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Abstract
Blockchain systems rely on consensus protocols to ensure agree-

ment among nodes even in the presence of malicious or faulty

nodes. A consensus protocol that provides safety and liveness guar-

antees under such conditions is known as a Byzantine fault-tolerant
(BFT) protocol. Various whitepapers describe the design and imple-

mentation of BFT protocols, providing formal proofs of their safety

and liveness properties. However, in practice such protocols are

difficult to implement correctly and often contain subtle logic errors

that cause consensus violations. Ensuring correctness is especially

important for the XRP Ledger—a public, decentralized blockchain

that processes transactions for the widely used cryptocurrency XRP.

Thorough testing of consensus protocols is crucial, but systematic

testing is challenging and time-consuming due to the large number

of possible network and timing configurations.

In this paper, we present a replication package for evaluating

randomized Byzantine fault tolerance testing on the XRP Ledger

Consensus Protocol (LCP). We implement the ByzzFuzz search al-

gorithm and compare it to naive random testing. Additionally, we

investigate the impact of different hyperparameter configurations

on the performance of the ByzzFuzz algorithm. Our experimen-

tal results demonstrate that both naive random testing and the

ByzzFuzz algorithm detect seeded bugs in the XRP LCP, with Byzz-

Fuzz algorithm uncovering more agreement violations. Finally, we

identify the most effective hyperparameter configurations for the

ByzzFuzz algorithm.

1 Introduction
A core component of blockchain systems is the consensus proto-

col, which guarantees that all nodes in the underlying distributed

system agree on a single, consistent transaction history, even in

the presence of faulty or malicious processes. To be reliable, a

consensus protocol must provide safety (i.e., no two nodes decide

on conflicting outcomes) and liveness (i.e., the system continues

to make progress) guarantees. These properties are particularly

difficult to maintain in the presence of Byzantine faults, where

nodes may deviate from the protocol and behave unpredictably or

maliciously [1].

This paper presents a case study of Byzantine fault tolerance

(BFT) testing for the XRP Ledger, a global enterprise payment net-

work that processes millions of transactions per day across more

than 40 countries. Given its critical role in the financial infrastruc-

ture, it is important to ensure that its consensus protocol is secure

and resilient. Although XRPL Consensus Protocol (LCP) [2, 3] is

designed to be Byzantine fault tolerant, its practical implementation

is highly complex and has already been shown to contain bugs in

its previous versions [4–6].

Prior work on the Byzantine fault tolerance search algorithm

introduced a structured fault-injection strategy that systematically

samples network and process faults while preserving protocol se-

mantics [6]. This approach has proven effective at detecting Byzan-

tine faults in distributed systems, including Tendermint and the XRP

Ledger. Although ByzzFuzz search algorithm has shown promising

results, there has been little focus on optimizing its hyperparame-

ters.

In this paper, we aim to investigate the impact of different hy-
perparameter configurations on the performance of the ByzzFuzz
testing method. Various parameters such as the number of rounds

with network faults, the number of rounds with process faults,

and the number of rounds in which faults are injected, can signif-

icantly affect test outcomes. For example, increasing the number

of rounds with network faults can lead to more faults being intro-

duced, but it can also reduce the chance of reaching valid protocol

states. Conversely, a lower number of network faults might not

explore the fault space sufficiently. Moreover, optimizing these pa-

rameters is often computationally expensive, as it requires many

test executions to compare outcomes across different configura-

tions. As demonstrated in the broader software testing literature,

hyperparameter tuning can have a critical impact on algorithmic

performance [7]. In contrast to prior work [6], which conducted

only a small preliminary study, we perform a more comprehensive

parameter configuration analysis to better understand how these

values influence testing effectiveness.

To explore Byzantine fault tolerance bugs, we use two testing

approaches that we have implemented within the Rocket testing

framework [8]. First, we employ a naive random testing approach,

which is a common technique for testing large-scale distributed

systems due to its effectiveness in uncovering bugs in consensus

protocols. The XRP LCP is tested by randomly introducing network

faults, such as message drops to isolate processes or partition the

network, and process faults, such as mutating message content

to simulate malicious behavior. Second, we use a more systematic

ByzzFuzz testing method [6], which performs targeted network and

process fault injection. This testing method helps to navigate the

space of possible process faults by introducing structure-preserving

semantic message mutations. Such an approach is particularly ef-

fective at uncovering deep logic and implementation bugs that are

less likely to be found through purely random testing. We evaluate

both testing approaches on the current implementation (v2.4.0) of

the XRP LCP and a modified version containing seeded bugs.

Our experimental results show that naive random testing is ef-

fective at detecting Byzantine fault tolerance bugs in large-scale

blockchain systems. However, the ByzzFuzz testing algorithm,which



uses structurally-aware and semantically guided mutations, signifi-

cantly improves fault detection performance. In particular, it detects

a greater number of critical violations within fewer test executions,

especially under certain optimized configurations.

This paper makes the following contributions:

• A case study evaluating the effectiveness of naive random

testing and the ByzzFuzz algorithm for Byzantine fault tol-

erance on the XRPL blockchain system.

• A discussion of key challenges and opportunities for future

research in search-based BFT testing.

• A replication package [9] that extends the Rocket testing

framework with implemented ByzzFuzz testing method

2 Background and Related Work
Blockchains operate on a distributed ledger system, where transac-

tions are recorded in a public ledger that is maintained by a network

of computers (nodes). These transactions are grouped into blocks,

which are linked together using cryptographic techniques to form

an immutable chain ensuring both security and transparency in the

system.

To maintain consistency across the network, nodes work to-

gether to validate and confirm transactions, group them into blocks,

and add them to the blockchain in a consistent, totally ordered

sequence. A set of rules describing how this coordination happens

is called a consensus protocol. For the system to operate reliably, a

consensus protocol must guarantee safety and liveness, even in the

presence of network failures or malicious attacks. Such scenarios

may involve attempting to disable the network from processing

new transactions, committing fraudulent transactions, or launching

double-spending attacks.

The robustness of consensus protocols becomes especially impor-

tant when we consider the possibility of malicious actors, known as

Byzantine nodes [1], that may behave arbitrarily or deliberately at-

tempt to disrupt the network. Unlike honest nodes, Byzantine nodes

may not respond to messages, send incorrect messages, and even

send different messages to different parties. A consensus protocol

that continues to function correctly despite the presence of such

faulty nodes is called Byzantine fault tolerant (BFT). However, imple-

menting BFT protocols correctly in practice is notoriously difficult,

as it is highly complex and even small mistakes can compromise

its core safety and liveness guarantees.

2.1 XRPL Consensus Algorithm
XRP LCP differs from traditional BFT consensus protocols as it

guarantees consistency with only partial agreement among nodes.

This allows for faster consensus and lower transaction latency, mak-

ing it suitable for high-performance applications like XRP Ledger.

Instead of relying on full agreement from all nodes, XRP LCP uses

an asymmetric trust model [10], where each process can choose

which processes it trusts and which ones it considers faulty. This

enables each validator node to independently define its own trusted

subset of nodes, known as a Unique Node List (UNL). During the

consensus process, a validator only considers messages from the

nodes in its own UNL.

The XRPL consists of a decentralized network of validator nodes,

each maintaining a full copy of the ledger history, which is a record

of all transactions that have occurred in the network.

During the consensus process, we first enter Open Phase where
each validator collects new transactions from clients onto its open
ledger. Validator nodes then broadcast <TMTransaction,
rawTransaction> message through the entire network, where the

“rawTransaction“ field contains the hash of a transaction submitted

by a client for validation.

After filling up the open ledger with transactions, we enter Pro-
posal Phase. During this phase, each validator shares its candi-

date transaction set with its UNL by broadcasting <TMProposeSet,
proposeSeq, currentTxHash, previousLedger, nodePubKey,
closeTime, signature> message. Here “proposeSeq“ represents

the round number of the proposal, “currentTxHash“ is the hash of

the proposed transaction set to be committed in the next ledger, “pre-

viousLedger“ is the hash of the last fully validated ledger, “nodePub-

Key“ is the public key of the node used to sign the message, “close-

Time“ indicates the close time of the previous ledger and “signature“

is used to verify the sender. During each sub-round, validators

compare the proposals they receive from their UNL and adjust

their own sets. Any transaction supported by at least a threshold of

trusted validators remains in the set while other transactions are

removed from consideration. This process is called avalanche, as
the threshold increases with each round. Once the validator sees

that at least 80% of its UNL agrees on the same transaction set, the

consensus is said to be reached. If we fail to reach 80% of agreement

within the predefined time limit, then an empty ledger is generated.

After the proposal round, the protocol enters the Validation
Phase. In this phase, validators close the current ledger, which now

contains the agreed-upon transaction set. Each validator sends

<TMValidation, validation> to its UNL to determine whether

the ledger can be finalized. The “validation“ includes the hash of

the closed ledger. Each node collects these validation messages

and, once 80% of its trusted validators agree on the same hash,

it considers the ledger fully validated. At this point, the ledger

becomes final and its transactions are permanently committed. If

we do not receive enough matching validation hashes, an empty

ledger is created and the system proceeds to a new Open Phase to

collect transactions for the next ledger.

This iterative process guarantees convergence [3], which is de-

fined as the point where the network reaches a strong consensus on

a ledger. That ledger is then accepted and becomes the last-closed

ledger. Strong consensus refers to validators eventually agreeing on

and committing new transactions to the ledger, rather than repeat-

edly generating empty ledgers. This is achieved while preserving

the protocol’s safety and liveness guarantees. The correctness of

XRP LCP holds as long as the network consists of no more than

⌊(𝑛−1)/5⌋ Byzantine nodes. It also requires the UNL-connectedness
condition to be satisfied, which means that it needs at least 60%

overlap between the UNLs of any two validator nodes [3].

2.2 Correctness Properties
Distributed consensus protocols are considered correct if they sat-

isfy the following safety and liveness properties [11]:

(1) Agreement: Honest nodes decide identically.



(2) Validity: If an honest node decides a value, then that value

was proposed by some other honest node.

(3) Integrity: No honest node in the network decides twice.

(4) Termination: Every honest node decides on a value even-

tually.

Safety violations occur when honest nodes make conflicting deci-

sions. For example, if they agree on different versions of a ledger in

the same consensus round, this would result in a fork in the network.

Liveness violations could happen when the protocol fails to make

progress, for instance, when a consensus round never terminates

and nodes remain undecided, rendering the system unresponsive.

A consensus protocol that satisfies all four properties is considered

to guarantee both safety and liveness and therefore is considered

to be Byzantine fault tolerant.

2.3 Related Work
There is a large body of work on systematically testing consensus

protocols for distributed systems, including including dBug [12],

MoDist [13], FlyMC [14]. However, these approaches suffer from

state space explosion as they exhaustively explore all possible exe-

cution orders, and thus do not scale for large distributed systems.

Alternatively, randomized testing methods have been proposed to

improve scalability. Tools like Jepsen [15] and CoFI [16] test dis-

tributed systems by injecting random network faults to exercise

system behavior under fault conditions. Other approaches intro-

duce guided search algorithms such as probabilistic scheduling [17],

and learning-based strategies such as evolutionary algorithms [18]

to guide the test generation toward problematic executions. How-

ever, none of these methods specifically target Byzantine faults and

thus cannot detect Byzantine fault-tolerance bugs.

Recent Byzantine fault tolerant testing tools for distributed sys-

tems have focused on the manual design of attack scenarios, as seen

in Netrix [19] and ZERMIA [20]. Although these approaches are

powerful and allow for control over test cases, they are highly time-

consuming and require developers to construct system-specific

scenarios. These approaches fail to scale to large distributed sys-

tems like XRP Ledger, where the number of possible Byzantine

attack scenarios is too large for manual exploration.

Alternative to manual testing for Byzantine-fault tolerance bugs,

Twins [21] introduced a systematic testing approach where multiple

identical faulty processes or "twins" are injected into the system.

These twins simulate Byzantine behavior by double voting, losing

the internal process state, or sending conflicting messages to other

nodes. However, the main limitation of Twins is that it exhaustively

explores all possible combinations of when and how the twins could

behave differently by sampling known faults. This requires iterating

through every protocol round and varying communication patterns

among nodes, which leads to state space explosion as the number

of twins increases.

Amore scalable approach is introduced by ByzzFuzz algorithm [6],

which detects fault-tolerance bugs by randomly injecting network

and process faults during executions. To help navigate a large space

of possible network and process faults, ByzzFuzz algorithm intro-

duces fault-based and round-based testing. This bounds the search

space by selecting a subset of rounds in which to potentially in-

ject faults, and then applying mutations or message drops within

those rounds. Moreover, it reduces the large space of possible pro-

cess faults by introducing structure-aware, small-scope mutations,

which mutate messages while keeping them syntactically correct.

These mutations include small semantic changes such as modifying

a value (e.g. incrementing sequence number) or replaying old mes-

sages (e.g. old proposal message). ByzzFuzz algorithm has proven to

be successful in practice, uncovering deep logic and implementation

bugs in real-world protocols, which includes discovering a previ-

ously unknown implementation bug in the XRP Ledger Consensus

Protocol (LCP) [6]. Thus ByzzFuzz algorithm effectiveness lies in

its ability to systematically explore the space of possible network

and process scenarios while providing guidance on how to mutate

messages and which rounds to consider faulty.

3 Methodology
We aim to explore the Byzantine fault tolerance of the XRP Ledger

Consensus Protocol (LCP) by injecting random faults into a simu-

lated network. To achieve this, we consider two fault types: network

faults, which model network partitions, and process faults, which

model Byzantine node behavior (malicious or unpredictable mes-

sages). The number of possible execution scenarios is too large to

test manually. Moreover, node communication is inherently non-

deterministic, as the system’s behavior depends on timing and net-

work conditions, which are hard to predict or exhaustively explore.

As a result, we need automated and randomized testing methods.

In this paper, we use two search algorithms: naive random search

as a baseline testing approach and a more guided ByzzFuzz search
algorithm. The next subsections describe how each algorithm was

implemented and adapted for testing the XRP LCP.

3.1 Naive Random Search Algorithm
The naive random search algorithm serves as a baseline for our

testing approach. It is usually recommended as a baseline testing

algorithm because it is simple, fast, and surprisingly effective in

practice.

In our implementation, we first randomly sample a set of Byzan-

tine nodes such that the protocol would still theoretically satisfy the

safety and liveness properties. Then we continually inject network

and process faults during the execution of the XRP LCP. Each mes-

sage event consists of a tuple <sender, receiver, message>, which

represents a message from one node (the sender) to another node

(the receiver). On each such event, we randomly decide whether

to drop the message, mutate its content if the sender belongs to a

Byzantine node-set, or let it pass through the network without any

changes. Note that message mutation is done by randomly flipping

a single bit in the payload.

However, the bit-flip will often result in a syntactically incorrect

message, which means we will be exercising the protocol’s parsing

logic rather than its consensus logic. Nevertheless, this simple naive

random search algorithm can quickly explore broad behaviors and

catch some obvious bugs.

3.2 ByzzFuzz Search Algorithm
To explore more thoroughly and uncover potential bugs, we need

to reduce search space and provide some guidance to the search



process. Thus we have implemented a guided ByzzFuzz search algo-

rithm [6]. The ByzzFuzz algorithm was designed to test Byzantine

fault tolerant protocols by injecting structured faults in a bounded

way. It relies on four key concepts:

• Fault-bounded testing: We restrict the total number of

faults (e.g. at most𝑑 network faults and 𝑐 process faults). This

was introduced based on the observation that even small

disruptions in network timing or process behavior can lead

to significant bugs in Byzantine fault-tolerant systems [6].

Thus focusing on a few faults that are likely to cause issues

is often sufficient.

• Round-based testing:We structure faults in specific pro-

tocol rounds. That is, we select communication rounds in

which all messages are either dropped or mutated. This al-

lows us to deal with message retransmissions as the protocol

is designed to retransmit messages in case it is not delivered

to the receiver. Moreover, it ensures that we send incorrect

messages to the same receiver in the same round, which

makes it more likely to trigger forks in test executions.

• Structure-aware mutations: When corrupting a message,

we ensure to keep it syntactically correct. Rather than flip-

ping random bits, we apply semantic changes (e.g. altering

transaction hash or sequence number). With such mutations,

we can uncover deeper logic bugs in the protocol.

• Small-scope mutations: We keep mutations small by hav-

ing slightly incorrect values near the correct ones. This way

we increase the chances of falling within the expected range

of valid values. For example, incrementing or decrementing

a sequence number by one or replaying a recent valid value

is more likely to be accepted and can expose subtle logic

errors.

Together, all four of these key concepts help to navigate the large

space of possible network and process faults.

ByzzFuzz Algorithm Implementation. In particular, the ByzzFuzz

algorithm’s implementation expects an input of three parameters:

• 𝑑 , number of protocol rounds with network faults

• 𝑐 , number of protocol rounds with process faults

• 𝑟 , the number of protocol rounds among which the faults

will be injected

Moreover, it uses a mutation set for possible mutations specific to

the XRPL message types. The algorithm proceeds in two phases:

(1) Initalization
We begin by randomly sampling a set of Byzantine nodes,

which is a subset of nodes that are allowed to behave mali-

ciously. This subset is chosen such that the number of Byzan-

tine nodes stays within the bounds necessary for safety and

liveness, i.e., at most ⌊(𝑛−1)/5⌋. Next, we sample 𝑑 network

and 𝑐 process faults that will be injected during execution.

Network faults are modeled as <round, partition>. The
“round“ is the protocol round in which the network fault

occurs. Moreover, partitions are modeled as a random split

of the validator set into disjoint subsets. Here “partition“

represents a subset of nodes that are not allowed to commu-

nicate with other sets for the duration of the round. If the

sender and receiver nodes are not in the same “partition“,

the message is dropped.

Process faults are modeled as <round, procs, seed>. The
“round“ is the protocol round in which the process fault oc-

curs, while “procs“ is a subset of nodes that will receive the

mutated message during the “round“. If the sender is a Byzan-

tine node and the receiver node belongs to “procs“ subset,

then we randomly choose a mutation using the mutation

set provided for that message type. The “seed“ ensures that

we deterministically mutate the message content, so that

the same mutation is applied to the same message in every

execution.

(2) Test Execution
We intercept messages between sender and receiver nodes

<sender, receiver, message> and check whether they

match any entries in the fault set. If the message is sent in a

round that has a network fault, we check if the sender and

receiver nodes are in the same partition. If they are not, the

message is dropped. Otherwise, if the round has a process

fault, we check whether the sender is Byzantine and whether

the receiver belongs to the set of processes that will receive

the mutated message. If so, we analyze the message type and

look up possible mutations for that type. If mutations are

available, we randomly choose one from the set using the

seed and apply it to the message. Finally, if the message is

not dropped or mutated, it is passed through the network as

is.

After a test run, we collect the execution trace and check XRPL’s

consensus properties (agreement, validity, integrity, termination)

offline.

Process Fault Modelling for XRPL. We modeled process faults for

XRPL using the structure-aware mutations in Table 1.

As explained in Section 2.1, validator nodes receive and broadcast

transactions from the clients using message TMTransaction, then
they enter proposal and validation rounds where they exchange

TMProposeSet and TMValidation messages respectively. We con-

sider two approaches to process faults: small-scope and any-scope

mutations. The specific mutation types used in each approach are

detailed in Section 4.1. In the any-scope approach, we apply mu-

tations that deviate significantly from the original values but still

remain syntactically valid. In contrast, the small-scope strategy mu-

tates the message fields to a value that is close to the original value.

Thus small-scope mutations help with boundary-testing, which can

expose bugs that arbitrary changes (any-scope mutations) might

miss.

4 Study Design
We test the XRP Ledger Consensus Protocol (LCP) for Byzantine

fault–tolerance bugs. In this paper, we aim to answer the following

research questions:

RQ1: Can the ByzzFuzz search algorithm detect bugs in the XRP

protocol or its variants?

RQ2: How does the ByzzFuzz search algorithm compare to a base-

line algorithm in bug detection?

RQ3: How does the selection of test parameters affect the perfor-

mance of the ByzzFuzz search algorithm?



Table 1: Structure-Aware Mutations of XRPL Messages. Mutated values are primed and typeset in bold.

Original Message Mutated Message

<TMTransaction, rawTransaction, status> <TMTransaction, rawTransaction′, status>
<TMProposeSet, proposeSeq, currentTxHash, nodePubKey,
closeTime, signature, previousLedger>

<TMProposeSet, proposeSeq′, currentTxHash, ...>
<TMProposeSet, proposeSeq, currentTxHash′, ...>

<TMValidation, validation> <TMValidation, validation′>

We evaluate the performance of the ByzzFuzz search algorithm

on the current version (2.4.0) of the XRP LCP and its variant with

seeded bugs. First, we run the baseline algorithm, which randomly

injects network and process faults during the execution of the XRP

LCP. Then we run the ByzzFuzz search algorithm with different

parameters to compare its performance with the baseline algorithm.

Each parameter configuration is executed using either small-scope

or any-scope mutations.

4.1 Experimental Setup
We tested the XRP LCP v2.4.0 within Rocket testing framework [8],

which simulates a local network of XRPL validator nodes in Docker

containers and injects network or process faults during the execu-

tion of consensus protocol. The Rocket testing framework consists

of twomain components: the network interceptor and the controller.

The network interceptor captures messages exchanged between

the sender and receiver nodes and forwards them to the controller.

Then the controller decides how to handle (drop, delay, or modify)

the messages and returns them to the interceptor for delivery.

We have designed an XRPL network of seven nodes and defined

three UNLs, each with 60% overlap to meet the UNL overlap require-

ments specified in the XRPL whitepaper [3]. In particular, nodes 1,

2, and 3 trusts UNL1 = {1,2,3,4,5}, node 4 trusts UNL2 = {2,3,4,5,6},

while nodes 5, 6 and 7 trust UNL3 = {3,4,5,6,7}. In each run, one

node is randomly selected as a Byzantine node, ensuring safety

and liveness properties by satisfying the condition that at most

⌊(𝑛 − 1)/5⌋ nodes are Byzantine.
We model process faults using structure-aware mutations de-

scribed in Section 3.2, namely any-scope and small-scope mutation

approaches implemented as follows:

• Any-ScopeMutations: Hash fields, namely rawTransaction,
currentTxHash, validation, are replaced with a special

null byte hash that represents an empty transaction set or

“anti-ledger.” Moreover, because the null byte hash is a well-

formed hash value, the mutated message bypasses the XRP

LCP algorithm for detecting Byzantine behavior and there-

fore does not raise any suspicion from receiver nodes. Se-

quence number fields (proposeSeq) are replaced with a uni-

formly random value from the set of [1, 100].
• Small-ScopeMutations: Hash fields, namely rawTransaction,
currentTxHash, validation, are replaced with random val-

ues from the set of previously logged transaction hashes re-

spectively. Sequence number fields (proposeSeq) are either
incremented or decremented with equal probability.

Immediately after the network startup, we performGenesis trans-

actions to set up the accounts. Each account is initialized with a

balance of 100,000 XRP.

During test execution, we submit four concurrent transactions

to the XRPL network:

• Tx1 = ⟨1, 1, 2, 80 000⟩
• Tx2 = ⟨2, 1, 3, 81 000⟩
• Tx3 = ⟨3, 1, 3, 82 000⟩
• Tx4 = ⟨4, 1, 2, 83 000⟩

Here each transaction is represented as a tuple, which is ⟨ID, sender,
receiver, amount⟩. Account 1 attempts to spend its funds twice on

Account 2 and twice on Account 3 but its balance allows only one

successful transfer. Transactions are submitted to different XRPL

nodes simultaneously 2 seconds after the test starts. Moreover, we

submit Tx1 to Node 1, Tx2 to Node 2, Tx3 to Node 6, and Tx4 to Node

7. It is important to note that Nodes 1 and 2 belong to UNL1 and

Nodes 6 and 7 to UNL3. This setup allows us to evaluate whether

the XRP LCP can handle concurrent transactions and whether it

can prevent double-spending attacks.

After submitting transactions to the network, we wait for these

transactions to be validated which under normal circumstances

happens within the first 8 iterations. Then we run a test case for an

additional 6 iterations to allow the network to heal.

We tested two versions of XRP LCP:

• XRPLCPv2.4.0: unmodified version of XRPL source code [22],

which is a production-ready implementation of XRP LCP.

• XRP LCP v2.4.0 with a seeded bug: a modified version of

the XRPL source code [23], where the threshold to validate

proposals is set to 40% agreement instead of 80% agreement.

After running each test case, we collect the execution trace and

check four consensus properties:

• Agreement: An execution violates the agreement if any two

honest nodes validate different ledgers for the same round. At

the end of each run, we check each node’s validated ledger

hashes that are stored in memory. If there is a mismatch

between the ledger hashes for the same round, we record a

violation.

• Validity: An execution violates validity if an honest node

decides on a value that no other honest node proposed. We

log all TMTransaction messages during execution and, at

the end of each run, verify that every transaction hash in

an honest node’s memory matches one of the transactions

originally proposed by an honest node.

• Integrity: An execution violates integrity if an honest node

decides on the same value twice. We check each honest

node’s sequence of validated ledger hashes to ensure that

the sequence numbers increase by exactly one at each step.

• Termination: An execution violates termination if an hon-

est node does not decide on a value within a predetermined



time-bound. We set this upper bound at 90 seconds since un-

der normal conditions the XRPL LCP should reach consensus

within 60 seconds. An execution is considered correct only if

all honest nodes decide within this time. Thus if any honest

node stalls or misses the deadline, we record a termination

violation.

For each XRPL LCP version, we run our baseline algorithm,

which is a random search algorithm, and ByzzFuzz search algorithm

using both small-scope and any-scope mutation approaches. For

the random search algorithm, we vary the probabilities of dropping

and mutating messages as described in section 3.1. For ByzzFuzz

search algorithm, we adjust the parameters 𝑑 , 𝑐 , 𝑟 , as described

in section 3.2. These parameters control the number of protocol

rounds with network and process faults, as well as the range of

rounds in which faults are injected.

We run each search algorithm 100 times for every parameter

configuration and record whether one or more consensus proper-

ties were violated. Tests are executed multiple times in order to

account for the randomness of search algorithms as suggested by

the existing guidelines [24]. Then we compare the algorithms by

their success rate, in particular, by the number of runs in which

they detect a violation or successfully uncover a bug. Also, it is

important to note that too many network or process faults would

cause nodes to stop responding, which in turn would always trigger

termination violations. Thus, we limit the number of fault injections

in order not to be biased toward results with termination violations.

5 Results
We evaluated the effectiveness of the baseline random testing

method and the ByzzFuzz search algorithm in a seven-node net-

work, which includes one Byzantine node. Each experiment ran

for 100 test iterations over 14 protocol rounds, with faults injected

during the first 8 rounds, allowing the network to heal during

the remaining 6 rounds. We tested two fault-injection strategies:

baseline random testing strategy (10% message drop and 10% mes-

sage mutation) and the ByzzFuzz search algorithm, configured with

varying parameters: 𝑑 = [0, 2] rounds with network faults and

𝑐 = [0, 2] rounds with process faults, distributed across the 𝑟 = 8

fault-injection rounds. Both mutation approaches were used: small-

scope (ss) and any-scope (as).

Table 2 presents the outcomes for the unmodified XRP LCP v2.4.0

and Table 3 shows outcomes for a version with a known seeded bug.

Each table cell reports the number of runs in which a consensus

property was violated: termination (T), validity (V), integrity (I), or

agreement (A). Moreover, the last column reports the total number

of runs with at least one violation. Note that a single run can yield

multiple violations. For example, a run can violate both agreement

and termination properties if the processes diverge in their decisions

and later become stuck without progressing further.

Effectiveness of naive random testing for detecting bugs in XRP
LCP. In the unmodified XRP LCP (Table 2), termination violations

occurred in 65 runs, with no violations of validity, integrity, or

agreement. In the seeded version of the protocol (Table 3), termi-

nation failed in 35 runs, and the seeded bug caused an agreement

violation in just 3 runs. Interestingly, the number of termination

violations is significantly higher in the unmodified version of the

XRP LCP (65/100) compared to the seeded version (35/100).

This pattern is consistent with prior work [6], which has shown

that naive random testing methods can lead to a large number of

termination violations because random faults often crash processes

early and therefore lead to premature protocol termination. Thus

baseline random testing is not effective at detecting subtle logic

errors in the protocol, as it tends to halt execution before allowing

us to explore the deeper states of execution scenarios.

In summary, the baseline random testing method showed that

the XRP LCP implementation frequently failed to make progress

under random faults and almost never violated safety properties.

Effectiveness of the ByzzFuzz search algorithm for detecting bugs
in XRP LCP. In contrast, the ByzzFuzz search algorithm detected

more safety violations and generally fewer termination violations,

although the overall count of termination violations remained sub-

stantial. On the seeded version of the XRP LCP (Table 3), the

ByzzFuzz search algorithm was able to detect the seeded bug more

efficiently than baseline testing (i.e., it required fewer executions to

trigger a violation), and it did so in nearly all parameter configura-

tions. In particular, for the parameter configuration 𝑐 = 1, 𝑑 = 2, the

ByzzFuzz algorithm produced 10 agreement violations with small-

scope mutations and 14 with any-scope, which is substantially

more compared to only 3 runs total by the baseline. Moreover, the

ByzzFuzz search algorithm tended to generate fewer termination

violations than the baseline, indicating that the protocol could run

longer and explore more execution scenarios before terminating.

We further compared the effectiveness of the small-scope and

any-scope mutation strategies within the ByzzFuzz search algo-

rithm. However, we did not observe a clear trend in the number

of violations detected by either approach. For example, in Table 3,

under the (𝑐 = 1, 𝑑 = 2) fault configuration, any-scope mutations

detected 14 agreement violations, while small-scope mutations

found 10 agreement violations. In contrast, under the (𝑐 = 1, 𝑑 = 1)
fault configuration, any-scope mutations detected 3 agreement vio-

lations, while small-scope mutations found 6 agreement violations.

This variability in results can be attributed to the inherent concur-

rency nondeterminism of the protocol. Thus we cannot conclude

which approach is more effective, as it depends on the specific test

case and the order of message delivery.

We found that the configuration 𝑐 = 1, 𝑑 = 2 produced the

highest combined count of termination and agreement violations

in both protocol versions and across both mutation scopes (small-

scope and any-scope mutations). Moreover, the configuration 𝑐 =

0, 𝑑 = 2 also detected a high number of agreement violations

but found less or the same number of termination violations in

both protocol versions and across both mutation scopes. Although

distributed consensus testing is inherently nondeterministic, these

results consistently suggest that the (1, 2) and (0, 2) configurations
are the most effective for evaluating XRP LCP, as they detect the

highest number of violations in the fewest executions.

In conclusion, experimental results support the effectiveness of

the ByzzFuzz search algorithm for both any-scope and small-scope

mutation approaches as it allows deeper exploration of execution

scenarios and uncovers more subtle logic bugs compared to the

baseline algorithm.



Table 2: Testing XRP LCP v2.4.0 using small-scope (ss) and any-scope (as) mutations with varying rounds of 𝑐 process faults and
𝑑 network partitions.

Faults T V I A Total

baseline 65 0 0 0 65

ss as ss as ss as ss as ss as

𝑐 = 0, 𝑑 = 1 41 31 0 0 0 0 0 0 44 31

𝑐 = 0, 𝑑 = 2 37 44 0 0 0 0 0 0 37 44

𝑐 = 1, 𝑑 = 0 31 29 0 0 0 0 0 0 31 29

𝑐 = 1, 𝑑 = 1 36 36 0 0 0 0 0 0 36 36

𝑐 = 1, 𝑑 = 2 40 44 0 0 0 0 0 0 43 44

𝑐 = 2, 𝑑 = 0 36 39 0 0 0 0 0 0 36 39

𝑐 = 2, 𝑑 = 1 45 34 0 0 0 0 0 0 45 34

𝑐 = 2, 𝑑 = 2 54 42 0 0 0 0 0 0 56 42

Table 3: Testing seeded version of XRP LCP v2.4.0 using small-scope (ss) and any-scope (as) mutations with varying rounds of 𝑐
process faults and 𝑑 network partitions.

Faults T V I A Total

baseline 35 0 0 3 35

ss as ss as ss as ss as ss as

𝑐 = 0, 𝑑 = 1 0 1 0 0 0 0 4 6 4 7

𝑐 = 0, 𝑑 = 2 2 2 0 0 0 0 13 8 15 8

𝑐 = 1, 𝑑 = 0 2 1 0 0 0 0 4 1 4 2

𝑐 = 1, 𝑑 = 1 0 0 0 0 0 0 6 3 6 3

𝑐 = 1, 𝑑 = 2 4 5 0 0 0 0 10 14 13 17

𝑐 = 2, 𝑑 = 0 0 0 0 0 0 0 2 1 2 1

𝑐 = 2, 𝑑 = 1 2 0 0 0 0 0 3 7 4 7

𝑐 = 2, 𝑑 = 2 3 3 0 0 0 0 7 8 9 10

6 Discussion
Our experiments have detected several consensus violations in

the XRP Ledger Consensus Protocol (XRP LCP). In particular, we

detected termination violations in both the production and seeded

versions of the protocol, as well as agreement violations in the

seeded version. These findings confirm the effectiveness of our

search algorithms, which successfully uncovered that the proposal

threshold was incorrectly set to 40% instead of the default 80%. The

violations are closely linked to the structure of the network.

The network consisted of seven nodes organized into three over-

lapping Unique Node Lists (UNLs) designed to satisfy the 60% over-

lap requirement. The trust relationships were configured as follows:

nodes 1, 2, and 3 trusted UNL1 = 0, 1, 2, 3, 4, node 4 trusted UNL2 =

1, 2, 3, 4, 5, and nodes 5, 6, and 7 trusted UNL3 = 2, 3, 4, 5, 6.

Termination violations. Termination violations were detected

in both the production and seeded versions of the protocol. These

violations typically occurredwhen communication problems caused

honest nodes to remove peers from their UNLs. For example, if

too many messages between node A and node B were dropped

or mutated in a way that caused suspicion, node A might remove

node B from its UNL and stop sending messages. However, node

B would still expect messages from node A and thus would lose a

vote during the proposal and validation phases.

Given that each UNL contains five members and the quorum

threshold is 80%, each node requires four out of five trusted nodes to

agree in order to make progress. If two nodes stop communicating

with a third, that third node cannot reach quorum and becomes

stuck.

As a result, the network often splits into two clusters. For ex-

ample, the cluster of nodes using UNL1 (nodes 1–3) might stop

progressing while the UNL3 cluster (nodes 5–7) continued to reach

consensus, or vice versa. In some scenarios, a single node became

completely isolated and was unable to make progress. When the

quorum threshold was reduced to 40% in the seeded version, ter-

mination violations occurred less frequently. The lower threshold

meant that only two of the five trusted nodes were needed to form

a quorum, so nodes could still reach consensus despite losing com-

munication with other nodes.

Agreement violations. Agreement violations were observed only

in the seeded version of the protocol. In these cases, different clus-

ters of honest nodes finalized different ledger values. For instance,

nodes in UNL1 might agree on one ledger, while nodes in UNL3

agreed on a different one. This divergence included several cases:



one group validated a ledger with transactions while the other vali-

dated an empty ledger, both groups validated ledgers with different

transactions, or both validated empty ledgers but with different

ledger hashes, indicating a network split.

Moreover, node 4, which trusts UNL2 and therefore overlaps

with both UNL1 and UNL3, would end up with either set of nodes

depending on how the consensus evolved.

These agreement violations were a direct result of the reduced

proposal threshold. With a 40% quorum requirement (two of five),

small isolated subgroups could independently achieve quorum and

make decisions. For example, nodes 1, 2, and 3 along with node 4

could form a quorum under UNL1 and commit to one ledger, while

nodes 5, 6, and 7 could form a separate quorum under UNL3 and

commit to a conflicting ledger.

ByzzFuzz search algorithm suggested improvement. The original
ByzzFuzz search algorithm pseudocode [6] first checks for network

faults (message drops) before process faults (message corruptions).

However, this means dropping happens more often than mutating

because once a message qualifies for being dropped, we no longer

check if it should be mutated. In a case where the sender node

is Byzantine, and both a network fault and a process fault are

applicable in the same round, the message always gets dropped

and not mutated. To eliminate bias towards dropping messages, we

introduce a new data structure orderFirstNet, which records per

each round whether to check network or process faults first. Each

round’s priority is determined by a fair 50/50 coin flip.

These changes ensure reproducibility as each round indepen-

dently has a 50% chance of prioritizing network faults and a 50%

chance of prioritizing process faults. When a round prioritizes

network faults, any qualifying message is dropped. Thus we con-

sistently drop messages between isolated partitions in that round.

When a round prioritizes process faults, we mutate all qualifying

messages, causing the Byzantine node to apply the same corruption

to the same recipients.

With these changes, the algorithmmakes a reproducible decision

between checking network faults first or processing faults first.

Thus it remains fully reproducible under the same seed. The original

pseudocode and the improved version incorporating these changes

are provided in Appendix A as Algorithm 1 and Algorithm 2.

7 Threats to Validity
Internal validity. The main threat to internal validity is the non-

determinism inherent in randomized testing methods. To address

this threat, we ran each randomized algorithm multiple times with

every parameter configuration and based our conclusions on over-

all performance across all runs. Another potential threat is the

correctness evaluation of test cases, specifically validity check. In

particular, we were unable to extract information about proposed

transactions from the proposal messages exchanged between nodes.

Thus, to mitigate this, we have approximated the missing infor-

mation by checking transaction hashes in transaction messages.

However, in some cases, this approximation might be insufficient

to determine whether a transaction was actually proposed.

External validity. The naive random testing algorithm and the

ByzzFuzz search algorithm were specifically designed for testing

the XRP LCP. Therefore, the results of our case study may not

generalize to other consensus protocols. Further research is needed

to adapt these algorithms to other consensus protocols and evaluate

their performance.

8 Conclusion and Future Work
In this paper, we extended the Rocket testing framework by im-

plementing the ByzzFuzz search algorithm, which guides fault in-

jection more strategically. We also presented a case study on the

effectiveness of the ByzzFuzz algorithm for Byzantine fault toler-

ance on the XRP Ledger Consensus Protocol compared to naive

random testing. Our results show that both naive random testing

and the ByzzFuzz algorithm can uncover bugs in the protocol, par-

ticularly agreement violations within a seeded XRP LCP version.

In our evaluation, we demonstrated that the ByzzFuzz search algo-

rithm significantly improves testing efficiency, detecting a higher

number of critical violations per time unit compared to the baseline

method. Additionally, we evaluated a broad range of hyperparame-

ter configurations for the ByzzFuzz search algorithm.

Our findings consistently suggest that configurations 𝑐 = 1, 𝑑 = 2

and 𝑐 = 0, 𝑑 = 2 are the most effective for testing the XRP LCP.

Here, 𝑐 represents the number of process fault rounds, and 𝑑 the

number of network fault rounds. These configurations detect the

highest count of termination and agreement violations in the fewest

executions, across both mutation scopes and protocol versions. Al-

though this study centers on the XRP LCP, the testing techniques

and findings provide a foundation that can potentially be applied

to other consensus protocols. Future work should include further

experiments to determine which mutation scope, small-scope or

any-scope, yields more efficient testing. Furthermore, an even wider

range of hyperparameter configurations could be explored. Addi-

tionally, the performance of the improved ByzzFuzz search algo-

rithm could be compared against previous version to determine

whether it can improve testing efficiency.

9 Responsible Research
To ensure reproducibility, we have made the code for the ByzzFuzz

search algorithm available on GitHub. We also provide a Docker im-

age containing the testing framework, which allows to run the tests

in a controlled environment. Detailed descriptions of the experi-

mental setup are documented both in this paper and in the public

repository. This includes parameter configurations, test execution

details, detected violations, and random seeds per each test case,

which allows to reproduce the results of each of the experiments.

An important ethical concern when testing consensus protocols

is the potential impact on real funds and network stability. Thus,

all experiments were conducted on a simulated local network of

XRPL validator nodes and no production XRP Ledger network

was used. Our goal was to improve the protocol’s correctness and

robustness, not to exploit vulnerabilities. For any discoveries of

serious issues, we follow principles of Coordinated Vulnerability

Disclosure (CVD). If potential bug is discovered, we will report it

to the XRPL developers and give them sufficient time to fix the

issues before disclosing them publicly. This allows critical systems

to be updated before any findings from our experiments could be

exploited.
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Algorithm 1 Random injection of 𝑐 process faults and 𝑑 network partition faults into 𝑟 rounds of protocol execution.

Input: A bound 𝑐 on the #rounds with process faults

Input: A bound 𝑑 on the #rounds with network faults

Input: A bound 𝑟 on the #rounds with faults

Data:
networkFaults : Set

[
(Int, Set[P])

]
⊲ round and partition of P

procFaults : Set

[
(Int, Set[P], Int)

]
⊲ round, subset of P, and seed

1: procedure onInit
2: /* sample network faults */

3: networkFaults← ∅
4: for 𝑖 ← 1 to 𝑑 do
5: round← randomElementFrom( [1, 𝑟 ])
6: partition← randomPartitionOf(P)
7: networkFaults += {(round, partition)}
8: end for
9: /* sample process faults */

10: 𝑝𝑏𝑦𝑧 ← randomElementFrom(P)
11: procFaults← ∅
12: for 𝑖 ← 1 to 𝑐 do
13: round← randomElementFrom( [1, 𝑟 ])
14: procs← randomSubsetOf(P)
15: seed← randomElementFrom(𝑍 )
16: procFaults += {(round, procs, seed)}
17: end for
18: end procedure
19: procedure onMessage(𝑚)

20: if (rnd(𝑚), 𝜋) ∈ networkFaults and isolates(𝜋, sender(𝑚), recv(𝑚)) then
21: /* do nothing, drop the message */

22: else if sender(𝑚) = 𝑝𝑏𝑦𝑧 and ((rnd(𝑚), recv(𝑚) ∪ _, seed) ∈ procFaults) then
23: /* mutate and send the message */

24: 𝑀 ← mutate(𝑚, seed)
25: send(recv(m),𝑀)

26: else
27: send(recv(m),𝑚)

28: end if
29: end procedure



Algorithm 2 Random injection of 𝑐 process faults and 𝑑 network partition faults over 𝑟 protocol rounds. Each round is assigned to either

prioritize network or process faults with equal probability.

Input: A bound 𝑐 on the #rounds with process faults

Input: A bound 𝑑 on the #rounds with network faults

Input: A bound 𝑟 on the #rounds with faults

Data:
networkFaults : Set

[
(Int, Set[P])

]
⊲ round and partition of P

procFaults : Set

[
(Int, Set[P], Int)

]
⊲ round, subset of P, and seed

orderFirstNet: Set
[
Int

]
1: procedure onInit
2: /* sample network faults */

3: networkFaults← ∅
4: for 𝑖 ← 1 to 𝑑 do
5: round← randomElementFrom( [1, 𝑟 ])
6: partition← randomPartitionOf(P)
7: networkFaults += {(round, partition)}
8: end for
9: /* sample per-round ordering */

10: orderFirstNet← { 𝑡 | 𝑡 ∈ [1..𝑟 ], randomBool()}
11: /* sample process faults */

12: 𝑝𝑏𝑦𝑧 ← randomElementFrom(P)
13: procFaults← ∅
14: for 𝑖 ← 1 to 𝑐 do
15: round← randomElementFrom( [1, 𝑟 ])
16: procs← randomSubsetOf(P)
17: seed← randomElementFrom(𝑍 )
18: procFaults += {(round, procs, seed)}
19: end for
20: end procedure
21: procedure onMessage(𝑚)

22: if 𝑡 = roundOf(𝑚) ∈ orderFirstNet then
23: if (rnd(𝑚), 𝜋) ∈ networkFaults and isolates(𝜋, sender(𝑚), recv(𝑚)) then
24: /* do nothing, drop the message */

25: else if sender(𝑚) = 𝑝𝑏𝑦𝑧 and ((rnd(𝑚), recv(𝑚) ∪ _, seed) ∈ procFaults) then
26: /* mutate and send the message */

27: 𝑀 ← mutate(𝑚, seed)
28: send(recv(m),𝑀)

29: else
30: send(recv(m),𝑚)

31: end if
32: else
33: if sender(𝑚) = 𝑝𝑏𝑦𝑧 and ((rnd(𝑚), recv(𝑚) ∪ _, seed) ∈ procFaults) then
34: /* mutate and send the message */

35: 𝑀 ← mutate(𝑚, seed)
36: send(recv(m),𝑀)

37: else if (rnd(𝑚), 𝜋) ∈ networkFaults and isolates(𝜋, sender(𝑚), recv(𝑚)) then
38: /* do nothing, drop the message */

39: else
40: send(recv(m),𝑚)

41: end if
42: end if
43: end procedure
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