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- Een compacte realisatie van neurale primitieve functies is mogelijk door

de fysische eigenschappen van de basisdevices expliciet te benutten.

Voor het ontwerp van grote SET-transistorcircuits is het gevolg van off-
setladingen een belangrijker aandachtspunt dan vermogensdissipatie.

. Een neuron en een synaps kunnen elk met één SET-transistor worden

gemaakt.

. Het streven een krachtige signaalprocessor te ontwikkelen moet niet ver-

ward worden met het streven biologische neurale netwerken na, te maken.

. Een vergelijking met kleine biologische neurale netwerken leert dat het ge-

brek aan compacte implementaties van artificiéle neurale netwerken niet
noodzakelijkerwijs de oorzaak is van het gebrek aan succesvolle toepassin-
gen ervan.

. Van het in de pers vermelden van de straatwaarde van in beslag genomen

verdovende middelen gaat in ieder geval geen preventieve werking uit.

. Het gebruik van bestrijdingsmiddelen in de druiventeelt heeft misschien

wel een grotere invloed op de smaak van de wijn dan de exacte locatie van
de wijngaard.

. Het gezondheidseffect van een ergonomisch toetsenbord is voor een be-

langrijk deel te danken aan de bijgevoegde handleiding over een goede
lichaamshouding.

- Overmatig acroniemgebruik is een vorm van cryptografie.

10.

Het feit dat bij een extra hoge jackpot veel mensen incidenteel meedoen
aan een loterij, maakt het spel voor de trouwe speler extra onvoordelig.



11.

12.

13.

14.

15.
16.

Zolang op de weerkaarten van veel Europese televisiezenders de omrin-
gende landen niet eens getoond worden, blijft Europa een verzameling
losse eilanden.

De uitspraak “Geniet maar drink met mate” suggereert ten onrechte dat
genieten normaliter samengaat met overmatig drankgebruik.

In tegenstelling tot wat vaak gesuggereerd wordt is het milieubeleid vaak
slechts gedreven door de wens het meest storende element uit de natuur
te beschermen: de Mens.

Het weer is zo goed als je kleding.
Een wekker is een blikopener.

In mei legt hooguit de helft van alle vogeltjes een ei.
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Introduction

One of the great challenges of today’s electronic designers is to make more
powerful signal processors for even more complex tasks. When we compare the
performance of state of the art electronic signal processors with the smallest
biological systems however, we see an enormous gap to bridge. In fields like
image processing we have a long way to go before biological systems will be
outperformed.

The successful increase in the processing power of digital systems is largely
due to the incredible reliability and speed increase of the hardware, mainly as a
result of shrinking device dimensions. When those dimensions however, shrink
below the limits beyond which quantum physics rules, reliability and speed will
cease to scale with size.

Biological systems seem to circumvent precisely those factors that threaten
the future expansion of digital processing power. Biological systems work rela-
tively slowly and the building blocks are certainly not fully reliable. The total
system however does have a high processing power. This holds for our ulti-
mate example, the brain, but also for an ant’s nest, for example. The synergy
of thousands of small insects does not depend on the failing of an individual.
Cooperation between individual ants, each of which performs only simple and
basic tasks, results in the successful completion of relatively complex tasks such
as nest building, defense against predators and food supply. The total ‘power’
of such a biological system basically depends on its total size.

The artificial neural network concept is an attempt to follow this idea. A
neural network withstands inaccurate and malfunctioning hardware because it
is inherently redundant and can adapt to changing circumstances. Provided the
network is large, it can evaluate complex tasks quickly.

The problem encountered here is to make neural networks whose size is in
some way comparable to the size of biological examples. This is desired because
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2 Introduction

it is large size that results in high processing power.

This thesis investigates whether it is in principle possible to make neural
networks with Single Electron Tunneling (SET) technology, and explores ways
to optimally exploit the characterististic technological SET properties for ex-
tremely compact hardware solutions. Relying on the ability of neural networks
to cope with unconventional device functions, this thesis investigates whether
the SET transistor can be employed as an elementary neural network building
block.

In Chapter 2, the field of neural networks is addressed. It explains why
the neural system concept is valuable for powerful signal processors, and what
problems hamper the realization of large systems. Chapter 3 describes the
design strategy for compact building blocks of large neural networks. The neural
devices described in this thesis were designed according to this strategy.

The Single Electron Tunneling transistor is the elementary device on which
the neural devices presented in this work are based. Chapter 4 introduces the
SET transistor. It describes the properties and how they can be used to design
neural building blocks.

One of the basic cells of a neural network is the neuron. In Chapter 5, two
neuron designs in SET technology are presented. One with two SET transistors,
and one consisting of a single device. It is argued that the latter has the most
promising properties for a compact SET neural network. The other basic cell is
the synapse, which is the subject of Chapter 6. It is shown that basic synaptic
functionality can be obtained with a single SET transistor.

The issue of connecting the neural cells into a network is analyzed in Chap-
ter 7. It is shown that a small SET network can perform the elementary classi-
fication tasks.

The learning algorithm is also an essential ingredient of any neural network
but it is not extensively discussed in this thesis. With the aid of a two-layer
neural network, Chapter 8 describes how the random weight change learning
algorithm adapts the SET neuron and synapses to perform a predefined task.

As a result of technological complications, no measurements were obtained
from the SET devices that were fabricated for this project (see the micrographs
in Chapters 4 and 5). The similarity however, between measurements performed
on individual SET transistors known in the literature [1,2] and the simulation
results presented in this thesis, give confidence about their reliability. All the
numerical simulations of SET transistors in this thesis were performed with the
simulation program ‘SIMON’ (Simulation of Nano structures). The parameters
used to obtain the data are given in Appendix A.




Overview

During the past years, we have witnessed a spectacular performance increase
of powerful signal processing machines, and in coming years, this will no doubt
continue. At some stage however, predicted by the road map [3], the growth
of speed and size will come to a grinding halt where the laws of physics meet.
To continue from there, we will have to resort to alternative methods [4]. It
will no longer be possible to scale down device size and scale up its operation
frequency.

Doing things in parallel is faster than doing everything consecutively. De-
spite the low frequencies in for example the human brain, we have no difficulty
processing large quantities of data at a staggering speed. The advantages of
human-made parallel processing are already being shown by for example multi-
processor arrays, all solving part of one complicated problem. It is however a
great challenge to develop efficient software that exploits the potential process-
ing power of these systems.

A more natural way of processing information is the inherently parallel man-
ner of a neural network. The advantage of a parallel system is that it can be
made faster simply by increasing its size. More processing nodes in principle
means more processing power.

In Section 2.1, neural networks are compared to other systems. Even though
neural networks have advantages in some fields, realizing one that actually shows
these advantages remains a great challenge, as described in Section 2.2. Sec-
tion 2.3 describes what we propose to face the challenge: devices that perform
the neural primitive functions.




4 Overview

2.1 Neural networks

An artificial neural network is a machine composed of a large number of sim-
ilar and interconnected cells consisting of a small set of mostly non-linear and
adaptable building blocks. The network operates similarly to the way we be-
lieve biological brains work. It is an attractive solution for various kinds of
signal processing tasks. The most appealing is probably that a neural network
can proficiently solve the type of problems digital computers traditionally have
difficulties with, such as recognizing various kinds of patterns, such as speech,
handwriting, and faces. Areas that machines have not yet surpassed humans in
the way mathematical and database functions have during the past decades.

Some like to call these functions typical ‘human’ functions, and are afraid
that successful artificial neural networks might in the near future take over the
world from mankind, as skillfully suggested in some films. Similar fears existed
on the widespread introduction of the electronic calculators in the seventies.
When my father had just bought the first pocket calculator for the laboratory
he was working for at that moment, and he and his colleagues were watching it
taking a few moments to evaluate its first sin 60, one of his colleagues exclaimed:
“It’s thinking!”. Until then, algebra was widely seen as a human task. Now,
thirty years later, it certainly is no longer the case.

One can indeed say that digital calculators and computers have conquered
the world since then, but certainly not fromm mankind. Perhaps with mankind
is a better description.

There are more differences than similarities between artificial neural net-
works and biological brains. Those functions that are now hesitantly tried by
these new types of machines and that up to now exclusively belonged to the
realm of living beings are called ‘human’ simply because up to now only humans
were adept at solving them. A machine however, that can recognize handwrit-
ing still cannot think, even if it takes a while to evaluate a result. It is just
like a powerful computer with a fancy program that combines the rules of chess
with a database containing all the important matches that have been played so
far. Such a computer can win the game from the human world champion, but
that does not make it intelligent, contrary to what some reports would have us
believe.

There is an important difference between digital computers and neural net-
works though, that does stress the similarity between an artificial neural network
and biological brains. Whereas the behavior of a digital computer is completely
deterministic and predictable, the way a neural network or the brain solves prob-
lems is not. Although we are witnessing spectacular improvements in both power
consumption and defect reduction, it still is a major limitation for expanding
the signal processing performance of digital systems. The typical characteris-
tics of neural networks, such as their non-linear and adaptive operation makes
them more suitable for very compact and low power implementations because
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inevitable errors occurring in the hardware can be dealt with.

Digital systems have only inherent redundancy at the signal representation
level. This makes them robust to signal errors. Neural networks have redun-
dancy at the processing cell level. This makes it robust to ‘system noise’, i.e.
malfunctioning functional blocks. Therefore, the neural network system concept
is promising for large systems with inaccurate hardware.

Neural networks are suitable to help us solve certain types of problems such
as the recognition of patterns, and could become of increasing importance if an
efficient way of manufacturing them becomes available.

2.2 Large neural networks

To be a powerful signal processor, a neural network should be large. Among
other reasons however, the absence of a good implementation method still ham-
pers the realization and the adoption of such networks in our daily lives.
Different ways to build electronic neural networks are described in Sec-
tion 2.2.1, and Section 2.2.2 argues that the primitive functions of the network
should consist of elementary devices to obtain a high integration density.

2.2.1 Making neural networks

Many attempts are being made by many groups throughout the world to make
successful neural networks, and with remarkable successes, mainly enhancing
the understanding of neural networks and underlining their potential impor-
tance, and sometimes showing this importance with a real application. Except
for interesting developments in artificial biological processors [5], and in optical
neural networks (6], the three main electronic directions for implementing artifi-
cial neural networks are: emulating the system on a digital computer, dedicated
digital hardware, and analog hardware. All three are discussed briefly below.

Emulating neural networks

The most flexible way to implement a neural network is with software on a
powerful computer. The importance is twofold: to gain understanding of neural
network behavior such as in the difficult field of learning, and for commercial
applications such as handwriting recognition for personal organizers [7] and the
control of complicated chemical plants. These applications are typical examples
of very complex tasks that are difficult to describe exactly, but can be solved
by a neural network. For many applications, the main disadvantage of software
neural network implementations is their low speed and limited network size.
Software networks are usually evaluated sequentially per node instead of in
parallel, simply because the computer only contains a single processor.
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Integrated digital neural networks

To solve this lack of parallelism, integrated digital neural chips have been devel-
oped that have a small processor for each neuron [8]. Although these systems
are certainly very much faster than their software counterparts, they still have
important disadvantages.

Discretizing the signal levels reduces the processing power, and results in
learning problems. The power consumption and size of these systems limit their
applicability. It is illustrative to compare it with digital computers with tubes,
which in the fifties and sixties filled whole rooms with what we would now call
modest computing power. These machines incontestably showed that the system
concept was very promising, but that it would not mature in this technology.
The success of digital computers since the introduction of semiconductor chips,
proved both.

Integrated analog neural networks

A more promising approach for making neural networks is the analog electronic
implementation. By exploiting the full range of signal values, it allows neu-
ral cells to be implemented with just a ‘handful’ of components, yielding more
processing power with the same area and power consumption. The unavoid-
ably resulting errors can be handled by the neural system. The usefulness of
the neural network concept is clearly apparent from the unprecedented process-
ing power of only small networks, with relatively few neural cells. Classifying
problems that were up to now difficult or even impossible to solve, like those
described in [9], can be solved by an analog neural network.

2.2.2 Larger neural networks

In comparison to biological brains, these successful network implementations
still have disappointingly few neurons. In fact, we have barely scraped the sur-
face of a whole new undiscovered field of interesting signal processing machines.
The human brain contains about 10'! neural cells, which is many orders of
magnitude larger than the 10* cells that we currently call state of the art.

The door to a successful new system concept is there, but to open it, we
need the technology that fits.

In such a technology, tiny devices with useful characteristics must be avail-
able. The intrinsic properties of this technology must be optimally exploited to
obtain compact hardware structures that match the primitive functions of the
basic neural building blocks. We will call those compact hardware structures
neural devices.
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2.3 Neural devices

To make very large neural networks, compact hardware structures, or neural
devices, which perform the neural primitive functions are the essential ingredi-
ent.

Any design is always limited by at least two boundary conditions. The
available properties of the technology on one side, and the desired functionality
on the other. With regular electronic circuit designs, the available technological
properties can be manipulated by finding the circuit configuration that best
meets the functional requirements.

When restricting the design to a neural device, consisting of a small circuit,
or in the limit of a single technological device, the hardware properties are
more or less dictated by the properties of the chosen technology, while the basic
properties of this technology are fixed by the laws of physics. If the desired
functional properties were also strictly defined, the possibilities for the design
of a neural device that exactly fits those functional properties would be too
restricted.

Fortunately, in the case of neural networks there is flexibility in the functional
requirements. The network’s adaptability can namely also be applied to make
it cope with diverging types of primitive function variations, in addition to its
ability to adjustment at the system function level. There is no list of strictly
predefined requirements the primitive functions have to comply with.

This opens a whole new field of design strategies where the designed function
is inspired by the requirements on the functional level, but largely determined
by the possibilities on the technological level.

Many of the physical properties of semiconductor material have not been
thoroughly investigated. The possibilities with the familiar transistor which was
discovered half a century ago seem endless. Moreover, many of the alternative
devices that have been invented [10,11] have not found large scale application
yet. In addition, many other technologies exist, so if we cannot find what
we want in standard silicon technology, alternative technologies may offer a
solution. This has been recognized by various research groups [11-15].

In this thesis, Single-Electron Tunneling (SET) transistors are used. These
tiny devices have very interesting properties. They are extremely small and
low power, which is in itself important, and they have an interesting but exotic
electronic behavior. Most important are the periodic transfer function and the
offset charges. The SET transistor is described in detail in Chapter 4.

2.4 Conclusions

Neural processing promises to become a successful signal processing system
concept for very high volume processing. Its success however, stagnates because
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no hardware solution is available. The main challenge is to design compact
neural cells to implement very large neural networks.

By designing compact neural devices that efficiently exploit the inherent
technological properties, and that implement the neural primitive functions,
the compactness can significantly be improved. Instead of adapting the device’s
properties to the functional neural requirements, the flexibility of the neural
network is used to adapt to the device properties.

In this thesis, it is shown that this flexibility, which has up to now barely
been used, could be the key to the success of compact neural network imple-
mentations.




Design Philosophy

To be powerful signal processors, neural networks should be large. Much larger
than the state of the art networks that can be realized today. There are two
main aspects that limit the size of networks. The area and power consumption
of the neural building blocks is too high to build much larger networks, and the
learning behavior of such very large on-chip networks is not known well enough
to make these networks operate sensibly.

This thesis concentrates mainly on the first issue: how the neural building
block size and power consumption can be effectively reduced. Although the
learning algorithm and how it could be implemented compactly is discussed,
specific learning strategies for very large neural networks are not addressed.

In this chapter, the design philosophy for the ultimately compact neural
building blocks is described. The functional properties of the basic neural build-
ing blocks are called the primitive functions. The compactness of the primitive
functions is the primary factor determining the network’s size. Section 3.1
demonstrates that the primitive function size can be minimized by dealing with
inaccuracies at the neural network level instead of at the device or circuit level.

Section 3.2 shows that the learning algorithm of a very large neural network
should be embedded on-chip with the rest of the system as much as possible,
and therefore also be very compact. The implications this has for the type of
learning algorithm are discussed.

The representation of the neural information signals has an important in-
fluence on the compactness and power consumption of the networks building
blocks. Section 3.3 argues that an analog continuous-time signal is the most
compact way to represent the information. The sensitivity to systematic errors
does not hamper its application in neural networks because adaptiveness at the
neural system level offers enough robustness to cope with it.

Finally, the role of the network topology in determining the neural network

9



10 Design Philosophy

compactness is analyzed in Section 3.4. It is argued that the area occupied by
the interconnections should be minimized by using a locally connected topology.

3.1 Neural primitive functions

A neural network only has a small set of primitive functions, which are re-
peatedly used to build a large network. In traditional neural network theory
the neural primitive functions are described by well-defined mathematical func-
tions, as explained in Section 3.1.1. To understand neural network behavior
using mathematical descriptions and simulation software, those standard de-
scriptions are indispensable. As we will see in Section 3.1.2, it is difficult and
not necessary to map those descriptions exactly onto compact hardware real-
izations. Since an important characteristic of the neural network concept is
its tolerance to different types of primitive functions, deviations from the ‘ideal’
primitive functions in favor of compactness are tolerable. Section 3.1.3 describes
the elementary requirements with which the primitive functions should comply
in order to be of any use for a neural network. In Chapter 2, a compact realiza-
tion of neural primitive function was called a neural device. In Section 3.1.4, the
desired properties of such devices for successful application in a neural network
are listed.

3.1.1 The conventional neural primitive functions

Two types of neural primitive functions can be distinguished: evaluation func-
tions and learning functions.

The evaluation functions

The evaluation functions of a neural network are used to process the useful in-
formation flow, to do what the network is intended for. The evaluation functions
are contained in two types of building blocks: the neuron and the synapse.

The neuron

The conventional neuron performs a classifying function on the sum of its
inputs. Two primitive functions can be defined here, namely the addi-
tion function, and the classifying activation function. The conventional
mathematical description of the activation function is a step function or a
sigmoidally shaped function as a smoother variant. The threshold value,
defining the boundary between the classes, is sometimes adjustable to
modify the classifying behavior. To summarize, we have the following
functions:

e addition,
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e activation function (step, sigmoid).

The synapse
The task of the synapse is to weigh the connection strength from a network
input to a neuron, or between two neurons. Adjustment of the synaptic
weights alters the network behavior. This function is mathematically rep-
resented by the multiplier, where the input is multiplied by the weight to
obtain the output. So, the synapse has the following functions:

o multiplier,
» weight storage.

The learning functions

The second type of neural primitive functions is used to change the networks
adjustment points so that it actually produces the desired results. The par-
ticular functions used are described by the learning algorithm. Following this
algorithm, the synaptic weights and neuron offsets are adjusted to reduce the
error between the network output and the desired output value. The definition
of specific primitive learning functions of course depends on the specific learn-
ing algorithm, of which diverging types exist. Possibly, new learning schemes
have to be devised to deal with the properties of specific implementations or
applications. Therefore, no detailed descriptions of the learning primitives are
given here.

3.1.2 Compact neural primitive functions

The advantage of using the standard mathematical descriptions of the neural
primitive functions is that it makes the network easier to understand and an-
alyze. The relatively simple functions allow us to calculate and predict the
behavior under various circumstances, and to optimize the learning algorithm
or the topology for better performance. The success of that work encouraged
circuit designers to implement the required functions electronically to fully ex-
ploit from the parallel structure [16]. It was then noticed that with the learning
schemes developed for these networks, the performance is sensitive to deviations
from the ideal functional description [17]. The subsequent need for accurate im-
plementations of the required mathematical functions resulted in large circuits:
in the case of digital systems, many bits are required, and in the case of analog
systems, efforts to compensate for distortions and non-linearities yielded rela-
tively complex circuits for the individual primitive functions [16]. This need
for accuracy is remarkable because the neural network concept is in principle
robust to inaccuracies.

The desire to predict in detail the network behavior is necessary to gain un-
derstanding of neural networks, and as such indispensable for the development
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of powerful neural systems. The functioning of very large neural networks how-
ever, relies on its self-adjustment qualities, and predictability is contradictory
to self adjustment. The network should adjust itself, for example to systematic
errors such as constant but random offsets, precisely because we cannot possibly
do that complex task by hand.

Moreover, the desired functionality is often not exactly known beforehand.
Neural networks are often employed in situations where an accurate function
specification is impossible because the precise a priori knowledge of the large
and complex system concerned is impossible to acquire. In such a case, not
the functionality, but the learning behavior to attain this functionality is pro-
grammed.

If complete predictability were maintained, the learning process would not be
significantly different from deterministically programming the precise function
of a digital computer.

To obtain more compact neural primitive functions, the mathematical de-
scriptions that were necessary for predictability should not be adhered to too
strictly. Simpler primitive function implementations can be more compact, and
that makes larger neural networks feasible.

In the recent past we have seen hesitant steps towards this approach by
allowing non-linearities and offsets in the synapse transfer function [17-19]. The
most effective learning algorithms today, such as back propagation, rely on
accurately known primitive functions. Relaxing the strictness of the primitive
function specification must therefore go hand in hand with learning algorithms
that support this relaxation.

3.1.3 Elementary primitive function requirements

Before designing compact neural primitive functions that do not strictly comply
to the standard mathematical models mentioned in Section 3.1.1, it is necessary
to describe the elementary properties the functions do need. These elementary
functions are listed below.

The neuron
The neuron collects the signals at its inputs, and performs a classifying
function on the combined result. We thus have:

e gather input signals,
o classify the result.

Classifying means that for a certain range of input values, the neuron
output should be ‘active’. The transition boundary from active to non-
active (or vice-versa) is called the threshold value of that neuron. It is
useful if the threshold is adjustable. The neuron is described in detail in
Chapter 5.
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The synapse
The connection strength from a network input to a neuron or between two
neurons is given by the synapse. This gives the following list:

o modify connection strength,

e store weight.

The most versatile synapse can have both positive and negative connection
strengths. The synaptic weight stores the current weight of the connection.
The synapse is analyzed in Chapter 6.

The learning algorithm
The learning algorithm is in charge of adjusting the synaptic weight values
and the neuron threshold values of the whole neural network so that the
network produces the desired output. The following functions can be
distinguished:

¢ weight adjustment function,
e error signal generation,

¢ linking the above.

Depending on the type of learning algorithm, an error signal is generated
from the internal network signals (unsupervised learning), or by comparing
the network output with the desired network output generated by a super-
vising controller (supervised learning). The learning algorithm describes
how the error signal is generated and how the weight updates depend on
the error signal. This is the subject of Chapter 8.

The way these elementary functions are implemented depends on the hard-
ware properties. The neural network should be capable of adjusting itself to the
specific implementation dictated by the technology.

3.1.4 Neural devices

As argued in Chapter 2, the most compact realization of a primitive function
uses a technologically compact hardware structure called a neural device. The
properties of those devices however, cannot be changed very much, so that
exactly specified functional behavior cannot be obtained. Therefore, flexibility
is required at the system level to use the available device properties. In this
section the basic requirements for neural primitive functions are described. The
elementary primitive functions description given in the previous section of course
forms the basic ingredient of potential neural devices.
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o The device should be small, which is achieved by using a technology with
small devices, and within that technology, finding the smallest usable el-
ementary device.

o It should be possible to interconnect the devices to form a network, which
means that the input and output signal representation should match, and
that the devices should be able to drive each other.

o At least part of the learning algorithm must be implementable in the same
technology.

e Most devices have some unwanted, or unusable properties, described as
non-idealities. A successful device has non-idealities that can be dealt
with somehow, either by the device itself, the surrounding devices in the
network, or at the system level by the learning mechanism.

o Finally, the device should preferably not dissipate any static power, that
is, it should not dissipate when it is not processing information.

Unilaterality of the devices is not strictly necessary, but if signals flow only
in one direction, it does make the design easier.

In this thesis, it is shown that the Single-Electron Tunneling transistor (SET
transistor) is a strong candidate for potentially very large neural nets. The SET
transistor is extensively described in Chapter 4.

3.2 The learning algorithm

The success of a neural network depends for a large extent on the performance
of the learning algorithm that adjusts the synaptic weights and the neuron
threshold values to obtain the desired network behavior. Unfortunately, there is
no universal algorithm. Especially for large multi-layer networks, possibly with
feedback topologies, developing efficient learning strategies is still an important
challenge. We know however, by inspecting the ultimate biological example,
our brain, that it should in principle be possible for large neural systems to
learn (although it may take a lifetime!). Even though improving the learning
algorithm performance is not assessed in this work, some attention is given to
the learning algorithm because it forms an integral part of the neural network.

In Section 3.2.1, the function of the learning algorithm for a neural network is
described. Section 3.2.2 discusses the implications of implementing the learning
algorithm in inaccurate hardware, and in Section 3.2.3, the requirements for
compact realizations of the algorithm are discussed.
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3.2.1 The function of the learning algorithm

The learning algorithm is responsible for adapting the network behavior to the
desired behavior. (The complex matter of optimizing the algorithm for a bet-
ter and faster convergence deserves a research project of its own, and is not
addressed in this thesis.)

It is illustrative to distinguish three tasks of the learning algorithm:

1. adapt the network to perform the desired transfer function,
2. adapt the network to input conditions,
3. adapt the network to specific hardware.

This distinction is meaningful because of two reasons.

First, if either of the three is time-variant, the learning adjustments should
continue during the recall phase of the neural network. Secondly, if the hardware
is predictable enough, the learning could in principle be done separately, not
using the neural hardware itself.

Whether the network functionality or the input conditions are time depen-
dent is determined by the application, and is not addressed here. SET hardware
however is known to. have time-dependent offset charges, and the use of small
neural devices as primitive functions implies that the hardware is inaccurate.
Therefore, training a SET neural network must continue during the recall phase
of the network and the neural hardware itself should be involved. The weight
updates cannot be computed externally, independent from the neural hardware,
because the specific hardware properties such as malfunctioning devices, device
parameter tolerances and other systematic errors would then not be taken into
account.

3.2.2 Learning hardware

There are two reasons why the learning algorithm should preferably be embed-
ded with the rest of the neural network on the same chip. First of all because
the connections to all the weights can then remain short, and second because
for compactness, one would like the learning algorithm to be completely real-
ized using the same technology as the rest of the neural network. Analog on-
chip learning hardware implementations inevitably result in inaccuracies in the
learning algorithm. The neural network operation however relies on the learning
mechanism to deal with the inaccuracies, and the question as to whether it is
at all possible to correct inaccuracies with another inaccurate system is legiti-
mate. An accurate ‘teacher’ is always needed, or in other words, some stable
reference and accurate regulating loop is always required to tame an inaccurate
system. A successful learning algorithm is therefore at least partly realized with
accurate hardware. This means that as long as stable and accurate elements
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are not available in SET technology, part of the learning algorithm has to be
implemented in another way.

The type of errors that such a learning algorithm can deal with are the
systematic hardware errors: the errors that are time independent on the scale
of the learning convergence time. Examples are malfunctioning or defective
devices, the effects of device parameter tolerances, and static random offset
charges.

3.2.3 Compact learning algorithms

As with all other parts of the neural network, the learning algorithm hardware
should be made as compact as possible. This implies that the implementation
of the primitive functions should be based on the available elementary devices.
The algorithm should therefore be as simple as possible, requiring no complex
computations, and be as robust as possible to hardware inaccuracies, so that an
important part can indeed be made using inaccurate hardware.

Finally, learning a large neural network means updating a large number of
weights. To access those weights without the overhead of long interconnections,
the learning algorithm should operate with only local signals, and to make it
faster, all weights should be updated in parallel.

3.3 Information representation

The representation of the information signals in the neural network defines the
way the information is coded, how the information is carried by the signal, and
the electrical quantities used in the network. This section describes how the
information representation influences the compactness and power consumption
of the implementation.

3.3.1 The electrical carrier

The electrical quantity used to carry the information is determined by the device
properties and the interconnection to other parts of the network. The available
quantities are voltage and current (or charge, which is the non-moving variant
of current).

For the neuron output, distribution of the signal is important and therefore
a voltage is most useful. At the input of the neuron, signals should be added, so
current is most appropriate. In Chapter 4, it is argued that the current biased
SET transistor with voltage output has promising signal processing properties.
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3.3.2 The signal carrier

A variety of signal carriers is available to represent an information signal.
Among them, we find:

e instantaneous amplitude,
¢ instantaneous phase,
¢ instantaneous frequency,

¢ pulse position modulation,

pulse width modulation,

e amplitude modulation,

The question is which of them is best suited for compact, low power rep-
resentation of signals. There is a trade-off between power consumption and
robustness. The power consumption of instantaneous amplitude representation
is lowest because in all other cases the overhead of generating the carrier also
costs power [20]. If the signal carrier is an instantaneous frequency or phase for
instance, the fluctuating signal dissipates, but does not represent information by
itself. Instantaneous amplitude representation however, is also the least robust,
because noise has a direct influence on the signal.

The implementation compactness of a specific information carrier cannot be
judged without considering the specific devices used because it heavily depends
on the device properties.

In Chapter 4, we will see that the analog instantaneous amplitude of the
SET transfer curve has powerful signal processing properties.

3.3.3 Analog or discrete signals

Discrete signals are more robust to noise and other errors than analog signals
because only predefined levels exist. There are however two reasons for not using
discretized signals. First, robustness to noise and other errors is not strictly
necessary in neural networks because the network is able to correct for errors at
the system level. Second, the quantization errors resulting from discretization
are not stochastic, but strongly signal related. This can cause serious learning
problems because the system ‘bounces’ every time against the same barrier.
The high digital accuracy required to overcome this is at the expense of circuit
compactness. Compact analog implementations on the other hand are affected
by stochastic errors, which are far easier handled by the system.
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3.4 The network topology

The topology of the neural network describes the way the neurons and synapses
are interconnected. For a compact network, the area used by interconnections
should be minimized. This can be achieved in two ways; by allowing only short
interconnections, and by limiting the number of connections. Therefore, locally
connected topologies are a strong candidate for large compact neural networks,
as described in Chapter 7.

The above is purely a circuit argument in favor of cellular topologies. Suc-
cessful examples of locally connected neural networks are found in the field of
signal processing.

The subject of training cellular neural networks is still largely unsolved, but
it will have to be addressed before SET cellular neural networks can operate.

3.5 Conclusions

The standard mathematical descriptions of neural functions are very useful for
better understanding of the neural network concept, but they are not the easi-
est functions to implement in hardware. Since the main goal of making neural
hardware is to obtain larger and faster networks, it is essential that the basic
functions can be made as simple as possible. When trying to map the mathe-
matical functions onto electronic hardware, the required accuracy results in a
larger implementation than necessary.

The smallest possible implementation of a neural building block exploits the
specific technological properties in a compact analog hardware structure. Such
a neural device cannot perform the precise neural function accurately, but the
absence of accuracy and robustness is compensated for at the neural system
level by combining the results of many devices, and through adjustment by the
learning algorithm.

The learning algorithm of a compact neural network is implemented as much
as possible with the same technology as the rest of the network, but as long
as this hardware is prone to inaccuracy, some form of accurate ‘teacher’ that
supervises the network remains necessary.

The topology best suited for large compact neural networks is locally con-
nected, but learning aspects with these topologies will have to be investigated
before applications become feasible.
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SET devices and circuits for
neural networks

The SET transistor was introduced by Likharev in 1987 {21]. Since then, many
proposals for its applicability in VLSI systems have been published [22-26],
mainly by translating the currently very successful digital CMOS circuit prin-
ciples into SET transistor variants. One of the reasons for this attention is the
small device size allowing 10!! SET transistors to be packed together in an area
of 1 cm? [22]. Most of the digital proposals have not proven very successful so
far, which is at least partly due to a number of unorthodox properties of the
devices. The most important one being the random offset charge present in
SET transistors. Most digital designs in SET technology assume that the offset
charge problem can be solved in the future. As yet, every single SET transistor
must be adjusted separately to compensate for the offset charge, making VLSI
integration impossible.

As explained in Chapter 3, one should be cautious when mapping an estab-
lished system concept onto a completely new technology. The digital system
concept and CMOS technology for example, have been optimized for each other
over the years, and when trying to map the system onto a new technology, it is
not at all probable that it fits seamlessly. When trying to use a new technology
to build large systems, it is essential to carefully analyze the specific properties
of the new devices, and to exploit exactly those properties as much as possible.
Only then is the technology used optimally and is there a chance of creating a
successful system.

In this chapter, the properties of the Single-Electron Tunneling transistor
are described from an electronic circuit design point of view, paying special
attention to how SET devices can be used in analog VLSI circuit design.

For an overview of SET technology in general, see for example [27].

19
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4.1 What is Single-Electron Tunneling?

The tunnel junction is the basic element in Single-Electron Tunneling (SET)
technology, similar to the pn junction being the basic element in semiconductor
technology. A tunnel junction simply consists of two conductors separated by
an extremely thin insulator, the tunnel barrier. Being so thin, the insulator does
not completely prevent electrons from passing under all circumstances: it can
be considered to be a leaky capacitor. Seen from an electronic point of view,
the principal difference between an electric current through a regular conductor
and one which passes through a tunnel barrier, is that the former is continuous,
while the latter can be quantized under certain conditions. To make a current
flow, a certain amount of energy is required, and because of the quantized nature
of the charge carriers in a current across a tunnel junction, a minimum amount
of energy must be available to make electrons tunnel. Below this minimum, no
current can flow, which is called the Coulomb blockade. This phenomenon
forms the basis for many circuits in SET technology.

SET junctions can be made in several different ways. Although there are
many similarities between them, there are also some differences. The use of
metal tunnel junctions is assumed throughout this thesis.

4.2 The SET transistor

The SET transistor [2,21,27] is the simplest known device that can be con-
structed with SET junctions. It consists of two tunnel junctions connected in
series, and a gate electrode which is either capacitively or resistively connected
to the island formed by the node connecting the two junctions [21]. The resis-
tively coupled SET transistor is currently very difficult to make reliably because
the gate resistor must have a very large value (see Section 4.2.5). In this work,
we concentrate on the metal SET transistor with a capacitively coupled gate,
as schematically shown in Figure 4.1. Figure 4.2 shows a Scanning Electron
Microscope image of a SET transistor.

The current flow I through the SET transistor consists of individual elec-
trons tunneling through the source junction to the island and from the island
through the drain junction. Whether electrons tunnel, depends on the charge
present on the island enclosed by the dotted box. This charge changes discretely
with the elementary charge e when electrons tunnel through the junctions, and
it can be modified continuously with charge g by a voltage over capacitor Cj.

4.2.1 Electron transport in a SET transistor

For the sake of simplicity, consider a SET transistor with two identical tunnel
junctions and without a gate, biased with a voltage Viias, as shown in Figure 4.3.
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Figure 4.3: Voltage biased SET transistor without a gate.

Electrons can only get on or off the island by tunneling through either the
source or the drain tunnel junction. The total island capacitance Cx of this
SET transistor is so small that the change of the island voltage AV = ront
resulting from adding one electron to the island, is in the order of mV. In this
case Cx equals the sum of the tunnel junction capacitances Cs = C; + Cs. So
when C; = Cy = 40 aF, adding a single electron to the island decreases its
voltage by about 2 mV (Figure 4.4.b) in comparison with the situation at rest
(Figure 4.4.a). Removing an electron through the other junction then brings
the island potential back to the original level (Figure 4.4.c).

With a voltage across one of the tunnel junctions smaller than =% 36, » transfer

€

of an electron across it would decrease the voltage to less than ~ 365" This

increases the electrostatic energy E = 2—;— of the system. Since an electron

only tunnels if it decreases the electrostatic energy, tunneling is blocked unless

the voltage over the junction is higher than ﬁ This is called the Coulomb
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Figure 4.4: An electron is transferred from source to drain. a. Before electrons
have tunneled through either junction, the island potential of the SET transistor in
Figure 4.3 is half of the bias voltage. b. When an electron tunnels, in this case
through the source junction, the voltage level of the island decreases by #- (2 mV).
c. The subsequent tunneling of an electron through the drain junction Erings the
island potential back to its original level.

blockade. The voltage range — %‘5'25_2 is often called the Coulomb gap for
that junction.

The key mechanism for the operation of a SET transistor is that tunneling of
a single electron through one of its junctions can put that junction in Coulomb
blockade, and simultaneously suppresses the blockade of the other junction.
Subsequent tunneling of an electron across that other junction blocks it again,
and suppresses on its turn the blockade of the first junction. This way, electrons
can only pass through the SET transistor one at the time.

This mechanism can be explained with the aid of Figure 4.4. As mentioned
before, an excess electron on the island decreases the island potential by a
voltage #= = 2 mV in our example. The Coulomb blockade voltage is in our
case equal to 35= = 1 mV. This implies that if before tunneling of an electron
through the source junction, the island voltage were between 1 mV and 2 mV
(Figure 4.4.a), it is between —1 mV and 0 mV after tunneling (Figure 4.4.b).
This puts the source junction in Coulomb blockade, and no more electrons
can tunnel across it. The voltage across the drain junction however, has now
increased to more than 1 mV, suppressing its Coulomb blockade and allowing
an electron to tunnel across it (Figure 4.4.c). One electron has now passed from
source to drain, and the original voltage situation is restored.

The threshold voltage of a SET transistor is defined as the voltage above
which a SET transistor at 0 Kelvin starts to conduct current. The Coulomb gap
for the two junctions in series equals the sum of the Coulomb gaps of the two
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individual junctions because the bias voltage is equally divided between the two
tunnel junctions. The threshold voltage then equals Vi = :i:é:—, as indicated
by the solid line of Figure 4.5. The threshold voltage can be decreased to zero
with the gate electrode, as explained below.
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Figure 4.5: A SET transistor conducts current when the voltage across it is larger
than the threshold voltage Vin.

4.2.2 The influence of the gate on the threshold voltage

The gate electrode of the SET transistor is formed by a capacitive connection to
the island. The gate voltage induces a charge on the island, which changes the
voltage across the two tunnel junctions, and thus alters the tunneling properties
of the SET transistor. In particular, when the voltage across both junctions is
so low that both are in Coulomb blockade (Figure 4.6.a), this blockade can be
suppressed for one of the junctions by the voltage on the gate. In this case
(Figure 4.6.b), the Coulomb blockade is suppressed for the source junction.
The tunneling of an electron through that junction re-establishes the Coulomb
blockade for the source, and suppresses it for the drain (Figure 4.6.c), so that
an electron can pass from the island to the drain (Figure 4.6.d), which restores
the situation of Figure 4.6.b.

The maximum reduction of the threshold voltage is obtained when the volt-
age induced on the island by the gate equals 35—, which exactly suppresses the
Coulomb blockade, even with Vy, = 0 (Figure 4.7). As illustrated by the dotted
line of Figure 4.5, the threshold voltage then equals zero.

4.2.3 The origin of the transfer function periodicity

The periodic gate voltage sensitivity is probably the most characteristic property
of the SET transistor. It originates from the interaction between the continuous
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Figure 4.6: The influence of the gate on the island potential. a. The bias voltage
is in the Coulomb gap. No tunneling is possible. b. With the gate voltage, the
island potential is increased to overcome the coulomb blockade of the source junction.
c. The additional electron on the island reduces the island potential to a level that
allows tunneling through the drain junction. d. After an electron has tunneled across
the drain junction, the island voltage rises again to the level of b.
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Figure 4.7: With a vanishing bias voltage, the Coulomb blockade is only suppressed

when the voltage induced on the island by the gate is equal to 35 (which is 1 mV in

this example). At that point the threshold voltage reduces to zero.
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nature of the voltage induced on the island by a conventional capacitor like C,
and the discrete nature of the charge transfer through the tunnel junctions.
Figure 4.8 illustrates what happens when the gate induces a higher voltage
than :i:é—g—,g on the island. In Figure 4.8.b, a voltage of zegfe is induced on
the island. Tunneling of two electrons through the source junction reduces the
island voltage by -(% (Figure 4.8.c). Since no fractional charges can cross a
tunnel junction, the effective potential of the island induced by the gate voltage

equals é—;. Since every complete electron induced on the island is compensated
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Figure 4.8: When a potential of %‘E is induced on the island by the gate, 62.—; can
be compensated for by tunneling electrons. The fraction 3—; remains.

for by an electron from either the source or drain, the effective voltage on the
island is a periodic function of the gate voltage, as illustrated by Figure 4.9.
This results in the the threshold voltage being a periodic function of the gate

voltage, as illustrated by Figure 4.10.

4.2.4 The electronic properties of the SET transistor

To be able to use SET transistors for electronic circuit design, it is important to
have insight in the electronic behavior of the devices. This section concentrates
on the specific SET transistor properties such as the model parameters, I-V
curves, the transfer function, the island offset charge fluctuations, noise, power
dissipation, and current leakage.

The SET transistor parameters

A SET transistor can be characterized by the following parameters (see Fig-
ure 4.11).
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Figure 4.11: The model of a SET transistor

The value of the tunnel junction capacitances is determined by the area of
the tunnel junction, the thickness of the tunnel barrier, and the barrier material.
A currently common value for the junction overlap area is around 50 x 50 nm?
to 100 x 100 nm?. The barrier thickness is in the order of 1 nm, which is a few
to tens of mono-layers of aluminum oxide. The junction capacitance is in the
order of 100 aF. Figure 4.12 shows a picture of a fabricated tunnel junction.
The overlap area of the two metal electrodes is approximately 50 x 50 nm?.

The tunnel resistance expresses the rate of tunneling, and depends on the
transmission properties of the tunnel barrier {27]. Like the tunnel junction
capacitance, it also depends on the area and thickness of the tunnel barrier. The
two parameters can nevertheless be designed independently in practice because
the tunnel resistance is exponentially dependent on the oxide thickness, while
the junction capacitance is inversely proportional to it. The desired junction
capacitance is determined by the overlap area, while the tunnel resistance can be
tuned with the barrier thickness without affecting the capacitance appreciably.

Typical values for the tunnel resistances R; and Ry are in the order of 100 &{2
to 1 MQ. Lower values cannot be used, as explained in Section 4.2.5.

The gate capacitance can be constructed either in the same plane as the
island (side capacitor) or in a layer below the island (overlap capacitor) [2].
Typical values are between 10 and 50 aF for the side capacitor and 50 aF or
larger for the overlap capacitor.

The parasitic stray capacitance Cs of the island to the surroundings depends
on the island size and the oxide thickness that separates the island from the
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Figure 4.12: One SET junction.

substrate. It is typically in the order of Cs = 1 aF [1]. The stray capacitance is
ignored in this thesis.

An important derived parameter is the total island capacitance Cx, which
simply equals

Cy =C1+Co +Cs + Cy, +Cl,. (4.1)

I-V curves

So far, we have examined the flow of individual electrons through the SET
transistor. From here on, we consider the average current flow through the
device, which is proportional to the number of electrons passing through the
SET transistor per second.

The two extreme I-V curves of a SET transistor are shown in Figure 4.13.
Coulomb blockade occurs below the threshold voltage Vin, which is a periodic
function of the gate voltage. It is zero at

e(n + 0.5)
EEIE

because that suppresses the Coulomb blockade completely (see Figure 4.10). At
low bias currents, the maximum value of the threshold voltage equals

(with n =0, 1, %2, ...), (4.2)

€

Vi = — 4.
thmax 027 ( 3)
which corresponds to a gate voltage
ne
vV, = Eg_ (4.4)
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Figure 4.13: I-V curve of a SET transistor for two values of the gate voltage.

(see Figure 4.10). Above the threshold voltage, a current flows through the
device. It is equal to Iy = Y]# for high bias, where R; = Ry, + R;, is the sum
of the tunnel resistances of the two junctions.

The transfer function

The transfer function of a SET transistor is the relationship between an input
signal at the gate and the output signal at the drain of the device. The output
can be either a voltage or a current, depending on whether the transistor is
current or voltage biased. Both situations are described below.

The current biased SET transistor of Figure 4.14 has a transfer function as
shown in Figure 4.15. This can be explained with the aid of Figure 4.16, which
shows Vy,, the two junction voltages Vy; and Vs, and the island charge Q; as a
function of the gate voltage V;. We see that for the positive slope of Vys, the
voltage across the source junction is constantly at the edge of Coulomb blockade
for that junction. In this part of the curve, electrons first tunnel through the
source junction and then through the drain junction. With increasing V,, the
voltage across the drain junction steadily increases to the Coulomb blockade
level. At that point, there is no preference for tunneling first through the drain
or the source. As V; increases further, the voltage across the drain junction
remains equal to the Coulomb blockade voltage, which is only possible if the
source junction voltage decreases rapidly to counteract the effect of the gate
voltage. When V; is at its minimum, an additional electron is transferred to
the island, which restores the original voltage situation.

On the positive slope of the transfer function (at 0 Kelvin) the Coulomb
blockade of the source junction is suppressed first, and the drain junction follows
(as in Figure 4.6). The value of the positive slope expresses the relation between
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Figure 4.16: The drain-source voltage, junction voltages and island charge as a
function of the gate voltage for a current biased SET transistor.
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V, and Vy, required to keep the source junction on the verge of blockade:

—% = TCECT for the positive slope. (4.5)

On the negative slope, the situation is reversed. The Coulomb blockade is first
suppressed for the drain junction and the source junction follows. The slope is
therefore given by the relation between V; and Vy, that keeps the drain junction
voltage constant:

Vas _ _Cy

v, = G for the negative slope. (4.6)
This means that on the negative slope, voltage gain is obtained if Cy > C}.
The output voltage is equal to

Vas = Vin(Vy) + La Ry, (4.7)

where the threshold voltage Vi, is a periodic function of the gate voltage V.
I;R; is a constant term representing the voltage drop over the device caused by
the tunnel resistances.

For small bias currents and low temperature, the amplitude of the output
voltage is equal to &, the maximum value of the threshold voltage. For larger
bias currents, the amplitude decreases gradually, as can also be deduced from
the I-V curve in Figure 4.13, where the lines for the maximum threshold voltage
and zero threshold voltage converge at higher values of ;.

The transfer function of the voltage biased SET transistor of Figure 4.17 is
shown in figure 4.18. When the bias voltage is below the maximum threshold
voltage, which is 0.2 mV for the SET transistor of Figure 4.17, a current can
only flow (at low temperatures) when V;y, is sufficiently reduced by the gate
voltage, which occurs periodically, and results in the current pulses in the V,
domain shown. For higher bias voltages the current no longer drops to zero.
The V,-independent offset in Vys is determined by the tunnel resistance of the
two junctions.

Noise

We distinguish three types of noise in a SET transistor:
¢ quantum fluctuation neise,
e thermal noise,

e charge noise.
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Quantum fluctuation noise results from the Heisenberg uncertainty relation,
which states that the uncertainty in the energy of the electrons is E, = ‘R,LCT'
This noise should be compared to the electrostatic energy of the electrons F, =
%. The signal to noise ratio therefore is

Ec N 62Rt

E,  2h

(4.8)

so that R; > ghg' should be fulfilled for a device with low quantum fluctuation
noise. ghg is called the ‘resistance quantum’, denoted with the symbol Ry [27]
(see Section 4.2.5).

Thermal noise is caused by the thermal energy of the electrons, which can
give electrons enough energy to tunnel. As described in Section 4.2.5, small
capacitances prevent thermal noise from dominating.

The origin of the offset charge is not fully understood. Some reports indicate
it originates in the crystal structure under the island, where crystal defects and
impurities form charge traps in the neighborhood of the island [1]. Smaller
islands then have less offset charge noise (see also [22] and references therein).
Other reports suggest defects and impurities in the tunnel barrier itself could
explain the effect (see [28] and references given there). In both cases, reduction
of impurities by process improvements can be expected to decrease charge noise.
Charge noise has a % frequency spectrum [1,2]. Low-frequency charge noise is
often called random offset charge fluctuation, as described below.

The influence of noise on a neural system depends on the frequency spectrum
of the noise sources in conjunction with the time constants of the signal, the
learning algorithm and the system function. It is not dealt with in detail in this
thesis.




4.2 The SET transistor 33

Offset charge

All practical SET transistors have a random offset charge on the island. This
results in a completely unpredictable additional term Z2 in equations (4.2)
and (4.4), and on the V, axis in Figures 4.15 and 4.18. At low frequencies this
offset charge is random in size and slowly fluctuates step-wise [1]. It typically
remains constant for about one minute to one hour, and then changes by typ-
ically a few tenths of e. The intensity of the fluctuations varies considerably
from sample to sample, and from one measurement session to the other.

Whatever the cause may be, it appears to be very difficult to eliminate offset
charges for the moment!, and any circuit with SET devices should therefore
either be insensitive to the fluctuating offset charge, or else it should be equipped
with a mechanism to compensate for it.

Static power dissipation in SET transistors

The power dissipated by SET transistors is an important factor in the success
of SET circuits for very densely integrated circuits. Not in the least because the
device performance deteriorates quickly as the temperature rises.

Two different sources of power dissipation can be distinguished. First the
dynamic power that is dissipated by the signal. This includes (dis-)charging of
gate and interconnection capacitances through non-zero resistances. Secondly
the static power that may be dissipated in the system when it is at rest, when no
information is processed. This static power is dissipated in the biasing circuitry,
and in the SET transistors if current flows through them at rest. The maximum
power dissipated in a SET transistor is

P = I;{(IR; + Vin). (4.9)

All SET transistors that are either voltage biased above the maximum
threshold voltage Vin_..,, Or current biased, dissipate static power because cur-
rent flows through the device when at rest. A SET transistor voltage biased
below the maximum threshold voltage can be adjusted to conduct no current,
namely when it is in Coulomb blockade.

It is in principle possible to construct complementary circuits with voltage
biased SET transistors by always having at least one device in Coulomb blockade
for every path between the power supply and ground. Complete logic families
can be designed in this way [22,24,25]. Like in CMOS technology, the devices
do not dissipate static power.

Unfortunately, this attractive approach suffers from one major problem. It
only works when there are no island offset charges [22]. The ubiquitous pres-
ence of offset charges and their fluctuations necessitates accurate and constant

1The early MOS transistors also suffered from offset charges and high % noise.
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adjustment of every individual island charge in the circuit. Not only to guaran-
tee its correct operation, but also to ensure the complementary behavior that
suppresses the static power dissipation.

Fortunately, the static power dissipated by a voltage or current biased SET
transistor is relatively low. For the devices used in this thesis, Vy, is typically
a few hundred uV and I; is about 10 pA giving a power dissipation of about
10~'5 W per device. 2

Therefore, it is more important to design circuits robust to offset charges
than low power circuits. Only when offset charges are tamed can SET circuits
operate complementary.

Current leakage

As a result of co-tunneling, a small leakage current flows through the SET
transistor. Co-tunneling describes the phenomenon that two electrons tunnel
simultaneously across the two junctions of the SET transistor [27]. One electron
tunnels onto the island and another one simultaneously leaves the island across
the other junction. The co-tunneling current is inversely proportional to the
junction tunnel resistances. It is in the order of 0.5 pA for tunnel resistances
R = Ry = 500 kQ, so it only affects the behavior of a SET transistor in
Coulomb blockade or at extremely small currents.

4.2.5 Electronic boundary conditions

The operation of a SET transistor as described above relies on the fulfilment of
two essential conditions regarding the charging energy per electron E, = ,fc%:-
of the island.

First, E, should be larger than the thermal energy Er = kT to prevent
thermal noise from dominating. For the total island capacitance, this implies
that Cr K 2—‘;:7 (about 900 aF at 1 Kelvin and 3 aF at 300 Kelvin). In fact, it
ensures that the thermal leakage current is low enough. This restricts the total
capacitance connected as a gate. Since more than one gate can be connected to
a SET transistor, the maximum number of gates is limited by this requirement.

Second, the quantum fluctuations of the energy on the island should be much
smaller than the charging energy E.. This prevents the electron wave function
from extending too much through the tunnel barrier, thereby localizing them to
the metal electrodes. This condition is fulfilled when the tunnel resistance of the
junctions is much larger than the resistance quantum Rg = E’}g = 26 k2. If the

2For much smaller devices, that can operate at room temperature, Vg, is larger while Iy
stays constant. This results in a higher power dissipation [24]. On the other hand, the max-
imum cooling power for mK temperatures is in the order of uW, while at room temperature
it is much higher.
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tunnel resistances were made smaller than R, electrons would spontaneously
tunne] across the junctions, completely destroying the Coulomb blockade.

The tunnel resistance of a junction is dependent on the rate of tunneling
across a junction [27]. Practical values for the tunnel resistance are larger than
100 k2. The resulting relatively high output resistance of SET transistors has
practical implications for the way the transistor can be connected to the world.
A capacitive load, for instance, reduces the attainable bandwidth. Unless all
the island offset charges are compensated for individually, it is not possible to
increase the bandwidth by connecting a large number of devices in parallel, as
would be possible with regular transistors. The random character of the offset
charges levels out the desired behavior [1].

4.3 Using the properties of SET transistors

The properties of SET transistors mentioned in the previous section have to be
used effectively when designing circuits with them. This section describes the
implications on circuit design of the specific SET transistor properties, such as
the periodic transfer function, offset charge fluctuations, limited voltage gain
and limited fan-in and fan-out.

4.3.1 Using the periodic transfer function

Since the periodic character of the transfer function of a SET transistor is one
of the most fundamental properties of the device, it is important to make use
of it. It is however also an unorthodox one, which makes it a challenge to work
with. Here we restrict ourselves to the applicability of the periodicity to small
neural networks.

The basic function of a neural network is to classify input signals into differ-
ent categories. We can only use SET transistors to make neural networks if this
function can be implemented with a circuit consisting of devices with a periodic
transfer function.

Transfer function shapes

For the moment, we are not concerned with the exact mathematical description,
but rather with the shape of the function. The type of transfer function of a
SET transistor depends on whether the device is current or voltage biased. Both
configurations are described below.

The current biased device of Figure 4.14 shows an all positive, continuous
transfer function with a well-defined maximum and minimum value. The dif-
ference between the maximum and the minimum, the range Vg of the output
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voltage, ideally equals

e
inz‘Cg‘

In practical situations, the minimum does not reach zero because of the voltage
drop over the finite tunnel resistance and the range is not only dependent on
Cx, but also on the bias current and temperature. The smaller the bias current
and the lower the temperature, the more the range approaches its ideal value.

A voltage biased SET transistor has a transfer function which for large bias
voltages is similar to the current biased device, but which is different when the
bias voltage is below the threshold voltage, as can be seen in Figure 4.18. The
most important difference in shape is that the output current drops to zero
for a range of input voltages, so that current only flows for the gate voltage
corresponding to an island charge of %e. Increasing the bias voltage gradually
widens the range of V; for which current flows, until the current no longer drops
to zero. The output current range not only depends on the biasing conditions
and the temperature, as is mainly true in the current biased case, but also on
the tunnel resistance of the junctions. This is a disadvantage because the tunnel
resistances cannot be manufactured accurately.

This pulse-modulating property of the transfer functions can be used for
the elementary cells of neural networks. In particular, the current pulses in
the V, domain of a SET transistor that is voltage biased below the maximum
threshold voltage are similar to the spiking behavior of biological neurons [29)
if V; is made time dependent. The continuous transfer function produced by
either the current biased or the voltage biased transistor can also be successfully
used for neural networks. This is the subject of the next chapters.

For the moment, consider part of a neural network, as shown in Figure 4.19.
The inputs of this cell are generated by the output of other cells. Assuming
all cell outputs are generated by the periodic function of SET transistors, the
synapses have a limited output range Vp,. The total input signal range Vg,,
of the cell under consideration is equal to the sum of these ranges > Vg. The

VR = Vinax — Vm (4.10)
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Figure 4.19: One cell of a neural network with a restricted range Vg, at its input,
and a period Vp.
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relevant part of the transfer function is therefore dependent on the ratio between
the its transfer function period Vp and the signal range at its input Vg, .

Three different values of this ratio can be distinguished, as indicated in
Figures 4.20 to 4.25, which show the three resulting functions of a SET transistor
that is voltage biased near the threshold voltage (Figures 4.21, 4.23, and 4.25)
and a SET transistor which is current biased (Figures 4.20, 4.22 and 4.24). In
Figure 4.24, the dotted lines indicate the effect of different values of the offset
charge.

Vp €« Vg,, If the maximum input span of a cell is much larger than the period
of the transfer function, the result can be described as a pulse generator whose
output pulse repetition rate is determined by the input signal. This could be
used as a pulse train generator in a pulse-based network, where the number of
pulses is a function of the change in input signal. The function is independent of
offset charges since in this case a small shift of the pulses does not influence the
overall function. This applies for both the current biased and the voltage biased
device. In the case of voltage bias, the width of the pulses can be changed with
the bias voltage as long as it remains below the threshold voltage.

A periodic function is also an inherent modulo-operator. It could be used
for folding analog-to-digital converters [30], and for AD converters based on a
modulo-classifier [31]. As shown in Chapter 6, it can also be used to obtain high
resolution synaptic weight updates from low resolution quantized charges.

Vp &= Vg, If the input span of the cell is of the same order of magnitude as
the period of the transfer function, the resulting function maps the input space
onto a predominantly high or a predominantly low region. The position of the
high or low region can be adjusted using the offset. The boundary between high
and low is more pronounced for voltage bias below the threshold voltage, and
the width can be modified by adjusting the bias voltage. This type of function
can be used for a classifying function in which part of the input space should be
mapped on one output value and the rest of the input space on another output
value.

Vp > Vg, If the input span of the cell is much smaller than one period of the
cell’s transfer function, the resulting function resembles a multiplier in the case
of the current biased device and in the case of a voltage biased device if it is
biased above the threshold voltage. The multiplication factor can be modified
by means of the offset. The multiplication factors are given by slope values
of the transfer function. A device biased with a voltage below the threshold
voltage shows a function that can be zero over the complete input range, or can
have a partial non-zero value, depending on the offset value.
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Compensation of signal-independent offset for periodic devices

At some stage most analog circuits need signal-independent offset compensation.
SET transistors are no exception. As an example, the multiplier-like function in
Figure 4.24 has an offset value at its output that depends on which part of the
function is used. Possibly the most important advantage of periodic transfer
functions for analog circuits is that as far as its range is concerned, one can be
certain that such an offset can be compensated for with a signal no larger than
the period of the device. Any offset present at the input of a device can be
dealt with, how ever large it may be, because it is always folded back to a single
period.

4.3.2 The fan-in of a SET transistor

The total number of gates that can be attached to a single SET transistor is
limited because of five reasons.

drain drain

gates gates

source source

Figure 4.26: Two different ways to couple the gate of a SET transistor to the island:
a. directly, and b. using an intermediate coupling capacitor.

1. The required output range of the SET transistor. This depends on the

total island capacitance Cy, which is the sum of all gate capacitances (see

| Section 4.2.5). If a larger number of gate connections is desired, the total

| effective gate capacitance can be reduced by introducing an additional

coupling capacitor between the island and the gate capacitors at the cost

of even larger transistor size, as shown in Figure 4.26.b. This is discussed
in Section 5.3.

2. The technological minimum size of the gate capacitors.
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3. Parasitic cross-capacitance between the gate electrodes and the source and
drain electrodes.

4. The required precision and size variation of the gate capacitances. The
minimum-size capacitors are usually inaccurate.

5. The size of the island. Smaller islands have less parasitic capacitances to
the substrate, and to source and drain.

4.3.3 The fan-out of a SET transistor

At low frequencies, the SET transistor performance is not influenced by the
capacitive load at its output. So the fan-out of the device to capacitive gates
is large at low frequencies. A high capacitive load however, does decrease the
device’s bandwidth as a result of its high output impedance.

4.3.4 Limited bandwidth

In Section 4.2.5 it was shown that the output impedance of a SET transistor is
high because the tunnel resistance of the two junctions should be much higher
than the resistance quantum Rg. This limits the intrinsic bandwidth of the
device to B = m, which for a current state of the art device with Cy =
200 aF gives 10 GHz. This high value will increase further in the future as the
capacitances decrease in size. It compares well with the prediction of future
CMOS speed [3].

In a circuit however, the bandwidth of a SET transistor is determined by the
capacitive load of the rest of the circuit. This load consists of line capacitance
and the gate capacitances of the other devices. Especially for large neural
networks where an output of a SET transistor is connected to a large number
of other devices, it may determine the network bandwidth.

The bandwidth of the circuit can be improved by reducing the number of
interconnections and devices to it, for example by using a cellular topology with
nearest neighbor communication (see Section 7.1.1).

The connection of the circuit to the outside limits the bandwidth most in
the current measurement setup. The long cables to the room-temperature en-
vironment are responsible for capacitances up to about 0.1 nF, resulting in a
bandwidth in the order of a few kHz. This is not a fundamental problem making
the design of SET circuits more difficult, but a practical problem that limits the
current measurement possibilities. This subject will also be relevant in SET
technology chips of the future when low power SET transistor output signals
have to be interfaced to the relatively high capacitive loads of the bonding pads
and wires, without loss of speed.
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A possible solution, described in [2,32,33], is to integrate buffer amplifiers
using HEMTs (High Electron Mobility Transistors) on the same chip to lower
the effective output impedance.

The capacitance at the output of the SET transistor has no influence on the
quasi-stationary transfer function of the device.

4.3.5 Offset charge fluctuations

The presence of offset charge fluctuations on the island of SET transistors (see
Page 33) makes it a particular challenge to use them in a circuit. After all, the
transfer function can change completely as a result of some random value that is
added to the input signal. Neural networks are known to be robust to variations
in the hardware, and if large systems able to cope with it are developed, neural
networks will most likely be among them.

In general, there are several ways random offset charge fluctuations can be
dealt with in a system, as shown in Figure 4.27. If the offset charges are orthog-
onal to the signal domain, no further measures need to be taken. Alternatively,
three different solutions are at our disposal if the offset charges are in the signal
domain. All four options are discussed below.

F'”/J\I

orthogonal to in signal
signal domain domain
redundancy insensitivity compensation

Figure 4.27: Various ways to deal with the random offset charges in a SET circuit.

Orthogonality

Orthogonality of the offset charge fluctuation and the information carrying sig-
nal is achieved when fluctuations in the offset charge do not affect the informa-
tion content of the signal. This is the case with pulse-based systems such as the
offset charge independent dynamic memory described in [34]. The information
content of a sequence of pulses can be independent of the position shifts caused
by offset charge fluctuations.
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Insensitivity

If the offset charge fluctuations have an amplitude significantly smaller than the
signal amplitudes, the device operation could be insensitive to the fluctuations.
Although some reports suggest that for extremely small islands the fluctuations
in time could be negligible [22], the random static background charge remains
large, so that it is as yet impossible to fully rely on insensitivity [22, 26)].

Redundancy

If a system has redundant building blocks, a malfunctioning device, for instance
resulting from an offset charge change, could be replaced by another device. This
of course only works if relatively few devices are affected with offset charges.

Compensation

To compensate for the offset charge fluctuations, some measure of the error
should be extracted from the circuit and used to add or remove charge from
the island until the error is minimal. The charge locked loop often used to
measure single devices [1] is a good example of such a circuit. It is however too
complex to implement for every transistor on a VLSI chip, which is one of the
drawbacks common to most system applications that have been proposed for
SET technology up to now.

A self learning neural network also contains a control mechanism. The learn-
ing algorithm of a neural network measures the difference between the actual
and desired output signal and adjusts the synaptic weights to minimize this er-
ror. This means that if a neural network is designed such that the offset charge
fluctuations can be considered to be synaptic weight fluctuations, the learning
algorithm can take care of compensating for the charge fluctuations while it is
doing its regular weight adjustment task. This scheme works as long as the
learning algorithm converges fast enough to keep up with the random offset
charge fluctuations.

Of course, the learning algorithm also needs to be made, preferably using the
same technology, shifting the problem of offset charge fluctuations at least partly
to the learning circuitry. The learning algorithm is dealt with in Chapter 8.

Alternatively, a small circuit of SET junctions would have to be designed
such that it compensates for its own offset charges. Such a circuit has up to
now not yet been found.

4.3.6 The signal domains

To decide on the signal domain used to represent the information carrying signal,
both the device properties and the system level network requirements, such as
the interconnection between synapses and neurons must be considered. In this
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section, the discussion concentrates on the device aspects such as information
transfer between SET transistors, extracting the output signal from the device,
and implementing the bias source. The implications at the network level are
elaborated in Chapter 7.

Information transfer

The basic signal carrier at the gate of a SET transistor is charge. The infor-
mation of an electrical input signal arriving at the island of a SET transistor
is given by the charge contents of that signal. So to transport information to a
SET transistor input, a well defined amount of charge @ should be transported
by a current flow i(¢) from one node (A) in the circuit to another (B). It is
stored at B on capacitor C (see Figure 4.28.a). This can be achieved by letting
a current i(t) flow from A to B until the desired amount of charge Q has arrived
(Figure 4.28.b). The charge at node A is equal to (Figure 4.28.c):

%zq_/ua@ (4.11)

and the charge arising at node B equals (see Figure 4.28.d):

%=/th (4.12)

When a voltage source is available to deliver the charge @, a practical way
of controlling the amount of charge transferred is by charging a capacitor C' (see
Figure 4.29). The current flow stops when ¢g = VC = @Q, so that the desired
amount of charge @) can simply be controlled with the voltage source U.

Alternatively, a current source can be used to deliver the charge Q. It can
in principle be controlled by a feed back mechanism that senses at A or at B
if the desired amount of charge has been transferred (see Figure 4.30), or by a
feed forward mechanism that lets a predefined amount of charge pass. Pulse
width modulating synapses [29] are an illustrative example of the feed forward
system. A voltage source can be seen as an example of the feed back control
mechanism.

The use of a voltage source as in Figure 4.29 is the most straightforward way
to transfer charge to a capacitively coupled island. Therefore a voltage as the
signal carrier at the output of a SET transistor is attractive for signal transport
between SET transistors.

Extract output signal

The signal representation at the output of a SET transistor depends on how
it is biased. The signal can best be represented by a voltage source if the
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Figure 4.28: a. Transport of charge from node A to node B. b. The current flow
from A to B. c. The corresponding charge decrease at node A. d. The resulting
charge increase at node B.
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Figure 4.29: Charge Q is delivered by a voltage source U
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Figure 4.30: Control mechanism to deliver charge Q with a current source I.
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device is current biased, and by a current source if the device is voltage biased
(Figures 4.14 and 4.17).

If the SET transistor is voltage biased, the current flowing through the bias
source must be extracted with some kind of low impedance current sensing
element, comparable to the current mirror in regular electronics, as illustrated
by Figure 4.31.a. At the moment, no such element or circuit is known to exist
in SET technology. Therefore, although implementation of the bias source itself
is straightforward, the use of a voltage biased SET transistor is rejected in this
thesis.

The output signal of a current-biased SET transistor is a voltage, which can
readily be extracted at the output of the device (see Figure 4.31.b). Moreover,
as described above, a voltage carrier is attractive for the information transfer
between SET transistors. So, even though the implementation of a current bias
source needs special attention (see below), the current biased SET transistor is
the most attractive single-device configuration.

T L T/
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Figure 4.31: Extracting the output signal from a SET transistor. a. Current extrac-
tion from a voltage biased SET transistor, and b. Voltage extraction from a current
biased SET transistor.

Current biasing a SET transistor

Since the impedance of a SET transistor is at least 100 k§? (see Section 4.2.5),
making a current source for it is a challenge on its own. The current source
impedance must be much larger than the transistors impedance. Moreover,
every individual neuron and synapse needs its own current source.

To locally convert a power supply voltage to a bias current requires a large
resistance. In principle several types of resistors could be used, such as ohmic
resistors, tunnel resistors, or pinch resistors (if semiconductor material is avail-
able). All three have disadvantages such as large area consumption, inaccuracy,
or unreliability.

To use the current-biased SET transistor in large scale integrated circuits,
a good solution for generating the bias current, such as a good high-resistance
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material or a reliable high resistance tunnel junction, needs to be found. Alter-
natively, another topology with SET transistors in series instead of in parallel
could alleviate the problems because a single current source could then bias
more than one device.

Conclusion

In this thesis, the current-biased SET transistor is used as single-device building
block for neural networks because its output signal can easily be used as input
of another device. The less attractive biasing conditions are taken for granted
because it can in principle be solved, and only manifests itself in the device
biasing, and not in the signal behavior.

4.3.7 Gain

In a long chain of cells, power gain is required to maintain the signal level. As in
a MOS transistor and any other device with a purely capacitive input terminal,
the energy gain at low frequencies is extremely large. In this thesis we do not
consider the behavior of SET transistors at high frequencies.

Instead of considering the island charge as the SET transistor input, the
voltage across the gate capacitor could be considered to be the input quantity.
We then have

Vv, = (4.13)

Cq
The advantage of this approach for the current biased-SET transistor is that
it can now be seen as a voltage converter. It is much more difficult to obtain
voltage gain rather than power gain in a SET transistor. Voltage gain is obtained
when the transfer from input voltage at the gate capacitor to the output voltage
across the two tunnel junctions is locally larger than one in absolute value. It
can only be obtained for the negative slope, and when Cy > C; (equation 4.6).
It is wanted when a voltage amplifier is made with SET transistors [35].

The maximum voltage gain of SET transistors is limited technologically
because C, > C) is difficult to make: for a given minimum tunnel junction
capacitance, a high ratio between €y and C) results in a high total island ca-
pacitance Cx, and thus in a low operating temperature. The limited voltage
gain has consequences for the way the devices can be used for neural networks.
Although voltage gain is clearly desirable for neural network implementations,
and even required for feed back topologies, it is not absolutely indispensable for
feed forward topologies.

Voltage gain in the neural cells ensures that the output voltage range is at
least equal to the input voltage range, so that the signal does not die out as it
propagates through the network. A feed-forward network with a limited number
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1n out

Figure 4.32: The SET inverter

of layers could operate without voltage gain. The maximum number of layers is
then limited by the minimum signal level that can be accepted at the network
output, and by the signal level deterioration caused by the SET transistors.

Neural networks with topological feed back loops can only operate if loop
gain is present, otherwise the signals die out.

4.3.8 The SET inverter

An alternative to the current-biased SET transistor as the building block for
large systems is known as the SET ‘inverter’ [25,26,36], as shown in Figure 4.32.
It is a direct translation of the CMOS inverter, as pointed out in {21]. The ad-
vantage of this circuit configuration is that it is completely based on voltages. It
is biased with a voltage, and has both an input and output voltage representa-
tion. The drawback that prevents it from being used in large systems is its two
offset-charge adjustment points. Only with correctly adjusted island charges
does the device reveal its complementary operation and inverting function.

4.4 SET transistor circuit simulation

In order to design circuits with SET transistors, it is important to have sim-
ulation models and their parameters. This section describes how to extract
model parameters from measured data of SET transistors, and three different
simulation levels.
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4.4.1 Parameter extraction

All SET transistor models used for the simulator software described below have
the same set of parameters, which is identical to the SET transistor parameters
introduced in Section 4.2.4. These parameters should of course be known when
attempting to simulate the behavior of a specific device. This section describes
how the parameters can be extracted from measured device data [37].

The tunnel resistances R; and R;

The sum of the two tunnel resistances R; + Ry can be extracted from the I-V
curve, where the slope equals R; + R, for biasing conditions much larger than
the maximum threshold voltage. This can even be done at room temperature.
The individual tunnel resistances can be determined by creating an asymmet-
ric voltage distribution across the two junctions. The asymmetry between the
tunnel resistances can be deduced from the asymmetry of the transfer curves.

The gate capacitance C

The gate capacitance can be determined by measuring the period of the transfer
function. One period of the transfer function equals 66;’ when the voltage on
the gate is considered to be the input signal. When more gates are present, each
one can be measured individually.

The stray capacitance C,

The stray capacitance of the island to the environment can be measured by
sweeping all bias voltages with respect to the environment. This environment
then serves as the gate. The period of the transfer function measured like this
gives the stray capacitance Cs.

The tunnel junction capacitances C; and C;

The tunnel junction capacitors can be obtained indirectly from the Vi, — V,
curves by measuring the two slopes and the output voltage range. The output
voltage range gives the total island capacitance Cx. The negative slope equals
—gl , so that C; can be calculated using the previously measured Cy. The pos-

itive slope equals gcjﬁ, from which C» can now be extracted. A disadvantage
of determining C- in this way, is that its accuracy is determined by measure-
ment errors in Cy, Cx, and Cy. C; can also be obtained by interchanging the
source and drain electrodes and considering it as C;, which can be extracted

from the negative slope.
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The above measurement of slopes and output voltage range have to be per-
formed at the lowest possible temperature because it influences the output volt-
age range and the slopes (see Figure 6.12).

The island capacitance can be obtained in a second way, namely by adding
all the individual measured capacitors: Cy = Cy + Cy + Cy + C;s. Discrep-
ancies between this value and the one obtained from the voltage output range
can be attributed to inaccurate measurements of the latter due to non-zero
temperatures, and to parasitic capacitances between the island and the source
and drain electrodes. Since these capacitances do not contribute to the tunnel
capacitances, they are not taken into account.

4.4.2 Tunneling-based modeling

The physically most accurate way to simulate SET circuits is by calculating
each individual tunnel event separately [38]. This is done by calculating the
rates I' of every possible tunnel event in the circuit, based on the change in
electrostatic energy AE in the circuit resulting from that event.

r—— 4&F (4.14)

e2Rp(1 — e~ %7)’
where R is the tunnel resistance of the junction, k is Boltzmann’s constant,
and T is the temperature. (See [27] and the references given there). These
tunnel events are described by a Poisson distribution, and weighed with this
tunnel rate, one of the possible tunnel events is chosen at random to occur.
Averaging over many events using the Monte Carlo method yields the circuit
behavior for that time step.

Except for accuracy, this method has the advantage of being able to handle
an arbitrary circuit of tunnel junctions and other circuit components because
interactions between the various parts of the circuit are automatically accounted
for.

A currently popular simulation program that works in this way is SIMON-
‘Simulation of Nano-structures’ [38]. It was used to generate most of the SET
curves in this thesis (see Appendix A).

A disadvantage of Monte Carlo simulators is without doubt the large number
of iterations required and it is therefore best suited for small circuits. For larger
circuits and for complete systems, we have to resort to alternative simulation
methods.

4.4.3 Current-based modeling

Calculating the current through a junction can be done much faster if the circuit
consists of small sub-circuits without mutual charging interactions, such as SET
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transistors. Instead of deducing the current through the junction from a large
number of randomly distributed tunnel events, one could also deduce it directly
from the tunnel probabilities. For the SET transistor we find [1]

L
I= ZL(F; —THP,, (4.15)

where I is the current to the island through the junction under consideration,
n is the number of electrons on the island, I'} is the tunnel rate that increases
n, I';, is the tunnel rate for decreasing n, and P, is the probability of finding
n electrons on the island. L is the approximation of infinity such that the

probability P, is negligibly small for |n| > L.

4.4.4 Behavioral modeling

When analyzing the behavior of a large network of SET transistors, the simplest
possible model of the device that still has the relevant shape properties should
be used. The essential parameters for the transfer function shape are

o The period
e The output range
o The random offset charge

¢ The temperature dependence

To simulate neural networks, a simple mathematical equation was con-
structed with parabolas and straight lines to generate the SET transistor trans-
fer function.

As illustrated in Figure 4.33, one period of the transfer function is divided
into consecutive line segments fi...fs that were periodically repeated. Temper-
ature is modeled by the parameter that determines the boundary between the
straight line and the parabola, as indicated by the dotted line in the figure. The
choice of this particular solution was based on the model definition possibilities
available in PSTAR, the circuit simulation program for which the model was
made.

In Figure 4.34, two simulated transfer functions of the same SET transis-
tor are compared. The continuous line was generated with the Monte Carlo
simulator SIMON, and the dotted line is calculated with the segments of Fig-
ure 4.33 using the circuit simulator PSTAR. We see that the period, amplitude
and shape of the two transfer functions are very similar. Only the offset charge
is different. No effort was made to match the offset charges because the two




52 SET devices and circuits for neural networks

S

L I .
>

T T f] T f2 T f3 T f4 T f5 T v

gate
Figure 4.33: Construction of the SET transistor transfer function with five line
segments.

curves can better be compared when they do not overlap. At higher tem-
peratures the difference between the two is larger because the PSTAR model
approaches parabolic peaks and troughs, while the physical orthodox theory
model approaches a sinusoid [39)].

This means that the simple mathematical equation can be used to model the
SET transistor for system-level simulations. The model was used in Chapter 8
to simulate the behavior of a two-layer SET network.

Vs (mV)

Figure 4.34: Comparison between the transfer function generated by the line segment
model (PSTAR) and the one calculated with the orthodox theory (SIMON).

4.5 Conclusions

A SET transistor is a small device that transports individual electrons from its
source to drain. The rate of electron transfer can be influenced by a voltage on
a capacitively coupled gate. The transfer function of the device is a periodic
function of the gate voltage.

A SET transistor driven by another such device only uses a restricted part
of its periodic transfer function because the range produced by the device at its
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input is also limited. The ratio between this range and the value of the trans-
fer function period has an important influence on the actual transfer function
shape of the transistor under consideration. It is therefore an important design
parameter.

Random offset charge fluctuations influence the device behavior significantly.
To prevent them from determining the circuit behavior, measures should be
taken to deal with the effects of these fluctuations. Several options can be
explored, such as making the information carrying signal orthogonal to the
fluctuations, or compensating for the fluctuations to cancel their effects.

Current-biased SET transistors are used throughout this thesis, despite the
more complicated biasing and presence of static power dissipation, because a
current-biased SET transistor combines a voltage output signal carrier with
a single offset charge. The voltage output can be extracted from the device
and is compatible with the input signal of other devices, and hence ensures
efficient interconnection. As long as offset charges are present, they form a
more important impediment to large scale integration than power dissipation.

The circuit simulation of SET devices is possible on several levels. The
most accurate and calculation-intensive one is based on averaging individual
tunnel events. The behavior of any circuit of tunnel junctions can be calculated
this way. For circuits of individual SET transistors without mutual charging
interactions, the current can be obtained from the tunnel rates, which is much
less calculation intensive, and for system level calculations, simple behavioral
modeling can describe individual SET transistors.
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Design of a SET transistor
neuron

The role of a neuron in a neural network is to map the information presented at
its inputs by synapses onto its output space by means of an activation function.

This chapter starts in Section 5.1 with a definition of the neuron. Section 5.2
analyzes the two required functions of a neuron. It is followed by the design of
an addition circuit in Section 5.3, which is common in the two neuron designs
with SET transistors of the succeeding two sections. The neuron described in
Section 5.4 was designed to produce an output similar to the conventional neuron
and the neuron described in Section 5.5 was designed to make optimal use of
the technological properties of the SET devices. In Section 5.7, the alternative
neurons are compared.

5.1 Definition of a neuron

A neuron collects and combines information from the network input or from
outputs of other neurons, and classifies them with a non-linear function. The
most commonly used configuration consists of an addition of inputs, followed
by a non-linear, classifying function, as described below. Alternatives such as
distributed classifying functions, followed by an addition are also reported, but
are not dealt with in this thesis.

In formal artificial neural network theory, the synaptic weighing function is
sometimes considered to be part of the neuron. If it is, then all operations in
the general neural network equation

0 = flon + Z;w;x;) (5.1)

55
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are performed by the neuron. In Equation (5.1), z; are the synaptic inputs,
w; the synaptic weights, and o, is the threshold value of the neuron activation
function. The neuron with included synapses is often used for mathematical
descriptions of neural networks. The neuron without the synaptic function is
usually preferred for electronic circuit design because in practice, synapses are
separate electronic building blocks.

In this work, the neuron is defined as in Figure 5.1, so that the synapses are
not part of the neuron. The design of a synapse is the subject of Chapter 6.
The neuron collects the output signals of the synapses and performs a non-linear
operation, called the activation function, on the sum of these signals.

—
- el
- s | —

0——'___]——4 addition  activation function

\N J
synapses neuron

Figure 5.1: Functional block diagram of a neuron

5.2 Essential properties of a neuron

Before an implementation of a neuron is attempted, it is important to analyze
its essential properties. The neuron consists of two main functions, namely the
addition function and the activation function, and both are described below.

5.2.1 The addition function

The addition function has the task of combining the inputs of the neuron into a
single signal that can be accepted by the activation function for further process-
ing. In general, it is desirable to permit an unlimited number of inputs to this
function because it allows freedom in the design of the network topology (see
Chapter 7). An implementation of the addition function in SET technology is
described in Section 5.3.

5.2.2 The activation function

The activation function of a neuron has the role of dividing the input space
of the synapses connected to the neuron into different regions. Its presence is
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essential in classifying neural networks because the actual classification is per-
formed by this function. (The synaptic weights determine how the classification
is done.) For most learning algorithms, the convergence success of a learning
session is closely linked to the cooperation between the activation function and
the learning algorithm. This particularly holds for most steepest descent learn-
ing schemes like back propagation and the generalized delta rule. These schemes
rely heavily on the mathematical description of the activation function and its
derivative because the weight corrections are calculated based on the mathemat-
ical description of the synapse and neuron. These calculations often require that
the activation function be monotonic and continuously differentiable [40,41].

By far the most generally used activation function is the sigmoidal function
as described by Equation (5.2) and shown in the activation function block in
Figure 5.1.

1 — e—a:r

f(z) = T3 e (5.2)
where a is a gain parameter and z is the input value. It is a monotonous function
with saturation regions for large values of |z|. It has a clear threshold shape, a
simple mathematical description, and a simple continuous derivative. This ac-
tivation function divides the neuron input plane into two halves. In some cases
the threshold value can be adjusted by the learning algorithm. The saturation
regions at both ends of its input space allow the network to generalize classi-
fication into similar, unlearnt patterns because the neuron output is relatively
insensitive to small variations of its input signal in the saturation region [40,42].

The sigmoidal activation function is however not necessarily the perfect
choice, and alternatives are investigated by various groups. There are two im-
portant reasons for investigating alternative activation functions for the neuron.

‘First of all, it is often reported that steepest descent learning in combination

with a sigmoid activation function is rather slow and requires too many neurons.
Neurons with multi-level activation functions [42], and non-monotonic activa-
tion functions such as Gaussian functions [41,43] are reported as alternatives
that either shorten the convergence time or decrease the number of neurons
required. An activation function based on the negative differential resistance
is also reported [44]. Such a function can be compactly generated by a tunnel
diode or a small SET transistor circuit [45]. Non-monotonic activation functions
have more processing power per layer, and are able to solve some non-linearly
separable problems in a single layer. The use of periodic functions for acti-
vation functions is also reported [41,43,46,47]. Classification is possible with
these different activation functions, but they require modification of the learning
algorithm.

The second reason for investigating alternative activation functions is that
the sigmoidal activation function in combination with the purely mathematical
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steepest descent learning algorithm does not necessarily yield the most compact
implementation [48], while the success of the neural network concept is based
on large, and therefore necessarily compact realizations. In SET technology
for example, the choice of an activation function based on a periodic function
is a more obvious choice than a sigmoidal activation function, as explained in
Section 5.7.

5.3 Implementation of the addition function

Combining the output signals of the synapses at the input of a neuron is usu-
ally done by an addition. The addition function circuit used for the neurons
described in Sections 5.4 and 5.5 is the same for both cases, and is therefore
described separately below.

5.3.1 Signal carrier domain

Adding analog signals electrically can in principle be done in either the current or
voltage domain, or by conversion to one of those domains from another domain.
For topological reasons, addition in the voltage domain is not attractive, while
in the current domain it is. Following Kirchoff’s current law, current addition
can be realized efficiently at a single node. It is for this reason that the current
domain is very popular in designs of the neural addition function in analog
neural networks [48-52] and for many other types of analog signal processing
circuits.

Charge is the fundamental input quantity at the island of the SET transistor,
but the gate capacitor makes the device sensitive to a gate voltage. Connecting
more gates to the island results in a capacitive addition circuit with voltage
inputs. The properties of a capacitive charge addition circuit are investigated
below.

5.3.2 Capacitive charge addition circuit

The basic capacitive addition circuit is shown in Figure 5.2, where the summed
output is used by the gate of a SET transistor as an illustration of how the
summed charge is used and to analyze the effect of the capacitors on the SET
transistor behavior.

The effective charge @ on the SET transistor island can be expressed in
terms of the input voltages Vg, ... V :

Q=Y V,C, (5.3)
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Figure 5.2: Basic capacitive addition circuit at the input of a SET transistor.

(ignoring the voltage drop over the source junction). The output voltage of the
current biased SET transistor is a periodic function of V,,. For each of those
inputs, the corresponding period Vp, of the SET transistor transfer function is

e
Vp. = —. 5.4
N (5.4)

The total capacitance of the island in this configuration equals

Cs=C1+Ca+ Y Cy. (5.5)

i=1

The stray capacitor C; is ignored in this thesis (see Page 28). The number of
capacitive gate connections to a SET transistor is limited because of two reasons.
First, the output voltage range of a SET transistor decreases as Cy, increases. A
smaller output voltage range thus makes the device more susceptible to thermal
noise, resulting in a lowering of the maximum operating temperature. With
the current minimum capacitor size of about 50 aF, the maximum number of
gate capacitors for a signal to noise ratio of 10 dB at 500 mK, is about two.
This is not enough for a neural network, where many more inputs per neuron
are usually desired. Therefore, technological efforts should be undertaken to
further reduce the minimum gate capacitor size.

Secondly, the size of the island increases with the number of capacitive inputs
because each input requires some space under the island to make the capacitor.
This increases the SET transistor size and the charge noise on the island [2].

If necessary, a larger number of inputs can be coupled to the SET transistor
island without increasing the island capacitance by introducing an additional
coupling capacitor between the addition node and the island, as illustrated in
Figure 5.3. Ignoring the voltage drop over the source junction and assuming
identical Cy,, the charge on the island is equal to

Q=¢, c: =, 921/ (5.6)
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Figure 5.3: Capacitive addition circuit with a coupling capacitor C. to reduce the
load on the SET transistor.

and the total island capacitance equals:

nC,C.

C}:=Cl+02+m,

(5.7)
which is always smaller than C; + Cs + C;, regardless of the number of inputs

n. A drawback of this capacitive divider is the amplitude loss of the synapse
signals V,,. One period of the neuron SET transistor now corresponds to

Ve Ce +nC,

=0 (Ce+ (n-1)C, (58)

For a four-input adder with all capacitors Cy, equal for example, a five times
larger synapse output voltage is required to span the full period of the neuron
SET transistor. To prevent a reduced influence on the neuron state, the synapse
output range should be increased. Alternatively, the synapses would have to
‘cooperate’ to change the neuron state, which reduces the processing power.
Since both options are unattractive, the coupling capacitor should be avoided
in neural networks.

Coupling capacitor C; is introduced in the neuron design of section 5.4 de-
spite the above arguments against it because this simplification in the produc-
tion process increases the chance of obtaining a properly working device. It does
no harm there because the design is not intended for use in a network.

For a small number of synapses, no coupling capacitor is required in the
capacitive addition circuit. This improves the available signal range. In Sec-
tion 7.3.2, an example is given with two synapses per neuron.

5.4 The SET cascade neuron

The sigmoidally shaped transfer function has proven to be successful for the
neuron activation function, as was explained in Section 5.2.2. It is therefore
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useful to investigate how a transfer function similar to the sigmoid can be ob-
tained. In this section a cascade of two SET transistors is analyzed and its
applicability as a neural activation function is discussed [53,54]. The capacitive
addition circuitry described in Section 5.3.2 is used as the input to the neuron.

Section 5.4.1 explains the way the transfer function shape is constructed
from the individual SET transistor transfer functions. Subsequently, in Sec-
tion 5.4.2, the capacitor sizes for the two SET transistors are calculated, and
in Section 5.4.3, the sensitivity of the transfer function shape to parameter
variations is discussed.

5.4.1 Function construction

The function shape of Figure 5.5 is produced by a cascade of two SET tran-
sistors, as in Figure 5.4. This function is obtained when the voltage ranges
and transfer function periods of the two transistors match in the way described
below, and when the two offset voltages are adjusted so that the correct part of
the individual SET transistor curves is used. This is explained using Figure 5.6,
where for clarity the transfer functions are drawn for the ideal case at a tem-
perature of 0 K. For higher temperatures, the function shape does not change
significantly (see Section 5.4.3). Figure 5.6.a shows the output voltage Viyue,
of transistor 77 as a function of its inputs Vi, + Vin,. To obtain the desired
behavior, the range Vg, at the input of 77 equals half of one period. This yields
the following relation between Vg, and the gate capacitance Cy, :

e
Vg, = . .
Re = 30, (5.9)
The output voltage range Vg,,,, of T is equal to
e
1% = - 5.10
Routl CEX ( )
éllbias
Voutz
— [
T2

Figure 5.4: A two-SET transistor neuron.
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where Cy, is the total capacitance of the island of T .

The output of T serves as the input to T3, as shown in Figure 5.6.b. It shows
the output of transistor 73 plotted on the horizontal axis as a function of its
gate voltage V,u¢, on the vertical axis. As with T3, the range of its input value
should correspond to half the transfer function period, and it should contain
the negative slope. This results in the following relation between Vg,,, and the
gate capacitance Cg,.

€
= . g1
VRoutl 2Cg2 (5 )

The resulting transfer function from the input to the output of the cascade
circuit is plotted in Figure 5.6.c. It features a sharp threshold with a slope
equal to the product of the negative slopes of the individual SET transistors,
and a saturation region on either side. The saturation region is not entirely
monotonic, which may form an obstacle for the current learning algorithm.

Outside the region of interest, the transfer function is periodic, as indicated
by the thin lines in Figure 5.6. The positive slope of the thin line equals the
product of the positive slope of 77 and the negative slope of T3. At non-zero
temperatures, the sharp corners are rounded off, and the graph in Figure 5.5
results. The position of the threshold can be changed by adjusting the offset
voltage of T}, as indicated by the dotted line in Figure 5.5.

5.4.2 Calculating the capacitor sizes

In this section, the capacitor sizes for a single SET cascade neuron are deter-
mined. The aim was to fabricate a single neuron to measure its transfer function.
The design decisions are therefore based both on obtaining the desired function,
and on the restrictions in the current production technique of SET devices. It
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Figure 5.5: Transfer function of the cascade neuron.
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Figure 5.6: Construction of the transfer function of the neuron. a. transfer of 71, b.
transfer of Tz, c¢. transfer of the cascade.

was not optimized for connection in a large network. A picture of the realized
neuron is shown in Figure 5.7.

The tunnel junctions

With the current production process, it is desirable that the tunnel capacitances
of a SET transistor are designed to be equal. In other words,

C1 = Cz, (5.12&)
Cs = Cy. (5.12b)

To obtain a threshold with a steep slope, both SET transistors need voltage
gain in their negative slope area, which is only the case if C; > C;. The gate
capacitance Cy however cannot currently be made much larger than the tunnel
capacitances [2,35] because it requires a large island size, which increases the
stray capacitance and offset charge fluctuations (see Page 33). A ratio of 2 is
feasible, so that

Ca (5.13a)

202 =g, (5.13b)
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Figure 5.7: Micrograph of the cascade neuron.

This results in a negative slope of —2 for each SET transistor, and thus a slope
of +4 for the threshold of the neuron. The positive slope of the transistors then
equals

Cy

2

The gate coupling capacitances

For the realization of a single neuron, without connections to other synapses or
neurons, only the coupling between the two transistors 77 and 75 needs to be
discussed. The output voltage range of T} needs to match the input period of
T5. With equations (5.10) and 5.11, we find

Cg2 = %021, (515)
where Cx, can be approximated as
021 =C1+Cy + Ccl (5.16)

if Cy, and C,, are much larger than C,,, which is the case here.




5.4 The SET cascade neuron 65

Filling in the numbers

A currently common junction capacitor size is 100 aF. Filling in C; = C5 =
100 aF in equations (5.12b) and 5.13b yields

Ce, =200 aF (5.17a)
Cyy = 200 aF (5.17b)
Cy =100 aF (5.17¢)
Cy =100 aF (5.17d)

For simplicity, C,;, = Cy, and C,, = Cy,. The simulation results of Fig-
ures 5.5, and 5.8 through 5.10 were generated with these parameters.

The three input capacitors, can be made arbitrarily large. When the neuron
is part of a neural network, its size will be determined by the size of the synapses
in front of the neuron, which is subject of Section 7.2.2.

The output range of this neuron is:

Vout = 5‘;— = 300 uV. (5.18)
2

With a bias current of 16 pA, the static power consumption of the two SET
transistors of this neuron is approximately 10 fW.

5.4.3 Sensitivity to parameter variations

The neuron transfer function shown in Figure 5.5 is only obtained when all the
device parameters and offset voltages have the correct values. This necessity
can easily be understood from Figure 5.6. If the period or output range of
either device changes due to parameter variations of the SET transistor, or if
the position of the transfer function of either SET transistor is shifted along
its input axis due to offset charges, the shape of the overall transfer function
changes.

As an example, the effect of offset charge fluctuations is illustrated by Fig-
ures 5.8 and 5.9. In both cases, the circuit of Figure 5.4 is simulated, but
with other values for respectively Vofrset1 and Vogseta. It is clear that variations
in Vimset, only affect the position of the threshold, but that Vigse, actually
influences the shape of the transfer. Changing other parameters has similar
consequences.

Offset charge fluctuations could in principle be adjusted by a learning algo-
rithm that changes the voltage sources Voset1 and Vogset2 as necessary. Learning
algorithms would however have difficulty handing the radical function changes
resulting from charge fluctuations of the second SET transistor, making this
SET neuron circuit not very attractive.
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Variations in other parameter values should also be addressed because ca-
pacitor sizes and the like cannot be adjusted when the neuron is made. On
the other hand, they are time independent so the learning algorithm has to
adjust the network only once to the actual parameters. Variations of 10% of all
capacitor sizes still gives an acceptable transfer function shape.

The sensitivity to temperature variations is shown in Figure 5.10. We see
that the amplitude decreases and the peaks diminish, as expected, but the
general shape is essentially the same. In fact, the smaller variations in the low
and high regions for higher temperatures may even be beneficial for the network
operation.
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Figure 5.10: The effect of temperature change on the transfer function.

5.4.4 Conclusion

It is possible to create a transfer function with two saturation regions using two
SET transistors. There are however unsolved problems that indicate that the
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cascade neuron is probably not the optimal SET neuron design. The presence of
two offset charge adjustment points of which one drastically influences the acti-
vation function shape, is probably too complex for the learning algorithm. The
effects of the non-monotonic saturation regions also remain to be investigated.

5.5 A one-SET transistor neuron

To design the smallest possible neuron using SET technology, it is important
that the properties of the available devices are fully exploited. The potential
for compactness of design increases accordingly

as more of the inherent properties of the technology are exploited, instead
of being suppressed as unwanted parasitics. The compactness of the neuron
implementation is of course enhanced by minimizing the hardware complexity
of the neural device.

One of the most conspicuous properties of SET transistors is without doubt
their periodic transfer function. Its ubiquity in SET transistor-based circuits
makes its use almost compulsory for efficient designs.

A second property of SET devices is that the fundamental input quantity
at the capacitively coupled island of the SET transistor is the electrical charge.
As we have seen in Section 5.3.2, it is used by the capacitive addition circuit.

Other properties of the SET transistor that should be taken into account for
circuit design are:

e inaccurate parameter values,
o offset-charge fluctuations,
o and weight-dependent offsets.

Of course, not all the properties of the devices can be used beneficially. The
concerned properties can then perhaps best be described as non-idealities. The
neuron implementation should be made robust against these potential non-
idealities. Either inherently, by the neuron circuit itself, or with aid of the
rest of the neural network, such as the synapses and the learning algorithm.

Except for being robust against non-idealities in the neuron itself, the neuron
circuit should in turn help to compensate for the non-idealities in the other parts
of the circuit.

The basic functions to be performed by the neuron are to collect the output
signals from the synapses and perform a non-linear operation with classifying
properties on it. Since in principle a single SET transistor performs these basic
operations, it is worth investigating whether a single device can operate as a
neuron.
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5.5.1 Using the periodicity of the transfer function

If the input range of a SET transistor is limited, only a restricted number of
periods of the transfer function is actually used. This is the case when the input
signal is generated by another SET transistor because SET transistors have a
limited output range (Section 4.3.1). The number of transfer function periods
spanned by the neuron input range is determined by the gate capacitors of the
inputs, and can therefore not be adjusted after circuit manufacture. There are
three possibilities for the ratio o, between the neuron input range Vg, and the
period size V},, as was illustrated by Figures 4.20 through 4.25.
Vg

T (5.19)

Qnp =

If Vp « Vpg,,, the resulting function is approximately linear, and thus looses
its non-linear, classifying properties. It is not advantageous compared to leaving
the activation function out altogether. V, « Vp,, is therefore unsuitable for
implementing the activation function.

If V, = Vg,,, the resulting function divides the input space into two or
more regions each belonging to either of two classes: low or high. The number
of regions depends on the exact ratio between V, and Vg, . Division of the
input space into classes is exactly what is required to make a classifying cell.
In contrast to most traditional activation functions, the SET neuron does not
have saturation regions. Since the ranges of all signals in the neural network
are limited by the periodic nature of the SET transistor transfer function, the
neuron output range is nonetheless restricted. The exact value of this range
depends on the device parameters and the temperature.

When the number of regions is very large, in other words if Vp >> Vp,_, the
activation function chops the input space into a large number of small segments,
with each consecutive segment alternately belonging to one of the two classes.
This is in principle a classifying operation, but whether it can be used as a
neural activation function remains to be seen.

These types of activation function may require learning strategies other than
sigmoid neurons, similar to what is shown in [41], where a new error function
is used for the non-monotonic Gaussian activation functions in a feed-forward
neural network with the generalized delta learning rule. The reason for intro-
ducing a new error function is that gradient descent learning algorithms with
conventional error function definitions only accept monotonous and continuously
differentiable activation functions.

The same paper reports that the use of Gaussian activation functions instead
of sigmoidal ones yields faster convergence with less neurons. This is confirmed
and extended to periodic activation functions in [46], where it is shown that
sinusoidal neurons can learn a variety of functions such as parity problems, and
encoding functions with more than one output. Convergence is significantly
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faster and with less neurons than for networks with sigmoidal neurons. Similar
results are reported in [43], where it is concluded that networks with periodic
neurons are less susceptible to additive noise, and that less neurons are needed
to solve the same problems. Back propagation is used to teach a feed-forward
network, but the need for a different error function definition is not mentioned.
A big advantage of periodic functions is that compensation for unwanted
offsets of any size can be guaranteed by a compensation signal range of at
most the period size, because any offset is always folded back to this range.

5.5.2 The device parameters

The degrees of freedom left for the design of a circuit consisting of a single device
are the values of the device parameters. The device parameters determine the
transfer function shape of the device and should therefore be discussed in detail.

The ratio o, for which V,, = Vg, looks most promising for a neuron activa-
tion function and is therefore analyzed further in the remainder of this section.
The exact value of the ratio is not determined here because the tolerances on
the device parameters and the ambient temperature influence this ratio consid-
erably. The performance of the neuron should therefore not be dependent on
the exact value for successful operation.

The input voltage range Vg, of the neuron is determined by the outputs of
the synapses connected to the neuron and by the number of synapses present.
The required value for the neuron gate capacitors C, is determined by both
the neuron and the synapse circuit, and is therefore postponed to Section 7.3.2
where the interaction and interconnection between the synapses and neurons is
examined.

The same holds for the output voltage range of the neuron, which is deter-
mined by the total island capacitance Cyx. Its required value is among other
things dependent on the input stage of the synapses in the next layer of the
neural network.

We can at this moment decide on the slope values of the neuron because
they can be designed independently of Cy and Cs by sizing the tunnel junc-
tion capacitances. There are three aspects to consider when choosing the slope
values:

e classification performance transfer function,
¢ production of the tunnel junctions,

e and gain of the transfer function.

Classification performance

The two slopes characterize the boundary between the regions belonging to the
high and the low classes of the neuron. The discrimination ability between two
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adjacent points in the input space of a neuron is larger for steeper slopes of
the activation function. This implies that steeper slopes of the SET transis-
tor transfer function are to be preferred. The two slopes however, cannot be
adjusted separately if the output voltage range and the input period are to re-
main constant (see Section 6.3.1). A large negative slope automatically results
in a small positive slope, as illustrated by Figure 5.11. This means that the
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Figure 5.11: Varying the slopes of the activation function.

discrimination ability for classification at one boundary could increase at the
expense of the other boundary. For large values of the negative slope, the dis-
crimination ability on the positive slope is not very sensitive to improvements
on the negative slope. A side effect of changing the transfer function slopes is a
slight change in the size of the two classes. A steeper negative slope results in
a smaller high region.

Manufacture of the tunnel junctions

The two slopes are determined by capacitance ratios, which can be changed by
adjusting the tunnel junction capacitances. In theory, that is. In practice, the
tunnel junction capacitance sizes cannot be manufactured accurately yet, and
one should be prepared for large tolerances. A successful neural network should
be robust against these variations. The network should adapt to the actual
activation function by self-adjustment using a learning algorithm. Moreover,
the values of the tunnel junction capacitances cannot be chosen freely currently.
Only tunnel capacitances of approximately the same size can be fabricated re-
liably.
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Gain of the transfer function

A symmetric neuron transfer function cannot have gain, which would limit its
applicability to feed-forward topologies (see Section 4.3.7).
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Figure 5.12: The one-SET transistor neuron device.

With both tunnel junctions equal to C, and gate capacitances of twice that
value, the following dimensions are obtained for the SET neuron of figure 5.12:

c,=C (5.20a)
Co=C (5.20b)
C,=2C (5.20¢)
Cy =3C, + Ci1+Cy=8C (5.20d)
. =-2 (5.20e)
sy =13 (5.20f)

We will see in Chapter 7 that a neuron with these parameters can classify.

5.5.3 Inaccuracy of the parameter values

With the current production process for SET transistors, parameters that char-
acterize the devices are not accurately known. Although improvements are
expected in the future, some variations will always remain and can fortunately
be dealt with by the neural network. The effects parameter variations have on
a single-SET transistor neuron are listed below.

¢ Inaccurate tunnel resistance
Affects the weight-dependent output voltage of the device. Too low values
results in device failure (see Section 4.2.5). Tunnel resistance is difficult
to control because it is exponentially dependent on the oxide thickness.
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e Inaccurate tunnel capacitance
Affects the slope of the transfer functions, together with gate capacitance.
Also plays a role in the output signal range through Cs.

e Other inaccurate capacitances

The other capacitors present include the gate capacitance Cy, and par-
asitics such as stray and interconnection capacitances. Here, we ignore
the stray capacitance. The capacitive load of interconnections to other
network elements only affects the bandwidth (Section 4.3.4) and is not
considered here either. The magnitude of the period at the input of a
device depends on Cj so it results in uncertainties in the period size. It
also affects the output signal range through Cx.

These inaccuracies at the device and circuit level can be adjusted for at
the system level if the system is self-learning. It is for this reason that self-
adjustment is compulsory in large systems containing inaccurate devices.

The weight-dependent output voltage of the device is fully compensated for
by offset adjustments in the next layer of the neural network. The transfer func-
tion periodicity ensures offsets of any size can be adjusted within the range of a
single period. Device failure resulting from extreme tunnel junction resistances
must be dealt with by built-in redundancy.

The transfer function shape inaccuracies resulting from inaccurately known
capacitances must be dealt with by adjusting the synaptic weights and neuron
thresholds. This is only possible within certain boundaries. To correct a too
low slope with a higher synaptic slope is only possible as long as the maximum
available synaptic slope is high enough.

5.5.4 Offset-charge fluctuations

The offset-charge fluctuations present in all SET transistors manifest themselves
in this case as a random value added to the sum of the neuron inputs, projecting
this sum at an unpredictable position on the input axis of the periodic transfer
function. This is equivalent to an unwanted change in the neuron threshold
value.

In conventional neural networks, the threshold value is often made adjustable
by including an additional synapse with unity input value at the neuron in-
put [40]. Adjustment of the threshold value is thus equivalent to adjustment of
the additional weight, and can be handled by the learning algorithm

Provided that the learning algorithm is able to correct the threshold value
of the activation function before the next offset charge fluctuation changes it
again, the learning algorithm is expected to be capable of compensating for the
offset charge fluctuations.
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5.5.5 Weight-dependent offsets

As we have seen, the hardware introduces non-idealities in the neuron. In turn,
the neuron can also help to reduce the effects of hardware non-idealities in other
building blocks.

The output signal of the SET transistor synapse which is described in Chap-
ter 6, has a weight-dependent offset voltage whose value depends on the synap-
tic weight (see Section 6.3.1). Each synapse connected to the input of a neuron
therefore contributes some value at the neuron input. The total offset it results
in may attain relatively large values and could seriously disturb the neuron
threshold value if it is not compensated for.

To compensate for these offsets, the learning algorithm must adjust the
neuron threshold value. The required adjustment range of this input is always
equal to the period size, independent of the magnitude of the offset present at
the neuron input because the neuron transfer function is periodic. Whether
a learning algorithm can be developed that is indeed able to do this kind of
adjustment is subject of Chapter 8.

5.6 Other neuron circuits

There are two other neuron circuits with SET devices described in the literature
at the moment. Both are based on the ‘inverter’ circuit originally proposed
in [25] and shown in Figure 5.13. In Section 5.7, the SET neurons proposed in
this thesis are compared to the two designs described below.
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Figure 5.13: SET inverter circuit.
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5.6.1 Inverter neuron

Kirihara and Taniguchi [36] proposed neural hardware for the synaptic multi-
plier and the neuron activation function, using one SET inverter for each. The
multiplying operation is obtained by a weight-dependent voltage on the ground
terminal of the inverter, which is copied to the load capacitor when the input is
active. The activation function is generated from the non-linear transfer func-
tion of the SET inverter. The use of SET inverters in this way assumes the
absence of offset-charge fluctuations.

5.6.2 Stochastic Boltzmann neuron

In [55,56], Akazawa and Amemiya describe how to change the circuit parameters
of a SET inverter so that its stability diagram contains an unstable region. In
that region, the inverter constantly alternates between the possible internal
states. The probability of finding the circuit in a certain state depends on
the voltage present at its input. This device is proposed for implementing the
stochastic-response unit of a Boltzmann machine neuron. Its behavior however
relies on precise adjustments at the input to obtain the stochastic response, and
its success depends on the absence of offset charge fluctuations.

5.7 Discussion

Two single-electron tunneling neurons have been described in this chapter,
namely the SET cascade neuron with two SET transistors, and the SET neu-
ron device with one SET transistor. Two other SET neurons [36,55, 56], built
with a so-called SET inverter have been mentioned briefly. The main difference
between the neuron designs lies in the way the activation function is generated.
The addition function principle is the same for all of them. In this section, the
neurons are compared.

5.7.1 The neurons with two SET transistors

Both neurons with two SET transistors, the ‘cascade’ neuron and the ‘inverter’,
have a relatively steep threshold function, which is an advantage for the use in
neural networks because it gives the neuron good discriminatory properties. The
‘cascade neuron’ features a simple way to adjust the threshold value, namely
by modifying the offset gate voltage of the front SET transistor. This is useful
because neural learning algorithms usually rely on adjusting this parameter.
An important advantage of the complementary structure of the inverter-
based neurons is said to be their zero static power dissipation [36]. Some remarks
can however be made about this. First of all, if the offset charge fluctuations
remain present in SET technology, all SET islands in a large neural system of
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inverter neurons will have to be adjusted, which is rather impractical. Since
the low power dissipation is based on complementary operation, which relies on
well-adjusted offset charges, it is difficult to achieve zero static power dissipation
in large systems.

Second, at 10 kHz the dynamic power dissipation of the inverter neuron is
equal to the static power dissipation of the cascade neuron scaled down to the
same size as the inverter and biased at 1 pA. So at operating frequencies well
above 10 kHz, the static power dissipation of the single SET transistor becomes
negligible in comparison to the dynamic power dissipation. Since the intrinsic
speed of a SET transistor is in the order of 10 GHz, operating frequencies well
above 10 kHz are to be expected.

The ‘inverter’ neuron has the advantage of combining voltage bias with an
output voltage, as opposed to the current biased ‘cascade’ neuron and the single
SET neuron device. Voltage bias is more practical to implement than current
bias because a voltage source is easier to distribute across the chip to all neurons,
and easier to generate.

Neurons with two SET transistors also have other disadvantages, like re-
quired matching of the devices and the required voltage gain. The most critical
disadvantage however, is probably the presence of two SET islands. Both are af-
flicted with random offset charges, which need to be compensated to obtain the
specified behavior. The fact that there are two such adjustment points makes
automatic adjustment, for example with the learning algorithm, more compli-
cated. Moreover, the complementary behavior of the ‘inverter’ neuron on which
its low power consumption relies, only works when the two offset charges are
both adjusted optimally. Offset charge adjustment requirements form a larger
impediment to VLSI neural networks than static power consumption.

5.7.2 The one-SET transistor neuron

The one-SET neuron device has some important advantages when compared to
the two-SET versions. It is about half the size (not counting the bias circuitry),
and it only has one offset charge adjustment point because there only is one
SET transistor. This single adjustment point also has the function of thresh-
old value adjustment, which is familiar to the neural learning algorithm. This
means that offset charge fluctuations are mapped onto standard neural network
behavior, and do not need to be adjusted separately. The independence from
the ubiquitous offset charge fluctuations is probably the key to the successful
large scale application of SET technology.

The less steep threshold function compared to the two-SET variants and the
absence of saturation regions in the one-SET neuron transfer function does not
hamper the classification abilities of the device, nor its learning abilities, as will
be shown in Chapters 7 and 8.
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5.8 Conclusions

In this chapter we have seen that it is possible to make a neuron in several ways
using SET transistors. It is possible to generate an activation function similar to
the standard sigmoidal function using two SET transistors. Two other neuron
designs, both based on the SET inverter with two SET transistors are known
in the literature. The most important problem with the designs based on two
SET transistors is that they have two offset charge adjustment points, and that
the transfer function shape is drastically different when the offset charges are
not compensated for. This puts an extra burden on the learning algorithm.
The smallest possible neuron in SET technology, with only a single SET
transistor, only has a single offset charge to adjust. It is expected the learning
algorithm can cope with it because it has the effect of changing the neuron
threshold, and adjustment of this threshold is a regular learning algorithm task.
The periodicity of the SET transistor transfer function gives the one-SET
neuron the ability to cope with any weight-dependent offset value at its input
because it can always be compensated for with an adjustment range equal to
the period size. This neuron promises to be a successful neural building block.




A SET Synapse

The synapses of a neural network form the collective, distributed memory of
the system. The signal processing task of a synapse is straightforward. It
determines the connection strength between two neurons, based on the value of
the synaptic weight. The value of the synaptic weight is adjusted by a learning
algorithm until the network has the desired behavior.

Because of the large number of synapses in a neural network, it is essential
that the individual synaptic cells are as small as possible.

In Section 6.1, the properties that are important for a successful synapse are
analyzed and, based on that, Section 6.2 gives the basic concept of an extremely
small synapse with a single SET transistor. The design of a SET synapse is
described in detail in Section 6.3.

6.1 The essential properties of a synapse

In order to design a compact synapse, it is necessary to first establish which
properties are absolutely indispensable for correct operation. The design effort
can then be focused on specifically implementing those properties.

6.1.1 The synapse transfer function

The functional role of a synapse in a neural network is to modify the connection
strength between two neurons or between a network input and a neuron. The
most common situation can be described by the mathematical multiplication
operation in which the output of the synapse equals the product of its weight
and input. The resulting transfer function from input to output is a straight
line through the origin, with a slope adjustable with the weight, as illustrated
by Figure 6.1. The most complete implementation of this multiplier is one that
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can operate in all four quadrants so that the output and the input can have
positive, as well as negative values. The four quadrants are however not required
for all types of neural network. The required polarity at the synapse output is
determined by the neuron input stage, while the polarity at the synapse input
should be compatible with either the signals produced by the neuron outputs,
or by the network input.

The polarity of the synaptic weight tells whether the synapse is excitatory
(positive valued weights) or inhibitory (negative valued weights). The learning
algorithm of the network often dictates whether synapses should be excitatory,
inhibitory, or both. Back-propagation learning, for example, requires synapses
with positive and negative weights, while some forms of the unsupervised Heb-
bian learning rule use either only inhibitory or only excitatory ones [57, 58].
Synapses that can be both are however used most.

Synapse circuit designs are often driven by imitating as closely as possible the
ideal linear multiplying operation because the learning algorithms used calculate
the weight updates based on, among other things, an ideal multiplier as synapse.
An ideal multiplier is however not so easy to make. The resulting circuit is too
large, complicated, and therefore other learning algorithms with less stringent
requirements have to be devised.

6.1.2 Non-idealities in a synapse transfer function

There are four types of deviation from the ideal multiplier that can be present
in a synapse implementation. They are non-linearity, non-monotonicity, offset,
and a restricted slope range. The question that should be asked is to what
extent they are still acceptable for a successful synapse. It is an important
question because unacceptable non-idealities should be avoided to prevent ob-
taining an unusable synapse (obviously), and because no effort should be put
into correcting any deviation from the ideal multiplier that does not hamper
correct network operation. Designing a non-ideal multiplier instead of an ideal
one can lead to significantly smaller synapse circuits [9, 59].

Non-linearity of the transfer

Non-linearity of the synapse transfer function (Figure 6.2) corresponds to the
weight being dependent on the input value. It deforms the straight boundaries
of the neuron threshold, which results in non-uniformities in the input space
of the neuron. The learning algorithm should be able to correct for these non-
uniformities because it is just a deformation of the input space. Classification
remains in principle possible by appropriately adjusting the complete network.
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Limited input or output range

In general, the signal range is one of the two factors (the other factor being noise)
that determine the dynamic range. Because the number of distinguishable states
or patterns in the signal is proportional to the dynamic range, fewer patterns
can be distinguished if the range is limited. It is therefore desirable to have a
high dynamic range.

The input range of the multiplier limits the pattern input space of the
synapse. It should match the network input range or neuron output range
that drives this synapse. The output range of the synaptic multiplier should
match the range available at the neuron input for optimal performance.

Non-monotonicity of the transfer

The effect of a non-monotonous synapse transfer function (Figure 6.3) is that
the mapping function maps different parts of the input space onto the same
point in the output space. This results in classification problems if the points
in the input space belong to different patterns: the synapse would consistently
map them onto the same position in the output space, making it impossible to
separate them. The input space is folded by the neuron, and it is therefore not
obvious that a neural network can cope with non-monotonicity.

Periodicity of the transfer

Periodicity is a special form of non-monotonicity. It is mentioned here because
SET transistors have a periodic transfer function. Whether periodicity in the
signal input space of the synapse can find an application is not very obvious,
and deserves a separate investigation. In this thesis, it is avoided by restricting
the input range to a small fraction of the transfer function period.

The periodic transfer function of the SET transistor is however exploited in
an other way for the synapse, as is explained in Section 6.3.2.

Offsets

Offsets in the synaptic multiplication function appear as additional terms in the
multiplication function. These terms can be constant, or depend on the input
signal, the weight, the ambient temperature, supply voltage, or time.

Offsets that do not depend on the weight or input signal result in a trans-
lation of the input, output, or weight space. Figure 6.4 gives an example of a
translation in the output space. The learning algorithm is capable of correcting
for this type of non-idealities, for example by adjusting the weights or neuron
thresholds.

Offsets that depend on the input signal cause non-linearities in the mapping
function. This was discussed separately above.



6.1 The essential properties of a synapse 81

Finally, offsets that depend on the weight value can result in scaling errors,
as described separately below. It may also result in weight dependent offsets at
the neuron output, as illustrated by Figure 6.5. In that case, the input space
translation changes as the weight changes.

Restricted slope range

A restricted slope range (Figure 6.6) limits the available connection strengths
of the synapse. The effect can be discussed separately for the lower boundary
and the upper boundary (both in absolute values). If the slope range is limited
at the lower boundary, a slope of zero cannot be achieved. This means that the
connection represented by this synapse cannot be switched off completely. If in
that case switching off a connection is desired, it would have to be compensated
for by another connection with the opposite behavior.

If the maximum connection strength is limited by an upper boundary, the
synapse may not be able to span the full input range of the neuron on its own.
That means that the contribution of several synapses is required to let the
neuron change state.

The upper and lower boundaries may have different values for the positive
and the negative slopes.

To cope with these non-idealities, the learning algorithm should be capable of
distributing the signal contributions to the neurons to all the synapses connected
to it, and to deal with asymmetric weight strengths, which may prove to be very
difficult.

Weight imprecision

An imprecise weight results in uncertainty in the actual multiplication factor.
A learning algorithm that adjusts the weights by measuring the actual error
produced by the network automatically corrects for this type of non-ideality.

Weight leakage

In practical situations dynamic weight storage is often afflicted with some form
of leakage. The weight does not retain its information indefinitely. It could also
be called ‘forgetting’ if we stay in neural terminology. An obvious remedy to
forgetting is re-learning. Slow leakage should therefore not be detrimental to
neural networks that periodically relearn. An alternative to relearning is weight
refreshing by downloading the weight information from an external system. This
is rather impractical for large systems, and is therefore not dealt with in this
thesis.
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Weight quantization noise

The presence of a minimum weight-change step results in quantization of the
synaptic weight value. In digital implementations of the weight storage, the
minimum step is determined by the number of bits, and in an analog imple-
mentation of charge stored on a capacitor, the quantization of charge limits the
step size. Quantization of charge on a capacitor becomes apparent when the
electrostatic energy F = % of one electron on a capacitor is larger than the
thermal energy kT (see Section 4.2.5). We will see in Section 6.3.2 that the
periodic transfer function can be used to obtain much smaller steps.

Weight quantization noise is a serious problem in neural networks because
it limits fine tuning of the weights during learning and can lead to convergence
problems.

Signal noise

Thermal noise is always present at the output of a SET transistor if its temper-
ature is non-zero. This thermal noise is responsible for rounding off the sharp
maxima and minima of the transfer function, and as such is indispensable for
the synapse operation. This rounded-off shape is an average in time, which is
therefore only obtained by filtering the high-frequency components responsible
for the deviations from this average.

6.2 Concept of a SET synapse device

The implementation of a synapse should be a minimum size circuit with a trans-
fer function whose slope can be adjusted by a learning mechanism, and whose
operating point can be stored. This section describes how these elementary
properties of a synapse can be implemented with a single SET transistor [53].

As illustrated by Figure 6.7, the operation of the synaptic device is based
on the small-signal behavior of the SET transistor. For small-signal variations,
the transfer function slope is approximately constant and its value depends on
the operating point, as illustrated by Figure 6.8.

This means that if the input voltage range of the device Vg, is much smaller
than the period V}, the transfer function slope depends on the operating point,
which is given by the island charge of the SET transistor (see Section 4.3.1).
Figures 6.10 and 6.9 illustrate this for different values of the island charge. The
large-signal island charge adjustments represent the synaptic weight. The con-
cept relies on the gradual transition between the positive to the negative slope
at temperatures higher than 0 Kelvin. The required temperature depends on
the total capacitance of the SET transistors used. The smaller the capacitance,
the higher the temperature.
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If a SET transistor is used in this way, it has the elementary characteristics
of a synapse. The slope of its transfer function is modified by changing the
island charge of the transistor. The slope can have both positive and negative
values so that the synapse can be both inhibitory and excitatory. The island
charge of the device is adjusted by a second capacitive gate, which can be used
to connect the synaptic weight (see Figure 6.7). On first sight, the addition
of weight and the input signal at the synapse island may appear to have little
in common with a multiplier. The non-linearity however of the SET transistor
transfer prohibits application of the superposition principle. It is this non-linear
character on which the synaptic multiplier is based.

It is shown in Chapter 7 that this SET synapse can drive the SET neuron
of Chapter 5.

6.3 Implementation of a SET synapse device

The synapse consists of three functional blocks, as illustrated by Figure 6.11,
which are described separately below. In Section 6.3.1, the effects of the specific
SET transistor properties on the synaptic multiplier are analyzed. Section 6.3.2
describes how the synaptic weight can be stored, and Section 6.3.3 argues that
there is need for further research on the currently available circuits to modify
the weights.

input——» multiplier |— output

Y

weight
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Figure 6.11: Three functional blocks can be distinguished in a synapse: the multi-
plier, the weight storage, and the weight modifier.

6.3.1 The multiplier

The synapse transfer function as shown in Figures 6.9 and 6.10, is clearly not
an ideal linear multiplier. Therefore, this section starts with an analysis of
the properties of this synapse. Following the list of deviations described in
Section 6.1.2, the non-linearity, non-monotonicity, offsets and range of slopes
are discussed. In addition, other SET-specific features such as the implications
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of the transfer function periodicity, the output range and random offset charge
fluctuations are analyzed.

Transfer function non-linearity

The degree of non-linearity of the synapse transfer function depends on two
factors. First, it depends on the temperature. At lower temperatures, a SET
transistor transfer function approaches the piece-wise-linear shape, as illustrated
by Figure 6.12, which shows simulation results of a SET transistor at tempera-
tures of 0, 200 and 400 mK.

Vou (mV)

Vi, (mV)

Figure 6.12: Transfer function of a SET transistor at three different temperatures.
The output range and the maximum slope decrease with rising temperature.

The thermal noise increase associated with an increase in temperature has
an important effect on the available slope values of the transfer function. The
theoretically straight lines approach a sinusoid at higher temperatures. This
effect is used to generate the range of slopes necessary for the synapse device.
The synapse would not work properly if the device were at 0 Kelvin. Of course
this also means an increase in thermal noise, which must be suppressed by time
averaging (i.e. working at lower frequencies). The maximum attainable slopes
that are discussed below are therefore unreachable theoretical maxima.

The synapse non-linearity also depends on the portion of the SET transistor
transfer function period used. A larger portion gives more non-linearity. This
portion is expressed in the ratio a; between the SET transistor transfer function
period V,, and the range of its input Vg, :

2P (6.1)
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Since non-linearity of the synapse transfer is in itself not a problem for the
neural network, it leaves us free to fit the ratio a; (within certain limits) to
other needs, elsewhere in the network, and does not prevent increasing the
temperature for a more gradual transition from positive to negative slopes.

Transfer function non-monotonicity

Making the ratio a; too large results in non-monotonicity of the synapse transfer
function because the positive and the negative slope may become part of the
transfer function simultaneously. Non-monotonicity makes the application of
the synapse more complex, but it cannot be avoided completely for small slope
values because slope values around zero only occur at the maxima and minima,
at a transition from a positive to a negative slope. Reducing the value of the
ratio as reduces the degree of this non-monotonicity.

Weight dependent offsets

When the operating point of a synapse is changed by adjusting the weight, not
only the slope of the transfer function changes, but also the signal independent
value at the output, as can be seen from Figure 6.8. It can be modeled by a
change of the neuron threshold value, and can therefore in principle be com-
pensated for by the neuron (Section 5.5.5). Any weight correction that was
meant purely to change the slope of the synapse must be accompanied by an
adjustment of the neuron threshold to compensate for the level change. This
might be difficult for some types of learning algorithm.

The transfer function slopes

The range of slopes that can be produced by the SET synapse device is limited
by the maximum gradients of the SET transistor transfer function. The limit
is different for the positive and the negative slope. Especially the positive slope
range is small.

With fixed device dimensions, a lower ambient temperature has three im-
portant effects on the synapse transfer function.

o The transition region between the maximum positive and negative slope
decreases. This reduces the range of weight voltages for which the slope
actually changes.

e The output voltage range of the device increases, which increases the value
of the maximum positive and negative slope.

e The thermal noise level of the output voltage decreases. Together with
the previous item, it results in an increase in the dynamic range.
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Figure 6.13: The transfer function of a SET transistor at 0 Kelvin.

As the device temperature approaches zero Kelvin, its transfer function ap-
proaches the piece-wise linear function of Figure 6.13 which gives the maxi-
mum obtainable synapse slopes. Straightforward electrostatic energy calcula-
tions yield the following equations for the four relevant quantities [21].

Output range : Ve = £ (6.2a)
Cx
Period : Vp = — (6.2)
Cy
Maximum positive slope : s =G (6.2¢)
p pe: Fmax — CE _ Cl .
C
Maximum negative slope : S = Fg (6.2d)
1

The slopes of the transfer function of a SET transistor are dependent on the
ratios between the various components of the island capacitance Cx. To change
the slopes while keeping Cyx, constant, capacitance should be exchanged between
the capacitors contained in Cyx. To simplify the argument, it is assumed here
that there is only one gate present, and that the parasitic stray capacitors can
be ignored. The total capacitance Cy is then shared between Cy, C), and C»
(see Figure 6.14).

The maximum and minimum values of attainable slope can be found by
determining the extreme values of (1 — %), which expresses the position of the
transfer function top within one period, as illustrated in Figure 6.15.

The top of the transfer function is located to the right end of the period
when C; is given the smallest possible part of Cy, and the rest is shared by
C, and Cy. In this case, the absolute value is maximal for the negative slope,
while it is minimal for the positive one. Alternatively, giving more of the total
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Figure 6.14: The total capacitance Cy is shared between C,, C1 and C;. With the
current production process, C1 = C is desired.
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Figure 6.15: With a constant output voltage range, the position of the transfer
function maximum determines the value of the slopes.
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available capacitance Cx to C; shifts the transfer function top to the left, which
decreases the absolute value of the negative slope, while increasing the positive
one.

We are not free to position the top wherever we like because of the following
boundary conditions. Except for the minimum capacitor value dictated by the
technology, the tunnel capacitances C; and C; should be approximately equal
while the gate capacitance also determines the ratio between the period and the
output range of the neuron device of the previous layer and cannot therefore
be chosen freely. Moreover, the technology does not provide accurate capacitor
values at the moment.

It is difficult to describe definite limits for the slopes because they depend on
continuously improving technological manufacturing methods. Therefore, in the
following discussion we restrict ourselves to general indications. It is assumed
that technological developments will allow a slight relaxation in the future of
the requirement that Cy = (.

To begin with, the positive slope cannot be made larger than 1, while the
negative slope can be made smaller than —1 by making C, > C; (see equa-
tions (6.2c) and (6.2d)). Is it possible to make the two slopes equal? In principle
it is, it translates into Cy + C; = C,. If C is relatively large compared to C)
however, the difference in size between C) and C» is also large, which is not
feasible with today’s technology. So if a symmetric transfer function is desired,
C, should be made relatively small compared to the two junction capacitances.
To make the positive slope have a larger absolute value than the negative one,
the same argument as for equal slopes holds, but in a more extreme manner.

A negative slope larger than the positive one (as an absolute value) is more
natural to make because the two tunnel junctions can be of the same size.
Additionally, it is more desirable because it makes voltage gain available. A
negative slope larger than 1 as an absolute value requires Cy > Cp, which is
technologically feasible. Ratios of about 5 are currently routine, but values
larger than 10 are still difficult.

The slopes of the SET synapse device are limited at the upper boundary by
the available capacitor sizes, and that those boundaries differ for the positive and
the negative slopes. The tightest slope boundary holds for the positive slope,
which is always smaller than 1. The negative slope can reach much higher values
(as an absolute value), although it is technologically difficult to make, and it is
at the expense of the range of the positive slopes.

The lower boundary for the synaptic connection strength is zero because it
is obtained with the operating point at a maximum or a minimum of the SET
transistor transfer function, at the transition from the positive to the negative
slope. At this point, a slight non-monotonicity is present in the SET synapse.
It should be determined whether this hampers the SET synapse performance.
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The transfer function period

The transfer function period of a SET transistor expressed in volts is determined
only by the gate capacitance Cy of the gate under consideration. Expressed as
a charge on the island, it is equal to the elementary charge e. If the device has
more than one gate, each gate has its own period. The ratio a, between the
period of the SET synapse device input Vp, and the output voltage range of the
neuron in the previous layer Vg, is defined as (Equation (6.1)):

Va,
. (6.3)

s

Qg =

The synapse performance should not rely on an exact ratio because it should
be insensitive to manufacturing tolerances. In Section 7.3.2, it is shown that
o, & 1 is a good choice.

To obtain a certain ratio, the neuron SET transistor can be scaled slightly
to match the desired value of the synapse gate capacitance C,. This scaling
is of course technologically limited. The freedom of choosing Cy more or less
independently of the required ratio is useful because C, also influences the value

of the transfer function slopes.

The output range

The output voltage range of the synapse SET transistor device equals C%; at 0
Kelvin. The total island capacitance Cyx is equal to

Ce=C,+Cy, +C1+Cs. (6.4)

C, and C,,, are the two gate capacitors, C; and C; are the tunnel capacitances.
Except for technological manufacturing restrictions, the value of Cx can be
designed independently of the ratios between the individual capacitors, because
the transfer function slopes are independent of Cyx, as shown by Figure 6.16.
Within technological limits, Cy; can be changed by scaling the complete device.
It can be used to adjust the output range of the device so that it matches the
transfer function period of another device, such as a neuron. This is the subject
of Chapter 7.

Capacitor values

To obtain a synapse that can be realized at the moment, C; = C5 is a good
choice. With

Cg =Cy + Cs, (6.5)
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Figure 6.16: One period of the transfer function of a SET transistor for two values
of Cs. with constant capacitance ratios. Only the output voltage range changes, while
the shape remains the same.

we have a maximum positive slope

2
s+mnx = g (6'63‘)
and a maximum negative slope
Sy = —2. (6.6b)

We will see in Chapter 7 that this gives satisfactory results. The actual capacitor
dimensions are determined in Section 7.3.3.

The influence of the bias current

The value of the bias current does not influence the slopes very much, as is
shown in Figure 6.17. This implies that the circuits generating the synapse bias
currents are not critical. The weight-dependent offset does depend on the bias
current, but it is compensated for by the neuron (Section 5.5.5).

Random offset charge fluctuations

We have seen that the island charge of the device determines the slope of the
transfer function, and that the synaptic weight can be implemented by an ad-
ditional gate connection to the island (Section 6.2). This implies that offset
charge fluctuations on the SET transistor island have the same effect as the
weight changes, and that the physical random variations in offset charge can be
modeled in neural network terms as random variations of the synaptic weight.
This is an important property of the SET synapse device, because it means
that the offset charge fluctuations, which are fundamentally present in all SET
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Figure 6.17: Transfer function of a SET transistor for bias currents from 8 pA to
192 pA.

transistors at the device physics level, can be mapped directly onto the neural
network system level. On the condition that the learning algorithm is capable of
readjusting the weights to compensate for a charge fluctuation before the next
charge fluctuation occurs, the offset-charge fluctuations of the synapse device
do not hamper the operation of the network. The transients appearing at the
network output serve as an error signal for weight adjustments. The synapse is
then robust to offset-charge fluctuations.

6.3.2 Weight storage

Weight storage can in principle be done in various ways. Here, only the storage
of charge on a capacitor is dealt with because it is the most practical choice when
all the signals are charges or voltages. The weight for the SET synapse device

@)
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Figure 6.18: The synaptic weight is stored on capacitor C..

can be stored as a charge on a single capacitor C,,, which is connected to the
island of the device through a gate capacitor C,,, as illustrated by Figure 6.18.

The charge change Ag; on the island, resulting from changing the charge g,,
on the weight capacitor by Ag,,, equals

Ag; = Aqy Cy

CotCo (6.7)
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(neglecting the voltage across the source junction).

Fine-tuning of synaptic weights usually requires small weight steps. The
most elegant way of obtaining small weight steps exploits the periodicity of the
SET synapse transfer function. If C,, is almost equal to Cy, a change in g,, of
two electrons results in a change of almost one electron on the SET transistor
island. As illustrated by Figure 6.19, the operating point on the synapse transfer
function shifts by almost one period, resulting in a small weight change Aw.
In this way, the weight adjustment step-size depends on small size differences
between C, and C,

v

out

} i (] ] } .
I ¥ 1 T T T Ll

0 2e de 6e 8e Qy

Figure 6.19: The periodicity of the synapse transfer function is exploited to obtain
small weight changes. If C, = C,, changing the charge on the weight capacitor Cy
by two electrons modifies the weight by a small fraction Aw.
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Figure 6.20: The synapse transfer function for Ag,, = 2e weight charge increments.
In this case, Cy = 180 aF and Cy = 200 aF.

The result for the synapse transfer function is presented in Figure 6.20. It
shows the slope increments resulting from increasing the weight charge g, in
0gw = 2e steps.

Alternatively, small island charge changes on the scale of e are required to
adjust the synaptic weights. Equation (6.7) then dictates that to scale down the
elementary charge, C, should be larger than Cj, so that to obtain small weight
steps, Cy, should be much larger than C,. To fine tune the weight, impractically
large weight capacitors C, are required.

To obtain inhibitory as well as excitatory behavior of the synapse device, no
bipolar voltages are required on the weight capacitors thanks to the periodicity
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of the transfer function. This is an advantage because it makes the weight
modification circuitry simpler and it eliminates the need for a negative power

supply.

6.3.3 Weight modifiers

To modify the weight of the SET synapse device, individual electrons must be
added and removed from the weight capacitor Cy,. In principle, the so-called
‘turnstile’ [60], or the ‘electron pump’ [61] can be used to manipulate individual
electrons, and its potential application in neural circuits has been suggested
in [54] and proposed in [36]. The circuits in question however only function
properly when the island offset charges are adjusted properly. This makes them
very impractical for use in large systems because the offset charges of such
circuits cannot all be adjusted individually. The alternative is to accept that
SET circuits cannot always operate properly, and to let the learning algorithm
simply cope with it. Whether this is possible is certainly not trivial because
a teacher needs accuracy to be effective. This discussion is postponed until
Chapter 8.

6.4 Conclusions

A compact synaptic multiplying function can be made with only a single SET
transistor by concentrating on obtaining the basic functional requirements.

The resulting SET synapse device does not produce an exact multiplying
function, but the essential ingredient, namely a variable transfer function slope
that is adjustable with the weight, is present. No insurmountable difficulties
are expected from the characteristic device properties that make the synapse
different from the standard synaptic multiplier.

Offset charge fluctuations in the SET synapse device are in principle ad-
justable by a learning algorithm because they are equivalent to weight fluctu-
ations. Small weight changes are obtained with a small weight capacitor by
exploiting the periodicity of the SET transistor.

With the SET synapse device described in this chapter, it is shown that
effective niatching of the specific technological properties to the required func-
tionalities can result in an extremely compact functional device.



Design of a SET neural
network

The performance of a neural network strongly depends on the way the cells are
interconnected, on the efficiency of the signal transfer from cell to cell and on
the learning algorithm performance.

In Section 7.1 it is argued that a locally interconnected neural network is
the best choice for the implementation of a large neural network. This is based
on both system and technological aspects of hardware implementation.

Section 7.2 shows that the SET neuron and synapse described in Chapters 5
and 6, can be interconnected to form a large neural network. It also shows how
the signal amplitudes propagate through the network.

In Section 7.3, the simulation results of a neural network of one SET neuron
and two SET synapses are presented. It shows that this SET network can
classify in a way similar to a conventional neural network.

The learning algorithm is the subject of Chapter 8.

7.1 Neural network topologies

The ultimate goal of building neural networks with single-electron tunneling
technology is to make large neural networks with high processing power. The
technology-level and the system-level requirements on the topology of such a
large neural network are described here from an implementation point of view.

95
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7.1.1 System level

For most complex VLSI systems, the interconnections between the functional
blocks use more space than the functional blocks themselves. Moreover, long in-
terconnections suffer from long delays and crosstalk to other parts of the system.
Therefore, effort should be put into minimizing the number of interconnections
and their lengths [11].

For low communication intensity between the functional blocks, the process-
ing power per building block should be high. If this is achieved, the number of
wires in the system can be reduced [11]. The length of those wires should also be
reduced. Both can be realized by choosing the appropriate system architecture.

The periodic, non-linear character of the SET transistor transfer function
gives it a relatively high potential processing power, which makes it a good
candidate for the implementation of functional blocks.

A neural network with a cellular topology and nearest neighbor connections
is a good example of a system where the length and the number of the inter-
connections is minimized [4,11,62-64]. Moreover, the regular structure of a
cellular neural network is a prerequisite for the design and realization of large
systems [11].

7.1.2 Device level

The limited fan-in and fan-out of the SET transistor, but especially the fan-in
(see Sections 4.3.2 and 4.3.3), puts a heavy constraint on the network topologies
that can be realized with SET transistors. In Section 7.2, it is shown that the low
fan-in and small voltage gain limits the number of inputs of a neuron. Requiring
only a limited number of neuron inputs, cellular topology is a favorable choice
for the implementation of SET neural networks.

7.2 Interconnecting synapses and neurons

A neural network arises when individual synapses and neurons are intercon-
nected. In this section, the required properties of the neural cells that make
the interconnections successful are described and the implications for the SET
neuron and SET synapse described in Chapters 5 and 6 are analyzed.

Figure 7.1 displays a small part of a neural network, which illustrates that
the output signal produced by a neuron is distributed to synapses in the next
layer, while the neuron input collects the signals produced by the synapses in its
own layer. This general setup holds for both multilayer feed-forward topologies
and for cellular nearest neighbor topologies.

It is desirable that no additional buffers are required for the internal signals
in the network between the synapses and the neurons. These buffers would
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Figure 7.1: Part of a multi-layer neural network.

consume power and area, and therefore reduce the compactness of the neural
network. This means that the synapse and neural cells should be designed such
that they can be directly interconnected. The implications for the electrical
domains are discussed below. It also means that the signal strength of all the
neurons in consecutive layers should be the same to prevent a signal propagating
through the network from dying out. This is the subject of Section 7.2.2.

7.2.1 The electrical domains in a SET neural network

We have seen in Chapters 5 and 6 that both the neuron and synapse device
have a voltage as the signal carrier at their input as well as their output.

The output signal of a neuron is distributed to the synapses in the next
layer of the neural network. With a voltage output signal carrier, the neuron is
compatible with this requirement. It is matched by the synapse input carrier,
which is also a voltage.

The capacitive addition input of the neuron neatly corresponds to the volt-
age delivered by the synapse output. Nevertheless, it may not be the optimum
solution. The need for a capacitive connection for every individual synaptic con-
nection limits the number of neuron inputs, which restricts the topological pos-
sibilities of the network. Further research for more optimal synapse-to-neuron
connections should be done, for example using width modulation of current
pulses [29].

7.2.2 The signal amplitudes in a neural network

Consider a large neural network with many layers. In general, a large multilayer
neural network of this sort can only operate if the signals do not die out as they
pass through the network. In this section, the signal propagation is analyzed for
such a network, part of which is shown in Figure 7.2. SET neuron and synapse
devices of the type described in Sections 5.5 and 6.2 respectively are used. The
output signals of the neurons with range Vg_ pass through synapses, and the
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output signals of a number of synapses with range Vg, are collected at the input
of the neurons in the next layer. The signal ranges of the neurons and synapses
are followed for one layer in the neural network, and the neuron output signal
range is compared to that of the previous layer. As long as the neurons of
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consecutive layers have the same output range, and the synapses have enough
output range to ensure that the total neuron output range is spanned, the signal
will not die out. This is equivalent to requiring that the gain in the chain should
be at least one.!

For pure feed-forward topologies with a small number of layers and for a
funnel-like topology, the requirement is less strict. Some amplitude loss per
layer can be tolerated, as long as the signal to noise ratio stays acceptable.
Since we are concerned with large neural networks however, this option is not
acceptable.

Below, it is shown that for the configuration of Figure 7.2 the restricted
maximum slope of the synapse and of the neuron threshold function limits the
number of synapses that can be connected to a neuron if every synapse is to be
able to change the neuron state.

The output voltage range Vg, of a neuron N; equals the fraction a; of the
SET transistor period V,, used by the synapse S; (see Equation (6.1)):

Figure 7.2: Part of a SET neural network.

VR,. = aszs (7.1)

1The weight input of the synapse is not part of this chain, and is therefore not considered
in this discussion.
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which yields a ratio between the synapse gate capacitance C,, and the total
neuron island capacitance Cyx, (see equations (6.2a) and (6.2b)):

Co. (7.2)

The signal output range of a synapse depends on the range of the signal
presented at its input by the neuron of the previous layer, and on the slope s of
the synapse transfer function. As a result of its non-linearity, the synaptic slope
not only depends on the synaptic weight w, but also on the input signal (see
Section 6.1.2). For simplicity, this dependence is ignored here. The error thus
introduced in this analysis is dependent on the fraction a;. For a smaller as,
the synapse transfer function better approaches a straight line, and the slope
dependence of the input signal is smaller.

With the maximum slope $max of the SET synapse transfer function, the
maximum signal output range Vg, of the synapse can be expressed in terms
of the voltage range at its input, which equals the output voltage range of the
neuron Vg, :

VR, = Smax VR,, (73)

The part of the neuron transfer function period Vp, spanned by the output
range Vg, of a synapse is given by a, (see Equation (5.19)): '

anVPn = VRS‘ (74)

With (7.3), the period Vp, of neuron N, can be expressed in terms of the output
range Vg, of neuron Ny:

n VP, = SmaxVR., (7.5)

To ensure that the signals propagating through the network do not reduce in
amplitude as they pass from layer to layer, the SET neurons should all have at
least the same size so that they also have the same output voltage range.

Therefore, Equation (7.5) also holds for one neuron. Filling in (6.2a) and
(6.2b) for Vp, and Vg, , we have

anCEn = Smang,. (7.6)
The total island capacitance Cyx_ of the neuron equals
Cs, =C1, +Co, + (n+1)Cy, (7.7)

when all (n + 1) gate capacitors C,, are equal in size. There is one more gate
capacitor than the number n of inputs to the neuron because one gate is used
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to adjust the threshold value. (In Figure 5.12, this capacitor was called Cj,, .)
For a large number of inputs, Cx, can be approximated by

Cs, = (n+1)C,,. (7.8)

n

With this approximation, Equation (7.6) can be simplified to

Smax

an =" (7.9)
which specifies that the fraction a, of the neuron period spanned by a single
synaptic output is a function of the maximum slope of the synapse transfer smax
and the total number of synapses n connected to the neuron. This means that
for a fixed fraction a,, the number of synapses that can be connected to the

neuron depends on the maximum synaptic slope spax.
To enable a synapse to change the neuron state, it should span half of
the neuron period, assuming a symmetric neuron transfer function (see Fig-
ure 7.3). With the absolute value of the maximum synaptic slope symax = 2
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Figure 7.3: If a, = 0.5, a single synapse can change the state of a neuron.

(Equation (6.6b)), the maximum number of synapses that can be connected to
a neuron equals n = 3. A single synapse can only change the neuron state if its
slope is negative because the maximum positive slope equals s, = 0.5,

There are three reasons why the actual situation is a little worse. First,
with » = 3, the assumption made to obtain Equation (7.6), namely that the
tunnel capacitors can be ignored, is not entirely justified. Second, at non-zero
temperatures, the actual output voltage range of SET transistors is smaller
than the assumed &= Finally, the slope of the synapse transfer function is a
function of the input signal, so that Equation (7.3) is optimistic. As a result,
the individual synapses cannot always change the neuron state. On the other
hand, if the neuron has an asymmetric transfer function, a synapse can more
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easily change the state in one direction (high to low) than in the other (low to
high) because the distance V; between the low and high state is then larger than
the distance V, between the high and low state, as can be seen by comparing
Figures 7.3 and 7.4.
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Figure 7.4: With an asymmetric neuron transfer function, the neuron state can more
easily be changed in one direction than in the other

Three synapses per neuron is not very much, so what can be done to increase
this number for the configuration of Figure 7.27

o Allow larger maximum slopes in the synapse. This works only for the
negative slope, and has the opposite effect for the positive one. If the
learning algorithm can deal with strong asymmetry in the synapse, it is
an acceptable solution.

e Limit the number of layers in the network so that signal amplitude dete-
rioration is not detrimental for the network. A large neural network with
a limited number of layers however, usually requires a large number of
inputs per neuron, which was problematic in the first place.

e Do not require that individual synapses should be able to change the
neuron state. This is only possible when the learning algorithm is capable
of distributing the contributions of neuron inputs over more synapses.

e Increase the maximum negative slope of the (asymmetric) neuron transfer
function.

No miracles are to be expected from the above measures to enhance the fan-in
of the SET neuron device. The maximum fan-in of the neuron remains depen-
dent on the maximum negative slope of the SET transistors used. Therefore,
a sparsely connected topology such as a cellular neural network witii nearest
neighbor connections is required for a SET neural network.



102 Design of a SET neural network

7.3 A one layer neural network

To show the classification properties of a SET neural network, the smallest
possible neural network is discussed in this section. To show the theoretical
behavior of such a network, it is first described in Section 7.3.1 for the case with
ideal multiplying synapses and a step activation function. In Section 7.3.2, an
implementation is analyzed with SET synapse and neuron devices as described
in Sections 5.5 and 6.2. It is shown that for a network with two synapses and one
neuron, all the SET transistors and all the coupling capacitors can be identical.
This uniformity is an attractive advantage for actual manufacturing.

7.3.1 Basics of single-layer feed-forward networks

The most elementary neural network is a single-layer feed-forward neural net-
work with only a single neuron, as shown in Figure 7.5 for the case where the
neuron has only two inputs. This basic system is also the elementary building

Figure 7.5: Basic neural network with two synapses and one neuron.

block of a cellular neural system.
It is used here to describe the behavior of single-layer feed-forward neural
networks. The basic function performed by a neuron with two synapses is to
separate two regions in the two-dimensional space spanned by the two inputs
by a straight line, as illustrated in Figure 7.6.
The neuron activation function is defined as follows
{—1 if X <0

(7.10)

+1 fX >0,

where X equals the sum of the neuron threshold th and the weighted input
signals z;w;:

X=th+ Zwix,: (7.11)
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Figure 7.6: Two disjoint regions in the input space are separated by the neuron by a
straight line. The arrow shows an input vector (z1,z2) that is a member of pattern 2.

This means that the boundary between O = —1 and O = +1 is given by X = 0.
In the case of two inputs, this gives

th + w12y + weze =0, (7.12)

which describes the straight line that divides the input space of Figure 7.6 in to
two. The position of this boundary is determined by the synaptic weights w;
and ws, and the neural threshold value th.

A suitable learning algorithm adjusts the two weights and the neuron thresh-
old until the boundary actually separates the two regions.

7.3.2 A SET neural network

The SET synapse device described in Section 6.2 and the SET neuron device
of Section 5.5 can be connected to form a single-layer neural network such as
described above. In the simplest case, one neuron and two synapses are used.
Figure 7.7 depicts the schematic diagram of the SET neural network analyzed
here. Since the neuron only has two inputs, no additional coupling capacitor
is required to reduce the island capacitance of the neuron SET transistor (see
Section 5.3.2).
We have seen (Equation (7.2)) that

1
- a_Cgu (7'13)

s

Cx

n

where a, is the used fraction of the period of the synapse SET transistor.
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Figure 7.7: A neural network with SET transistors.
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With the expressions for the total island capacitance Cg_ of this two-input
neuron (Equation (5.20e)):

Cs, =4C,, (7.14)
we find
1
an = ECQ, (715)

The fraction a, of the period used by the synapse SET transistor is thus
determined by the ratio between the gate capacitors of the neuron and the
synapse. For equal gate capacitors, a; = %‘

We have also seen that

Smax
= C 1
Cs, ) 9n s (7.16)

(Equation (7.6)), where a,, is the number of periods of the neuron SET transistor
spanned, and Spmax 1S the maximum slope of the synapse. Combining this with
Equation (7.14), we find that

40 = Smax (7.17)

so that @, = % if Smax = 2.

If the gate capacitors are equal in size, all the SET transistors, all the tunnel
junctions, and all the gate capacitors in the circuit are identical. This uniformity
enormously simplifies the manufacture.

If more inputs per neuron are desired, a; should be smaller to keep the SET
transistors equal, or else the synapse devices should be made larger than the
neuron devices (see Equation (7.15)).

7.3.3 Simulation results

This neural network was simulated with SIMON (Simulation of Nano Structures,
see Appendix A).
A currently common size for the junction capacitors is

Cy = Cy =100 aF. (7.18a)

Metal tunnel junctions of this size can be made using the shadow mask evapo-
ration technique [65], and the resulting devices can be measured in a cryostat
at a temperature below 1 Kelvin.

With equations (6.5) and (5.20d), we find for the gate capacitors:

C, = 200 aF (7.18b)
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which can also be manufactured readily.
The remaining parameters were also given realistic values:

Tunnel resistances : 100 k2 (7.18c)
Bias currents : 16 pA (7.18d)
Temperature : 50 mK (7.18¢)

The neuron

With the above parameters, the neuron transfer function as shown in Figure 7.8
is obtained. The value of the threshold V,,, determines the position of the
function along the horizontal axis. With V,,, = 0.2 mV, the transfer function
shifts 0.2 mV to the left, as indicated by the dotted curve. Larger values of
V., shift the transfer function further to the left. The actual input range used
in the network depends on the output range of the synapses. For the synapse
described below it is about 0.25 mV (see Figure 7.9). With Cs = 800 aF,
the output voltage range should be Vg, = # = 0.2 mV. As can be seen
from Figure 7.8, the average range is smaller, which is due to the non-zero
temperature.

200
150
2
= 100
K
2
50
0.0 —
0.0 0.20 0.40 0.60 0.8
Vi, (mV)

Figure 7.8: The transfer function of the neuron for two values of the neuron threshold
v

Mth*

The synapse

The synapse transfer function for four different values of the synaptic weight

is shown in Figure 7.9. The consequences of an asymmetric transfer function

for the range of synaptic slopes and the effect of the relatively low temperature

of 50 mK on the available slopes is immediately apparent. It is also clear that

with a ratio a; between the synapse period Vp, and its input range Vg, equal
1

to 7, the maximum output range of the synapse is smaller than was assumed
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in Equation (7.3) because of the dependence of the slope on the input signal,
which was ignored in the equation.

300

vuul (uv)

200

Figure 7.9: The transfer function of the synapse for four values of the weight V;,.

With V,, = 0.35 mV, the average slope is about zero, and with V,, = 0.2 mV,
it has its maximum negative value. A positive slope is obtained for V,, =
0.6 to 0.8 mV.

The above implies that a single synapse cannot change the neuron state on
its own when it has a positive slope, and that the neuron output signal in that
case has a smaller range than the previous layer.

The network

Let us investigate how this small neural network can classify. The network
should be capable of dividing the input space into two regions, and the decision
boundary position should be adjustable with the neuron threshold V4,, and the
two weights V,,, and V,,,, as in Figure 7.6.

With one of the synapses adjusted to a slope of zero with V,,, = 0.35 mV, the
neuron output becomes independent of Vi,,, and the boundary between the low
and high state can be adjusted with V,,,, as shown in Figures 7.10 through 7.12.
Note in these figures that the voltage range of the neuron output Vo is equal
to the voltage range of the synapse inputs Vin, and Vin,. This illustrates that
the signal amplitude does not deteriorate in this network.

By changing the weight V,,,, dependence on the second input Vi,, is in-
troduced for the boundary between the low and high state of the neuron.
Vi, = 0.8 mV gives a positive synaptic slope, which tilts the boundary towards
higher values of Vi,, for higher values of Vi, as illustrated by Figure 7.13, while
a negative synaptic slope (V,,, = 0.2 to 0.3 mV) does the opposite (Figure 7.14
and 7.15). The difference between the range of available positive and negative
slopes is clear in these figures. The position of the boundary can also be shifted
as in Figures 7.10 through 7.12.



108

200 [V, (V)

Figure 7.10: The input space is di-
vided into two regions, independent of
input Vin,. The boundary is positioned
by adjusting Vi,. Vi, = 0.25; V4, =
0.35; Vp,, =0.14 mV.
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Figure 7.12: As Figure 7.10. The
boundary is positioned at Vi, =
156 mV. V,, = 0.15; Vi, = 0.35;
Vo = 0.14 mV.
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Figure 7.11: As Figure 7.10. The
boundary is positioned at Vi, =
100 mV. Vy;, = 0.20; Vi, = 0.35;
Vo = 0.14 mV.
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Figure 7.13: The boundary between
the low and high state is tilted to the
right by introducing a positive depen-
dence of the second input. This is done
by adjusting the synaptic weight V,,, for
a positive slope of synapse S2. V,, =
0.20; Vi, = 0.80; V;,, =0.14 mV.
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Vo (HV)

Figure 7.14: A negative slope of
synapse S» tilts the decision boundary
to the left. V., = 0.20; V., = 0.30;
Vo =0.14 mV.

Vou (V)

Figure 7.16: An inverting function
realized by using the positive slope of
the synapses together with the negative
slope of the neuron. (Note the differ-
ent view angle compared to the other
figures.) Vi, = 0.60; V,, = 0.60;
Vag, = 0.11 mV.
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Figure 7.15: A steeper negative slope
of synapse S; gives a more pronounced
tilt of the decision boundary. V., =
0.22; Vo, =0.22; V,,,,, = 0.10 mV.
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Figure 7.17: Zero sensitivity of the
neuron output for the two inputs is
achieved when the neuron is adjusted
at the transfer function trough and the
synapses at a peak. Vy,, = 0.35; Vo, =
0.35; Va,, = 0.34¢ mV.
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By using negative synaptic slopes and a positive neuron transfer, or vice
versa, the position of the high and low state with respect to the input values
can be reversed. A high state for low input values, and a low state for high
input values is shown in Figure 7.16. Finally when both the synapse transfer is
adjusted to a peak while the neuron is in a trough, the neuron output is low for
all values of the synapse inputs (Figure 7.17). A constantly high neuron output
can be obtained in a similar manner.

7.4 Conclusions

The topology of a large neural network should be locally and sparsely connected
and have a regular network structure because short and few interconnections
save space, and reduce the load of the individual cells. The regular pattern is
necessary because it is easier to manufacture than an irregular structure.

The choice of a sparsely connected topology holds in particular for the SET
network described in this chapter because the neurons have a limited fan-in.
The limited differential voltage gain of the SET transistors used restricts the
number of synapses per neuron. For a SET transistor with a maximum gain
of 2 (as an absolute value), the maximum number of synapses per neuron is 3.
The neuron fan-in is higher if SET transistors with a higher gain are used, or if
the individual synapses are not required to change the neuron state.

Simulation results show that with a two-synapse, one-neuron neural net-
work, classification of the input space into two regions is possible, and that the
neuron can drive a subsequent layer of synapses, so that a larger network can
be constructed.



The learning algorithm

The learning algorithm of a neural network is possibly the most complicated
part of a neural system to understand and to make. It teaches the network the
desired behavior, and can adapt the behavior to changing circumstances and
conditions.

Teaching a large neural network successfully is still difficult at the moment,
and the problems with long convergence times and local minima will certainly
not diminish as the network size increases. The complex topic of finding an
optimal learning strategy for very large SET-based neural networks deserves a
full research project of its own.

This chapter describes the classification and training performance of two-
layer neural networks with SET synapses and neurons. The aim is twofold: first
to show that two-layer networks of periodic synapses and neurons are feasible
and can classify and learn predefined functions; and second to analyze the com-
patibility of the learning algorithm with the stochastic and periodic properties
of the hardware used to implement the synapses, neurons and (part of) the
learning algorithm.

First of all, the required properties of a neural learning algorithm are de-
scribed in Section 8.1. It is argued that for a large and compact neural network,
a supervised learning algorithm that is simple to implement, and that can handle
inaccuracies in the neuron and synapse hardware, is to be preferred.

Section 8.2 describes the random weight change learning algorithm [52,66],
which complies with the above requirements. Parameters that describe its be-
havior and that model hardware non-idealities are introduced.

Section 8.3 describes simulations with which the performance of the random
weight change learning algorithm and the classification abilities of two layer
SET neural networks is analyzed. The results show that a neural network with
periodic synapses and neurons can learn the XOR function, and that errors
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occurring in the learning algorithm due to hardware non-idealities can partly
be handled by the learning algorithm itself.

8.1 Required properties of the learning
algorithm

The learning algorithm adjusts the synaptic weights and neuron thresholds so
that the neural network performs the desired functionality. In this section, the
required properties of such an algorithm for a large and compact neural network
implementation are analyzed. In Section 8.1.1, different kinds of learning algo-
rithms are described. It is argued that a supervised algorithm that periodically
updates the weights is most suitable for a neural network implemented with in-
accurate hardware. In Section 8.1.2, the compatibility of the learning algorithm
with the specific neural hardware properties is analyzed.

8.1.1 Types of learning algorithms

Several types of learning algorithms can be distinguished:
e supervised or unsupervised learning,
e adaptive or non-adaptive learning,

and if the network learns adaptively, this can be done
e continuously or periodically.

These possibilities are clarified below.

Supervised or unsupervised learning

The algorithm can either be steered by a teacher signal supplied to the network
by a (partly) external supervising system (Figure 8.1.a), or it can be steered by
an internal signal, generated from the neural network signals by the learning
system itself (Figure 8.1.b). The former is called supervised learning, while the
latter is known as unsupervised learning.

Supervised learning is to be preferred for SET neural networks because SET
hardware has stochastically fluctuating properties. In a supervised learning
system, the system accuracy fully depends on the reliability of the error signal
and the presence of enough loop-gain; the accuracy of the implementation of the
rest of the system is of less importance. Therefore, the implementation of the
teacher and the error signal generator must be accurate, and can in principle
not be implemented in SET technology, while the rest of the system can.
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Figure 8.1: a. Supervised learning, and b. unsupervised learning.

By contrast, an unsupervised learning system does not dispose of a cen-
tral teacher, and the system accuracy therefore relies on accurate components
throughout the system.

Adaptive or non-adaptive learning

The weights of a neural network that learns non-adaptively are only adjusted
once, before the network begins to operate. During operational use, the network
cannot adapt to changing circumstances, hence the name ‘non-adaptive’. It can
be used if the neural hardware is robust and stable, and if the task of the neural
network never changes. Handwriting recognition for postal code reading is a
successful application of non-adaptive learning.

In many other cases, adjustment of the synaptic weights and neuron offsets
during the operational use of the neural network remains necessary to improve
the performance or adapt it to changing circumstances. Both the conditions in
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its environment, and the properties of the neural network itself may change in
time. In this case, an adaptive neural network is required. A good example of
changing conditions in the environment of a neural network would be a human
face recognition system that adapts itself to changing hair-dress and aging of
the persons it should recognize.

Unfortunately, there are also plenty of examples of changing properties in-
side the neural network itself that require weight value adjustments. This is
in particular the case with hardware such as SET technology, where island off-
set charge fluctuations frequently influence the device behavior, and parameter
shifts due to temperature drifts and weight leakage also require weight adjust-
ments.

The presence of these hardware non-idealities makes the choice of an adaptive
neural system essential when working with SET technology.

Continuous or periodic learning

The learning algorithm of an adaptive neural network can be active continuously
or only periodically. The network can only learn continuously if the learning
and the actual use of the network can happen simultaneously. Most supervised
learning algorithms do not allow this because specific learning examples of which
the desired network output is known must be supplied to the network during
learning. Therefore, most supervised learning algorithms are only active during
limited time intervals. The rest of the time is used for useful network operation.
Some supervised learning systems however, do show simultaneous learning and
network operation. Biological neural networks convincingly show that opera-
tional use and adaptation can be tightly interwoven. Take as an example the
task of reading a new piece of text, written with a hitherto unknown handwrit-
ing. While reading the text, the parts of the brain that decipher the letters and
words are supervised by other parts of the brain that contain a priori knowledge
of the language. We gradually learn and apply the specific characteristics of this
handwriting, and become adept at recognizing the way the letters are formed.

8.1.2 Compatibility with hardware

The specific properties of the devices in SET technology put important con-
straints on the algorithm. Here we describe the consequence for the learning
topology, the effects of the synapse and neuron properties, and the consequences
of implementing (part of) the learning algorithm itself in SET hardware.

Compatibility of the learning topology with the hardware

The topology of a learning algorithm is closely related with the hardware imple-
mentation of the synapses, neurons, and the learning algorithm itself. Choices
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made on this subject must therefore reflect the available hardware properties.
Two types: of learning topologies can be distinguished:

o global learning
¢ and local learning.

In a global learning topology, the weight adjustments depend on signals that
may be topologically far away from the weight. This is algorithmically advan-
tageous because more information is available to determine weight updates. A
global learning algorithm may therefore converge faster.

A local learning algorithm determines adjustments of a particular weight
only from information that is available locally. For an implementation in hard-
ware, this requires far less and shorter interconnections, which is a welcome
advantage for SET technology because only sparsely connected systems can be
realized. Therefore, for a large SET neural network implementation, some de-
gree of local learning is required. Strictly speaking, the supervised learning
algorithm, which was favored in the previous section, cannot be purely local
because the teacher signal is only externally available. As long as the number of
control signals that must be globally distributed is low, the algorithm concerned
does not lose all the benefits of local learning.

Additionally, the algorithm can adjust

¢ ecach weight consecutively,
e or all the weights simultaneously.

Adjusting each weight in successive learning iterations has the algorithmic ad-
vantage of making founded adjustment decisions per weight possible because
the rest of the neural system is known to be invariant. This makes successful
convergence more likely. On the other hand, it is a very lengthy procedure for
a large neural network with many weights.

The opposite extreme of adjusting all weights at every learning cycle is dif-
ficult to solve deterministically on a global level because of the large number
of variables involved. Therefore, such a learning algorithm must determine the
weight adjustments from locally available information.

A successful learning algorithm for a large neural network is therefore a
compromise between the simultaneous adjustment of all the weights and the
use of enough global information to guarantee fast and successful convergence.

Compatibility with synapse and neuron hardware

In general, a neural learning algorithm can either use a priori knowledge of the
synapse and neuron properties or not. An example of a learning algorithm that
uses knowledge of the synapse and neuron properties is the back-propagation
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algorithm (see for example [40,67]). It uses the information that the synapse is
a perfect multiplier and information on the derivative of the neuron activation
function to calculate the optimal weight changes for minimizing the global error.
The use of this a priori knowledge makes the algorithm fast and reliable. If
the synapse and neuron implementations do not exactly conform to the ideal
models however, this a priori knowledge is wrong, and the algorithm fails. Back-
propagation is therefore less suitable for training inaccurate neural network
implementations [67].

Two examples of learning algorithms that work without a priori knowledge
of the neural network implementation are the Madaline Rule III [48,68,69] and
the Random Weight Change algorithm [52,66]. These algorithms are based on
observing the effect on the overall error when the weights in the neural network
are changed by a small amount 61/W. Measuring the sensitivity of the error to
weight changes makes the algorithms insensitive to the specific implementation
of synapses and neurons, or to the topology of the network [48].

In general, because they have less information available, these algorithms do
not perform as well as those that base the weight updates on specific synapse
and neuron properties. Therefore, if a priori knowledge of synapses and neurons
is available, it is advisable to use it.

The SET neuron and synapse devices described in Chapters 5 and 6 have a
number of characteristic properties that make them quite different from stan-
dard neural hardware:

e both neuron and synapse transfer functions consist of part of a periodic
transfer function;

e offset charges give the devices a random offset at their inputs;

o the neuron has no real saturation regions;

e the synaptic slope values have a limited range, and depend on temperature;
e the output ranges depend among other things on temperature.

The inaccuracy in some of these properties makes a learning algorithm for
SET neural networks that fully relies on exact knowledge of the neural cells
unfeasible. Having said this however, some characteristics are certain and pre-
dictable, such as the transfer function periodicity, and the absence of saturation
regions. A learning algorithm tailored for SET neural networks exploits this a
priori knowledge to obtain an optimal learning performance.

Compatibility of the learning algorithm with its hardware implemen-
tation

At least part of the learning algorithm is preferably implemented locally, near
the weights to be updated (Section 8.1.2). Following this line of thought, it is
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indispensable to build this part of the learning hardware using the same technol-
ogy as the rest of the neural network. To obtain a compact realization, the same
rules apply as for implementing other network elements: the primitive functions
must be compactly designed with small hardware structures, optimally exploit-
ing the technological properties (Chapter 3). For compact learning hardware,
the algorithm itself should therefore be developed not only with its learning per-
formance in mind, but also with the available technological functions in mind.

A consequence of implementing part of the algorithm with stochastically
fluctuating hardware such as SET technology is that the network must be at
least partly supervised, and that the teacher signal and error generation must
be accurate for the learning algorithm to be successful. This error signal may
have to be distributed across the network.

Conclusion

The learning algorithm for a large SET neural network is preferably realized
locally, near the weights it should update. For compactness, it should also be
implemented as much as possible in SET technology. The stochastic properties
of this technology however prevent the implementation of the entire algorithm
in SET technology and dictate the use of a supervised learning algorithm. To
guarantee the accuracy of the neural system, the critical, supervising functions
must be provided externally. The learning algorithm performance is enhanced
if the algorithm can exploit the characteristic properties of the synapses and
neurons.

8.2 Random Weight Change learning

The Random Weight Change learning algorithm [52,66] was chosen to train
a small SET neural network [70-73] because this algorithm complies to most
requirements described in the previous section: it does not rely on a priori
knowledge of the neuron and synapse transfer function, it is relatively simple to
implement because it does not consist of complex mathematical operations, and
it mainly uses locally available signals to determine the weight updates; only
the control of this local hardware is performed by a set of global control signals
which are broadcast all over the network.

Section 8.2.1 explains the algorithm and Section 8.2.2 describes the parame-
ters that control it. Based on a block diagram for implementing this algorithm
in hardware, Section 8.2.3 analyses the types of errors that may occur if this
algorithm were to be partially realized with SET hardware. The simulations per-
formed to investigate its performance for a small neural network are described
in Section 8.3.
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8.2.1 The algorithm

A flow diagram of the random weight change learning algorithm is shown in
Figure 8.2. For one pattern, all weights W; of the neural network are changed by
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Figure 8.2: Flow diagram of the Random Weight Change learning algorithm.

a small amount §W;. The absolute value of §W; is the same for all weights, while
its sign is random. The effect of this weight change is measured by comparing

the network output with the desired output.

If the error has decreased in

comparison to what it was before the weights were changed, the new weights
are probably better and they are preserved. If the error E has increased, the
previous weights were better so they are restored.

In this way, the algorithm tries to improve the weights a predefined number
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of times, before it switches to the next pattern. All the patterns are cyclically
presented to the network until the global error E; remains below a certain
level for all patterns. An alternative to cyclically presenting the patterns to
the network would be to present them in random order. This possibility is not
analyzed here.

The error E, used to determine whether a particular weight perturbation
was an improvement for the current pattern p is defined as

Ep = C(Vref,, - V:)ut,,)za (8-1)

where V;¢r is the desired output for the pattern under consideration, Vo, is the
actual network output, and ¢ is a normalization constant.

The global error E, used as a stopping criterion is a running mean of the
most recent errors E for each pattern:

3
C
E, = 1 J.zzo(vref — Vour)?. (8.2)

The weight change W equals
oW, = 'r:i:enEPa (83)

where ry, is randomly generated for each weight w;, and equals either +1 or
—1. The learning gain 7 is a global parameter, adjustable for optimal perfor-
mance. The weight perturbation therefore has a random sign and its magnitude
depends on the error. The weights are less perturbed when the error decreases.
This drastically speeds up the weight change process at the beginning, while
preserving the advantage of fine tuning at the end.

8.2.2 The control parameters

The learning algorithm has two control parameters to adjust its performance.
¢ The number of trials per pattern n
e The learning gain 75

The number of trials n controls how many times the learning algorithm
tries to improve the weight values before switching to the next pattern. The
algorithm performance does not depend very much on this parameter, but some
general remarks can be made. If it is too small (smaller than about 10 trials
per pattern for the networks of Section 8.3.2), training convergence slows down
because it is unlikely that the weight perturbation decreases the error for the
pattern under consideration. On the other hand, if it is too large (n > 50),
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Figure 8.3: Block diagram of the learning algorithm hardware.

convergence starts slowly because the weights are changed too much in each
cycle. This ‘damages’ the weight adjustments made for previous patterns.

For much larger networks, the lower limit is expected to increase because
it becomes less likely to find a global weight improvement if there are many
weights to adjust. This could well be an important limitation of this learning
algorithm’s applicability.

The learning gain 7 determines how the weight perturbation depends on the
error E,. If it is too small, the error decreases too slowly, and if it is too large,
the error does not reach a low value.

8.2.3 Hardware-related errors

Figure 8.3 presents a block diagram of the primitive functions necessary for the
random weight change learning algorithm. The learning algorithm is split up
into local SET hardware and global hardware. The global, off-chip part of the
algorithm calculates the error, controls the step size, and decides whether the
weights should be perturbed or restored. These control signals are the same
throughout the network and must be distributed to all neural cells. The local,
on-chip hardware performs all the actions which are different for each individual
weight. The errors that may occur in these local functional blocks resulting from
offset charge fluctuations are described below.
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Errors in the weight storage block

The weights are stored as a voltage or a charge on capacitors that are directly
connected to the gate of the neuron or synapse (see Section 6.3.2). The voltage
on this capacitor represents the weight or threshold value. Because the transfer
functions of the synapses and neurons are periodic, the full range of the output
can be addressed by positive values. The weight is periodically updated, hence
some leakage to or from the capacitor is permitted. As described in Section 6.3.2,
charge quantization results in a minimum weight step size, which can be kept
small by using suitable capacitor sizes. Weight value quantization is not modeled
in the simulations described in Section 8.3.

Errors in the weight changing block

The weight changing block combines the step size d and the sign r4, into the
change in weight 6W;. This could be a packet of charge to be added or removed
from the weight capacitor. Malfunctioning can affect the learning behavior in
two ways. When a ‘previous weight’ should be restored (see Figure 8.2), errors
in the weight changing block have the effect that the ‘restored weight’ is not
exactly equal to the value the weight had before perturbation. The learning
behavior is also affected if the step size does not decrease to small values when
convergence is reached. The uncontrollability of the step size is modeled with
the relative step size error parameter.

Errors in the sign storage block

The sign provider delivers the appropriate sign r4, at its output for the weight
changing block. It is a new and random sign generated by the random generator
when the weight is perturbed, and it equals the previous sign when the weight is
restored. Memorizing this previous sign is assumed to take place in this block.
Alternatively, it could be part of the random generator block described below.
We can expect that a circuit implementation of this function will not always
produce the desired sign. Hence, sign error probability is introduced, which
gives the probability that a sign ri, is wrong.

Random sign generator

For each new trial a new random sign r4, should be generated for weight w;.
This function is not very critical, as long as a random signal is produced. This
block is considered ideal in the simulations described in Section 8.3.2 because a
good random generator design is expected to be capable of dealing with random
offset charge fluctuations, which is the main cause of errors in SET technology.
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8.3 Training a two-layer SET neural network

We have seen in Chapter 7 that a single SET neuron with two SET synaptic
inputs can perform the elementary classification operations demanded by a neu-
ral network. It is therefore interesting to investigate the classification behavior
and the learning abilities of larger neural networks.

Figure 8.4 gives an example of a fully connected two-layer network with an
arbitrary number of inputs, hidden neurons (first layer) and output neurons (in
the second layer). With a two-layer network of linear synapses and sigmoid neu-
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[:] : neuron
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n,
Ol.lt2

Vo Vo

layer 1 layer 2

Figure 8.4: An example of a two-layer neural network that can be simulated with
the software. This network has two inputs, three neurons in its hidden layer (the first
layer) and two output neurons (the second layer).

rons, in principle any non-linearly separable classification can be realized [40].
Although two layers are not always necessary to separate classes non-linearly if
the network has non-linear synapses and neurons [46,59], a two-layer network
gives more classification flexibility, and the presence of a hidden layer is a greater
challenge for the learning algorithm.

Although a fully connected network is not the optimum topology for very
large SET neural networks (see Section 7.1), we use this topology here because
it is easier to understand, and because the learning algorithm is known to work
for feed-forward networks. It is a good start towards more complex, future
systems.

Section 8.3.1 describes software to simulate a two-layer neural network with
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periodic synapses and neurons, trained with the random weight change learning
algorithm. In principle, the network layers may have any size. To avoid very
long simulation times, we restrict ourselves to layers with a small numbers of
neurons and synapses.

The results obtained with this software are presented in Section 8.3.2. It
is shown that a small two-layer network can successfully be trained to classify
the XOR function, and the learning algorithm is robust to the type of errors
occurring in SET technology [70].

8.3.1 The SET neural simulator

The interactive software to simulate the network was written in Matlab. Two
relevant aspects of the program are described below.

e The synapse and neuron models

e The learning algorithm

Synapse and neuron models

To shorten the simulation time, only the transfer function of the synapses and
neurons are modeled by the program. Any arbitrary function can be defined
for this purpose by means of a tabular definition in the software. The model
described in Section 4.4.4 was used to fill the table to simulate the SET tran-
sistor transfer function. This means that for example the limited fan-in of SET
transistors, its stochastic character, and its precise temperature behavior are
not taken into account.

SET transistors can only produce unipolar output signals, therefore only
positive inputs are supplied to the simulated network, and the low and high
neuron output states are defined as in Figure 8.5, where low is scaled to +0.5
and high is scaled to +1.5. Output range of the devices is normalized to 0 to 2.
The synapses also produce only positive output values. Inhibitory synapses are
obtained with the negative slope of the SET transistor transfer function, as
explained in Section 6.3.1. The synaptic weight was implemented by scaling the
output amplitude of the concerned SET transistor.

The learning algorithm

The random weight change learning algorithm is implemented algorithmically in
the software. Four parameters that influence the learning algorithm performance
are (see Sections 8.2.1 and 8.2.3):

e number of trials n,

¢ learning gain 7%,
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neuron
output

>
] ’

neuron input

Figure 8.5: Definition of the low and high state of a neuron.

s relative step-size error,
e sign error probability.

Since each learning cycle optimizes the weights for only one input-output
combination, the error £ might increase suddenly when switching to another
pattern.

Only when the overall error E, stays low for all patterns, has the function
been learned. This stop criterion could be automated, but in the software used
here it was done through visual inspection by the operator.

8.3.2 Simulation results

Although networks of arbitrary size can be simulated, most runs were done on
a small network. Larger networks give comparable results [70], but both the
simulation time per learning cycle and the number of learning cycles increases.
The five experiments shown in the table below were performed on a network with
two inputs, two hidden neurons and one output neuron, as shown in Figure 8.6.
Up to five simulation runs were done for each of the experiments. The results
described below show representative selections of these runs.

Experiment Neuron type Synapse type non-ideality

1 Sigmoid Multiplier

2 Periodic Multiplier

3 Periodic Periodic

4 Periodic Periodic Noise

5 Periodic Periodic Learning errors

The insets in Figures 8.7 to 8.11 show the truth tables produced by the
network after learning the XOR function. The training set consisted of the
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ideal XOR truth table shown below. Two versions were used, one with bipolar
values for the conventional and the sinusoidal models and one with only positive
values for the SET transistor models.

in; iny out in; ins out
-1 -1 -1 0.5 05 05
-1 1 1 65 15 1.5
1 -1 1 1.5 05 15

1 1 -1 1.5 15 0.5

Figure 8.6: The network used to train the XOR function.

Conventional neuron and synapse transfers

To verify the correct functioning of the software, and for the purpose of com-
parison, the first experiment was done with conventional neural cells: a linear
multiplier as a synapse and a sigmoidal neuron. The output error as a function
of the learning cycle is shown in Figure 8.7. We see that the error initially fluc-
tuates more or less randomly, searching for weight values that suit all four test
patterns. After about 200 trials, the error remains low for all four test patterns.
The weight updates then become small, and fine tuning then reduces the error
to zero.

Periodic neurons and multiplier synapses

Subsequently, the sigmoidal neuron activation function was replaced by a sinu-
soid, while the linear synapses were retained. The resulting output error as a
function of the learning cycle is shown in Figure 8.8. In contrast to the pre-
vious case, the error initially never drops to very low values and subsequently
gradually decreases. The lack of sharp dips could be attributed to the absence
of saturation regions in the sigmoidal neuron activation function. (However see
also the remarks made about this for the next experiment.)
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Figure 8.7: Convergence of a network with conventional synapses and neurons. Inset:
XOR truth table produced by the network after learning. 7 = 0.16; n = 13.
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iny ing out
0.75 .10 -1.0  -0.9001 .
5 1.0 1.0 0.9160
5 1.0 -1.0  0.8791
5 0sf 1.0 1.0 -0.9386 .
s
é
0.25 | J
0 L .
0 200 400 600

Learning cycles

Figure 8.8: Convergence of a network with multiplying synapses and sinusoidal neu-
rons. Inset: XOR truth table produced by the network after learning. n = 0.1; n = 13.
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Periodic neurons and synapses

Figure 8.9 shows the convergence of the network when the transfer function
from input to output for both the synapse and neuron functions is periodic.
From here on, purely positive signals were used for the neuron and synapse
input and output, as is the case with real SET devices. The network converges
faster than with conventional neurons and synapses. We attribute this to the
fact that with periodic neurons and synapses, the output value range of both
neuron and synapse is limited, so that the output is never far away from the
desired value, and consequently the weight change needed to reach the optimum
value is always small: its maximum value is equal to the period of the function.
When the synapse also has a periodic transfer function, the sharp dips observed
in Figure 8.7 return. This contradicts the explanation given for their absence
in the previous experiment.

iny ing out
Q.75 0.5 0.5  0.4932 .

5 0.5 1.5 1.5132
E 1.5 0.5 1.5196
5 05f 1.5 1.5 0.5088 ]
s
e

0.25 - ]

0 L :
0 200 400 600

Learning cycles

Figure 8.9: Convergence of a network with sinusoidal synapses and neurons. Inset:
XOR truth table produced by the network after convergence. n =0.1; n = 5.

Noisy signals

The effect of additive noise was analyzed by superposing —20 dB noise on the
transfer function. The resulting convergence graph is shown in Figure 8.10. As
can be seen, the presence of noise seems to be beneficial for convergence.

The amount of noise present in actual hardware devices is not accurately
known yet, but is expected to be severely dependent on the temperature [1].

Errors in the learning algorithm

The two types of hardware errors for the learning algorithm, introduced in
Section 8.2.3 were analyzed:

¢ Sign errors,
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Figure 8.10: Network with periodic synapses and neurons and —20 dB additive
noise. Convergence of the network during 500 learning cycles. Inset: XOR truth table
produced by the network. n = 0.1; n = 8

e Step-size errors.

Sign errors occur when the learning algorithm stored the sign of the weight
change incorrectly. This results in errors when restoring the weight to its previ-
ous value. Simulations show that up to 30% of the stored weights may contain
a sign error without affecting the convergence of the learning algorithm [70].

Step-size errors occur when the absolute value of the weight change W
is incorrect when restoring the weight to its previous value. When the step
to restore the weight randomly varies between 0 and its nominal value, the
learning algorithm still converges. When both types of errors are combined
however, convergence is much more difficult. Up to 10% of both errors can still
be corrected by the learning algorithm simultaneously, as shown in Figure 8.11.

8.4 Conclusions

A two-layer neural network with periodic neurons and synapses can be trained
to classify a predefined function such as the XOR function.

The random weight change learning algorithm is suitable for training the
network dealt with in this chapter. It complies to the following requirements:
it functions independently of the specific neuron and synapse transfer function
and it is a supervised learning algorithm so that when the learning procedure
converges to a solution, the accuracy of the learnt function only depends on the
teacher, the generation of the error signal, and the presence of enough loop-gain.

The algorithm also has several features that facilitate implementing it in
hardware for very large neural networks. It uses locally available signals to
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Figure 8.11: Convergence of the network during 500 learning cycles with random
errors in the learning circuitry. Inset: XOR truth table produced by the network.
1 = 0.1; n = 5; sign error probability=0.1; relative weight error = 0.1.

determine weight updates. Second, the algorithm does not include complicated
operations, a prerequisite for a compact implementation. Third, all weights are
adjusted in parallel, which is advisable for fast learning algorithms. Finally,
the algorithm is robust to inaccuracies in its own hardware, allowing it to be
implemented in for example SET technology.

In spite of the above mentioned assets, this learning algorithm is probably
not the optimum choice for large neural systems. As a result of its stochastic
character, convergence may be too slow for large systems.

We can however conclude from the results presented in this chapter that
despite the non-standard transfer functions of the SET synapses and neurons,
small neural networks with their periodic functions can learn to classify simple
functions.
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Conclusions and future
research

This thesis shows that Single Electron Tunneling (SET) transistors promise an
efficient realization of neural network hardware. The two basic functional blocks
of a neural network, namely the synapse and the neuron, can each be made with
only a single SET transistor.

Two factors are important for a compact neural cell design. First, the techno-
logical devices used should have small feature size and low power consumption.
Hence, SET technology was chosen because the operation of the SET transistor
is based on the quantized nature of charge, and is therefore a very small and
low power device. Second, the inherent processing power of the devices should
be exploited. For the SET transistor this implies that its transfer function
periodicity and non-linearity must be explicitly employed.

The neural network system concept was chosen for two main reasons: first
the high processing power of an array of non-linear cells in parallel has the
prospect of making powerful signal processors possible and second, the adapt-
ability of a self-learning system makes it in principle robust to implementations
prone to inaccuracies and errors. Such non-idealities are unavoidable in com-
pact hardware for very large systems because the smallest hardware building
blocks are inherently inaccurate.

The single-SET transistor synapse and neuron devices presented in this thesis
owe their compactness to efficient exploitation of the non-linearity and periodic-
ity of the devices, and rely on the adjustment skills of the neural network system
concept to bridge the gap between the formal neural function description and
the actual SET transistor properties.

In addition to inaccuracies, the SET transistor’s functionality is severely
affected by the consequences of random offset charges. The success of using
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the devices depends on how those non-idealities can be handled in the design.
For the SET synapse and neuron, the random offset charges are equivalent
to random weight and threshold values respectively, and should therefore be
handled by a learning algorithm, which adjusts those values anyway.

The SET synapse and neuron devices can be interconnected to form a clas-
sifying neural network. The most important restriction originates from the
limited capacitive fan-in of SET transistors. Only networks with sparsely con-
nected topologies can therefore be realized. The maximum number of synapses
per neuron depends on the voltage gain of the SET transistors used.

A successful learning algorithm for a SET neural network can cope with the
specific properties of SET transistors, and is robust to errors that may occur
in its own hardware. An algorithm that complies to these requirements for
small neural networks is the Random Weight Change learning algorithm. It
can train a small neural network of periodic synapses and neurons to perform
simple functions, and can correct the type of errors that would occur if part of
the algorithm were implemented with SET devices itself.

Many open questions remain to be answered before large neural networks
in SET technology find their way into applications. At the technological level,
smaller devices will be needed to allow operation at higher temperatures. For
building large systems, higher yields are indispensable and less offset charge
fluctuations desirable.

At the circuit level, SET technology can almost certainly be further ex-
ploited by employing the possibility of individual electron transport. The pe-
riodic transfer function can probably be better exploited, for example by using
a hierarchical classification method based on the modulo operation of periodic
functions. The fan-in problem of SET transistors is hopefully solvable by using
a different circuit configuration. A study of basic electronic SET circuits could
yield interesting and useful circuit configurations.

At the neural network level, the effects of the transfer function periodicity
on the stability of feedback loops is one of the serious issues to be addressed
when SET feed-back networks are studied. The classification properties and
application areas of large neural networks with sparsely connected topologies is
another important issue to work on.

Finally, all facets of the learning behavior of SET neural networks must be
thoroughly investigated. Among the open questions to be addressed, we find
convergence and stability, and compact hardware implementation with imprecise
and stochastic hardware.

Even though many unanswered questions remain, we can conclude that com-
pact neural building blocks in SET technology promise to be a successful ap-
proach for realizing compact, neural networks.



A

Simulation parameters

The single electron tunneling simulation program SIMON—Simulation of Nano
structures [38] was used to calculate most of the curves shown in this thesis. As
explained in Section 4.4.2, the algorithm used by the program to calculate the
circuit behavior is based on the ‘orthodox theory of electron tunneling’ [21,27],
which yields accurate results for an arbitrary circuit configuration as long as
the junctions have a high tunnel resistance: Ry > Ry =~ 26 k). The algorithm
is based on calculating each individual tunnel event separately. Since tunneling
is a stochastic process, the program averages many tunnel events to find the
circuit behavior for a certain time step. For this thesis, the quasi-stationary
Monte Carlo simulation method was used.
Il
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Figure A.1: The device parameters of the SET transistor used for the simulations
with SIMON used in this thesis.
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All the SET transistor simulations in this thesis were done on essentially the
same SET transistor, which is shown in Figure A.1. Only the gate capacitance
and the biasing varied, depending on the application.
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The simulation parameters that were used throughout this thesis are listed
below.

Parameter Value Description

Tunnel order 1 No co-tunneling

Simulation time 1 second Only quasi-stationary behavior

‘Event number’ 10%* — 10° Number of tunnel events
averaged per time step

Neither current sources nor ohmic resistors are currently available in SIMON.
A current source is therefore modeled by the Thevenin equivalent, replacing
the resistor by a tunnel junction with zero capacitance, shown in Figure A.2.
The most important difference with an ideal current source, besides its limited

|

R=40MQ L 1%

C,=0F I

Figure A.2: Thevenin equivalent of a current source using a tunnel junction as an
impedance.

600 uv

impedance, is that it does not produce a steady stream of electrons, but rather
a stochastic one, where the individual tunnel events are described by a Poisson
distribution.
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Summary

In this thesis, compact Single Electron Tunneling building blocks for large arti-
ficial neural networks are presented.

Chapter 1 introduces the thesis, and Chapter 2 gives an overview of the
field of neural network implementations. It is argued that the neural network
system concept is valuable for powerful signal processing systems, but that suc-
cessful large scale applications are impossible as long as no compact hardware
implementation is available. The solution is to optimally use the available phys-
ical and technological properties, which results in compact neural devices that
perform the primitive neural functions.

Chapter 3 describes the two basic principles on which the design of the com-
pact neural cells is based. First of all, the design should not focus on strictly
defined primitive function definitions. An attempt to accurately implement
those functions does not yield the most compact realization possible because
the device properties are not optimally exploited. Second, the neural network
system concept is used because hardware inaccuracies are unavoidable in com-
pact designs. The resulting uncertainties can be eliminated at the system level
by combining the results of large numbers of devices, and by the learning algo-
rithm of the neural network.

The Single Electron Tunneling (SET) transistor, which is the basic device
used in this thesis, is the subject of Chapter 4. Its operation is based on the
tunneling of individual electrons through the device. The tunnel events are
influenced by the voltage on a capacitive gate. The transfer function from
gate to output is a periodic function of the gate voltage. This property makes
the device unique but also versatile, as shown in the following chapters. The
device unfortunately also has an important drawback: it suffers from random
offset charges, which seriously influence its functionality. The success of any
design with SET transistors depends on the consequences these offsets have for
the specific application. The success of SET neural networks in particular also
depends on the consequences the limited fan-in of the devices has on the network
topology, and on the ability of the learning algorithm to cope with the specific
SET properties.
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Chapter 5 presents two ways of making the neural activation function with
SET transistors, and compares them with two other SET neurons known from
the literature. The single-SET neuron described in this chapter is the favorite
one because it is compact, and because its random offset charge is equivalent to a
random neuron threshold value, which can be adjusted by a learning algorithm.
The non-linear transfer function of this neuron is formed by part of one period
of the SET transistor transfer function.

A single SET transistor is also sufficient for the synapse, as shown in Chap-
ter 6. The synaptic multiplication is obtained from the small-signal behavior of
the SET transistor transfer function. The differential slope of this transfer func-
tion depends on the operating point on the large signal function. The resulting
function is therefore similar to a synaptic multiplier if the operating point is
controlled by the synaptic weight. In this case, the random offset charge has an
effect equivalent to a random weight value, and all synaptic weights are adjusted
by the learning algorithm anyway.

In Chapter 7, the interconnection between SET synapses and neurons is an-
alyzed. The limited fan-in and voltage gain of SET transistors results in the
choice of a sparsely connected network topology. A small one-layer neural net-
work of SET neuron and synapse devices can perform elementary classification
tasks needed for neural network operation. The decision boundary between
an ‘active’ and an ‘inactive’ neuron output is positioned in the input space by
adjusting the synaptic weights and neuron thresholds.

A learning algorithm is indispensable for neural networks. Chapter 8 ana-
lyzes the required properties of a learning algorithm for SET neural networks
and subsequently describes how the random weight change learning algorithm
adjusts all the synaptic weights and neuron thresholds simultaneously by mea-
suring the effect of small random weight changes. This makes the algorithm
independent of the specific neural cell implementation. With this learning al-
gorithm, a two-layer SET neural network can learn the XOR function, even in
the presence of the type of errors that may occur if part of the algorithm itself
were also implemented in SET technology.

The SET neuron device and the SET synapse device are extremely compact
neural cell implementations, which show that respecting the device properties
and relying on the adaptiveness of the neural system is a successful approach
towards large and compact artificial neural networks.



Samenvatting

Dit proefschrift beschrijft hoe compacte bouwblokjes voor grote artificiéle neu-
rale netwerken gemaakt kunnen worden met Single-Electron Tunneling transis-
toren. ‘Single-electron tunneling’ verwijst naar het verschijnsel dat de elektronen
per stuk door dit type transistor stromen.

Na het inleidende hoofdstuk 1, geeft hoofdstuk 2 een kort overzicht van
de problemen en mogelijkheden die zich voordoen bij het implementeren van
elektronische neurale netwerken. Grote geintegreerde neurale netwerken zullen
naar verwachting krachtige signaalprocessoren opleveren, maar de realisatie van
dergelijke netwerken is vooralsnog onmogelijk omdat er geen compacte imple-
mentatievorm beschikbaar is. Door de fysische en technologische eigenschappen
optimaal te benutten, kunnen de primitieve functies van een neuraal netwerk
gerealiseerd worden door middel van compacte neurale devices, een implemen-
tatievorm die naar verwachting de realisatie van grote neurale netwerken wel
mogelijk maakt.

Hoofdstuk 3 beschrijft de twee basisgedachten die ten grondslag liggen aan
het ontwerp van de compacte neurale bouwblokjes. Allereerst is het van be-
lang dat men zich niet aan strikt omschreven primitieve functiedefinities houdt.
Een nauwgezette realisatie van deze functies zal namelijk in het algemeen niet
het meest compacte ontwerp opleveren, omdat de technologische eigenschap-
pen dan niet optimaal gebruikt worden. Ten tweede worden neurale netwerken
gebruikt, omdat onnauwkeurigheden onvermijdelijk zijn in compacte elektronis-
che circuits. De onzekerheden die hieruit voortvloeien kunnen op systeemniveau
geélimineerd worden door op geschikte wijze de resulaten van zeer vele devices
te combineren en door het leermechanisme van het neurale netwerk.

Hoofdstuk 4 behandelt uitgebreid de basisbouwsteen uit dit proefschrift: de
Single Electron Tunneling (SET) transistor. De werking van de SET-transistor
is gebaseerd op het tunnelen van individuele elektronen door het device. Met een
spanning op de gate van de transistor kan het tunnelproces beinvloed worden,
hetgeen aan de uitgang van het device kan worden gedetecteerd. Het bijzondere
van de SET-transistor is dat de overdrachtsfunctie van de gate naar de uitgang
een periodieke functie is. Zoals zal blijken uit de volgende hoofdstukken, is
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de SET-transistor hierdoor niet alleen een unieke, maar vooral ook een veel-
zijdige component. De SET-transistor heeft echter ook een belangrijke nadelige
eigenschap. Zijn gedrag wordt namelijk sterk beinvloed door willekeurige off-
set-ladingen. Het succes van een toepassing van SET-transistoren hangt dan
ook sterk af van de invloed van deze offset-ladingen op de functionaliteit van
het ontwerp.

In hoofdstuk 5 worden twee configuraties van SET-transistoren beschreven
waarmee de activatiefunctie van het neuron gerealiseerd kan worden. Uit een
vergelijking met twee andere SET-neuronen uit de literatuur, blijkt dat een van
de in dit hoofdstuk beschreven neuronen de voorkeur geniet. De betreffende neu-
ron bestaat uit slechts één SET-transistor, wat een zeer compacte implementatie
is. Bovendien is zijn willekeurige offset-lading equivalent met een willekeurige
waarde van de drempelwaarde van het neuron, waardoor de offset door het leer-
algoritme bijgeregeld kan worden. De niet-lineaire overdrachtsfunctie van dit
neuron wordt gevormd door een gedeelte van een periode van de overdrachts-
functie van de SET-transistor.

Hoofdstuk 6 laat zien hoe met een enkele SET-transistor ook een synaps
gemaakt kan worden. De vermenigvuldigingsfactor van de synaps wordt gegeven
door de helling van het klein-signaalgedrag van de SET-transistor. Deze lokale
helling hangt af van het instelpunt op de groot-signaalfunctie en als dit in-
stelpunt afhankelijk gemaakt wordt van het gewicht van de synaps, is het totale
gedrag van de SET-transistor vergelijkbaar met de gewenste vermenigvuldigende
werking. Ook in dit geval kan het leeralgoritme de willekeurige offset afregelen,
omdat de offset-lading het zelfde effect heeft als een willekeurige afwijking van
de gewichtswaarde die toch al door het leeralgoritme afgesteld moet worden.

In hoofdstuk 7 komt het onderling verbinden van neuronen en synapsen aan
de orde. De beperkte toegestane belasting aan de ingang van een SET-transistor
en de beperkte lokale spanningsversterking maken de keuze voor een netwerk-
topologie met weinig verbindingen noodzakelijk. Het hoofdstuk laat zien dat een
klein enkel-laags neuraal netwerk met SET-neuronen en -synapsen ce elemen-
taire neurale classificaties uit kan voeren: de positie van de scheidingslijn tussen
een actieve en een niet-actieve neuronuitgang kan namelijk veranderd worden
met behulp van de gewichtswaarden van de synapsen en de drempelwaarden van
de neuronen.

Het leeralgoritme is een onmisbaar onderdeel van een neuraal netwerk. Hoofd-
stuk 8 analyseert waaraan een leeralgoritme voor neurale netwerken op basis van
SET-transistoren moet voldoen. Vervolgens wordt het Random Weight Change
leeralgoritme beschreven, dat kleine willekeurige veranderingen aanbrengt aan
de gewichten en drempelwaarden om te bepalen hoe deze aangepast moeten
worden zodat het netwerk het gewenste gedrag gaat vertonen. Hierdoor is het
algoritme niet afhankelijk van specifieke synaps- en neuroneigenschappen en kan
het een tweelaags neuraal netwerk van SET-transistoren de XOR-functie leren.
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Dat lukt zelfs als er fouten optreden van het type dat voor zou komen indien
een gedeelte van het leeralgoritme zelf ook in SET-technologie geimplementeerd
wordt.

Het SET-neuron en de SET-synaps uit dit proefschrift zijn bijzonder com-
pacte implementaties van neurale cellen die laten zien dat het benutten van
specifieke eigenschappen van devices en het vertrouwen op de adaptieve werking
van een neuraal systeem een succesvolle weg belooft te zijn naar grote compacte
artificiéle neurale netwerken.
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