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Can randomdeposition create dense non-overlappingmaterial feeding? The question is very fundamental for the
research of particle packing, while the answer is of great importance for any industrial process that applies single
object operation. To gain an insight into this issue, we studied the overlap problems of convex particles in the
manner of uniformly random deposition. The overlap probability of two convex particles with arbitrary shapes
and sizes is formulated, and the coverage fractions of free particles and sticking particles (particles of the bottom
layer) are precisely predicted. Simulations with rectangular particles verified the theory. Surprisingly, free parti-
cles can only occupy less than 7.5% of the plane area,much smaller thanwhat is intuitively expected. Sticking par-
ticles, however, can easily cover 19%, a factor of 2.5 times larger. The finding is of great value for applications that
need to create dense non-overlapping feeding.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Sustainability in utilizing resources is gaining overwhelming impor-
tance in society. To achieve this goal, intelligent and automatic produc-
tion processes are essential. Sorting processes, for instance, are no
longer based on coarse, binary classification anymore, and instead,
deep sorting is increasingly being asked in the level of single object op-
eration, especially in small scales [1,2]. To distinguish every single ob-
ject, the objects must be placed separate from each other, so that
smart and accurate recognition methods, such as laser-induced break-
down spectroscopy (LIBS) [3,4] and hyperspectral-imaging analysis
can be applied [5–7]. A commonly usedmethod to obtain such an object
feeding is to let thematerials flowpass through a vibrator before the ob-
jects are transported to a conveyor belt or a tilted chute [2]. However,
when the objects are less spherical but flat and thin, for instance, the
crushed mineral particles [8,9], wood chips [10], and shredded plastic
flakes [6], overlaps between objects are almost inevitable and thus
greatly limit the efficiency of sorting processes. The issue is unavoidable
especially for small particles, while the single object sorting shows sig-
nificant advantages in dealingwith small particles owing to the high pu-
rity of the object when shredded into small size.

However, the effect of overlaps on free particle coverage fraction in
materials feeding has been rarely studied. The most related work on
overlapping of many objects are the birthday problem [11] andwireless
networking [12]. A physical model of the overlap probability of circles
. This is an open access article under
with uniformly and non-uniformly random distributions is built to ad-
dress these problems [13]. However, the model did not consider the
shape factor and in practice, particles in sorting processes involve all
kinds of shape. Moreover, for the industry, the most interesting issue
is whether random deposition can produce a dense feeding of particles,
or in other words, howmuch area fraction the free particles can obtain.
To answer this question, a general model that describes the random
feeding process of arbitrarily shaped particles is necessary.

In this paper, we studied the random deposition process of particles
with arbitrary shapes and sizes in a big plane area. Juneja and Mandjes
already implied that uniform distribution would obtain the biggest
non-overlapping probability [13]. Uniform distribution is also preferred
and more or less the real situation in industry, where efforts are always
made to distribute the particles all over the plane area as even as possi-
ble. So in this paper, we chose to drop the particles in themanner of uni-
form random deposition. Below, we first calculate the overlap
probability of two convex particles, and then we obtain the free cover-
age fraction, defined as the area ratio of the free particles to the plane
area after dropping a certain amount of particles, refer to the red parti-
cles in Fig. 3a. Subsequently, we derive a formula for the sticking cover-
age fraction,which is the fraction of the plane area that is covered by the
particles that do not overlap with earlier dropped particles, at the very
instant when they are dropped on the plane (shown as red particles in
Fig. 3b). These particles “stick” to the plane surface and form the bottom
layer. In practice, the top layers can be removed without too much dif-
ficulty and a relatively dense layer of non-overlapping particles is then
achieved. A sample of HDPE particles from a recycling plant is analyzed
and both the surface area and the shape factor exhibit a lognormal
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 2. Part of the boundary (coarsely dashed) of the area Aoverlap, φ constructed by the path
of the centre point of the second particlewhilemoving around thefirst particle at constant
orientation (thin brown arrows), while being in continuous contact. For any position of
the second particle, a radius vector (finely dashed) connects the centre point of the
second particle with the point of contact.

Nomenclature

s shape factor of a particle
E number of edges of a convex particle
φ orientation angle of an arbitrary particle
θ angle from the orientation vector to the radius vector
el
! direction vector of edge l
ex
! direction vector of edge that parallels to the x-axis
rl
! radius vector of edge l
r0
! radius vector of edge that parallels to the x-axis
ρfree free coverage fraction
ρstick sticking coverage fraction
ki probability of a particle to be type i
ω ratio of the total area of all particles to the plane area
G(A) surface area distribution
H(s) shape factor distribution
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distribution. Simulationswith rectangular particles are done and the re-
sults verify the predictions of the theoretical model.

2. Theory and simulation

2.1. Overlap probability of two convex particles in random deposition

In order to state the issue more precisely, we choose a standard x, y
coordinate system for the plane area. The plane area is assumed to have
some surface area Aplane = Xplane × Yplane and its dimensions Xplane and
Yplane are far larger than the dimensions of the particles. Furthermore,
we choose to mark a “centre point” and an orientation vector of each
particle so that a random drop of a particle can be defined as the selec-
tion of arbitrary two-dimensional coordinates (x,y) within the plane
area for the particle centre point and an arbitrary angle φ for the angle
between the particle orientation and the x-axis (see Fig. 1).

Nowwe drop two convex particles onto the plane area both at arbi-
trary positions and at arbitrary angles, and we calculate the probability
that they will partly overlap. Since the plane area onwhich the particles
are dropped is much larger than the particles, and the particles have the
equal probability to be dropped at all positions with all orientations in
the plane area, we can simply choose the first particle positioned at
the center of the plane area, with its orientation vector parallel to the
x-axis of the plane area, while the second particle is positioned ran-
domly at position (x,y) and at a random angle φwithin the plane area.
Fig. 1. Dropping a particle with its “centre point” (blue dot) at an arbitrary position (x,y)
and at an arbitrary angle φ of its particle orientation (blue vector) with the x-axis in a
large plane area.
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Now, we approximate the first particle by a polygon with a suffi-
ciently large number E of edges to be a realistic approximation of a con-
vex particle. The edges have unit direction vectors el

!, l ¼ 1, ::, E, running
along the boundary of the polygon in the anti-clockwise direction. Sup-
pose that the second particle has a fixed orientation φ. Then the collec-
tion of positions for the centre point of the second particle for which
there is overlap with the first particle is defined by a boundary
consisting of all those positions of the centre point atwhich the two par-
ticles are just touching each other (see Fig. 2). In order to describe that
boundary, we move the second particle around the first particle in the
anti-clockwise direction so that the two particles continuously touch
(see Fig. 2). Suppose that the area inside this boundary has an area
Aoverlap, φ, then for the presently fixed orientation φ of the second parti-
cle, the probability of overlap should be

pφ ¼ Aoverlap,φ

Aplane
ð1Þ

And the overall probability that we are looking for is

p ¼ 1
2π

Z 2π

0

Aoverlap,φ

Aplane
dφ ð2Þ

Nowwe note that the area Aoverlap, φ consists of three different types
of parts. One part is the area A of the first particle. The second type of
part is the “triangular” section shown as B in Fig. 2. It is bounded by
two radius vectors and a curved part of the track of the centre point of
the second particle. By construction, it can be noticed that the area B is
the same as the part of the area of the second particle shown as B′ in
Fig. 2. In running around the first particle, parts B′ are created at every
corner of the polygonal first particle. Summing the parts B′, and there-
fore also the parts B, make up the area A′ of the second particle. The
third type is the parallelogram-shaped part, defined by two parallel ra-
dius vectors, an edge el

! of the polygonal first particle and the straight
part of the track of the centre point of the second particle that is parallel
to el

!. An example is the area shown as C in Fig. 2. The area of this part is
equal to the length ΔPl of edge l times the distance between the edge
and the straight part of the track of the centre point of the second parti-
cle that is parallel to el

!. This distance is equal to the size of the vector
el
!� ri

! φð Þ (see Fig. 2).



Fig. 3. Images of the packing formation of the rectangular particles generated in aMATLAB
simulation, with a protocol of uniform random deposition. (a) free coverage fraction,
where the free particles are in red and the non-free particles are in blue. (b) sticking
coverage fraction, where the sticking particles are in red and the top layers are in blue.
The partly reddish particles indicate the increased fraction compared with the free
coverage fraction, which are recognized as non-free particles by the definition of free
coverage fraction in figure (a).
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The radius vector from the centre point of the second particle to the
contact point with edge l is called rl

! φð Þ because it is constant along the
straight part of the track of the centre point of the second particle that is
parallel to el

!, and because it depends on the orientationφ of the second
particle. Since the second particle touches the polygonal first particle

along edge l, it follows that el
! is parallel to the tangent vector drl

�!
dφ φð Þ

(see Fig. 2). In other words, the area of part C can be written as:

AC φð Þ ¼ dφ
drl φð Þ � rl

! φð Þj
drl
�!
dφ φð Þ
�����

�����
ΔPl

����������
ð3Þ

So, the overall probability p is

p ¼ 1
2π

Z 2π

0

Aoverlap,φ

Aplane
dφ ¼ Aþ A0

Aplane

þ 1
2πAplane

∑
l
ΔPl

Z 2π

0

dφ
drl φð Þ � rl

! φð Þj
drl
�!
dφ φð Þ
�����

�����
dφ

����������
ð4Þ

Now we note that the integral

Z 2π

0

dφ
drl φð Þ � rl

! φð Þj
drl
�!
dφ φð Þ
�����

�����
dφ

����������
ð5Þ

involves all angles between the orientation of the second particle and
edge l and so it does not depend on the direction of edge l. Therefore, in-
stead of el

!we can simply take ex
!, the direction of the x-axis. This means

that the expression for p reduces to

p ¼ 1
2π

Z 2π

0

Aoverlap,φ

Aplane
dφ ¼ Aþ A0

Aplane

þ 1
2πAplane

∑
l
ΔPl

 !Z 2π

0
ex
!� r0

! φð Þ�� ��dφ ð6Þ

where r0
! φð Þ is the radius vector to the point at the boundary of the sec-

ond particle with a tangent parallel to the x-axis for orientation φ of the
particle axis. The resulting expression for p then reduces to

p ¼ 1
2π

Z 2π

0

Aoverlap,φ

Aplane
dφ ¼ Aþ A0

Aplane
þ P
2πAplane

Z 2π

0
ex
!� r0

! φð Þ�� ��dφ ð7Þ

Here we give a simple way to obtain the result of the integral and a
more general proof can be found in Appendix A. Notice that P is the pe-
rimeter of the first particle and p of course, is symmetric in the proper-
ties of the two particles. Thus the integral depends only on the
properties of the second particle, and it must be equal to αP′, where α
is a constant independent of the properties of the particles and P′ is
the perimeter of the second particle. For a circular second particle
with radius R′, the integral is

Z 2π

0
ex
!� r0

! φð Þ�� ��dφ ¼
Z 2π

0
R0dφ ¼ 2πR0 ¼ P0 ð8Þ

So α = 1. Therefore, the requested probability is

p ¼ Aþ A0 þ PP0=2π
Aplane

ð9Þ
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2.2. Free coverage fraction in random deposition

Now an interesting question is how many free particles we can ob-
tain as we drop more particles onto the plane area. In a random deposi-
tion process, a particle recognized as a free particle means that the
particle is not on top of any earlier dropped particle at the instant
when it falls on the plane, and none of the later dropped particles are
on top of it when a desired number of particles have been deposited
on the plane, as shown in Fig. 3a, where 2000 particles are dropped on
the plane and the free particles are marked in red. Without losing gen-
erality, we assume that we drop amixture ofM particles that consists of
N different types, with probability ki and surface area Ai of each type i=
1,., N, then we have

1 ¼ ∑
N

i¼1
ki;Atotal ¼ ∑

N

i¼1
kiMð ÞAi ð10Þ

Nowwe consider the probability that the first particle overlaps with
the later droppedmth particle, wherem= 2,.,M. The first particle has a
probability ki to be type i, and the mth particle has a probability kj to be
type j, j=1,., N.We already know that the probability that the two par-
ticles overlap with each other is

pij ¼
Ai þ Aj þ PiPj=2π

Aplane
ð11Þ

Here Ai, Pi and Aj, Pj are the area and the perimeter of thefirst particle
and themthparticle, respectively. Theprobability that thefirst particle of
type i overlaps with themth particles is the sum of the overlap probabil-
ity of the N types by weight
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pi ¼ ∑
N

j¼1
kj
Ai þ Aj þ PiPj=2π

Aplane
ð12Þ

Nowwe define A and P as the average area and the average perime-
ter of the N types of particles

A ¼ ∑
N

j¼1
kjAj;P ¼ ∑

N

j¼1
kjPj ð13Þ

Then we have

pi ¼
Ai þ Aþ PiP=2π

Aplane
ð14Þ

The probability that the first particle of type i overlaps with none of
the other M − 1 particles is

pi,free ¼ 1−pið ÞM−1

¼ 1−
Ai þ Aþ PiP=2π

Aplane

 !M−1

≅ exp −M
Ai þ Aþ PiP=2π

Aplane

 !
ð15Þ

The approximation holdswhen Aplane≫A,Ai, PiP andM is sufficiently
large. Now we know the probability of the first particle to be free as of
type i, and we also know the probability that the first particle to be
type i is ki, so the contribution that the first particle adds to the number
of the free particles of type i is ki(1− pi)M−1. By summing it all over the
mixture, we have the expected number of free particles of type i after
we drop a mixture of M particles

τi,free ¼ Mki 1−pið ÞM−1 ≅Mki exp −M
Ai þ Aþ PiP=2π

Aplane

 !
ð16Þ
Fig. 4. Image of part of the 2.8 – 5.6 mm screen
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So, the area fraction covered by the free particles of type i on the
plane area is

ρi,free ¼
τi,freeAi

Aplane
≅
MkiAi

Aplane
exp −M

Ai þ Aþ PiP=2π
Aplane

 !
ð17Þ

And the total area fraction covered by the free particles on the plane
area is

ρfree ¼ ∑
N

i¼1
ρi,free≅∑

N

i¼1

MkiAi

Aplane
exp −M

Ai þ Aþ PiP=2π
Aplane

 !
ð18Þ

We define ω as the deposition ratio, meaning the ratio of the total
surface area of all deposited particles to the surface area of the plane.

ω ¼ Atotal

Aplane
¼ MA

Aplane
ð19Þ

Then the free coverage fraction of type i can be written as

ρi,free ¼
kiAiω
A

exp −ω 1þ Ai=Aþ PiP=2πA
� �� �

ð20Þ

And the total free coverage fraction of all particles is

ρfree ¼ ∑
N

i¼1

kiAiω
A

exp −ω 1þ Ai=Aþ PiP=2πA
� �� �

ð21Þ

The Eq. (21) implies that the free coverage fraction is only related to
the area distribution and the geometrical feature of the particles
concerning their surface area and perimeter. To quantify the geometri-
cal feature, we define the shape factor as s ¼ Pffiffiffiffiffiffi

4πA
p . Thus for a givenmix-

ture with surface area distribution G(A) and shape factor distribution H
(s), the free coverage fraction can be precisely calculated.
size fraction of the HDPE particle sample.



Fig. 5. Plastic particle area distribution in 5 mm2 intervals, compared to a lognormal distribution with μ= 3.9 and σ= 0.6.
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To have a better look on howmuch the free coverage fraction can be
in the random deposition, we consider a simple case, a mixture of parti-
cles with the same area A and the same shape factor s, in other words, a
mixture of identical particles. Then the free coverage fraction is simpli-
fied as

ρfree idð Þ ¼ ωe−2ω 1þs2ð Þ ð22Þ

Now we can draw several interesting conclusions from Eq. (22).
(1) For a mixture of identical particles, the size of the particles is no

longer relevant. The free coverage fraction is only relatedwith the shape
factor s of the particles. Mixtures with smaller shape factors can obtain
bigger free coverage fraction. Among all convex-shaped particles, the
circular particles have the smallest perimeter for the same surface
area and thus have the smallest defined shape factor s = 1. Particles
that are less round, such as the rectangular particles with a large aspect
ratio have a bigger shape factor s. Thus, a mixture consisting of rectan-
gular particles will have less free particles than that of circular particles
in random deposition.
Fig. 6. Shape factor distribution of real plastic particles in 0.02 intervals of s
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(2) It is not difficult to see that the free coverage fraction first in-
creases with the addition of particles when the plane is scattered with
few particles in a dilute packing and then decreases when the packing
of particles becomes dense. Eventually, there are no free particles if
we drop an excessive number of particles on the plane area, which intu-
itively makes sense because all the plane area would be covered with
overlapped particles. After a simple derivation, we can find that the
free coverage fraction reaches its maximum

ρmax
free idð Þ ¼ e−1

2 1þ s2ð Þ ð23Þ

when we deposit a ratio of the total particles area to the plane area
ω ¼ 1

2 1þs2ð Þ.
For amixture of circular particles, themaximal free coverage fraction

is ρfreemax(circle) ≈ 9.2%, at a deposition ratio ω = 25%. For other shapes
that are less round, for instance, the regular triangle with a shape factor
s ≈ 1.65, the maximal free coverage fraction is ρmax

free (Rtriangle) ≈ 5%,
smaller than that of circles.
, compared to a lognormal distribution with μ = − 2.1 and σ = 0.62.



Fig. 7. Free coverage fraction ρfree vs the total deposition area ratio ω in a random deposition process of identical rectangular particles, with a shape factor s ≈ 1.2. The simulation result
(dotted curve) verified the theoretical prediction (solid curve). The maximal free coverage fraction ρfree ≈ 7.5% is obtained at the total deposition area fraction ω ≈ 21%.
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2.3. Sticking coverage fraction in random deposition

The free coverage fraction of a random deposition predicted above is
so small that the capacity of many industrial processes is limited. A nat-
ural and practical way to improve the fraction of the free particles is to
remove part of the particles and leave those at the bottom layer which
stick to the plane area. We define this fraction as the sticking coverage
fraction ρstick. This fraction is bigger than the free coverage fraction be-
cause once a particle is dropped free without overlapping with earlier
Fig. 8. Sticking coverage fraction ρstick vs the total deposition area ratioω in a randomdeposition
prediction of the theory and the dotted curve is the simulation result. The asymptotic maxima
fraction.
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particles, it immediately adds up to the sticking coverage fraction, no
matter later dropped particles fall on top of it, as shown in Fig. 3b
where some particles (partly in reddish) are covered by other later
dropped particles (in blue), and they are also recognized as sticking
particles.

Nowwe consider the samemixture as described in Section 2.2. Sup-
pose we have droppedm− 1 particles, and nowwe drop themth parti-
cle. In Section 2.2, we already know the probability that anmth particle
of type i overlaps with the 1st dropped particle is
process of identical rectangular particles, with a shape factor s≈ 1.2. The solid curve is the
l sticking coverage fraction ρstick ≈ 20.5% is e times bigger than the maximal free coverage
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pi ¼
Ai þ Aþ PiP=2π

Aplane
ð24Þ

So, the probability thatmth particle overlaps with none of the earlier
dropped m − 1 particles is

pi,stick ¼ 1−pið Þm−1 ¼ 1−
Ai þ Aþ PiP=2π

Aplane

 !m−1

ð25Þ

This is the probability that the particle of type i is free at the point
when it falls onto the plane area, and it contributes to the total number
of the sticking particles of type i. So, the total number of sticking parti-
cles of type i after we have dropped M particles is

τi,stick ¼ ki ∑
M

m¼1
1−pið Þm−1 ¼ ki

1− 1−pið ÞM
pi

≅ki
1−e−Mpi

pi
ð26Þ

Then the sticking coverage fraction of type i is

ρi,stick ¼ τi,stickAi

Aplane
≅

kiAi

Ai þ Aþ PiP=2π
1− exp −ω 1þ Ai=Aþ PiP=2πA

� �� ��
ð27Þ

Here we substitute the definitionω ¼ MA
Aplane

. So the total sticking cov-

erage fraction of the mixture is

ρstick ¼ ∑
N

i¼1

kiAi

Ai þ Aþ PiP=2π
1− exp −ω 1þ Ai=Aþ PiP=2πA

� �� ��
ð28Þ

Similarly, for the case of the mixture of identical particles with a
shape factor s, the sticking coverage fraction can be simplified as
Fig. 9. Free coverage fraction ρfree vs total deposition area ratioω in a random deposition proces
solid curves are the prediction of the theory and the dotted curves are the simulation results. Th
the area ratio between type S1 and type S2 is A1 : A2 = 1 : 2.25. The total free fraction (diamo
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ρstick idð Þ≅1−e−2 1þs2ð Þω
2 1þ s2ð Þ ð29Þ

It is easy to see that the sticking coverage fraction increases monot-
onouslywith the number of the particles dropped on the plane area. The
rate of increase slows down gradually that particles have a high chance
to be free when the plane is scattered with few particles and then it be-
comes more and more difficult for a particle to be settled at an empty
spot. Eventually, there is no void that a single particle would fit in and
the sticking coverage fraction reaches its maximum

ρmax
stick idð Þ ≅ 1

2 1þ s2ð Þ ð30Þ

Comparing Eq. (23) and Eq. (30), we notice that the maximal stick-
ing coverage fraction is e times bigger than the maximal free coverage
fraction for identical particles. For instance, a mixture of identical circu-
lar particles would have a maximal sticking coverage fraction ρstickmax

(circle) ≅ 25%.

2.4. Distributions of surface area and shape factor of real plastic particles

In order to evaluate the simulation options of a random deposition,
and also to gain a rough impression of the shape features and the surface
area distribution of real particles used in industry, a sample containing a
little over a thousand HDPE particles from a plant application of IMDS
plastic recycling [14], is imaged and the particle surface area A and the
perimeter of the convex hull P are analyzed, as shown in Fig. 4. The ma-
jority of the plastic particles are convex, and few of them that are not
strictly convex can be ignored for the statistics. The area distribution G
(A) and shape factor distribution H(s) are obtained, and they both ex-
hibit typical lognormal form, see Fig. 5 and Fig. 6. According to
Eq. (21) and Eq. (28), the calculated maximal free coverage fraction is
ρfreemax ≈ 7.7% at the deposition ratio ω ≈ 22% and the asymptotic maxi-
mal sticking coverage fraction is ρstickmax ≈ 21.7%. The calculated area-
s of amixture of two types of rectangular particles, with the same shape factor s≈ 1.2. The
e probability ratio between type S1 (square) and type S2 (triangle) is k1 : k2= 0.8 : 0.2 and
nd) is the sum for type S1 and type S2.
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averaged shape factor is equal to s ¼ 1:15, close to the shape factor of
square particles s = 1.13, which makes sense that rectangular is quite
often the most commonly seen shape in practice.

2.5. Simulation with rectangular particles

Eq. (21) and Eq. (28) precisely predict the expected free coverage
fraction and the sticking coverage fraction of a mixture that consists of
arbitrarily sized and shaped particles. For the simplified case of identical
particles, Eq. (22) and Eq. (29) can be applied. Now we want to check
the theory in a simulation. Here we chose MATLAB to perform the sim-
ulation as it is a convenient tool for modelling and visualizing in pro-
cessing large amount of particles. It has shown in Section 2.4 that
rectangular is a commonly seen shape, and thus here we use two
types of rectangular particles in the simulation, named as type S1 of di-
mensions 40 × 80 pixels and type S2 of dimensions 60 × 120 pixels,
with the same aspect ratio 1:2, and so the same shape factor s ≈ 1.2.
The chosen dimensions of the particles are big enough that the edge ef-
fect of the particles is negligible, regardless of any random angle a rect-
angular particle is orientated with respect to the orthogonal axis. The
particle size of S2 is 1.5 times larger than that of type S1, meaning
P1 : P2= 1 : 1.5; A1 : A2= 1 : 2.25.We run two simulations in a protocol
described as follows:

(1) Amixture consisting of only type S1 is deposited on a rectangular
canvas T, of dimensions 100 × 100 times bigger than the dimensions of
the particle type S1. The center positions and the orientations of the par-
ticles are chosen in a uniform random manner. The free coverage frac-
tion and the sticking coverage fraction are obtained with the increase
of deposition ratioω, which is defined as ratio of the total area of depos-
ited particles to the area of the canvas. To avoid the boundary effect,
both the free coverage fraction and the sticking coverage fraction are
obtained in a middle domain of the canvas that is 10% smaller than
the original canvas.

(2) A mixture consisting of both type S1 and type S2 is deposited on
the same canvas T and the probability ratio of type S1 and type S2 in the
mixture is k1 : k2 = 0.8 : 0.2. The free coverage fraction and the sticking
coverage fraction of each type are obtained separately, together with
Fig. 10. Sticking coverage fraction ρstick vs total deposition area ratioω in a randomdeposition p
The solid curves are the prediction of the theory and the dotted curves are the simulation result
and the area ratio between type S1 and type S2 is A1 : A2 = 1 : 2.25. The total sticking fraction
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the total free coverage fraction and the total sticking coverage fraction
of the mixture, in relation with the deposition ratio ω.

3. Results and discussion

The simulation results of the free coverage fraction and the sticking
coverage fraction nicely match the theoretical predictions, for both the
general case of a mixture consisting of different types of particles and
the simplified case of a mixture consisting of identical particles, as
shown in Figs. 7 to 10. Nowwe can confidently tell two facts that are im-
portant for the industry where single object operation is applied. First,
for any many particles feeding in a uniformly random manner, as long
as the surface area distribution G(A) and the shape factor distribution
H(s) of the feeding materials are given, the fraction of free particles
and the fraction of the sticking particles of the bottom layer can be pre-
cisely predicted. Second, themodel reveals that there are upper limits of
the free particles and the sticking particles that a random feeding can
obtain. The upper limit of the free fraction is much smaller than what
is intuitively expected. For instance, a feeding of rectangular particles
can only obtain a maximum of 7.5% free particles, see Fig. 7. It is a very
disappointing observation for industrial applications. In the recycling
industry, sensor sorting technology has the capability to deal with a
dense-packed monolayer feeding up to 40% ~ 50% [6], while the low
free coverage fractions shown in Fig. 7 and Fig. 9 imply that most of
the capability will be wasted because of bad feeding. The upper limit
of the sticking coverage, on the other hand, is much bigger than the
free coverage. In practice, a feeding rate of an infinite number of parti-
cles is not applicable, a more practical scenario would be to feed parti-
cles at a certain percentage to the plane area. For instance, we drop a
batch of identical rectangular particles with a total surface area of half
of the plane area ω = 50%, and then the sticking coverage fraction is
ρstick ≈ 19%, see Fig. 8 and Fig. 10. An increase of coverage fraction of
non-overlapping particles from 7.5% to 19% is very interesting. It
means that by simply removing the top layers of particles, the rate of
processable particles increases dramatically and the capacity of the pro-
cess can be easily improved by a factor of 2.5. This observation is very
important and instructive for many industrial processes that require
rocess of amixture of two types of rectangular particles, with the same shape factor s≈ 1.2.
s. The probability ratio between type S1 (square) and type S2 (triangle) is k1 : k2= 0.8 : 0.2
(diamond) is the sum for type S1 and type S2.



Fig. 11. Alternative computation of area C. We keep the orientation of the particle φ fixed
and rotate the x-axis. θ is the angle of the orientation vector with the radius vector r0

! φð Þ.
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monolayer feeding. With an extra step to remove the overlapped parti-
cles in a purely randomdeposition process, for instance by using air suc-
tion, a much denser monolayer feeding can be achieved.

4. Conclusion

In this paper, we described a two-dimensional random deposition
process of arbitrary convex particles with both theory and simulation,
to give insights for many industrial processes that require feeding of
non-overlapping particles. The probability that two convex particles
overlap with each other turns out to be simply determined by the sur-
face areas and the perimeters of the two particles. Subsequently, we
successfully obtained the formulas that could precisely predict the free
particle coverage fraction and the sticking particle coverage fraction.
The two fractions are determined by the area distribution and shape
features of the particles. Imaging analysis of recycling plant HDPE parti-
cles reveals that the distributions of surface area and shape factor are
typical lognormal. We looked at some simplified cases in which all par-
ticles are the same, and we found that the maximal free coverage frac-
tion is only 7.5% for rectangular particles, much smaller than people
would intuitively expect. While a much larger fraction of sticking parti-
cles implies that a relatively dense non-overlapping formation can be
made by removing the overlapping particles from the top. This observa-
tion has great value for the industry, in the sense that by removing the
overlapped particles but the bottom layer, the production capacity can
be greatly improved by a factor of 2.5. Simulationswith rectangular par-
ticles show that the expected number predicted by the formulas fits
very nicely with any given random realization of particle packing, and
thus verify the theory.
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Appendix A. Calculation of the area of part C

Based on a special case that the convex particles are circles, we ob-
tained the area where two convex particles would overlap with each
other when the “centre point” of the second particle is within in and it
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leads to the overlap probability of two convex particles in a random
deposition

p ¼ 1
2π

Z 2π

0

Aoverlap,φ

Aplane
dφ ¼ Aþ A0

Aplane
þ P
2πAplane

Z 2π

0
ex
!� r0

! φð Þ�� ��dφ
¼ Aþ A0

Aplane
þ PP0

2πAplane
ð31Þ

Now we provide a more general proof of the integral

1
2π

Z 2π

0
ex
!� r0

! φð Þ�� ��dφ ¼ P0

2π
ð32Þ

In the integral, r0
! φð Þ is the radius vector from the centre point to the

point at the boundary of the second particle with a tangent parallel to
the x-axis for orientationφ of the particle axis. Since the integral is sym-
metric for r0

! φð Þ and ex
!, we can also keep the orientation of the second

particle fixed and rotate the x-axis around it (see Fig. 11). Then for
every angle φ, there is an angle θ(φ) for the point of contact with the

particle orientation vector, such that r
!
0 φð Þ ¼ ρ θð ÞðcosðθÞ, sin θð ÞÞ, with

ρ(θ) defining the shape of the particle and ex
!¼ ðcosðφÞ,−sin φð ÞÞ.

Then the integral in the alternative coordinate is
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The integral can also be written as
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The first term is zero. Since ex
! is parallel to the tangent vector of the

contact point with the radius vector r0
! φð Þ, so we have the relation

cos φð Þ
−sin φð Þ
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Then the second term becomes
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The integral shown above is the definition of the arc length, and so
we have the final expression of the integral
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