conflict rate for slow reconfiguration (b) Example cruising conflict rate for fast reconfiguration

Figure 2.7: Example of cruising conflicts for slow and fast reconfiguration rates in a hypothetical traffic
situation that changes significantly every 15 minutes

At first glance this seems attractive, as it has the potential to reduce cruising conflicts. Studies [3][8] have
even shown that an airspace that is configured for a traffic scenario has the potential to reduce the number of
conflicts and LoSs. For the total number of conflicts in an airspace, however, equation 2.2 holds.

Conflictstotal = Conflictscruise + Conflictsvertical (2.2)

This shows that the vertical conflicts also count towards the total number of conflicts experienced for a given
scenario. For the creation of the images in 2.8a and 2.8b, which show the total number of conflicts for both
cases, the vertical conflicts during a single reconfiguration was set at an arbitrary number of 10. It is seen
that although situation ‘B’ from before was best in terms of cruising conflicts, it ends up having a higher total
number of conflicts due to the vertical conflicts experienced during the re-configurations (a total of 50 conflicts
in situation ‘B’, while situation ‘A’ only has 40).
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(a) Example of total conflicts for slow reconfiguration (b) Example of total conflicts for fast reconfiguration

Figure 2.8: Example of total conflicts for slow and fast reconfiguration rates in a hypothetical traffic situation
that changes significantly every 15 minutes, with 10 vertical conflicts per re-configuration

From this example, two things may be learnt. Firstly, the reconfiguration rate has an influence on the total
number of conflicts, and with that on the airspace selection during this research into dynamic airspace re-
configuration. Each time a re-configuration is made, there is a cost in terms of vertical conflicts that must be
added to the total conflict count. Secondly, the vertical conflicts experienced during a single reconfiguration
(set to 10 in the example) also influences the total number of conflicts. Were this to be, for example, 2 instead
of 10 in the example, situation ‘B’ with the three re-configurations would be most optimal again (a total of 26
conflicts for ‘B’, while ‘A’ would have 32).

When the reconfiguration rate is to be determined for a real-life implementation of dynamic airspace reconfig-
uration, it is likely to depend for a large part on the traffic scenarios in the airspace. The rate of change of the
global heading distribution of the aircraft in the airspace is thought to drive the ‘ideal’ reconfiguration rate for
the set of traffic scenarios. If the direction of aircraft in the scenario rapidly changes throughout the day, the
airspace may benefited by more re-configurations than a traffic scenario that stays relatively constant over time.
It is likely to be a question of balancing the cruising and vertical conflicts. A ‘too-slow’ rate leads to selecting
airspace configurations for a long time-horizon, leading to sub-optimal airspace selection and more cruising
conflicts. It would be tough to ‘fit’ a large variety of traffic scenarios into a single selection of airspace layers.
A ‘too-fast’ rate, on the other hand, leads to more optimal airspace selection in terms of cruising conflicts, but
the apparent gain in terms of safety may be offset by a high number of vertical conflicts. In any case, it is
thought that the reconfiguration rate must somewhat be reflected by the natural rhythm of the traffic demand.
Whether this is indeed true must be shown by experimental simulations, where different rates and scenarios will
be tested to better understand the impact of this variable. As a final note, the reconfiguration rate of a real-life
setting must respect the constraints set by the technology used for information sharing and processing.

2.3.2 Vertical conflicts in analytical conflict count models
Having looked at the impact of vertical deviations arising from airspace re-configurations, the attention is now
turned towards vertical conflicts in analytical conflict count models. The aim here is to show that 1) previ-
ous research has looked into these methods as opposed to only performing experimental simulations to study
vertical conflicts and 2) that the number of vertical conflicts can be significant, especially as the number of
climbing/descending aircraft increases.

In [16], the researchers look into the modeling of the intrinsic safety of both unstructured and layered airspace
designs. When the layered airspace concept is considered, they start of with deriving an expression as already
shown in equation 2.1, but also add that the extension to a 3D conflict rate (CRglobal ) may be made by
adding two terms for the vertical conflicts. The terms they add are shown below in equation 2.3, where the
first represents conflicts between cruising and climbing/descending aircraft, and the second represents conflicts
which involve only climbing/descending aircraft.

Ncruise ·NCD · f (|γ|avg) · k1︸ ︷︷ ︸
Cruising vs. Climbing/Descending

+
NCD (NCD − 1)

2
· f(|γ|) · k2

︸ ︷︷ ︸
Climbing/Descending vs. Climbing/Descending

(2.3)
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Here, Ncruise is the number of cruising aircraft, NCD stands for the number of climbing or descending aircraft,
f(|γ|) is given by equation 2.4 below, and the constants k1 and k2 are used in weighing them among the each
other and the term for only ‘cruising vs. cruising’ conflicts.

f(γ) =
2dseph

vtl (2dseph
|γ|+ 2dsepv )

V
(2.4)

In equation 2.4, dseph
is horizontal separation minimum, v is the average aircraft velocity, tl is the look-

ahead time, |γ| is the absolute flight path angle of climbing/descending aircraft, dsephv
is vertical separation

minimum and V is the total airspace volume under consideration. Fixing all elements, but the number of
climbing/descending aircraft, NCD, reveals that part of the conflict rate that comes from climbing/descending
aircraft increases as the number of climbing/descending aircraft increase. See figure 2.9 below. In this figure, the
absolute value of the vertical conflicts is arbitrary. The reader is merely made aware of the exponential course
of the vertical conflict as the number of climbing/descending aircraft increases. With that, the importance of
these types of conflicts during dynamic airspace re-configuration is underlined.

Figure 2.9: Vertical conflicts vs. climbing/descending aircraft

2.3.3 Order of transitioning aircraft
As stated before, the restructuring of an airspace that is already filled with aircraft will require (some) aircraft
to move from one layer to another. Earlier in this section, it was also explained how the airspace structures
selected by the RL agent might be influenced by the vertical conflicts that arise in these transition phases and
how how the rate of reconfiguration is an important variable in this respect. On top of this, there is, however,
also the order in which aircraft switch layers that will influence the total number of conflicts during a transition.
Exactly how this should be done, however, is unclear. Several options are possible. Examples are 1) moving all
aircraft at the same time, 2) performing the transitions on a layer-by-layer basis and going from top to bottom
(or vice-versa), 3) transitioning the aircraft on a layer-by-layer basis, but doing this in an order corresponding to
the number of aircraft in those layers. Many more variants would exists, but given the discussions in subsections
2.3.1 and 2.3.2, it is at least of importance that some attention goes to analysing or optimising the way in which
aircraft move between airspace layers.

2.4 Reinforcement Learning to Assign Layered Airspace Structures
Previously there have been discussions on centralised and decentralised ATM concepts, layered airspace design
and the impact of vertical deviations of on the total conflict and LoSs. In this section, the attention is shifted
towards another core element of this MSc Thesis, namely that of setting airspace structures with RL methods.
RL methods have proven successful in other ATM studies [8][17][18][19] and it was chosen here as it is believed
that the nature of the challenge to select appropriate airspaces based on traffic scenarios is well suited to these
methods. The section starts with a more in depth discussion as to what RL is in subsection 2.4.1. Subsection
2.4.2 then discusses a study into setting airspaces with RL and displays how its recommendations for future
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work form the basis for the work of this MSc Thesis. Finally, subsection 2.4.3 aims to balance the discussion
by presenting some limitations of using RL methods for safety in aviation.

2.4.1 What is Reinforcement Learning?
RL methods are typically stated in the form of what is called a Markov decision process (MDP). Solving MDPs
can be an effective method for determining actions for an agent in stochastic environments [20], such as an
airspace with random traffic. In an MDP, an agent chooses action at at time t after observing some state st.
The agent then receives reward rt, and the state evolves probabilistically based on the current state-action
pair. The assumption that the next state only depends on the current state-action pair is what is generally
referred to as the Markov assumption [20]. The agent’s behavior is defined by a policy, π, which maps states to
a probability distribution over the actions. The goal is to learn a policy which maximizes the reward [17]. A
graphical overview of the above definition of a RL problem is shown below in 2.10.

Figure 2.10: Definition of a typical RL problem

Like all methods, RL has its pros and cons. A strong point is its applicability to a variety of problems. Within
ATM, it has been used in the domain of conflict resolution [17], but also for setting airspace structures [8].
Outside the ATM domain, studies have for example used RL for lane-following in autonomous driving applica-
tions [21]. RL methods have also been known to have good performance. When implemented successfully, these
methods are capable of solving problems for which conventional algorithms fall short. On the other hand, some
well-known drawbacks are non-convergence, high dependence on initial conditions, and long training times [17].

2.4.2 Reinforcement learning for setting airspace structures with unmanned avi-
ation

RL has been used in previous research to improve airspace structuring in an urban environment [8]. Here, the
researchers looked into the safe introduction of drones into the urban airspace by studying the effect of different
airspace structures in relation to different traffic scenarios. It was found that the use of RL to set airspace
structures had a positive effect by reducing the total number of conflicts and LoSs. As a main recommendation
for future work, it is stated that it is still unclear how safety of operations can be guaranteed during configu-
ration changes. Changing from one structure to another was not analysed. The research assumes that ‘such
transitions will entail several vertical deviations in order for cruising aircraft to adapt to the new structure’.
It is furthermore said that ‘increasing the number of vertical deviations may result in a rise of the number
of conflicts’ and that ‘it is likely that, during a direct change of airspace structure, the RL agent must take
into account the previous structure to reduce the number of vertical deviations’. A discussion on the expected
impact of these deviations on the total conflict and LoSs count was already presented earlier, in section 2.3. It
may be noted that this recommendation for further research in the area of re-configurations forms a direct basis
for the work of this MSc Thesis project.

2.4.3 Limitations of using Reinforcement Learning for safety in Aviation
Though interesting results have been achieved recently with RL methods, it is of importance to keep some known
limitations in mind. The first that is worth touching upon is the selection of the state of the model. In a study
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that tries to determine optimal conflict avoidance manoeuvres with a RL model [17], the researchers make some
general statements about state-selection in a RL model that could also hold for one that is to assign airspace
structures. It is said that the state should provide enough information to the agent to correctly respond to the
behaviour, but that this is in reality limited by the availability of information to the agent and by the compu-
tational effort. The researchers have a preference for simplicity in the early stages of exploration, while stating
that adding information to the model can always be done at a later stage. This is an approach that may be kept
in mind for the development of the RL models for the work of this MSc Thesis. It is further stated that training
the model is highly influenced by the reward structure. Also, the research discusses the balancing of conflicts
and LoSs, where they say that the relation between the two is not trivial, making it hard to define how to weigh
these in the reward formulation. A number of formulations were tried, including an option where only LoSs were
counted, an option where both conflicts and LoSs are considered and an option LoSs and the time-in-conflict
metrics were used. The magnitudes of the weighting between the (sometimes) multiple factors in the formulation
was set empirically. Lastly, the rewards were set to be negative, rather than positive, to prevent stimulating the
RL model to simply solve many conflicts (it might then learn to create many and then solve them to get the
best score). Both the metrics considered for the formulation (conflicts, time-in-conflict and LoSs), as well as
using negative rewards, are also aspects to keep in mind when defining the RL models for this MSc Thesis. Most
of the justifications in this paper could hold true as well in a RL model that is to set assign a airspace structures.

In the results of the paper, another interesting point is made about the effect of the reward function formulation.
It is stated that the number on conflicts indeed decreases when this is included in the reward formulation, but
that this does not immediately lead to fewer LoSs. In fact, the opposite seems to occur: more conflicts lead to
a decrease in LoSs. This has previously been observed in [4], where it is argued that that a moderately positive
number of secondary conflicts can be beneficial on a global scale. The effect of sequentially running into a new
conflict can then create a wave-like pattern, spreading the aircraft out in the available airspace thus ‘creating’
more airspace. This phenomenon highlights the importance of choosing appropriate reward formulations and
that, for example, guiding the RL model with information on conflicts may lead to adverse effects when it
comes to reducing LoSs. This is something to be mindful of when formulating the reward function for assigning
airspace structures with a RL model. From the results it is also clear that a reward formulation based on LoSs
is most effective at reducing the number of LoSs. It is, however, noted that the training progress is very slow.
The researchers attribute this to the fact that there are very few occasions to improve, as the number of LoSs
is relatively low in a given scenario.

2.5 Conflict Resolution
In this research, the focus is first and foremost on conflict prevention through setting appropriate airspace
structures. This, however, doesn’t imply that conflicts will not occur in the experimental simulations of this
work. In fact, they will purposely be created to be able to train a reinforcement learning model to select an
airspace configuration. This section provides a discussion on conflict resolution methods and as such forms a
basis for proper handling of the conflicts in this work. Section 2.5.1 goes into conflict avoidance manoeuvres,
after which section 2.5.2 considers conflict resolution in a layered airspace specifically.

2.5.1 Conflict Avoidance Manoeuvres
Conflict avoidance manoeuvres generally consist of an action to de-conflict the aircraft in question. Depending on
the type of resolution algorithm that is implemented, these actions can be speed, heading or altitude alterations.
The manoeuvres are just that; a variation in the speed, heading or altitude of one or both aircraft to get out
of the conflict. Combinations of these manoeuvres may also be permitted to be able to achieve a more efficient
solution.

2.5.2 Conflict resolution in a layered airspace
For layered airspace structures, some extra considerations for conflict resolution are needed to deal with the
heading constraints imposed in each layer. In such a design, it could occur that the manoeuvre proposed by the
resolution algorithm implies a violation of the defined airspace structure. Different approaches may be taken to
tackle this issue. A first option is to simply allow the aircraft to break the limits as set by the airspace structure
for the duration of the manoeuvre. In such a case, one would have airspace layers where aircraft generally travel
within the predefined heading range, but are not strictly bound to it in the case that they are ordered out of
it for a resolution manoeuvre. Alternatively, one could opt to have the aircraft adhere the heading ranges at
all times. This could imply that aircraft perform additional vertical deviations to go to the correct layer where
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the avoidance heading is allowed. A third option for resolution manoeuvres in a layered airspace is to limit the
avoidance solution to the heading ranges of its current layer.

It is expected that the third option, that limits the output of the resolution algorithm, reduces the effectiveness
of conflict resolution when compared to the first option, which permits manoeuvres that ‘break through’ the
heading range of a layer. On the other hand, limiting the resolution output to the defined heading range does
hold in place the previously mentioned advantages of the alignment effect in terms of the reducing the conflict
probability in a layer. In turn, this may have a positive effect on the total number of conflicts and LoSs if
it offsets the increase in conflicts due to less effective resolution algorithm. The intricacies of these dynamics
are best examined through experimental simulations, where it is possible that the answer depends on factors
as traffic density or the type of resolution algorithm used. In a conflict resolution experiment explained in [1],
the authors found that vertical conflict resolution maneuvers are more likely to trigger new conflicts in their
experiment, which had the aircraft are more densely packed in vertical direction. Considering the packing
density in horizontal and vertical directions for selecting a suitable of manner of conflict resolution in a layered
airspace may prove a useful exercise. As the minimum vertical separation requirement is often set equal or close
to the layer height, it will generally be the case that the vertical packing density is higher than the horizontal
one, making vertical resolution manoeuvres an unattractive option for layered airspace designs.
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Chapter 3

Problem Definition

This chapter formulates the problem definition of this MSc Thesis. It aims to make clear what the focus of the
project is by defining a primary research objective in section 3.1. To achieve the primary research objective, six
research activities have been layed out. These are explained in section 3.2.

3.1 Primary Research Objective
The primary research objective for this thesis is:

3.2 Research Activities
To meet the objective stated in section 3.1, six research activities (RAs) have been defined. They are the
following:

1. Create a RL model that selects an optimal airspace structure for a given traffic scenario
2. Define rules for moving traffic into new airspace structure
3. Define rules for conflict resolution in a layered airspace
4. Create a RL model that selects an optimal airspace structure for a future traffic scenario, while taking

into account the previous airspace structure
5. Analyse the effect of the reconfiguration rate on the choice of an optimal airspace structure
6. Compare performance of the airspace structures picked by the RL models resulting from activities 1, 4

and 5

Each of these will be explained in more detail in subsections 3.2.1 through 3.2.6 respectively. First, however,
consider figure 3.1 for an overview of how they relate to one another and the final research objective.
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Figure 3.1: Relation of the six research activities to each other and the primary research objective

As shown in the figure, two phases are identified: the ‘midterm phase’ and the ‘final experiments phase’. The
results for the midterm phase, thus for research activity 1, will be included in this midterm report. The other
activities will take place after completion of this phase and any results following from those will thus be pre-
sented at a later stage. Do note, however, that considerations have been added for almost all of the research
activities in the literature review of the previous chapter. The reader will be referred to the relevant sections
there in the following discussion of the individual research activities. As may also be seen in the figure, there are
several dependencies between the research activities. Activities 1, 2 and 3 are stand-alone and can be completed
without the results of any of the other activities. Activity 4 (creating the final RL model) will use the results of
activities 2 and 3 for the rules of moving traffic between structures and conflict resolution. Activity 5 is similar
to activity 4, but is aimed at creating and analysing the results of several models that are trained with different
reconfiguration rates. It is therefore considered a separate research activity in this work. Finally, research activ-
ity 6 needs the results of the RL models defined in activities 1, 4 and 5 to be able make a proper comparison of
the models (one without taking the previous airspace structure into account, one where the previous structure
is taken into account, and a set that also takes previous structures into account but were trained using varying
reconfiguration rates). By completing this final activity, a judgement can be made as to whether the primary
research objective has been achieved.

3.2.1 Research activity 1: RL model for an optimal airspace structure
Research activity 1 is:

This research activity is centered around creating a first working RL model. The aim for this is that it
is capable of setting the airspace structure for a single traffic scenario, while reducing the total number of
conflicts/LoSs compared to a uniform, fixed airspace structure. It is thought that this forms a solid foundation
for the development of the RL model that is to take the previous airspace structure into account (during a
reconfiguration) as well. Several questions will need to be answered for this research activity, they are stated
below.

• Which RL model would be suited for the problem at hand?
• What are the limitations of the chosen RL model?
• How should the traffic scenario be formulated to use it as an input for the RL model?
• How should the output from the RL model be formulated to define an airspace structure?
• How should safety be defined for the RL model (e.g., conflicts, LoSs)?

For some further considerations on the use of a RL model to assign layered airspace structures, the reader is
referred to section 2.4 in the previous chapter. The experimental results for activity 1, which is independent of
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the activities that are to follow (see figure 3.1), will be included in this report. It is the only research activity
for which this is the case. The results of the following five activities will be worked out for the final part of this
MSc thesis, the final experiments phase.

3.2.2 Research activity 2: Rules for moving traffic into new airspace structure
Research activity 2 is:

The intended addition of this MSc thesis project to previous research mainly lies in the dynamic transitioning
from one airspace to the next and how this can be achieved with a reinforcement learning model that defines
heading ranges. The transitions from one airspace to the next invokes the need for vertical deviations of aircraft
to their (new) airspace layer. There is not one way that one might go about instructing the aircraft in a scenario
to move their vertical position to get into their layer, however it is unclear what the effect is of any rules for
doing this. This second research activity is to define rules for moving traffic into a new airspace structure. In
subsection 2.3.3 of the previous chapter, it was already explained that the manner in which aircraft transition
into a new structure during an airspace reconfiguration will influence the total number of conflicts and LoSs.
With suitable rules, the number of vertical conflicts (conflicts for which at least one of the conflicting aircraft
has a vertical velocity that is nonzero) may be limited. Several questions may again be posed for this activity,
they are stated below.

• What are suitable rules for moving traffic into a new airspace structure?
• Should a maximum amount of time be allowed for aircraft to move into the new structure?
• Should aircraft that are transitioning between layers receive priority over cruising aircraft?

It is very well possible that the answers to these questions are a function of independent variables like traffic
density (low, medium, high) or the setting of the conflict resolution (on/off). If this appears to be the case,
the rules for moving the traffic would have to be adjusted to the context of the scenario for optimal safety.
As is displayed in figure 3.1 at the beginning of the section, this research activity will take place in the fi-
nal experiments phase, meaning that the results for this are not included in this report. Because it would
be an unnecessarily lengthy process to investigate the questions for this activity with the RL model developed
under research activity 1, separate experiments will be defined for investigating the rules for transitioning traffic.

3.2.3 Research activity 3: Rules for conflict resolution in layered airspace
Research activity 3 is:

The key characteristic of the layered airspace concept is that the aircraft in a layer must adhere to a set heading
range (see figure 2.4 in the previous chapter). As explained as well in subsection 2.5.2, some extra considerations
for conflict resolution are needed to deal with these heading constraints. This is as the manoeuvre proposed by
a resolution algorithm could imply a violation of the defined heading range limits in the current vertical layer.
There are roughly three possible ways of dealing with the issue.

1. Allow aircraft to break the heading limits set for their layer, reducing the benefits of the segmentation
and alignment effects previously explained in subsection 2.2.1.

2. Strictly adhere to the defined heading ranges, implying aircraft might have to perform (additional) vertical
manoeuvres for conflict resolution.
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3. Limit the avoidance to the heading ranges of the layer, which is expected to reduce the effectiveness of
the conflict resolution algorithm (see last paragraph of subsection 2.5.2).

This third research activity outlined here is concerned with defining rules for conflict resolution in a layered
airspace with defined heading ranges per layer. The questions posed for this are the following:

• Which CR model can best be used?
• Which of the three aforementioned options for dealing with conflict resolution in a layered airspace results

in the lowest total number of conflicts and LoSs
• When possible, should aircraft prioritise speed over heading variations for resolving conflicts?

For this research activity there are some similarities with research activity 2. Just as for that activity, the results
for this third research activity will be completed in the second phase of the MSc project (after the midterm
report). Also, separate experiments will be defined for the defining of the conflict resolution rules, as using
the airspace structure set by the RL model would be unnecessarily complex. Lastly, it also holds for research
activity 3 that the answers to the posed questions could depend on the settings for the independent variables
like traffic density (low, medium, high).

For the continuation from research activities 2 and 3 into research activity 4 (see figure 3.1), the best results
will be taken in terms of the rules for moving the traffic and conflict resolution. The RL model can then adapt
to these rules during its training.

3.2.4 Research activity 4: RL Model for dynamic airspace reconfiguration
Research activity 4 is:

This research activity gets to the core of the research and is centered at creating the final RL model that
is to select suitable airspaces with information on the future traffic scenario, as well as the previous airspace
configuration. A sequence of airspace selections, done with this information on the future air traffic and the
previous structure, is the essence of the ‘dynamic airspace reconfiguration’, the main theme of this work. A
relevant question for this research activity is shown below.

• How should the previous airspace structure be used as an input for the RL model?

Note that this research activity will consist mainly of adding new information on the current airspace structure
to the model already created under activity 1. Many of the questions concerning formulations for the inputs
and outputs of the RL model will have already been addressed there. It may be added that, with the larger
state formulation in this activity (now including information on the previous structure), there will also be more
possible state/action combinations. Due to this, it is expected that the training of the model takes longer.

As mentioned previously, the best results of research activities 2 and 3 will incorporated in the formulation of
the experiments for this fourth research activity, see figure 3.1. The rules for moving the traffic into the new
airspace structure (subsection 3.2.2) and for conflict resolution in a layered airspace (subsection 3.2.3) are then
in principle lined up with the goal of optimal safety. It is, however, noted that research activities 2 and 3 will be
relatively short investigations as they are not the main focus of this work. Furthermore, they will be explored
individually and not at the same time. Their independence can, however, not be guaranteed, which means that
the rules for moving traffic between layers, as well as the rules for conflict resolution, remain assumptions in
the development of the final RL model.

3.2.5 Research activity 5: Effect of reconfiguration rate on the choice of optimal
structure

Research activity 5 is:

40



In subsection 2.3.1 it was established that the reconfiguration has an influence on the total number of conflicts,
and with that on selecting an optimal airspace structure. For this research activity, two questions are posed:

• How does reconfiguration rate affect the decisions taken by the RL model?
• Is there an optimal reconfiguration rate?

It is again likely that the answer to these questions depends on factors such as the traffic density and traffic
scenarios. In the experiments of this work, the reconfiguration rate will be set as an independent variable.
Several rates (slow, medium, fast) will be used, making it possible to examine the effect of this variable on the
choices that the RL model makes. In the real world, there will be a minimum configuration rate, depending
on the speed at which the environment is capable of gathering information and decides upon a new airspace
configuration. This will be a function of the technology available for communicating the information between an
agent for setting the airspace structure and the aircraft in the airspace. The maximum (useful) reconfiguration
rate will depend on the rate at which the traffic scenario changes considerably.

Concerning the relation to other research activities, this activity will be completed after the RL model for
dynamic airspace reconfiguration has been set up in research activity 4. With this in place, experiments can be
run where the reconfiguration rate is varied to see what the effect is on the choices of the RL model. Because of
the fact that new RL models will follow from this, it was chosen to view this as a separate reseach activity. Re-
ferring to figure 3.1, the results found with models developed here may then be used in the sixth and final activity.

3.2.6 Research activity 6: Compare performance of the airspace structures from
activities 1, 4 and 5

Research activity 6 is:

In section 2.4.2, it was explained how previous work has focused mostly on the application of reinforcement
learning models to prescribe airspace structures without taking the previous airspace (and thus the need for
re-configuring) into account. As explained, research activity 1 is concerned with this is well, while the step of
adding information on the previous airspace is made in activity 4. In activity 5, the additional investigation
into the effect of the reconfiguration rate on the selected airspace structures is made. That extension towards
airspace reconfigurations and its impact on safety in activity 4 and 5, which is the crux of this research, must be
analysed in depth in order to be able to extract the full value from the work. Specifically, the questions posed
for this final activity are:

• How do the optimal structures of the RL model that is aware of the previous structure differ from structures
as output by a RL model that only has information on the future traffic scenario?

• Does the RL model opt for structures that focus on reducing vertical conflicts during the transition period
when information is added on the previous airspace or does it still focus on the reduction of cruising
conflicts?

It can reasonably be expected that the airspace structure resulting from research activity 1 will be better at
decreasing the number of cruising conflicts for every traffic scenario (as it only takes that into consideration).
It will, however, likely also suffer from more vertical conflicts than the airspaces output by the RL model of
activities 4 and 5.

41



For this final activity, it is envisioned that it forms the core of the results for this MSc project. A sound
comparison between the outputs of the newly developed RL models that take the previous airspace structure
into account and RL models that merely looks at the future traffic scenario, will be the best way of determining
to what extent the research objective of section 3.1 has been achieved.
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Chapter 4

Methodology for Research Activity 1

This chapter introduces the methodology for completing the first research activity: to create a RL model that
selects an optimal airspace structure for a given traffic scenario. For a reminder as to how this activity ties in
with the activities for the full MSc thesis, the reader is referred to section 3.2 of the previous chapter. The
experiments to demonstrate the RL model will be referred to as the ‘concept experiments’ in this report, in
order to be able to distinguish them from the experiments for the remaining parts of the research after the
midterm. Firstly, the setting of the airspace structures for this research activity with RL is discussed in section
4.1. Here, the most important aspects of the RL model are discussed, such as the agent, the learning algorithm
and the state, action and reward formulations. Following this, section 4.2 goes further into the details of the
set-up for the concept experiments. The goals here is to present exactly how the experiments are defined for
the first research activity. Lastly, in section 4.3 the hypotheses for the concept experiments are stated.

4.1 Setting the airspace structures with Reinforcement Learning
This section gets to the heart of the research by discussing how airspace structures will be set with a RL model.
Subsections 4.1.1 through 4.1.5 elaborate on key elements of such a model, such as the agent, learning algorithm
and state, action and reward formulations.

4.1.1 Agent
The agent has the objective of setting an airspace structure that is optimised for the expected traffic scenario.
It is assumed that the RL agent has full knowledge of the future traffic density and trajectories. In a real-life
application, the agent could be seen as the operator of the airspace and responsible for the defining configuration
(changes).

4.1.2 Learning Algorithm
The type of learning algorithm used for the concept experiments is the soft-actor critic algorithm. In this
relatively new off-policy actor-critic algorithm ‘the actor aims to simultaneously maximize expected return and
entropy; that is, to succeed at the task while acting as randomly as possible’ [22]. In general, a RL algo-
rithm such as this one consists of an agent (see subsection 4.1.1) that interacts with its environment in discrete
timesteps. It has the goal to learn a policy that maximises a reward, rt, that is given to an action.

In an actor-critic architecture, there are two neural networks: one for the actor and one for the critic. The actor
function, often named the policy, is usually written µ(s|θµ) and specifies the output action a in regard to the
input, the current state s of the environment in the direction proposed by the critic. The critic, on the other
hand, is often denoted by Q(s, a|θa) and tries to estimate the correlation between the state and the action of
the actor. It is updated from the gradients obtained from a temporal difference error signal each time step.
The output of the critic drives learning in both the actor and the critic. The activation functions used for this
first research activity are ‘tanh’ functions in the hidden layers, with a ‘sigmoid’ function in the output layer. [17]

4.1.3 State
It was chosen to use a state which contains information on the headings of the aircraft within the experiment
area. For this, the total aircraft heading range, 0◦ - 360◦, is divided into 10 bins of equal size. The aircraft
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are then divided over these bins by their instantaneous heading to compute a state array at a given time. The
resulting array is then normalised before proceeding with the next steps. This way, the value of each head-
ing bin will be the fraction of the total number of aircraft that have a heading that falls within the heading
range for a particular bin. A graphical representation of this is given below in figure 4.1, where n1, n2, ...,
n10 represent the normalised number of aircraft of that bin. For example, the value of n1 is the number of
aircraft with headings in the 0◦ - 36◦ range divided by the number of aircraft at that time, n2 is the number of
aircraft that have headings from 36◦ - 72◦ divided by the number of aircraft. It is key to select the state of the
model such that it provides sufficient information about environment, without becoming so large that it causes
excessive computational effort. Though a bigger state array may allow for a better representation of the heading
differences between aircraft, increasing the dimension of the state increases the number of possible states and
state-action combinations. As the solution space of the problem grows, so will the training time of the model [3].

Figure 4.1: State formulation for the RL model with 10 heading bins. Each of the values n1, n2 ... n10
represents the (normalised) number of aircraft that have a heading that is within the heading range

corresponding to that bin.

4.1.4 Action
An action is selected each time the state is given to the agent. The state values are passed through the neural
network, which contains network weights for every neuron and activation functions for every layer. The acti-
vation functions are such that they convert the output of the previous layer to a form that can be taken as an
input for the next layer. The final output is a one-dimensional action array, which contains the information on
the selected heading range each layer. Directly at the output, this array is of size [1 x 8] and filled with values
ranging from 0 to 1 (due to the sigmoid function in the output layer). This action array is then normalised,
such that the values add up to one and can trivially be used to define an airspace structure that covers the full
360◦ heading range. A graphical representation of the action formulation is given below in figure 4.2, where f1,
f2, ..., f8 stand for the fractions of the eight layers that will be used in this research activity. For example, if f1
= 0.05, the first layer will allow aircraft with headings 0◦ - 18◦. Then, if f2 = 0.15, the second layer will allow
aircraft with headings 18◦ - 72◦, and so on, until the complete 360◦ heading range is covered by the layers.

It may be noted that the choice for eight layers was made in this research, but that this variable is in reality
dependent on the environment. With fewer combinations of heading ranges to chose from, the resulting fewer
altitude layers would likely lead to lower training times. However, with more layers the aircraft will be more
dispersed throughout the airspace, possibly resulting in more optimal results in terms of the total number of
conflicts/LoSs experienced.

Figure 4.2: Formulation of the action that is given by the RL agent in response to a state for the 8-layer
airspace design. Each of the values f1, f2, ..., f8 (decimal, 0-1) represents the fraction of the total heading

range that the layer should cover

4.1.5 Reward
In this research, the focus lies on improving aviation safety through airspace design. To achieve this, it makes
sense to give the RL model rewards based on safety metrics. Within this, however, there is still the option
of going with a reward based on the total number conflicts or LoSs (or even combinations of these). It is not
expected that there is a clear-cut answer as to which of these works best for the case of dynamic airspace re-
configurations. Likely, this is again dependent on various factors such as the traffic density in the experimental
simulation, the nature of conflicts and LoSs (‘cruising’ or ‘vertical’) or the settings for conflict detection and
resolution. Initially, the approach taken in this work will be to keep the reward function as close to the objective
as possible, which means that a reward based on the total number of LoSs is implemented. Though it is the
ultimate goal of the experiments to reduce the total number of LoSs, it is foreseen that a relatively low number
of LoSs (at least, when compared to the total number of conflicts) might contain too little information for the
model to learn a successful policy. In that case, one might consider methods to increase the number of LoSs in
the experiments or trying reward formulations that include conflicts. First creating some results with a reward
function based on the total number of LoSs, however, is thought to be a solid basis for further iterations. Later
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on in the MSc thesis, when completing research activity 4 (the RL model that also includes information on the
previous airspace structure, see section 3.2.4), other reward functions may be tried to see if the results improve.
For now, however, the reward for the concept experiments is formulated as follows:

Reward = −Total number of LoSs
100

(4.1)

The division by 1000 was implemented after better results were found during a number of initial training runs.
Recent research has shown that reward re-scaling can improve the stability of a reinforcement learning model
[23].

4.2 Concept Experiments Set-up
In this section, the concept experiments (the experiments for research activity 1) will be outlined. Before going
into the elements of the experiments, subsection 4.2.1 is added to make clear how these concept experiments
lead up to the final experiments and with what purpose they have been designed. For an additional overview of
this, the reader is referred back to figure 3.1. Subsection 4.2.2 elaborates more on the use of the Bluesky Open
Air Traffic Simulator in this work. Then, section 4.2.3 presents the choice of airspace type, whereas subsection
4.2.4 dives into the actual experiment design for the concept experiments.

4.2.1 Concept experiments as a step to the final experiments
For the concept experiments, a RL learning model is built that is capable of setting the airspace based on a
single traffic scenario. As explained previously, no information is yet present on the previous airspace. It can
in a sense be viewed as a recreation of the work performed in [8], that showed that using RL techniques to set
the airspace structure has a positive effect on the conflicts and LoSs experienced in various traffic scenarios.
The scenarios used for these concept experiments, however, will be different than what those researchers used
in their work. This is due the decision to use unmanned aviation in an ‘above-buildings’ setting, a combination
that wasn’t investigated yet.

The questions posed in subsection 3.2.1 of chapter 3 form a solid guideline for the goals of the concept exper-
iments. The first five that concern the selection of RL model type and the formulation of the state, action
and reward have been addressed in section 4.1 earlier this chapter. The final question, which concerns the
performance of the RL model’s performance versus an airspace that employs a uniform, fixed structure, is to
be determined by means of the concept experiments that are outlined in this section.

For the development process of the final RL model (research activity 4), having these intermediate concept
experiments poses several advantages. Firstly, it forces the completion of a working RL model and all other
code for running experiments at an early stage in the MSc project. This RL model will, furthermore, at its
core be very similar to the final model in this work. It is already at the point where it can take the safety
metrics of conflicts and/or LoSs into account to come up with an airspace structuring. At that point the
reward formulation would be entirely based on the cruising conflicts and/or LoSs that occur in a given airspace
structure. All that needs to be added into this reward formulation is the information on vertical deviations,
which then functions as a metric of ‘expense’ to reconfigure the structure.

4.2.2 Use of BlueSky Open Air Traffic Simulator
For the concept experiments, use is made of the BlueSky Open Air Traffic Simulator [24]. ‘BlueSky’ has been
created by the ATM/CNS department of the Faculty of Aerospace Engineering at Delft University of Technology,
in response to the need to be able to compare efforts and results in the field of ATM research. It is an open
source and open data approach to air traffic simulation written in Python and it was chosen to use BlueSky
in this research for various reasons. Firstly, there is a substantial body of experience with this tool available
within the department, that may be used to rapidly get going with the simulations that are needed to complete
this work. Secondly, the use of BlueSky makes it possible to take advantage of its performance library, which
includes the specifications of many aircraft types, and many other pre-programmed features like for example
conflict detection & resolution algorithms, a graphical user interface (GUI) and datalogging. Lastly, by using
BlueSky any results will be obtained in a way that is easily verifiable, reproducible and can be extended upon
in future research (within or outside the ATM/CNS department).
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4.2.3 Choice of Airspace Type
As this work is a research that builds on the layered airspace concept, an important variable to set to further
define the airspace is the aircraft types that will be used in the experiments. In general, one could go for
an airspace with manned, unmanned or mixed (both manned and unmanned) aviation. In this research, it
was chosen to go with unmanned (urban) aviation, as this poses several advantages in achieving the research
objective. The arguments are discussed in the following.

The first argument is that fact that future unmanned, urban, aviation is expected to have higher traffic densities
than manned aviation. The proof of concept for dynamically re-configuring airspaces with RL techniques will
be stronger if the experiments are set in a setting with very high traffic densities. The best would naturally be
to check both manned and unmanned cases, but in the interest of delivering a work that is focused primarily
on the transitioning of airspaces with a machine learning model, this option is omitted here.

The second argument for an airspace with unmanned aviation is that this type of aviation generally employs
more trivial routes that commercial manned aviation [25], again reducing the scope of the research and leaving
room for a good look at the dynamic re-configurations, the research objective of this work. It is mostly in the
simulation development phase where the major gain of this choice will surface, as the time saved by creating
more trivial scenarios may be used for the development of proper RL models.

The third argument for using manned aviation in this research into dynamic airspace reconfiguration with RL is
the potential applications of these methods. The idea of dynamically changing the vertically stacked airspace to
improve safety, is founded on the principle of moving the flight altitude of aircraft in such a way that conflicts &
LoSs occur less often. The result of the new configurations would be that aircraft sacrifice an optimal altitude
in terms of energy efficiency, in order to achieve better safety as measured by various metrics. This sacrifice
in energy efficiency is relatively larger for manned aircraft (where flight altitude is a more dominant factor in
efficiency) than it would be for unmanned aircraft, which could lead to an earlier adoption of RL techniques to
enable dynamic airspace re-configurations. On top of that, it expected that it is more trivial to communicate an
airspace configuration change to a system of live aircraft when they operate on an urban level than if they are
performing flights over a longer distance like civil, manned, aviation generally does. This could make adoption
of dynamic airspace configuring more attractive for an unmanned aviation setting.

4.2.4 Experiment Design
The experiment design for research activity 1 is done by making decisions on various aspects of the simulation.
In the following, all of these aspects will be explained. The reader is reminded that the goal of the concept
experiments is to be able to complete research activity 1 (see section 3.2.1). That is, to create a RL model that
selects the optimal airspace structure, given only the information on the future traffic scenaro.

Simulated environment

As stated earlier in section 4.2.3, this research will look at airspaces for unmanned aviation. How the airspace
is best configured for this type of aviation in the future is still under discussion within the ATM community.
Generally, two possibilities are ‘very low level’ traffic and ‘above-building’ traffic, both of which have been
investigated in previous research. The Metropolis project [7], for example, looked at ‘above-building’ traffic,
while [8] looks at air traffic that operates in a grid-like pattern that you would find in a ‘low-level structure. In
this research, the main goal is to investigate the possibility of having a RL model that incorporates previous
traffic information while outputting the most suitable airspace structure. To keep this focus, the choices for the
configuration of the experiments, and as a part of that the simulated environment, should enable that. For this,
it is desirable to be able to analyse the results with the airspace structure being the only affecting variable. In a
low-level airspace, which includes the definition of directional streets, the aircraft may be forced away from the
heading limits as to not hit a building. These are considerations that are not desirable to include in the results,
as they will contaminate the outcomes with decisions that are not solely a function of the airspace structure.
Because of this, it was chosen to go with the more trivial simulation environment with traffic that is ‘above-
building’. This furthermore eases the definition of routes and enables them to be linear, greatly simplifying the
creation of the scenarios.

Airspace structures

The RL model is to set the airspace structure for a scenario. Before going any further into the experiments
design and what such scenarios might look like, the airspace structures are discussed in greater depth. As
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mentioned previously, this work builds upon the recommendation of the Metropolis project [7] to look further
into the ‘Layered’ airspace concept, which has the airspace segmented into vertically stacked bands, where each
altitude layer limits the horizontal travel to within an allowed heading range. To create such an airspace for the
(concept) experiments, several parameters need to be set. First of all the three-dimensional bounds of a cubic
airspace are defined. For the horizontal plane this definition comes down to setting a minimum and maximum
latitude and longitude (latmin, latmax, lonmin, lonmax). For the sake of simplicity in defining the area, the centre
of this square was taken at the position of zero latitude and longitude (latcentre = loncentre = 0). The sides of
the square were set to have a length of 0.3 degrees latitude and longitude respectively, which corresponds to
around 18 Nm. The total experiment area then has an area of 1.5 x 1.5 = 2.25 Nm2. The minimum and max-
imum altitude (altmin, altmax) then complete the dimensions of the airspace. The minimum altitude, altmin,
was set to 1100ft, while the maximum altitude, altmax, is set to 3500ft. A total of eight vertical layers are
defined that are distributed uniformly throughout the airspace and each have a height of 300ft each. Note that
the layers are distributed uniformly and are fixed in terms of altitude, but that is the heading range that will
be varied by the RL model. Figure 2.4 in chapter 2 contains a side view of what this looks like for a uniform
airspace structure, where the heading ranges are of equal size. In the airspace that is to be set by the RL model,
these heading ranges will vary according to the traffic scenario.

Aircraft type

For the experiments, it was chosen to simulate an airspace with a large amount of ‘light-load’ drones. This is
a type of drone that is expected to be notably present in the skies of the future. They will likely be used for
medical or lightweight industrial deliveries and for the completion of more traditional forms of delivering parcels
of couriers to businesses and consumers [5]. For the sake simplicity, the drones in the experiment will all be
of the same type and will therefore have the same performance specifications. It was chosen to go with with
the type of drone called ‘DJI Mavic Pro’, as its specifications resemble what [5] describes as being a prominent
aircraft type in our future airspace, as well as the availability within the BlueSky aircraft performance libraries.

Minimum Separation

In this work there is a lot of attention to the safety metrics in the analysis of the various airspaces. Both the
term ‘conflict’ as well as ‘LoSs’ have been used extensively. For unmanned aviation, no current standards are
in place at this point in time that define these. Furthermore, what is considered a safe separation distance is in
reality a function of the (also currently unknown) traffic density. In previous research [26], however, a horizontal
separation of 50m has been used. For the final experiments of the research, this could be a suitable value to
use. For this first research activity, where a RL model for the Bluesky environment is set-up for the first time,
however, it was chosen to increase the minimum horizontal separation to 200m. This approach was thought to
be best way to create a large number of LoSs for the model to learn with, while keeping the computational costs
down. Alternatives such as higher traffic densities or longer episode times would have caused longer training
times, reducing the speed at which iterations to the scenarios and the state, action and reward formulations
could be tested. For the vertical separation, one airspace layer (300ft) is taken. By default, aircraft cruise in
the middle of their assigned layer. This means that aircraft cruising in adjacent layers will not be in conflict.

Traffic scenarios

An important component of the experiments are the traffic scenarios that are run during training and testing.
In the interest of a work that goes into depth on the dynamic airspace re-configuring, it was chosen to only
consider the cruise phase of flight and not to consider the take-off and landing operation in this research. Each
aircraft in the simulation is therefore initialised on one of the four edges of the scenario. The aircraft spawn
locations are chosen at random on the edges of the ‘Experiment area’. Within an episode, aircraft are spawned
at a fixed rate. The decision for which edge an aircraft is spawned on is determined by a set of probabilities
for the edges, which is fixed per episode. For example, if the probabilities are [North, East, South, West] =
[0.85, 0.05, 0.05, 0.05], on average 85% of the traffic gets initiated from the northern edge for that episode. On
the other hand if a [North, East, South, West] = [0.25, 0.25, 0.25, 0.25] setting was selected, the traffic in the
scenario will be approximately uniform. During training, the values of this [1 x 4] array are set at random for
every episode. This means that the agent sees different kinds of traffic scenarios, ranging from rather uniform
traffic to traffic which comes predominantly from one or two of the four edges.

At initialisation, the aircraft is given a random angle between 45◦ - 135◦ degrees from the edge. The correspond-
ing heading is computed to properly spawn it in the simulation environment. An illustrative example of an

47



aircraft route is given in figure 4.3. The altitude at which the aircraft is spawned corresponds with their heading
in order to ensure that aircraft are within the correct layer upon initialisation. The linear aircraft routes have
three way-points, shown as green dots in figure 4.3 and an exit point, shown in red in the same figure, to guide
the aircraft. The exit points naturally follow from the initial spawn location and heading, while the way-points
are added such that the aircraft will stick close to its intended route, even if the aircraft deviates from this to
resolve a conflict. The climbing and descending happens in accordance with the specifications of the aircraft
type used and is almost vertical. The speed at which the aircraft fly along the routes is set to the maximum
cruising speed of 18 kts. For this first research activity, the logging of parameters for analysis happens in the
complete experiment area. In future research activities, a logging area that is offset by some fixed distance from
the experiment area perimeter will be used to omit any edge effects from occurring. This will be explained in
more detail in chapter 6.

Figure 4.3: Illustration of the experiment area, including an example of a flight route

After reaching its destination on the edge of the experiment area, an aircraft gets deleted from the simulation.
The data of an aircraft is saved whenever it leaves the experiment area. Data is collected on efficiency metrics
like 2D & 3D distance flown as well as the flight time. Furthermore, and perhaps more relevant for this research,
the safety metrics are logged, which save the number of conflicts and LoSs that an aircraft has experienced on
its flight. To obtain the results of the experiment, a wind-up time of 8 minutes is taken before the state (with
information on the headings of the aircraft in the area) is sampled. At this point, an action is requested from
the RL model. After 12 minutes, when all aircraft have reached their new correct layer, the logging of the data
starts. During training of the model for this research activity, episodes with a total duration of 40 minutes were
simulated, which implies that there are 28 minutes of simulated traffic during which information on the LoSs is
collected for the setting of the reward (see section 4.1.5 and equation 4.1).

Conflict detection

Even when coordination efforts are performed, like for example setting an appropriate airspace for the traffic
scenario, it remains essential for safety to also have a conflict detection and resolution (CD&R) system in place.
First, the conflict detection algorithm is elaborated upon. After that, a brief discussion on the chosen conflict
resolution algorithm.

For conflict detection, the experiment employs a state-based conflict detection method equal to that used in [8].
This is a widely used method in the field, as is further solidified by its use in [3]. It assumes linear propagation
of the current state of all aircraft involved. The time to closest point of approach (CPA), tCPA, is computed
with equation 4.2 below

tCPA = − d⃗rel · v⃗rel
v⃗rel

(4.2)

where d⃗rel is the Cartesian distance vector between the involved aircraft (in meters), and v⃗rel the vector difference
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between the velocity vectors of the involved aircraft (in meters per second). With this tCPA known, the distance
to CPA, dCPA, can be computed by means of equation 4.3 below.

dCPA =

√
d⃗2rel − t2CPA · v⃗2rel (4.3)

When this dCPA is smaller than some pre-defined separation distance, one may compute a time-interval during
which separation will be lost. This is done through equation 4.4 below.

tin, tout = tCPA ±
√

R2
PZ − d2CPA

v⃗rel
(4.4)

In other words, the above allows the computation of the already often used LoSs safety metric. Conflicts, on the
other hand, are said to occur when dCPA < RPZ and tin < tlookahead, where RPZ is the radius of a protected
zone (the minimum horizontal distance) in meters and tlookahead is the look-ahead time is seconds. For this
work, a look-ahead time of 30s is implemented, as was done for [8] that also used unmanned aviation in a setting
where conflict detection and resolution was implemented.

Conflict resolution

For experiments in research activity 1, it was opted to not make use of a CR algorithm. With this CR setting set
to OFF, many LoSs occur per episode, reducing the need for more computationally expensive ways of creating
this information, such as longer episode lengths or higher traffic densities. As this first research activity is
intended mainly as a step up to the final RL model, which is to also take into account previous airspace
structures, a shorter development time to a learning model was valued more than very realistic end-results.

4.2.5 Simplifying assumptions
Before proceeding, it is of importance to introduce all simplifying assumptions that define the gap between
simulation and a real-life setting. First of all, non-linear routes are not considered. When an aircraft is spawned
it is given several way-points that lie on a straight line towards its destination. Except for conflict resolution
manoeuvres or manoeuvres to move to another airspace layer, all aircraft follow these routes with a constant
speed, constant altitude and without heading deviations. The effects of wind are neglected. Though it is still
unclear where future unmanned aviation will operate, an ‘above-buildings’ airspace is assumed in this work.
Furthermore, only en-route scenarios are considered, which means there will be no aircraft taking-off or landing
in the simulations. The aircraft used will all be of the same type and are assumed to have constant performance,
implying that (component) failures are not simulated. For the airspace, constant traffic density is assumed for
the duration of individual scenarios. The traffic density, however, will be varied between scenarios to be able
to investigate its effect on the airspace configuration selected by the RL model. A fixed number of layers is
further assumed, which seems reasonable as there is an argument that a RL model would converge towards
as many layers as possible. As mentioned previously, it is assumed that the RL agent has full information
on the future traffic density and trajectories. Also, no delay in communication of information such as aircraft
states, conflict resolution advisories or airspace re-configurations is taken into account. Finally, concerning the
optimisation of safety metrics, it is assumed that fewer conflicts lead to fewer LoSs. Although this relation is not
as straightforward as assumed here, there is a strong correlation between the two that makes this assumption
reasonable. Finally, no edge-effects due to a finite simulation space are assumed, as these are omitted through
an experimental setup with sufficient flight space around the measurement area.

4.3 Hypotheses for concept experiments
For the experiments for research activity 1 as outlined in section 4.2, various hypotheses may be setup. They
are presented in this section. Subsection 4.3.1 presents some hypotheses that relate to the training of the model.
After that, in subsection 4.3.2, the expected results of testing the model are presented.

4.3.1 Hypotheses - training of the Reinforcement Learning Model
For the training phase, it is expected that the model is capable of learning a policy that allows the agent to
collect better rewards over time. The airspace structures that are selected towards the final episodes should
demonstrate that they have been set to fit the traffic scenario at hand. It is, however, expected that the
reinforcement learning lacks some precision. For example, for a perfectly uniform traffic scenario, setting a
perfectly uniform structure may achieve better results than the structure output by the RL model. Although
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it is expected that the model will output an almost uniform structure, it probably won’t be as suitable as a
perfectly defined uniform structure.

4.3.2 Hypotheses - testing of the RL model
For the testing of the model, it is expected that the performance of the model depends on the traffic scenario
that it is presented with. For a uniform traffic scenario, a perfectly uniform structure is expected to be ideal.
However, as mentioned previously, even after training the RL model is not expected to be perfect. It is therefore
hypothesised that the airspace structure as output by the RL model will be close to uniform when it is tested
with uniform traffic scenarios, but not exactly uniform.

For testing scenarios where there is traffic coming heavily from one or two of the edges, in essence very non-
uniform structures, it is expected that the model is able to capture this at least to some extent and select a
different airspace than it would for uniform structure. For example, for heading ranges containing a higher
traffic density, the model should divide this heading range over multiple layers, as to decrease the local traffic
density.
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Chapter 5

Results of Research Activity 1

This chapter discusses the results that have been found in the completion of research activity 1. Firstly, in
section 5.1, the results training process of the RL agent are presented. Next, in section 5.2, the performance of
the RL model when presented with several scenarios for testing is showed. Here, it is discussed to what extent
the model after training is capable of setting the a suitable airspace structure for several new scenarios that
the model was not trained in. A look will be taken both at the resulting LoSs over the scenario, as well as the
resulting decision for the airspace structure. Finally, section 5.3 discusses the relevance of the results for the
rest of the research. This last section in particular, may be viewed as the bridge to the final experiments that
are to performed after the midterm review. The plan for those will be explained more in chapter 6.

5.1 Training of the RL agent for Safety Optimised Airspace Struc-
turing

After 90000 episodes, the training was terminated and the results were analysed. Firstly, the reward evolution
was examined. This will be explained in subsection 5.1.1. Following this, a small set of states, actions and
rewards of the model during the end of training were looked at. They latter will be explained in subsection
5.1.2.

5.1.1 Reward evolution during training
For a first indication of the results from training, the mean of the reward was tracked and plotted. Figure 5.3
below shows the rolling mean over the last 1000 episodes during training.

Figure 5.1: Training evolution over 90000 episodes

In figure 5.3, several things may be observed. Overall, it may be seen that the model (apart from the very
beginning) start to obtain better rewards as training time goes on. At around 3000 episodes, the maximum
rewards are reached. From that point it can also be observed that there is a decline in the mean reward that is

51



received. The model, however, recovers from this and keeps a relatively constant mean reward around the -0.77
mark from that point onward.

5.1.2 Airspace structures in the final training episodes
Though the reward evolution shown in the previous subsection gives the indication that the model has learnt
to obtain a better reward over time, this doesn’t necessarily imply that it has learnt to perform the intended
task of setting airspace structures for a given traffic scenario. Even before testing the model, more information
on the model’s ability to assign safety optimised airspace structures may be gathered by taking a look at the
episodes during the final episodes of training.

Examples of selected airspace structures

Two episodes from the final ten episodes of training have been selected to illustrate the behaviour of the model
after the first larger training run. The states, selected structures and corresponding rewards are shown below.
The reader is briefly reminded that the state formulation is a normalised [1 x 10] array containing the number
of aircraft per heading bin (see section 4.1.3), the action is a [1 x 8] array which sets the heading ranges for the
eight layers (see section 4.1.4) and the reward is a negative value determined through a rescaling of the LoSs
experienced in an episode (see section 4.1.5).

Example 1:

• State: [0.014 0.028 0.028 0.085 0.371 0.414 0.042 0.000 0.014 0.000]

• Selected airspace structure:

Figure 5.2: Selected airspace structure for an episode at the end of training - Example 1

• Reward: -0.44 (44 LoSs)

At this episode close to the end of training, the model is not behaving as intended. Looking at the state, it can
be seen that 78.5% of the aircraft have headings that fall in bin 4 and 5 (given in bold in the state formulation).
This means that a majority of the aircraft had headings in the 144◦ - 216◦ range. The expected result was
that an airspace structure would be selected with more layers for that range, such that the aircraft get spread
over the layers better and, as a result of that, create fewer LoSs throughout the episode. The selected airspace
shown in figure 5.2, however, clearly doesn’t have extra layers for the more heavily occupied heading ranges. On
the contrary, it looks rather uniform, raising the suspicion that the RL model might have learnt to use uniform
structures regardless of the uniformity of the traffic scenario.

Further, it may be noted that the reward that is obtained is still ‘good’, as determined by comparing it to the
mean of the rewards at the end of training (figure 5.3). Though the state doesn’t immediately indicate how
many aircraft there are in each layer during the complete scenario, but rather gives an indication at one point in
time (which should be representative for the episode), it does show that having many aircraft within a limited
heading range is not penalised heavily. The cause for this likely lies in the way that aircraft were created in the
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scenarios during this training routine. As explained in section 4.2.4, a new aircraft gets spawned on one of the
four borders of the experiment area with a given probability (that changes every episode) and is subsequently
given a random heading from that point from that point. That random heading was allowed to be a relatively
wide 45◦ to either side of the aircraft in these simulations, which might have still caused a relatively high degree
of uniformity in the traffic scenarios (for which uniform structures are indeed best). The wide spawning angle
may have also contributed to a situation where states are less representative to the entire scenario than they
could have been. The state is in full determined by 1) the edges where the aircraft have spawned and 2) the
headings that they were given. A high degree of randomness for the latter decreases the consistency of traffic
headings over the course of an episode. In essence, it may then seem from the state that the traffic in a scenario
was very non-uniform, where in reality the degree of uniformity was higher. This factor may have also led to
circumstances in which the RL model has difficulty learning a successful policy. Lastly, it could be that the
traffic density, and thus the likelihood of aircraft creating conflicts, hasn’t been high enough for the model to
heavily penalise less optimal structures.

Example 2:

• State: [0.000 0.178 0.329 0.082 0.027 0.068 0.082 0.137 0.055 0.041]

• Selected airspace structure:

Figure 5.3: Selected airspace structure for an episode at the end of training - Example 2

• Reward: -0.83

This second example is presented to give backing to some of the statements made previously. Here too, it is seen
that a non-uniform traffic state results in the RL model selecting an airspace structure that is very uniform-like.
It is again expected that the manner of creating the aircraft in the scenario plays a role in this finding. It may
also be noted that, even-though the scenario is more uniform than in example 1 (and the airspace structures are
similar), the reward is worse than before. This indicates once more that the randomness creating the aircraft
likely introduces a discrepancy between the state and the actual headings of the aircraft throughout the episode.

Future improvements to the RL model, traffic scenarios & analysis methods

From training results alone, a number of improvements for future runs can already be defined. The first follows
from the suspected issue with the spawn headings explained previously. It is thought that creating the aircraft
with headings in a narrower heading range (for example 22.5◦ to either side, as opposed to 45◦ to either side)
could help the creation of more non-uniform scenarios. By doing this the model would be penalised more heavily
for incorrectly choosing uniform structures. Another option could be to make a change in the activation func-
tions, for example to use a ‘sigmoid’ function as opposed to a ‘tanh’ function in the output layer. During the
training it was observed that the model had some issues exploring a wide range of different airspace structures.
As the input (the state) is always positive, there are no negative input values to multiply that would make the
output negative as well. Moving from a sigmoid (which covers the range from 0 to 1) instead of a tanh (which
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covers -1 to 1), could perhaps make the model explore a wider set of airspace structures and allow it to learn
a policy that doesn’t always select uniform structures. Lastly, increasing the traffic density to force a higher
number of LoSs for non-optimal structures could also improve the results.

Besides from the aforementioned improvements to the setup of the RL model, there is also room for improve-
ment in the way the data of the experiments is processed. Specifically, the possibility to quickly track the total
or average number of aircraft that were present in a layer during an episode would be useful for rapidly making
sense of structures that are outputted and the rewards that are given.

In any case, it is clear that the RL model can still be improved considerably. Based on what was presented in
this section on the training of the RL model, it is not expected that the performance during testing will be too
strong. Nevertheless, three tests will be performed to check this and, at a minimum, get some experience in the
full cycle of training, testing and analysing the results of a RL model in this midterm phase. The results of the
performed tests are presented in the next section.

5.2 Testing of the RL agent for Safety Optimized Airspace Structur-
ing

Where the results from training the model were shown in the previous section, this section will display the
results of testing. For the testing, the saved model (after 90000 episodes) was presented with some different
scenarios. Doing so enables an analysis on the performance of the trained model in terms of selecting airspace
structures for optimal safety. As previously touched upon in the introduction of this chapter, two factors will
be looked at at this stage. The first is the resulting LoSs that are experienced during the test. Secondly, the
chosen airspace structures will be shown as well in order to see if they make sense for the given traffic scenario.

Three testing scenarios were presented with the model. They are the following:

1. A uniform traffic scenario, with aircraft headings equally distributed in the 0◦ - 360◦ range.

2. A traffic scenario where almost all (94%) of the traffic comes from one border of the square experiment
area. In this case, the left/west edge was selected, meaning that most of the aircraft headings were in the
45◦ - 135◦ range.

3. A traffic scenario where most (80%) of the traffic comes from two borders of the square experiment area.
In this case, the north/top and east/right were selected, meaning that the traffic predominantly had
headings in the 135◦ - 315◦ range.

The resulting rewards and selected airspace structures are presented in the following three subsections.

5.2.1 Test 1 - Uniform traffic scenario
For the uniform traffic scenario, with traffic coming equally from all four edges, the following results were found:

Test 1:

• State: [0.076 0.061 0.182 0.106 0.152 0.121 0.106 0.061 0.0152 0.121]

• Selected airspace structure:
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Figure 5.4: Selected airspace structure for test 1

• Reward: -0.52

For this it can be seen that the model actually behaves like it should. A uniform traffic scenario, as reflected
relatively well in the state, is assigned an airspace structure that it is uniform as well. As discussed in section
5.1.2, however, it was seen during training that an almost uniform structure is often selected, regardless of the
exact state or traffic scenario. This makes it hard to say with confidence that this structure was selected by the
model based on it recognising a uniform scenario.

5.2.2 Test 2 - Traffic mostly from one border
For the one edge traffic scenario, where 94% of the traffic came from the left/western edge, the following results
were found:

Test 2:

• State: [0.014 0.178 0.411 0.315 0.014 0.041 0.000 0.000 0.000 0.027]

• Selected airspace structure:

Figure 5.5: Selected airspace structure for test 2

• Reward: -1.14
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For this second test, which has traffic so heavily coming from one side, the ideal solution should most likely
feature an increased number of layers for the directions that are most prominent in the traffic scenario (45◦ -
135◦). It can be seen in the state that this over-representation of aircraft in those direction is, at a minimum,
capturing this with higher values in the 2nd, 3rd and 4th heading bins. As is seen, though, in figure 5.5, a
structure with more layers for those is all but the case. The selected traffic scenario is still fairly uniform.
An encouraging sign, however, is that the reward is indeed not great, as determined by looking at the mean
rewards during the latter phase of training (see figure 5.3), meaning that an unsuitable airspace like this at least
penalised to some degree. The measures explained previously concerning the decreasing of the randomness of
initialisation headings of aircraft should improve that further in future training runs.

5.2.3 Test 3 - Traffic mostly from two borders
For the scenario with traffic mostly from two borders (north/top & east/right), it was also checked how the RL
model would react. The following results were found:
Test 3:

• State: [0.044 0.029 0.088 0.074 0.147 0.221 0.029 0.147 0.176 0.044]

• Selected airspace structure:

Figure 5.6: Selected airspace structure for test 3

• Reward: -0.71

For the third test, it is again seen that the state captures the fact that more aircraft are present in certain
heading bins (the 5th, 6th, 8th and 9th). However, the airspace structure doesn’t show any signs of reacting
to that. A uniform structure is once more the result. The reward is close to the mean reward found during
the final phase of training, which seems to make sense. The scenario is not-uniform, so will not get the best
rewards, but also not so biased to a traffic direction that it causes an overly large number of LoSs.

5.3 Relevance of the results
This section contains a brief discussion on the relevance of the results obtained for research activity 1. They
are discussed both the light of the work that is to follow in the next phase of this MSc thesis (subsection 5.3.1),
as well as the relevance for ATM research in the broader sense in subsection 5.3.2. The latter will, naturally, be
somewhat limited as the results obtained so far are preliminary results for larger research into dynamic airspace
re-configurations by means a reinforcement learning model.

5.3.1 Relevance for current MSc Thesis
Looking at the results from training and testing in the previous two sections, it is seen that the setting airspace
structures with a RL model leaves room for improvement. In terms of relevance for the rest of the thesis,
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the work done to create a model that is capable of learning (although not exactly as desired) in the Bluesky
environment is deemed a solid basis for continuing into the final part of the MSc thesis. The fact that the model
is improving, means that the model is constructed properly and that it can move in the direction of maximising
the value of the rewards. What seems to be be happening is that the traffic scenarios that the model is trained
in do not seem to sufficiently penalise incorrect structures. When this issue if resolved, the model and the traffic
scenarios for the episodes may readily be iterated upon in the pursuit of a RL model that is capable of assigning
airspace structures, while taking into account the previous airspace structure. For the second part of this MSc
Thesis project, the focus will lie almost entirely on researching this possibility. Chapter 6 discusses the further
research activities for this part of the work in more detail.

5.3.2 Relevance in larger ATM research
Finding suitable structures is relevant for future operations in terms of guaranteeing safety. Furthermore,
previous research has found that there is no optimal structure for all situations and that this is directly depending
on the current traffic scenario. The RL model, which has been developed for the first research activity, does
not yet demonstrate the capability to set such airspace structures yet. It does, however, highlight some of the
factors that are important to consider when looking into this. Mainly the method followed to create the traffic
scenarios and the choices for state, action and reward formulations have been shown to greatly influence the
learning capabilities of a RL model.

57



Chapter 6

Plan for final phase of the MSc Thesis

In this chapter, the plans for the final phase of the MSc Thesis are layed out. As already hinted upon in
chapter 3, this phase will consist primarily of completing research activities 2-6 defined earlier. Chapter 3,
which covered the problem definition, focused mainly on the defining the scope of the work. In essence, it
looked at the ‘what?’ and ‘why?’ within this research. This chapter, on the contrary, will go a bit deeper
into the ‘how’ of the defined activities. Sections 6.1 through 6.5 discuss each of the remaining research activi-
ties in greater detail and aim to specify what will be done to complete them to the extent that is currently known.

6.1 Research activity 2: Rules for moving traffic into structure
As defined in section 3.2.2, the second research activity is concerned with defining the rules for traffic moving
into a new airspace structure. It is expected that these rules affect the number of vertical conflicts that occur
during an airspace reconfiguration. Because it is envisioned that these type of conflicts form a part of the reward
formulation of a RL model for dynamic airspace reconfigurations, it seems relevant to gain an insight in the
manner of performing the movement of aircraft into new structures.

To gain this insight, some simple experiments will be performed. In these experiments, a number of traffic
scenarios will be defined in which operating aircraft must adapt to a new structure midway through their flight.
The independent variable in this experiment will be the manner in which aircraft transition from an initial
airspace structure to the next. There are various ways that the transition may be done. At least the following
will be investigated:

1. Moving all aircraft to their new correct layer at the same time

2. Moving aircraft on a layer-by-layer basis (from top to bottom, or vice-versa)

Two factors will be used to judge which manner is the most suitable for use in future simulations of this MSc
Thesis. The first is the total number of vertical conflicts experienced during the reconfiguration. Obviously, a
lower number here would be more favourable. The second is the ‘reconfiguration time’, which will be defined as
the time needed from airspace structure change, until aircraft have settled into the new structure. Though this
factor doesn’t necessarily influence the number of conflicts in a traffic scenario directly, a large ‘reconfiguration
time’ does imply that aircraft spend less time in a structure that has (in later research activities) been selected to
suit the traffic scenario. In other words, aircraft could spend longer than necessary in an sub-optimal structure,
which could compromise the benefits of performing the reconfiguration in the first place.

It is possible that the outcomes of this experiment depend on some of the settings of the traffic scenarios used
in the simulations. The traffic density or for example the settings for conflict resolution (on/off), specifically,
might affect the results of this experiment.

6.2 Research activity 3: Rules for conflict resolution in a layered
airspace

For research activity 3, the focus lies on the rules for conflict resolution in a layered airspace. This is relevant
as some heading manoeuvres can imply a violation of the defined heading range limits by the layered airspace
structure. Section 3.2.3 already explained three options to deal with this issue: 1) allowing aircraft to break the
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heading limits set for their layer, 2) having aircraft strictly adhere to the defined structure or 3) limiting the
avoidance to the heading ranges of the layer. It was chosen to resort to existing work done by the department to
select suitable rules, as the department has recently done similar work that may readily be used in this research.

The resolution algorithm that will be used is the MVP algorithm, which has proved effective in reducing the
effect of resolution manoeuvres on flight efficiency while still guaranteeing minimal losses of separation (LoSs)
[10]. The geometric resolution corresponding to the MVP is shown in figure 6.1.

Figure 6.1: MVP resolution. Adapted from [4]

As also explained in [10], for aircraft in conflict, the predicted positions at CPA repel each other. The repelling
force is converted to displacement of the predicted position at CPA, such that the minimum distance between the
aircraft equals the required minimum separation. These displacements then imply a new advised heading and
speed, such that it increases the predicted CPA. It also means that both aircraft take complimentary measures
to evade each other, making the MVP implicitly coordinated. The resulting calculations are computationally
light, and the geometric representation allows for taking into account any other constraints easily. A downside
however is that it is solely based on conflict geometry and that it therefore may result in aircraft opposing the
flight direction proposed by their flight plan.

6.3 Research activity 4: RL model for airspace reconfiguration
The fourth research activity consist of creating the RL model that selects an optimal airspace structure for a
traffic scenario, while also taking the previous airspace structure into account. A sequence of such airspace se-
lections, performed with information on the traffic and the previous structure is the essence of ‘dynamic airspace
reconfigurations’, the main topic of this MSc Thesis. Firstly, the updates to the traffic scenarios for dynamic
airspace reconfiguration are discussed in subsection 6.3.1. After that, in section 6.3.2, the updates to the RL
model are discussed. Finally, in section 6.3.3 it will be explained how the methods of analysis will be improved
from this research activity onwards.

6.3.1 Updating traffic scenarios for dynamic airspace reconfiguration
The idea of dynamically changing airspace structures stems from the desire to improve the safety in traffic sce-
narios that change considerably over time. Though airspace structures are by no means the only way of doing
this, it is thought that an airspace structure that, as it were, evolves along with the traffic can have a positive
effect on the safety. To be able to investigate this, new traffic scenarios will first have to be defined for this
research activity. These scenarios will not have traffic that is created with a fixed heading distribution for the
whole episode, like in research activity 1, but will feature changes in the traffic distribution within an episode. It
is envisioned that, also like in research activity 1, the traffic in the episodes is still created by spawning aircraft
on the edges of the experiment area with a certain probability per edge. As opposed to fixing these probabilities
for a complete episode, this research activity will have non-constant traffic scenarios throughout the episode.
The way in which the changes happen may be either continuously or in a discrete manner.

Logging area. Some further improvements to the way logging occurs will be made in this research activity
as well. Specifically, a logging area (see figure 6.2), that lies within the square of the experiment area with
a fixed offset, is implemented. This is to make sure that the experiment data is not affected by aircraft
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that experience a reduced likelihood of conflicts near the edge of the area due to the absence of aircraft in
their vicinity. Furthermore, initialising the aircraft outside the logging area prevents recording immediate LoSs
between a newly created and existing aircraft, for which there would be no chance to perform a conflict resolution
manoeuvre.

Figure 6.2: Updated logging area at fixed offset of experiment area borders to avoid edge effects

Traffic density. The traffic density will vary between the experiments in this fourth research activity. It was
chosen to use three levels of traffic density (low, medium, high), for which the number of aircraft per scenario
are chosen based on the metric of ‘time-in-conflict’. If a scenario is run and the total ‘time-in-conflict’ is 2.5%
of the total simulation time, the scenario is considered to have a low traffic density. For ‘time-in-conflict’s of
5.0% and 10.0%, the traffic scenario’s are named ‘medium’ and ‘high’ in traffic density, respectively. The RL
agent will be trained at a medium traffic density and then tested at low, medium and high traffic densities, to
also be able investigate the efficiency of an agent performing in a traffic density other than it was trained for.

6.3.2 Updating the RL model for dynamic airspace reconfiguration
As previously mentioned, that RL model created under research activity 1 will form the basis for creating the
model for this activity. Next to the changes in the traffic scenario, however, there will also be adaptations in
the state, action and reward formulations. Though the best way of defining these is likely to be the crux of
getting the model to work and it needs some careful consideration, some initial thoughts on how this could be
done are shared here.

As a first iteration to the state variable, a [1x26] size formulation will be tried. This is broken down as follows:

• Index 0-9: the heading information as previously used for the first research activity. This is needed to
have information on the future traffic scenario (which will change over time).

• Index 10-17: the current airspace structure. If the new selected structure (action) is very different from
this part of the state, many vertical conflicts are expected. This is as there is a lot of need for transitioning
in such a case.

• Index 18-25 to have information on where the aircraft are and where the problem with transitioning arises.
For example, when a certain heading range is to be further divided into several layers, or if its assigned
altitude changes with a new structure, the risk is directly related to how many aircraft are currently in
that layer (i.e., how many aircraft will have to vertically deviate/merge into new layers).

As the intention is to stick to eight airspace layers, the action will stay the same in the next part of the research.
The reward formulation, however, may also be used to improve the performance of the model. Specifically,
experiments may be run with a heavier penalty on either cruising on vertical LoSs, to see if the the model starts
selecting different structures that favour the least penalised type of LoS. In an ideal case however, the reward
formulation would simply consist of the total number of LoSs in an episode, while the model figures out the
best choice for reducing the sum of cruising and vertical LoSs.

Then some final remarks on the development process of the RL model under this activity. It will be started by
having just a single reconfiguration throughout the episode. Once experience is gained through this exercise,
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multiple reconfigurations per episode may be considered to see if the model can handle it. Furthermore, it is
expected that training times increase compared to the model created under research activity 1, as the larger
state will lead to more state-action combinations to explore. The model will be trained at a ‘medium’ traffic
density, but the testing will be done at ‘low’, ‘medium’ and ‘high’ traffic densities as well, to investigate the
capability of the model to generalise its solutions.

6.3.3 Updated methods of analysis
Though the method of analysis of the results presented for research activity 1 in chapter 5 gives a simple
overview of the performance during training and testing, more information may be extracted to discuss the
performance of the model. From research activity 4 onwards, several extra steps will be taken in the form of
safety, stability and efficiency analyses. They are each touched upon in the following.

Safety analysis. For the safety analysis the focus wil be on both the number and duration of conflicts and
LoSs. Naturally, fewer and shorter is considered to be safer. Additionally, one may look at the severity of the
LoSs, a metric that further specifies how ‘bad’ or ‘close’ the LoSs actually became. Its calculation is shown in
equation 6.1 below [8], where RPZ stands for the radius of the protected zone and dCPA represents the distance
to the closest point of approach.

LoSsev =
RPZ − dCPA

RPZ
(6.1)

Stability analysis. Stability refers to the tendency for tactical conflict avoidance manoeuvres to create sec-
ondary conflicts [8]. In previous work, it has often been ‘measured’ with the so-called domino effect parameter
(DEP) [27], the calculation of which can be performed by equation 6.2 below:

DEP =
nON
cfl − nOFF

cfl

nOFF
cfl

(6.2)

where nON
cfl and nOFF

cfl represent the number of conflicts with CD&R ON and OFF, respectively.

Efficiency analysis. The efficiency analysis consists of two metrics primarily: the distance flown and the
duration of flight. Naturally, if both if these grow large this is considered inefficient.

6.4 Research activity 5: RL model(s) for airspace reconfiguration
with extra independent variable (reconfiguration rate)

The fifth research activity is concerned with investigating the effect of the reconfiguration rate on the choice of
airspace structure. As explained previously in section 2.3.1, this is thought to be an important variable for this
research as it may influence the decisions made by the model considerably.

The plan for completing this research activity is to create three additional RL models, each of which will be
trained at a different reconfiguration rate. For example, the following models could be defined:

1. 1x reconfiguration at 50% of scenario time (slow reconfiguration rate)

2. 2x reconfiguration at 33% and 66% of scenario time (medium reconfiguration rate)

3. 3x reconfiguration at 25%, 50% and 75% of scenario time (fast reconfiguration rate)

To ensure that more reconfigurations indeed imply a faster reconfiguration rate, the scenario times for the
above will be fixed. Specifically, each will be trained with a medium traffic density scenario that has a changing
heading distribution that is in sync with the reconfiguration rate. To analyse the effect of the rate on the
decisions made by the RL model, the models will then be tested on scenarios with:

• The same reconfiguration rate at which it was trained
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• The other two reconfiguration rates (to see what happens if you train at the ‘wrong’ rate, but still use the
model to perform decisions for dynamic airspace reconfiguration).

The results from testing could give additional insight into effects of the ‘reconfiguration rate’ variable and the
ability of a RL model to set airspace structures when it also has information on the previous structure. It will
be interesting to see the differences in choices for a model trained at a ‘slow’ rate versus those trained for a ‘fast’
rate. In an ideal case, one would see the model understanding the relative importance of cruising and vertical
conflicts for each of the rates. The model trained with a ‘slow’ reconfiguration rate should result in airspace
structures that are more suitable for the relatively long phase of cruising aircraft ahead, whereas a model trained
with a ‘fast’ rate may be more focused on limiting the negative effects (= costs in terms of vertical conflicts) of
the multiple reconfigurations. For resulting airspace structures the latter could mean that they are less different
from the previous structure than would be ideal if traffic would spend a long time cruising in that structure.

6.5 Research activity 6: Comparing results of activities 1, 4 & 5
The sixth and final research activity will be to compare the results from the models created under activities
1, 4 and 5. In essence the interest here is how well these models are capable of reducing the total number of
LoSs/conflicts with respect to a given baseline. The plan would be to present all outcomes of the test runs
performed under the activities. The scenarios used for these tests of the model may also be run with structures
not chosen by one of the RL models, but structures that are thought to be ideal for the given scenario. Defining
such structures ‘manually’ can be trivial for some cases, like for example uniform traffic scenarios, where it
can reasonably be expected that a uniform gives optimal performance. It can also be somewhat complex for
cases which have more varying traffic. In any case, it is thought that a comparison between the performance of
the RL models with a baseline can be insightful and help determine how well the models have performed. For
comparison the safety (LoSs / conflicts), efficiency (flight path lengths) and stability (DEP) will be investigated.
Furthermore, this activity will entail an analysis of the resulting airspaces that are selected by the models, to
how they differ from each other.
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Chapter 7

Conclusion

This report has presented the work done so far in a research into dynamic airspace reconfiguration with rein-
forcement learning (RL). Specifically, it has discussed the development of a RL model that was to set airspace
structures based on a given traffic scenario. Though the model showed an evolution during an extended training
run, the performance of this model was found to be sub-optimal in terms of its capability to select airspace
structures for safety. Both the selected airspace structures at the end of training, as well as the results found
through the testing of various traffic scenarios, showed that some iterating will be needed to arrive at a model
that can select suitable airspace structures that minimise the number of loss of separations (LoSs).

The findings described above were defined as the first of six research activities that will be completed in this
research. The other five activities consist of defining rules for moving traffic into new airspace structures, defin-
ing rules for conflict resolution (CR) in a layered airspace, extending the already made RL model to the point
where it also takes into account the previous airspace structure, investigating the effect of the reconfiguration
rate on the selected airspace structures and finally analysing, comparing and presenting the results found. It is
thought that these activities will contribute to the primary research objective, which is to ‘develop a RL model,
which can correctly assess and minimise the impact of airspace reconfiguration on safety, while guaranteeing
that new structures are appropriate for future traffic’.

Previously developed models for setting layered airspace structures only take into account a future traffic sce-
nario and include no information on the previous airspace structures in their decision making. This makes the
applicability to more real-life situations somewhat limited. To improve on this, this MSc thesis project aims
to add information on the previous airspace structure to such models, bringing it a step closer to the real-life
situation where an airspace would already be filled with aircraft when a decision may be made on the next
(more suitable) airspace structure. Currently, almost all Air Traffic Control (ATC) is done by humans. How-
ever, looking at ways to have this controlled by an agent that has learnt to set airspace structures optimised for
safety (or for efficiency for that matter, if this would be desired) poses several advantages as well. For example,
the use of a machine learning (ML) agent for this task could reduce the need for humans in the operation. Some
advantages of this are readily imaginable; a ML model could at some point perform better (and cheaper) than
its human counterpart, while also having better availability.

With the increased demand for air traffic in recent years and the projected growth in the decades to come,
solutions are needed to accommodate safe flight in the future. The fact that future operations of unmanned
aviation are also expected to operate at even higher traffic densities than seen previously with manned aviation
only emphasises the need for finding suitable ways of controlling the air traffic. The overarching idea of dynamic
airspace reconfiguration is that it could increase the capacity of our future airspaces to levels required by the
aforementioned developments.
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